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Abstract: Levels of Automation (LOA) provide a method for describing authority granted to
automated system elements to make individual decisions. However, these levels are technology-centric
and provide little insight into overall system operation. The current research discusses an alternate
classification scheme, referred to as the Level of Human Control Abstraction (LHCA). LHCA is an
operator-centric framework that classifies a system’s state based on the required operator inputs.
The framework consists of five levels, each requiring less granularity of human control: Direct,
Augmented, Parametric, Goal-Oriented, and Mission-Capable. An analysis was conducted of several
existing systems. This analysis illustrates the presence of each of these levels of control, and many
existing systems support system states which facilitate multiple LHCAs. It is suggested that as the
granularity of human control is reduced, the level of required human attention and required cognitive
resources decreases. Thus, it is suggested that designing systems that permit the user to select among
LHCAs during system control may facilitate human-machine teaming and improve the flexibility of
the system.

Keywords: control; automation; autonomy; attention; teaming; design framework

1. Introduction

The vision of humans working effectively in a team with Artificial Intelligent Agents (AIAs)
was clearly stated over 60 years ago [1]. Since that time, it has been demonstrated that automation
can be incorporated into systems to moderate human workload [2], enhance situation awareness [3],
and improve team performance [4]. Further, artificial intelligence technologies and automation have
been incorporated to help us control systems to include nuclear power plants, aircrafts, and, more
recently, automobiles. However, these systems often fall short of creating an interactive human–AIA
team, typically placing the human operator into a supervisory role. In this role, the operator is required
to recognize anomalies, assume control under time pressure, and apply their skills and knowledge to
save the system in the direst of circumstances [5].

The supervisory role is not a desirable role for the human as they: (1) suffer vigilance decrements
with time [6], reducing their ability to detect anomalies; (2) do not practice the skills necessary for
system recovery and thus experience skill atrophy or fail to acquire the requisite skills [7]; and (3) do
not necessarily have an adequate mental model of the situation to permit them to recover the system
within the requisite time. However, systems are designed time and again which place the operator in a
supervisory role, often leading to mishaps and occasionally loss of life [8]. Although one may cite
many reasons why we continue to implement systems that place human operators in a supervisory
role, one potential reason is that the commonly applied design frameworks fail to lead the designer to
fully appreciate the complexity of human–AIA interaction.
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One of the most frequently cited frameworks in the human-automation interaction literature is the
“Levels of Automation” (LOA) framework proposed by Sheridan and Verplank in 1978 [9]. This work
considered the design of a tele-operated undersea welding robot. Following a traditional Systems
Engineering framework [10], these researchers decomposed the tasks which needed to be performed
by the human–robot team into elemental tasks. This analysis led the researchers to the realization that
some of these tasks required control loops with a duration that was shorter than the time required for
the human to receive visual information from the remote location, issue a control command, transmit
the command to the robot, and for the robot to execute the control command. Thus, they provided the
ten levels of automation for any “single elemental decisive step” or decision, with the understanding
that steps requiring fast control loops must be automated near Level 10 within tele-robotic systems
while slower control loops could be automated near Level 1. The authors updated these levels of
automation over the years, most recently publishing the updated list shown in Table 1 in 2011.

Table 1. Sheridan and Verplank’s Levels of Automation in Man-Computer Decision Making [11].

Level Description of Interaction

The computer
1 Offers no assistance, human decides everything
2 Offers a complete set of decision/action alternatives
3 Narrows the selection down to a few alternatives
4 Suggests one alternative
5 Executes the suggestion if human approves
6 Allows human a restricted time to veto before automatic execution
7 Executes automatically, then necessarily informs the human
8 Informs the human only if asked
9 Inform the human only if it, the computer, decides to
10 Decides everything and acts autonomously

When applied during system design, this framework is often coupled with task-based allocation
rules in which individual decisions or tasks are allocated to the human or machine based upon their
individual capabilities [12,13]. Similar frameworks have been proposed by a number of authors that
describe the level of automation in different tasks and domains [14–22]. Parasuraman and colleagues
suggested that the tasks should be further decomposed during automation allocation decisions using
a four-stage model composed of sensory processing, perception/working memory, decision making,
and response selection [23]. However, allocating different levels of automation to each decision and
different mental processing stage within each decision produces a large number of potential system
configurations for the operator to understand and maintain awareness of during system operation.

The Society of Automotive Engineers has adopted a taxonomy for classifying the automation
of driving tasks [24]. The six levels in this taxonomy involve increasing levels of automation where
increasing numbers of tasks are assumed by the automation. Interestingly the first five levels assume
that the human is active in the control loop of the vehicle, although human involvement is safety-critical
in only the first four levels. This framework does not specifically focus on reducing operator workload,
attention, or other human cognitive limitations and thus the impact of this framework on human
performance is unclear. However, this framework addresses automation at the system level rather
than the decision level.

