
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

A General Methodology to Optimize and Benchmark Edge Devices A General Methodology to Optimize and Benchmark Edge Devices

Kyle J. Smathers

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Smathers, Kyle J., "A General Methodology to Optimize and Benchmark Edge Devices" (2020). Theses and
Dissertations. 3189.
https://scholar.afit.edu/etd/3189

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3189?utm_source=scholar.afit.edu%2Fetd%2F3189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A General Methodology to Optimize and
Benchmark Edge Devices

THESIS

Kyle J Smathers, B.S.C.E., CISSP, Captain, USAF

AFIT-ENG-MS-20-M-062

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-062

A GENERAL METHODOLOGY TO OPTIMIZE AND BENCHMARK EDGE

DEVICES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyberspace Operations

Kyle J Smathers, B.S.C.E., CISSP,

Captain, USAF

March 26, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-062

A GENERAL METHODOLOGY TO OPTIMIZE AND BENCHMARK EDGE

DEVICES

THESIS

Kyle J Smathers, B.S.C.E., CISSP,
Captain, USAF

Committee Membership:

Lt Col Mark E DeYoung, Ph.D
Chair

Gilbert L Peterson, Ph.D
Member

Timothy H Lacey, Ph.D
Member

AFIT-ENG-MS-20-M-062

Abstract

The explosion of Internet Of Things (IoT), embedded and “smart” devices has

also seen the addition of “general purpose” single board computers also referred to as

“edge devices.” Determining if one of these generic devices meets the need of a new

given task however can be challenging. Software generically written to be portable or

plug and play may be too bloated to work properly without significant modification

due to much tighter hardware resources. Previous work in this area has been focused

on micro or chip-level benchmarking which is mainly useful for chip designers or

low level system integrators. A higher or macro level method is needed to not only

observe the behavior of these devices under a load but ensure they are appropriately

configured for the new task, especially as they begin being integrated on platforms

with higher cost of failure like self driving cars or drones.

In this research we propose a macro level methodology that iteratively benchmarks

and optimizes specific workloads on edge devices. With automation provided by

Ansible, a multi stage 2k full factorial experiment and robust analysis process ensures

the test workload is maximizing the use of available resources before establishing

a final benchmark score. By framing the validation tests with a family of network

security monitoring applications an end to end scenario fully exercises and validates

the developed process. This also provides an additional vector for future research in

the realm of network security. The analysis of the results show the developed process

met it’s original design goals and intentions, with the added fact that the latest edge

devices like the XAVIER, TX2 and RPi4 can easily perform as a edge network sensor.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . x

I. Introduction . 1

1.1 Problem Background. 1
1.2 Research Objectives . 2

1.2.1 Design Goals . 3
1.2.2 Implementation . 3
1.2.3 Validation . 4

1.3 Document Overview . 5

II. Background and Literature Review . 6

2.1 Problem Domain - Network Defense . 7
2.1.1 Network Defense Background . 7
2.1.2 Blindspots & Modern Threats . 14
2.1.3 Emerging Defense Tactics . 19

2.2 Solution Domain - Edge Devices . 22
2.2.1 Survey of Edge Devices . 22
2.2.2 Edge Benchmarking Challenges . 25

2.3 Summary . 27

III. Methodology . 28

3.1 Design Goals . 28
3.2 General Test Methodology . 31

3.2.1 Analysis Design . 31
3.2.2 Automation Design . 35
3.2.3 Multi-Stage Optimization Design . 42
3.2.4 Limiting Factors . 54

3.3 Specific Application: Edge Network Sensors . 54
3.3.1 Experiment Architecture . 55
3.3.2 Traffic Generation . 57
3.3.3 Dataset Preparation . 58
3.3.4 Optimization Factor Selection . 59

3.4 Summary . 65

v

Page

IV. Results and Analysis . 66

4.1 Methodology Validation . 66
4.1.1 Automation Validation . 66
4.1.2 Multi-Stage Optimization Validation . 67
4.1.3 Analysis Validation . 70

4.2 Network Monitoring Results . 73
4.2.1 Interface Ratelimit Test . 73
4.2.2 Traffic Capture Ratelimit Test . 88
4.2.3 Suricata Ratelimit Test . 98

4.3 Summary . 109

V. Conclusions . 110

5.1 Overall Summary . 110
5.2 Future Work . 111

5.2.1 Benchmark Use & Expansion . 111
5.2.2 Network Monitoring Expansion . 113

Appendix A. Annotated Example Results Figure . 115

Appendix B. Employment Analysis . 117

Appendix C. Raw Data Examples . 125

Appendix D. Source Code . 134

Bibliography . 169
Acronyms . 179

vi

List of Figures

Figure Page

1 Scale of Edge-Like Devices . 2

2 Problem Definition . 6

3 Phishing By Year . 9

4 Evolution of Cyber Attacks . 12

5 Cyber Attack Dwell Times by Year . 12

6 Cyber Attack Dwell Time Distribution . 14

7 Threat Model . 15

8 Example Modern Data Pipeline . 20

9 Typical Sensor Hardware . 21

10 Edge Device Example . 22

11 Generic Kernel Hardware Abuse . 25

12 Proposed Testing Workflow . 32

13 Ansible Overview . 37

14 Ansible Implementation Workflow. 44

15 Metric Subprocess Workflow . 53

16 Test Architecture . 56

17 CIC IDS 2017 Dataset Segmentation . 59

19 Ethernet Frame Sizes . 61

18 Linux RX Packet Pipeline . 62

20 CAIDA Internet Backbone Trace . 63

21 Test Traffic Length Distribution . 64

22 Automation Validation 1 . 67

vii

Figure Page

23 Automation Validation 2 . 68

24 Optimization Validation 1 . 69

25 Optimization Validation 2 . 70

26 XAVIER Interface Test Normality . 71

27 XAVIER Suricata Test Normality . 71

28 Caption . 72

29 ANOVA Validation . 73

30 Initial Interface Test Result . 77

31 Interface CPU Bottleneck . 81

32 TX1 Interface Ratelimit Result . 83

33 TX2 Interface Ratelimit Result . 84

34 XAVIER Interface Ratelimit Result . 85

35 RPi3B+ Interface Ratelimit Result . 86

36 RPi4 Interface Ratelimit Result . 87

37 TX1 Packet Capture Result . 93

38 TX2 Packet Capture Result . 94

39 XAVIER Packet Capture Result . 95

40 Raspberry Pi 3B+ Packet Capture Result . 96

41 Raspberry Pi 4 Packet Capture Result . 97

42 Suricata Runmodes [1] . 101

43 TX1 Suricata Benchmark Result . 104

44 TX2 Suricata Benchmark Result . 105

45 XAVIER Suricata Benchmark Result . 106

46 Raspberry Pi 3B+ Suricata Benchmark Result . 107

viii

Figure Page

47 Raspberry Pi 4 Suricata Benchmark Result . 108

48 Example of Runtime Error (Missing Data) . 112

49 Other Response Variables . 112

50 Modular Automation Sub-components . 113

51 Example Results Figure . 115

52 Kibana Dashboard Example . 118

53 Integration Into Existing Dashboards . 119

54 Rapid Increase of Encrypted Web [2] . 120

55 Kerberos Authentication in a Windows Domain[3] 121

56 Golden Ticket Attack . 122

57 Silver Ticket Attack . 123

58 Full Interface Test ANVOA Boxplots . 126

ix

List of Tables

Table Page

1 Observed Threat Actors . 18

2 Devices Under Test . 24

3 Optimization Factor Combinations . 30

4 Example 3-Factor ANOVA Table . 33

5 Supported Response Variables . 49

6 Software Versions . 56

7 Traffic Generator Specifications . 57

8 CIC 2017 IDS Dataset Alert Rates . 59

9 Storage Speed Observations . 89

10 Storage Demand Observations . 90

11 CIC 2017 IDS Dataset Rule Tuning . 99

12 Local Logged Alerts vs. Indexed Alerts . 117

13 Sample Full Data Output . 127

x

A GENERAL METHODOLOGY TO OPTIMIZE AND BENCHMARK EDGE

DEVICES

I. Introduction

1.1 Problem Background

The explosion of Internet Of Things (IoT), embedded and “smart” devices has

been driven by the increased availability of minimized hardware that carries enough

computing power to accomplish very specific applications. This market has also seen

the addition of “general purpose” single board computers also referred to as “edge

devices.” This terminology is lent from the fact a portion of computation tradition-

ally performed by a centralized point is moved down to a more tactical or perhaps

disconnected level (e.g. a drone flying itself or perhaps an ATM detecting fraud on

it’s own based upon the users body language). Some vendors go as far as saying their

15 watt single board computer is a “supercomputer on a chip” [4].

Determining if one of these generic devices meets the need of a new given task

however can be challenging. By design there is not much tolerance for hardware

resource abuse either in the code running on them or from any operating system

controls. Suddenly software generically written to be portable or plug and play may

be too bloated to work properly without significant modification. In addition, while

some of these edge devices may act independently others may be working together

over a mesh network like ZigBee or 802.11s. If a comprehensive view of system

performance is desired, some form of automated simultaneous testing is required.

Previous work in this area has been focused on micro or chip-level benchmarking

1

Figure 1: Scale of Edge-Like Devices [5]

[6]. These efforts are mainly useful for chip designers or low level system integrators.

A higher or macro level method is required to not only observe the behavior of these

devices under a load but ensure they are appropriately configured for the task.

1.2 Research Objectives

The objective of this research is to develop and document a macro level method-

ology to optimize and benchmark specific workloads on edge devices. The specific

workload and thus specific performance metric needs to be interchangeable in order to

best apply to all the possible scenarios an edge device may be employed (e.g. frames

per second for a image tracker, power consumption for a battery powered drone, or

packets dropped for a network monitor).

By framing the development with a family of network security monitoring applica-

tions an end to end scenario fully exercises and validates the developed process. This

also provides an additional vector for future research in the realm of network security.

Internet based security appliances which are classically done in a centralized fashion

would likely stand to benefit from an edge-like deployment scenario. Decentralized

sensors would greatly enhance the ability to monitor niche enclaves and devices that

2

historically have gone completely unprotected but carry much of the same risks (e.g.

All-in-one printers or video teleconference suites) [7].

1.2.1 Design Goals

In order to apply as broadly as possible, be academically sound and actually

useful, the methodology was built inline the following goals:

1. Be easy to use, modify, and scale as appropriate

• In order to be a general methodology, it needs to easy accept different test
workloads

• Each workload will have a unique set of variable factors to consider

• Each physical device may not have the same resources which should be
accounted for

• In cases where workloads are spread across multiple devices, the method-
ology must be able to test them all at the same time

2. Support a repeatable consistent baseline

• For repeatability, it should be easy to deploy and carry no hidden system
changes or tuning

3. Maximize the use of available hardware

• Because of tight performance envelopes, ensure the result is utilizing the
maximum extent of resources possible (i.e. reduce idle or blocking condi-
tions)

4. Utilize a robust statistical analysis capability

• In order to provide rigor to the result. In cases where statistical tests
breakdown (i.e. non-normality), provide a backup test.

1.2.2 Implementation

The first two goals were met with the implementation of an automated work-

flow. The core of this automation was created using Ansible which is an open-source

software provision, configuration, and application deployment tool [8] while further

3

interchangeable sub-modules perform the results analysis. The pairing of these two

allow both the workload and response metric to be swappable.

Maximizing the use of the hardware is met through the operator selecting up

to five potential optimization factors which are then tested in a 2k Full Factorial

experiment design. This ensures any positive or negative interactions between any

factor are appropriately captured. By running the automation workflow multiple

times in series, a multi-stage optimization process emerges that can find the “ideal”

level for a given factor (e.g. sizing a buffer in memory without under or oversizing

it).

The results once captured are analyzed one of two ways. By performing a Anal-

ysis of Variance (ANOVA) test it becomes possible to put rigor behind the result,

associating the probability that any given result was just due to random luck. In

cases where the ANOVA model fails to fit a simpler arithmetic comparison provides

a simpler result.

1.2.3 Validation

Once the methodology was developed, it was exercised and validated with a series

of network monitoring applications. The particular applications tested were based off

real world Air Force network monitoring pipeline roles (Section 2.1.3.1) and focused

on the performance metric of packet loss. In addition each test has a unique selection

of optimization factors which are evaluated in the 2k full factorial fashion. While a

secondary effort these tests establish a worthwhile baseline for future work discussed

in Section 5.2.2 and Appendix B.

4

1.3 Document Overview

This document is broken into 4 more chapters. First motivations and background

are discussed in Chapter II while the methodology is discussed and implemented in

Chapter III. Chapter IV validates the methodology through a examination of three

network monitoring applications and Chapter V presents the conclusion and future

work.

Select raw data used in the figures is shown in Appendix C while all the core

re-usable code with a user guide is presented in Appendix D. Full code, data, and

instructions will also be available electronically [9].

5

II. Background and Literature Review

Initial motivations for this work was framed around finding a solution to the

gaps that exist in enterprise network defenses [7]. Recent modern network security

suites and tactics have been very focused on high vantage points and large centralized

collection points. This provides high visibility into all traffic flowing into and out of the

protected network but can neglect side to side or “lateral” traffic. By decentralizing

the classical threat hunting platform with smaller, external sensor suites close to the

protected clients (“the edge”) we reduce the hardware requirement from monitoring

a whole enterprise to just one or a handful of hosts.

The solution to this problem presented another. The candidate edge devices that

could perform this task come in all shapes and sizes and no method exists to examine

how they perform under a given workload. This was further compounded by the edge

device’s tighter hardware budgets that are less tolerant to unoptimized configurations.

Figure 2 below visually summarizes the relationship of the problems and direction of

this work.

Figure 2: Visual summary of the relationship between the research problems and
direction of this work

6

This chapter examines the background of these problems much deeper. Section

2.1 breaks down the evolution of contemporary network monitoring to examine the

blind spot problem and can be skipped if only interested in the second problem, which

is discussed in Section 2.2.

2.1 Problem Domain - Network Defense

Computer network defense has evolved from an afterthought to a multi-billion

dollar industry [10]. Despite the attention and focus gaps still remain that are targeted

by adversarial forces for personal or political gain. This section looks at the origin

of contemporary tactics, modern threats to them and associated emerging counter

tactics.

2.1.1 Network Defense Background

Early Days c. 1970-1989

The Internet’s (and thus Cyberspace’s) primordial days were less concerned about

security and more about just raw functionality. The noble beginnings of ARPANET

for sharing information either between universities or government agencies had little

need for security if everyone who was connected was “trusted.” David D. Clark, an

Internet pioneer and chief protocol architect once said

Its not that we didn’t think about security, We knew that there were un-

trustworthy people out there, and we thought we could exclude them [11].

Later, Clarks’ seminal 1988 paper detailing the design principles of early internet

protocols included no mention of security [11] [12]. Unfortunately, in an effort to get

more nodes connected the barrier to entry was quite low, and the popularity of the net

grew faster then it could be contained. It was around this time that the net saw its

first large scale infections and attacks with the Morris worm in 1988 [13], international

7

military espionage at the hands of KGB agents in 1986 [14], and malicious insiders

trying to gain unauthorized access to Bell Labs [15]. As a result the naive “trust”

that built the early Internet began to dissolve, meaning some form of security needed

to be added to a system that didn’t even consider it. Thus the emergence of “bolt-on”

security began to unfold with the multi billion dollar cyber security industry (valued

104 billion in 2017 [10]). Networks began segregating themselves with devices like

firewalls and proxies. System administrators and owners could now only trust their

own users (which thanks to insiders and phishing we see later that’s a bad idea)

leading us to the era of the great filters, choke points and sensors that still remain in

place today.

Passive / Reactionary Defenses c. 1990-2010+

While the early network based firewalls did their jobs blocking traffic off of simple

source/destination filters this was only the first step in the game of cat-and-mouse

that defenders and attackers have been playing ever since [16]. While there may

have been a relative calm in the early nineties thanks to the tightening of boundaries

hackers soon shifted their focus to striking the weakest link: the user. No number of

security appliances or software could stop a user from giving up their password to a

clever social engineering campaign or stop them from clicking a bad link.

The mid to late nineties saw the first large scale phishing campaigns with AOHell

in 1995 [17], the melissa virus in 1999 [18] and the ILOVEYOU worm in 2000 [19]. By

simply sending gullible users believable messages attackers were able to bypass these

newly erected barriers with ease. The modus operandi for criminals quickly shifted

with the rise of e-commerce and e-banking in the early to mid 2000s [20]. Figure

3 below shows a near exponential increase in reported phishing attacks towards the

end of the decade. The early 2010s saw the first (caveat, reported) high profile tar-

8

geted phishing attacks for motivations that were likely not financial. In 2011 Chinese

phishing campaigns began targeting US and South Korean government officials for

political or espionage gain [21]. The same year US defense contractors were breached

in a multi stage attack on themselves and their security vendor RSA Security LLC

[22].

Figure 3: Phishing campaign reports by year [23]

Perhaps even more nefarious are compromised accounts that bypass all security

measures without raising any alarm. From 1998-1999 one of the first ever large

scale Advanced Persistent Threat (APT) hunts “MOONLIGHT MAZE” began with

Wright-Patterson and Air Force Institute of Technology (AFIT) at it’s epicenter

thanks to a compromised account. The recently declassified report shows suspected

Russian actors combing through and collecting thousands of sensitive but unclassified

documents from the base, the school, and a handful of national labs. While the initial

vector was a compromised account the actual beginning of the infiltration is unknown

and was only discovered by accident from a careful admin reviewing logs [24]. This

prompted many in the Department of Defense (DOD) to consider creating a third

“public / business partners” network essentially transforming Non-classified Inter-

9

net Protocol Router Network (NIPRNET) into an totally disconnected unclassified

version of it’s cousin Secret Internet Protocol Router Network (SIPRNET). History

tells us this didn’t happen but instead the branches adapted the “defense in depth”

strategy that is discussed further below [25].

It was in this era the realization that even internal users could not be trusted began

to take hold. A variety of different strategies were born each with their own side-

effects in an attempt to deal with the ever growing problem. Defense-in-depth or multi

layered defenses is one such strategy re-popularized by the National Security Agency

(NSA) that has been around since medieval castle times [26] [27]. Unfortunately,

it’s a poor analogy at best, as the original strategy involves layering defenses and

purposefully ceding land in such a way to allow time for a counterattack and ultimate

defeat of the aggressor. As poignantly pointed out by one author, this approach

doesn’t really work for cyber defense since 1.) There is typically not any “land” to

cede and 2.) You typically can not counterattack and then wipe out the adversary

for good. This broad “just layer more defenses” leaves too much interpretation to

the operator and the free market. A false sense of security can easily result and its

general failure as a strategy is clear in the eight large multi-million dollar hacks that

happened in the publishing year alone [28]. What we’re left with is a fragmented,

compartmentalized mess that makes it very difficult for defenders to actually defend

or fully understand the scale of.

Multiple standards and regulations thus came into existence to try and clearly

define what “secure” means. The Defense Information Systems Agency (DISA) has

been releasing Security Technical Implementation Guide (STIG) since as early as

1989. These guidelines are useful in trying to quantitatively define best practices

and when combined with other standards like DoD Instruction (DODI) 8510.01 DoD

Information Assurance Certification and Accreditation Process (DIACAP) and Na-

10

tional Institute of Standards and Technology (NIST) Special Publication 800-53 Se-

curity and Privacy Controls for Federal Information Systems and Organizations a

system is likely better off then just hiding flaws behind multiple layers of firewalls.

