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Abstract

An algorithm to conduct spacecraft position estimation and attitude determination
via terrestrial illumination matching (TIM) is presented consisting of a novel method
that uses terrestrial lights as a surrogate for star fields. Although star sensors repre-
sent a highly accurate means of attitude determination with considerable spaceflight
heritage, with Global Positioning System (GPS) providing position, TIM provides a
potentially viable alternative in the event of star sensor or GPS malfunction or perfor-
mance degradation. The research defines a catalog of terrestrial light constellations,
which are then implemented within the TIM algorithm for position acquisition of a
generic spacecraft bus. With the algorithm relying on terrestrial lights rather than
the established standard of star fields, a series of sensitivity studies are showcased
to determine performance during specified operating constraints, to include varying
orbital altitude and cloud cover conditions. The pose is recovered from the matching
techniques by solving the epipolar constraint equation using the Essential and Fun-
damental matrix, and point-to-point projection using the Homography matrix. This
is used to obtain relative position change and the spacecraft’s attitude when there
is a measurement. When there is not, both an extended and an unscented Kalman
filter are applied to test continuous operation between measurements. The research is
operationally promising for use with each nighttime pass, but filtering is not enough

to sustain orbit determination during daytime operations.

v



Acknowledgements

I would like to say thank you to my advisor, Maj Bettinger, who has been the
shining North Star of my graduate school experience, leading me to explore the world
and push the boundaries of my own understanding. The many discussions of history,
science, law, and family helped build my character alongside our work. A huge
amount of gratitude is owed to Maj Hess and Maj Zagaris for graciously always being
my second stop with whatever frantic questions or news I had to share. Certainly
I would not be in this position in any capacity without my family. My father who
recently experienced the joys of AFIT, was always there to fall asleep with one of
my navigation textbooks, and my mother who was always there to share a glass of
wine, and who signed up to wholly support another Airman in the family. My little
brother for bringing me joy and often a better explanation of our universe than I even
knew. Finally, to all of my wonderful friends who were not only interested in my wild

pursuits, but who cared to join me around the world on my adventures.

Liberty M. Shockley



Contents

Page
ADSETact . .o iv
Acknowledgements .. ... .. v
List of Figures . .. ... o viii
List of Tables. . ... xi
List of Symbols .. ... . xii
L. Introduction .. ... . 1
1.1 Research Questions, Tasks, and Scope . ........ ... ... ... .. ........ 2
1.2 Methodology. . .. .. 3
1.3 Thesis OVerview. . ... ..o 4
IT.  Literature Review ... ... ... 5
2.1 Chapter OVErvIewW . ... ...ttt )
2.2 Star Trackers . ... ... 6
2.3 Image Processing Algorithms ........ .. .. ... ... .. ... ... ... .. .. ... 7

2.3.1 Both Keypoint Detectors and Descriptor
GENETALOTS . ..ottt 8
2.3.2 Keypoint Detectors . ........ ... 10
2.3.3 Descriptor Generators. .. ............ it ... 11
2.3.4 Feature Matching. ........ ... . . . . . . 12
2.3.5 Outlier Rejection . ........ ... 13
2.3.6 Pose Estimation............ ... . .. . . . 13
2.4 Defense Meteorological Satellite Program .......................... 16
2.5 Suomi National Polar-orbiting Partnership ......................... 17
2.6 Cartography and its Services . .............. ... 20
2.7 SUMIMATY . oottt e e 24
III. Methodology . ... ... e 25
3.1 Inmitial Assumptions . .. ... 25
3.2 Simulated Model . ... ... .. . 27
3.3 Image Matching .. ....... .. .. 32
3.4 Converting Pixel Coordinates to Position Estimates ................. 35
3.4.1 PixeltoLIh ... ... 35
3.4.2 Llhto ECEF and ECI ... ... .. ... ... ... ... ... ... ..... 35
3.5 Kalman Filters. .. ... .. 37
3.5.1 Linear Kalman Filter ........ ... ... . ... ... ... ... ... ... 38

vi



3.5.2 Extended Kalman Filter......... ... ... .. ... ... .. .. ... 39

3.5.3 Unscented Kalman Filter ........ ... ... ... ... ... ..... 41

3.6 SUIMINATY . oottt et e e e 43

IV. Results and Analysis. .. ....... .. 44
4.1 OVEIVIEW . o ot e 44

4.2 Comparing Feature Detection Algorithms.......................... 44

4.3 Mode 1: Position Estimation......... ... ... ... ... ... ... ... .. .. 47
4.3.1 Test Length: One Nighttime Pass............... ... ... ... ... 52

4.3.2 Test Length: 24 hours. .. ...... ... ... ... . .. ... . . ... 58

4.3.3 SUIMIMATY .« oottt e e e e e e e 63

4.4 Mode 2: Attitude Determination ............ .. ... .. ... ... ... ..... 64
4.4.1 Test Length: Overland Nighttime Pass ................... ... 65

442 SUININATY .« . ot v ettt e e e e e e e e e 68

V.  Conclusions and Recommendations ............. .. ... ... .. ... ... ...... 69
5.1 Conclusions of Research . ...... ... .. ... ... .. .. . . .. 69

5.2 Significance of Research ......... ... .. . .. . 70

5.3 Recommendations for Future Work ........... ... .. ... ... ....... 70
Bibliography ... ... 73
P 78

vil



Figure

10
11
12

13

14

15

16

17
18

19

List of Figures

Page
Division on Korean Peninsula [1] ...... ... ... .. ... ... . ... ... 1
Suomi National Polar-orbiting Partnership (Image
credit: NASA/NOAA) ..o 18
NASA’s Black Marble (2016) ........... .. 19
EOSDIS Data Pull from Summer 2019.......... ... .. ... ... ..... 20
DNB vs OLS exact light locations [2] ....... ... ... ... .. ... .. ... 22
Simplified model of Suomi NPP around Earth at Night .............. 26
Close up of coordinate frames ......... ... ... .. .. .. .. .. ... ... 27
Veteran’s Day TLE propagated for 24 hours . ....................... 28
Black Marble with Suomi NPP and VIIRS Ground Track ............ 29
Veteran, Great Lakes on Black Marble............................. 31
Veteran, Great Lakes on Measurement Image .. .................. ... 31
TIM Flowchart . ... . 32
Mode 1: Comparing New Image to Black Marble,
finding Jebel al Harim, Oman ............ .. .. .. .. .. ... ... ..... 33
Mode 2: Comparing New Image to Previous Image,
Finding New Orleans, LA, USA ... ... . .. .. . . . .. 34
MSER - FREAK Test on Black Marble . ........................... 46
Find Homography Test on Woman Data - Accurate
FOV prediction. .. ... ... 47
SIFT Test for India . ... ... 48
Average of Strong Matches in Northern Africa...................... 49
Average of Strong Matches in Northern Africa,
calculated on Black Marble ...... .. .. ... ... .. .. 50

viil



Figure

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38
39

40

41

Page
Woman, only 4 images .......... . 52
Veteran, only 4 images . .. ... 52
Short Run Woman (No RANSAC/No Filter) ....................... 53
Short Run Woman (RANSAC/No Filter) ............. ... ... ... .. 53
Short Run Veteran USA (No RANSAC/No Filter) .................. 54
Short Run Veteran USA (RANSAC/No Filter) ..................... 54
Short Run Veteran ASIA (No RANSAC/No Filter).................. 54
Short Run Veteran ASIA (RANSAC/No Filter)..................... 54
Short Run Woman (No RANSAC/EKF) ................ ... ... .. 55
Short Run Woman (RANSAC/EKF) ............. ... ... ... ... 55
Short Run Veteran USA (No RANSAC/EKF) ...................... 55
Short Run Veteran USA (RANSAC/EKF) .......... .. ... ... ... 55
Short Run Veteran ASIA (No RANSAC/EKF) ................ ... .. 56
Short Run Veteran ASIA (RANSAC/EKF) ... ... .. ... .. .. 56
Short Run Woman (No RANSAC/UKF) ........... .. ... ... 56
Short Run Woman (RANSAC/UKF) ...... . ... . o L. 56
Short Run Veteran USA (No RANSAC/UKF) ...................... 57
Short Run Veteran USA (RANSAC/EKF /Ground
Track) ..o 57
Short Run Veteran ASIA (No RANSAC/UKF) ................ ... .. 58
Short Run Veteran ASIA (RANSAC/UKF) ........ ... ... ... ... 58
Results of TIM in ECEF Coordinate Frame for Woman
Data- No Filter . ... .. .. 60
Woman (No RANSAC/No Filter) ... 60

1X



Figure

42

43
44

45
46
47
48
49
50
o1
52
93

54

95

56

57

Page
Woman (RANSAC/No Filter) .......... ... . 60
Ground Track of Woman (RANSAC/No Filter) ..................... 61
Veteran (No RANSAC/No Filter) . ... 61
Veteran (RANSAC/No Filter) ... o 61
Woman (No RANSAC/EKF) .. ... 62
Woman (RANSAC/EKF) . ... 62
Veteran (No RANSAC/EKFE) ... . 63
Veteran (RANSAC/EKFE) .. ... 63
Path through AFIT Library .......... ... .. .. 64
Attitude of Camera through AFIT Library ......................... 65
TIM Mode 2 in Operation over the Midwest, USA .................. 66
TIM Mode 2 in finding matches over the Midwest, USA.............. 66
Woman Height Above Earth for Black Marble,
Worldview (Meas) .. ...t 67
Veteran Height Above Earth for Black Marble,
Worldview (Meas) .. ...t 67
Woman Attitude in Euler Angles for Black Marble,
Worldview (Meas) .. ...t 68
Veteran Attitude in Euler Angles for Black Marble,
Worldview (Meas) .. ...t 68



Table

List of Tables

Page
Aerospace Vehicle Type and Notional Modes of GNC ................. 5
Dataset Names and User Input .......... . ... . ... ... . ... ...... 30
OpenCV Algorithms and test results on the five image
sets to a database. .. ... ... . 45
Test Cases and their Success with Filters ......... ... ... ... .. ... 51
Usability of Short Image Sequence ............ .. ... .. ... .......... 53
Usability of Long Image Sequence........... .. ... ... ... ... ..... 59

x1



A o o

0>

= z ~ =

w

List of Symbols

semi-major radius
semi-minor radius

attitude matrix

eccentricity

unit vector of s

Essential Matrix

square of first eccentricity
flattening of the planet
process nonlinear vector function
matrix of linearized dynamics
Fundamental matrix

focal length of camera

gravitational acceleration

Jacobian of measurement sensitivity

observation function

height of vehicle above Earths surface

identity matrix
Julian Day
Kalman gain

equatorial gravity constant

radius of curvature of vertical prime

integer number
covariance of state

process noise covariance matrix

xil



do

” é s

B3 < < X

m

equatorial gravity

measurement noise covariance matrix
rotation matrix between coordinate frames
vehicle position

measurement from camera to point on earth
pose matrix

translation

time

input vector

vehicle velocity

measurement noise

weights

state vector

image coordinate

measurement

expected measurement

reduced latitude

residuals of observations

change or nutation

obliquity of the ecliptic

Greenwich Apparent Sidereal Time
filter tuning value

gravitational parameter

accuracy of sensor

residual

latitude

xiil



set of sigma points
longitude

) angular rate

Super/subscripts
- state a priori, but after propagation
+ state a posteriori
initial state
¢ integer number
CAM camera frame
E conditions for the Earth
ECEF measured with respect to a rotating frame
ECI measured with respect to an inertial frame
gc geocentric
gd geodetic
i integer index
k timestep
m integer number
m mean
n integer number
n normalized
XX predicted mean covariance
Xy predicted cross covariance
vy predicted observed covariance

