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Abstract 

Kennedy Space Center and Cape Canaveral Air Station, FL, where the Air Force 

conducts space launches, are in an area of frequent lightning strikes, which is main obstacle 

in meeting launch goals. The 45th Weather Squadron (45th WS) ensures that any weather 

safety requirements are met during pre-launch and actual space launch. Using only summer 

months from three years’ worth of lightning detection and ranging (LDAR) and electric 

field mill (EFM) data from KSC, several feedforward neural networks are constructed. 

Separate models are built for each EFM and trained by adjusting parameters to forecast 

lightning 30 minutes out in the surrounding area of each field mill.  
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LIGHTNING PREDICITON FOR SPACE LAUNCH USING MACHINE LEARNING 

BASED OFF OF ELECTRIC FIELD MILLS AND LIGHTNING DETECTION AND 

RANGING DATA 

 

I.  Introduction 

The 45th Weather Squadron assists Cape Canaveral Air Force Station (CCAFS), 

National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), 

and Patrick Air Force Base in carrying out space missions. The United States space 

program and its ability to stay on launch schedule is highly sensitive to meeting the weather 

criteria for launch [4]. Currently, lightning is the leading cause of scrubs and delays in 

space launches. Thousands of people and billions of dollars in funding are poured into 

preparing the rockets, payloads, and launchpads for space launch so there are both safety 

and financial concerns when lightning is present in the launch area  [3].   

1.1 Problem Statement 

The 45th Weather Squadron seeks to continue to build upon previous research on 

lightning prediction around CCAFS. Steps to improve lightning prediction will lead to less 

scrubbed and delayed launches.  

1.2 Research Questions 

To address the problem, two questions are examined: 

1. Can a feedforward neural network per electric field mill handle the noise in the 

data and better predict lightning onset? 

2. How well can a neural network predict lightning onset?  
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1.3 Organization of Thesis 

The following chapter is the literature view that examines past studies on lightning 

prediction as well as methods that can be used in this study. Chapter 3 provides 

methodology, which explains the data preparation required to feed the models and what 

type of models were picked. Then, the findings from the analysis are presented. Finally, 

lessons learned, and potential future work are discussed in Chapter 5. 
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II. Literature Review 

2.1 Introduction 

This chapter provides a brief overview of the literature related to the application of 

multivariate techniques in lightning prediction to include a review of the research already 

conducted for the 45th Weather Squadron regarding lightning prediction. Then, the current 

model used at CCAFS is examined. Finally, the concept of artificial neural networks 

(ANNs)  and the specifics to possible avenues in this research is discussed.  

2.2 Past Research for the 45th WS 

 There is past work on ANNs to make lightning predictions. Hill [1] created a 

convolutional recurrent neural network (CRNN) as the electric field mill (EFM) data that 

was provided was time-series and had locations on it. While the results from the Hill model 

had a lower probability of a false lightning detection than other similar studies, many 

parameters that could have been included in the neural network were left out. 

 The approach Hill [1] took is good at predicting for a specific window but the issue 

is that computationally, it took a long time. The neural networks did improve on the current 

lightning prediction rates but with the full EFM data from all 31 stations being pulled 

instead in hour increments, this approach is not viable given how long it will take to train 

and run the neural nets.  

 Speranza [2] implemented a Long-Short Term Memory neural network on the same 

data in Hill [1]. However, a different approach is implemented compared to this model in 

identifying which EFM data is used when lightning is detected. Lightning detection is 

provided in the LDAR dataset, which provides the location and time of a lightning strike 
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from the detection site. Speranza [2] created an imaginary box, 41.7 kilometers wide and 

87 kilometers long around the Kennedy Space Center. Only lightning detected in the box 

was pulled from the LDAR dataset. Instead of pulling from a box as the criteria for 

including lightning detections, each EFM is checked to see if there was lightning within its 

5 nautical mile radius. Instead of looking at all the EFMs at the time of a strike in a box, 

each EFM is examined individually. Speranza [2] also examined METAR data, which 

encompasses weather information such as surface wind, visibility, time, and temperature, 

which is no longer being used [35].  

2.3 Work done on Lightning Prediction 

 Many studies examining EFM readings are from regions that experience a high rate 

of lightning such as India, Colombia, Brazil, and South Korea. The studies of interest were 

the ones that applied multivariate techniques to forecast lightning.  

 The most recent of these studies was from South Korea in which an ANN was 

developed to improve on the current lightning warning system. Like Florida lightning data, 

the most lightning strikes that the study recorded was from the months of May to August. 

September is of interest in this study, so September is also included. A general lightning 

threshold was determined to be between 20 kV/m and 50kV/m, which was where the 

readings ranged during the summer months [10]. From there, the change rate of the electric 

field within 5 seconds was recorded, along with the temperature, and humidity 2 minutes 

before every lightning strike that occurred.  

 An ANN was then built taking in the change rate of the electric field, temperature, 

and humidity. Reading in over 6 months of data, the eventual prediction accuracy turned 
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out to be 93.9% [10]. This study shows that EFM  readings are viable in prediction lightning 

strikes.  

  In a recent study, Mostajabi et al. [35] explore predicting lightning 10-30 minutes 

ahead of time inside a 30-kilometer radius. A four-parameter model was created, based on 

air pressure, air temperature, relative humidity, and wind speed. Then, classification-based 

machine learning techniques such as decision trees were applied to predict lightning onset 

[35]. While the study is recent, the results are not comparable to Speranza’s research. The 

data was collected in the mountains and classification techniques were used. This is vastly 

different from the conditions the 45th WS faces. The 45th WS is concerned about the 5-

mile radii around all 30+ EFM’s around Cape Canaveral. Also, different variables affect 

lightning onset as Cape Canaveral is sea level and by the sea, compared to Switzerland, 

which is high elevation and in the mountains.  