An alternate framework, referred to as the “Continuum of Control” has been proposed within
the tele-robotics literature by Milgram and colleagues [25]. This taxonomy segments the control of
robots, into five levels, as shown in Table 2. At the lowest level, the operator remains completely in the
loop; making every decision and controlling every motion performed by the robot. Level 2 suggests
“a master–slave control system, where all actions of the master are initiated by the human operator
[and] are mimicked by the slave manipulator”. That is, the human operator communicates exactly how
the robot should move, then the robot determines the servo inputs required to achieve that movement.
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In Level 3, the human directs the motion of the robot through a command language. At Level 4,
the human only supervises, monitoring and applying direction or redirection as required. Milgram
does not clearly define Level 5 but Vagia describes this level as “the human gets out of the loop” [26].
While Milgram’s continuum of control is not clearly defined, the overall concept of automating control
appears in numerous other publications.

Table 2. Milgram and colleague’s Continuum of Control.

Level Description of Interaction

The robot is controlled through . . . .
1 Manual Tele-Operation
2 Telepresence
3 Director Control
4 Supervisory Control
5 Autonomous Robotics

Although not proposed as a framework, Chen and colleagues proposed a control structure for
the human operator as shown in Figure 1. In this structure, the human operator is able to exercise
different levels of control, depending upon their needs [27]. For example, such a control scheme might
enable the human operator to balance their workload and their need for precise control. Three control
loops are shown within this figure. In the first loop, the human performs all control. In the second
loop, the robot performs the inner control loops while the operator exercises higher-level control.
All control is exercised autonomously by the robot in the third loop. This control scheme further
illustrates that autonomous control requires safety considerations, such as obstacle avoidance, to be
included in the automation. These safety considerations, when automated reliably, relieve the operator
from monitoring the system’s performance and reduce operator workload.
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Chen’s model is somewhat consistent with Rasmussen’s abstraction or ends-means hierarchy [28].
Rasmussen proposes that human work can be structured in a hierarchy from physical structures to
more abstract concepts that are formed to enable a high-level human goal. Each goal within each
layer in this structure can be conceptualized as a control loop which encapsulates the control being
performed at the lower levels of the abstraction hierarchy to achieve the higher-level goal.

Hollnagel discusses designing human interaction with automation through the application of his
Contextual Control Model (COCOM), which conceptualizes the operator as operating in four control
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modes to include “scrambled”, “opportunistic”, “tactical”, and “strategic”. In this model, the tactical
and strategic modes serve as outer loops for the others and the strategic mode is conducted on a longer
time scale [29].

A more concrete example of conceptualizing human–AIA interaction is provided by Johnson and
colleagues [30]. The system discussed within this publication can be envisioned as a series of concentric
control loops. The inner loops represent a larger number of shorter duration, more precisely specified
tasks and the outer loops represent longer duration, more abstract, and less precisely specified tasks.
In this study, users were able to interact with an AIA at one of four “treatment” levels. The lowest
level consists of 11 independent commanded actions, with each of the other levels consisting of fewer
available commanded actions, where these actions encapsulate multiple actions at the lower level.
The fourth level provided a single command that could be issued by the human operator. Within this
structure, when the operator provided a command at a higher level, the AIA was required to determine
the appropriate lower-level actions.

Although much of the reviewed literature illustrates examples of human control of automated
systems through the conceptualization of the control structure as a hierarchy, it does not appear that this
concept has been clearly stated or explored as a framework for human–AIA team design. Perhaps this
is not surprising as automation has traditionally not been conceptualized as capable of completing the
full perceptual cycle to exact control [31,32]. However, the decreasing costs of sensors, actuators and
more robust artificial intelligence engines provide automated systems the ability to perceive events
within the world, decide upon actions in response to these events, and enact these events. Thus, these
innovations have enabled the proliferation of artificial agents as defined by Weis [33]. In an earlier
paper, we suggested an alternate framework referred to as Level of Human Control Abstraction (LHCA)
to describe the level of control a user must exercise in the control of a system [34]. In the current
research, we explore the concept of human–agent teaming through this hierarchical control structure.
By viewing automation within manned and unmanned aircraft systems using this framework we
attempt to explore whether human interaction with existing systems could be described using this
conceptual structure.

2. LHCA Method

We begin by reviewing and defining the LHCA framework and then describing the method we
will apply to analyze this framework.