Unfortunately, the panacea of a perfect security checklist does not exist nor will it

ever with the rapid pace of innovation in new software / hardware. The clash between

those enforcing these checklists (like DISA’s Command Cyber Readiness Inspection

(CCRI)) and those trying to meet the intent of the system owner is a common source

of friction. Luckily later revisions of DODI 8510.01 Risk Management Framework

better addresses this friction and allows system owners more say on the risk they are

willing to accept [29].

Despite all this, persistent adversaries continued their campaigns against both

governments and corporations alike. Reactionary detection was failing as was evident

in the year long loiter times of some campaigns. Chinese actors were indicated in the

three year long Titan Rain campaign (2003-2005) [30] and the year long Operation

Aurora (2009-2010) that targeted Google and other US based tech companies [31].

The importance of rooting out compromises increased dramatically in the 2010’s as

the threats shifted from espionage / stealing of documents to causing physical effects.

Stuxnet (2009-2010), widely regarded as the first “cyber weapon” was destroying

centrifuges for months before being discovered [32], and the Ukraine power grid shut-

down of 2015 had months of preparatory work on net before the obvious effect came

forward [33].

11

Figure 4: Evolution of cyber attacks and their motivations [34]

These events precipitated the need for a more proactive approach to cyber defense.

At the end of the day these controls and measures only stop low sophistication attacks

and slow down the complex ones. Zero day exploits, spear phishing, social engineering

and insider threats still poised a very real danger.

Active / Proactive Hunting c. 2010+

The need to begin proactively defending was clear at the beginning of the 2010s.

As seen in figure 5 below, either the in-place defenses of these institutions failed /

are being manipulated, the local defenders are under staffed, trained or experienced

[35], or the overall network visibility and situational awareness across their enterprise

is severely lacking. (Note these are not mutually exclusive, and all three can be

happening to some degree to the point of compromise)

Figure 5: Cyber Attack Dwell Times (time between initial access and detection) in
days by Year [36]

12

With multiple month and year long dwell times being uncovered (calculated as

the number of days an attacker is present on a victim network, from first evidence of

compromise to detection) a not so unreasonable fear began to muster for most large

enterprises and the military. “Have we been hacked and we don’t even know it yet?”

was probably a common phrase uttered in board meetings. While these enterprises

may have had well established incident response capabilities APTs had grown just

as comfortable evading their very predictable passive defenses [37]. Thus in the early

2010s many quickly turned to their forensic teams to figure this out, forming a new

breed of proactive investigators that became known as “Threat Hunters ”[38].

Where private companies like Mandiant and SANS began capitalizing on the new

opportunities taking care of corporate and international contracts, the military was

aggressively expanding their capabilities as well [38]. The Air Force created “Blue

Teams” in contrast to the traditional “Red Teams” with the goal of sweeping for

APT presence, scanning for better visibility while also assisting and training local

defenders [39] [40]. These teams later became the mold for United States Cyber

Command (USCYBERCOM)’s Cyber Protection Team (CPT)s which were coined as

the joint force equivalent to assess, sweep, repair, and instruct local defenders [41]

[42].

Many of these efforts contributed to the decrease in the median dwell time of

attackers as seen at the end of Figure 5 above. While historical forensics were carried

out looking for hard particular artifacts, the scale that hunt teams were responsible

for was potentially infinite (anything and everything, “unknown unknowns”). If the

signature of an exact attack was already known, its Indicator of Compromise (IOC)

could just be plugged into the signature based passive defenses. Thus as the name

implies, in order to be successful threat hunters typically require some information

about a valid threat such as the who (what nation states or actors), what (what are

13

they after), when (is there a big event/anniversary coming up?), where (physical,

digital, or persona), and how (tools, techniques and procedures).

Deriving and gathering the sort of information needed to properly hunt threats is

still very challenging. Figure 6 below helps demonstrate this highlighting over 47%

of all discovered attacks still have a dwell time over 90 days. Sharing IOC has been a

hot area with a few government and private efforts like Structured Threat Informa-

tion eXpression (STIX) and Trusted Automated eXchange of Indicator Information

(TAXII) attempting to overcome the difficulty of sharing complex indicator data [43].

Many other organizations still struggle however with sharing potentially private or

proprietary secrets when revealing their compromises.

Figure 6: Global Cyber Attack Dwell Time Distribution [36]

2.1.2 Blindspots & Modern Threats

The current state of network defense can succinctly be visualized in Figure 7 be-

low. The intersection between a motivated actor, a vulnerability and an opportunity

ultimately leads to a compromise. The next few subsections examine these points

further.

14

Figure 7: Threat Model depicting the current state of the art [44] [45]

2.1.2.1 Vulnerabilities / Gaps

The hardware requirement to maintain situational awareness of an entire enter-

prise can be substantial. Capturing traffic at line rates requires storage that can keep

up for the desired retention period, typically multiple terabytes (e.g. 152 TB is re-

quired to store two weeks at 1 Gbps sustained) [46]. Meanwhile processing thousands

of intrusion signatures on the same traffic requires dozens of CPU cores and a few hun-

dred gigabytes of RAM as detailed in the Suricata High Performance documentation

[47].

The best cost efficiency has historically come from tapping central egress/ingress

points as shown with the Air Force’s 16 gateways which was later driven to even

further cost sharing with the Army and larger DoD’s Joint Regional Security Stack

(JRSS) [48]. Threat hunters have leveraged this enhanced visibility to shorten dwell

times but gaps still remain in uninspected trusted insider zones as evidenced by the

latest Maindiant M-Trends Report [36] and even recent “Hack The Air Force” events

[49]. As seen below in section 2.1.2.2, many threat actors actively leverage these blind

spots and enjoy free reign as “trusted” lateral traffic [7].

15

As an example, a critical vulnerability in HP all in one printers was recently

discovered by security researchers. By sending a specially crafted fax, it was possible

to establish a foothold on the printer which was then pivoted into an internal network.

This is thanks to the printer having a full blown Operating System (OS) shoved

into the device [50]. All command, control and data exfiltration was done over the

traditional phone line which means the only possible way this would have been spotted

was via the network traffic generating from the printer. While in this scenario this

enterprise could have had very robust boundary protections and inspections, it is

unlikely due to cost or bandwidth limitations that the traffic from this printer or the

random office “last mile” switch would be spanned or cloned to a sensor. Nor would

there be a host based agent riding on top the limited firmware.

Log shipping agents like Beats can be deployed on supported hosts / end-points to

help cover part of this gap though the number of unsupported appliances like printers

and video teleconferce suites as seen still contain enough of an operating system to

become a target. Even the supported hosts are susceptible to log manipulation, [51]

with many actors taking advantage of this and hiding their tracks [52] [53]. Not to

say it’s not worth collecting logs, as sometimes the sudden absence of certain events

may be an indicator in itself.

Unfortunately, logs only go far especially if valid credentials as being used as any

log entries will only show successes. Especially damning are third party based au-

thentication system compromises (like Kerberos and Active Directory) as in some

situations no log is generated good or bad. Introduced in 1988 by MIT the Ker-

beros authentication protocol is widely used as the backbone to how Active Directory

performs authentication. Microsoft’s implementation has interesting design choices

however that allow stateless ticket based attacks (and thus lateral movement) to work

[54].

16

In many cases in place cyber defenses are not adequate to the task of proactive

searching and could become a target themselves [37]. As an example, the passive/re-

actionary suite of tools in Host Based Security System (HBSS) were not designed for

active threat hunting as any reactionary measures they perform require signatures

and other parts only report issues like patch compliance. In addition, variants of

these agents were attacked and disabled by malware in the Lazarus Group’s 2014

hack of Sony Pictures Entertainment [55].

2.1.2.2 Motivated Actors

Many open source databases have begun tracking APT and their specific tactics

and tools. The MITRE Corporation publishes the MITRE ATT&CK Matrix which

conglomerates sources from companies like Symantec, Mandiant, Microsoft, McAfee

and others. It has become a reference point for Air Force hunt operations and even

some endpoint protection suites. Table 1 below highlights a few actors who exploit

many of the items discussed above.

17

Table 1: Sampling of threat actors observed exploiting factors discussed previously.

Actor Tactics Targets Source

APT1
Pass the Hash
psexec lateral movement

US
Canada
South Korea

[56]

APT3
Windows share abuse
Native lateral movement

US [57]

BRONZE BUTLER
Stolen credentials
Forged Kerberos

Japan [58]

APT29
Pass the Ticket
Powershell evasion

US [53]

APT32
Remote Pass the Ticket
Native lateral movement

Southeast Asia [59]

Lazarus Group
Disables security tools
Windows share abuse
Native lateral movement

US
Central America

[52]

WannaCry
Ransomware
“Zero day” lateral movement

Worldwide [60][61]

2.1.2.3 Opportunities

Just because a motivated actor exists and its target is vulnerable doesn’t mean a

compromise is imminent. The proper opportunity must still present itself, perhaps

as an improperly exposed port, a gullible user clicking a link, or a previous successful

attack that can be leveraged as a pivot. Some opportunities appear inline with

a vulnerability like a zero-day vulnerability or “Exploit Wednesday” and must be

addressed as quickly as possible since it is safe to assume a motivated actor is just

waiting for their chance [45].

18

2.1.3 Emerging Defense Tactics

In the absence of any concrete indicators a threat hunter must begin to think like a

potential adversary. By becoming more aware of the state of the targets defenses like

gaps in their oversight or other trust relationships the hunter can narrow their search.

This brings us close to the present approach that has quickly gained popularity: “Big

Data or Data Analytics”. By aggregating as many data sources as possible together

(e.g. logs, packet captures, compliance scans, etc.) to form a comprehensive view

of an enterprise, anomalies quickly jump out to a trained eye or in even more recent

cases, a trained algorithm. This shift enables detection of “unknown unknowns” and

is especially interesting as it theoretically solves both the visibility and the experience

shortage, reducing the number of “trained/experienced” operators needed.

2.1.3.1 Big Data Pipelines

While many open source and commercial products exist that can implement a data

processing pipeline like this, the tools used/examined in this thesis will be based off

the open source Elastic stack (Beats, Elasticsearch, Logstash, Kibana). We select the

Elastic stack because a free-tier licence is available, it is used in Air Force systems, and

the stack’s popularity [62]. Below is an example of one such pipeline as implemented

in another open source project, the Response Operations Collection Kit Network

Security Monitor (RockNSM) suite.

19

Figure 8: Example of the RockNSM sensor pipeline, a popular open source security
sensor suite [63]

Suricata is the signature based Intrusion Detection System (IDS), Google Stenog-

rapher captures raw packets and bro handles netflow and metadata. Logstatsh and

Kafka aggregate all types of logs and alerts to be stored in the Elasticsearch database

where it is reliably stored and indexed. Lastly Kibana provides rapid retrieval and

analysis of the data with user friendly dashboards and queries [63].

For some, a pipeline like this is achievable at an enterprise level depending on

budget and size. Unfortunately, for many the scale involved in aggregating hundreds

of thousands of workstation and server logs in the is no simple feat. Especially if not

planned for / budgeted in the initial build-out thanks to the bandwidth needed alone.

2.1.3.2 Mobile Hunt Platforms

While in large in place implementations of a data pipeline can be effective, hunt

teams commonly maintain their own suite of tools and sensors for either a unma-

nipulated third party perspective or to gain situational awareness on a enterprise

that lacks it. They are architected in a way to allow expandability and portability.

Traditionally this has meant airline friendly (weighing less then 100 pounds) transit

cases full of multiple high end server chassis that can run any variety of roles from

packet capture and Network Intrusion Detection System (NIDS) to Security Informa-

20

tion and Event Management (SIEM) aggregators and compliance scanners. In early

2010 the Air Force led the way with their initial creation of a mobile “interceptor”

hunting platform, which later in 2013 became one of the first declared defensive cyber

weapons Cyberspace Vulnerability Assessment / Hunter (CVA/H) [64].

Having flexibility in these roles is crucial as no two landscapes are the same. Rack

space, available power, available cooling, and logical topology can all vary between

deployment locations. By allowing each role to be platform agnostic a robust and

scalable pipeline can be built on anything from a single physical machine to a half

rack full of equipment or even entirely virtual in a cloud provider.

Figure 9: Typical high performance network sensor server with an “airline approved”
hard sided transit case. Typical airline restrictions limit special checked items like
this to 100 lbs [65]

Unfortunately, these data pipeline implementations can suffer from the same prob-

lems as their large stationary counterparts. The cost and scale of their hardware can

limit their deployment scope which as seen previously in Section 2.1.2.1, leaves gaps

that adversaries have and will continue to exploit to achieve their goals.

21

2.2 Solution Domain - Edge Devices

Where before the software involved in a contemporary data pipeline required sub-

stantial hardware that made edge deployment cost prohibitive, certain families of

embedded hardware have emerged that may be able to provide the functional capa-

bilities necessary to function as an edge sensor at a fraction of the cost.

2.2.1 Survey of Edge Devices

Edge devices come in an array of form factors, cost, and capability. Many come

in a Single Board Computer (SBC) configuration which includes things like standard

Input / Output (I/O) ports effectively making it an analog to a regular computer

tower. An example of this is the very low cost and educationally focused Raspberry

Pi boards. Another common configuration is a specialized ”compute module” which

contains the same core as its SBC sibling but has only raw pins instead of I/O ports.

These are intended for industrial applications and allow systems designers to build

their own carrier boards and just outsource the actual core component of it.

(a) Raspberry Pi 3B+ (b) Pi Compute Module 3+

Figure 10: Example of the same edge device on two significantly different form factors

Regardless of form factor the actual cores of these devices generally come in three

capability groups. The low cost Raspberry Pi is mainly targeted at educational

22

and low risk uses [66]. Some devices come with a slightly more focused application

and specialization like the Google Coral which features specialized machine learning

accelerating hardware [67]. The higher tail of these devices are specialized workhorses

that feature very robust computing capability like the NVIDIA Jetson XAVIER and

are employed in higher risk environments like drones and automobiles [68].

For this research two lower cost SBC Raspberry Pi and three NVIDIA Jetson com-

pute modules on a carrier board were selected as the devices to evaluate. This range

of high and low should represent a good gradient of the commercially available devices

as of mid-2019. Table 2 below details more on these device specific components.

23

Table 2: Selected readily available commercial off the shelf single board computers,
as of mid-2019

Device Component Value
NVIDIA TX1 Architecture aarch64
Compute Module Cores 4
Default Carrier CPU MHz 1734
2015 RAM 4GB

NIC & Driver Intel e1000e (PCIe x4)
Distribution Ubuntu 18.04.2

Kernel linux 4.9.140-tegra
Power Modes 6.5w / 15w

NVIDIA TX2 Architecture aarch64
Compute Module Cores 6* (technically 2/4, two die)
Default Carrier CPU MHz 2035
2017 RAM 8GB

NIC & Driver Intel e1000e (PCIe x4)
Distribution Ubuntu 18.04.3

Kernel linux 4.9.140-tegra
Power Modes 7.5W / 15W

NVIDIA AGX Xavier Architecture aarch64
Compute Module Cores 8
Default Carrier CPU MHz 2265
2018 RAM 8GB

NIC & Driver Marvel eqos (RGMII)
Distribution Ubuntu 18.04.2

Kernel linux 4.9.140-tegra
Power Modes 10w / 15w / 30w

Raspberry Pi 3B+ Architecture armv7l
SBC Cores 4
2018 CPU MHz 1400

RAM 1GB
NIC & Driver Microchip Tech lan78xx (usb2)

Distribution Raspbian 9.11 (stretch)
Kernel linux 4.19.66-v7+

Raspberry Pi 4 Architecture armv7l
SBC Cores 4
2019 CPU MHz 1500

RAM 4GB
NIC & Driver Broadcom bcmgenet (usb3)

Distribution Raspbian 10 (buster)
Kernel linux 4.19.75-v7l+

Form Factor Single Board Computer

24

2.2.2 Edge Benchmarking Challenges

Properly evaluating if these edge devices would function as a network sensor is

not as straight forward as it sounds. With vastly more restrictive hardware budgets

compared to contemporary computer hardware there is no room for resource abuse

either in the applications running or even the operating system itself. These boards

are designed for low power consumption, thermal generation and cost. This typically

translates less silicon for things like RAM as seen in the Raspberry Pi offerings [69]

to slower Central Processing Unit (CPU) clocks or perhaps more aggressive power

saving features like entire chip disabling as seen in NVIDIA design guides [68] and

pre-installed power profiles [70].

This can be compounded by the very “generic” kernels that vendors build for these

devices as they can not predict the ultimate use case. As an example if power con-

sumption was a crucial performance factor and a workload was placed on a headless

Raspberry Pi running Raspian with no modification, the “score” would be skewed

by the fact the the HDMI port is powered up by default utilizing 30mA despite no

monitor being plugged in [71]. Likewise the default NVIDIA JetPack Software De-

velopment Kit (SDK) utilizes an Ubuntu image which includes a full blown GNOME

Graphical User Interface (GUI), which consumes resources like memory even if no

display is connected.

Figure 11: Screenshot of the running processes on a headless TX1. The GUI and
related sub-processes are shown using approx 21% of the available memory, despite
no monitor or remote desktop services being enabled

25

Likewise for a network monitoring application like Suricata or Snort the default

engine settings will work out of the box but quickly can become overwhelmed by too

much traffic even on modest hardware [47] [72]. Both of these tools have a large array

of tunable controls that requires consideration of hardware variables like number of

cores, interrupt balance and available memory in addition to expected traffic patterns

like a lot of small Transmission Control Protocol (TCP) sessions (“flows”) or a few

large flow sessions. Many cases are not black and white either with some variables

acting like a sliding scale. For instance, the Network Interface Card (NIC) rx ring

buffers are set very small by default with low per packet latency in mind which may

not really matter when raw throughput is the only critical statistic. Too large of

a rx ring however like one larger then the CPU cache size may have a detrimental

effect.

Previous authors have contributed IDS benchmarking research which provides a

foundation to test from. A survey by Khalil [72] examines the three big common

IDS tools (Bro, Snort, Suricata). Bu [73] examines the impact of virtualization and

containerization on Suricata while another group compared and contrasted the single

threaded performance of Snort versus the multi threaded Suricata in both live and

offline (pcap) scenarios [74]. For both previous works they utilized traffic replay

utilities to simulate live traffic. While possible to test the engine functionality by

reading directly from a traffic capture file this excludes about 20-30% of the actual

engine pipeline from test and there is no real-time urgency to get through the traffic

before it gets dropped out of a buffer [75].

Other previous efforts in benchmarking edge devices have primarily been focused

on the micro, or chip and architecture scale. MiBench (2001) was an open source

suite of tests built targeting embedded like systems [76]. They featured 35 small

scale tests based on different categories like basic math and image recognition for

26

“auto/industrial” or AES, SHA and Dijkstra for “security/network.” A more recent

update ParMiBench (2010) updated the suite for multi core embedded devices [6].

These tests mainly satisfy chip designers and integrators however which is much too

focused for purposes of this research. A broader approach is to take a macro, or

end to end, look at the system to test it. One of the only such papers found to

discuss such a benchmark on single board systems was still niche in it’s findings and

implementation, observing only how one application performed across a few different

vendors [77]. A variation of this approach however is likely the best course of action

to evaluate an application as a whole.

