
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2020 

Analysis of Beta Distribution for Subjective Uncertainty Analysis in Analysis of Beta Distribution for Subjective Uncertainty Analysis in 

Cost Models Cost Models 

Ryan D. Stafford 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Finance and Financial Management Commons 

Recommended Citation Recommended Citation 
Stafford, Ryan D., "Analysis of Beta Distribution for Subjective Uncertainty Analysis in Cost Models" 
(2020). Theses and Dissertations. 3255. 
https://scholar.afit.edu/etd/3255 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/328162082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=scholar.afit.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3255?utm_source=scholar.afit.edu%2Fetd%2F3255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


i 
 

 

 

O 

  

 

ANALYSIS OF BETA DISTRIBUTION FOR 
SUBJECTIVE UNCERTAINTY ANALYSIS IN COST 

MODELS 
 

THESIS 
 

Ryan D. Stafford, 1st Lieutenant, USAF 
 

AFIT-ENV-20-M-241 



ii 
 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, the Department of Defense, or the 
United States Government.  
 
This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States.  

  



iii 
 

 

 

AFIT-ENV-20-M-241 
 
 
 

ANALYSIS OF BETA DISTRIBUTION FOR SUBJECTIVE UNCERTAINTY 
ANALYSIS IN COST MODELS 

 
 

THESIS 
 
 
 

Presented to the Faculty 
 

Department of Systems Engineering and Management 
 

Graduate School of Engineering and Management 
 

Air Force Institute of Technology 
 

Air University 
 

Air Education and Training Command 
 

In Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science in Cost Analysis 
 
 
 
 

Ryan D. Stafford, BS 
 

1st Lieutenant, USAF 
 
 

March 2020 
 

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED. 

 
 

AFIT-ENV-MS-20-M-241 



iv 
 

 

 

 

ANALYSIS OF BETA DISTRIBUTION FOR SUBJECTIVE UNCERTAINTY 
ANALYSIS IN COST MODELS 

 
 
 
 

Ryan D. Stafford, BS 

1st Lieutenant, USAF 

 
Committee Membership: 

 
 

Lt Col Clay M. Koschnick, Ph.D 
Chair 

 
 

David K. Fass, Ph.D 
Member 

 
 

Jonathan D. Ritschel, Ph.D 
Member 

 
 

John J. Elshaw, Ph.D 
Member 

  



v 
 

 

 

Abstract 

 Subjective uncertainty exists within the realm of cost estimation.  Typical 

methodology for subjective uncertainty involves elicitation from a subject matter expert 

to provide a high, low, and most likely value -- defining a triangular distribution -- to 

model said uncertainty.  This manuscript explores ways to leverage research on 

elicitation geared towards defining a triangular distribution and provide a simple 

conversion to a beta distribution usable by cost analysts with various degrees of 

mathematical knowledge.  Furthermore, this manuscript attempts to demonstrate the 

benefits of using a beta distribution through its application as a conjugate prior for 

Bayesian updating in cost models.   
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Introduction of Articles 

 The articles included serve to provide a complete methodology to take a given 

triangular distribution and convert to a beta distribution, and use the beta distribution for 

Bayesian updating in a cost estimating framework.  The Joint Agency Cost Schedule Risk 

and Uncertainty Handbook (JACSRUH) recommends using a triangular distribution for 

subjective uncertainty in cost models on the basis of the distribution’s simplicity.  While 

it’s true the triangular distribution’s parameters are considered more intuitive than that of 

the beta distribution, use of a beta distribution allows for alternative mathematical models 

to quantify uncertainty.  Specifically, this thesis looks at using the beta distribution as a 

conjugate prior distribution for Bayesian updating.   

 The first article provides a methodology for converting a triangular distribution to 

a beta distribution.  This analysis considers simplicity to be the top priority in developing 

methodology and for this reason chooses to primarily analyze a method of moments 

technique to convert from a triangular distribution to a beta distribution.  The premise of 

the manuscript centers around the fact that an entry level cost-analyst with a fundamental 

understanding of probability, statistics, and algebra will be able to execute a method of 

moments conversion without any advanced knowledge on the aforementioned subjects.  

The manuscript compares the results of the method of moments for estimating the 

parameters of a beta distribution to quantile estimation which considers a more complete 

view of the distribution’s shape in order to determine the validity of the results.  Finally, 

the manuscript presents an empirical example to characterize the aggregate effect of 

converting to a beta distribution.   
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 The second article focuses on using the beta distribution as a conjugate prior for 

Bayesian updating.  Specifically, it looks at two applications: 1) combining a distribution 

defined through expert opinion elicitation with realized costs in order to update budget 

requests; 2) combining multiple experts’ opinions into a single distribution for analysis.  

The paper reviews existing research on using Bayesian updating in the cost estimation 

field and highlights the uniqueness of this research.  This manuscript uses a purely 

theoretical approach and will make suggestions on future research involving empirical 

analysis.   
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I.  Introduction 

 Subjective uncertainty is a type of uncertainty where data does not exist in order 

to model the uncertainty and instead must be assessed in a biased manner.  Brownstein et 

al. (2019) note that subjective uncertainty exists in all stages of scientific inquiry but that 

objective uncertainty -- which can be modeled with data -- is the fundamental goal.  

Research has been conducted to determine the best practices for elicitation of information 

from subject matter experts (SMEs) in order to reach this objective threshold.  O’Hagan 

(2019) conducted research to discuss pitfalls such as anchoring and cognitive bias as well 

setting out best practices to make the elicitation process more rigorous.  Burgman (2015) 

discussed ways to identify risky advice as well as the advantages of group estimates over 

individual estimates.  Grafton and Selwyn (2012) conducted a South African case study 

to find ways to elicit tacit knowledge from experts through storytelling.  Beyond simple 

elicitation of SME inputs there exists studies on mathematical representation of 

subjective uncertainty such as Machina and Schiedler (1992) modeling choice theory and 

Helton (1997) estimating the maintenance costs for the Turkish Air Force.  Finally, 

Clemen and Reilly (2014) look at specific implementation of modeling subjective 

uncertainty in order to model costs while Jorgensen (2004) has reviewed studies of 

software estimation.   

Uncertainty analysis in the cost estimation field provides decision makers a range 

of potential program costs.  The Joint Agency Cost Schedule Risk and Uncertainty 

Handbook (JACSRUH) describes best practices for modeling uncertainty within the 

DoD.  The handbook distinguishes between objective uncertainty which is based on the 

application of statistical processes and subjective uncertainty where the aforementioned 
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processes cannot be used (Thomas & Fitch, 2014).  This manuscript seeks to leverage 

previous works on SME elicitation and modeling as well as JACSRUH guidance as a 

foundation for justifying the use of a beta distribution in cost modeling.  The goal is to 

keep the methodology for elicitation consistent while providing a simple method to cost 

analysts to convert from a triangular distribution to a beta distribution.  

When eliciting expert opinion cost estimators seek to gather measures of central 

tendency (the center value of a probability distribution) and dispersion (how spread out a 

distribution is) in order to build distributions that capture the potential cost.  The 

JACSRUH states that the typical dispersion parameters for subjective uncertainty are the 

minimum and maximum.  There are four distributions defined by a minimum and 

maximum the JACSRUH considers for subjective uncertainty: uniform, betaPERT, 

triangular and beta.  Note the standard beta distribution is not defined by a minimum and 

maximum, it is a normalized version of the four-parameter beta distribution which is 

defined by these additional parameters.  Empirically, the uniform distribution was never 

found to be the best fit for representing costs (Smith et al., 2010).  Furthermore, the 

practical application of this distribution is limited and represents a situation where no 

information is known about the level of uncertainty beyond the minimum and maximum.  