Xiv



ATAA
AFRL
BRIEF
BRISK
CCD
DCM
DMSP
DN
DNB
DoD
ECEF
ECI
EKF
EOS
EOSDIS
ESA
ESOC
ESTEC
FAST
FLANN
FOV
FREAK
FWHM

List of Acronyms

American Institute of Aeronautics and Astronautics
Air Force Research Laboratory

Binary Robust Independent Elementary Features
Binary Robust Invariant Scalable Keypoints
Charge-Coupled Device

Directin Cosine Matrix

Defense Meteorological Satellite Program

Digital Number

Day Night Band

Department of Defense

Earth Centered Earth Fixed

Earth Centered Inertial

Extended Kalman Filter

Earth Observing System

EOS Data and Information System

European Space Agency

European Space Operations Centre

European Space Research and Technology Centre
Features from Accelerated Segment Test

Fast Library for Approximate Nearest Neighbors
Field of View

Fast Retina Keypoint

Forward Width at Half Maximum

XV



GDP
GEO
GNC
GPS
GSHHS
IEEE
IMU

INS
LEO

Llh
MSER
NASA
NGDC
NOAA
NORAD
NPP
O-BRIEF
OLI

OLS
OpenCV
ORB
RANSAC
RIC

RV
SDPE
SGP3

Gross Domestic Product
Geostationary Orbit
Guidance, Navigation, and Controls

Global Positioning System

Global Self-Consistent Hierarchical High-Resolution Geography

Institute of Electronics and Electrical Engineers
Inertial Measurement Unit

Inertial Navigation System

Low Earth Orbit

Latitude, Longitude, Height Above Earth
Maximally Stable Extremal regions

National Air and Space Administration
National Geophysical Data Center

National Oceanic and Atmospheric Administration
North American Aerospace Defense Command
National Polar-orbiting Partnership

Oriented Brief

Operational Land Image

Operational Linescan System

Open source Computer Vision

Oriented FAST and Rotated BRIEF

RANdom SAmple Consensus

Radial, In-track, Cross-track

Space Vehicles Directorate

Strategic Development Planning and Experimentation Office

Simplified General Perturbations

XVl



SIFT
STK
SURF
TIM
TLE
UKF
USAF
USGS
VIIRS
VNIR
2BP
6DOF

Scale Invariant Feature Transform
Systems Tool Kit

Speeded Up Robust Features
Terrestrial [llumination Matching
Two Line Element

Unscented Kalman Filter

United States Air Force

United States Geological Survey
Visible Infrared Imaging Radiometer Suite
Visible Near Infrared

2 Body Problem

6 Degree of Freedom

xXvii



Spacecraft Position Estimation and Attitude Determination using Terrestrial

[Nlumination Matching

I. Introduction

City lights are capturing the attention of everyone around the world. They seem to
be a fascinating projection of the stars on our Earth, but that can reveal the conditions
we experience in our daily lives. People love to follow astronauts on Twitter to see
their selfies in the International Space Station’s cupola flying 200 miles above our
beloved cities. Other than admiring their intrinsic beauty, what could these pictures
be used for? They are reminiscent of stars in outer space, and it would be possible
to apply image recognition to identify distinct cities and borders such as the 38th

parallel across North and South Korea, or the highly populated areas along the Nile.

Figure 1. Division on Korean Peninsula [1]



This is exactly what this research aims to accomplish: autonomous city recognition
by shape and size, or proximity to other cities in order to acquire a precise position
estimate for Earth orbiting satellites. Furthermore, advancements in multi-camera
operations and image processing have been made to the point where real-time stereo
vision by a system is attainable. For example, two pictures of New York taken from
space could provide an altitude estimate and begin the elaborate process of satellite
attitude determination.

In an increasingly congested and contested space environment, traditional sen-
sor failure may become more likely and problematic. Most satellites on orbit are
Earth-focused, and small satellites are on the rise in popularity with students and
entrepreneurs. A class of high-performing dual-purpose sensors will begin to answer

the call for the next wave of innovation.

1.1 Research Questions, Tasks, and Scope

The main purpose of this research is to build upon the work of digital processing
cartographers to discover if city lights can be used as a precise method of geolocation
and attitude determination. A substantial amount of work has been done on different
terrestrial focused sensors over the years in order to obtain the highest caliber of
images. Star trackers have been used by some in a dual-purpose manner to retrieve
a position estimate. However, this is computationally intensive due to the arduous
mathematics already required for a 6 degree of freedom (6DOF) pose, where position
is extracted further from that. Most current attitude determination algorithms using
visual landmarks are focused on day-time operations and do not function well at night.
In order to meaningfully advance the research in this area, sensors must continually
strive to be smaller, cost-effective, and computationally efficient. Small satellites

(<100 kg) do not always have the capacity for various single-purpose sensors and large



batteries required to run them for every aspect of a mission required for spaceflight.

Specific research questions relating to the study objectives are the following:

1.2

Can a composite of city lights be used in conjunction with daily city lights
measurements be used as a database to find position of a satellite in orbit

comparable to similar research and with mission-necessary precision?

Can a sequence of images taken from space be processed for an attitude estimate

of the satellite comparable to a star tracker?

. Will the functionality of these capabilities compete with that of a Global Po-

sitioning System (GPS) and Star Tracker in order to show promise as a viable

alternative?

Is Open source Computer Vision (OpenCV) an applicable framework for these

goals?

Can these tools and the assignments be combined to build a Terrestrial [llumi-

nation Matching (TIM) algorithm?

Methodology

The research questions will be addressed by creating a scenario and acquiring a

set of images to build a simulation. An algorithm will be developed in two modes that

will attempt to accurately determine position and attitude for the system. The sce-

nario will explore different tools and system constraints to identify the best potential

methods, and push the boundaries of image processing.

The following assumptions are made:

e Only one satellite and its data will be analyzed.



e The satellite and its camera (and therefore its images) are assumed to be aligned

with the orbital frame of the satellite.

e A single pair of image feature detection and feature matching will be employed

for simulations.

e The 2 Body Problem (2BP) is used to propagate the satellite’s true position in

the inertial frame

e In the "Black Marble” composite, discussed later, pixels perfectly correspond

to latitude and longitudinal coordinates

1.3 Thesis Overview

Research objectives are outlined in Chapter I and Chapter II reviews relevant
research of image recognition and matching with a focus on space-based applications
and techniques. In Chapter I1I, the satellite model is outlined, as well as all coordinate
frame transformations from image to the camera to an inertial coordinate. The
simulation and algorithm are characterized, and Kalman Filters make their debut
to help with any errors the algorithm experiences. Chapter IV will discuss many
renditions of the algorithm and its final state, in addition to guiding a discussion to
the best methods for each mode of operation, and attempt to show autonomy. Finally,
Chapter V summarizes and provides conclusions to the overall research, describes the

way forward for further research, and discusses the relevance of the present research.



II. Literature Review

2.1 Chapter Overview

There are a myriad of guidance, navigation, and control (GNC) sensors that are

exclusively dependent on the type of vehicle they are aboard, with some techniques

described in Table 1. They are created for very specific stages of flight, from hobbyist

quadcopters to inter-planetary probes.

Table 1. Aerospace Vehicle Type and Notional Modes of GNC

Vehicle

GNC Methods

Maneuver Method

AIR

Weather Balloon
Manned Aircraft
Unmanned Aircraft
Quadcopter

Airborne Missile

radiosonde, theodolite
altimeter, INS, GPS
altimeter, INS, GPS
visual sensor, GPS

altimeter, INS, GPS

pressure inside balloon
thrust, flight control surfaces
thrust, flight control surfaces
propellor(s)

thrust, flight control surfaces

AEROSPACE

Scientific Balloon
Sounding Rocket
Space Shuttle
Launch Vehicle

Ballistic Missile

star camera, altimeter
gyro, altimeter, accelerometers
human, star camera

gyro, altimeter, accelerometers

INS, GPS

pressure inside balloon

thrust, flight control surfaces
thrust, flight control surfaces
thrust, flight control surfaces

thrust, flight control surfaces

SPACE

Satellite

Space Station

Interplanetary Vehicle

star, sun, horizon sensor, GPS

human, star, sun, horizon sensor,
GPS

star, sun sensor

thruster, magnetorquer, momentum
wheel
thruster, magnetorquer, momentum
wheel

thruster, momentum wheel




This chapter will discuss a few aspects of star trackers and other cameras in
space, following their history and exploring their modes of employment. It will also
go through the OpenCV library highlighting a few significant algorithms that will be

featured in TIM and the process of pose estimation.

2.2 Star Trackers

As shown in Table 1, star measurements and GPS are traditionally used for on-
board spacecraft attitude determination and position, respectively, but the use of
terrestrial-focused optical sensors for this purpose is growing in popularity. A space-
craft’s attitude, also known as its orientation, is used to point the solar panels towards
the sun, or to aim communication sensors precisely at their ground stations. First
debuted in the 1960s and 70s, star cameras evolved to use a field of stars to include
other celestial objects seen through a charge-coupled device (CCD) paired with an
extensive star catalogue and a rigorous matching algorithm [3]. In the 1990s there
were significant improvements made by the space industry in areas of centroiding ac-
curacy and speed of catalogue matching and computation time. However, star fields,
centroiding, and star catalogues form the process that is still mainly used today [4].
Star trackers became very expensive, were known to be heavy, and more innovations
to their design were not made until the small satellite revolution. A more recent
innovation has been trying to use them not only for attitude determination, but to
estimate position of a space-based vehicle as well, where it can be difficult to tell the
height above Earth, and requires another computationally intense catalogue search
and matrix transformation. One sensor to perform both is desirable for small satel-
lites in terms of space, cost, and redundancy. In 2010, Paluszek et al. successfully
used an Unscented Kalman Filter (UKF) with many types of measurements such

as range, range-rate, planet chord width, landmark and angle measurements of any



celestial object for deep-space navigation [5]. This, paired with the Inertial Measure-
ment Unit (IMU) allowed for accurate attitude determination algorithms, giving the
single star tracker-like sensor a full suite of GNC capability. The system still needed a
few different types of sensors, and the employment of a large star catalogue requiring
improved matching algorithms or more power and time to be comparable in function

to a traditional star tracker.