As can be seen simply dropping any particular tool and running it in a pure de-

fault environment will not provide a significant indicator of peak performance. To

ensure a fair assessment of how an edge device can handle a particular workload,

a macro benchmark framework is needed that would allow a wide array of applica-

tions to be tested each with their own configuration, optimization, and desired result

considerations.

2.3 Summary

This chapter discussed how the state of the art in cyber defense has arrived at large

centralized detection platforms. These platforms while successful still allow blind

spots that enable unwanted adversarial presence and action. The rapid advancement

of versatile single board computers presents an opportunity to fill these coverage gaps.

In order to proceed further with answering if these small devices can perform network

monitoring, a macro benchmarking methodology is developed and introduced in the

first half of Chapter III. The second half implements and validates the overall process

with network monitoring applications.

27

III. Methodology

As highlighted in section 2.2.1 the embedded machine market has recently seen the

addition of “edge devices” that are capable of running traditional operating systems

and applications. While plenty of tools are available that can benchmark individ-

ual components like the Central Processing Unit (CPU) or Random Access Memory

(RAM), no higher or macro level method exists to establish how an application per-

forms end to end on a given device. This is further complicated by the trap that the

limited hardware of such a device may not play well with “plug-and-play” software.

This chapter proposes a methodology and automation framework to not only observe

the peak performance of a task on an edge device but ensure they are appropriately

configured for the task.

Section 3.1 discusses the overall design goals and their motivations while Section

3.2.2 details a specific framework that implements them. Section 3.3 then prepares

the automation framework with a particular series of network monitoring tests to

fully exercise and validate the developed process.

3.1 Design Goals

The following design goals drove the overall development and each is detailed

below.

1. Be easy to use, modify, and scale as appropriate

2. Support a repeatable consistent baseline

3. Maximize the use of available hardware

4. Utilize a robust statistical analysis capability

Ease of Use Since edge devices move computation to the tactical or consumer

level and not a central point the scale of devices can quickly grow out of hand. Man-

28

ually connecting and configuring each one would be a daunting task so naturally

automation becomes important. Even on non edge devices enterprises have strug-

gled to keep up with the scale demand of either large physical networks or rapidly

ephemeral virtual ones [78]. A plethora of “IT Automation” tools like Chef, Ansible,

and Jenkins have emerged to help deal with these problems [79]. By adopting one

of these tools the scale of testing multiple devices at once becomes much more man-

ageable. This also reduces custom or esoteric code that becomes hard to transition

between efforts or projects.

Consistent Baseline An important aspect of any experiment is accounting for

any nuisance or noise factors. This is especially true for testing complex systems that

have multiple layers of abstraction. One small change on the top could have large

unpredictable consequences on the layers and ultimate performance below. Taking a

smart phone or even laptop from a few years back provides a great example. Upon

release, the device performs well up to the users expectations. A year later a new

Operating System (OS) version arrives with new “features” and performance of the

device drops significantly. The increased load of adding a few screen transitions,

maybe a transparent menu or the overhead of allowing videos to play in the back-

ground become too much for the underlying hardware which was abstracted away

from the user and perhaps even the developer.

For this reason a key part of the methodology needs to ensure any modifications

from a clean vendor baseline are applied consistently across devices and are either

traceable (written down, scripted) or non-persistent (undone with a reboot). Some

factors are unable to be accounted for and they are discussed in the Limiting Factors

(Section 3.2.4).

Maximizing Hardware Utilization As seen in Section 2.2.2 simply dropping

any particular tool and running it in a pure default environment will not provide a

29

significant indicator of peak performance. It is for that reason that this methodol-

ogy needs to support applying pre-selected optimizations at varying levels to find the

“best fit” for the device under test before giving a final score judgement. This can

be accomplished via a multi-stage optimization loop which iteratively increases or

decreases the selected optimization factors to observe at what level the system per-

forms the best. In order to fully examine the potential optimization solution space a

2k full factorial experiment design is needed. This allows factors to be both individ-

ually tested and tested together to observe any possible constructive or destructive

interference [80].

Table 3: Example of optimization factor combinations where each letter is any possible
configuration or system state. The presence of the letter indicating that particular
option is “high” while absence means “low.”

Factor Count Combinations

21 A

22 A, B, AB

23 A, B, AB, C, AC, BC, ABC

24
A, B, AB, C, AC, BC, ABC

D, AD, BD, ABD, CD, ACD, BCD, ABCD

25

A, B, AB, C, AC, BC, ABC

D, AD ,BD, ABD, CD, ACD, BCD, ABCD

E, AE, BE, ABE, CE, ACE, BCE, ABCE, DE,

ADE, BDE, ABDE, CDE, ACDE, BCDE, ABCDE

Robust Analysis Analyzing the results from the multi stage optimization loop

can be performed by any array of tests from simple mean comparisons to full blown

statistical tests. Ideally a statistical test like Analysis of Variance (ANOVA) can

precisely determine if the optimizations chosen are actually having a desired impact

and not just due to random noise. The usefulness of the ANOVA test depends heavily

30

on assumptions of normality however. In cases where normality appears violated a

secondary test should be supported that is able to continue testing until no further

improvement is observed. In all cases the definition of what improvement is should

be user definable.

3.2 General Test Methodology

Considering the goals, Figure 12 below presents a visual of the proposed method-

ology. Working from the inside most process out (or bottom up according to the

figure, this section lays out a specific end to end implementation. This specific im-

plementation is also visually presented later in Figure 14.

3.2.1 Analysis Design

Two separate tests have been implemented to satisfy the robust analysis require-

ment. First, a ANOVA test is implemented that can analyze up to k = 5 factors of

a 2k Factorial Factorial design. A backup test is then implemented around the same

lines that performs a much simpler sample mean comparison. The results of either

one of these tests is used to inform the feedback loop of the multi-stage optimization

process.

3.2.1.1 ANOVA

While a multitude of commercial software like JMP, Minitab, and Design-Expert

exist that performs advanced statistical tests they can be expensive and/or difficult to

integrate [80]. Following the process outlined in Chapters 3,5, and 6 in Montgomery’s

Design and Analysis of Experiments (9th Edition) [80] we can re-create the process

needed to perform an ANOVA test on a multi-factor experiment like this. The Python

code listed below in Snippet 1 implements these steps to create a table like Table 4.

31

Select Untested Factor

Combination

Revert Previous

Factors (if any)

Apply New Factors

All replicate runs

complete?

Yes

Untested factor

combinations?

No

Yes

Run Result

Analysis

Yes No

Increase Factor

Strength

No

Begin Workload /

Collect Results

Best

Optimization

Factors

Best

Observed

Performance

Done

Significant

Improvement from

previous test?

Test Start
Baseline Software and

Prepare Devices

Chosen

Response

Variable

Selected

Optimization

Factors

Establish Baseline

Unoptimized Score

Filter Non-

Significant Factors

“Loop #”

Score

Record Final Results

Record

Intermediate

Results

Figure 12: High level flow diagram of the proposed testing methodology

32

Table 4: Example ANOVA Table for 3-Factor Test [80]

Factor
Variation

Sum of Square Degrees of Freedom Mean Squares F0

A SSA a− 1 MSA F0 = MSA

MSError

B SSB b− 1 MSB F0 = MSB

MSError

C SSC c− 1 MSC F0 = MSC

MSError

AB SSAB (a− 1)(b− 1) MSAB F0 = MSAB

MSError

AC SSAC (a− 1)(c− 1) MSAC F0 = MSAC

MSError

BC SSBC (b− 1)(c− 1) MSBC F0 = MSBC

MSError

ABC SSABC (a− 1)(b− 1)(c− 1) MSABC F0 = MSABC

MSError

Error SSError abc(n− 1) MSError
Total SSTotal abcn− 1

Where

a, b, c = number of levels for each main factor (1)

n = the number of samples (2)

SSX =
(ContrastX)2

n ∗ 2k
(3)

ContrastAB···K = (a± 1)(a± 1) · · · (k ± 1) (4)

MSX =
SSX
x− 1

(5)

SSTotal =
a∑
i=1

b∑
j=1

c∑
k=1

n∑
l=1

y2ijkl −
y2....
abcn

(6)

SSError = SSTotal − SSFactors (7)

33

Snippet 1 Sample of the 3 factor code from anova.py that builds an ANOVA table.
Full code is available in Appendix D

1 ...
2 if(k >= 3):
3 df_index=['A', 'B', 'AB', 'C', 'AC', 'BC', 'ABC', 'Error', 'Total']
4 c = response_var[response_var['code'] == 'C'].loc[:,rv[1]].to_numpy()
5 ac = response_var[response_var['code'] == 'AC'].loc[:,rv[1]].to_numpy()
6 bc = response_var[response_var['code'] == 'BC'].loc[:,rv[1]].to_numpy()
7 abc = response_var[response_var['code'] == 'ABC'].loc[:,rv[1]].to_numpy()
8 means_all = np.array([np.mean(a), np.mean(b), np.mean(ab), np.mean(c),

np.mean(ac), np.mean(bc), np.mean(abc)])↪→
9 total = np.array([one, a, b, ab, c, ac, bc, abc])

10 contrast_A = np.sum(-one + a - b + ab - c + ac - bc + abc)
11 contrast_B = np.sum(-one - a + b + ab - c - ac + bc + abc)
12 contrast_AB = np.sum(one - a - b + ab + c - ac - bc + abc)
13 contrast_C = np.sum(-one - a - b - ab + c + ac + bc + abc)
14 contrast_AC = np.sum(one - a + b - ab - c + ac - bc + abc)
15 contrast_BC = np.sum(one + a - b - ab - c - ac + bc + abc)
16 contrast_ABC= np.sum(-one+ a + b - ab + c - ac - bc + abc)
17 contrasts_all = np.array([contrast_A, contrast_B, contrast_AB, contrast_C,

contrast_AC, contrast_BC, contrast_ABC])↪→
18 ...
19 # Sum Squares
20 num_effects = np.power(2,k)-1
21 num_elements = num_effects+2
22 sum_squares = np.ones(num_elements) #All effects plus error and total
23 for i in range(num_effects):
24 sum_squares[i] = np.square(contrasts_all[i])/(n*np.power(2,k))
25 total_mean = np.mean(total)
26 SST = np.sum(np.square(total - total_mean))
27 SSE = SST - np.sum(sum_squares[0:num_effects])
28 sum_squares[num_effects] = SSE
29 sum_squares[num_effects+1] = SST
30

31 #Build datafile
32 for i in range(num_effects):
33 F0 = mean_squares[i]/MSE
34 f_vals[i] = F0
35 f_crits[i] = stats.f.ppf(1-alpha,DF[i],DF[num_effects])
36 p_vals[i] = 1 - stats.f.cdf(F0, DF[i],DF[num_effects])
37 effects[i] = contrasts_all[i]/(n*np.power(2,k-1))
38 means[i] = means_all[i]
39 anova_df_numpy = np.array([means, effects, sum_squares, DF, mean_squares, f_vals,

f_crits, p_vals])↪→

This script calculates contrasts, estimated effects, f-statistics and p-values for up

to five factors. Using this information it filters only the factors that had the desired

impact and returns them in an array to be re-evaluated at even stronger levels. Should

there not be any “statistically” significant effects (defined as a p-value less then the

chosen confidence level) but perhaps some strong performers with a “good” sample

mean the secondary mode is triggered and they are returned instead.

34

3.2.1.2 Secondary Test

The secondary results analysis test is simply a “trial and error” mode that com-

pares sample means and continues testing until no further improvement is observed.

Improvement again is definable by the researcher as either a higher or lower mean

compared to the previous one. In addition due to development time, this “best mean”

heuristic mode is the default analysis used beyond the first iteration of the multi stage

optimization loop. Future work could easily modify the Python script to perform a

different kind of test or handle shrinking factor combinations to re-apply the ANOVA

test as appropriate.

Snippet 2 Sample from best-mean.py that determines if the re-run factors of a middle
loop beat the previous best. This function is only called on loops beyond the first
one

1 print("Re-run factor means")
2 print(response_var.groupby('code')[rv[1]].mean())
3

4 print("Lowest observed sample mean (target to beat)")
5 print(response_var.groupby('code')[rv[1]].mean().min())
6

7 #print factors still remaining as viable
8 candidiate_factors_index =

response_var.groupby('code')[rv[1]].mean().index.array.to_numpy() #all
factors from csv

↪→
↪→

9 improved_factors_bools = (response_var.groupby('code')[rv[1]].mean() <
target_to_beat).to_numpy() #boolean series↪→

10 all = ""
11 i=0
12 for y in candidiate_factors_index:
13 if improved_factors_bools[i]:
14 all = all + y + ","
15 i=i+1
16 print("Effects")
17 if len(all) == 0:
18 print("NONE") #No more improvements...
19 exit()
20 print(all.rstrip(','))

3.2.2 Automation Design

Of the many possible automation frameworks available, Ansible was chosen mainly

because of its use in Air Force cyber weapon systems [81], low overhead for deployment

35

(no databases, agents, servers, or daemons) and ability to meet all of the design goals

mentioned previously [8]. The only thing required on the edge device is an operating

system, some form of transit like Secure Shell (SSH) and Python.

A single control workstation with the Ansible package installed is used to launch

all the commands, which are documented in human readable Yet Another Markup

Language (YAML) based “playbook” files. Inside the playbook file is a series of serial

tasks that run on either the remote devices or the control machine itself (shown in

Figure 13 below). A task is essentially a single call to one of the many possible

community supported modules which can be anything from a shell command, git

request, docker pull, cloud provider batch job, or firewall modification. While the

tasks are run in serial order from the file, each machine is issued the tasks in parallel.

This is particularly useful if trying to test a swarm of edge devices that must cooperate

together or when trying to reduce confounding factors like room ambient temperate

when a test started.

36

Figure 13: Example of core Ansible files (the inventory and a YAML playbook) and
how it communicates with external devices

As with many of its class of tools, it allows an administrator or in this case a

researcher to carefully define every variable and step taken in a repeatable step by

step process. It also supports dynamic input and conditionals which can be captured

to provide a repeatable but evolving use case as seen later in Figure 14. Code snippet

3 demonstrates how conditional statements can apply to either certain devices or

broader environment conditions. The first two tasks make changes that only apply

to Raspberry Pi boards and the latter checks how much free memory each board has

so it can build an appropriate buffer size for libpcap.

37

Snippet 3 Example of conditonal tasks in a playbook. The first two tasks make
changes that only apply to Raspberry Pi boards and the latter checks how much free
memory each board has so it can build an appropriate buffer size for libpcap

1 #When Disk I/O is very important. Also lifetime of flash...
2 - name: Disable swap on RPis
3 shell: swapoff -a
4 become: yes
5 when: "'nvidia' not in group_names"
6

7 - name: Bump RPi Throttling Temp (3B+ only)
8 lineinfile:
9 path: /boot/config.txt

10 regex: "temp_soft_limit="
11 line: temp_soft_limit=70.0
12 when: "'nvidia' not in group_names"
13 become: yes
14

15 #If device has less then 2GB free,
16 #Take 70\% of it, mb to KiB
17 - name: Limit buffer_size for libpcap
18 set_fact:
19 buffer_size: "{{ 700 * ansible_facts['memory_mb']['nocache']['free']|int }}"
20 when: " ansible_facts['memory_mb']['nocache']['free'] < 2048"
21 changed_when: false

The next few subsections discuss Ansible’s input file structure and how it ties to

the larger picture.

3.2.2.1 Device Specific Variable Storage

The inventory file stores each device under test’s key variables and potential hard-

ware selections. While the example shown below is pre-built with variables that mat-

ter for a network test, just about anything can be stored in the key : value pair. This

file closely relates to vars.yml in section 3.2.2.2 but contains device specific entries.

Each machine is identified by its hostname which must either resolve via a Domain

Name Service (DNS) or a local hosts file. Following best practice, credentials for con-

necting to these devices are not stored here although they could be. This is discussed

later in the baselining section 3.2.2.5. The flexibility provided here allows devices of

different shapes and sizes to still be tested at the same time, or perhaps the same

type of device to be tested in varying ways.

38

Snippet 4 An example of the inventory.yml file which contains the hostnames and
specific variables that each device or group of devices may have

1 sensors:
2 children:
3 rpi:
4 hosts:
5 rpi3bp:
6 send_interface: eth7
7 capture_interface: eth0
8 interface_pps_limit: 70000
9 rps_mask: 0

10 NAPI_budget_best: 300
11 rpi4:
12 ...
13 vars:
14 ansible_user: pi
15 ansible_become_method: sudo
16 sensor_dir: /sensor
17 nvidia:
18 hosts:
19 tx2:
20 capture_interface: eth0
21 send_interface: eth3
22 rps_mask: 3E #0011 1110
23 NAPI_budget_best: 300
24 backlog_best: 1000
25 backlog_weight_best: 300
26

27 vars:
28 ansible_user: nvidia
29 ...

3.2.2.2 Global Variable Storage

The vars file is the primary “one stop shop” file to tweak any of the global ex-

periment controls. As an important distinction, this file does not contain any tasks

but just key:value pairs that are referenced later in the static controls.yml and vari-

able controls.yml playbooks. Below in snippet 5 three main examples are highlighted.

Lines 2 to 5 are the primary setup variables used in the ANOVA portion of the experi-

ment. Lines 12, 13 are two global toggles for these particular system options and lines

17 and 20 are two of the potential optimization factors chosen for the experiment.

These global variables provide the backbone for experiment control and baselining

discussed in section 3.1.

39

Snippet 5 An example of the vars.yml file which contains general, non device specific
variables for testing

1 ###Master variable file for all playbooks
2 total_factors: 5
3 total_combinations: 32 #2^5
4 replicates: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] #must be an array
5 factor_combos: [N,A,B,AB,C,AC,BC,ABC,
6 D,AD,BD,ABD,CD,ACD,BCD,ABCD,
7 E,AE,BE,ABE,CE,ACE,BCE,ABCE,
8 DE,ADE,BDE,ABDE,CDE,ACDE,BCDE,ABCDE]
9

10 #Large Receive / Generic Receive offload on/off.
11 #Off for suricata
12 lro_status: 'off'
13 gro_status: 'off'
14

15 #Factor D
16 #Receive Flow Steering (RFS) hash table size off / large
17 rfs_table: [0, 262144]
18 #Factor B
19 #Max Kernel Backlog default / large
20 backlog: [1000 , 65536]

3.2.2.3 Static Test Controls

As the name implies this playbook contains all actual tasks that ensure certain

options are set every single run of the test. The two examples shown in snippet 6

setup the appropriate capture interface (device unique, pulled from inventory.yml)

offload options (global, pulled from vars.yml). Generically speaking, any system level

configuration that can be influenced over a command line can be placed into this

playbook like disabling a service or tweaking a CPU fan response profile.

Snippet 6 Example of tasks from the static controls.yml playbook that are run every
new iteration of a test, ensuring a consistent baseline

1 - name: Set Receive Offloads
2 command: "ethtool -K {{ capture_interface }} lro {{ lro_status }} gro {{ gro_status }}"
3 become: yes
4

5 - name: Enable Capture Interface and Set Promiscuous
6 shell: |
7 ifconfig {{ capture_interface }} promisc
8 ifconfig {{ capture_interface }} up
9 become: yes

40

3.2.2.4 Variable / Factor Test Controls

The variable control playbook is similar to the static playbook with the exception

that not every task runs every time. By utilizing the conditional task and loop

mechanism of Ansible the tasks will run only when their letter is detected in the

current loop/array variable “factor combos” (from vars.yml). Further exploiting this

loop functionality allows us to incrementally increase the value passed in subsequent

runs. A key aspect of this design is that these configuration changes do not persist

upon a reboot. This allows each new factor combination run a “clean slate” to work

from.