The betaPERT is reserved for cases with considerable knowledge of the mode such as 

cases where empirical data informs the SME.  Additionally, the JASCRUH suggests 

using the betaPERT when a distribution is known to be left skewed so it may not be 

applicable for all scenarios.  This leaves the triangular and beta for cases where there is a 

good idea of the mode and where there is little knowledge of the mode, respectively.  

Differentiating between the two, Clemen and Reilly (2014) suggest the triangular 
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distribution is a good middle ground between the distribution with the best theoretical fit 

and an easily assessed distribution.  Furthering this point, the JACSRUH shows the beta 

distribution to be the best fit in 19% of instances and the triangular the best in 18% of 

instances (Smith et al., 2010); since they are similar in frequency of best fit, the 

JACSRUH recommends using triangular distribution due to its simplicity.  Additionally, 

Berny (1989) found in discussions with project managers that the mode a core piece of 

any estimate -- a parameter which can be directly stated by the SME and is a defining 

parameter of the triangular distribution.     

 Furthering the idea of simplicity, work has been done to convert a beta 

distribution to a triangular distribution due to its ease of use and more intuitive 

interpretability (Johnson, 1997).  Additionally, Williams (1992) supports the use of the 

triangular distribution claiming the beta distribution is not easily understood and that its 

parameters are not easy to estimate.  He conversely claims the triangular distribution is 

easier to understand and more comprehensible to the project planner.  This manuscript 

aims to alleviate the issue of the simplicity argument of the triangular distribution over 

the beta distribution by finding an easy application to convert a given triangular 

distribution to a beta distribution.  By using a beta distribution in place of a triangular 

distribution, analysts gain the advantage of using a distribution that can be used in other 

mathematical frameworks (e.g. as a conjugate prior for Bayesian updating) during the 

lifecycle of the program while maintaining a distribution fit empirically similar to that of 

triangular distribution.   
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II.  Methodology 

 The triangular distribution is defined by three parameters: minimum (a), 

maximum (b), and mode (c).  These parameters have an intuitive interpretation that 

allows a subject matter expert to provide a specific numerical estimate of each parameter.  

Conversely, the beta distribution is defined by two shape parameters: an alpha parameter 

(α) and a beta parameter (β).  These parameters do not have the same intuition as those of 

the triangular distribution’s parameters; although there are rules for these parameters that 

provide guidance for their impact on the overall shape of the distribution -- e.g., when 

both α and β are greater than one the resulting distribution is unimodal (i.e. contains one 

value that is the most likely to occur.  Alternatively, this corresponds to one peak when 

viewing the distribution graphically).  Additionally, there exists a four-parameter beta 

distribution that is defined between a minimum and maximum value (thus the extra two 

parameters).  The more common two-parameter beta distribution -- which is defined over 

the support of [0,1] -- is just a standardized version of the four-parameter beta 

distribution, meaning its minimum and maximum values have been normalized to solely 

span the interval between 0 and 1.  The triangular distribution has a minimum (a) and 

maximum (b) and is defined over the support [a,b]; it too can be standardized to have a 

support of [0,1] such that it is just a scaled version of the original triangular distribution.  

For purposes of this analysis, the standardized triangular and beta distributions are used 

under the reasoning that a triangular distribution obtained through elicitation can easily 

be standardized to the interval [0,1] by scaling the distribution such that the minimum (a) 

is 0, the maximum (b) is 1, and the mode (c) is a value between 0 and 1 that keeps the 

skewness of the original distribution intact.  This standardization allows for comparisons 
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to be more intuitively interpreted as percentages rather than discussing percentages for a 

distribution with a minimum and maximum values other than 0 and 1, respectively.  

The goal of this study is to approximate a given triangular distribution with a beta 

distribution.  Therefore, the triangular distribution is considered a known entity.  From 

this triangular distribution, the defining parameters of a beta distribution (i.e., α and β) 

are estimated in order to achieve the best approximation of the given triangular 

distribution.  In considering methods to estimate the parameters α and β, simplicity is 

considered an important factor.  Analysts have a wide variety of mathematical knowledge 

and comfortability with statistical programming; therefore, a simplistic method of 

conversion is considered desirable in order to limit any form of additional training an 

analyst would need to convert from triangular to beta.  Specifically, this manuscript uses 

method of moments based on the population defined by the known triangular distribution 

and compares the results to quantile estimation in order to characterize the fit.   

Method of Moments 

 The first method considers different method of moments combinations to estimate 

the α and β parameters for a beta distribution.  In this study, the word moments include 

both moments (such as mean and variance) and other common metrics like mode.  

Traditionally, a method of moments sets the population moment formula equal to the 

numerical value of a sample moment.  The population moments for a beta distribution are 

a function of α and β (i.e. the numerical value for the mean of a beta distribution can be 

calculated knowing parameters α and β).  Likewise, the population moments for a 

triangular distribution are a function of a, b, and c.  Since a, b, and c are known through 
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the elicitation process, in this research the population measures of the beta distribution 

are set equal to same measures from the given triangular distribution.  Because the 

population measure of a beta distribution is a function of α and β only two moments from 

the triangular distribution are needed to fully define the beta distribution.  This research 

considers five measures -- mean, median, mode, variance, and skewness -- for two 

distinct reasons.  First, they are commonly used measures of central tendency and 

dispersion.  Second, they are measures which cost analysts are assumed to be familiar 

with -- and therefore would not require advanced training in order to implement.  

 Given these five common measures there exist ten possible combinations to 

calculate the parameters α and β.  Since the goal of this manuscript is to approximate a 

triangular distribution with a beta, only unimodal solutions are permitted (i.e. values of α 

and β to be estimated are restricted to being ≥ 1).  This restriction also allows the median 

to be estimated algebraically rather than solving with the incomplete beta function 

(Kerman, 2011).  The combinations of mean-variance, mean-mode, mean-median, 

median-mode, variance-skewness, mean-median, and mode-median all yield singular 

solutions under the restrictions placed on α and β.  The combinations of median-skewness 

and mean-skewness yield no solutions under these restrictions leading to their exclusion 

from this analysis.  The combination of mode-skewness results in only large values of α 

and β -- values greater than 100.  Given Equation 1 for variance of a beta distribution 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) =  𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛼𝛼)2(𝛼𝛼+𝛼𝛼+1)

 ,    (1) 

subject to the constraints of α,β ≥ 100, is maximized at α=100 and β=100 with a variance 

of .0012, as values of α and β increase variance would decrease because the denominator 
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is increasing at a rate faster than the numerator.  The triangular distributions used for this 

analysis have variance ranging from .0417 to .0555.  Since values of α and β are strictly 

greater than 100, the closest variance the mode-skewness combination can result in is 

34.75 times smaller than the given triangular distributions.  Given the magnitude of 

difference between the variances for the beta distribution and triangular distribution using 

the mode-skewness combination, it is also excluded from this analysis.   

Quantile Estimation 

 The second method for estimating parameters α and β is quantile estimation.  

Quantile estimation is used to characterize the fit of the method of moments methodology 

because it estimates the response variables -- α and β -- without restricting attention to the 

conditional mean and variance (Davino et al., 2014).  Since the beta distribution is not 

defined by its mean and variance, an estimation technique that does not restrict estimation 

to these parameters can provide a better empirical fit.  Furthermore, using deciles within 

the quantile estimation framework allows α and β to be estimated using 11 data points 

from the original triangular distribution rather than the 2 used for method of moments.  If 

the results from the method of moments follow closely to the quantile estimation, method 

of moments can be considered to be an adequate method for converting from triangular to 

beta.   