2.4 Current Approach 

 The current method of issuing a lightning warning in Cape Canaveral is utilizing 

lightning circles defined around the area. A warning is issued when lightning is imminent 

or occurring in one of the warning circles defined around Cape Canaveral. The new circles 

of detection, which were converted from 13 to 10 in 2014 have a radii of either 5 nautical 

miles or 6 nautical miles. The reduction of circles helps combat the amount of overlap in 

the previous system. However, an issue with the new system is a small increase in over-

warning is offset by the benefits [5].  

  According the William Roeder, a meteorologist in the 45th Weather Squadron, 

lightning cessation has occurred when there has been no lightning within the last 15 
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minutes. Recognizing redevelopment of a storm then becomes the decision of a trained 

forecaster [36].  

2.5 Unbalanced Data 

 The dataset that in this research consists of two variables per EFM. One variable is 

the voltage reading during a minute in time and the other variable is the minutes until a 

lightning strike occurs. As lightning is constantly occurring during the May to September 

window, finding a minute in time where no lightning is occurring within 5 nautical miles 

of an EFM is a rare event. This leads to an unbalanced data set, where there are unequal 

instances per class: 0 for a lightning strike and a number greater than 0 lightning onset. If 

an unbalanced data set is used to train a machine learning algorithm, the unbalanced data 

set will bias the algorithm to predict for the more prevalent class, which is lightning in this 

case [19]. 

 There are two popular methods applied to unbalanced datasets. One is to under-

sample portions of the data to reduce the size of the abundant class. Another is 

oversampling to balance the under-represented class. Buda [20] performed a study to see 

how oversampling and under-sampling affects class imbalance. Using convolutional neural 

networks and with a receiver operation characteristic curve as the evaluation metric, the 

study found that oversampling seemed to be the dominant method to balancing a data set 

compared to under-sampling. Oversampling was able to eliminate the balance, but under-

sampling only addresses the class imbalance to an extent. Zhou and Liu [21] also examined 

oversampling and under-sampling to deal with class imbalance. They found that while class 
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balancing techniques worked well for two-class data sets, they were ineffective and 

sometimes caused a negative effect on multiclass data sets. 

  Two often used methods of oversampling are Bootstrap Random Over-Sampling 

Examples (ROSE) and Synthetic Minority Over-sampling Technique (SMOTE). ROSE 

handles binary classification problems that have imbalanced classes. The minority class is 

balanced against the majority class by artificially generated balanced samples according to 

a smoothed bootstrap approach as suggested by Menardi and Torelli [22]. The ROSE 

process has three steps. The first is that data of the majority class is resampled using a 

bootstrap resampling technique to remove observations of the majority class to 50%. Then, 

the same method is used to resample the minority class data until the minority class also 

has an overall ratio of 50%. Afterwards, new synthetic data similar, but different from the 

observations are generated. The three steps are repeated until a new synthetic training 

sample of about equal size to the original data set is created, with about an equal 

representation from the two classes [23]. 

 The second method, SMOTE, is a similar approach. SMOTE generates synthetic 

data based on the feature space. Chawla [24] and his team perform an experiment 

comparing SMOTE data performance against replicated over-sampling data. They found 

that the minority class had a higher prediction rate with SMOTE when using decision trees. 

This technique oversamples the minority class and generates synthetic examples that fall 

along the line segments joining the 𝑘 minority class nearest neighbors. Afterwards, the 

oversampled minority class and the undersampled majority class data are combined.  
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2.6 Multinomial Propensity Scores 

 Propensity scores, which have become popular in medical studies, are a way to 

achieve exchangeability between different groups in an observational study (usually 

treatment versus no treatment). The way propensity scores work is that a set of covariates 

from a dataset are first selected. Next, a logistic regression is performed, and each 

observation/subject is given a propensity score. Then the observations/subjects are 

matched based on whether they received a treatment or not and their respective propensity 

score. The balance of the covariates is checked once the treatment and non-treatment 

groups are matched. The effect of the treatment is calculated [25]. This approach handles  

unbalanced response datasets with more than two response classes.  

2.7 Principal Components Analysis 

 Two significant issues when working with larger data sets are the curse of 

dimensionality and highly correlated variables. The more variables a dataset has, the harder 

it can be to draw informative conclusions. A way to combat high dimensionality or highly 

correlated variables in data sets is to reduce the dimension using principal component 

analysis (PCA).  PCA creates principal components in terms of a new set of uncorrelated 

variables. These fewer components sufficiently explain the variation in the original dataset. 

When PCA is performed, a covariance matrix, ∑, between the principal components is 

created. Each eigenvalue of ∑ is proportional to the portion of the variance associated with 

that eigenvector. The sum of all the eigenvalues is the multivariate variability. Usually, the 

first few principal components will explain most of the variation in the original data set 

[32].  
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 While PCA can simplify high-dimensional and correlated data while retaining 

patterns in the data set, it is up to the user to determine the number of principal components 

and corresponding amount of variation explained to use. The most common method is 

picking enough components to explain around 70 to 90 percent of the variation. The issue 

with this is the number of components the user decides is highly subjective and may heavily 

affect the results. Another way is to examine the eigenvalues of each principal component 

and exclude components where the eigenvalue is less than the average. As the average 

eigenvalue is equal to the average variance of the original variables, this method keeps the 

components that have more variance than the average for the observed variables [32].  

2.8 Artificial Neural Networks 

 An ANN consists of an input layer of nodes, one or more hidden layers of nodes 

and then a final layer of output nodes. These nodes try to reflect the connections neurons 

have in a human brain with each layer acting as a black box, taking data from the input 

layers and regressing them in each node. Every layer has a different weight based on its 

relative importance [6]. Apart from the layers, input data, a loss function and the optimizer 

are necessary to train and eventually obtain results from a neural network. The loss function 

outputs a loss value, which is just a measurement of how well a neural network is predicting 

and the optimizer, which aims to minimize the loss value, then takes the loss value and 

updates the weights in the neural network [7].  