Snippet 7 Example of tasks from the variable controls.yml playbook that are only
run based on the current factors under test

1 ###FACTOR B###
2 - name: (Factor B) Set Kernel Max Backlog to {{backlog[1]|int*test_counter|int}}
3 shell: sysctl -w net.core.netdev_max_backlog={{backlog[1]|int*test_counter|int}}
4 become: yes
5 when: "'B' in current_factor_list"
6 become: yes
7

8 ###FACTOR D###
9 - name: (Factor D) Set Receive Flow Steering (RFS) Table Size to

{{rfs_table[1]|int*test_counter|int}}↪→
10 shell: |
11 sysctl -w net.core.rps_sock_flow_entries="{{ rfs_table[1]|int*test_counter|int

}}"↪→
12 echo "{{ rfs_flow_cnt }}" >

/sys/class/net/{{capture_interface}}/queues/rx-0/rps_flow_cnt↪→
13 become: yes
14 ignore_errors: yes
15 when: "'D' in current_factor_list"

3.2.2.5 New Device Preparation and Baseline

As shown static and variable control playbooks is it trivial to apply changes re-

peatedly however for sake of time some of these only need applied or checked once.

These steps may include setting SSH keys, installing certain dependencies, copying

large datasets, compiling tests or creating directories. For repeatability sake it is im-

41

portant to track these one-time changes, which is accomplished in prep-playbook.yml.

Examples of these tasks are provided in snippet 8.

Snippet 8 Example of tasks from the prep playbook.yml playbook that are only run
once per device. Ensures dependencies and other important settings like SSH keys
are set

1 - name: Set SSH Keys
2 authorized_key:
3 user: "{{ansible_user}}"
4 state: present
5 key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
6 tags: auth
7

8 - name: Create Sensor Directory
9 file:

10 path: "{{ sensor_dir }}"
11 state: directory
12 owner: "{{ ansible_user }}"
13 group: "{{ ansible_user }}"
14 mode: '0777'
15 become: yes
16

17 - name: Install Prerequisites (may take awhile)
18 when: ansible_facts['os_family'] == "Debian"
19 apt:
20 name: "{{ packages }}"
21 force_apt_get: yes
22 vars:
23 packages:
24 - build-essential
25 - libpcap-dev
26 - dnet-common
27 - libdumbnet-dev
28 - libdnet
29 - libevent1-dev
30 - libdnet-dev
31 - libdumbnet1
32 - nano
33 - locate
34 - docker.io
35 ignore_errors: yes
36 become: yes

3.2.3 Multi-Stage Optimization Design

As highlighted in section 3.2.2 through the use of a few basic variables, loops

and conditionals Ansible provides an excellent way to implement a multi-stage 2k

full factorial optimization loop. Figure 14 visually represents this in the context

of Ansible. The output of this process is twofold, it not only provides a view of

42

the performance of a given task at particular factor levels but also extrapolates the

most significant among them. The latter is important as it can become arduous and

subjective if the changing of a few settings is indeed helping or hindering performance.

A small quirk of Ansible is that the loop: keyword can only apply to one “task.”

Luckily there is a built in task that allows entire other playbooks to be inserted into

the current one, and the loop: keyword still applies. This workaround is shown in

snippet 9. As a consequence however a total of 4 YAML files are needed due to the

workflow containing essentially three loops. A traditional playbook makes up the first

file and calls the outer loop. The outermost loop is technically a recursive function

that performs the ANOVA/heuristic testing while the middle loop is for the current

factor combination (i.e. ABC) and the inner most loop for repeat or tests of the same

factor (i.e. ABC x5). Each one of these playbooks is laid on in the subsections that

follow.

Snippet 9 Example of introducing looping mechanic in Ansible. Used multiple times
as elaborated below

1 - name: Begin Primary Test Control
2 include_tasks: general-control.yml
3 loop: "{{ factor_combos }}" #This will run 2^(#factors) times
4 loop_control:
5 loop_var: current_factor_list
6 index_var: factor_idx
7 extended: yes
8 when: "test_counter == 1"
9 tags:

10 - discover
11 - initial

3.2.3.1 Main Playbook

This playbook is akin to the “main” function of any other program. It initially

calls the recursive outer loop general-benchmark-outerloop.yml. Upon its return, it

finalizes the results to file and displays them.

43

Figure 14: Automation workflow diagram for the multi stage optimization loop, with
context of Ansible input files and output files

44

3.2.3.2 Outer Loop Playbook

The outermost loop begins by calling the middle loop with all possible 2k factors

after which the initial ANOVA test is performed for factor significance. It then

continuities to call the middle loop with a reduced sample space of either statistically

significant factors or best observed factors. The recursive base case checks if the

response variable has continued to improve and if not, terminates calling itself and

returns to main. Another quirk of Ansible (though likely by design) is that there is no

built in way to perform this sort of recursive call. By slightly abusing the exception

handler however we can “infinitely” recursively re-call the same playbook while still

maintaining the overall test counter. This is demonstrated in snippet 10.

Snippet 10 Recursive call of general-benchmark-outerloop.yml keeps calling itself to
perform tests if the previous middle loop’s test performed even better then the last

1 - name: Last Loop Results
2 debug:
3 msg: "Last Loop best was {{last_loop_best}}. Needs to beat {{target_to_beat}}. Was Iteration {{ test_counter }}"
4

5 - name: Check Last Loop Results
6 block:
7 - name: Check Recursive Base Case
8 fail:
9 #Maybe run a set number of times....

10 msg: "Continuing {{test_counter}} < 4"
11 when: "test_counter | int < 4"
12

13 #Or have a target
14 #msg: "Still room to improve {{last_loop_best}} < {{target_to_beat}}"
15 #when: "last_loop_best < target_to_beat"
16

17 rescue:
18 - name: Update Target to Beat
19 set_fact:
20 target_to_beat: "{{ last_loop_best }}"
21 loop_multiplier: "{{ test_counter|int**test_counter|int }}"
22

23 #Recursively call self to keep going
24 - name: Begin New Round
25 include_tasks: general-benchmark-outerloop.yml

45

3.2.3.3 Middle Loop Playbook

This playbook acts as the “middle” loop of the overall process. It begins by

rebooting each device under test to revert the temporary changes of the last iteration.

Although not implemented in this version, reverting non-temporary changes could be

performed right after the reboot as well. After waiting for the reboot it applies the

next set of controls and begins the inner loop general-benchmark-innerloop.yml n

repeat times. The repeat tests increase the power of the 2k full factorial test. Upon

completion of all the repeat tests, a call to the analysis subprocess finds the latest

response variable’s best arithmetic mean and stores it for later comparison in the

recursive playbook.

3.2.3.4 Inner Loop Playbook

Lastly the “inner” loop is responsible for the actual workload task in question.

Prior to beginning the actual workload, an asynchronous call to the metric gathering

subprocess described in Section 3.2.3.5 begins collecting data on the device under test.

The actual workload itself can be anything from training a machine learning model to

a robotic control simulation. Upon completion of each test, the performance monitor

records it’s data which is copied back to the control workstation in an organized

fashion. The inclusion of all the failed when and ignore errors keys in this and other

files is to prevent the entire chain from collapsing should one process fail to run to

completion for whatever reason.

46

Snippet 11 The middle loop playbook is implemented in general-benchmark-
middleloop.yml and is responsible to reset, reconfigure, and prepare for each indi-
vidual factor combination test and it’s repeats performed in the inner loop

1 #This playbook is the "middle" loop
2 - name: Reboot to Defaults. Beginning Factor {{current_factor_list}}

({{ansible_loop.index}} of {{ansible_loop.length}})↪→
3 reboot:
4 become: yes
5 tags: skippable
6

7 #If any configuration changes are not undone with a reboot,
8 #add a playbook here to manually "revert" them
9

10 - name: Set Static Controls
11 include_tasks: general-static-controls.yml
12

13 - name: Set Variable Factor Controls
14 include_tasks: general-variable-controls.yml
15

16 #Run repeats
17 - name: Begin Inner Loop
18 include_tasks: general-benchmark-innerloop.yml
19 loop: "{{ replicates }}"
20 loop_control:
21 extended: yes
22 loop_var: inner_counter
23 index_var: inner_idx
24 tags: workload
25

26 - name: End of Run Best Mean Test {{test_counter}}
27 local_action:
28 module: shell
29 _raw_params: |
30 python best-mean.py 'results/{{ inventory_hostname

}}-results-run{{test_counter}}.csv' <<**RESPONSE VARIABLE**>>
"{{target_to_beat}}"

↪→
↪→

31 register: anova
32 tags: anova
33 #if the last item in loop and not inital run
34 when: "ansible_loop.revindex == 1 and test_counter > 1"
35 changed_when: false
36 ignore_errors: yes
37

38 - name: Update Last Middle Loop Best
39 set_fact:
40 last_loop_best: "{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}"
41 significant_factors_array: "{{anova.stdout_lines[anova.stdout_lines|length

-1].split(\",\")}}"↪→
42 significant_factors_string: "{{anova.stdout_lines[anova.stdout_lines|length

-1]}}"↪→
43 significant_factors_history: "{{significant_factors_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -1]}}']"↪→
44 last_loop_best_history: "{{last_loop_best_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}']"↪→
45 when: "ansible_loop.revindex == 1 and test_counter > 1"

47

Snippet 12 The inner loop playbook implemented in general-benchmark-
innerloop.yml launches the actual desired workload and performance monitoring sub-
system. This is repeated however many times are desired to repeat tests

1 - name: Launch Performance Monitor (Factors {{ current_factor_list }})
2 shell: "./gather_stats.bash <<**PID**>> <<**SAMPLE RATE**>> {{ current_factor_list }}"
3 args:
4 chdir: "{{ experiment_dir }}/"
5 register: results_async
6 poll: 0
7 async: 3600
8 become: yes
9 changed_when: false

10

11 # <<**YOUR WORKLOAD TASK(S) GOES HERE.....**>>
12 # SEE RATELIMIT TEST FOR EXAMPLE
13

14 - name: Stop Everything
15 shell: kill "$(cat gather.pid)"
16 args:
17 chdir: "{{ experiment_dir }}"
18 become: yes
19 ignore_errors: yes
20 failed_when: false
21

22 - name: Wait for Results
23 async_status: jid="{{ results_async.ansible_job_id }}"
24 become: yes
25 register: results
26 until: results.finished
27 retries: 30
28 failed_when: false
29 ignore_errors: yes
30

31 - name: Copy Results
32 fetch:
33 src: "{{experiment_dir}}/{{ inventory_hostname }}-results-verbose.csv"
34 dest: "results/{{ inventory_hostname }}-results-run{{test_counter}}-verbose.csv"
35 flat: yes
36 changed_when: false

3.2.3.5 Metric Gathering Subprocess

In order to collect the necessary performance metrics to perform any sort of anal-

ysis a method was needed to poll the necessary sensors and software counters. Since

many of the desired software counters were stored in the kernel’s proc file system

reading them straight from the command line was simple and efficient enough. Since

bash is the default shell for all the devices tested in Table 2 a shell script was writ-

ten to perform these collections. This comprehensive script was written to gather

the desired statistics per a set interval then perform some basic calculations like the

48

arithmetic mean before cleanly terminating it’s results to a file. Table 5 displays the

currently supported collections which could easily be expanded in future work to in-

clude things like total runtime, input/output wait time, disk utilization or Graphics

Processing Unit (GPU) usage.

CPU PID%µ PID%max system%µ system%max

Memory (MB) PID%µ PID%max PIDmax system%min systemmin

Temperature (C) CPUµ CPUmax

Power (W) CPUµ CPUmax

Network (HW) rxppsµ rxppsmax nicdrop∑ nicdropµ nicdrop%

Network (SW) rxbpsµ rxbpsmax kerndrop∑ kerndropµ

Table 5: Supported Response Variables

Process ID (PID) is the identifier of the main workload processes (all threads)

where “system” is a conglomerate of the user (regular processes), system (kernel

threads), niced (high/low priority process), wa (IO waiting), hi (servicing hardware

interrupts) and si (servicing software interrupts) CPU timers. The power variable

currently depends on the board family. The Raspberry Pi boards do not have a

built in power senor so a power state is returned instead. The NVIDIA boards tested

support on-die power for the CPU, GPU and carrier board though the latter two were

omitted for development time. Since the script is launched in parallel from Ansible it

doesn’t necessarily know which board it landed on which matters for certain sensors.

Therefore as part of the startup sequence (snippet 13) it detects the proper device

family and adjusts accordingly.

49

Snippet 13 The gather stats.bash subprocess automatically detects which device it
is running on to reference the correct sensors. This simplifies the Ansible task to a
single unified one instead of N devices unique ones

1 if [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'Raspberry'];
then DEVICE_FAM=pi;↪→

2 elif [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'Jetson-TX1'
]; then DEVICE_FAM=nvidia-tx1;↪→

3 ...
4 if ["$DEVICE_FAM" == 'pi']; then
5 TEMPERATURE_CPU[$LOOP_COUNT]=$(vcgencmd measure_temp | grep -ow

"[0-9][0-9].[0-9]")↪→
6 POWER_CPU[$LOOP_COUNT]=\$(expr $(vcgencmd measure_clock arm | grep -oP

"([0-9]+)" | tail -1)/1000000)↪→
7

8 elif ["$DEVICE_FAM" == 'nvidia-tx1']; then
9 TEMPERATURE_CPU[$LOOP_COUNT]=$(bc <<< 'scale=1; '$(cat

/sys/devices/virtual/thermal/thermal_zone1/temp)'/1000')↪→
10 POWER_CPU[$LOOP_COUNT]=$(bc <<< 'scale=3; '$(cat

/sys/devices/7000c400.i2c/i2c-1/1-0040/iio_device/in_power0_input)'/1000')↪→
11

12 elif ["$DEVICE_FAM" == 'nvidia-tx2']; then
13 TEMPERATURE_CPU[$LOOP_COUNT]=$(bc <<< 'scale=1; '$(cat

/sys/devices/virtual/thermal/thermal_zone1/temp)' / 1000')↪→
14 POWER_CPU[$LOOP_COUNT]=$(bc <<< 'scale=3; '$(cat

/sys/bus/i2c/drivers/ina3221x/0-0041/iio_device/in_power0_input)'/1000')↪→

Another key component of this script is to adapt to a heavily loaded system. Since

any of the “per second” samples are heavily reliant on a set interval the script will

keep track of the wall clock time between passes and factors it in when doing “per

second” calculations. This is demonstrated on line 16 in code block 14 below.

The bash time keyword returns the “wall clock” or “real” time spent in the sub-

shell contained within the brackets. Inside the brackets are a call to sleep and a

asynchronous call to captureLap which actually polls all the sensors. Meanwhile the

builtin wait holds execution of the main thread until the sleep has finished. The

resulting real time is returned and shuffled around with file descriptors before being

saved to a file for later reference.

50

Snippet 14 Some samples obtained in gather stats.bash are timing dependant (“per
second”) so it uses some bash built in mechanisms to adjust for heavy load drift

1 captureLap{
2 ...
3 #Time sensitive samples
4 RX_PKTS_NOW=$(cat /sys/class/net/$IFACE/statistics/rx_packets)
5 RXPPS[$LOOP_COUNT]=$(bc<<<"scale=0;(RX_PKTS_NOW-RX_PKTS_LAST)/($LOOP_TIME_REAL)")
6 RX_PKTS_LAST=$RX_PKTS_NOW
7 ...
8 }
9 ...

10 exec 3>&1 4>&2 #Preserve the original stdout/stderr
11 while [[-d /proc/$PID]]
12 do
13 #This needs to be as close as possible to SAMPLE_RATE sec for
14 #"per second" calculations to be accurate
15 #As system load nears 100% the loop will likely drift, so try to account for it.
16 { time { sleep $SAMPLE_RATE & captureLap 1>&3 2>&4; wait $!; } } 2>"$tmp/lastloop"
17 LOOP_TIME_REAL=$(cat $tmp/lastloop)
18 done

By default the sample interval is set to one second though it is adjustable. This

is based off a recommendation from NVIDIA as reading their internal sensors too

frequently will incur excessive amount of power consumption as it still utilizes internal

CPU resources [68].

In order to save development time some metrics like CPU usage and memory

were obtained from other processes like ps and top. Since these pre-built applications

already query the same built-in kernel data structures and counters, creating anything

custom would just be re-implementing an existing product. CPU utilization however

proved a little more elusive as the definition seems to flex based upon on the tool

used. the common ps command for example calculates things a little bit differently

then top (from ps man page):

CPU usage is currently expressed as the percentage of time spent running
during the entire lifetime of a process. This is not ideal, and it does not
conform to the standards that ps otherwise conforms to. CPU usage is
unlikely to add up to exactly 100%.

Whereas commands like top provide a more expected behavior with one caveat

that it must be running to begin calculating:

51

%CPU – CPU Usage
The task’s share of the elapsed CPU time since the last screen update,
expressed as a percentage of total CPU time.

While future work could likely remove this subprocess altogether by manually

calculating the metric from /proc/pid/stat, a background top process provides the

core functionality needed.

At the end of each main loop, the results generated from the gather stats.bash

script are compiled and fed into the analysis process discussed earlier in Section

3.2.1. Using this information it selects the factors that had the best desired impact

and returns them in an array for Ansible to re-evaluate at even stronger levels. In

addition the rolling “target to beat” is established here. This best performing factor

result is fed into the next loop as the base case to continue or end the recursion. If

the next loop performs better then this score, increasing the factor levels even more

had a good impact. If the next loop performs worse, increasing the factor levels had

a detrimental affect and the entire workflow will end. Likewise If all the attempted

factors had a “bad” sample mean after the first test compared to the intersection or

“unoptimized” case, nothing is returned ending the entire process. Again the desire or

“good” and “bad” in this case is definable by the researcher by switching the greater

or less than operators.

52

Figure 15: High level metric gathering script (gather-stats.bash) workflow diagram

53

3.2.4 Limiting Factors

Unfortunately, some confounding factors such as power quality, ambient envi-

ronmental conditions, or engineering quality will be not controlled. The Raspberry

Pi family of boards are much more susceptible to these nuisance factors and begin

throttling rather early in some cases [69].

In addition the ANOVA test does not automatically implement any procedural

normality tests like Kolmogroov-Smirnov or Shapiro-Wilk. The normality was instead

validated with graphical methods like normplots and histograms as demonstrated in

Section 4.1.3.

3.3 Specific Application: Edge Network Sensors

We use the automated test framework described in Section 3.2 to execute three

end-to-end experiments. Each test consists of a unique network related workload

with a combination of unique and shared input variables across five different devices

from two hardware vendors. These selected applications not only show the validity

of the methodology but also help answer the trade-offs from miniaturizing traditional

intrusion sensor roles to edge devices. The first test is a hardware only test that

establishes the hardware limit of the Network Interface Card (NIC), a prerequisite

of sorts for the next two tests. If the NIC itself is failing to keep up with real-time

demand, then the application cannot be expected to perform any better.