2.3 Image Processing Algorithms

Star trackers, while being cameras themselves, match to a star catalogue using the
geometries of the constellations and brightness, as stars do not provide identifiable
features other than slight color variance. Terrestrial images, however, are a different
story; filled with colors and interesting land features, they can be be processed using
OpenCV, an image processing library in Python that focuses on object recognition,
matching, and tracking, mimicing human logic. The definitions that apply to all al-
gorithms in this library to conduct image matching are (1) keypoints, (2) descriptors,
(3) matching and (4) outlier rejection. Most algorithms will be explained in a scenario
of two images, image A and image B, where image A is analyzed first. A keypoint is
the position of a feature of interest in an image. A descriptor is a mathematical way
of describing what it looks like. For example, humans have fantastic object recogni-
tion for bananas, because that fruit is a curved, yellow, fruit, and they know it is not
an apple. Teaching a computer what something looks like can be quite challenging.
It is necessary to have keypoint location and description, which make a feature, to
employ a matching algorithm. Matching techniques use the location of features and a
vector map of their shape and size information to index each set in two images to find
matches. Most techniques still do not use color, as standard image processing works

in grayscale, and many of these new algorithms have followed suit. Even with a good



set of descriptors, mistakes can be made and outlier rejection techniques are needed
to make sure the set of matches average out to the same rotation and translation for
an image. If all the matches give different results, it is necessary to throw out out-
liers to get a usable result. Feature detectors only find a keypoint’s position, while a
descriptor generator considers its shape. Features can be binary or non-binary, with
the former being a vector of bits requiring the Hamming distance to be known in
order to conduct matching, while the latter is a vector of numbers that are typically
a bit slower and use the L2 norm. The OpenCV algorithms listed below are of special

interest, for they implement keypoint recognition and matching between two images.

2.3.1 Both Keypoint Detectors and Descriptor Generators

e SIFT (Scale Invariant Feature Transform): A non-binary algorithm consisting
of steps: (1) scale space extrema detection, (2) keypoint localization, (3) ori-
entation determination, and (4) generation of keypoint descriptor [6]. SIFT is
unique from other initially discussed image matching algorithms because it is
the first to take in the possibility for scaling. Harris corner detection, for exam-
ple, can only detect corners on a flat plane in an area that keeps the same scale,
but can account for some rotation between images. In order to detect corners at
various sizes, SIF'T uses an approximation of the Laplacian of Gaussian called
the Difference of Gaussians (DoG). For each image it gives a scale-space fil-
tering, providing a scaling parameter for each detected feature. DoG produces
a list of scaling parameters found by blurring the image and comparing with
surrounding pixels to find the best scaling parameter for each keypoint, then
is saved with the keypoints position for each image. A Taylor series expansion
of scale space is used to get a better coordinate of a keypoints position and

to conduct rejection of certain keypoints if the intensity of the extrema is less



than a set threshold value. This prevents edges and low-contrast keypoints from
being saved, keeping only strong keypoints that are not as general to images.
Orientation is determined by creating a histogram of the pixel neighborhood
around the keypoint location plus scale information and then using the highest
peak and any peak above 80%, which contributes to accurate matching. The
histogram of the neighborhood is cut into four quadrants and represented as a
vector to create a keypoint descriptor and sized according to scale information.
Keypoint matching is conducted by finding nearest neighbors of location and
descriptor. The nearest neighbor is defined as the keypoint with the minimum
Euclidean distance for the descriptor vector [6]. False matches are avoided by
conducting Lowe’s Ratio test of the distance to a keypoint’s nearest and second

nearest neighbor, setting the ratio to be greater than 0.8.

SURF (Speeded Up Robust Features): Another non-binary algorithm that fil-
ters at a larger scale, finds orientation from Haar-wavelet responses, and uses
rectangle windows to align images [7]. It is best described as a faster version
of SIFT. Instead of using the Laplacian of Gaussian, which is computationally
expensive, it instead uses the Box Filter. The algorithm blurs pixels and assigns
values to the blurred blocks, then uses the determinant of the Hessian matrix
for scale and location of a keypoint. For orientation, SURF uses Haar-wavelet
responses in a neighborhood with Gaussian weights applied and then averages
them. The wavelet responses are used again for feature description, cut into
quadrants (similar to SIFT), and a vector is formed from the sum of the lengths
of the wavelets in each quadrant. It is three times faster than initial corner
and feature detectors, capable handling images with blurring and rotation, and
creates more keypoints, but is not as effective for viewpoint or illumination

changes [7].



e BRISK (Binary Robust Invariant Scalable Keypoints): Born from SIFT, BRISK
also implements elements of FAST's arc pixel detector, able to set thresholds
and number of pixels searched along an arc. Combined with SIFT, FAST’s
nonmaximal suppression can be applied across the scale space [8]. This means
a feature is kept when it is either a maximum or minimum within its scale, but
also across scale space. Descriptors are found by applying Gaussian smoothing
and calculating gradients between points. The average gradient is calculated
and an intensity value is rotated by the gradient direction to make the descriptor

rotation invariant [8].

e ORB (Oriented FAST and Rotated BRIEF): This algorithm combines FAST
as its feature detector and BRIEF as its descriptor generator to fix shortfalls
found in both. FAST is used to apply a scale pyramid rather than just using
the original image and is oriented by assuming the intensity centroid would be
offset from the center of a detected corner [9]. Descriptor generation is similar
to O-BRIEF, but the pixels are rotated by orientation of the feature before
the random Gaussian gradient is taken to compute the descriptor. The best

matches are based on which has the greatest variance and mean of 0.5 [9].

2.3.2 Keypoint Detectors

e FAST (Features from Accelerated Segment Test): FAST is built from corner
detectors, and operates by looking at a circle of pixels around a potential feature
and their intensity values [10]. When the intensity varies around a certain arc,
the corner of a feature can be detected and that is saved as the keypoint. It can
be optimized by setting different thresholds of pixel intensity to look at, and
only certain pixels around the arc, rather than every single one. A feature and

keypoint is saved when the sum of absolute difference between the point and

10



its surrounding pixel values are the strongest for the image, called nonmaximal

suppression, which can be set as the algorithm is employed.

e MSER (Maximally Stable Extremal Regions): This algorithm is different from
most others where it does not particularly detect keypoints in areas of interest,
but rather hulls or blobs [11]. These hulled areas have distinct shapes that can
then be centroided to a keypoint and used with the following algorithms. MSER
operates by creating a binary image based on a certain threshold of pixel value,
and identifying contiguous regions within that image [11]. A sequence of images
is created from the original by varying the threshold, and the regions that are
constant across a range are saved as hulls. This is good for identifying specific
shapes and areas of contrast, which could prove to be lucrative in a blob-search

and match of city lights experiencing saturation of pixels.

2.3.3 Descriptor Generators

e BRIEF (Binary Robust Independent Elementary Features): Created out of a
desire to have a binary descriptor that would be faster to compute and compare
features than non-binary descriptors. BRIEF operates by testing pixel intensity
of smoothed versions of patches near a keypoint [12]. A random Gaussian
distribution of a bitstring across a patch gave the best results for uniqueness
in order to match descriptors. However, it was not rotation invariant like some
other descriptor generators, which led to Oriented-BRIEF (O-BRIEF) and later
ORB.

e FREAK (Fast Retina Keypoint): FREAK is one of the most interesting al-
gorithms, inspired by the design of the retina, taken from how the number of
ganglion cells varies around the eye and are most dense around the fovea [13].

This means there are bigger areas and descriptors computed around the outside
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of the image, and smaller, more unique ones around the center of the image.
Similar to ORB, different pairs of points were tested to compare before finding
conditions for the best points to compare for accurate matching. FREAK also
applied Saccadic Search”, meaning that a preliminary match is found using the
first 16 matches, followed by a rigorous re-matching to find the best out of those
[13]. Despite being more creative and using different approaches, it is consider-
ably faster than the most common algorithms (SIFT, SURF, and BRISK), but

not necessarily more accurate.

2.3.4 Feature Matching

e Brute-Force: the L2 norm is used to calculate distance between two matches,
and selects the feature in image B that has the smallest distance [14]. Tt is
the simplest way to match features. The matcher compares each descriptor in
image A and finds the closest match in image B and, when using knnMatch, will
only draw a number, k, of the best matches to be used. The user can set that

they only need 10 matches, for example, and it will pull the ten best matches.

e FLANN (Fast Library for Approximate Nearest Neighbors): Features from im-
age A build a kd-tree (a data-structure enabling much faster search for a de-
scriptor), and features from image B are matched, well-suited for large image
databases and smaller images to match [15]. A kd-tree is a nearest-neighbor
search that goes to the k-th dimension. Once FLANN finds a potential key-
point, it creates branches until it finds nearest-neighbor keypoints, and can go
to any k dimension to span a part of the image (higher dimension takes longer
but could span the whole image). The shape of these trees are the feature key-
points and descriptors, and similar kd-trees are compared in shape in order to

find matches. FLANN allows the user to set targets for precision, such as 20%
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probability nearest-neighbor matches return an exact match. Higher values take

longer, but are more accurate.

2.3.5 Outlier Rejection

e Lowe’s Ratio Test: Once a complete set of usable matches are made for each
set of images, before displaying the images and saving the data, those matches
are determined good or bad with Lowe’s test, which throws out matches that

do not follow the average slope of all the lines created described by:

1oDT

where D is the distance between a matches nearest-neighbor [6]. This ensures
that only the best matches are used, which in turn gives the most accurate

assessment of the pose matrix.

e RANSAC (RANdom SAmple Consensus): Randomly selects a minimum num-
ber of points required to fit a line of data and tries to fit the model and reject
outliers, repeats this until inliers are maximized, ensuring good matches [16].
RANSAC is a filter that can be applied while Brute-Force matching is taking

place that applies geometric constraints to the matching technique.