Chollet [7] discusses how to process data for the neural networks. The data itself is 

noisy but deep neural networks can generalize after being training on noisy data and can 

accommodate a wide range of noise levels. Although logistic regression is a possible 
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method for binary data, an ANN’s ability to deal with large and noisy datasets makes it the 

better choice [13]. 

The most basic type of neural network is a multi-layer, feed-forward neural 

network. Feed-forward means the information in the neural network only flows in one 

direction, from the input layer to the input layers. This type of neural network is trained 

using a back-propagation learning algorithm. Back-propagation fine tunes the weights to 

minimize the error rates in a previous epoch. To predict a continuous value using a feed-

forward neural network, there is one node for the output layer whereas a classification 

problem will have as many output nodes as there are classes to predict [31].  

 Recurrent neural networks, specifically Long Short-Term Memory (LSTM) neural 

networks, perform well with time-series data [8]. Unlike traditional neural networks, 

recurrent networks can use its reasoning from previous events to inform later events. 

Recurrent Neural Networks (RNNs) have a loop that allows data to persist [7]. The issue 

with RNNs is that the gradient loss function decays exponentially. This leads to RNNs 

having an increasingly harder time predicting longer temporal trends. LSTMs do not have 

this issue. LSTM neural networks can remember information for longer periods of time 

than regular RNNs, helping overcome long-term dependency [9]. Unlike traditional neural 

networks, every LSTM layer should also have a dropout layer to help prevent overfitting. 

Dropout improves generalization in the neural nets by randomly ignoring some neurons 

when the nets are being trained, thereby reducing the affect certain weights will have on 

the results [14].   
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2.9 Neural Network Improvements 

 There are several ways to improve neural network performance. One method is 

batch normalization. Batch normalization normalizes the output of a layer by taking the 

output, subtracting by the batch mean, and then dividing by the batch standard deviation. 

Implementing batch normalization allows each layer to learn more independently 

compared to without batch normalization [33]. 

 After a neural network is done training, the network weights can sometimes be 

large, indicating the possibility of overfitting. A way to combat overfitting in neural 

networks is to include weight regularization among the layers. This technique keeps the 

weights in each layer small, reducing overfitting in the model [34].  

 Dropout is another technique to combat overfitting and can improve neural network 

performance. When dropout is applied to a layer, output features are randomly dropped out 

at the layer [7]. Doing so will reduce the chances of overfitting from the neural network. 

2.10 Design of Experiments 

There is no specific way to build an ANN given the number of hyperparameters 

that must be chosen and tuned. A hyperparameter is a parameter that is set before the 

learning process [15]. In a study to predict the thickness of the chromium layer in a hard 

chromium plating process, Lasheras [16] uses the design of experiments theory to optimize 

the ANN built. Doing so allowed for optimal experiments that could maximize how well 

the different models performed and minimized the number of experiments necessary to 

train and validate the models. 
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Design of experiments was applied in this study to tune the hyperparameters in the 

ANNs created. Neural networks have  hyperparameters such as layers, neurons, dropout, 

weight regularization, and epochs. Picking each factor with a high and low, yields a 2k 

factorial design to sample the test space [17].  

With each neural network design, there are about 30 neural networks built and 

trained as each EFM is trained separately. This means a 22 full factorial design would 

require 120 or more neural networks. Given that there are many parameters in a neural 

network, the factorial design is much larger, creating an exponentially increasing number 

of neural networks required.  

Fractional factorial designs can reduce the number of factor combinations required 

while still identifying factors that have a large effect. These designs work based on three 

ideas. The first is the sparsity of effects principle, where main effects and lower ordered 

interaction variables dominate a system. Second is the projection property, where fractional 

factorial designs can be projected into stronger designs in the subset of significant factors. 

Finally, sequential experimentation, where it is possible to combine fractional factorials to 

construct sequentially larger designs to estimate more effects. The main idea of fractional 

factorials is to take a subset of the full factorial design, eliminating possibly redundant runs 

in a full factorial design [17]. 

2.11 Loss Functions 

 For algorithms that perform classification, the results are presented is a confusion 

matrix. The way a neural network produces its classifications is using a classification loss 

function. The most common function for classification is the cross-entropy loss/negative 
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log likelihood function. The log portion of the function is what classifies a label, with the 

loss function penalizing predictions that are confident but misclassify [26]. 

 Since the dataset used is a time series, meaning that RNN’s are used, there is the 

option for a neural network to predict a continuous value. The two main loss functions 

applied to a continuous prediction is the mean square error and the mean absolute error. 

The benefit of using mean square error as a loss function is that it penalizes outliers heavily 

compared to mean absolute error, which is more robust to outliers since it does not square 

the errors [27]. 

In a study done to forecast floods using time series data, a LSTM neural network 

was built with a mean square error loss function and Nash-Sutcliffe model efficiency 

coefficient as a measurement of model performance. The Nash-Sutcliffe efficiency is 

measured by determining the relative magnitude of residual variance to the measured data 

variance [28][29]. However, there have also been studies that have not required the Nash-

Sutcliffe efficiency to determine model performance. In a study to forecast electric loads 

in smart grids, LSTM model parameters were tuned based on mean absolute error and root 

mean square error to produce better predictions [30]. 

2.12 R Programming 

 R is used to build the data set, neural net and perform the analysis. This is an open 

source programming language used for statistical computing and graphics. The number of 

packages available to perform all the tasks needed in this make it an ideal choice for this 

research.   
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2.13 Conclusion 

 There are previous several efforts into understanding lightning storms around the 

world with research continuing to this day. Hill [1] and Speranza [2] in particular, focused 

on understanding and predicting lightning in Cape Canaveral. Considering the lessons 

learned from the past and the analytical work that can be applied to this problem assisted 

with finding a new way approach to predicting lightning.  
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III. Methodology 

3.1 Introduction  

 This chapter discusses analytical methodology. First, the process to obtain and 

clean the data is explained. Then dataset construction is discussed. Finally, the neural 

network structure and test design structures are examined.  