2.1. Framework Definition

The LHCA framework is intended to provide a human-centric, instead of a system-centric,
perspective. This framework comprises five control levels, including: (1) Direct, (2) Augmented,
(3) Parametric, (4) Goal-Oriented, and (5) Mission-Capable. The five levels are shown and described in
Table 3. The framework focuses on the cognitive tasks which are relinquished by the human operator
and become the responsibility of the automation. Specifically, this framework recognizes that as higher
levels of automation functions are applied in the system, the user exercises less granularity of control
which reduces the amount of attention and other cognitive resources required to control the vehicle.
This relationship is depicted in Figure 2. This tradeoff is particularly important in multi-tasking
environments where the operator is incapable of dedicating sufficient cognitive resources to granular
control of the vehicle. In systems where the operator can control the LHCA, they may prioritize
some activities over others, allocating more of their attention to the details of one task than another.
For example, while operating a vehicle, the operator may choose to allocate less attention to vehicle
control, commanding the system to operate at a higher LHCA. This decision permits the automation to
assume this control and permits the operator to focus less attention and other cognitive resources on the
control task. Thus, the operator decides to rely more on automation for a period of time. This decision
permits the operator to focus on alternate tasks or, perhaps, control multiple vehicles. However,
the ability of the operator to provide granular or low-level control of a system has been associated
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with functional gains and operational flexibility of a system [35]. Therefore, granular or low-level
control improves the flexibility of the system and permits the operator to innovate new solutions to the
challenges they encounter during system operation [36]. We might, therefore, expect that the ability
to assume granular control of the vehicle enables functional gains and improves the flexibility of the
system to overcome a larger variety of circumstances within a mission, as might be expected based on
Ashby’s Law [37]. Systems having variable LHCA permit the operator to exercise granular control
when necessary, while allowing the operator to select more abstract control to monitor additional
systems or perform alternate tasks.

Table 3. Proposed Levels of Human Control Abstraction framework.

Level Control Type Description of Interaction

Within the current system state, the operator . . .

1 Direct
. . . controls every aspect of the system, including actual control surface positions
or motor power. During “Direct Control”, the operator provides continuous
control inputs and is responsible for all aspects of system operation.

2 Augmented

. . . provides desired actions, the system then makes final determinations about
control surface positions or motor power (i.e., the inner control loops are closed).
During “Augmented Control”, the operator provides continuous control inputs
and is responsible for guiding the system. The system is responsible for
interpreting the operator inputs to adjust control surface positions or motor power.

3 Parametric

. . . inputs desired parameters that the system should meet (e.g., waypoints). The
system then uses onboard sensors and control algorithms to operate the vehicle to
maintain those parameters. During “Parametric Control”, the operator gives only
discrete control inputs. The operator is responsible for safety monitoring, including
obstacle avoidance, even when the system is operating correctly, without faults.

4 Goal-Oriented

. . . inputs desired goals the system should achieve; the system then makes all
required decisions to meet the goals. During “Goal-Oriented Control”, the
operator provides discrete control inputs. The operator’s role is reduced to
planning the next goal and monitoring for system failures as, when functioning
properly, the system can complete the goal without further guidance.

5 Mission-Capable

. . . enters mission goals prior to mission start at a level of detail which, when
combined with standard operating procedures and rules of engagement, are
sufficient to accomplish the mission. The system operates independently and
autonomously after the operator initiates the mission. During “Mission-Capable
Control”, the operator gives discrete control inputs prior to the mission. The
operator has no mandatory monitoring role during mission execution.
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operator attention.

2.2. Evaluation Method

This research was conducted in three phases. The first phase involved investigated the general
application of automation within systems and their impact on the operators of these systems. This led
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to the observation that the framework does not apply to systems, but states within each system. As a
result, application rules are proposed.

In the second phase, we evaluated the cognitive tasks associated with each LHCA for specific
systems, the results of which are described in Section 3.2. In this phase, a general framework was
developed for objectively evaluating the granularity of control, as well as the cognitive resources
required of a system. Specifically, these objective measures were applied, together with a high-level
task analysis of UAV control to describe the necessary cognitive functions. These cognitive functions
were representative of the functions within this domain and they influenced the granularity of control
as well as required cognitive resources to be applied by the human operator. When considering
the granularity of control, the number of cognitive tasks performed by the operator was evaluated.
When considering cognitive resources, it was assumed that more frequent or additional psychomotor
tasks would lead to higher workload and place higher demands on attention and cognitive resources.
This is a common assumption within the workload literature, as long as these tasks require the same
cognitive resources [38]. However, it is recognized that if these tasks do not rely upon the same
cognitive resources, this assumption is not necessarily accurate [39].