The sensor roles selected for examination are raw traffic capturing with tcpdump

and signature based Intrusion Detection System (IDS) detection. Suricata is the par-

ticular IDS of choice for this test, chiefly due to its inclusion into the Air Force’s

Cyberspace Vulnerability Assessment / Hunter (CVA/H) network monitoring plat-

form but also for its ability to scale across CPU cores. The specifics for these tests

along with reasoning behind certain decisions and the final results are detailed in

54

Chapter IV.

3.3.1 Experiment Architecture

Figure 16 below outlines the overall end-to-end test architecture using devices

from Table 2. In order to properly simulate external network traffic being passed

to these devices an external generation source was needed. Luckily multiple open

source projects exist that can turn a moderately powered desktop workstation into a

10 gigabit traffic generator given the proper network interface. For purposes of this

test however a multi port 1 gigabit network adapter suited the need. Section 3.3.2

next discusses this further.

An “out-of-band” ad-hoc 802.11 network allows all of the single board computers

to create a mesh to communicate among themselves and the operator workstation.

Wireless chips based on this standard are ubiquitous in single board computers and

are usually part of the System on a Chip (SOC) die itself. While not specifically tested

in this research some interesting scenarios for leveraging a mesh network of sensors

like this is discussed in chapter V (Future Work). This out-of-band connection is

used to relay commands and reporting back to either an operator workstation or

larger collection server. This also allows the sensors to appear transparently on the

target network as only passive listeners, an important fact when hunting a Advanced

Persistent Threat (APT) or perhaps even when trying to get approval just to connect

it to a enterprise.

55

Figure 16: Network monitoring test layout and architecture [82]

Component Version

Ansible 2.8.5

Netmap commit cb68f3db

Tcpreplay 4.3.1

Suricata 5.0.0

libpcap 1.8.1

Tcpdump 4.9.2

Elasticsearch 7.5.0

Kibana 7.5.0

Beats 7.5.0

Table 6: Software Versions Utilized in Testing

56

3.3.2 Traffic Generation

Two open source projects provide the needed functionality to drive the traffic

generator (specs in table 7), netmap and tcpreplay. Netmap is a framework for very

fast packet Input / Output (I/O) from userspace applications. This is accomplished

via a a few steps, mainly intelligent I/O batching, a custom kernel module with

modified network interface drivers, and pre-allocated memory mapped buffers [83].

These techniques allow a researcher or developer to fully utilize modern links up to

40 gigbits per second. Driver support is a bit limited however, with only one non

Intel based chip supported (r8169 out of ixgbe, igb, i40e, e1000, e1000e). Regardless

this project has enabled commodity hardware to achieve something that had been

traditionally reserved for expensive commercial appliances.

Component Value

Architecture x86 64

Cores 24

CPU MHz 2776

RAM 24GB

NIC & Driver 4x Intel igb (PCIe x16)

Distribution Ubuntu 18.04.3

Kernel linux 5.0.0.37

Table 7: Traffic Generator Hardware Specifications

tcpreplay is a project that is used for replaying and editing previously obtained

packet captures. It was originally designed to replay malicious traffic for tuning of IDS

but has evolved to providing background noise and simulating requests to things like

web servers. [84] It fully supports the netmap API as well which provides the much

57

needed optimizations to get packets on the wire with as little meddling as possible

from the host kernel.

Multiple preexisting packet capture datasets exist so there was no need to generate

one. The Canadian Institute for Cybersecurity (CIC) has published a survey and

dataset of their own which contains a good blend of modern attacks on a fairly large

virtualized environment. These datasets also come with attack truth data that can

be used to validate results seen after replaying. [85]

3.3.3 Dataset Preparation

This particular dataset required some conditioning however before it could be

properly replayed over a live wire. When it was first captured, their sensor ma-

chine likely had Large Receive Offload (LRO) and/orGeneric Receive Offload (GRO)

enabled. These receive side optimizations buffer and automatically recombine seg-

mented packets on the network card instead of interrupting the CPU to handle each

one, thereby reducing overhead. These mega packets then get sent to the application

layer and saved in the packet capture as-is with packet sizes that are larger then the

Maximum Transmission Unit (MTU). For purposes of all testing in this work, the

MTU is set the Ethernet default of 1500 bytes.

The problem arises when attempting to replay captures with these gigantic pack-

ets which can be up to the size of the “IP total length” field (216 = 64k bytes).

The transmit side counterpart optimizations TCP Segmentation Offload (TSO) and

Generic Segmentation Offload (GSO) do the same thing in reverse for normal user

applications and could potentially handle the large payloads. The netmap driver by-

passes these optimizations however for finer tuned speed control meaning any packet

larger then the MTU gets dropped before transmission as it’s too big for the buffer

[86].

58

The tcpreplay project includes other tools that can modify packet captures tem-

porarily or permanently . By using the tcprewrite tool in combination with the

fragroute engine it is possible to break any frames larger then the MTU into IP frag-

ments. The fragroute engine handles creating the appropriate headers and the result

is saved as a new ready to replay packet capture [87]

Figure 17: Example showing the same dataset packet before and after artificial seg-
mentation. The new capture now works in other tools properly

Pre-testing also verifies that this segmentation of the dataset has no impact on

signature based alerts, as shown below in Table 8

CIC 2017 IDS Dataset File
Alerts Generated
(Original)

Alerts Generated
(Fixed)

Monday-WorkingHours 16 17
Tuesday-WorkingHours 2,430 2,429
Wednesday-WorkingHours 13 12
Thursday-WorkingHours 2,475 2,702
Friday-WorkingHours 235 240

Table 8: CIC 2017 IDS Dataset alert rates before and after segmenting super jumbo
packets to properly fit in Ethernet MTU

3.3.4 Optimization Factor Selection

Since the goal of the proposed methodology is twofold; one to obtain a desired

metric of performance but also ensure fair use of the hardware it is important to select

appropriate optimization factors to try. By understanding the exact path a packet

takes upon arriving to a linux based device it becomes possible to hone in on possible

59

bottlenecks. Below is a breakdown of the workflow from when a new packet arrives to

final delivery to the proper application. This is built from the perspective of a single

receive queue interface, which applies to all single board computers tested in Table

2. Multiple queue interfaces exist mainly on enterprise servers and can essentially

implement the workflow (# of queue) parallel times. New API (NAPI) was added to

the kernel around version 2.6 as new method of reducing expensive hardware inter-

rupts by combining their asynchronous requests with a period of scheduling friendly

polling.

1. Frame is received by the network adapter

2. Frame is moved (via Direct Memory Access (DMA)) to a RX ring buffer in
kernel memory

3. The NIC notifies the system of that there is a new frame ready for processing
by raising a hardware Interrupt Request (IRQ)

4. The hard IRQ is cleared and the pending data is scheduled to be moved with
NAPI software based IRQ

5. The kernel executes NAPI driver code which drains the RX ring via “software
IRQ”

6. The software IRQ place the frames into a kernel data structure called a “skb”
(socket buffer)

7. (if enabled) Receive Flow Steering (RFS) hashes the incoming traffic to keep
similar flows together for cache coherency

8. (if enabled) Receive Packet Steering (RPS) selects and bins traffic to a CPU for
further processing.

9. (if enabled) cores keep each other active via Inter-Processor Interrupt (IPI)
preventing backlogs from piling up

10. Each backlog queue decodes new frames into appropriate protocol buffer. Op-
tionally delivers raw bytes to packet tapping software

11. Applications expecting traffic are notified and they read packets from kernel
memory via syscall

60

Figure 18 below is a workflow diagram showing each step just mentioned. This

figure will be important and referenced many times in Chapter IV specific test factor

selections.

Since the fundamental unit to the kernel is a “packet”, regardless of it’s payload

size the primary network generation control measure is chosen as Packets Per Second

(PPS). For purposes of this experiment, all links considered will be gigabit Ethernet

(1000BASE-T) based. This is due to it being the de-facto supported link in all

the boards tested and availability of external hardware. Considering this and the

minimum overhead required to send a packet (shown in figure 19) the maximum

packet rate and thus ultimately the interrupt rate is:

1, 000, 000, 000 bits/sec

(84 bytes ∗ 8 bits/byte)
= 1, 488, 096 Packets Per Second (PPS) (8)

Figure 19: Range of possible Ethernet frame sizes and associated overhead [90]

While limiting the packet size to the absolute minimum is possible via Netmap

this does not simulate realistic traffic, except in perhaps flood or denial of service type

attacks which are outside the scope of this research. The average packet size seen by

The Center for Applied Internet Data Analysis (CAIDA), an organization dedicated

61

Figure 18: Recieve packet flow through the linux kernel, post NAPI implementation
(2.6+) [88] [89]

62

to conducting network and infrastructure research, is anywhere from 750-900 bytes.

They obtain their data via multiple passive taps on large Internet backbone sites [91].

One such observation event shown in Figure 20 in early 2019 saw 2.5 billion packets

in an hour with a mean IPv4 packet size of 891. According to CAIDA, IPv6 still only

accounts for about 11% of the traffic and will not be considered at this time [91].

Figure 20: NYC Internet Backbone on 2019-01-17. 1 Hour of observed packet lengths
[91]

Using netmap to generate a sample of 10 million random packets, the average

packet length ends up around 783 bytes. While its distribution of sizes is less then

desirable as it heavily favors packets sized between 640 - 1279 (figure 21), the CIC

dataset suffers from a similar problem with an average of 890 bytes per packet favoring

sizes 40-79 (mostly TCP ACKs) and 1280+ (mostly fragmented continuations) [85].

Regardless, all of these observations are inline with previous research showing real

world interarrival times and burst lengths for Internet / Ethernet [92] and application

63

traffic (e.g. WWw and FTP) [93] behave as fractal and self-similar, failing to fit

traditional “normal-like” distributions like Poisson. Regardless the robust analysis

method described in Section 3.2.1 should be able to handle this potential adversity.

Figure 21: Test traffic packet length distribution, randomly generated versus CIC
dataset

Considering all the above the goal is to fully saturate the gigabit based interface

with reasonable packets, the following “perfect transmission” calculation yields an

upper limit of the physical medium itself that will be used in further testing [90].

1, 000, 000, 000 bits/sec

(783 bytes ∗ 8 bits/byte)
= 159, 624PPS (9)

The traffic generation machine has a few other input variables of its own. Since

the modified netmap driver is interfacing directly with the hardware to send packets

at line speeds, it does not interface well with typical kernel optimizations. This means

disabling GSO, TSO, and TX checksum offloading as leaving them on may lead to

64

“dropped” TX packets. [86] In addition, speed throttling mechanisms like Ethernet

pause frames (IEEE 802.3x) must be disabled to prevent the sending side from slowing

down despite the congestion. Lastly as discussed earlier in section 3.3.4 the initial

PPS is also set at 160,000.

Snippet 15 The traffic generator machine is shared with the Ansible host, which can
perform actions on itself. These “Local actions” are re-performed for good measure
at the begging of each middle loop in tandem with the other static re-configurations
in general-static-controls.yml

1 - name: Disable Flow Control On Send Interface
2 local_action:
3 module: shell
4 _raw_params: sudo ethtool -A {{ send_interface }} autoneg off tx off rx off
5 args:
6 warn: false
7 register: local_result
8 failed_when: "'Cannot' in local_result.stderr"
9

10 - name: Disable Offloads on Send Interface
11 local_action:
12 module: shell
13 _raw_params: "sudo ethtool -K {{ send_interface }} gso off tso off tx off"
14 args:
15 warn: false

3.4 Summary

In summary, this chapter introduced and discussed a general methodology that

utilizes a robust 2k Full Factorial design to optimize and benchmark various workloads

for various edge type single board computers. Furthermore a specific use case is

prepared to evaluate five different commodity device’s performance with respect to

three network monitoring applications. Next in Chapter IV the specific results are

presented and discussed in detail.

65

IV. Results and Analysis

4.1 Methodology Validation

Examining select results from the three network monitoring tests it is possible

to validate the three main design points detailed in Chapter III. The full network

monitoring optimization factor selection, results, and analysis is provided in Section

4.2. An annotated guide on the layout of all the results figures in this chapter is

available in Appendix A.

4.1.1 Automation Validation

The automation design was driven by the fact edge devices come in a wide array

of capability and cost. In other words, it needed to be easy to use, modify, and scale

as appropriate. It also needed to be repeatable and support a consistent baseline.

While proving something is ”easy” is not very straightforward, a few qualitative

observations were taken. Figure 22 below shows approximately the amount of unique

lines (including white space) each test performed contains. In all three cases the

amount of reusable code is 90% or greater. It only took 142 lines on average to

swap the workload, all the variables, and a few housekeeping items. This does not

even factor in the very generous use of newlines in the human readable Yet Another

Markup Language (YAML) playbooks (i.e. a lot of lines only have two words on them

like become: yes or ignore_errors: yes)

66

Figure 22: Breakdown of unique lines of code per test. Highlights the ease of swapping
in different test workloads

The nature of how Ansible works handles the scale and repeatability dilemma,

since the tool is typically used in large data centers or cloud environments where the

entire enterprise could almost be ephemeral [8]. Likewise with every single step taken

documented in a playbook the baseline is predictable. Figure 23 below highlights how

many individual tests were run when building all the results seen later in this chapter.

Each ”replicate” in this included fully starting, stopping and recording the result of

whatever workload was being tested and each device ran in parallel. While this

particular number of tests (almost 9,000) may or may not be impressive, a scenario

with say 10 devices testing in parallel would increase the number of tests completed

to almost 18,000 in the same time frame.

4.1.2 Multi-Stage Optimization Validation

The Suricata test showed the most clear evidence of the optimization process

working since in all test cases each device dropped a substantial amount of traffic

initially. Using one such result as an example, in Figure 24 below the TX2 was

observed initially dropping 7.3 million packets out of the 14.1 million (51%) it was

sent. After the first optimization pass this was reduced to only 4.4M, a 41% reduction.

67

Figure 23: Demonstrates how many individual tests were run when building all the
results in Chapter IV. Highlights the automation portion of the implementation works
well

A second and third pass both saw another 10% reduction to 4M and 3.6M respectively.

The process came to an end after the fourth attempt saw no further improvement.

In the end this test saw almost a 50% improvement of the devices ability to handle

the dataset traffic, going from 7.3M packets dropped to only 3.6M. A similar result

was seen in the other devices tested as well, full details of which are available in

Section 4.2.3.2 with factor discussion and further test details in Section 4.2.3.

68

Figure 24: The optimization portion of the Suricata test is observed selecting the
best runmode (A) and Max Pending Packets (B) after multiple iterations. The per-
formance trend line shows the progression of optimization from start to finish

Similarly the packet capture initial unoptimized scores had a large sum of dropped

packets. Figure 25 shows the TX1 dropped 1.7 million packets out of 3.3 million

(51%) and the XAVIER dropped 41,910 out of 4.8 million (1%). After the first

iteration of optimization the amount of dropped packets reduced to zero for the

XAVIER but remained at 42% for the TX1. Since the TX1 still had remaining

memory not being used, a second and third iteration of the loop continued on this

device and found the optimal buffer size to reduce drops to zero. The final result stored

for each individual device was its maximum sustained Packets Per Second (PPS) at

this optimal buffer configuration. The full discussion of this test is in Section 4.2.2

with results available in Section 4.2.2.2.

69

Figure 25: The optimization portion of the packet capture test found the optimal
libpcap buffer size after multiple iterations without over-sizing. The performance
trend line shows the progression of optimization from start to finish

4.1.3 Analysis Validation

While the analysis process working is almost implied when discussing the optimiza-

tion results, a deeper look reinforces the confidence that the process as implemented

will be able to handle diverse situations. Most of the gray area resides when he as-

sumption of normality is violated and the backup analysis is triggered. As discussed

in Section 3.2.1.2 this test can be reduced to a simple “trial and error” approach to

optimization.

For example, with the introduction of the Canadian Institute for Cybersecurity

(CIC) traffic dataset the lack of randomness seen from the traffic generator begins

to influence and break down the normality assumptions of the network based tests.

Figure 26 below shows the graphical normality for the XAVIER’s interface rate test.

While not perfect, the random packet generation of netmap as discussed in 3.3.2

supports an argument for normality.

70

(a) Histogram, Q-Q Plot (b) Normplot of Effects

Figure 26: XAVIER Interface Normality Tests. The network traffic was randomly
generated, and part of this is shown through in the response variable nearly fitting
the model lines

Figure 27 afterward shows the graphical normality tests for the XAVIER’s Suricata

test. The response variable fails to fit the assumption model, likely due to a break

down when switching from randomly generated traffic to repeatable dataset traffic.

This will ultimately manifest itself as either a Type I (false positive) or Type II (false

negative) error.

(a) Histogram, Q-Q Plot (b) Normplot of Effects

Figure 27: XAVIER Suricata Normality Tests. The Dataset packet captures were
replayed, and thus the response variable poorly fit the normality model

While the Analysis of Variance (ANOVA) test is still ran after the end of the

71

first optimization loop, it’s accuracy is questionable when observing the estimated

effects seen in the XAVIER Suricata result (Figure 28). Factor combination AB had

the lowest sample mean but had an erroneous positive estimated effect. This type of

behavior is evident on the other replayed traffic test results as well. Despite this, the

result of the ANOVA was still recorded and the backup mode took over identifying

the good impact AB had regardless.

Figure 28: Caption

Validating the analysis process itself is more straightforward. The actual Python

code implemented in anova.py was validated as accurate by comparing the output

between it and some professional software. Additionally we can observe it working as

intended in the result of the TX1 packet capture test shown in Figure 29. Pretesting

72

had shown that only increasing the libpcap buffer size (Factor A) would greatly reduce

the amount of traffic dropped by all the devices. The ANOVA process successfully

identified this lone single factor as significant and did not erroneously also select the

combinations that had it (e.g AB, AC) even though they too showed a significant

boost. The full results of this and similar tests are in Section 4.2.2.2.

Figure 29: The ANOVA process successfully identified Factor A as the only signif-
icant factor of the TX1 packet capture test and did not erroneously also select the
combinations that had it (e.g AB, AC) even though they too showed a significant
boost

4.2 Network Monitoring Results

4.2.1 Interface Ratelimit Test

The first and perhaps most important test of the hardware is the interface ratelimit

test. Generally speaking, this test establishes how well the Network Interface Card

(NIC) and Central Processing Unit (CPU) packages balance the load of oncoming

network traffic. Specifically speaking, this test establishes a macro benchmark of how

well the CPU handles interrupts from the NIC and further processes incoming bytes

to their destination.

Since the rate of incoming traffic to a network sensor is out of its control, it is

not unusual for more packets to arrive then can be processed. If at any point the

network interface driver is filling its circular RX buffer faster then it can be emptied,

73

information will be lost as an “interface drop.” The goal of this test is to establish

the maximum rate packets can arrive (PPS limit) and highlight which parts of the

processing pipeline can be optimized to reduce interface drops.

4.2.1.1 Selected Factors

Reexamining the workflow shown in figure 18, there was an assortment of possible

variables to tune. Some of them were simple on/off toggles (like enabling Receive

Packet Steering (RPS) and others were a scaling window (like backlog queue size)

at various points in the path. Based upon suggested tuning in the Suricata official

documentation [47], High speed vendor recommendations [94] [95], the Linux kernel

documentation [96], and other privately funded research [89] the following factors

were chosen initially.