3.2 Data Processing and Cleaning 

 The same data text files used in Speranza [2] were used here. Consequently, similar 

code was used to extract to data files into R. In Speranza’s code, the EFM data read was 

converted to hourly averages. In this case, every EFM observation, down to the 

millisecond, was converted to a Rdata file. The code for this is in Appendix A. The EFM 

data uses day of the year instead of dates, unlike the LDAR data which is in epoch time. 

Both data sets have dates and times as a string instead of actual dates and times. Following 

the as.Date walkthrough from UC Berkley, [11] the EFM dates formatted as day of the year 

and string is converted to an actual date. Once day of the year is converted to a date, the 

lubridate package in R calculates the epoch time [12].   

Using the tidyverse package in R, average voltage readings per minute in each EFM 

were calculated [18]. There were minutes of data missing that were imputed by taking the 

average of the most recent reading before and after the gaps. The dataset then consisted of 

time and date of the reading, the voltage reading itself, and the EFM station that had the 

reading. Since epoch time is easier numerically when it comes to calculating differences in 

time, all the time/dates in the EFM data were converted to the number of minutes that have 

passed between 1 January 2013 and the observation. This allows for calculating minute 
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differentials easily. This is similar to how the LDAR time data was originally recorded as 

epoch time, which is the number of seconds that had passed since 1 January 1970.  In this 

case, a similar “epoch time” was calculated but downsized to reduce the numerical 

calculations 

 The LDAR data was also read in from a text file to a Rdata file and the code is in 

Appendix B. The data consisted of the time a lightning strike occurred, the associated 

“epoch time”, number of meters from the center of KSC in terms of X (East/West) and Y 

(North/South), as well as Z, which was altitude. The altitude portion of the data was 

dropped due to the assumption that curvature of the earth was negligible. Epoch time was 

used as the time component as a numerical value was easier to work with and sort. From 

there, a conversion on the X and Y values were performed to find the actual longitude and 

latitude of where all lightning strikes occurred.  

 After the EFM and LDAR dataset were converted to accurate coordinates and 

“epoch time”, a new dataset was created to identify lightning strikes that occurred within 

the range of each EFM. Using the LDAR data and going through each EFM and the nautical 

miles from the EFM to each strike in the LDAR dataset was calculated. Any value greater 

than 5 nautical miles was dropped. This created a dataset per field mill that contained a 

column of epoch time of strike and another that was nautical miles from EFM that strike 

occurred. As Roeder [36] stated, 15-minute gaps between lightning strikes are of interest. 

Therefore, a new column was created providing the difference of a current row’s epoch 

time and the previous row’s epoch time. This dataset gave the number of minutes that had 

passed since the last strike after a new strike occurs. From there, the dataset was filtered 
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down more, where any observations with differences less than 15 minutes were removed. 

The remaining dataset per EFM was the epoch time of the beginning of a “storm” and the 

minutes since the last storm. A storm is defined as starting if lightning strikes after there 

has not been a lightning strike for more than 15 minutes. The last strike is defined as a 

lightning strike occurring, then no other strike occurs for 15 minutes.  

 With the start and stop times of storms that each field mill encountered, the 

lightning onset was then calculated. Each minute and 30 minutes into the future of the 

“epoch time” was examined. Then, if there was a storm occurring, lightning onset was 

calculated. If there was a storm occurring 30 minutes in the future, the time is set to 0, if 

not, the time until the start of the next storm in minutes is recorded. This is done to see 

whether 30 minutes from a given time has a storm occurred. For seconds with no recorded 

voltage readings, the average of the observation the second before and after were taken. 

Since the EFM data was read in from text files, and processed in five-day intervals, there 

was usually some data missing at the beginning and end. This missing data was imputed 

by taking the most recent voltage readings and replicating the most recent observation until 

there was 7200 minutes worth of data (5 days in minutes). After this, a new data set was 

created with columns for “epoch time”, EFM readings and lightning onset. The data set 

shows at any given epoch time, the current voltage readings at all EFM’s and the time, 30 

minutes from the epoch time, until a storm is within 5 nautical miles of each field mill with 

a 0 if there is an ongoing storm. Some EFM’s were not working at all so the eventual data 

set consisted of only 26 field mills out of the 34 installed at Cape Canaveral. With one 
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variable for “epoch time” (minutes since 1 January 2013), EFM voltage reading, and time 

until a storm per reading, there are 52 variables in the dataset.  

 There were missing sections in the data where no readings were obtained by the 

field mills. These were generally minimal and were imputed by taking the averages 

between the voltage readings before the gap began and after the gap ended. The missing 

voltage readings caused some onset values to not count down to 0 correctly. Identifying 

gaps and imputing them made sure any onset values counted down to 0. 

 The datasets were then combined. All the data in the five-day intervals were read 

in, meaning that there were data sets that had more EFM readings than others. Some of 

these field mills were only up for a few days compared to the majority that were reading 

data constantly. Any EFM only having a few days worth of data was removed. The 

remaining field mill voltage readings and lightning onset values per field mills that had 

data available through all the five-day intervals. Once the common variables were 

identified, the columns were aligned in chronological order using rbind from the plyr 

package in R. This creates the dataset containing all 26 field mill voltage readings and 

lightning onset readings per field mill that were contained throughout all the five-day 

interval data sets. A total of 84 five-day intervals were read in, from the summer months 

of May through September for the years 2013, 2014, and 2015. This data set consisted of 

604,800 rows of one-minute observations and 52 variables. The code to build the dataset 

is included in Appendix C. 
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3.3 Data Classification and Balancing 

 Onset variables are of interest, but the final dataset was unbalanced. About 97% of 

the onset data were 0’s, indicating that a storm is occurring 30 minutes from that point in 

time. A binary classification variable indicating the presence of a storm is insufficient given 

the distribution of available onset times in the data set. The onset values range from 1 

minute to over 2 hours, with different frequencies. To examine the unbalance in different 

classes, whichever onset variable was the predictor variable was classified. Four classes, 

(A, B, C, D), were created, based on the time frame of interest to the 45th WS. Any value 

of 0 was its own class (A), any value from 1-15 minutes was another class (B), 16-30 the 

third class (C), and anything greater than half an hour was the last class (D). Minutes 1-15 

were their own class as that is usually the time limit before a lightning strike is considered 

as part of a different storm. Minutes 16-30 were another class since predicting lightning 

onset 30 minutes beforehand is of interest. Anything after that was its own class. The code 

that performed this task is included in Appendix D.  