The third phase began with the development of a decision tree to categorize systems according
to the general framework developed in the first two phases. However, it was quickly realized that
these systems operate in multiple LHCA states. Therefore, the method was modified to categorize
discrete LHCA states in which the systems could operate. As shown in Figure 3, the resulting
decision tree was applied to assess whether the operator provided continuous control or discrete
control, which differentiated LHCA 1 and 2 from LHCA 3, 4, and 5. Additional questions, as shown,
further differentiated the LHCA. Once developed, this decision tree was applied to a number of
existing systems to classify the LHCAs supported by each system. This application required a detailed
examination of documentation surrounding the automated capabilities of each system. This produced
the classification in Section 3.3. Further analysis of these systems and their capabilities led to general
observations regarding the application and utility of LHCA.
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3. LHCA Application and Results

The results of the LHCA analysis is presented in three sections, first, we explain the development
of application rules. We then discuss the results of applying the framework to the control of a UAV
and the implications for the allocation of tasks between the human and system as a function of LHCA.
Finally, we discuss the results of applying this framework to a family of real-world systems.
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3.1. Application Rules

In developing the LHCA, two special circumstances arose which required rules to be developed
to aid selection of the proper level under the specified condition.

Rule 1: The LHCA is a state and is determined instantaneously.

A system can support the use of multiple LHCA and can transition between these states as
required. These transitions can be based on the control inputs by the human operator or the system.
An example is the initiation of an aircraft’s autopilot system. An example of operator initiated transition
occurs when the operator is flying an aircraft with continuous control inputs, at either LHCA 1 or
2 and activates the aircraft autopilot, which transitions the aircraft to Parametric Control, LHCA 3.
An example of a system initiated transition is the activation of an F-16’s Automatic Ground Collision
Avoidance System (Auto-GCAS). During normal flying conditions, with the autopilot disabled, control
inputs are given by the operator resulting in signals provided to the control surface actuators. However,
if the onboard Auto-GCAS system detects an impending ground collision, the aircraft will transition
to LHCA 3, Parametric Control. The system will then command the control surfaces to level off the
aircraft at a safe altitude and maintain safe flight parameters.

Rule 2: When multiple control inputs are provided, the system LHCA is assigned based upon the control with
the minimum LHCA value.

It is common for a human interface to include multiple control inputs, especially when operating
at lower LHCA levels. For example, we use the steering wheel to select direction and a combination
of gas pedal and brake to control speed in an automobile. In some systems, it is possible for these
independent controls to be automated differently. A common example is traditional cruise control.
In this example, the driver steers the automobile, an action consistent with LHCA 1. However,
because cruise control is responsible for maintaining the vehicle speed to a selected parameter value,
an argument might be made that the vehicle is being operated at LHCA 3. This issue is resolved by
examining the operator’s most detailed control input and assigning the LHCA based on that aspect of
control. Therefore, according to this rule, even when cruise control is active, the operator is controlling
the vehicle at LHCA 1 as they are directly determining the steering angle of the tires. Note that this
rule is derived from the human-centered nature of LHCA as the operator’s attentional demands are
primarily driven by the aspect of the vehicle with the lowest LHCA. That is the driver must fully
attend to road conditions and automobile direction to steer the vehicle. Therefore, they are operating
at LHCA 1.

3.2. Determination of Cognitive Tasks Associated with LHCAs

LHCA analysis is illustrated in this paper for a fixed-wing Unmanned Aerial Systems (UAS);
analysis of additional systems is provided elsewhere [40]. To properly analyze the system
state corresponding to each LHCA, an adequate system description must first be provided, as
illustrated below.

3.2.1. LHCA 1: Direct Control

In this configuration, the UAS is fully controlled by the operator using two joysticks, each joystick
axis controls a control surface (elevators or rudder on the tail or ailerons on each wing) or the motor
power. The operator is controlling the exact settings for all aspects of control using continuous control
inputs, as is expected for a system controlled at LHCA 1. The cognitive tasks being performed by the
operator during flight operations can be separated into two categories, flight control and dynamic
mission planning, as depicted in the cognitive task hierarchy in Figure 4.



Systems 2020, 8, 10 8 of 15

Systems 2020, 8, x FOR PEER REVIEW 8 of 15 

 

mission plan, decides upon the pitch, roll, yaw, and thrust to achieve this plan, then translates the 

desired movement of the aircraft into commands to the control surfaces to achieve the desired aircraft 

movement, adjusting the control surfaces in response to environmental conditions, such as cross-

winds. Note that the operator must be aware of the status of the system and all aspects of the 

environment while operating at LHCA 1. As such, any loss or diversion of operator attention may 

delay the recognition of such an environmental event and increases the risk that control inputs may 

not be sufficient for safe flight. Additionally, simple time lags associated with tele-operation may 

make LHCA 1 inappropriate or unsafe for some systems. 

 

Figure 4. Depiction of Level of Human Control Abstraction (LHCA) Cognitive Task Allocation for a 

hypothetical Unmanned Aerial Systems (UAS). Tasks indicated within each LHCA grouping are 

allocated to the automation on the vehicle. 