2.3.6 Pose Estimation

The pose of a camera at a point in time is described as a 4x4 matrix comprised of
the relative change in attitude and the relative change in position from the camera’s
initial position. The relative pose between these images is found using a recovering
process, from either an Essential or Fundamental matrix, following Scaramuzza’s

work [17]. These matrices describe position of a matched object in two images while
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satisfying the Epipolar constraint, a line between two cameras, that mathematically
describes if an object is found in both images, there is a certain plane both the

cameras must lie on [17]. The equation for the Epipolar constraint is defined as:

where x is the position of the object in normalized coordinates in each image, t is
the translation between the two cameras, and R is the rotation between the cameras

[17]. The Epipolar constraint is rewritten as the following linear equation:

x1 [tx]Rx L =0 (2.3)
where
0 -t, ty
tlx=]t, 0 -tx (2.4)

The matrix [t]x is redefined using the Essential Matrix, E:

X, Exyy = 0 (25)

where

E = Rt]x (2.6)

and the Essential Matrix can be scaled or unscaled. If scaled, then the scale is known
from the two images, and reflects six degrees of freedom. Other constraints on the

Essential Matrix that help solve for E are the following:
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det(E) = 0 (2.7)

9EETE - trace(EET)E = 0 (2.8)

The Fundamental matrix follows the same process, but with feature locations in the
images in pixel coordinates, rather than normalized. The pose is then recovered from
the Essential or Fundamental matrix. A pose matrix is a 4x4 matrix comprised of a
3x3 ortho-normal rotation matrix, R, which can be rotated to a body to orbital atti-
tude, and a 3x1 translation vector, t, in ECI coordinates. It is typically represented

as

T = [R]t] (2.9)

and expanded as

T = (2.10)

put homography in if you fix your other eq'ns

A mix of different algorithms must be used to get a full, accurate result. The first
step is feature recognition, and SIFT and SURF conduct both feature recognition
and descriptor generation, so specific qualities of the image can be matched. Brute-
Force and FLANN are chosen for matching, allowing different uses of the descriptors

and thresholding applied. FLANN is more difficult to implement but yields better
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results since Brute-Force is simple, larger rotations or translations of the satellite
could render it useless. Finally, RANSAC conducts outlier rejection, ensuring the
best measurement possible from the image is chosen. That set of points is then
used to create the Essential or Fundamental matrix using Equations 2.7 and 2.8.
Remembering that E describes the rotation and translation, the Pose, T, can be
recovered from that and put in the form shown in Equation 2.9, where it can be used
further for navigation. On a terrestrial level, Veth and Raquet have contributed many
works on passive navigation methods using these OpenCV techniques that are widely

cited [18, 19].

2.4 Defense Meteorological Satellite Program

Since the 1970s and with the debut of the U.S. Air Forces (USAF) Defense Me-
teorological Satellite Program (DMSP), space sensors have been able to detect the
visible spectrum and more, allowing the Earth to be seen in a whole new way [20].
The main priority of scientists using this new data was to create high precision maps
of the world, which involved heavy data processing and proved very difficult as only
film strips were available for decades. Over the 1990s and until now, Elvidge and
many of his collaborators have dominated precise geolocation of data from DMSP’s
Operational Linescan System (OLS), designed specifically to sense low levels of visi-
ble and near-infrared (VNIR) radiance during nighttime operations [20].The goal of
the work was to separate constant light emissions from urban areas, such as cities,
towns, and industrial sites, from noise and outliers like fires and illuminated clouds.
OLS is an oscillating scan radiometer with a swath of 3000 km and, aboard DMSP,
acheives global coverage of the earth four times a day, during Civil Twilight events
and between them [20]. Evening Civil Twilight is defined as the period that begins at

sunset and ends in the evening when the center of the sun’s disk is six degrees below

16



the horizon and morning Civil Twilight is the equivalent that starts before sunrise
and ends at sunrise, and will be measured with solar elevation angles [21]. Night
is hereafter defined as the period including and between Evening Civil Twilight and
Morning Civil Twilight.

Using 236 smooth revolutions of OLS, pixel data is collected and screened for
city lights during night in each dataset, where each kilometer of earth in a pixel is
given a percentage of city light occurrence [20]. This method of map making found
occurrence of night-time lights from large cities that were at least 10% cloud-free at
least 99% of the time, but did not result in a composite image of the Earth that year
[20]. The largest improvement of using DMSP OLS data to create a composite came
in 2009 from Elvidge’s colleague, Baugh, who created a Stable Lights product that
heightened geolocation accuracy, included smaller city detection to a greater degree,
and managed incorporation of data from higher latitudes [22]. Baugh accomplished
this by implementing a system of thresholding, assigning pixels a Digital Number
(DN) threshold for day, nighttime marginal, zero lunar illuminance, clouds present,
and no data [22]. The Stable Lights product used suborbits flagged with zero lunar
illuminance, which were then reprojected on a 30-arc second grid where overlap of
areas covered, noise, and higher latitudes were excluded. The suborbits can then be
further processed and lined up for a composite by identifying land-sea boundaries and
conducting outlier rejection of anomalies like fires. The work resulted in composites of
the Earth for the entire digital archive of OLS data from 1992 to 2009, which allowed

researchers to use this for further scientific study [22].

2.5 Suomi National Polar-orbiting Partnership

Suomi National Polar-orbiting Partnership (NPP) was the result of a National

Oceanic and Atmospheric Administration (NOAA) and Natinal Air and Space Agency
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(NASA) collaboration as a multi-purpose stop-gap in support of the expansive Earth
Observing System (EOS) collection of satellites. The NASA EOS family, which in-
cludes satellites like the LANDSAT series, has a very generous open source and shar-
ing community, having created many online tools for viewing data. Suomi NPP was
launched to an altitude of 824 kilometers in a 98.7° sun-synchronous near-polar orbit
with a 101-minute period and a Descending Node at 10:30 hours [23]. The satellite
commenced operations in 2012, Suomi NPP is able to see the entirety of the Earth
twice a day (entire Earth during night and day), and has a 16 day cycle for careful
juxtaposition of data over time. Two-Line Element (TLE) sets that describe a satel-
lite’s precise orbit at a certain time, provided by North American Aerospace Defense

Command (NORAD), are readily available for this system on space-track.org [24].

Ozone Mapping and
Profiler Suite (OMPS)

Clouds and the Earth's
Racdiant Energy Systerm
(CERES)

Advanced Technolagy
Migrowawe Sounder (ATMS)

Cross-track Infrarod
Sounder (CriS)

Visible Infrared Imaging
Radiomeiar Suite (VIIRS)

Figure 2. Suomi National Polar-orbiting Partnership (Image credit: NASA/NOAA)

The sensor on Suomi NPP that provides terrestrial imagery for this project's data
collection is the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is located
on the nadir-pointing end of the spacecraft, slightly offset from the body axes as shown
in Figure 2. While VIIRS has 22 channel range of light collection bands, only the
Day /Night Band (DNB) is used for this work, as its purpose is specifically to gather
artificial city light at night. VIIRS uses a whiskbroom scanning method that is able

to take a swath of 3000 km at once allowing for global nighttime coverage every day
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[25]. Tt is specifically designed to control pixel size and prevent aggregation using a
bow-tie deletion scheme (since Suomi NPP is in a polar orbit) tracking scan overlap
and pixel location in the track direction. DNB is centered at 0.7 microns in the visible
spectrum, but with a very wide forward width at half maximum (FWHM) of 0.4 [25].
This allows for all light from the Earth to be picked up by the sensor in a way that
is high-contrast and impedes the effects of albedo light. Data from this satellite, and
specifically DNB, is available daily on NASA’s EOS Data and Information System
(EOSDIS) using the Worldview tool [26]. Worldview allows the user to see data
collected by DNB the same day it was collected, and look historically to 2017, as well
as to “Black Marble” composites from 2012 and 2016. Black Marble is created using
clear data throughout the year from DNB, building upon Baugh’s work using DMSP
OLI data of city lights around the world to create a cloud-free composite image with

stunning resolution [27].

Figure 3. NASA’s Black Marble (2016)

The composite of the year, shown in Figure 3, can ensure a cloud-free pixel for

every corner of the Earth, but looking at a composite of the day in Figure 4, this is not
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the case. During summer months in certain parts of the world, a monthly composite
is not even possible due to excessive atmospheric light, rendering observations useless
[28]. The varying levels of processing able to be accessed of VIIRS data, raw from

the satellite to a yearly perfect composite, is impelling curiosity across all disciplines.

Figure 4. EOSDIS Data Pull from Summer 2019

2.6 Cartography and its Services

City lights data from DMSP OLI and Suomoi NPP VIIRS have been used for
various disciplines and forms of analysis from cartography to the estimation of Gross
Domestic Product (GDP). Imhoff et al. applied thresholding techniques at 89% fre-
quency to be considered an urban pixel to the United States to compare population
and housing density to 1990 US Census data with wildly varying results state-to-
state [29]. An example of this used in a less developed area was done by Amaral
et. al., who used DMSP night-time city lights to estimate the size of settlements in
the Brazilian Amazon Rainforest [30]. The goal of this work was to understand how

best to support sustainable development in urban and rural areas as they experience
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human population growth. The DMSP imagery was paired with reliable census data
from the region.

Cloud-cover and pixel saturation posed huge problems to actually using this data,
and that was solved by NOAA /National Geophysical Data Center (NGDC) and used
in Elvidge et al. 1997b. Amaral first had to use DMSP data collected from a period
from January to June 2002 to create a cloud-free mosaic. This was accomplished
by taking the collection of images from that time and assigning each pixel a Digital
Number (DN) that corresponded to the amount of light and cloud cover. The mosaic
was created from cloud-free and lighted pixels. The city-lights result from the mosaic
was compared with census data and in-person field expeditions to small villages.
Amaral was successfully able to identify cities with more than 20,000 people 100%
of the time, 95% for populations between 10,000 and 20,000 people, 82% for 5,000
to 10,000 people, and only 35% for populations less than 5,000 people [30]. Mapping
settlements with less than 2.5km? well-lit area was not feasible with DMSP data.
Improved remote-sensing capabilities were called upon by many communities, and
were answered with Suomi NPP VIIRS.

Elvidge in 2013 took the lead on comparing the two sensors, looking at footprint,
Earth coverage, quantization,low-light collecting ability and pixel saturation. Data
collected from VIIRS is 45 times more fine and has a constant 742 m x 742 m pixel
footprint, compared to DMSP OLS 5 km x 5 km footprint that experiences pixel
expansion towards the edges [2]. This allows for considerably more precise map-
making and analysis of the urban areas by VIIRS. Elvidge verified these upgrades
mattered by creating a composite of each sensor’s nighttime lights using only two
months of data shown in Figure 5 of Oahu, Hawaii, where the precise sprawl of the

population can be seen distributed on the coast, and a little bit in the center of the
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island, whereas OLS on the right leads the viewer to believe the spread of people

along the coast is a lot more dense than it really is [2].

DNB Oahu OLS Oahu

Figure 5. DNB vs OLS exact light locations [2]

This revelation prompted similar works to Amaral’s, with Checa et al. using DNB
data to measure the urbanization of the Iberian Mediterranean Coast [28]. Instead of
only looking at population, Checa attempted to categorize the socio-economic status
of microregions within the Iberian Coast by looking at the intensity of city lights.
Using NOAA’s published monthly composites, Checa further processed the cropped
target area for anomalies such as fires and clouds, using a threshold of a pixel’s
average value. Checa concluded the level of detail the composites provided made it
possible to study the intensity and seasonality of urban areas, looking at how land is
used and whether that matches with the population expected, a much more decisive
conclusion than of Amaral’s use of DMSP OLS data [28]. Considering a sensor can
tell the precise energy use of a neighborhood in Spain, surely it could be used for

precise satellite pointing.
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In 2011, just as Suomi NPP was preparing for launch, Klancar developed an
attitude control algorithm that was tested in simulation using Simplified General
Perurbations 3 (SGP3), Google Earth, and SIFT [31]. The attitude dynamics and
kinematics were propagated, with reaction wheels as the control system. Klancar
simulated the orbit of Lapan Tubsat at 600 km above Earth with an orbital period
of 90 minutes by using a sequence of Google Earth images as Earth observations at
10 Hz sampling frequency [31]. The camera resolution was set at 320 x 280 pixels,
giving a 2.5 meter per pixel resolution, that they down-sampled to 15 meters per
pixel to simulate what a camera could see from LEO [31]. The sequence of images
was created for the exact SGP3 position, as well as for the 2BP, and the sequences
were compared image by image to initiate the control law. The difference in pose
of the images was calculated by using SIFT and Lowe’s ratio test, set at 0.6 [31].
A comparison of the pose and estimated Euler angles were used to calculate the
appropriate moments for the reaction wheels. The performance of this simulation
showed that it was comparable to a star tracker and much better than the expected
accuracy of a sun sensor [31].