Static Controls

Disabling Large Receive Offload (LRO) and Generic Receive Offload (GRO) on the

sensors not only prevents the capture issues seen in section 3.3.2, but is recommended

by the official Suricata documentation. The auto combination of similar traffic while

fine for typical end clients strips off too much metadata for certain signatures to work

properly [47]. While these changes are not necessarily required for the ratelimit test,

making them here will provide a better foundation for future tests.

In addition, early tests had shown that multi receive queue interfaces like the

Broadcom tg3 performed poorly compared to their single queue counterparts like the

Intel e1000e. This is likely due to a hardware limitation of the interrupt handler

on ARM boards [97]. Since each queue has its own IRQ handler, most modern x86

multi processor systems have an advanced programmable interrupt controllers like IO-

APIC that allow each one to be “re-mapped” to different cores. For the tested ARM

based boards, the more limited interrupt handlers used like GICv2 lack any method

74

of remapping to different cores, meaning all interrupts will be bound to the CPU

core that booted the system, usually CPU0 [98] [97]. Thus a multi queue interface

ends up with multiple hard IRQs all mapped to the same core setting the stage for

an interrupt storm. By forcing the number of active queues in the driver to 1 this

scenario can be avoided.

Another option is enabling RPS which attempts to load balance incoming traffic

processing on a multi core system once the driver has fully delivered it to a Socket

Buffer (skb) (item 7 in figure). This is accomplished by a hashing and sorting al-

gorithm that determines which CPU should process the data. Each core then keeps

the other informed via a Inter-Processor Interrupt (IPI) that new bytes have arrived

for processing. [96] RPS is disabled by default and can be enabled on a per CPU

basis with a bitmask. The official recommendation is to enable it on every core not

handling hardware interrupts [96] [94] which as seen above is CPU0. Three of the

devices under test have four cores, which leads to a bit mask of 0xE (1110) where

CPU0 is the least significant bit. The TX2 has six and the Xavier has eight cores

however requiring two more unique masks (0x3E & 0xFE respectively). A simple

entry in the inventory can account for each devices unique definition of what “high”

means for this factor.

1 tx2:
2 capture_interface: eth1
3 send_interface: eth6
4 line_pps_limit: 160000
5 rps_mask: 3E #0011 1110 (6 cpu total, CPU0 handling IRQ)

Surprisingly, initial tests had shown (in Figure 30 below) RPS very positively

affected the NVIDIA boards while it quite negatively affected the RPi boards. Upon

further investigation this is likely due to the overhead associated with calculating the

hash needed to load balance traffic across multiple cores. This overhead was seen

75

early on as a problem after RPS was introduced, so some vendors began to offload

this calculation to the hardware. [99] The RPi boards built-in Ethernet port comes

with rather limited drivers and lack this capability where the Intel external cards on

the TX1 and TX2 do not. The Xavier is using it’s built in port but is fast enough

the effect is not seen. With these stark contrasts RPS was selectively enabled as a

static control where it made sense.

As another important initial test, the Rx Ring buffer is also scalable on some

devices. Despite recommendations from enterprise vendors like Red Hat [100] and

Mellanox [95] another initial test (also shown in Figure 30 below) showed increasing

the Rx Ring size made a very large negative impact on the two supported devices.

It is speculated this is related to a mismatch created between the hardware buffer

and the CPU cache sizes. While this memory resides in the kernel itself the ability

to control it is limited by the NIC and its driver [89]. The two Intel drivers tested

(igb, e1000e) support it but the integrated drivers (eqos, lan78xx and bcmgenet) did

not. Future work could retry this test to seek out a potential ”sweet spot” for these

buffers but it was ultimately removed due to only 2 of 5 devices supporting it.

76

Figure 30: An initial interface test showed disparity the effect enabling RPS had, in
addition to the negative impact of RX-Ring resizing

Lastly in order to observe the peak performance of these devices a few unique

toggles to ensure they are in “full power” mode. As an important distinction, these

are not overclocking anything beyond factory specifications but rather removing fac-

tory power saving defaults. For the Raspberry Pi3B+, increasing the temp soft limit

increases the time it’s CPU runs at full clock before dialing back to prevent over-

heating. The hard limit is 85 C and this value could likely be tested even higher

by a bold researcher [69]. (The RPi4 boards currently do not implement any similar

system) The NVIDIA boards have a more rigid power profile definition that tightly

controls the power consumption. It does this by toggling entire cores and subsystems

on and off while limiting clocks substantially. The “MAXN” mode ensures all cores

are online and at maximum frequency [70]. Other primary modes include a 10W,

15W, and 30W power cap with various sub modes that enable or disable things like

Vision Accelerators and Deep Learning Accelerators.

77

1 - name: Set Receive Offloads
2 command: "ethtool -K {{ capture_interface }} lro {{ lro_status }} gro {{ gro_status }}"
3 become: yes
4

5 #Multiple rx queues dont make much sense on small boards where the IRQs cant be remapped
6 #the SMP affinity for all of them hits the same core, making it worse
7 - name: Limit Number of Hardware Queues
8 shell: ethtool -L {{capture_interface}} rx 1
9 become: yes

10 ignore_errors: yes
11 register: queues_result
12 failed_when: "'Invalid argument' in queues_result.stderr"
13

14 - name: Bump RPi Throttling Temp (3B+ only)
15 lineinfile:
16 path: /boot/config.txt
17 regex: "temp_soft_limit="
18 line: temp_soft_limit=70.0
19 when: "'nvidia' not in group_names"
20 become: yes
21

22 - name: Set MAXN Power Profile on NVIDIA Boards
23 shell: |
24 nvpmodel -m 0
25 jetson_clocks
26 become: yes
27 when: "'nvidia' in group_names"

Variable Controls

Five unique variable factors were chosen for this test and are detailed below.

Factor A: New API (NAPI) Budget

The NAPI budget determines how much processing time can be spent among all

the device driver polling structures, where each interface and each queue (rx/tx) is

considered a structure. The driver poll is typically responsible for draining the RX

ring and moving the received bytes further into kernel memory, into a struct called

a skb. (Item 5 on figure) Increasing this may only prevent drops on a multi-queue

system but may also prevent the sensing interface from hogging all the available

“network related” CPU time from other non-sensing interfaces. [89]

78

1 ###FACTOR A###
2 #Default 300 / Test Level 1200
3 - name: (Factor A) Increase NAPI Budget to {{NAPI_budget[1]|int * loop_multiplier}}
4 shell: sysctl -w net.core.netdev_budget={{NAPI_budget[1]|int * loop_multiplier}}
5 become: yes
6 when: "'A' in current_factor_list"

Factor B: Max Kernel Backlog (Pending Packets)

The Max Kernel Backlog (item 8 in figure) is simply how many packets can be backed

up waiting on a CPU. The larger the number, the more tolerance for latency is implied

in exchange for throughput as some packets may be waiting awhile [89] [95].

1 ###FACTOR B###
2 #Default 1000, test level 262144
3 - name: (Factor B) Set Kernel Max Backlog to {{backlog[1]|int * loop_multiplier|int}}
4 shell: sysctl -w net.core.netdev_max_backlog={{backlog[1]|int * loop_multiplier|int}}
5 become: yes
6 when: "'B' in current_factor_list"

Factor C: Socket Receive Buffer Size

The last stop in the kernel processing of packets is the appropriate application layer

protocol queue. (Item 9 in Figure 18) Here packets await an application to consume

them. For purposes of the interface rate test these packets have no consuming appli-

cation, however if they fit into a queue at this point they are no longer considered a

“drop.”

1 ###FACTOR C###
2 - name: (Factor C) Set Socket Recieve Max Buffer Size to {{rmem_max[1]|int *

loop_multiplier|int}}↪→
3 shell: sysctl -w net.core.rmem_max={{rmem_max[1]|int * loop_multiplier|int}}
4 become: yes
5 ignore_errors: yes
6 when: "'C' in current_factor_list"

Factor D: Receive Flow Steering

Receive Flow Steering (RFS) (item 6) is used in conjunction with RPS and helps

79

solve some data locality issues by steering kernel processing of packets to the CPU

where the application thread consuming the packet is running, thus increasing cache

hit rates [89] [96]. This process has two main control variables, the size of the hash

table that tracks all the individual socket flows and how many flows are tracked per

receive queue. For a single queue system, it’s recommended they be the same value.

In this test, since there is no process actually consuming packets it is unlikely to

make an impact. The socket flow table is informed by recvmsg and sendmsg system

calls from a userspace application and in the absence of any of these, RFS will fall

back to plain RPS [96].

1 ###FACTOR D###
2 Default off / Test level 32768 (for both)
3 - name: (Factor D) Set Receive Flow Steering (RFS) Table Size to

{{rfs_table[1]|int * loop_multiplier|int}}↪→
4 shell: |
5 sysctl -w net.core.rps_sock_flow_entries="{{ rfs_table[1]|int *

loop_multiplier|int }}"↪→
6 echo "{{ rfs_flow_cnt[1]|int * loop_multiplier|int }}" >

/sys/class/net/{{capture_interface}}/queues/rx-0/rps_flow_cnt↪→
7 become: yes
8 ignore_errors: yes
9 when: "'D' in current_factor_list"

Factor E: NAPI Weight

The NAPI weight adjusts how much time (out of budget set in Factor A above) can

be spent in the “backlog” phase of packet processing (item 9 in Figure 18). Not to

be confused with the driver poll, which happens earlier and should have a hard coded

weight of 64. This poll takes packets out of a per CPU queue and determines which

protocol handler it belongs in. If RPS is enabled each CPU has it’s own queue to

work on, otherwise the same CPU that handled the initial IRQ sees it through to the

end [89].

80

1 ###FACTOR E###
2 - name: (Factor E) Set Backlog Loop Weight to

{{backlog_weight|int*loop_multiplier|int}}↪→
3 shell: sysctl -w net.core.dev_weight={{backlog_weight|int*loop_multiplier|int}}
4 become: yes
5 ignore_errors: yes
6 when: "'E' in current_factor_list"

4.2.1.2 Test Results

The TX1 (Figure 32) saw negligible optimization gains (4%). This is likely due to

saturation of the single CPU core responsible for servicing network interrupts. The

TX2 (Figure 33) saw a 13% decrease in dropped packets by increasing backlog poll

weight (E) to 1,200, but this was a diminishing return and setting any higher caused

this boost to regress. Like the TX1, the CPU core handling the NIC interrupt was

completely saturated. This is shown in Figure 31

Figure 31: The TX1 and TX2 CPU responsible for NIC interrupts was near 100% for
the interface test

The XAVIER (Figure 34) and RPi4 (Figure 36) devices appear to lack any signifi-

cant bottleneck as their unoptimized sample means were 194 and 33 packets dropped

per second respectively. At the line rate of 160k PPS this equates to a negligible

0.0012% and 0.0002% of the traffic being missed. The Xavier did further improve this

81

to 127 packets dropped by increasing the kernel backlog (B) and RFS table size(D).

The RPi3b+ saw a small but statistically significant 2.2% reduction in dropped pack-

ets with factor combo BC (Figure 35). Further improvements beyond this are unlikely

due to the Ethernet riding over the 480 mbps USB 2.0 bus which has a theoretical

max of 76k PPS at the generated traffic avg size:

480, 000, 000 bits/sec

(783 bytes ∗ 8 bits/byte)
= 76, 628 pps (10)

Overall, for the TX1 and TX2 the bottleneck seems to remain at bottom half of

softIRQ polling loop (item 4 in Figure 18). Only the top half is load balanced across

the cores with RPS and RFS. Adding more receive queues will not help either as the

ARM IRQ handler will still only map to one core [97]. Overclocking the CPU would

likely further reduce these drops but was outside the scope of research.

82

Figure 32: The TX1 saw negligible optimization gains (4%). This is likely due to
saturation of the single CPU core responsible for servicing network interrupts

83

Figure 33: The TX2 saw a 13% decrease in dropped packets by increasing backlog
poll weight (E) to 1,200, but this was a diminishing return and setting any higher
caused this boost to regress. Like the TX1, the CPU core handling the NIC interrupt
was completely saturated

84

Figure 34: The Xaiver appears to lack any significant bottleneck as its unoptimized
sample mean was 194. At the line rate of 160k PPS this equates to a negligible
0.0012% of the traffic being missed. The Xavier did further improve to 127 packets
dropped by increasing the kernel backlog (B) and RFS table size(D)

85

Figure 35: The RPi3b+ saw a small but statistically significant 2.2% reduction in
dropped packets with factor combo BC (Figure 35). Further improvements beyond
this are unlikely due to the Ethernet riding over the 480 mbps USB 2.0 bus

86

Figure 36: The RPi4 appears to lack any significant bottleneck as its unoptimized
sample means was 33 packets dropped per second. At the line rate of 160k PPS this
equates to a negligible 0.0002% of the traffic being missed.

87

4.2.2 Traffic Capture Ratelimit Test

Traffic capture is in a sense the most raw and fundamental tool when it comes to

network monitoring. As discussed in Chapter 2, other more sophisticated tools come

with a larger overhead and can easily fail to keep up at network burst speeds [101].

With a machine capable of capturing 100% of the traffic passed to it, those bursts can

be queued and replayed or ingested at a later, quieter time. If a packet is missed in

the initial capture, there are no second chances and any potential proof or indicator

held in that instantaneous moment is gone.

4.2.2.1 Selected Factors

Despite the lower overhead of simply writing packets to disk, keeping up with

line speeds largely depends on the medium to which it is being written or stored

[46]. For purposes of this test, only the “on board” storage will be considered as a

destination since external drives carry too many variables and may be impractical in

large scale deployments. As an example writing to a traditional spinning HDD can

be influenced by things like spinning speed, cache size, platter density, fragmentation,

controller load and bus connection type. The NVIDIA boards tested all utilize a built

in eMMC 5.1 based flash storage [102] while the RPi leverage similar but considerably

slower SDHC flash storage [103]. Since the bottleneck of this test is predictably going

to be storage, a few simple tests will help better inform expectations. A “raw”

maximum write speed test can be performed with the command:

dd if=/dev/zero of=disktest.img bs=1G count=1 oflag=dsync

Where 1GB of zeros is forced to be physically written (no caching) to the current

directory. The result of this preliminary test is listed in Table 9 below which is then

used in the consideration of further factors.

88

TX1 TX2 XAVIER RP3B+ RPi4

Technology eMMC eMMC eMMC SDHC SDHC

Class 5.1 5.1 5.1 UHS-I UHS-III

Theoretical Write Speeds 125 MB/s 125 MB/s 125 MB/s 10 MB/s 30 MB/s

Observed (3 sample avg) 60 MB/s 99 MB/s 110 MB/s 15 MB/s 23 MB/s

Table 9: Storage Speed Observations

Static Controls

Since disk I/O is very precious for this test, swap was disabled to help prevent unex-

pected writes. This is especially important for the devices with lower RAM like the

RPis, since buffer sizes are likely to balloon to near RAM capacity the swap would

likely become active. In addition, since the interface PPS rate was inherited from

the first test, carrying over any positive configurations is important. These values are

now implemented statically with varying levels as defined in the inventory.yml file.

1 #When Disk I/O is very important. Also lifetime of flash...
2 - name: Disable Swap
3 shell: swapoff -a
4 become: yes
5

6 ### VALUES INHERITED FROM PREVIOUS TEST###
7 #Former Factor A from interface test
8 - name: Increase NAPI Budget to {{NAPI_budget_best}}
9 shell: sysctl -w net.core.netdev_budget={{NAPI_budget_best}}

10 become: yes
11

12 #Former Factor B from interface test
13 - name: Set Kernel Max Backlog to {{backlog_best}}
14 shell: sysctl -w net.core.netdev_max_backlog={{backlog_best}}
15 become: yes
16

17 - name: Enable / Set Receive Packet Steering Affinity with Mask {{ rps_mask }}
18 shell: "echo {{ rps_mask }} >

/sys/class/net/{{capture_interface}}/queues/rx-0/rps_cpus"↪→
19 become: yes

Variable Controls

89

Utilizing the interface PPS results from the previous test it is possible to observe the

maximum data rate that would be expected of the underlying storage. As shown in

the last row of Table 10 below, each device is projected to develop a deficit of packets

waiting to be written to disk. At this point the packet will either get dropped because

of a full CPU backlog or a full socket queue (items 8 and 9 in Figure 18 respectively).

Packets waiting in the socket queue for consumption (in this case by tcpdump via

libpcap) must move to one last buffer in userspace memory after which point they are

“guaranteed” to be handled eventually. This leads to three variable factors which are

detailed below.

TX1 TX2 XAVIER RP3B+ RPi4

Interface PPS 109k 149k 160k 70k 160k

Packet Size Avg 780 bytes

Expected bitrate (Mbps) 680 920 998 430 998

Expected Datarate (MB/s) 85 115 125 54 125

Expected Datarate vs.

Observed Storage Speed
-25 MB/s -16 MB/s -15 MB/s -39 MB/s -102 MB/s

Table 10: Storage Demand Observations

Factor A: Libpcap Buffer Size

Thus expanding the libpcap userspace buffer size in Factor A may buy enough time

for larger disk I/O requests to complete during periods of calmer, smaller packet

sizes in the generated sample. Factors B (Protocol / Socket Buffer), C (Backlog Poll

Weight), and D (RFS Table Size) are repeats from the interface test. They may play

a larger role in this test now that an application is actually consuming packets. Line

8-11 in the snippet below leverages the “facts” subsystem in Ansible to ensure the

desired buffer isn’t more then the available memory. Line 16-19 likewise ensures the

desired buffer size is not larger then what the library supports.

90

1 ###FACTOR A###
2 - name: (Factor A) Set libpcap Buffer Size to

{{libpcap_buffer|int*loop_multiplier|int}}↪→
3 set_fact: #Stored as KiB
4 libpcap_buffer_size: "{{ libpcap_buffer|int * loop_multiplier|int }}"
5 when: "'A' in current_factor_list"
6

7 #Limit based on available
8 #1000 MB = 976563 KiB
9 - name: (Factor A) Cap Oversized Buffer for Hardware

10 set_fact:
11 libpcap_buffer_size: "{{ 900 *

ansible_facts['memory_mb']['nocache']['free']|int }}"↪→
12 when: "libpcap_buffer_size | int > 977 *

ansible_facts['memory_mb']['nocache']['free']|int"↪→
13

14 #libpcap uses a 32 bit (signed?) int
15 #https://github.com/the-tcpdump-group/libpcap/issues/651
16 #2048 MB = 2000000 KiB
17 - name: (Factor A) Cap Oversized Buffer for Software
18 set_fact:
19 libpcap_buffer_size: "2000000"
20 when: "libpcap_buffer_size | int > 2000000"

Factor B: Socket Queue Size

This factor is a repeat form the interface ratelimit test. Now that there is an appli-

cation actually consuming packets, it may make a larger appearance.

Factor C: Backlog Poll Weight

This factor is a repeat form the Interface Ratelimit test. Likewise, this factor didn’t

have as big of an impact as expected in the interface test. Repeating it here may

show otherwise.

Note: Originally this test had a fourth factor (RFS Table Size) which was inherited

form the previous test. Later re-evaluations removed this factor with the exception

of the RPi3b+ which was performed with all 4.

Factor D: RFS Table Size

This factor is a repeat form the interface ratelimit test. Now that there is an appli-

cation actually consuming packets and informing the hashing algorithm which cache

is hot or not for a given flow, a larger presence should be felt then previous.