For each triangular distribution, the PDF value for each decile is calculated.  Then 

using these 11 paired values and the @risk software package, parameters α and β are 

estimated using a least-squares method of root-mean squared error minimizing the 

generic Equation 2 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣 = �1
𝑛𝑛
∑ (𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛼𝛼,𝛽𝛽) − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                          (2) 

where α and β are the parameters of the theoretical distribution function, in this case a 

beta distribution, that minimizes the distance between the curve and the data points. 

III.  Results 

For each methodology, 26 estimated beta distributions are compared to their 

corresponding triangular distributions for all combinations of measurements.  The 26 

distributions correspond to 26 triangular distributions (given) fixed to the support [0,1] 

with the mode varying along the same support at .04 intervals.  This manuscript considers 

the skewness of these 26 distributions adequately diverse to draw conclusions about the 

results.  To analyze similarities, the cumulative distribution functions (CDFs) of both 

triangular and beta are compared at 101 individual points equally spanning the bounds of 

the distributions [0,1] in order to account for differences at each percentile of the CDF.  

Absolute deviation (AD) is reported as its values are considered easier to interpret than 

mean-squared error (MSE) while providing a more comprehensive characterization than 

maximum absolute deviation (MAD).  Note, analysis was also conducted using MSE and 

MAD and the results are not significantly different -- the appendix provides the specific 

numerical results.  Note that parameters α and β define the shape of a beta distribution in 

such a manner that if distribution 1 takes values α=x and β=y, and distribution 2 takes the  

values α=y and β=x, distribution 2 will be a mirror image of distribution 1 flipped along 

the line x=.5.  Therefore, by analyzing distributions with c ≤ .5, conclusions can also be 

drawn for distributions with c on the interval [.5,1].  
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Method of Moments 

Table 1 reports the total absolute deviation for each pair of triangular and beta 

distribution based on the given mode of the triangular distribution -- provided at the top 

of each column.  A smaller value is preferred when comparing across columns as it 

indicates less variation between the two CDFs for the corresponding measures used.    

Table 1 shows that for the analyzed triangular distributions, the mean-variance 

combination has the lowest AD for each value of c. 

 

 

 

To ensure the larger differences were not due to a small number of points with a 

large deviation, a range of absolute deviation was measured to ensure consistency.  If 

range of absolute deviation is large it could correspond to one or two bad fitting points 

causing a large absolute deviation despite an otherwise good fit -- this would require 

further analysis on the outliers.  Table 2 shows the range of absolute deviation for each 

pair of triangular and beta distributions calculated by subtracting the minimum deviation 

from the maximum deviation.  Table 2 shows relative consistency amongst the deviation.  

Ranges generally fall below .1 with the occasional range of .12 corresponding with larger 

values in Table 1.  The mean-variance combination has all ranges ≤ .03 illustrating the 

consistency of the best combination based on Table 1.  There is one outlier at c=0 for the 

mean-mode combination -- a value of .24.  This value corresponds to the 16.67 absolute 

Table 1: Absolute Deviation between triangular and beta CDF’s for triangular distributions with c ≤ .5  

 

                 

 

                 

 

                 

 

                    
              

 

                 

 

                 

 

                 

 

                  

 

                  

 

                  

 

                  

 

Mode of Triangular (c) 0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48
Mean-Variance 3.88E-15 0.41 0.72 0.94 1.08 1.15 1.15 1.10 1.00 0.88 0.75 0.66 0.61
Median-Variance 3.88E-15 1.29 1.33 1.34 1.34 1.32 1.26 1.18 1.06 0.92 0.78 0.67 0.61
Mode-Median 0.65 0.93 1.38 1.82 2.23 2.61 2.93 3.21 3.44 3.60 3.70 3.73 3.68
Mode-Variance 3.88E-15 1.47 2.68 3.60 7.65 4.61 4.69 4.49 4.03 3.37 2.53 1.57 0.70
Variance-Skew 3.87E-15 1.42 2.66 3.71 4.53 5.09 5.38 5.35 5.01 4.34 3.36 2.13 0.79
Mean-Median 1.04 0.42 1.03 1.93 2.80 3.64 4.44 5.19 5.90 6.55 7.14 7.67 8.13
Mean-Mode 16.67 1.33 1.58 2.03 2.50 2.94 3.34 3.70 4.01 4.26 4.45 4.59 4.66
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deviation at c=0 for the mean-mode combination in Table 1 representing a relatively 

consistent range of deviation indicative of a poor fitting distribution.     

 

 

 

Based on results provided in Tables 1 and 2, the combination of mean-variance 

outperforms the other measure combinations.  Equations 3 and 4 provide the general form 

for calculating α and β using the mean-variance combination.   

𝛼𝛼 = −(µ∗�µ2−µ+𝜎𝜎2�)
𝜎𝜎2

                                                       (3) 

𝛽𝛽 = 𝜇𝜇−𝜎𝜎2+𝜇𝜇∗𝜎𝜎2−2µ2+µ3

𝜎𝜎2
                                                        (4) 

This combination provides both the lowest absolute deviation as well as the lowest range 

of absolute deviation -- indicating consistently low results which can be interpreted as a 

beta distribution most similar to the given triangular distribution.  In addition to providing 

the lowest absolute deviation, there are other advantages of using mean and variance to 

estimate α and β.  The metrics of mean and variance are easily understood by most 

analysts and core to any form of statistical analysis.  While one could argue that the 

differences between the mean-variance and median-variance are negligible, the exact 

median of the beta distribution can only be found using the incomplete beta function; 

otherwise it is only an estimate.  Conversely, the exact values of mean and variance are 

both functions of α and β.   

Table 2: Range of Absolute Deviation between triangular and beta CDF’s for triangular distributions with c ≤ .5 
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Quantile Estimation 

 Table 3 compares the results of the decile estimation method to the mean-variance 

MoM estimate using the total absolute deviation metric previously discussed.  The results 

at various modes of the given triangular distribution shows the decile estimate is only 

marginally different than the method of moments.  For every value of the mode, the 

greatest difference between using quantile estimation and using method of moments is 

.08. 

 

 

IV.  Empirical Example 

 While the results section characterizes the differences between individual 

distributions, cost estimates are often the aggregation of many distributions interacting 

together.  To characterize this aggregate effect of converting to a beta distribution, an 

empirical example using a Monte-Carlo simulation is conducted.  The example uses a 

scenario where ten different experts are tasked to provide the mode cost of an individual 

item with a known minimum and maximum -- allowing for the normalized triangular 

distribution to be used.  The experts’ input is simulated by drawing ten samples from a 

continuous uniform distribution over the support [0,1] -- see Table 4.  Once the set of ten 

triangular distributions is defined, a corresponding set of beta distributions is created 

using the mean-variance method of moments combination.  Monte-Carlo simulations 

consisting of 10,000 iterations are run for both sets of distributions, similar to how a 

Monte-Carlo simulation would be run to determine a range of possible costs in an 

Table 3: Comparison of Decile Estimation to Mean-Variance MoM Combination for triangular distributions with c ≤ .5 
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estimate.  For each iteration for a set of distributions, a number is randomly drawn from 

each of the 10 distributions and the mean of the 10 draws is then plotted on a histogram.  

The mean is used rather than the sum to characterize the percentile of the cost since all 

the distributions are over the support [0,1].  A summation would be a more accurate 

depiction if the minimum and maximum values varied.   