Similarly in 2015, Straub used MATLAB’s Global Self-Consistent Hierarchical
High-Resolution Geography (GSHHS) to simulate terrestrial images, and then use
coastline data to match and obtain a position estimate [32]. The fictional satellite was
assumed to be in a 1,000-km altitude orbit with a 56° and a 30° field of view (FOV).
These were chosen to maximize the visibility of coastlines, with images taken every five
minutes, and the errors at different inclinations were analyzed. After many terrestrial
images were simulated and matched for several geographically separated locations, an
extended Kalman Filter (EKF) was applied to produce actionable estimates.

Kouyama used observations from UNIFORM-1, SURF, and RANSAC to identify

landmarks for attitude determination. Baseline images for the locations studied were
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taken from Landsat-8’s Operational Land Imager (OLI) and position was propagated
from a TLE [33]. A slightly different perspective was recorded of the UNIFORM-1 and
OLI images and compared using OpenCV techniques. The same time step of images
were compared to each other, and the pose estimated; assuming the OLI images were
aligned with the boresight, the attitude of UNIFORM-?1 could be recovered from
the pose. This was completed and attitude determined with an accuracy of 0.02°,

comparable to star trackers [33].

2.7 Summary

This chapter showcased historical and contemporary research of a new age of
space-based cartography and its suppliers, image processing algorithms and their
navigation techniques. OpenCV is a popular choice for visual navigation applica-
tions, especially for the post processing of satellite imagery, and is becoming more
popular for imagery tools onboard small satellites after real time video capability
on a smartphone was attained. It is especially fantastic because in order to attain
operational tracking accuracy, camera calibration is not necessary. The current re-
search seeks to develop a methodology to conduct spacecraft positioning and attitude
determination using terrestrial lights as a surrogate for star fields, and provide an
alternative means of pose estimation in the event of star sensor malfunction using the

OpenCV framework.
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III. Methodology

“It is this love of the contemplation of the eternal and unchanging
which we constantly strive to increase, by studying those parts of these
sciences which have already been mastered by those who approached them
in a genuine spirit of enquiry, and by ourselves attempting to contribute
as much advancement as has been made possible by the additional time
between those people and ourselves.”

- Claudius Ptolemy, Almagest

3.1 Initial Assumptions

The current research proposes an algorithm that will take snapshots of image data
from VIIRS DNB with a set FOV and use them in sequence and compared to Black
Marble for pose estimation. Each image in succession will go through Terrestrial Illu-
mination Matching (TIM) technique using OpenCV and MATLAB created images of
the spacecraft's ground track over the most recent rendition of Black Marble (2016).
Two modes of TIM may be employed: (1) position determination; and (2) pose and
attitude determination. Position determination operates by matching real data, such
as images from Worldview, to Black Marble by identifying precise latitude and longi-
tude coordinates of cities. Attitude determination will assume initial orientation and
inertial position is known, and use OpenCV for pose estimation, obtaining attitude
change in each image and relative motion from the last position update. A pose ma-
trix is a 4x4 matrix comprised of a 3x3 ortho-normal rotation matrix, R, which can
be rotated to a body to orbital attitude, and a 3x1 translation vector, t. Other than
pose between images, there is a intricate relationship of spacecraft position around a
rotating Earth. It is essential to the work to have accurate rotation matrices through

all the coordinate frames, and to properly propagate the satellite motion over time.
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Key:

S/C BODY FRAME

S/C POSITION

Figure 6. Simplified model of Suomi NPP around Earth at Night

The inertial coordinate frame used in this work will be the Earth Centered Inertial
(ECI) coordinate system, a geocentric equatorial system typically described by ”I1JK”
where the fundamental plane is the Earth’s equator, the I axis points towards the
vernal equinox, the J axis is 90° to the east completing the right-handed system with
K through the North Pole [34]. The orbital frame is described as Radial, In-track,
Cross-track (RIC) and shown as o in Figure 7, but Euler Angles are used to describe
equivalent axis with RIC correlating to pitch, roll, and yaw [34]. The spacecraft body
frame is assumed to be aligned with the orbital frame and DNB’s camera frame.
These frames and their relationships can be seen in Figures 6 and 7 more closely.
Looking to the Earth, the coordinate system fixed to a rotating Earth will be Earth
Centered Earth Fixed (ECEF) where the system follows the same fundamental plane

as ECI, the X axis points to the intersection of the Prime Meridian and the equator,
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the 7 axis points through the North Pole, and the Y axis completes the right-handed

system.

Z;

Key:
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) = DRBITAL (Ric)

Madir

Figure 7. Close up of coordinate frames

The following sections will detail how a simulated model of the spacecraft's motion
and the images it sees were created, how images were collected from Black Marble
and Worldview and matched, and how the algorithm can be further employed with a

Kalman Filter.

3.2 Simulated Model

A simulated model was needed in order to match the timing of image collection
with the spacecrafts position. Two TLEs were chosen from the past year of Suomi
NPP’s orbit and were chosen by looking through Worldview for days that had com-
plete data acquisition and clear skies around the world. The most common area
analyzed, including in early versions of this work, contains the Great Lakes and Mid-
west region of the United States, shown later in Figure 10. The Veteran dataset, taken

on 11 November 2018 (Veteran's Day), has a short pass over the center of the United
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States. The Woman dataset, taken 8 March 2019 (International Womens Day), has
a short pass over Eastern Russia down to Sri Lanka, which includes the possibility
of using coastlines of the Bay of Bengal and city lights in conjunction for position
determination, building off of Straub's work [32]. Both have a short nighttime pass
that just tests 50 minutes of orbit determination, and are run for 24 hours with full
world coverage as well. The intertial position, velocity, and time from the TLEs are
then propagated to get a simulation of the orbit track for the entire day, which can

be matched up to the available swaths on Worldview. The 2BP

i B (3.1)

where r is the spacecraft's inertial position, and r is inertial acceleration, was prop-
agated in time using a six-stage, fifth-order, Runge-Kutta numerical integration
method. This data can then be plotted on a three-dimensional globe, to show the full

orbit tested, shown in Figure 8.

Figure 8. Veteran’s Day TLE propagated for 24 hours
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The Julian Day from the TLE's epoch was used to convert all ECI coordinates through
ECEF into Llh so the ground track of the satellite can be shown on a two dimensional
map. Black Marble is a flat image, with a resolution of 13500 x 6750 pixels of equal
size. Each pixel coordinate can also be converted to latitude and longitude, knowing
the image spans exactly the Earth’s dimensions 180° latitude and 360° longitude. This
would not be true at the poles, however since there are not usable city lights data over
the poles, this is ignored for now. From here, the spacecrafts orbital ground track
and VIIRS FOV ground track are shown in Figure 9. The FOV for the simulation
was chosen to have a resolution of 3000 km, DNB's full resolution, which was plotted

in Figure 9.

Figure 9. Black Marble with Suomi NPP and VIIRS Ground Track

Applying this method to the chosen TLEs, specifying propagation direction of time
(due to time of day the TLE comes in, moring or late at night) and the amount of
time the spacecraft should travel before it collects another image, gives the Veteran

and Woman image sets. This information is outlined in Table 2.
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Table 2. Dataset Names and User Input

Data | Propagation | Location | Sim Time (s) | # of Images

Veteran | Backwards SE Asia 3000 1
Arab Gulf 4500 1

Great Lakes 6000 1

USA 6000 5

Woman Forward Italy 1000 1
India 8000 1

EU 500 6

The simulated images are created from Black Marble and from Worldview with the
same FOV, shown in Figures 10 and 11. Each red FOV box is then saved in a
specified folder as its own image, with no markings or borders from MATLAB and
the pixel resolution is downsampled to provide noise in the data. These individual
images are shown on the side of each figure, in the same progression as they were
taken. The reason for saving the individual images is to be read-in to Python where
TIM is built with OpenCV, which will be discussed in the next section. All borders
and location identifiers must be removed because it could trick the image matching
algorithm into matching features that are not just city lights. The difference between
how well Black Marble removed impurities to make the composite is easily seen when
comparing Figures 10 and 11. The ability to pull pictures from Worldview is unique
to this work and essential for a real-world algorithm due to its natural noise. This
concludes the image acquisition process, and now the image matching techniques can

be tested.
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Figure 10. Veteran, Great Lakes on Black Marble
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3.3 Image Matching

Once two images are collected, TIM can be employed via the process outlined
in Figure 12. The two images are compared using some of the OpenCV techniques
described in section 2.3, giving Euler angles and relative position change from image
A to image B. Both sets of data have more than two images, and they are processed
in a loop where image A and B are compared, and then image B becomes image A,
and is compared to a new, third image, which becomes image B. There is the option
to compare the third image to the first image, but that must assume the FOV of the
first and third image overlap to some degree, requiring shorter time between images
taken. An optimization of step size and number of features required for accurate
detection is planned for the future. Once all images are compared and pose found for
each image relative to the first, the position data is able to be run through a filter.
The filter’s purpose is to enable the ongoing determination of position in the case of
a bad measurement or over large bodies of water.

Camera Image Processing Position Attitude
Feature recognition + matching + outlier rejection ~ Estimate  Determination

r{g]{

Filtering

Figure 12. TIM Flowchart

SIFT and SURF were chosen due to their high likelihood of success finding good
matches in the images relatively quickly, meaning there are more matches to go

through Lowe’s test and outlier rejection. To verify this, thirteen combinations of
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common OpenCV algorithms involving feature detection, descriptor generation, and
matching were tested. Mode 1 entails matching the first image to Black Marble,
to find its true position, an example shown in Figure 13. Black Marble acts as a

database, in the same way a star catalog does for a star tracker.