3.2.2. LHCA 2: Augmented Control 

In this configuration the UAS can also be controlled with two joysticks; however, each joystick 

axis controls either the thrust, role, pitch, or yaw rate. In this configuration, the operator does not 

need to translate the desired motion of the system to control surface positions and does not need to 

be aware of or responsive to changes in system state or environmental conditions that affect this 

translation. This contrasts with the Direct Control configuration because the position of the control 

surface is not controlled by the operator. Instead, the control surfaces are controlled by an algorithm 

that considers the joystick position as one of its multiple inputs. As shown in Figure 4, the human 

cognitive task “Determine Control Surface and Motor Power” is re-allocated to the automation when 

operating in Augmented Control. As certain environmental effects are now compensated for by the 

automation, momentary lapses or redirections of operator attention away from the control task are 

less likely to result in loss of control when operating at this LHCA. 

3.2.3. LHCA 3: Parametric Control 

The UAS is under control of an autopilot system. The operator sets flight parameters and the 

UAS adjusts the control surfaces and motor power to achieve those parameters. Therefore, the 

additional function “Determine Pitch/Roll/Yaw/Thrust” is allocated from the human to the 

automation. This function, together with the functions subsumed under LHCA 2, is under control of 

the automation at this LHCA. Notice that the human only physically interacts with the system 

intermittently under Parametric Control. Therefore, attention can be intermittently shifted to other 

tasks, depending upon the permissible periods between assessing the need to determine potential 

obstacles or altering system parameters without significantly increasing the risk of loss of control. 

However, the operator does assume some risk, dependent upon the reliability of the automation 

under the current flight conditions, that automation failure could result in loss of control. The 

Flight Control

Flight Operations

Dynamic
Mission Planning

Determine Control Surface
& Motor Power

Determine
Pitch/Roll/Yaw/Thrust

Determine Flight
Parameters

Determine
Flight Path

Determine
Obstacle Route

Determine
Intermediate Goals

LHCA 2

LHCA 3

LHCA 4

LHCA 5

Figure 4. Depiction of Level of Human Control Abstraction (LHCA) Cognitive Task Allocation for
a hypothetical Unmanned Aerial Systems (UAS). Tasks indicated within each LHCA grouping are
allocated to the automation on the vehicle.

As shown in Figure 4, each of these tasks can then be further decomposed into cognitive subtasks.
Specifically, dynamic mission planning includes determining the intermediate goals, determining the
flight path to achieve those goals and determining changes in the flight path to avoid any potential
obstacles. The operator determines more detailed flight parameters to achieve the mission plan, decides
upon the pitch, roll, yaw, and thrust to achieve this plan, then translates the desired movement of the
aircraft into commands to the control surfaces to achieve the desired aircraft movement, adjusting
the control surfaces in response to environmental conditions, such as cross-winds. Note that the
operator must be aware of the status of the system and all aspects of the environment while operating
at LHCA 1. As such, any loss or diversion of operator attention may delay the recognition of such
an environmental event and increases the risk that control inputs may not be sufficient for safe flight.
Additionally, simple time lags associated with tele-operation may make LHCA 1 inappropriate or
unsafe for some systems.

3.2.2. LHCA 2: Augmented Control

In this configuration the UAS can also be controlled with two joysticks; however, each joystick
axis controls either the thrust, role, pitch, or yaw rate. In this configuration, the operator does not need
to translate the desired motion of the system to control surface positions and does not need to be aware
of or responsive to changes in system state or environmental conditions that affect this translation.
This contrasts with the Direct Control configuration because the position of the control surface is not
controlled by the operator. Instead, the control surfaces are controlled by an algorithm that considers
the joystick position as one of its multiple inputs. As shown in Figure 4, the human cognitive task
“Determine Control Surface and Motor Power” is re-allocated to the automation when operating in
Augmented Control. As certain environmental effects are now compensated for by the automation,
momentary lapses or redirections of operator attention away from the control task are less likely to
result in loss of control when operating at this LHCA.

3.2.3. LHCA 3: Parametric Control

The UAS is under control of an autopilot system. The operator sets flight parameters and the UAS
adjusts the control surfaces and motor power to achieve those parameters. Therefore, the additional
function “Determine Pitch/Roll/Yaw/Thrust” is allocated from the human to the automation. This
function, together with the functions subsumed under LHCA 2, is under control of the automation
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at this LHCA. Notice that the human only physically interacts with the system intermittently under
Parametric Control. Therefore, attention can be intermittently shifted to other tasks, depending
upon the permissible periods between assessing the need to determine potential obstacles or altering
system parameters without significantly increasing the risk of loss of control. However, the operator
does assume some risk, dependent upon the reliability of the automation under the current flight
conditions, that automation failure could result in loss of control. The operator is also still responsible
for obstacle avoidance, as well as monitoring for other potential system failures. Thus, risk of loss of
control, collision, and the inability to recover from system anomalies increase as the period between
assessments increases.