Figures 1 and 2 summarize the results of the simulation using the triangular 

distribution and the beta distribution, respectively.  The simulation using the triangular 

distributions has a minimum value 2.6 percentage points less than the simulation using 

the beta distributions as well as a maximum value 1.4 percentage points less than the beta 

distribution.  The modal value on the triangular simulation is less than .03 percentage 

points greater than the beta distribution’s simulation.  Furthermore, standard deviations 

are nearly identical as are the values for the inner 90% of the distribution.  The minor 

differences in the two simulations indicate that there is little difference between using 

triangular distributions or using method of moments transformed beta distributions.    

 

 

 

 

 

 

 

 

 

Table 4: Values of Triangular 
Distributions used for empirical 

example 

Mode 0.57 0.19 0.82 0.29 0.57 0.45 0.72 0.65 0.4 0.12
Alpha 2.5895 1.6229 2.4503 1.9590 2.5895 2.4038 2.5886 2.6218 2.2842 1.3845
Beta 2.3586 2.4685 1.5887 2.5968 2.3586 2.5696 1.9264 2.1451 2.6105 2.3239
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Figure 1: Monte-Carlo Simulation using triangular distribution 

Figure 2: Monte-Carlo Simulation using beta distribution 
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 IV.  Conclusion 

 Results of this study show that using a method of moments using the mean and 

variance parameters obtained from a given triangular distribution provides a 

corresponding beta distribution that is similar in fit to the original triangular distribution.  

When comparing this method to quantile estimation, there is very little difference 

between the two methodologies.  For this reason, it is recommended that analysts use the 

mean and variance combination of method of moments to estimate parameters α and β in 

a corresponding beta distribution. 

Using this methodology provides several advantages to an analyst.  First, the 

analyst is not required to change their methodology to obtain SME inputs; they can 

adhere to guidance in JACSRUH and continue eliciting a high, low, and most likely 

value.  Once those values are found and the triangular distribution is defined, creating the 

beta distribution only requires inputting mean and variance into Equations 3 and 4 to find 

the parameters which define the beta distribution.  Second, this technique does not 

require advanced knowledge of the beta distribution or statistical knowledge beyond what 

the analyst should already know through their use of Monte-Carlo simulation with a 

triangular distribution.  This method only requires the analyst to use the equations to 

estimate parameters and create a new beta distribution to be run in simulations instead of 

using the triangular distribution. 

Given the relative uncertainty surrounding subjective inputs, the differences 

between the given triangular distribution and the beta distribution with parameters found 

using equations 3 and 4 are minute enough to suggest the use of the beta distribution for 

subjective uncertainty.  It causes only a small change in the overall cost estimate while 
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allowing the analyst to use the distribution for more advanced techniques such as 

Bayesian analysis.   

Future research may aim to further alleviate the concerns of differences in fit by 

simplifying more advanced techniques such as quantile estimation and MLE for analysts.  

While these methodologies may provide only a marginally better fit empirically, if 

simplified to a level a junior analyst could utilize, a more exact approximation of the beta 

distribution is preferred.  Additionally, empirical studies comparing actual costs to 

subjective estimates could reveal whether the beta distribution or triangular distribution 

more accurately predicts costs.  While the theoretical difference in distributions is a small 

percentage, these small percentages amount to great sums when one considers programs 

cost millions, sometimes billions, of dollars.  Finally, empirical studies applying this 

method to entire cost estimates are recommended as they would help provide insight as to 

whether this method feasible for predicting costs and maintaining the integrity of an 

estimate.  In summation, while this manuscript provides theoretical evidence to support 

using a beta distribution rather than a triangular distribution for subjective cost 

estimation, empirical studies would go a long way to help justify this claim.   
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Appendix A -- Method of Moments Comparison using MSE 

Mode of Triangular (c) 0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48
Mean-Variance 8.32E-31 0.003 0.009 0.014 0.018 0.019 0.019 0.017 0.015 0.012 0.009 0.007 0.006
Median-Variance 8.32E-31 0.029 0.031 0.031 0.029 0.028 0.025 0.022 0.018 0.015 0.011 0.008 0.006
Mode-Median 5.42E-03 0.012 0.031 0.055 0.083 0.110 0.135 0.155 0.171 0.181 0.185 0.182 0.174
Mode-Variance 8.32E-31 0.029 0.096 0.174 0.829 0.285 0.293 0.269 0.218 0.154 0.089 0.038 0.009
Variance-Skew 8.32E-31 0.027 0.095 0.185 0.276 0.350 0.390 0.388 0.341 0.257 0.157 0.066 0.013
Mean-Median 1.48E-02 0.003 0.020 0.060 0.118 0.189 0.270 0.357 0.447 0.538 0.628 0.714 0.795
Mean-Mode 3.33E+00 0.024 0.034 0.054 0.082 0.113 0.145 0.176 0.204 0.230 0.251 0.268 0.279
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Appendix B -- Method of Moments Comparison using Max Deviation  

Mode of Triangular (c) 0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48
Mean-Variance 4.44E-16 0.021 0.028 0.029 0.028 0.025 0.025 0.025 0.024 0.022 0.019 0.017 0.015
Median-Variance 4.44E-16 0.030 0.033 0.033 0.033 0.032 0.032 0.031 0.029 0.027 0.023 0.020 0.016
Mode-Median 1.07E-02 0.028 0.047 0.061 0.070 0.076 0.079 0.081 0.081 0.079 0.075 0.070 0.063
Mode-Variance 4.44E-16 0.033 0.057 0.075 0.152 0.093 0.094 0.089 0.081 0.069 0.055 0.039 0.022
Variance-Skew 4.44E-16 0.032 0.057 0.077 0.092 0.102 0.106 0.106 0.099 0.087 0.070 0.049 0.026
Mean-Median 2.26E-02 0.020 0.043 0.062 0.078 0.091 0.101 0.108 0.114 0.119 0.122 0.124 0.125
Mean-Mode 2.50E-01 0.023 0.028 0.037 0.048 0.056 0.061 0.064 0.065 0.070 0.075 0.080 0.084
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Appendix C -- Empirical example with applied correlation 

 While the empirical example on page 13 provides evidence to suggest there is 

little difference between in a cost estimate as a whole when considering the aggregate 

differences in a set of ten triangular distributions and a set of ten beta distributions, it 

does exclude correlation among the distributions.  This is likely not indicative of a cost 

estimate as a rise in cost of one element (e.g. fuselage) likely corresponds with a rise in 

cost of another element (e.g. wings).  This appendix applies correlation at .25 between the 

various distributions to compare the effects of the aggregate differences in distributions 

similar to the example on page 14.   

 Methodology remains consistent with the example provided in the manuscript to 

include same modal values for the triangular distributions and same values of α and β for 

the beta distributions.  Once the distributions are defined a correlation matrix is set up to 

include 25% correlation between each triangular distribution and 25% correlation 

between each beta distribution.  Once the correlation matrix is applied to the 

distributions, a Monte-Carlo simulation consisting of 10,000 iterations is run for each set 

of ten distributions (set of triangular and set of beta).  For each iteration, one draw is 

taken from each of the ten distributions and the mean value is plotted on a histogram.  

Graphical results are shown at the end of this appendix.  The minimum/maximum values 

of the beta distribution simulation are .088/.897 while the minimum for the triangular 

distribution simulation is .095/.890.  Similar to the example without applied correlation, 

these differences are less than two percentage points (the min/max values actually have 

less error with applied correlation than without).  The mean values are again identical 
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with values of .49267 while the standard deviation values differ by .1 percentage point.  