Figure 13. Mode 1: Comparing New Image to Black Marble, finding Jebel al Harim,
Oman

The following work in relative position change and attitude determination, Mode
2 of TIM, uses SIFT, and is initialized to begin image processing. The image is read
in and converted to grayscale for analysis, then SIFT finds keypoints and descriptors
in that image. A loop is created to cycle through any number of successive images,
but in this, simple case, there is only one further image. The image is read in and a
second set of keypoints and descriptors are determined. FLANN uses the descriptors
to find matches in shape, size, and intensity. In order to be considered a match,
Lowe’s ratio test is applied, described in Equation 2.1 [6]. Figure 14 shows New
Orleans (a descriptor) matched between two images, and the line drawn between it

after determined to be a good match.
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Figure 14. Mode 2: Comparing New Image to Previous Image, Finding New Orleans,
LA, USA

The absolute pose is updated each iteration with the calculated relative pose between

the two images in sequence, T(l) described in Section 2.3.6,

T, = T{T, (3.2)

where T is the updated pose in the ECI frame and Ty is the last estimate of the
pose in the ECI frame. Remembering the pose is comprised of a rotation, R, the
transformation of the inertial frame to the updated camera frame, and a translation,
t, which is now the position of the camera in the inertial frame. A Direction Cosine
Matrix, C, (DCM) is usually between the spacecrafts body and orbital (RIC) frame
to represent the attitude, a rotation can be done using R then converted to Euler
angles [34]. The roll, pitch, and yaw data, as well as the translation was saved for

each set of images.

C1 = REerR, (33)
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3.4 Converting Pixel Coordinates to Position Estimates

TIM operates by associating pixel coordinates from DNB to a Latitude and lon-
gitude, so the relationships between Llh, ECEF, and ECI frames must be illustrated.
The pixel to Llh relationship is direct by adding in an approximate altitude, and then
Llh can be converted to an XYZ coordinate from the center of the Earth in the ECEF
frame. From here, supplementing with the time the picture was taken, the coordinate
can be rotated into the ECI frame, giving an inertial coordinate that can be used in

a state vector with a Kalman Filter.

3.4.1 Pixel to Llh

Black Marble’s image resolution is 13500 x 6740 pixels. Knowing each pixel rep-
resents a square 742 m x 742 m plot of land, and there is no overlap between land

cover, it can be assumed that

180
1 pixel = —— = 0.02 © 4
pixe 5750 degrees = 0.02667 (3.4)

of both latitude and longitude.

3.4.2 Llh to ECEF and ECI

The Department of Defense World Geodetic System 1984 (WGS-84) is what is
commonly used for satellite GPS position [35]. WGS-84 describes an oblate Earth,
using Earth’s equatorial radius, a, polar radius, b, the first eccentricity squared, e2,

and the flattening of the Earth, f [35].

a = 6378137 m

b = 6356752.3142 m
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e? = 0.00669437999013

b
f= 272 — 1/298.257223563
a

The Earth’s rotation rate, wg, and Earth’s gravitational constant (GM) are also
used [35].
wp = 7.2921150 x 107 rad/s

GM = 3986004.418 x 10% m?3 /s>

The ECEF and ECI frames have a common origin of geocentric coordinates, where
celestial and terrestrial latitude are the same, but different in geodetic coordinates,
given by ¢. Celestial longitude, A, and terrestrial longitude, [ are offset depending on

time of day, shown as

A-h=1-lp+ opt (3.5)

where ¢, is time, and Ay and [y are when ¢ = 0 [35].
To model Earth as an ellipse for geodetic coordinates, the meridian radius of

curvature, M, is
a(1-e?)
M = 3.6
(1-e2sin? @)3/2 (3.6)

and helps find the latitude rate, Vi, or velocity in the North direction using the
geodetic height, h [36].
VN =(M+h)p (3.7)

The radius of curvature in the vertical prime, N, is used

R

1-e2(sin? @)2

Zi
I

(3.8)
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to find Vg, velocity in the East direction,

Vi(N +h) cos(¢)! (3.9)

The projection of N on the x-y plane gives Cartesian position coordinates, and

ECEF position can be calculated from geodetic coordinates by

(N + h) cos(¢p) cos(!)
TECEF = | (N + h) cos(¢) sin({) (3.10)
[N(1- e?) + h]sin(q)

[35]
Furthering to ECI coordinates, a rotation angle, u, is needed in addition to a

rotation about the z-axis [35].
u=Nho-lp+ ogt (3.11)

cosp  sinp 0
ng}EF = |-siny cosp 0 (3.12)
0 0 1

3.5 Kalman Filters

Kalman filters are a filter estimator built off the idea of smoothers that filter out
noise in measurements and use a best fit between them that can be applied real-time
[36]. The process follows a state and covariance estimate extrapolation (propaga-
tion), filter gain computation, state and covariance estimate update. An EKF and
UKF are specifically tailored for non-linear dynamical systems with continuous-time

measurements [37].
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3.5.1 Linear Kalman Filter

Given the system dynamics @ along with xj, the state estimate, Py, the co-
variance estimate, yj, the measurement, Q) the process noise matrix, and Ry the
measurement noise covariance matrix, the Kalman Gain at the k-th time step, Ky,

can be calculated as

Ky, = PLH (HP;HT + R)"! (3.13)

The updated, or a posteriori state estimate is

x5 = %5 + Ky (yg - H%}) (3.14)

and the a posteriori covariance

P =P - K HP; (3.15)

where H is the measurement sensitivity matrix [37]. The system is then propagated

from k to k + 1 with

X1 = X (3.16)

and

- T
Py =® P @ +Qy (3.17)
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3.5.2 Extended Kalman Filter

The position estimator will rely on the use of an EKF based on its use in contem-
porary literature, as well as the specific application using the camera frame described
by Straub [32]. Attempting to write the process in sequential order for an EKF, it is
formulated by first defining the system dynamics as

x = f(x,1) (3.18)

and the covariance matrix, P, is able to be propagated by

P =FP + PF! +Q (3.19)

where

F(t) = (3.20)

ox (x=x*)
and Q is the process noise. It is evaluated at the expected values of the state dynamics

[32]. The measurement y, is related to the state vector by the relation

y = h(x, t) (3.21)
Letting H be the Jacobian of this relationship, also known as the measurement sen-

sitivity matrix,

H=— (3.22)

This is found using the Line of Sight measurements, s, by using the Inertial to Camera

rotation RI(%‘%VI? and the dot product of the unit vectors in the inertial frame, €,
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ECI L. AT
Hk = RCEM | ’SkH [ekECIekECI - Isx3 O3X3] (3.23)

[32].
The vector RE%\/I matrix is determined by assuming the attitude at the time the
image was taken is known. At this point the measurement noise covariance, R is

needed and determined as

R = 0% (I3 - excerc) (3.24)

where o is taken to be one thousand times the accuracy of a star tracker [32]. For

the Kalman gain and using the measurement, determine the residual to be

Vk = Yk - M(xg, ) (3.25)

The Kalman gain for the system can be calculated as

Ky = PiH (HP;H] + Ry (3.26)

where P is the expected mean squared error, covariance [32]. The current state

estimate can be updated using this gain and the residual

=%+ Ky (yy - Hixp) (3.27)

The a posteriori covariance must also be updated as

P/ =Py - K HP;, (3.28)
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3.5.3 Unscented Kalman Filter

The UKF is for applying a Kalman filter to a nonlinear discrete time system

Xk+1 = f(Xka ug, Vi, k)u Yk = h(Xk’ Uy, k) + Wik (329)

A set of points (sigma points, y) are deterministically selected such that their mean
and covariance match that of the probability density function of the state [37]. There
are 2n+1 sigma points and associated weights; points are chosen in the classic UKF

to match first two moments [37].

%
M=%, Wo= 3.30
X X, 0 o+ % ( )
_ 1

Xi =X+ (V(0+%)Px)i, Wi= 2(n+ %) (3.31)

m - 1
Xitn = X~ (v (0 +%)Pxx)i, Wi = m (3.32)

Each sigma point is propagated through the dynamics
0 _ g,

X1 = F (Xigier) (3.33)

which are averaged to find a predicted mean,fq{), and used to compute a covariance

Pk = Z(])Wf(xfjfk_l %) X er %)+ Qe (3.34)

Now, considering residual information and transforming the sigma points to observa-

tions gives:
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Ty = PO (3.35)

The transformed sigma points are averaged to determine an expected measurement

2n )
Y=Y W{HI‘I({?I{_I (3.36)
i=0

Having an expected measurement, the predicted observation covariance can be deter-

mined as:

2n

1 N i & \T
Pyy,k - 2 WiC(F1(<|)k_1 - Yk) <Fl(<\)k-1 - Yk) + Ry, (3.37)
i=0
with the predicted cross covariance as follows:
ST ()
1 . 1 S
Pryk = Z Wf(xku{_l - Xk)(rk|k_1 - Yk)T (3.38)

i=0

Finally, the standard Kalman Filter update can be applied

v=Y- Yk (3.39)

Ky = Py Py (3.40)

X =% + Kyv (3.41)

Pl 1 = Pri- KiPyyKy (3.42)
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3.6 Summary

This chapter defined the architecture of TIM for each of its modes. The sce-
nario described using Suomi NPP TLE information to simulate its orbit and both
Black Marble and VIIRS to replicate what it sees. Techniques were pulled across the
aerospace and electrical engineering disciplines, utilizing methods of orbit propaga-
tion, satellite design, cartography, computer vision, and filtering. The simulations
varied in time of year, length, and quality of data. The next chapter will discuss the

results of these test cases, the obstacles faced, and how they were solved.
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IV. Results and Analysis

4.1 Overview

MATLAB and OpenCV were used to integrate terrestrial light data and lay the
foundation to create a real-time TIM algorithm for successful position and attitude
determination. The goals of the different test cases described in the following sections
are to understand how to set up a simulation that can be read into TIM to conduct the
two modes of operation. Mode 1: Position Estimation attempts balance getting good
measurements with getting enough measurements for the filter to operate properly
over time. Mode 2: Attitude Determination attempts to discover the proper process
for recovering the pose of these image types taken from space The first section will
present an analysis and discussion of the many popular OpenCV algorithms described
in Section 2.3, and why SIFT was chosen for Mode 1 and Mode 2 operation. Next, an
extensive analysis of Mode 1 is completed, followed by a preliminary study of Mode
2. Mode 1 was employed in two test cases, each using simulations of Woman and
Veteran data. Each test case computes the errors in three settings, the strict error
of the measurement, the error driven down with the use of an EKF, and the error
driven down with the use of an UKF. Mode 2 shows significantly strong matches in
a sequence of images, and uses the calculation of the pose to find Euler angles over
time. Finally, a summary of the collaborative work will tie the results together in a

conclusion.

4.2 Comparing Feature Detection Algorithms

This section will highlight the algorithms in OpenCV tested image sets for Italy,
the Great Lakes, the Gulf of Oman, India, and South East Asia. The success rates

of actual city matches can be found in Table 3. No outlier rejection using RANSAC
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was conducted, but of the results in the 60%-70% success range, it would make a

considerable difference. Black Marble was used at half its true resolution for a faster

processing time, and so were the successive images. Some algorithms, such as SIF'T,

have their own thresholding built-in, but no internal parameters of the algorithms were

changed. Acceptable matches were found using Lowe’s Ratio Test, set at 0.7 distance

for all tests. A higher Lowe’s Ratio means that more matches are retained, a lower

value implies more precision. During evaluation of multiple algorithms, an observation

was noted that BRIEF was significantly slower than others being evaluated.