91

4.2.2.2 Test Results

Somewhat predictably, increasing the libpcap buffer size (A) made a significant

difference in all five tests, dropping the packets lost to zero on all three NVIDIA

boards (Figures 37,38,39). The TX1 required a buffer size of 2GB before zero packets

were lost, while the faster disk speed of the TX2 and XAVIER were able to keep up

with only a 256 MB buffer.

The RPi3B+ (Figure 40) saw a 51% reduction in lost packets with a 512MB buffer.

Despite having 1GB of ram, increasing the buffer any larger then this caused kernel

instability. The RPi4’s (Figure 41) most significant factor was also A, however when

attempting to use any buffer larger then 256MB caused a kernel panic. It is unclear

if the driver or other part of the software was responsible as no log is generated and

the device becomes completely unresponsive (black screen).

92

Figure 37: The TX1 required a buffer size of 2GB before zero packets were lost

93

Figure 38: The TX2 was able to keep up with only a 256 MB buffer

94

Figure 39: The XAVIER was able to keep up with only a 256 MB buffer

95

Figure 40: The RPi3B+ saw a 51% reduction in lost packets with a 512MB buffer.
Despite having 1GB of ram, increasing the buffer any larger then this caused kernel
instability

96

Figure 41: The RPi4’s most significant factor was also A, however when attempting
to use any buffer larger then 256MB caused a kernel panic. It is unclear if the driver
or other part of the software was responsible as no log is generated and the device
becomes completely unresponsive (black screen)

97

4.2.3 Suricata Ratelimit Test

Live signature based detection is another of the fundamental tools in a network

security sensor. While they mostly reactionary and typically wont prevent novel

intrusions, they nonetheless present a hurdle to an attacker. (i.e. Re-using certain

tools or exploits are likely to cause an alert) They are also typically one of the first

stops on a network monitoring pipeline, after raw traffic mirroring [63] [64]. Suricata

is the particular Intrusion Detection System (IDS) of choice for this test, chiefly due

to its inclusion into the Air Force’s Cyberspace Vulnerability Assessment / Hunter

(CVA/H) network monitoring platform but also for its ability to scale across CPU

cores.

4.2.3.1 Selected Factors

As discussed in Section 2.2.2, building a fair benchmark for a IDS can be quite

nebulous. These tools have a large array of tunable controls that requires considera-

tion of hardware available, with the most significant and intractable factor being the

signatures enabled [104]. In Suricata the Detect phase takes up to 80% of the engines

overall CPU processing effort and therefore should be limited to only packets worth

inspecting [1]. The default rule set itself is plagued by poorly written community rules

[105]. Future work is proposed in Chapter V that would address this large variable

but for purposes of this test is outside the scope.

Static Controls

The “default” Emerging Threats ruleset is used in all Suricata tests. This ruleset

contains 25,806 signatures with 20,714 enabled by default [106]. In addition by pre-

processing the benign dataset control file (CIC-Monday-WorkingHours-Fixed.pcap)

in pcap offline mode, 103 noisy rules were manually suppressed which greatly reduces

false positive alerts in later testing. The full exact configuration files used are available

98

on the code repository [9]. The particular dataset packet capture replayed for this

test was the CIC-Thursday-WorkingHours-Fixed.pcap as it contained the most alerts

and best blend of attacks (Brute force, cross site scripting, SQL injection, Insider

infiltration, port scanning) [85]

CIC 2017 IDS Dataset File
Alerts Generated

(No supression)

Alerts Generated

(Suppressed)

Monday-WorkingHours-Fixed.pcap 11,903 17

Tuesday-WorkingHours-Fixed.pcap 7,055 2,429

Wednesday-WorkingHours-Fixed.pcap 15,532 12

Thursday-WorkingHours-Fixed.pcap 29,711 2,472

Friday-WorkingHours-Fixed.pcap 8,379 240

Table 11: CIC 2017 IDS Dataset alert rates before and after suppressing noisy rules
in threshold.config

The default packet ingestion engine is left as AF PACKET. Suricata also supports

other highly specialized methods of ingestion with special hardware like the Endace

DAG network capture card and software like PFRING and Netmap. Typically these

options would be seen in very high throughput environments where the hardware

would otherwise struggle to keep up before ever making it to the application for

decoding. In addition Factors A,B,E (NAPI Budget, Max Kernel Backlog, Backlog

Weight) have been inherited from the previous tests as static inputs to this test.

Variable Controls

The Suricata test has four variable factors which are detailed below.

Factor A: Suricata Runmode

The Suricata engine supports two main multi-threaded operation modes. “Autofp”

(auto flow pinning) mode is the default and is where the engine works in combination

99

with the hardware to load balance traffic. “Workers” assume all load balancing is

done in the kernel or driver. The official documentation [1] recommends workers mode

typically performs the best due to cache and thread coherency but other research has

shown this seems to only apply to either specific hardware or precisely tuned setups

[107].

Factor B: Max Pending Packets per Thread

Despite the slightly misleading name the max pending packets tunable actually sets

how many packets can be processed simultaneously. The higher the number the more

busy the system is likely to remain at the cost of more memory. Official documentation

suggests setting it no more then 60,000 as setting too high will result in cache issues

[47]. The default is 1024.

Factor C: Detection Profile

By default, the Suricata engine will group similar rules for decoding based on certain

aspects of the rule. (i.e. UDP vs TCP header based rules). The more groups the

smaller they become and the higher the granularity of their differences, which in turn

positively impacts performance at the cost of more memory. The default is “medium”

or “balanced” [108].

Factor D: RFS Table Size

Once again this factor is a repeat form the interface ratelimit test and packet capture

test. Sort of surprisingly this factor had little to no observable impact in the packet

capture test. It is left in this test to see if it has any influence in the load balancing

done in factor A (runmode).

100

(a) Workers Runmode (b) Auto Flow-Pin Runmode

Figure 42: Suricata Runmodes [1]

1 ###FACTOR A###
2 - name: (Factor A) Set Suricata Runmode to {{ suricata_runmode }}
3 lineinfile:
4 path: "{{sensor_dir}}/suricata.yml"
5 state: present
6 regexp: '^#runmode: '
7 line: "runmode: {{ suricata_runmode }}"
8 when: "'A' in current_factor_list"
9

10 ###FACTOR B###
11 - name: (Factor B) Set Max-Pending-Packets to {{ suricata_max_pending|int *

loop_multiplier|int }}↪→
12 lineinfile:
13 path: "{{sensor_dir}}/suricata.yml"
14 state: present
15 regexp: 'max-pending-packets: 1024'
16 line: "max-pending-packets: {{ suricata_max_pending|int * loop_multiplier|int

}}"↪→
17 when: "'B' in current_factor_list"
18

19 ###FACTOR C###
20 - name: (Factor C) Set Detect Profile to {{ suricata_detect_profile }}
21 lineinfile:
22 path: "{{sensor_dir}}/suricata.yml"
23 state: present
24 regexp: ' profile: medium'
25 line: " profile: {{ suricata_detect_profile }}"
26 when: "'C' in current_factor_list"

101

4.2.3.2 Test Results

In all test cases each device dropped a substantial amount of traffic but saw sig-

nificant gains applying optimizations. The unoptimized TX1 (Figure 43) dropped

8.4 million out of the 14.1 million packets sent (60%) where after switching to work-

ers mode (A) and increasing Max Pending Packets (B) showed a 47% reduction in

dropped packets to 4 million. Likewise the TX2 (Figure 44) initially dropped 7.3

million packets out of 14.1 (51%) which after optimizations lowered to 3.8 million

(48% reduction). At face value this looks like both devices performed almost identi-

cally however the time scale was not the same for both tests as it was operating at

the device’s interface max PPS limit. For the TX1 this meant it was sent the entire

dataset packet capture in 130 seconds (14.1M / 109k) and the TX2 did the same job

in 93 seconds (14.1M / 151k).

The XAVIER (Figure 45) performed the best of all devices once again but found

its optimal configuration after only one iteration. Initially dropping 4.2 million pack-

ets this lowered to 2 million (53% decrease) after applying factor AB. Interestingly

increasing Max Pending Packets (B) beyond the first iteration yielded worse results

unlike the TX1 and TX2. As hinted in the documentation, this may be a cache con-

tention issue. Since the XAVIER has almost twice as many cores, they likely have

to compete more for the L3 and L2 caches as the number of simultaneous threads

increase. A small diminishing return on B is also visible at the last iteration of the

TX2 test.

The RPi3B+ (Figure 46) was unable to complete the first iteration without sig-

nificant restarts and manual data compilation. The 1GB of RAM on these devices

was not enough to keep the device from going unresponsive during bursts of traffic.

A few iterations of tests did complete and they align with the common theme that

setting the Runmode (A) to workers and increasing Max Pending Packets (B) greatly

102

reduced packet loss by 28% from 8.5 million to 6.2 million.

Lastly the RPi4 (Figure 47) greatly improved upon switching to Workers mode

(A), showing a 44% drop (9.2 million to 5.2 million) in lost packets. Further increasing

the Max Pending Packets (B) did not produce any further gains unlike previous results

seen in the NVIDIA boards.

Factors C (Detect Profile) and D (RFS Table Size) appeared to have no strong

independent or combination effect, only appearing on a few initial results due to the

strong outlier pull of factor A.

103

Figure 43: The unoptimized TX1 dropped 8.4 million out of the 14.1 million packets
sent (60%) where after switching to workers mode (A) and increasing Max Pending
Packets (B) showed a 47% reduction in dropped packets to 4 million

104

Figure 44: The TX2 initially dropped 7.3 million packets out of 14.1 (51%) which
after optimizations similar to the TX1 lowered to 3.8 million (48% reduction)

105

Figure 45: The XAVIER performed the best of all devices once again. Initially drop-
ping 4.2 million packets this lowered to 2 million (53% decrease) after applying factor
AB. Interestingly increasing Max Pending Packets (B) beyond the second iteration
yielded worse results unlike the TX1 and TX2. As hinted in the documentation, this
may be a cache contention issue

106

Figure 46: The RPi3B+ was unable to complete the first iteration without significant
restarts and manual data compilation. The 1GB of RAM on these devices was not
enough to keep the device from going unresponsive during bursts of traffic. A few
iterations of tests did complete and they align with the common theme that setting
the Runmode (A) to workers and increasing Max Pending Packets (B) greatly reduced
packet loss by 28% from 8.5 million to 6.2 million

107

Figure 47: The RPi4 greatly improved upon switching to Workers mode (A), showing
a 44% drop (9.2 million to 5.2 million) in lost packets. Further increasing the Max
Pending Packets (B) did not produce any further gains unlike previous results seen
in the NVIDIA boards

108

4.3 Summary

We use the automated test framework described in Section 3.2 to execute three

end-to-end experiments. Each test consisted of a unique network related workload

with a combination of unique and shared input variables across five different devices.

These selected applications not only have shown the validity of the experiment design,

automation, and analysis but also have shown the feasibility of using higher end edge

devices like the XAVIER, TX2 and RPi4 as a edge network sensors. The next chapter

provides some conclusions with respect to the overall effort and presents multiple

propositions for future work.

109

V. Conclusions

5.1 Overall Summary

The objective of this research was to develop a macro level methodology to opti-

mize and benchmark specific workloads on emerging edge devices. Since these devices

come in a wide range of capability and the potential workloads to evaluate on them

are numerous, the developed process needed to be easy to use, modify and scale as

needed. Likewise the workloads needed to be properly tuned for their specific device

due to tighter performance envelopes.

The main deliverable was the implementation of an automated workflow using

Ansible, an open-source automation, configuration, and application deployment tool

[8]. By not requiring any dedicated agent or other prerequisite, deploying a test to

a new device is trivial and the human readable task playbooks made it easy to swap

workloads and associated variables. As sub-components of the workflow, a multi

stage optimization process and robust analysis process ensures the test workload is

maximizing the use of available resources.

Optimization is met through a multiple iteration 2k Full Factorial experiment.

This allows the operator to select up to five potential optimization factors and ensures

any positive or negative interactions between any factor are appropriately captured.

By attempting these factors multiple times at varying levels the “ideal” level for all

chosen factors emerges (e.g. sizing a buffer in memory without under or oversizing

it). The analysis process utilizes a standard Analysis of Variance (ANOVA) test

to provide rigor to the results of the optimization. In cases where ANOVA fails and

normality is violated, a simpler heuristic analysis examines the averages of the results.

In order to fully exercise and validate the developed process, a family of network

security monitoring applications were run in an end to end scenario. Utilizing edge

110

devices to fill in network monitoring gaps was a key initial motivator of this research

as it is a task that has been traditionally done in only large centralized deployments.

The analysis of the results show the developed process met it’s original design goals

and intentions, with the added fact that edge devices like the XAVIER, TX2 and

RPi4 can easily perform as a edge network sensor.

5.2 Future Work

Overall progress on the benchmark is complete, and can be immediately imple-

mented using new workloads. There is still some room to polish and grow as detailed

next and is suggested next. More network monitoring related tests and integration’s

are also proposed in Section 5.2.2 and Appendix B (Employment)

5.2.1 Benchmark Use & Expansion

5.2.1.1 ANOVA Randomness

The randomness over the overall testing is not ideal. When testing a particular

factor combination, they are done sequentially (i.e. A-A-A-A-A, AB-AB-AB-AB-

AB). This was done to save initial development and testing time. A simple Python

script that generates an array of random factor combos could be added before the

middle loops begin. This would allow for true replicate testing (i.e. A,ABC,E,B,A...)

at the expense of time. Each new factor letter combo would reset the machines and

reload that particular configuration.

5.2.1.2 Error Handling

The ANOVA Python script is also very sensitive to errors in the output csv.(see

example in Figure 48 If for whatever reason a particular run did not finish it will

break the calculations of the contrasts, which causes the entire process to stop till

111

fixed. Manually entering the missing number to the csv, and then resuming with

--skip-tags initial will resume the outer loop at the point it stopped.

Figure 48: Example of Runtime Error (Missing Data)

5.2.1.3 Other Applications

While all the results discussed in Chapter IV are related to network applications,

the metric gathering subprocess laid out in Section 3.2.3.5 supports 22 possible Re-

sponse Variable (RV). More can be added to the bash script, or the current ones could

be used in future workloads under research. A full example of some of the output

data is proved in Appendix C.

(a) Example CPU Utilization Variable (b) Example CPU Temperature Variable

Figure 49: Example of other response variables supported to use in other application
testing

112

5.2.1.4 Interchangeable Modules

Both the analysis Python and metric gathering scripts are simply called by the

Ansible workflow. This means with little effort they can be either modified or swapped

for other scripts without impacting the core of the automation.

Figure 50: Block diagram showing the sub-components that can be modified or
swapped without affecting the automation

5.2.2 Network Monitoring Expansion

5.2.2.1 Other Sensor Roles

The roles tested in Chapter IV were only a small slice of the possible network sen-

sor roles. Selecting a new application to test (like netflow monitoring with Zeek/Bro)

should be trivial to implement. More advanced future work, like how an edge sensor

could tie into an Elastic database for visualization, or how it may be the solution to

other long looming problems like monitoring encrypted traffic and detecting credential

abuse are all discussed Appendix B.

5.2.2.2 Suricata Rules Evaluation

Perhaps the most significant performance variable for a signature based Intrusion

Detection System (IDS) like Suricata are the signatures enabled [104]. In Suricata

the Detect phase takes up to 80% of the engines overall CPU processing effort and

113

therefore should be limited to only packets worth inspecting [1]. Unfortunately, de-

fault rule sets are at best, good at catching low hanging very unsophisticated attacks.

Thanks to their open nature it is trivial for an attacker to download the rules, inspect

how they are detecting a certain payload or characteristic and modify theirs to evade

it. These default rules also also plagued with poorly optimized rules which makes

using them in a performance benchmark a tough decision. [105]

As an example, it is quite easy to write poor rules like:

alert tcp any any -> any any (pcre: "the_payload")

Where every single Transmission Control Protocol (TCP) packet seen by the en-

gine will be deeply inspected using a pearl regular expression. Too many of these

kind of inspections can cripple the performance of the system [109] [105]. By prop-

erly scoping the rule down to a particular destination (like a web server) the engine

will move on much earlier in it’s decode phase which only carries about 10-20% of

the overall workload. This rule can be further enhanced by taking advantage of fast-

pattern matching which furthers this filtering effort only looking at small byte chunks

instead of the entire rule first [75].

It should be possible to use our benchmark to implement the methodology of

[104] to test how the amount of rules and their composition affects the edge device’s

performance. Using this test a ”max rule count” count be established for a given

device.

114

Appendix A. Annotated Example Results Figure

Figure 51 below also provides a breakdown of how to interpret the main results

figures seen in Sections 4.2.1.2, 4.2.2.2, and 4.2.3.2.

Figure 51: Highlighted example of a results figure. The explanation of each number
is listed above

1. Significant results from the first test are extracted from the whole result (Ex-
ample in Appendix C)

2. The unoptimized baseline average is established, and is updated based on best
average of the previous loop

115

3. The significant factor levels are increased and are compared against the new
baseline, determining if additional testing is required

4. The actual variable levels set are displayed for each “loop” column

5. The results of the first analysis test

6. The results of subsequent analysis tests

7. After the last loop shows no improvement, final score is displayed

116

Appendix B. Employment Analysis

Contributing to Indexing & Aggregation

One last capstone test was designed to observe how well the single board com-

puters would play together when sending their alerts back to a central Elasticsearch

aggregator. For this standalone test, the 3 NVIDIA boards and the RPi4 were fed

the Thursday-WorkingHours-Fixed.pcap file at their appropriate ”Suricata Packets

Per Second (PPS) Limit.” An ARM compatible filebeat agent (log shipper) was built

for each device and deployed to ingest the logs that Suricata was generating. At this

small level of traffic the filebeats would just report directly back to the Elasticsearch

database, instead of typical large scale deployments which go through another ag-

gregator like Logstash or Kafka. Using the results from pretesting in Table 11 we

would expect to see around 2,472 alerts on each device (logged locally) and the same

amount on the aggregated back end. Table 12 below summarizes the result of this

capstone test.

Alerts Run 1 Alerts Run 2 Alerts Run 3

Local Indexed % Local Indexed % Local Indexed %

TX1 2457 2448 99.6 2445 2437 99.7 1727 1417 82.0

TX2 2518 2512 99.8 2515 2433 96.7 2489 2463 98.9

XAVIER 2541 2446 96.2 2547 2386 93.7 2542 2510 98.7

RPi4 1736 1717 98.9 1697 1697 100 1868 1868 100

Table 12: Local Logged Alerts Vs. Elastic Indexed Alerts shows only a slight disparity
in a few cases

117

Figure 52: Kibana Dashboard with all alerts reporting. The timestamps are different
due to slight wall clock drift between devices

This test verified the Elastic “beat” agent is built to ensure a “at-least-once”

delivery of all events it sees. This is accomplished via a registry that tracks the

state of each line in each log it is tracking [110]. By essentially acknowledging each

individual event it both makes sure it is not reported multiple times but also makes

sure every event is processed. Due to this, despite the four devices competing for the

802.11 ad-hoc link all the events do indeed eventually make it to the index. The only

exception would be if log rotation were enabled and the file was deleted before it was

fully processed. This bodes well for future integration with greater platforms like the

Air Force’s Cyberspace Vulnerability Assessment / Hunter (CVA/H).