Similarly, the inner 90 percentile range is also nearly identical 

 This simulation suggests there is little difference between the use of the triangular 

distribution and method of moments estimated beta distribution.  Even with correlation 

applied as would be realistic in a cost model, there is marginal difference between the 

resulting simulations.   
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Appendix D -- Supplemental Literature Review 

 Bjerga et al. (2014) conducted work to model uncertainty through their 

description of the variation in the occurrences in time of a specific event using a Poisson 

distribution with the purpose of providing clarity in the risk field and risk regulation.  The 

purpose is to help provide a framework to model undesirable events occurring with some 

sort of frequency in the future.  Fallon (1976) wrote a RAND study focusing on cognitive 

influences of availability, anchoring, and representativeness to determine how they could 

distort an expert’s assessment of uncertainty.  The study concluded that to advisers and 

analysts involved in planning be made aware of the influences which bias their subjective 

assessments so they can assess their true state of information. Brown (1973) asked 31 

students at UCLA to forecast 14 quantities such as GNP, consumer prices, and deaths in 

South Vietnam and found 95% of respondents gave meaningful distributions that were 

usable.  He further found that the true answer often occurred in the tails of the 

distributions provided and this issue can be alleviated by combining the individual 

responses into a consensus distribution.    Frick (2010) discusses how the DOD is risk 

averse with program managers concentrating on foreseeable events with the exclusion of 

all other possible events.  He goes on to discuss how successful business cultivate a 

culture of risk taking that does not punish honest failure and suggests that the DOD 

should truly accept and plan for the unknown.         

 Dorp and Kotz (2002) draw motivation from Johnson (1997) and offer the two-

sided power distribution as an alternative to the triangular and beta distributions 

reasoning that its MLE is computationally straightforward and robust when compared to 

the MLE of a beta distribution.  They additionally argue that is allows for a J-shape and 
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U-shape making it more diverse than the triangular distribution.  Johnson (2002) 

examined using the Pearson-Tukey mean and standard deviation approximations on 

unbounded distributions and found the mean approximation is highly accurate while the 

standard deviation approximation for unbounded distributions is not.  He also found that 

by weighting the 5th, 50th, and 95th percentiles of a triangular distribution approximation 

one could give a universally accurate mean and standard deviation approximation.  

Farnum and Stanton (1987) comment that the beta distribution is used because it 

“provides a rich family of distributional shapes” (Farnum & Stanton, 1987, pp. 287) 

while examining how a mean is estimated based on a low, high, and most likely values.  

While their method is useful over a certain range the MoM technique in this paper offers 

consistency in that it matches the exact mode of the provided triangular distribution 

provided by the low, high, and most likely parameters.   

 Parameter estimation has been conducted for a three-parameter beta distribution 

(two shape parameters and a scaling parameter) for simple unit hydrograph theory.  This 

type of estimation was specific to this field and required peak runoff and time of peak 

runoff information to estimate the parameters (Bhunya et al., 2004).  
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I.  Introduction 

 Bayesian updating is a type of statistical analysis that allows one to use prior 

information in combination with a new piece of data in order to make inferences -- or 

develop an updated distribution around some uncertain parameter.  Bayesian updating has 

been applied to a variety of fields to include engineering (Lyngdoh et al., 2019), Seismic 

Hazard Assessments (Vialett et at., 2019), and research on price elasticity of demand 

(Sun et al., 2016).   

In the field of finance Hwang finds a Bayesian probability approach more 

effective for predicting the errors of cost estimates (Hwang, 2013).  Specific 

implementations have been applied to risks on completion costs of construction projects 

(Namazian & Yakhchali 2018) and software engineering cost models where it was found 

Bayesian updated subjective uncertainty elicited via delphi technique combined with 

sample data better estimates software costs (Chulani et al., 1999).  Additionally, through 

their use of a log-normal distribution as a conjugate prior Caron et al. conclude “The use 

of a Bayesian approach, based on expert opinion elicitation, permits the exploitation of 

subjective judgments in a rigorous and formal way leading to an improvement in 

accuracy of estimates at completion within an [earned value management] framework” 

(Caron et al., 2013, pp. 15).  This manuscript seeks to expand on the work of Bayesian 

updating in the field of cost estimation by applying a framework for using a beta 

distribution as a conjugate prior to update subjective uncertainty.   

Specifically, this manuscript considers two instances in which Bayesian updating 

can be applied in the field of cost estimation.  First, applying it at a macro level estimate 
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to characterize the effects on budgeting in order to account for underestimation in the 

DoD.  When a cost estimate is developed it provides a range of possible costs using a 

distribution.  Budgets are set at some percentile of said distribution.  As a program 

continues additional information is obtained and able to be used as an input -- usually in 

the form of sample data such as cost of the first lot of production.  This information can 

be used along with the prior information (i.e. the prior distribution) to create a Bayesian 

updated cost estimate and provide decision makers a tool for budgeting.  The 

characterization can help alleviate the issue of cost overruns due to errors in cost 

estimates.      

The second application of Bayesian updating is combining multiple expert 

opinions into a single distribution.  Expert opinion is often used in the field of subjective 

uncertainty with various studies exploring best practices (O’Hagan, 2019, Burgman, 

2015, Grafton & Selwyn, 2012).  Specific implementation has been done in the software 

field to provide guidelines for estimation using expert opinion (Jorgensen, 2004).  These 

elicitations are turned into distributions indicative of potential costs.  However, there are 

times where either multiple experts, or a single expert at different times, provide multiple 

distributions.  Coleman et al. (2010) provides a method for combining these multiple 

distributions in a single distribution.  Bayesian updating provides an alternative method 

to Coleman et al. for combining multiple distributions.    
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II.  Methodology  

Effects on Budget 

 RAND Corporation found a mean cost growth (defined as the ratio between the 

most recent selected acquisition report (SAR) and the cost estimate baseline reported in a 

prior SAR issued at the time of a given milestone) of 46% in the DoD (Arena et al., 

2006).  When analyzing sources of cost growth, 10.1% is attributed to errors in cost 

estimates (Arena et al., 2008).  Uncertainty analysis in cost estimates impacts budget 

requests -- and thus cost overruns.  Giving cost estimators tools to use new information to 

update budget requests could prove valuable for limiting cost growth due to errors in 

estimates. By comparing the differences of budgeting under various levels of uncertainty 

before and after applying Bayesian updating, changes in budget requests can be 

compared; offering a technique to account for errors in cost estimates.   

Uncertainty falls into two categories, subjective and objective.  While objective 

uncertainty is based around empirical data, subjective uncertainty relies on expert 

elicitation.  The Joint Agency Cost Schedule Risk and Uncertainty Handbook 

(JACSRUH) recommends using a triangular distribution for subjective uncertainty 

(Thomas & Fitch, 2014).  This analysis considers 11 triangular distributions, fixed on the 

interval [0,1], with various modes to represent subjective uncertainty elicited from SMEs.  

The 11 triangular distributions are then converted to corresponding beta distributions 

with a method-of-moments techniques using the mean and variance population 

parameters of the triangular distribution.  This transformation to a beta distribution 

enables the use of Bayesian updating.  Fixing the triangular distribution to the interval 
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[0,1] allows for a comparison that is based on percent change in budget and allows the 

use of the two-parameter beta distribution rather than the four-parameter.   