 An issue that Speranza [2] ran into during his research is that his models were 

dependent on time of day, as lightning is dependent on time of day. As SMOTE 

synthetically and randomly generates points to balance a data set, epoch time in the data 

set was dropped for two reasons. The first is that future models built would not become 

dependent on the time of day. The second is SMOTE does not balance data with equal time 

steps. Since time-series models such as LSTM’s have been applied to the dataset, with 

average results, a regular neural network is applied instead [23]. 
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 The classifications helped balance the data set. The UBL [37] package in R applied 

the synthesis minority over-sampling technique to balance the data set. 𝐾 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 

neighbors was used with 𝑘 = 5 and Euclidian distance to find the nearest neighbors. The 

majority class, A, was under sampled while the minority class, B,C,D, were oversampled 

and new synthetic points were generated to balance the classes.  

 Once balanced, the classification variable was dropped from the data set. This 

process was performed for each EFM, creating 26 different balanced data sets.  

3.4 Determining Model Adequacy 

 The predictions from neural networks are continuous values. There are two direct 

ways to determine model adequacy. The first is the loss in the model. This is calculated 

based on the training set and validation set and is an interpretation of how well the model 

does in the two data sets. The loss function used to determine the loss per model was mean-

squared error (MSE). The second measure of the model is how well it can predict the 

validation set. This is measured using mean-absolute error (MAE). The mean of all the 

absolute values of the difference between the model’s prediction and the validation set’s 

dependent variable are taken. Both reflect how well the model predicts lightning onset, 

where a lower value indicates a better fit and prediction [26].  

  A final way to determine model adequacy is examining the ratio of the MAE and 

the average of the predicted lightning onset values. This determines model adequacy. 

While models may have similar MAE’s, different predicted lightning onset values can help 

determine which model is better. The same goes for models with similar average predicted 

lightning onset values and different MAE’s. For example, two models have a MAE of 5 
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minutes, but model A has a predicted lightning onset of 5 and model B has a predicted 

lightning onset of 30 minutes. Model B is the better model as a 5-minute deviation where 

lightning onset is usually 5 minutes is a much larger deviation than 5 minutes when the 

average is 30 minutes. Therefore, the ratio of each EFM ‘s MAE to its predicted lightning 

onset helps differentiate the models’ performances, where a lower ratio is better. 

3.5 Hyperparameter Tuning 

 Initial hyperparameter tuning was performed, using the keras package in R, to 

determine what hyperparameter settings to use for the feedforward neural networks. Keras 

is an application programming interface for neural networks [39]. The first EFM’s balanced 

data set was the test sets. The four variables found to change the neural networks’ 

performances were: epoch time, number of layers in a neural network, presence/absence of 

weight regularization and batch normalization, and neuron count. The ranges for epoch 

time and number of layers were found for when neural network performance plateaued or 

decreased. The epoch time range was 35-85 and number of layers was 4 or 5. Batch 

normalization per layer and weight regularization always improved the neural networks’ 

performance. However, weight regularization only worked depending on what weight 

limits were set. The pattern in weight regularization that seemed to produce better results 

was the first layer having the highest weight and then decreasing the weight amount per 

layer. For neuron count per layer, the trend was to decrease neuron count per layer and 

neural network performance seemed to performance best when the input layer had around 

200 neurons.  
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3.6 Data Dimensionality Reduction 

 The data set consists of 52 variables, 26 which are the voltage readings from the 

EFMs and 26 which are the lightning onset times. Given the proximity in distance of the 

EFMs, storms would pass over the field mills in some successive pattern, meaning the 

variables are correlated.  

 PCA was performed on the balanced data, using the factoextra package in R, for 

the first EFM to reduce the dimensionality of the data and to improve model performance 

[38]. The number of components picked explained over 90% of the variation in the data. 

Each model built during the hyperparameter tuning phase was also fed with the PCA data. 

The PCA data yielded higher loss values, MAEs, and ratios each time. While PCA did 

reduce the dimensionality of the data, it did not improve model performance. So, the 

regular balanced dataset was used moving forward and PCA was not included in the 

process as it produced worse results than non-PCA datasets.  

3.7 Experimental Design 

 While optimal parameter ranges were found during the hyperparameter tuning 

phase, an infinite number of combinations between the 4 factors (epoch time, layers, 

neuron count, weight regularization) still exist. A design of experiment was created to test 

these parameters. Each parameter was transformed into a two-level factor as shown in 

Table 1. 
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Table 1. Neural Network Parameters 

 

Factor Neuron 

Reduction Per 

Layer 

Layers Weight 

Regularization 

Epoch Time 

High 0.75 5 Descending 85 

Low 0.5 4 Constant 35 

 

 

 The neuron reduction per layer is the percentage of neuron count in the next layer 

with the first layer always starting at 200 neurons. For weight regularization, a decreasing 

weight meant that the last layer before the output node would have a weight regularization 

of 0.001 and each layer before that would just add a 0.001. An example is if there were 3 

layers before an output node, the corresponding weight regularizations per layer from the 

input would be 0.003, 0.002, 0.001.  