Table 3. OpenCV Algorithms and test results on the five image sets to a database
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Test | Feature | Descriptor | Matching | Italy | Gulf | Great | India South
Lakes East Asia

1.1.1 | MSER BRIEF BF 43%

1.1.2 | MSER BRIEF FLANN | 43%

1.2.1 | MSER | FREAK BF

1.2.2 | MSER | FREAK | FLANN

2.1.1 | FAST BRIEF BF

2.1.2 | FAST BRIEF FLANN

2.2.1 | FAST FREAK BF

2.2.2 | FAST FREAK | FLANN

3.1 SIFT BF

3.2 SIFT FLANN | 78% | 91% | 95% | 93% 90%

4.1 SURF BF 58% | 94% | 93% | 90% 84%

4.2 SURF FLANN | 60% | 94% | 89% | 84% 93%

5.1 BRISK BF 8% | 90% | 92% - 88%




A visual result of Test 1.2.1 MSER/FREAK is shown in Figure 15. MSER is
the only feature detector that works in regions and blobs, called hulls, rather than
keypoints. For this to actually give keypoints on which the rest of the algorithm relies,
FAST was applied and picked up the centroids of the city lights. Using the regions
and hulls as features in the image did not increase the success rate of the algorithm,

but this particular test matched Chicago perfectly.

o 250 500 750 1000 1250 1500 1750 2000

Figure 15. MSER - FREAK Test on Black Marble

For all future results, SIFT was used for both feature detection and descriptor
generation in conjunction with FLANN. This was chosen because it is a common
pairing in visual navigation works, and had a high average success rate in Table 3.
The maximum number of features for Black Marble was set at 2000 with 5 octave
layers and for FOV images at 1000 and 3 octave layers in order to reduce compu-
tation time. Both had a contrast threshold of 0.01 and an edge threshold of 10 to
particularly focus on bright city lights. FLANN had no extra conditions set on it

and was used at factory settings. RANSAC specifically works with the matching
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process, and uses the Essential, Fundamental, or Homography matrix mask to pick
out the strongest matches in a list. The mask describes the coordinates that satisfy
the epipolar constraint (Equation 2.6) the best.

The Homography matrix was a technique explored in updated TIM schemes that
solves the epipolar constraint equation by assuming both images are in the same plane
and keep the same attitude. It does a perspective transformation in a way that the
back-projection error is minimized. Rather than matching coordinates, it is able to
match areas shown in Figure 16 that resemble the red FOV boxes the simulation was

created from.

Figure 16. Find Homography Test on Woman Data - Accurate FOV prediction

4.3 Mode 1: Position Estimation

The simulation will generate images from the measurement type, Black Marble or

Worldview, that are down-sampled from the composite by a factor of 2, which creates
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some random blurring of pixels. It accomplishes this by setting the following initial

parameters:

e length of time of simulation (1 hour or 24 hours)

time passed between image acquisition (300 seconds)

FOV of the camera (3000 km x 3000 km)

TLE used (Woman or Veteran)

e measurement type (Black Marble or Worldview)

The TLE is propagated through the 2BP to simulate an orbit in the inertial frame,
which was translated to pixel coordinates in the composite. The FOV is plotted on
the composite, and each FOV is saved as an individual image. The method ensured
there was no stretching of pixels and images were only collected during nighttime
operation of Suomi NPP. SIFT/FLANN in Figure 17 below shows an example of
what many correct matches look like, with just one outlier that could have been

solved by applying RANSAC.

Figure 17. SIFT Test for India
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These image measurements were read into TIM and matched sequentially to Black
Marble. There was no truth information given to TIM to estimate position of the
satellite at a point in time. These were saved as pixel coordinate matches between the
measurement and Black Marble. The match coordinates in the measurement were
averaged, and a vector calculated from the average match to the center of the image,

shown in Figure 18.

i * Matches

'
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500

50 100 150 200 250 300 350 400 450 500

Figure 18. Average of Strong Matches in Northern Africa
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Figure 19. Average of Strong Matches in Northern Africa, calculated on Black Marble

The match coordinates in Black Marble were also averaged in Figure 19, and a
vector to the center of the measurement image from the average value was solved
for. This average-to-center vector was applied to Black Marble’s match to determine
TIM’s estimate for the position. Once a pixel coordinate is found, it can be converted
to a latitude and longitude. The expected altitude of the satellite and its velocity are
supplied as measurements from other sources and the coordinates are rotated into
the ECEF and ECI frames. This process gives a full inertial state vector of position
and velocity that can then be used to employ a Kalman Filter. Error in position
estimates are given for the test cases without any filtering, with an EKF', and finally

with a UKF.
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Table 4. Test Cases and their Success with Filters

Time TLE | Area | RANSAC | None | EKF | UKF
1 hour | Woman | EU v 4 v
v v v v

Veteran | USA v 4 4

v 4 v X

Asia v v 4

v 4 v v

24 hours | Woman 4 4 X
v 4 v X

Veteran v 4 X

v v v X

Due to varying passage of time between measurement updates, results are not
always attained for these cases. The situation for each case is described in Table 4 and
discussed in the following sections, where a checkmark means a test was done and an
x means the test did not give any results. These only occurred in filter usage, usually
where the Cholesky matrix computation could not be completed. The beginnings of
this work test short datasets, only 4-5 images, to good results, shown in Figures 20
and 21. The rest of this section will discuss the Woman and Veteran datasets for one

nighttime pass, and the second half will discuss a full 24 hour simulation.
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Position Error [deg)

Lstitude |
Longituge |/
7
/
/
/

o .
v32 0 340 380 380 400 420
Time [s]

.
440

Position Error [deg]

Error in Position vs Time

© = M oW ok om @

Lattude
Longituds | |
7
/
/
/
/

5480

5500

5520 5540 5560 5580

Time [s]

5600 5620

Figure 20. Woman, only 4 images Figure 21. Veteran, only 4 images

This section will continue the discussion on using city lights for accurate position
estimation during on-orbit operation. As the first attempt of this type of capability,

the aim is on proving the feasibility of future exploration with preliminary results.

4.3.1 Test Length: One Nighttime Pass

A single nighttime pass case was done in order to test the usability of filters
between image acquisition. The length of one nighttime pass comes out to about an
hour, which is a little less than half Suomi NPP’s period. The time step between
calculations is 5 seconds, with an image measurement available every 300 seconds.
With 9 images available for each test case, not every image is usable, due to overflight
of water or unpopulated areas. Furthermore, when RANSAC is applied it rejects
images that only have weak matches by finding the mask of the Homography matrix,
or the transformation between images. Therefore if an image does not match strongly
with Black Marble, it is rendered useless. Table 5 shows how many images are usable
in each dataset with No Outlier Rejection (No OJ), with outlier rejection (RANSAC)

and how many images total there are.
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Table 5. Usability of Short Image Sequence

Data No OJ | RANSAC | Total Images
Woman - EU 6 5 9
Veteran - USA 6 5 9
Veteran - Asia 6 5 9

4.3.1.1 No Filtering

For only an hour of the Woman data, we can see a difference that RANSAC makes.
The very first measurement, which can set the tone for filter usage, it has almost 50°
error in latitude and much more than that in longitude, looking at Figure 22. The rest
of the images in sequence are spot on, so those make it through the outlier rejection
process can be considered strong measurements. A very similar sentiment is verified
with the following two cases from Veteran data. These results show the necessity of

outlier rejection.
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4.3.1.2 EKF

Getting into the first of the filters, the EKF from Straub’s paper is replicated [32].
The propagation scheme is not terribly robust, and there are numerous issues with
observability due to the measurement only providing a latitude and longitude, but
a full state vector having position and velocity in the inertial frame. The o chosen
for this simulation was one thousand times 18 arcseconds, the standard accuracy of
a star tracker. The process noise, Q, was set at 0.7502 across a 6x6 matrix along the

diagonal, which keeps the Kalman Gain from being singular, at 0.7.
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In any of the cases, the propagation scheme is not ever corrected by the mea-
surements, and it seems there is something off with the filter, such as, possibly, the
update being improperly applied. This could be due to the fact that the H matrix
is not simply a rotation matrix for this particular nonlinear case. The measurements
acquired are a latitude, longitude coordinate, but the ECI coordinate is backed out,
and it is re-rotated into a camera frame. This means the coordinate that engages

with the filter is a unit vector.
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4.3.1.3 UKF

The nonlinear transformation for the observation function is a better fit for an
UKF, because it is more robust for nonlinear systems than the EKF. The use of a
UKF was not found in the literature like an EKF, so it was applied precisely with

the latitude and longitude coordinate. The tuning values were set as follows:
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Figure 34. Short Run Woman (No Figure 35. Short Run Woman
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The errors in latitude in Figure 34 appear to drive to zero as time continues,
however this is not the case for the version with RANSAC applied. The propagation
scheme is still not properly updated by the measurement with little error, despite

using a different propagation scheme than that of the EKF.
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Figure 36. Short Run Veteran USA (RANSAC/EKF/Ground Track)
(No RANSAC/UKF)

Above in Figure 37 the blue line shows the true orbit that was propagated in
the simulation. This is what the image measurements were taken from, and as such,
small red dots can be seen indicating TIM identified the position very close to the
truth. Those red dots correlate with Figure 77 at almost zero error. It is further
shown that the propagation scheme in the filter is not taking the update from the
images at all when looking at the red line continuing on its path from India. Looking
at only Figure 36, it would be tempting to think there is only an error in calculation
of longitude, but actually looking at the errors in latitude and longitude this would

not be the case.
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(No RANSAC/UKF) (RANSAC/UKF)

Figure 34 shows around 180° of error in longitude, which could suggest wrapping
issues. Remembering Figure 37, there could be issues with the calculations of latitude
and longitude coordinates from the 2BP propagation. This is unlikely, as it uses the
same process as the simulation, but would be worth looking into for further use of

the filters.