3.2.4. LHCA 4: Goal-Oriented Control

In this configuration, the operator enters one of many pre-programmed goals to be accomplished
mid-mission. The operator may command the UAS to fly to a designated location and land there.
As shown in Figure 4, the operator is only responsible for “Determine Intermediate Goals” and the
additional tasks of “Determine Flight Parameters” (e.g., altitude and airspeed), “Determine Flight
Path”, and “Determine Obstacle Avoidance” are allocated to the automation. This configuration
enables a decrease in human attention as the operator is no longer responsible for monitoring the
environment. Therefore, the workload imposed upon a user by the task of controlling the vehicle will
likely be similarly reduced. The operator may fully engage in another activity for substantial periods
of time, receiving notice when the goal is accomplished or as status alerts are warranted. At this level
of control, the operator is relying upon the system to detect and provide timely alerts. Thus, the risk of
loss of control is determined predominantly by the reliability of the automation to control the aircraft
and provide alerts early enough to give the operator time to fully understand the current situation and
formulate an appropriate response.

3.2.5. LHCA 5: Mission-Capable Control

In this configuration, the operator specifies any mission parameters before takeoff. The UAS
then executes the mission without further control inputs from the operator. As shown in Figure 4,
the additional task of “Determine Intermediate Goals” is allocated to the automation. Similar to LHCA
4, the operator’s required attention is reduced. In fact, the operator might never interact with the
vehicle after the mission begins. At this level of control, the operator is relying upon the system to not
only detect and provide timely alerts, but to determine appropriate actions towards the fulfillment
of each goal. Thus, the risk of loss of control is determined predominantly by the reliability of the
automation to control the aircraft, properly formulate methods to achieve the goal, and provide alerts
early enough to give the operator time to fully understand the current situation and formulate an
appropriate response.

This example demonstrates the allocation of cognitive tasks associated with vehicle control from
the operator to the system with increases in LHCA. As designed, levels within this framework are
generally associated with the allocation of tasks necessary for the control of a vehicle from the operator
to the system; reducing the attentional and other cognitive resources the human must expend to
control the system. However, the human’s knowledge of the system and environment, as well as the
granularity of their control over the system, decreases with increasing LHCA.

3.3. Classification of Real-World Systems

LHCA was applied to several manned aircraft and Unmanned Aerial Systems (UAS) as shown in
Table 4 using the decision tree provided in Figure 3. Additionally, the framework was applied to a
commercial automotive system and an Unmanned Ground Vehicle (UGV) to investigate whether this
framework would generalize to other vehicles.
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Table 4. Real-World Systems Analyzed and the LHCAs provided by each system. The presence of an
“X” indicates the system supports a state with the corresponding LHCA.

Category System Available LHCAs
1 2 3 4 5

Aircraft 1

AF AC1 X
AF AC2 X X
AF AC3 X X

Airbus A300-600R X X

UAS
DJI Phantom 4 X X X

PRENAV Drone
System X

UGV CMU HRP X

Automotive Volvo XC90 X X X
1 AF-AC1 through three designate different U.S. Air Force manned or unnamed aircraft.

The results indicate that some systems are not capable of being controlled at more than one LHCA,
while others permit the system to operate at multiple LHCA. The majority of the systems appear to
operate at LHCA 3 or below. However, the UAS provided LHCAs above three with one of the systems
permitting operation only at LHCA 5. This system was designed to be operated by minimally trained
operators in close proximity to obstacles. The manufacturer provided the highest possible level of
automation as the control loop must be performed at a rate that is faster than human operators are
capable in order to respond appropriately to environmental changes. Further, support for LHCA 5
reduces the required operator training.

During application of the LHCA framework, a number of interesting observations were made.
The most significant of these was the differentiation between augmented and direct fly-by-wire systems.
Some fly-by-wire systems are controlled at LHCA 1 and others LHCA 2. An LHCA 1 fly-by-wire
system simply breaks the physical connection between the operator’s controls and the control surfaces,
passing the control inputs electronically to control surface actuators but not adjusting the inputs for
environmental data. This type of non-augmented fly-by-wire system would be an example of Direct
Control, LHCA 1, not Augmented Control, LHCA 2, because the operator is still determining the
exact position of the control surfaces and engine settings. This lesson applies to both unmanned and
manned vehicles.