 Given four factor two-level factors, a 24 full factorial design was created. However, 

each combination of the four factors requires 26 separate runs for each EFM. If a full 

factorial design was used, a total of 416 neural networks must be created and trained.  A 

two-level fractional factorial design helped to reduce the number of neural nets required 

while still being able to identify possible parameters that have a large effect on neural 

network performance. The design is in Table 2. 
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Table 2. Fractional Factorial Design for the Neural Networks 

Run (Design) Neuron 

Reduction Per 

Layer 

Layers Weight 

Regularization 

Epoch Time 

1 (1) 0.5 4 Constant 35 

2 (a) 0.75 4 Constant 85 

3 (b) 0.5 5 Constant 85 

4 (ab) 0.75 5 Constant 35 

5 (c) 0.5 4 Descending 85 

6 (ac) 0.75 4 Descending 35 

7 (bc) 0.5 5 Descending 35 

8 (abc) 0.75 5 Descending 85 

 

3.8 Conclusion 

 The original datasets had readings down to 0.005 of a second. The EFM and LDAR 

data were reconstructed to reflect lightning onset in one-minute intervals. From there, 26 

separate datasets were built to balance the lightning onset values. By performing 

hyperparameter tuning and creating a one-half fractional factorial design, different neural 

network structures and their performance were examined. Chapter IV investigates how the 

different models performed in all the metrics, what parameters affected performance, and 

how the analysis address the problem statements.  
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IV. Discussion 

4.1 Introduction 

 This chapter discusses the results and analysis of the research. First, initial results 

from the neural networks’ performances will be examined. Then, models are fit to examine 

the significance of parameters and how they affect prediction accuracy.  

4.2 Initial Results  

 The loss, mean absolute error, mean of the predicted onset values, and the ratio of 

MAE to the mean of the predicted onset values, were collected after each ANN trained and 

predicted on the datasets. Mean of the predicted onset values was recorded to calculate the 

ratio so there were only three true measures of performance. All performance metrics were 

recorded for every ANN configuration for every EFM. The best and worst performance 

combinations are summarized in Table 3. 

Table 3. Initial Results from Neural Networks 

 Performance Design Electric Field Mill 

Greatest Loss 1448.51 MSE abc 18 

Lowest Loss 61.77 MSE 1 34 

Greatest MAE 12.80 minutes ac 18 

Lowest MAE 2.49 minutes  1 22 

Greatest Ratio 0.33 abc 15 

Lowest Ratio 0.09 abc 30 
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A closer comparison between the best and worst performance metrics is seen  

in the plotted model performance over epochs. Figures 1 and 2 represent the loss function 

and metric performance over each epoch for the models with the best and worst loss values.  

The plots show that early on, the models fit the validation set well with slight fluctuations 

and then plateau out rather quickly. In the ANN with design setting abc for EFM 18, the 

model’s performance seems to get a bit worse over the last few epochs and loss starts to 

increase again. For the best performing model, the neural network with design 1 for EFM 

34, the model’s loss starts at a much lower value than the worst performing value. The loss 

increases over the next few epochs before decreasing and plateauing out. Between the two 

graphs, the main differentiation in how the models fit the validation set was the starting 

loss value. The plots then level out rather quickly, indicating the model was no longer 

improving over each epoch.  
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Figure 1. Neural Network performance over epochs for Design abc for EFM 18 

 
Figure 2. Neural Network performance over epochs for Design 1 for EFM 34 
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 The next graphical comparison, in Figures 3 and 4, is between the models with the 

best and worst mean absolute errors. Figure 3 contains the worst and Figure 4 contains the 

best. A similar trend is observed here where the model performance plateaus near the end 

of the epochs. The main difference here are the models’ beginning MAE. It is possible that 

had there been an ANN configuration that had more epochs for design 1, a lower MAE 

could have been observed but it is not conclusive as some models fluctuated over epochs, 

which occurs in the best and worst ratio models. 

  

 

 
Figure 3. Neural Network performance over epochs for Design ac for EFM 18 
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Figure 4. Neural Network performance over epochs for Design 1 for EFM 22 

 

 

 In Figures 5 and 6 are the best and worst models for the calculated ratio. A different 

trend appears here compared to the previous 4 plots. Instead of a plateau after a certain 

number of epochs, the models’ performances fluctuate over epoch. Like Figures 1 through 

4, the starting loss and MAE values, the starting values are where the values differ greatly 

as the models generally plateau quickly.  
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Figure 5. Neural Network performance over epochs for Design abc for EFM 15 

 
Figure 6. Neural Network performance over epochs for Design abc for EFM 30 
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The averages for the three metrics was calculated across the 8 different neural 

network configurations and between each EFM.  

 In Tables 4 and 5 are the results for the minimum and maximum values for the 

averages of the three results of interest and which design/ EFM the value is associated with. 

It is noticeable that the minimum and maximum values have greater differences between 

EFMs than the neural network configurations.  

Table 4. Best and Worst Averages by EFM 

 

Maximum Average Ratio 0.296 EFM 28 

Minimum Average Ratio 0.117 EFM 34 

Maximum Average MAE 10.408 minutes EFM 18 

Minimum Average MAE 3.019 minutes EFM 34 

Maximum Average Loss 1306.144 MSE EFM 18 

Minimum Average Loss 89.949 MSE EFM 29 

 

Table 5. Best and Worst Averages by Design 

 

Maximum Average Ratio 0.203 Design bc 

Minimum Average Ratio 0.182 Design a 

Maximum Average MAE 7.001 minutes Design c 

Minimum Average MAE 6.096 minutes Design abc 

Maximum Average Loss 448.836 MSE Design bc 

Minimum Average Loss 376.598 MSE Design a 
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 While the overall ANN performance across all EFMs does not vary greatly with a 

range of (0.182, 0.203) MAE to average prediction ratio, there is greater variation if only 

one field mill happened to be the point of interest over another. Of all the designs set up, 

Design a achieved this ratio with a MAE around 6.4 minutes and an average predicted 

value of 34.67 minutes. In comparison, design bc’s MAE is around 6.7 minutes and has an 

average predicted value of 32.9 minutes. Comparing the best and worst designs by 

predicted ratio, the MAE’s are similar, with the difference being in the average predicted 

onset values creating that .02 difference in the ratios.  