Bayesian updating is a statistical method applying Bayes theorem to update a 

probability distribution as more information becomes available.  Bayes theorem states 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =  𝑃𝑃�𝐵𝐵�𝐴𝐴�∗𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

    (1) 

where P(B|A) is the likelihood and P(A) is the prior probability – referred to as a 

conjugate prior.  Since P(B) is a scaling factor Bayes theorem can be proportionally 

written as 

𝑃𝑃(𝐴𝐴|𝐵𝐵) ∝ 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴)    (2) 

In the specific case being used for this comparison the beta distribution is the conjugate 

prior -- the distribution used prior to Bayesian updating.  The Bernoulli distribution is the 

likelihood function used to update the beta distribution.  A binomial distribution follows 

the posterior parameters prediction 

𝛼𝛼𝑡𝑡+1 = 𝛼𝛼𝑡𝑡 + ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1                     𝛽𝛽𝑡𝑡+1 = 𝛽𝛽𝑡𝑡 + 𝑛𝑛 − ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1    (3) 

where αt and βt are the shape parameters defining the conjugate prior beta distribution, 

αt+1 and βt+1 are the shape parameters defining the posterior beta distribution, and xi is the 

random variable generated from a Bernoulli trial as being a success or failure.  Since the 

Bernoulli distribution is a single is just a single trial of the binomial distribution (i.e. 

n=1), in the case of a success (xi=1) equation 3 reduces to: 

𝛼𝛼𝑡𝑡+1 = 𝛼𝛼𝑡𝑡 + 1          𝛽𝛽𝑡𝑡+1 = 𝛽𝛽    (4) 

And in the case of failure (xi=0):  

𝛼𝛼𝑡𝑡+1 = 𝛼𝛼𝑡𝑡        𝛽𝛽𝑡𝑡+1 = 𝛽𝛽𝑡𝑡 + 1    (5) 
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Or simply stated, in the case of success the shape parameter α will increase by a value of 

1 and in the case of a failure, the parameter β will increase by a value of 1.   

Once parameters for both the conjugate prior beta distribution and Bayesian 

updated beta distribution are defined, the distributions can be compared at various 

percentiles to characterize the effect on budget planning.  This analysis considers a data 

point greater than the mode of the beta distribution to equate to a Bernoulli trial where 

xi=1.  However, decision makers can determine their own criteria for the Bernoulli trial 

and future studies to determine the probability value of p in the Bernoulli trial are 

recommended.  The characterization of the posterior distribution is only based on 

whether the Bernoulli trial is considered a success or a failure and not the criteria 

determining success or failure.    

After examining the change in budget due to Bayesian updating, a weighted 

average of expected change in budget is taken to reflect the percent of time xi=1.  This 

study assumes the percentage of time when xi=1 (i.e. the data point received is greater 

than the mode) is strictly greater than 50% based on a Defense Industry study finding 

majority of Major Defense Acquisition Programs (MDAPs) experience cost-overruns 

(Hofbauer et al., 2011)  Further studies found one in eight estimates are too low 

(Coleman et al., 2009).  The different proportions of xi=1 and xi=0 are then 

systematically varied to determine expected budgets.  The expected budget change 

corresponds to the increase in budget for the cost components that are based on subjective 

uncertainty.  This increase in budget could help alleviate some of the errors in cost 

estimates leading to cost growth.  Future studies to empirically calculate a weighted 
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average of budget changes using actual estimates and incoming data are recommended to 

determine the exact percent of time xi=1.       

Combining Multiple Inputs  

 Coleman, Braxton and Druker (2010) conducted a study on combining multiple 

subject matter experts’ inputs into a single distribution by averaging parameters from 

triangular distributions.  They found that this method is usable when the underlying 

probability distribution is assumed to be unimodal and there exist subject matter experts 

who can define the underlying distribution with some degree of accuracy.  This scenario 

is realistic in the world of subjective cost estimating as each element is often estimated 

through elicitation of a subject matter expert and transformed into a triangular 

distribution.  However, this method has a weakness in that it assumes each expert opinion 

to be of equal weight.  In cases where one expert provides their input at a later time 

period and possesses additional knowledge equal weighting would not be appropriate.  

While it is possible to weight the combination of parameters, this adds an additional piece 

of subjective uncertainty in determining the proper weighting for each expert.  This 

section aims to alleviate this additional uncertainty by providing an alternative way of 

combining expert inputs through use of Bayesian updating and comparing it to using the 

Coleman et al. method.  

There are three assumptions made for the use of Bayesian updating to be 

applicable when applying it to combining expert opinions.  First, two experts provide 

their input in the form of two separate distributions -- treated as given.  Second, expert 

two provides their distribution after expert one.  Third, an adequate amount of time has 



35 
 

 

 

elapsed between the times the distributions are obtained such that expert two’s 

distribution is deemed to have some form of additional knowledge.    

 Similar to the Coleman et al. approach, this study uses sets of two different 

triangular distributions.  Assuming there is a single cost being estimated, expert one 

offers their input on a low, high, and most likely cost; fully defining a triangular 

distribution.  Expert two offers the same input at a later date and is assumed to have 

additional knowledge informing their distribution.  The Coleman et al. method simply 

requires averaging the highs, lows, and modes in order to create a single distribution.  

However, knowing the second input came at a later date and wanting to avoid the 

subjectivity of weighting the Coleman et al. method, the experts’ distributions are 

converted to beta distribution through a method-of-moments technique.  Bayesian 

updating is then applied to expert one’s distribution using the Beta-Bernoulli 

methodology discussed in the previous section of this manuscript where a success is 

defined as the mode of the second beta distribution being greater than the mode of expert 

one’s beta distribution.  Mode is chosen because it is a metric directly provided by the 

expert during elicitation.  While other measures such as mean or median could be 

derived, mode is used because it is directly provided by the expert.  Since we are using 

the original distribution as the conjugate prior its shape parameters α and β equate to αt 

and βt.  The min and max of the distribution is found by averaging from the original two 

distributions similar to Coleman et al. in order to derive the four parameters necessary to 

define a four-parameter beta distribution.  This technique is used across multiple 

combinations of triangular distributions before comparing the resulting Bayesian beta 

distribution to that of the triangular output using the Coleman et al. approach.  The 
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distributions are then characterized in terms of stochastic dominance (i.e. the percent of 

time the CDF of one distribution is greater than the CDF of another) to analyze which 

would predict higher costs.  Future research on this application would involve an 

empirical study to determine which method of combining multiple distributions best fits 

actual costs being predicted.     

III.  Results 

Effects on Budget 

 Eleven distributions are analyzed fixed on the domain [0,1] with the mode 

varying along the same domain at .1 intervals.  The 11 distributions are considered to 

have an adequately diverse range of skewness to be representative of potential cost 

estimates and allow the results to adequately characterize the effect on budgeting.  To 

adequately capture the types of risk tolerances decision makers may have when budgeting 

under uncertainty, CDF values at the 30th, 50th, and 70th percentiles are compared for each 

of the 11 distributions.  If a decision maker is budgeting at the 30th percentile they are 

characterized as risk takers, while the 50th percentile is characterized as risk neutral, and 

the 70th percentile is characterized as risk averse.  Tables 1 and 2 show the effects of 

Bayesian updating on the various distributions at the different percentiles - Table 1 

assumes a success (xi=1) for the Bernoulli trial while Table 2 assumes a failure (xi=0).   