Another lesson relates to LHCA determination when the allocation of responsibility may be
ambiguous. As described in the open literature, the F-16 has an Auto-Ground Collision Avoidance
System (Auto-GCAS) which is intended to prevent controlled flight into ground accidents [41].
This system is designed to prevent mishaps caused by the operator’s loss of situation awareness, spatial
disorientation, loss of consciousness from over-G, and gear-up landings, which are a significant source
of aviation Class A mishaps [42]. In this system, the aircraft determines if a collision with the ground is
imminent, presents audio and visual warnings to the operator, and rights the aircraft (i.e., wings level
with heading selected based on the aircraft’s last course) if the operator does not respond.

In a scenario when the Auto-GCAS senses an imminent ground collision and begins aircraft
recovery, the LHCA classification is not obvious. However, the aircraft is using predetermined control
inputs, parameters determining the safe recovery altitude and cruising airspeed are stated within the
flight manual. Therefore, the system is executing “exclusively discrete control”. Classification then
requires an answer to the question: “Does the operator hold the preponderance of the responsibility
for safety monitoring and obstacle avoidance?” This question may cause confusion because the
operator likely is unconscious or severely disoriented when the Auto-GCAS is engaged. However,
the Auto-GCAS is not able to detect and avoid mid-air collisions with other aircraft. This begs the
question: “can the operator be responsible for avoiding other aircraft while unconscious?” In this case,
yes, as the Auto-GCAS is simply meeting and maintaining flight parameters until further notice and
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not actively avoiding mid-air collisions. Responsibility for avoiding all obstacles not in the aircraft’s
onboard terrain map, which the Auto-GCAS depends on, falls on the operator. The gap between the
Auto-GCAS capability to detect and avoid mid-air collisions and the operator’s capability to avoid
them because of potential unconsciousness presents risk. However, this risk is less than presented by
nearly certain ground collisions. The correct LHCA classification is three, Parametric Control with a
risk of mid-air collisions accepted by aircraft designers and operators.

4. Discussion

Every system has an associated set of functions delegated to either the operator or the system
to ensure effective operation. With respect to vehicle control, a number of authors have discussed
systems being controlled at different levels of abstraction. The current research proposes classifying
the performance of these systems in terms of the level of control abstraction employed by the human
operator or LHCA. As LHCA increases, responsibilities are reassigned from the operator to the system.
This reduction in operator responsibility directly leads to a reduction in the number of required human
control inputs. Correspondingly, the amount of required human attention decreases as LHCA increases
because operator responsibility decreases. As the specificity of control inputs decrease, the operator
can devote less attention to controlling the motion of the system, assuming that the automation is
sufficiently reliable under the current circumstances that risk to the system is acceptable. The decrease
in human attention may correlate to a decrease in workload and the ability to dedicate attention to
other duties. It is expected that the decrease in attention for higher LHCAs will reduce situation
awareness with regard to the vehicle itself but permit the operator to focus on other aspects of the
mission, improving SA for higher-level tasks within a mission.

In reviewing the results, a number of general system observations can be made regarding the
different types of systems that were analyzed.

4.1. Unstable Systems

Unstable or under actuated systems, such as the DJI Phantom or Prenav multirotor UAVs,
should not be operated at LHCA 1 as control of these systems require continuous control of multiple,
interdependent controls, often exceeding human capacity. Assigning the human to control a system
that requires completion of the control loop at a rate that exceeds human capacity is likely to result in
failure, as originally noted by Sheridan and Verplank [9]. Generally, LHCA 2 reduces the demand
on the operator as compared to LHCA 1 and is therefore desired unless the operator can control the
vehicle to gain additional performance. This recommendation is made with the understanding that
system failures, such as sensor failures, which was assigned as the cause of a B-2 accident in 2008,
will occur [43]. However, for a well-designed system, the risk of system failure is less than the risk
imposed by a pilot’s inability to control an inherently unstable system, or systems where the inherent
lag times during tele-operation may make them unstable.

4.2. Multiple LHCAs

Most of the systems analyzed could be operated at several LHCAs, enabling the operator to
select the granularity of control inputs as appropriate. Often, increasing a system’s LHCA reduces
the operator’s required attention and responsibilities but results in a reduced granularity of control
and reduced operational flexibility. In this context, the term operational flexibility refers to a system’s
ability to be used as required by the operator, even if that is outside of normal operations. At LHCA 5,
the operator is not required to know what a system is doing on a moment-to-moment basis and the
system may not be able to perform tasks beyond those for which it was initially designed. However,
at LHCA 1, the operator has complete control over the physical elements of the system. The literature
demonstrates that highly trained or motivated operators have the capability to employ systems in
novel ways when given the flexibility to do so [38,44]. Providing highly granular control of the basic
control surfaces has the potential to permit the operators to expand the operational utility of the system,



Systems 2020, 8, 10 12 of 15

thus increasing operational flexibility. Overall, this framework is consistent with the work discussed
by both Chen and Milgram [25,27].