Comparing the average ratio of 0.296 found in EFM 28 to EFM 34’s ratio, with a 

ratio of 0.117, the prediction accuracies between the two vary by about 18 percent. Similar 

trends can be seen in the average MAE and average loss performances where performance 

between neural networks are generally similar but can vary vastly between specific field 

mills.  

4.3 Parameter Analysis 

 Two models were built to analyze the adjusted parameters. The models used each 

of the 208 models built as an observation and predicted for loss and ratio, nominal factors 

for each of the four parameters, using EFM as a blocking factor, and only going as high as 

the second order due to sparsity of effects.  

 In Figure 7, the first model, was fit to predict loss using the program JMP. There 

were no second order effects that were found to be statistically significant at the 95% 

confidence level. Summary of fit, analysis of variance and parameter estimates are also in 

Figure 7.  
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Figure 7. Parameter Estimates of Neural Network Performance on Loss 

 

 

 The adjusted R squared value indicates that the model explained 90.8% of the 

variation in the dependent variable, loss. From the analysis of variance section, the model’s 

F Ratio shows the model is significant. Of the four parameters estimated, only the 

parameter layers found statistically significant. If the variable reduction was dropped, 

regularization would have a slightly lower p-value but was still not statistically significant. 

However, no main effects were removed so that the overall performance from the 

parameters could be examined. Since the input variables were nominal, the estimates 

represent the improvement between levels each variable has on the dependent variable. For 

the significant variable, layers, the estimate shows that using 4 layers will decrease loss by 

18.56377 MSE compared to a 5-layer neural network.   
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In Figure 8, the second model, which predicted the ratio of mean absolute error to 

the average of predicted lightning onset, had similar results with the parameter estimates. 

In this case, an interaction variable between layers and epochs was included as it increased 

the adjusted R squared value. Here, the model only explains 65.3% of the variation in the 

dependent variable. None of the parameters were significant at the 95% confidence level 

but the model has an F Ratio of 14.0087, meaning the model is significant.  

 

Figure 8. Parameter Estimates of Neural Network Performance on Ratio 

 

4.4 Model Adequacy  

 Residual analysis was performed to check for model adequacy. For both models, 

two graphs are looked at to check for normality in the errors and constant variance. A 

normal quantile plot of the studentized residuals is used to check if the errors are normally 

distributed. The two plots, one for each of the two models are in Figures 9 and 10. 
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Figure 9. Quantile Plot for Loss Prediction 

 

 

 

Figure 10. Quantile Plot for Ratio Prediction 
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The normal quantile for the loss model seems to show normally distributed 

studentized residual. However, there are slight tails at the end of the plot but overall, the 

histogram and probability plot seem to indicate that the errors in the loss model are 

normally distributed. The second figure is the histogram and normal quantile plot of the 

ratio model’s studentized residuals. There is a heavier tail on the end in this plot. A look 

over the studentized residuals for the ratio plot show some with values greater than 3, 

indicating outliers as the possible reason for the tails. Looking at the overall plot and the 

histogram, the studentized residuals seem to be normally distributed even with heavy tail 

on one end.  

The plots of the studentized residuals against predicted values is used to check for 

constant variance and nonlinearity in the model. These two plots are in Figures 11 and 12.  

 

Figure 11. Predicted Loss vs Studentized Residual Plot for Loss Prediction 
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Figure 12. Predicted Loss vs Studentized Residual Plot for Ratio Prediction 

 

 A look at the plots indicate that there is generally no pattern. There is no funnel, 

double bow, or nonlinear pattern that can be distinguished to indicate the possibly of 

nonconstant variance in the models. Some of the points that seem to create a possible 

pattern are points with a studentized residual close to or greater than the absolute value of 

3, indicating they are outliers.  

4.5 Conclusion 

 The performance of the ANNs is demonstrated in the mean absolute error and ratios 

that were produced. The overall mean absolute error across all designs and EFMs was 6.57 

minutes. The ratio between mean absolute error to predicted lightning onset value was 

0.193. This showed a potential that the neural networks can predict lightning onset to a 

certain degree. Parameter analysis showed that while the least square models were 

significant in predicting lightning onset and loss, the parameters themselves were not 
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significant, making it difficult to tell which level of the 2-level parameters led to better 

performance. 
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V. Conclusion and Moving Forward 

5.1 Introduction 

 This chapter summarizes the results of the study, issues with the work done, and 

discusses potential follow-on work for the project. 

5.2 Overview of Results  

The study examines the two research questions presented in Chapter 1.  

1. Can a feedforward neural network per electric field mill handle the noise in the data 

and better predict lightning onset? 

2. How well can a neural network predict lightning onset? 

Insights were gained from the neural network performance based off mean absolute 

error and the error ratio as well as parameter analysis done on predicting loss and lightning 

onset. Unlike previous studies, neural networks were built to predict a continuous value 

rather than previous studies that forecasted lightning as a binary outcome. Without a binary 

outcome and confusion matrix to determine level of performance in a neural network, new 

measures were created to determine prediction accuracy.  

While some insights were gained, other questions arose throughout the analysis and 

afterwards.  