 

 

 

 

Table 1: Differences in CDF’s for beta distributions when Bernoulli trial xi=1 

 

            

Risk Aversion Level c=0 Updated c=.1 Updated c=.2 Updated c=.3 Updated c=.4 Updated c=.5 Updated
0.3 0.163 0.363 0.212 0.378 0.258 0.399 0.301 0.424 0.341 0.452 0.379 0.482
0.5 0.293 0.500 0.340 0.505 0.383 0.519 0.423 0.539 0.462 0.564 0.500 0.593
0.7 0.452 0.637 0.486 0.632 0.519 0.638 0.552 0.652 0.586 0.672 0.621 0.698

Risk Aversion Level c=.6 Updated c=.7 Updated c=.8 Updated c=.9 Updated c=1 Updated Average
0.3 0.414 0.514 0.448 0.549 0.481 0.585 0.514 0.625 0.548 0.669 0.125
0.5 0.538 0.626 0.577 0.662 0.617 0.702 0.660 0.746 0.707 0.794 0.114
0.7 0.659 0.729 0.699 0.764 0.742 0.803 0.788 0.845 0.837 0.888 0.093
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As a practical example of what xi=1 depicts, consider a decision maker defining 

the success of the Bernoulli trial as receiving a data point greater than the mode of the 

prior beta distribution.  Table 1 assumes the data point is larger than the mode and shows 

the effect on budgeting using the posterior distribution.  To interpret the results, consider 

the risk aversion level 0.3 and the first two green columns representing a modal value of 

0 and its corresponding posterior distribution when x=1 for the Bernoulli trial.  Using the 

original distribution, a decision maker who is a risk taker would budget at the 16.3% 

level of the range of possible costs to ensure there is only a 70% chance of cost overruns.  

Using the posterior distribution, the decision maker would budget at the 36.3% level to 

ensure the same risk of cost overrun.  This means that a Bernoulli trial of xi=1 would 

result in a budgetary increase of 20%.  Table 1 displays the same scenarios for risk 

neutral and risk averse decision makers across various modes on a .1 interval.  On 

average, the risk taker would increase their budget 12.5%, the risk neutral decision maker 

would increase their budget 11.4%, and the risk averse decision maker would increase 

their budget 9.3%.   

Table 2 shows similar results to Table 1 but instead operates under the assumption 

that xi=0.  That is, the data point received was below the mode.  Results are the inverse of 

Table 1 in that the average columns show budgetary decreases for the risk averse decision 

maker equal to that of the budgetary increase of the risk taker.  The risk neutral decision 

Risk Aversion Level c=0 Updated c=.1 Updated c=.2 Updated c=.3 Updated c=.4 Updated c=.5 Updated
0.3 0.163 0.112 0.212 0.155 0.258 0.197 0.301 0.236 0.341 0.271 0.379 0.302
0.5 0.293 0.206 0.340 0.254 0.383 0.298 0.423 0.338 0.462 0.374 0.500 0.407
0.7 0.452 0.331 0.486 0.375 0.519 0.415 0.552 0.451 0.586 0.486 0.621 0.518

Risk Aversion Level c=.6 Updated c=.7 Updated c=.8 Updated c=.9 Updated c=1 Updated Average
0.3 0.414 0.328 0.448 0.348 0.481 0.362 0.514 0.368 0.548 0.363 -0.093
0.5 0.538 0.436 0.577 0.461 0.617 0.481 0.660 0.495 0.707 0.500 -0.114
0.7 0.659 0.548 0.699 0.576 0.742 0.601 0.788 0.622 0.837 0.637 -0.125

Table 2: Differences in CDF’s for beta distribution when Bernoulli trial xi=0 
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maker changes to a budgetary decrease of the same magnitude as Table 1 in the case of 

xi=0.  

The expected budget change is calculated in Table 3 by taking a weighted average 

to reflect the percent of time xi=1.  Budgeting at the median, the expected budget increase 

when xi=1 is 4.55%.  Applying this method at the extremes, a risk-averse decision maker 

(risk aversion level=.7) would have an expected budget increase of .54% if xi=1 in 60% 

of instances.  While a risk-taking decision maker (risk aversion level=.3) has an expected 

budget increase of 8.18%.  However, given the results of Coleman et al. (2009) the 80% 

column may be more indicative of the correct weighting.  In this scenario, budgetary 

increases for subjective range from 4.89% to 8.18%.  When discussing DoD programs 

acquired for millions of dollars, these increases in budget could mitigate some of the 

error in cost estimates and allow for better planning by decision makers.        

 

 

 

 

Combining multiple inputs 

 Similar to the Coleman et al. (2010) method this study assumes two distributions 

provided by two subject matter experts.  The distributions provided by the two experts do 

not overlap in order to resemble the distributions of Coleman et al.  It also provides visual 

clarity when analyzing the results graphically.  However, overlapping the two 

distributions would change only the minimum and maximum values and not the shape of 

Risk Aversion Level 60% 65% 70% 75% 80%
0.3 3.82% 4.91% 6.00% 7.09% 8.18%
0.5 2.27% 3.41% 4.55% 5.68% 6.82%
0.7 0.54% 1.63% 2.71% 3.80% 4.89%

Table 3: Expected Budgetary increase based on various percentages of xi=1 



39 
 

 

 

the distribution meaning the results would remain consistent with this manuscript’s 

results.  The first distribution is fixed on the interval [200,400] with c varying at values of 

250, 300, 350.  The second distribution is fixed on the interval [500,700] with c varying 

at values of 550, 600, 650.  The c values are chosen to represent positive, neutral, and 

negative skewness.  The two distributions are then systematically varied to represent the 

inputs of expert one and expert two. 

 Consider the symmetrical case (Figure 1).  The green distribution represents 

expert one’s input while the red represents expert two’s input.  The dark red distribution 

uses Coleman et al. to combine the distributions resulting in a symmetrical triangular 

distribution with a minimum of 350 and a maximum of 550.  This zero-skewness 

distribution does not accurately reflect the additional information expert two may have 

when providing their input.  Conversely, the blue distribution is the resulting posterior 

beta distribution resulting from Bayesian updating.  This distribution better represents 

information provided by expert two while still considering the fact that expert one’s 

information is relevant.  The Bayesian updated distribution is skewed left and is 

stochastically dominated by the Coleman et al. method through the 97th percentile -- 

predicting a higher chance for higher costs.  This prediction for higher costs better 

reflects the additional information provided in expert two’s opinion.  Figure 2 provides 

the reverse scenario where expert one (green) provided a distribution with high costs 

followed by expert two providing a distribution representing low costs (red).  

Additionally, in either case the mode is shifted by 17 in the direction of expert two’s 

input.    
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The remaining eight scenarios are summarized in Table 4 to include the 

percentage of the domain each distribution stochastically dominates.   

 

 

 

 

 

 

  

Figures 3-6 represent cases where the triangular distribution from the Coleman et 

al. method stochastically dominates the posterior beta distribution.  Common in these 

figures is expert two providing a distribution with values greater than that of expert one.  

The beta distribution being stochastically dominated by the triangular results in a 

prediction of higher costs from the beta distribution.  The magnitude of the shift of the 

mode corresponds to the skewness of the original triangular distributions.  In Figure 3 

Table 4: Stochastic dominance comparison for Coleman et al. method and Bayesian 
updating method 

 

Figure 1: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 2: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

Triangular Stochasic Dominance Beta Stochastic Dominance
Figure 5 85% 15%
Figure 6 100% 0%
Figure 7 100% 0%
Figure 8 94% 6%
Figure 9 0% 100%
Figure 10 0% 100%
Figure 11 6% 94%
Figure 12 15% 85%
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expert two provides a distribution with the opposite skewness as expert one leading to a 

symmetrical triangular distribution using the Coleman et al. method that aligns more with 

the corresponding beta distribution.  This is because in both cases expert 2 provided a 

higher distribution for cost shifting the distribution more towards a neutral skewness -- 

with the Bayesian updated model putting more weight on expert 2’s input.  However, in 

Figure 4 expert two provides a distribution with the opposite skewness of expert one 

resulting in a symmetrical triangular distribution for the Coleman et al. method.  Since 

the Bayesian process is not affected by skewness of distribution -- only the data 

generating function -- the resulting beta distribution is skewed left to reflect that expert 

two provided a higher input and properly weight the relevance of their input.  The same 

effect happens in Figures 5-6 where the skewness of the experts’ distributions effects the 

difference in the mode.  These predictions align better with the narrative that expert two’s 

additional information provides a higher cost while still considering the fact that expert 

one’s input is relevant.    