Another point worth making is with regards to the tradeoff between appropriate LHCA and
acceptable risk. Acceptable level of risk is not a static determination; it is variable based on Rules of
Engagement/Employment (ROEs) and the criticality of the task. For the military, the ROEs are likely
to be adjusted in favor of higher risk if victory in battle hangs in the balance. For civilian emergency
response, a higher-level LHCA may be deemed acceptable if there are no alternate means of task
accomplishment or the risks associated with inaction or lower LHCA is deemed higher than that of
operating at a higher LHCA. Systems that provide a variable LHCA provide the operator options to
react appropriately within such scenarios.

Two additional questions are worthy of discussion. First, “Are the five LHCAs provided in
this paper the only useful levels or are these five the correct levels?” The answer to this question
is unclear. However, we suggest that the general construct depicted in Figure 3 which suggests
that the designer should consider the tradeoff between granularity of control and required operator
attention during the design of the system is important. Important also in this tradeoff is the fact that
the system must be capable of safe operation at higher LOAs, at least in certain, well-characterized,
environments. Second, “Should the system permit operation at multiple LHCAs?” It is clear that
adaptive or adaptable automation has been demonstrated to be useful in autonomous systems to
permit the operator to adjust their workload to compensate for environmental variability [11,45].
We would propose that giving the operator relatively intuitive control over the granularity of control
will permit better human–AIA teaming in systems that employ highly trained operators to control the
system in uncertain environments. However, the utility of this functionality may depend upon the
knowledge and training of the operators to understand the limits and capabilities of the underlying
technology, as well as, their own limits and capabilities. The operator’s ability to understand their
own limitations under high workload and in the presence of multi-tasking environments is important
in their ability to assess the risk associated with operating a vehicle with higher levels of LHCA [46],
enabling them to select appropriate control schemes.

4.3. Safety-Critical Considerations

All of the systems with operator safety concerns (i.e., manned systems) were limited to the first
three LHCAs. This likely relates to the maturity of autonomous technologies, as well as, liability and
regulations. Until system manufacturers can convince the public and regulators that their systems can
be trusted with safety-critical responsibilities, systems that involve higher levels of potential for loss of
human life perhaps should not be capable of operating at LHCA 4 or 5 for extended periods of time.
However, even if the systems are capable of operating at these levels only in limited environments and
the operator understands these limitations, this functionality may provide significant utility to the
operator by improving operational flexibility.

4.4. Generalizability

The current LHCA framework has been designed to classify user interaction with vehicle control
systems. We believe this framework could be extended to include other control systems and interfaces
involving multiple control interfaces. An example might include control of a UAV having a slewable
camera where both the control interface for the UAV and the camera have varying levels of automatic
control. However, considering the current framework is specific to the cognitive tasks necessary for
vehicle control, extending this or analogous frameworks to other domains will likely require a deeper
understanding of the cognitive tasks performed within each domain. However, the general approach
taken here and depicted in Figure 3 may well be extensible to other domains even if the five specific
LHCAs are not.
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5. Conclusions

The LHCA framework was proposed to enable the classification of vehicles and tele-robotic
systems to provide system-level trades during design. This framework is human-centric, focusing on
the granularity of control the human operator must provide. The framework associates decreases in
granularity with decreased requirements for human attention and other cognitive resources. Therefore,
this framework focuses on the demands placed on the human within a human–AIA team.

This framework was used to classify existing piloted vehicle systems, demonstrating the broad
applicability of the LHCA framework within the domains of vehicles and tele-robotics. The analysis
illustrated that control states within the existing systems could be classified using this framework
and that multiple systems supported multiple LHCAs, permitting the operator to trade granularity of
control for cognitive effort while operating the system. We believe this framework could be extended
to include other control systems and interfaces involving multiple control interfaces. An example
might include control of a UAV having a slewable camera where both the control interface for the UAV
and the camera have varying levels of automatic control.

Some within the literature have argued against the proliferation of additional frameworks for
describing the interaction of a human and automation [47,48]. Others have argued that the existing LOA
framework has failed to account for human behavior and experience in operational environments [49].
LHCA is not likely to address all of the concerns associated with the LOA framework. In fact,
the proposed framework is specific to the cognitive tasks necessary for vehicle or physical device
control. Extending the framework to other domains will likely require a deeper understanding of the
cognitive tasks performed within each domain. Therefore, it is likely that the primary contribution
of this research is the clear communication of the need to consider the tradeoff between granularity
of control and required human cognitive resources during the design of system interfaces, as well
as the need to support the dynamic, situationally-aware, transitions among the resulting system
states. We believe providing the ability to transition among states which embody this tradeoff can
usefully-support interactions between humans and artificially intelligent agents who collaborate as
team members.
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