4.3.2 Test Length: 24 hours

A 24 hour simulation was performed in order to test the usability of filters be-
tween image acquisition, and during daytime operations. This results in full-coverage
of the Earth, which is what Suomi NPP’s orbit was designed for. The simulation
will undergo sixteen periods, and only take images during nighttime operations, giv-
ing sixteen 45-minute passes of the Earth. The time step between calculations is 5
seconds, with an image measurement available every 300 seconds during nigghtime
passes. With 136 images available for each test case, not every nighttime image is
usable, due to overflight of water or unpopulated areas. Furthermore, when RANSAC
is applied once again with the mask of the Homography matrix and rejects images

that do not match strongly with Black Marble.
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Table 6. Usability of Long Image Sequence

Data | No OJ | RANSAC | Total Images
Woman 84 81 136
Veteran 79 52 136

4.3.2.1 No Filtering

The most exciting thing to visualize is where these measurements are popping
up around the Earth, shown in Figure 40. Every time the measurement image is
processed, its ECEF coordinate is plotted on the globe. This acts as a sanity-check for
the image processing scheme, and shows the distribution of good measurements across
land in a different way. From looking at this, it is easy to tell the best measurements
come over what is known as the most populated areas, especially near unique bodies
of water. The images in either simulation tend to be most precise over the Great

Lakes, the Gulf of Guinea, the Persian Gulf, the Mediterranean, and South East

Asia.
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Figure 40. Results of TIM in ECEF Coordinate Frame for Woman Data - No Filter

This is able to be seen in conjunction with the error charts in Figures 44. Every

blue dot correlates with a red star in Figure 40 and in Figure 43.
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Measurement ts on Black Marble

Figure 43. Ground Track of Woman (RANSAC/No Filter)
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4.3.2.2 EKF

The filter usage had many problems during short simulations, and running during
a 45-minute daytime pass blew up the error in interesting ways. The latitude in
both cases followed a choppy oscillating path for about half the simulation, and the
longitude followed a tangent wave. The cause of this was improper coding of these
filters, with the first clue being the covariance (not shown) in both cases went out of

control almost immediately.
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The Woman data began at the Cape of South Africa heading south, so it begins
with no measurement update for almost an hour before on is finally available over the
Baltics. it is very interesting that the front half of the Woman data and the second
half of the Veteran data followed the sine wave pattern so intensely. This suggests
problems with the conversion from latitude and longitude coordinates to the inertial
state vector required for filter usage. A suggestion for future work would be to look
at mean errors or the absolute value of errors to verify this is the problem. Due to
the immediate rupture of filter usage in both cases, the UKF was not able to function
properly through the entirety of a day. Changing tuning values did not affect its
ability to iterate through the images, so no results of a 24 hour simulation with an

UKF are reported.
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4.3.3 Summary

RANSAC rendered an average of 11% of all images and 17% of usable images in
a sequence unusable as a measurement when it at least had one good match Lowe’s
Ratio test. This further complicates filter operation since long periods of time without
a measurement can cause the covariance to break the filter. A better option would
be to tune the confidence in the measurements that make it through RANSAC rather
than keeping the variance of the measurement a constant. Another problem with
the filter is with matrix observability. Observability is a quality of a system that
describes how well the state vector can be constructed from its outputs. The state
vector in this case is an inertial coordinate with three components and an inertial
velocity component with three components.While the velocity is provided as if from
another sensor (with its own sensor noise), a latitude and longitude coordinate will
only ever be two components, and cannot give any information on altitude. This
leads nicely to our next section on attitude determination, because the methods used
for attitude determination are tools for stereoscopic vision. When two images are
presented of the same feature from different points-of-view, it is possible to measure

the distance of the feature from the camera, giving depth, or altitude.
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4.4 Mode 2: Attitude Determination

The attitude of an object can be found using visual odometry, tracking the pose
change in a sequence of images. If the first image is assumed to be at position (origin
at (0,0) and with the identity matrix as its attitude, the pose calculated in the second
image will be a direct map to the origin. The third image can find the pose between
it and the second, but by using the pose to the origin, can find the pose from the
third to the origin. This experiment was conducted with a sequence of 30 images in
a 2D environment. The path was a straight line for 10 feet, a right turn and a left
turn and continuing straight again. Given a scaling value of 1 foot between images,

a primitive model of TIM Mode 2 was able to plot this path, shown in Figure 50.
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Figure 50. Path through AFIT Library

This is from an accurate translation vector as part of the pose matrix, of which
attitude makes up the other half. The photos were taken by a student walking and
holding the camera 3 feet in the air, but faced forward the whole time. The image
matching process used SIFT and FLANN, with no outlier rejection of images. No
timing data was necessary, but the points in Figure 50 are equally spaced, showing

the images were taken at equal time steps assuming a constant velocity. When the
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student takes the right turn, the camera experiences a 90° yaw, and would stay at that
in Figure 51, if not for the second turn bringing the attitude back to the origin. There
are +10° of error, meaning when we suddenly apply this algorithm to a simulated

satellite, there are going to be some growing pains.
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Figure 51. Attitude of Camera through AFIT Library

4.4.1 Test Length: Overland Nighttime Pass

Mode 2 of TIM involves testing two FOV images against each other, rather than
to Black Marble, in a sequence of images. An example of TIM comparing two images
from a test over the US is shown in Figure 52 and Figure 53. Figure 52 shows
the results from Black Marbles images and 53 shows the measurements taken from
Worldview of the same location. All images are assumed to be taken as the camera

is aligned with the orbital frame.
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Figure 52. TIM Mode 2 in Operation over the Midwest, USA

The work of Lowe’s ratio test can be seen in these images by looking at the slope
and length of each line connecting a match. The slopes are all the same, and the
relative distance between each match is also the same. Even where there are an
abundance of matches, as shown in Figure 53, TIM is not connecting features in the
images that are not genuine matches. Since this is a finer search than Mode 1, the

strength of the match is much higher.

Figure 53. TIM Mode 2 in finding matches over the Midwest, USA

Given a scale of distance traveled between images based on Suomi NPP footprint

coverage, a 3-component position estimate can be calculated from pose recovery,
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which the norm of which would give altitude. The Woman data in Figure 54 was
processed in an earlier version of TIM where the pose calculated from the Worldview
image sequence was almost spot on, but did not correlate with the sequence from
Black Marble. It is difficult to say if it was properly calculated or just a fluke that is
was close to the altitude due to the disparity of Black Marble and Worldview results.
When TIM was updated and the Veteran dataset processed, the image sequences
from Black Marble and Worldview gave similar results, but were far from the truth.
The results start at zero because the first image in the sequence has no information
attached to it, and only the second and onwards in the sequence of images can give

a pose estimate.
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Figure 54. Woman Height Above Earth
for Black Marble, Worldview (Meas)

The Veteran data for roll, pitch and yaw, while not matching the truth, had
relatively little error between what was calculated for the Black Marble and Measure-
ments data. For the beginning of the Woman data, it also did well, but as time went
on (meaning more images to process) the measurements yaw calculation jumped from

negative to positive on the last image of the set.
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There are angle errors in roll in the real images because, when pulled from World-
view, the image was on a slant and not precisely acquired. This could be fixed by
changing the image acquisition process for the simulation by using other raw data
pulls from Suomi NPP rather than screenshots of Worldview. The altitude over time
is also considerably off from expected values due to the small image set (the pose
estimation improves with larger datasets) and problems with the algorithm are to be

fixed in future work.

4.4.2 Summary

The attitude determination using this process does not share the same problems as
position estimation. It is without any coordinate transformations, the attitude of the
camera with reference to its first image is the attitude that is plotted in these figures.
This suggests the scaling process could be at fault; it is suited for straight paths
of travel and not a camera traveling in tiny hemispheres between image acquisition.
Shorter time steps (10 seconds rather than 5 minutes) would overcome this and lead

to better algorithm and filter function overall.
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V. Conclusions and Recommendations

5.1 Conclusions of Research

This section will continue the discussion on using city lights for accurate position
estimation during on-orbit operation. Keep in mind that this work contains prelim-
inary results for position estimation that are the first attempt at such a capability.
The work aims to show the feasibility of exploring this technology further by invent-
ing methods to verify results and prepare for real-world conditions. Suomi NPP and
the VIIRS instrument host a powerful suite of capability. The goal of this work is to
use existing sensors to create novel navigation methods, with the intention of creating
new dual-purpose and efficient sensors. Similar works have used landmark recogni-
tion with images from existing satellites, but typically struggle to get measurements
for nighttime orbital passes. This research demonstrated the ability to find attitude
change between images taken at night using city lights. The end goal of TIM is in-
tegrate the two modes and apply a Kalman filter. ORB is an algorithm that should
be tested in the future, as well as exploring inverted images, Gaussian blurring, and
thresholding. Finally, an EKF will be applied to estimate position and attitude in
the event of measurements being unavailable due to daytime or extensive sea cover to
be consistent with prior work. This will further be used to autonomously verify the
success of Mode 1. Potential problems that will be discussed in future work are cloud
cover and gaps in data collection, shown by the dark lines throughout the scans. As
research progresses, different image processing challenges, such as color correction,
distortion, sunlight, and thresholding will be explored [19,4]. Another goal of the
work is to obtain the pose matrix fast enough to be used in a real mission. Vision-
based sensors, whether for tracking urbanization and population densities in remote

areas or for absolute positioning on landers, are becoming increasingly important [19].
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Every avenue of capability must be explored as we continue to see the world in new

ways.

5.2 Significance of Research

The first of its kind to use such a unique combination of tools to solve a navigation
problem, this work transcended academic disciplines and caught the attention of many
researchers. As we watch the development of the world where electricity comes to
more sparse communities, this technology will only advance in accuracy.

Air Force Research Laboratories’ Space Vehicle Directorate (AFRL/RV) awarded
$40,000 in initial funding to explore this idea. A provisional patent was secured
in January 2020, under the title ” Aerospace Vehicle Navigation and Control System
Comprising Terrestrial lllumination Matching Module for Determining Aerospace Ve-
hicle Position and Attitude,” and number 62/957,250 [38]. A conference paper was
accepted on the basis of abstract review and presented at AIAA’s Science and Tech-
nology Forum and Exposition in Orlando, Florida the same month [39]. Another
conference paper was accepted on the basis of full paper review and presented at

IEEE’s Aerospace Conference in Big Sky, Montana in March [40].

5.3 Recommendations for Future Work

The following identifies potential recommendations for future development in var-
ious avenues in order of complexity:

Short-Term

e Real Time Video: TIM can be configured to operate on-board a camera while
recording Black Marble or Worldview imagery. Black Marble or Worldview

imagery can be printed for 2D operation, or applied to a globe for 3D operation.
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A more advanced simulation of both can also be created on a computer. Camera

set up can run real-time connected to another computer.

Stereoscopic vision improvements: with better pose recovery and functionality
of Mode 2, if possible a height above Earth can be determined from imagery.
This can be done by exploring the scaling of these matrices, or different pose
recovery techniques, such as Homography for point-to-point projection of 2D

and 3D image points.

OpenCV specifications: change conditions on SIFT, make Black Marble features
pre-loadable so it does not have to recreate features every time a simulation is

run.

Thresholding: Usable data (day, night, clouds, unusable) can be thresholded by
setting a DN that describes the pixel, and compared with historical data to see
if it is normal for the pixel to be unusable or not. This will aid in computation

time when speed is needed to improve over accuracy.

Autonomous functionality: The ability to determine when a measurement up-
date is needed for Mode 1 and to otherwise run Mode 2 to help the orbit’s

propagation scheme and also track precise attitude information.

Kalman Filter: can be rewritten to handle latitude and longitude coordinates
rather than an ECI coordinate rotated into a camera frame. UKF is most-likely

a better fit but needs to find proper tuning values for appropriate operation.

Long-Term

e Real time video on a small satellite adapted computer

e Different orbits, resolutions, maneuvers
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Dynamic variance and sensitivity values

Clouds and localized blackouts - summer months saturation problems

Infrared rather than visible light and if unique composites can be made

Artificial intelligence and neural networking capabilities in OpenCV

Higher order filtering
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