 

 

 

 

 

 

 

 

 

Figure 3: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 4: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 



42 
 

 

 

 

 

 

 

 

 

 

Figures 7-10 represent cases where the triangular distribution from the Coleman 

et al. method is stochastically dominated by the posterior beta distribution.  Common in 

these figures is expert two providing a distribution with values less than that of expert 

one.  The beta distribution stochastically dominating the triangular results in a prediction 

of lower costs from the beta distribution.  Again, the effect of the skewness of the 

expert’s distributions is evident in the resulting modal differences.  This prediction aligns 

better with the narrative as expert two’s additional information provides a lower cost 

while still considering the fact that expert one’s input is relevant.    

 

 

 

 

 

 

 

 

Figure 5: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 6: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 7: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 8: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 
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The Bayesian updating methodology provides decision makers a way to weight 

the inputs of expert opinions in a less subjective method than weighting individual 

parameters, while also still considering that the original expert may be correct.  

Additionally, it is less effected by the skewness of the new information provided but 

rather uses information resulting from the data-generating function which results in a 

combined distribution with a mode more indicative of the scenario.      

IV.  Conclusion 

 Applying Bayesian updating to uncertainty can have a major impact in the field of 

cost estimation.  This manuscript highlights two potential uses for Bayesian updating – 

macro level budgeting and combining expert opinion.  Analysis on the application of 

Bayesian updating for macro level budgeting provides decision makers a potential tool to 

account for underestimates.  The use of Bayesian updating to combine expert opinions 

into a single distribution illustrates an alternative method to Coleman et. al.; a method 

which more accurately fit scenarios where expert two has some form of additional 

knowledge and therefore should incorporate the time element Bayesian updating uses.  

Figure 9: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 

 

 

Figure 10: green-expert 1’s input, red-expert 
2’s input, dark red-average triangular 
parameters, blue-Bayesian updated 
combination 
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Both of these methods rely on the subjectivity that is defining the success of a Bernoulli 

trial being accurate.  However, these methods remove subjectivity in redefining 

distributions to base budgets requests off and weighting individual experts’ opinions.    

 Overall, Bayesian updating for uncertainty analysis can be a powerful tool that 

allows for the inclusion of additional information such as time at which data is received.  

If decision makers apply Bayesian updating in the proper context, it could potentially 

lead to altering decisions which may better fit the situation being analyzed.  Further 

analysis on this subject would involve applying the methods in this manuscript to 

historical estimates which have actual costs available and comparing the estimate to 

actuals to see if the Bayesian framework better fits the results.    
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Appendix A -- Supplemental Literature Review 

 Duran and Booker (1988) examine sensitivity analysis using the beta distribution 

as a conjugate prior and provide support for a beta-binomial (and thus Bernoulli) 

combination stating that it is “mathematically tractable”.   

 Hammitt and Zhang (2012) examined five methods for combining expert opinion: 

equal-weight, best-expert, performance, frequentist, and copula.  They find with the 

exception of equal weighting, all the methods require information on the quality of the 

experts which can be evaluated through seed variables so long as these seed variables are 

predictive of the expert’s performance on what they are estimating.  This supports the use 

of Bayesian updating as does not require defining seed variables which may or may not 

be accurate.  Cook (1991) also notes the difficulty and different weighting methodologies 

of combining multiple subject matter expert opinions  

 Generally, research regarding Bayesian analysis has focused on specific 

applications, most notably in the field of reliability rather than subjective uncertainty. 

Weber et al. (2012) found that research works and applications for Bayesian networks in 

risk analysis, dependability, and maintenance have shown a significant upward trend 

from 2000-2008 to the degree of an 800% increase in publications.  The paper does 

conclude that a weak point is there is no specific guidance to ensure the model’s 

coherence.  Pollino et al. (2007) acknowledge there is little formal guidance on how to 

combine data and elicitation in a Bayesian network but seek to provide a detailed 

methodology through a case study.     
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 Su et al. (2012) applied Bayesian Network to reliability analysis for the first time 

reasoning that current methods could not accurately describe the status of time-related 

events.  They conclude a dynamic Bayesian network inherits the advantages of static 

networks while being able to accurately depict an evolutionary process.  

Marquez et al. (2010) used Bayesian networks to perform reliability analysis of 

complex systems in a unifed way while Langseth and Portinale (2007) discussed general 

properties of Bayesian networks that make them well suited for reliability applications.   
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Conclusion of Articles 

 Article one finds a method of moments utilizing mean and variance of a given 

triangular distribution provides the best technique for estimating the parameters of a beta 

distribution when considering empirical fit and simplicity.  The difference between both 

individual distributions and when aggregating multiple distributions (as evidenced by the 

simulated empirical example) is marginal.  Furthermore, the fit provided using the 

combination of mean and variance provides a fit very similar to the more rigorous 

method of quantile estimation with the added advantage of being implementable by a 

junior level analyst with a minimum level of mathematical understanding.   

 Article two applies the findings of its predecessor to provide a technique to serve 

as a framework to account for underestimation in cost models as well provide an 

alternative method for combining subject matter expert opinions.  In most cases, using 

Bayesian updating resulted in increasing the budget for subjectively estimated cost 

elements by at least 40%.  For the combination of expert opinion, characterizing the 

Bayesian updated distribution’s stochastic dominance versus the Coleman et al. method 

appears to better fit the narrative given the scenario.   

In both of these instances it is important to note that there are alternative methods 

that could be used.  For the budgeting application, subjective distributions used for 

budget estimates could simply be updated by the expert or the mode could be moved to 

match the data point as examples.  However, the Bayesian framework takes a 

considerable degree of uncertainty out of these potential updating methods and only asks 

that a decision maker define a data-generating function for the updating process.    
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In the application of combining expert opinion, one could use a weighted average 

of the parameters in order to take into consideration the fact that expert two has some 

additional knowledge informing their distribution.  However, this method again adds 

uncertainty in the sense that one must provide another piece of subjectivity in 

determining the weights of each expert’s parameters.   

There is a multitude of future research to be highlighted in closing -- mostly 

focused around using empirics to quantify the characterization of these manuscripts.  For 

paper 1, it is recommended that a dataset consisting of old estimates with triangular 

distributions used for uncertainty be gathered along with actual costs for the 

corresponding estimates.  This would allow a researcher to quantify whether the beta 

distribution better predicts actual costs than the given triangular distribution.  

Additionally, this research could be expanded to model the four-parameter beta 

distribution in order to accurately account for variance in cost between different cost 

elements.  Finally, additional methods of estimating the parameters for the beta 

distribution could be explored to include MLE and further study on quantile estimation.    

For paper 2, future research should focus on gather data of percent of programs in 

the DoD with cost overruns in order to quantify the amount of error the Bayesian model 

empirically accounts for.  Further analysis could be done to not only weight the 

percentage of programs that experience cost overruns, but also to weight the magnitudes 

of said overruns.  Finally, work could be done to gather actual instances where multiple 

experts provide inputs and combine their distributions.  These combined distributions 

could be compared to actual costs to determine if Coleman et al., a Bayesian framework, 

or a weighted version of Coleman et al. more accurately predicts costs.    
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