5.3 Future Work  

Although 31 EFMs existed, 5 of them either worked for short periods of time or not 

at all. Due to inconsistent measurements, only 26 of the field mills could be used in the 

analysis. Given that the field mills are located at areas deemed important for gathering 

voltage data, having all field mills functioning could prove useful. Another issue the EFM 
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data presented was the number of observations. Originally, each 0.005 second reading was 

used as a separate observation but cleaning a data set with over 650 million lines for every 

five days of data, with parallel processing, took about a week. This was unfeasible given 

time constraints. However, instead of compressing the data set down into minute 

observations, one second intervals can also be used. While this may not improve any 

prediction results given how little voltage changes within one second and one minute, it 

would allow for the neural networks to differentiate at what point in time lightning storms 

start in comparison to voltage readings. 

Other ideas for future work would require more data. The first is that there are many 

more factors that go into a lightning storm than just voltage readings. Other studies 

examined in Chapter II indicate that weather data on temperature, humidity, and wind 

speed can also improve algorithm predictions on lightning strikes. This would require new 

data to be measured in similar intervals as the EFM and LDAR data. Another suggestion 

is differentiating the lightning strikes as those moving in from the ocean and those that are 

not. This was suggested by the meteorologist in the 45th WS to identify light storm 

movements. 

As for future methods to apply to this type of data set, there is one that should be 

explored. One of the challenges was that by balancing the data set, observations no longer 

had equal time steps between each other so a LSTM neural network could not be used. 

Further research can be done into finding out how to balance a data set while maintaining 

equal time steps so it may be put into a recurrent-type algorithm. 

 



  41 

 

5.4 Conclusion 

 This research set out to examine the EFM and LDAR data in hopes of predicting 

lightning onset. With all the work done using these two datasets, follow-on research should 

require new datasets to develop better models and hopefully, better results.  
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Appendix A 

library(data.table) 

## Warning: package ‘data.table’ was built under R version 3.5.3 

library(plyr) 

## Warning: package ‘plyr’ was built under R version 3.5.3 

library(tidyverse) 

## Warning: package ‘tidyverse’ was built under R version 3.5.3 

## -- Attaching packages ----------------------------------------------
-- tidyverse 1.2.1 – 

## v ggplot2 3.2.1     v purrr   0.3.2 
## v tibble  2.1.3     v dplyr   0.8.3 
## v tidyr   1.0.0     v stringr 1.4.0 
## v readr   1.3.1     v forcats 0.4.0 

## Warning: package ‘ggplot2’ was built under R version 3.5.3 

## Warning: package ‘tibble’ was built under R version 3.5.3 

## Warning: package ‘tidyr’ was built under R version 3.5.3 

## Warning: package ‘readr’ was built under R version 3.5.3 

## Warning: package ‘purrr’ was built under R version 3.5.3 

## Warning: package ‘dplyr’ was built under R version 3.5.3 

## Warning: package ‘stringr’ was built under R version 3.5.3 

## Warning: package ‘forcats’ was built under R version 3.5.3 

## -- Conflicts --------------------------------------------------- tid
yverse_conflicts() -- 
## x dplyr::arrange()   masks plyr::arrange() 
## x dplyr::between()   masks data.table::between() 
## x purrr::compact()   masks plyr::compact() 
## x dplyr::count()     masks plyr::count() 
## x dplyr::failwith()  masks plyr::failwith() 
## x dplyr::filter()    masks stats::filter() 
## x dplyr::first()     masks data.table::first() 
## x dplyr::id()        masks plyr::id() 
## x dplyr::lag()       masks stats::lag() 
## x dplyr::last()      masks data.table::last() 
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## x dplyr::mutate()    masks plyr::mutate() 
## x dplyr::rename()    masks plyr::rename() 
## x dplyr::summarise() masks plyr::summarise() 
## x dplyr::summarize() masks plyr::summarize() 
## x purrr::transpose() masks data.table::transpose() 

root = “/home/dom/Desktop/ChengThesis/ThesisData/Unprocessed EFM Data” 
44irs._lvl1 <- list.dirs(root, recursive = F) 
save.EFM_Data<-data.table(day = character(), time = character(), voltag
e = integer(), location=character(),timestamp=character()) 
 
for(I in 44irs._lvl1) { 
   
  44irs._lvl2 <- list.dirs(I, recursive = F) 
   
for(j in 44irs._lvl2) { 
   
  44irs._lvl3 <- list.dirs(j, recursive = F) 
   
for(k in 44irs._lvl3) { 
  EFM_Data<-data.table(day = character(), time = character(), voltage = 
integer(), location=character(),timestamp=character()) 
  data.files <- list.files(k,  
                           pattern = ‘(.txt|.raw)’, 
                           full.names = T) 
  if(file.info(data.files[1])$size != 0){ 
  EFM_Data[,c(1:3)] <- data.table::fread(data.files[1]) 
  EFM_Data$location <- substr(basename(data.files[1]), start = 1, stop 
= 5) 
  EFM_Data$timestamp <- basename(dirname(data.files[1])) 
  } 
  #This will pull in the data from one timestamp 
  #will create a data table with date,time,voltage,location,and timesta
mp (in 30min increments) 
  for(l in 2:length(data.files)) { 
    
   if(file.info(data.files[l])$size == 0) next 
  this.data <- try(fread(data.files[l]), silent = T) 
   this.data$location <- substr(basename(data.files[l]), start = 1, sto
p = 5) 
   this.data$timestamp <-EFM_Data$timestamp 
     
    EFM_Data <- rbind(EFM_Data,this.data) 
      
   } 
   
  setkeyv(EFM_Data, c(‘location’, ‘timestamp’)) 
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  temp.data <- ddply(EFM_Data,.(location,timestamp)) 
  names(temp.data)[1] <- “day” 
  names(temp.data)[2] <- “time” 
  names(temp.data)[3] <- “voltage” 
  save.EFM_Data<-rbind(save.EFM_Data,temp.data) 
   
  ################################## 
  #move onto next timestamp in the day 
} 
  #move onto next day in series of 5 days 
} 
  #Move onto next group of dates. 
   
} 

 

Appendix B 
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