118

Figure 53: Integration with existing Air Force dashboards should be feasible

Encrypted Traffic Enterprises

While much of the early successes of hunt teams likely came from unencrypted

network traffic based investigations (based on the tooling available at the time) the

proliferation of encryption across web and domain traffic renders most traditional

tools like Intrusion Detection System (IDS) ineffective [111]. At this point the only

reasonable way to do threat hunting will be with very strict log and netflow coverage

to observe anomalies. This means having a proper data pipeline with all gaps covered,

perhaps with edge sensors on the ”last mile” of the enterprise.

119

Figure 54: Rapid Increase of Encrypted Web [2]

Forged Kerberos Detection

One of the key strengths of a kerberos based authentication scheme is compart-

mentalizing authentication to a trusted third party. In the case of Windows Active

Directory the Domain Controller (DC) acts as the master or Key Distribution Cen-

ter (KDC). This protects credentials from being fully exposed should a part of the

domain become compromised. It does however create a potential single point of fail-

ure should the KDC ever become compromised. Figure 55 below shows a high level

overview of a client (grey) requesting a service from the server (black). The Ticket

to Grant Tickets (TGT) is the client’s initial authentication into the domain, from

which they can request further access to other resources like a file share or remote

terminal from the Ticket Granting Service (TGS). These tickets are meant to be time

limited and point to point constrained tokens that protect against credential theft

and Main-in-the-Middle (MITM) attacks [3] [112]. A few design choices (stateless

tickets and omitting the last ”trust but verify” handshake) in the Windows Active

Directory implementation of the protocol however enables three attacks that can be

120

devastating for an entire enterprise.

Figure 55: Kerberos Authentication in a Windows Domain[3]

Golden Ticket Attack

The TGT is encrypted by the password hash of a service account called krbtgt on the

KDC. Should this password hash be exposed an attacker could forge TGTs as any

user in any group on the domain, as the KDC uses the krbtgt hash as a litmus test

of is this request legitimate. Since the KDC does not track states it does not mind

that steps 1 and 2 above were skipped, and will give the attacker the service ticket

they desire. This attack would be evident by looking for the absence of the first two

steps in logs or traffic going to the DC. [3] [113] [114]

121

Figure 56: Golden Ticket Attack

Silver Ticket Attack

Individual services are protected by their own service account hash which is used in

the generation of the TGS. Should this particular hash be exposed (which can be

assumed likely if the main krbtgt hashes were as well), an attacker could forge service

tickets as any user in any group on the domain. The service uses its own hash as a

litmus test of is this request legitimate and since the service is not aware of any state

on the DC it has no idea that steps 1-4 were skipped and assumes the request is okay.

This attack while more limited compared to the golden ticket attack is considerably

more difficult to detect as no logs appear on the DC. It would only be evident by

looking for the absence of steps 3 and 4 in logs or traffic going to the DC compared

to what was observed in logs and traffic going to the service in steps 5 and 6. [114]

[113]

122

Figure 57: Silver Ticket Attack

Pass-The-Ticket Attack

Pass the ticket is similar to the Golden and Silver attack minus the forging step.

Instead, the adversary just steals a valid ticket out of memory and re-uses it. These

tickets have a limited lifetime but depending who they stole it from may allow them

to elevate even further. The attack signatures will be very similar to the other two

attacks as well. [114] [115]

Getting access to the critical logs in a hunt scenario can be administratively chal-

lenging and may even tip off the presence of a hunt team to a cautious adversary.

The logs themselves may even be manipulated by a deeply persistent threat, as has

been demonstrated by multiple Advanced Persistent Threat (APT) [53] [116] [117].

The only remaining method to detect this attack would then require monitoring the

network traffic between every host, something large centralized boundary sensors are

123

likely not doing. By employing a network of edge sensors at these lower levels, these

lateral movement anomalies may finally become visible in the network traffic alone.

124

Appendix C. Raw Data Examples

Full data is available under the “Results” folder on the GitHub Repository [9].

Figure 58 below shows a full box plot example from the interface rate test. Table

13 afterwards is an example of the full data available from the metric gathering

subprocess. Some columns were removed to make it fit on a page.

125

Figure 58: Full Interface Test ANVOA Boxplots

126

T
ab

le
13

:
S
am

p
le

of
th

e
ou

tp
u
t

of
th

e
m

et
ri

c
ga

th
er

in
g

su
b
p
ro

ce
ss

.
S
om

e
co

lu
m

n
s

re
m

ov
ed

to
m

ak
e

it
fi
t

on
p
ag

e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
90

.9
97

27
.1

74
.2

68
65

36
.2

5.
47

1
8.

85
7

13
85

72
84

1
10

03
0

6
N

16
0k

87
.6

96
29

.8
82

.6
67

06
36

.4
5.

73
3

8.
51

5
14

60
86

85
2

92
13

5
N

16
0k

88
.8

96
23

.9
30

.9
66

94
36

.1
5.

24
3

5.
85

9
14

50
82

84
9

10
08

2
6

N
16

0k
87

.6
96

20
.9

28
.7

67
11

35
.8

4.
97

6.
08

7
14

47
42

84
5

10
39

1
6

N
16

0k
88

.8
96

23
.6

32
67

07
35

.8
5.

20
7

6.
08

7
14

51
18

84
9

98
65

6
N

16
0k

89
.8

97
25

.1
49

.3
69

36
36

.6
5.

32
6

7.
34

13
71

80
82

7
10

38
4

6
A

16
0k

86
.3

95
34

.7
94

.8
67

46
36

.8
6.

00
7

9.
53

8
14

20
17

85
6

86
70

5
A

16
0k

89
.3

96
23

.6
29

.8
67

15
36

.2
5.

22
2

5.
78

3
13

80
93

83
4

10
18

7
6

A
16

0k
88

.3
95

20
.9

27
.4

67
37

35
.7

4.
97

3
5.

51
6

14
21

61
83

3
97

60
6

A
16

0k
89

.1
98

22
.8

26
67

38
35

.7
5.

12
5

5.
32

6
14

03
80

82
3

10
69

3
6

A
16

0k
89

.3
98

25
.3

53
.5

69
56

36
.7

5.
34

4
7.

37
8

13
64

29
82

5
99

41
6

B
16

0k
86

.5
99

31
.2

83
.7

67
37

36
.8

5.
77

9
9.

34
8

13
79

15
80

2
93

73
6

B
16

0k
87

.8
98

26
.5

93
67

11
36

.3
5.

35
8

9.
12

3
13

89
19

83
6

11
03

4
6

B
16

0k
90

.8
95

26
.3

87
.5

67
22

36
.1

5.
34

6
9.

23
4

14
44

27
84

4
99

63
6

B
16

0k
88

.4
96

25
.5

82
.6

67
13

36
5.

30
6

8.
55

3
14

01
64

84
6

10
57

0
6

B
16

0k
87

.4
10

0
24

.9
45

.6
69

55
36

.5
5.

32
6

6.
73

1
13

95
52

80
9

11
74

7
7

A
B

16
0k

87
.5

99
37

.9
68

.1
67

30
37

6.
32

3
7.

83
1

14
23

31
86

1
82

20
5

A
B

16
0k

90
.8

97
24

.4
36

.7
66

87
36

.2
5.

22
6

6.
46

5
14

27
18

83
8

10
84

3
7

A
B

16
0k

88
.8

98
21

.1
25

.9
66

90
35

.9
5.

00
3

5.
51

6
14

17
65

82
8

10
68

3
6

A
B

16
0k

89
.9

99
23

.2
33

.9
66

89
35

.8
5.

16
4

6.
04

9
14

18
76

83
0

10
96

3
6

A
B

16
0k

89
.7

99
27

.3
98

.9
68

75
37

.1
5.

42
2

9.
08

5
14

50
71

85
1

10
00

5
6

C
16

0k
91

.3
98

28
.1

45
.1

67
14

36
.9

5.
61

4
7.

15
14

05
15

85
2

86
49

5
C

16
0k

90
98

23
.6

32
.3

66
80

36
.4

5.
20

7
5.

85
9

14
57

04
85

6
92

95
5

C
16

0k
90

.1
10

0
20

.3
26

.4
66

88
36

4.
93

2
5.

85
9

13
80

80
83

1
10

72
2

6
C

16
0k

92
.3

10
0

23
.1

26
.1

66
84

35
.9

5.
14

5
5.

51
6

14
37

21
84

3
10

32
9

6
C

127

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
89

.4
99

24
.6

48
.4

69
44

36
.8

5.
31

9
7.

26
4

14
16

30
82

8
10

31
8

6
A

C
16

0k
88

.7
97

37
.7

71
.9

67
60

37
.2

6.
28

4
7.

90
7

14
62

20
86

0
78

66
5

A
C

16
0k

87
.8

10
0

24
.3

42
.9

67
44

36
.4

5.
25

2
6.

73
1

14
41

67
84

5
10

98
0

6
A

C
16

0k
88

.2
98

20
.7

26
.6

67
57

35
.9

4.
95

8
5.

47
8

13
96

57
84

5
10

79
3

6
A

C
16

0k
88

.7
96

23
.1

28
.8

67
53

35
.9

5.
13

6
5.

44
13

84
02

83
6

10
45

7
6

A
C

16
0k

90
.1

99
25

.3
51

69
34

36
.7

5.
32

4
6.

61
7

13
75

66
82

9
10

58
6

6
B

C
16

0k
86

.1
10

0
31

.3
93

.6
67

01
37

5.
79

9.
5

14
09

75
81

6
97

91
6

B
C

16
0k

89
98

23
.7

30
.4

66
87

36
.3

5.
20

8
5.

78
3

14
31

75
83

7
93

93
6

B
C

16
0k

88
.8

96
21

26
.6

66
97

36
4.

96
6

5.
85

9
13

78
78

80
6

98
99

6
B

C
16

0k
87

.7
10

0
23

.3
29

.1
66

89
35

.9
5.

16
7

6.
08

7
14

02
75

81
5

11
09

7
7

B
C

16
0k

87
.8

99
25

.8
58

.1
69

54
36

.5
5.

38
2

7.
68

2
14

48
38

84
4

10
18

4
6

A
B

C
16

0k
86

.5
98

31
.3

58
67

54
36

.6
5.

87
3

7.
90

7
14

24
64

86
0

82
25

5
A

B
C

16
0k

86
.6

99
23

.7
29

.5
67

33
35

.9
5.

21
2

5.
47

8
13

73
65

80
0

93
13

6
A

B
C

16
0k

88
.2

94
21

.1
28

67
38

35
.6

4.
99

3
5.

66
9

13
98

80
84

4
10

46
5

6
A

B
C

16
0k

87
.1

99
24

46
.1

67
41

35
.5

5.
19

3
6.

57
9

14
08

79
82

6
94

48
6

A
B

C
16

0k
86

.2
10

0
41

.2
98

.7
70

21
36

.4
6.

25
4

9.
15

8
14

23
67

82
9

12
42

5
7

D
16

0k
86

.7
99

36
.5

67
.5

68
01

35
.8

6.
24

2
8.

21
1

13
63

11
79

5
10

52
6

6
D

16
0k

87
.8

98
24

.6
42

.9
67

35
35

5.
29

6.
61

7
14

36
61

84
1

11
61

5
7

D
16

0k
85

.6
10

0
22

.7
45

.5
67

23
34

.5
5.

08
8

6.
42

7
14

30
49

82
2

15
12

9
9

D
16

0k
89

98
23

.6
31

.5
67

36
34

.2
5.

21
5.

63
1

14
03

75
85

1
11

31
6

6
D

16
0k

89
.8

97
25

55
.4

68
99

34
.8

5.
27

7
6.

84
5

14
42

50
84

6
10

55
5

6
A

D
16

0k
88

96
34

.4
61

67
05

35
.1

6.
04

5
8.

09
7

14
44

13
85

0
79

89
5

A
D

16
0k

88
.7

97
24

.5
42

.5
66

99
34

.3
5.

23
7

6.
57

9
13

73
09

80
5

98
77

6
A

D
16

0k
87

.3
99

21
26

.9
66

98
33

.8
4.

94
3

5.
32

6
14

02
07

81
5

11
12

9
7

A
D

16
0k

0
0

23
26

66
95

33
.8

5.
13

9
5.

44
14

05
57

84
7

10
20

0
6

A
D

16
0k

92
.4

10
0

26
51

.1
69

08
34

.5
5.

32
6

7.
34

14
29

59
83

4
11

10
7

6
B

D

128

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
88

99
35

.7
89

.5
67

01
34

.8
6.

06
2

8.
74

3
14

13
63

82
8

93
57

6
B

D
16

0k
90

.2
98

24
.9

43
.2

66
76

34
5.

31
2

6.
69

3
14

41
50

84
8

10
69

0
6

B
D

16
0k

88
.5

10
0

21
.1

27
.2

66
92

33
.5

4.
98

5.
66

9
14

20
55

82
6

11
70

9
7

B
D

16
0k

88
.5

10
0

23
.1

26
.1

66
80

33
.4

5.
11

3
5.

32
6

14
16

67
82

6
11

24
7

7
B

D
16

0k
92

.6
97

25
.6

42
.4

69
46

33
.9

5.
32

1
6.

76
9

13
85

34
83

9
11

21
5

7
A

B
D

16
0k

87
.9

98
37

.7
66

.5
67

19
34

.3
6.

28
1

7.
98

3
13

84
29

80
9

86
30

5
A

B
D

16
0k

89
.4

95
24

.6
43

.5
66

95
33

.5
5.

22
1

6.
46

5
14

13
02

82
6

95
25

6
A

B
D

16
0k

89
.9

10
0

22
26

.7
67

15
33

5.
01

9
5.

66
9

13
97

68
81

6
11

42
7

7
A

B
D

16
0k

89
.1

10
0

23
.5

33
67

08
33

5.
12

3
6.

04
9

13
54

99
82

1
11

22
6

7
A

B
D

16
0k

92
96

25
.8

47
.9

69
31

33
.7

5.
35

2
6.

80
7

14
26

57
83

5
10

32
3

6
C

D
16

0k
87

.1
97

30
.6

51
.3

67
08

33
.8

5.
76

9
7.

83
1

13
73

29
79

8
98

44
6

C
D

16
0k

89
.3

10
0

24
.4

37
.4

66
82

33
.1

5.
18

8
6.

46
5

13
61

53
81

9
10

52
6

6
C

D
16

0k
90

.2
96

20
.9

26
66

93
32

.7
4.

94
3

5.
55

5
14

42
60

84
7

10
89

1
6

C
D

16
0k

90
98

23
.2

26
66

91
32

.6
5.

1
5.

74
5

13
88

68
84

0
11

04
5

6
C

D
16

0k
90

.9
98

26
.6

96
.1

69
00

33
.7

5.
34

6
9.

08
2

14
10

98
82

7
10

96
5

6
A

C
D

16
0k

87
.4

95
29

44
.9

67
11

33
.7

5.
66

3
6.

95
9

14
32

14
83

6
78

79
5

A
C

D
16

0k
89

.9
98

23
.8

32
.1

66
72

33
.1

5.
18

6.
31

5
14

09
60

82
3

10
35

7
6

A
C

D
16

0k
87

.9
10

0
20

.5
27

.4
66

79
32

.9
4.

90
4

5.
59

3
14

15
56

82
9

10
11

6
6

A
C

D
16

0k
88

.5
97

23
.1

25
.9

66
74

32
.9

5.
12

7
5.

51
6

14
06

73
85

1
10

36
8

6
A

C
D

16
0k

90
.8

96
25

37
68

83
34

5.
37

8
6.

27
7

14
30

80
83

8
91

85
5

B
C

D
16

0k
89

.6
99

29
44

.8
67

08
33

.9
5.

67
9

7.
07

3
14

47
17

84
2

92
52

5
B

C
D

16
0k

91
.1

98
23

.5
29

.8
67

02
33

.3
5.

23
5

5.
82

1
14

15
38

83
3

98
31

6
B

C
D

16
0k

90
.8

97
20

.4
27

.7
66

97
33

4.
94

2
5.

78
3

13
70

48
80

3
10

08
8

6
B

C
D

16
0k

91
.1

10
0

23
.4

31
.5

66
99

32
.8

5.
22

3
5.

89
7

13
81

00
83

6
97

19
6

B
C

D
16

0k
89

.4
98

40
.4

99
.9

69
89

34
6.

06
3

9.
23

4
13

54
21

81
6

11
62

0
7

A
B

C
D

16
0k

88
.4

10
0

36
.4

68
.2

67
68

33
.5

6.
12

5
7.

90
7

14
31

58
83

5
99

79
6

A
B

C
D

129

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
89

.5
97

24
.3

35
67

08
33

5.
22

5
6.

61
7

14
19

00
83

2
10

53
6

6
A

B
C

D
16

0k
87

.1
96

24
.2

74
.9

67
03

32
.9

5.
11

6
7.

83
1

14
15

78
82

8
10

94
3

6
A

B
C

D
16

0k
89

.2
97

23
.5

31
.8

67
17

32
.6

5.
14

1
6.

08
7

14
13

54
82

8
10

26
1

6
A

B
C

D
16

0k
87

.7
94

.1
43

.7
99

.9
70

08
33

.8
6.

40
1

9.
23

4
13

97
36

84
9

10
74

3
6

E
16

0k
88

.3
97

39
79

.8
67

70
33

.8
6.

37
8.

28
7

14
32

20
84

0
84

60
5

E
16

0k
89

.4
98

24
.3

38
.7

67
21

33
.1

5.
27

3
6.

43
13

75
66

80
7

99
40

6
E

16
0k

88
.6

98
21

.5
25

.7
67

35
32

.7
4.

99
9

5.
40

2
14

04
07

81
9

10
75

5
6

E
16

0k
89

.3
98

23
.1

26
.3

67
22

32
.5

5.
17

5.
44

14
50

62
84

7
10

93
0

6
E

16
0k

91
.6

97
24

.5
31

.2
68

79
33

.7
5.

31
8

6.
31

5
14

49
78

85
0

90
04

5
A

E
16

0k
89

97
27

.1
45

.4
67

16
33

.8
5.

51
7

7.
11

1
14

19
59

86
1

85
60

5
A

E
16

0k
88

.5
95

23
.6

30
.1

66
87

33
.2

5.
22

5
5.

82
1

14
22

76
83

1
89

01
5

A
E

16
0k

89
.3

10
0

20
.3

26
.3

66
96

32
.8

4.
89

5.
47

8
14

27
71

83
0

11
45

4
7

A
E

16
0k

90
.7

96
23

26
66

95
32

.9
5.

16
9

5.
51

6
13

54
22

81
8

87
55

5
A

E
16

0k
90

.8
95

27
.6

93
.8

68
33

33
.9

5.
42

8.
70

5
14

29
93

84
0

87
11

5
B

E
16

0k
91

.2
97

27
.6

44
.3

66
88

33
.7

5.
53

5
7.

07
3

14
50

07
85

3
87

00
5

B
E

16
0k

91
96

23
.3

28
.7

66
82

33
.2

5.
14

6
5.

85
9

14
34

01
84

0
99

71
6

B
E

16
0k

89
.9

97
19

.8
25

.3
66

88
32

.8
4.

85
7

5.
55

5
13

75
36

83
1

96
57

6
B

E
16

0k
88

.8
97

23
.4

26
.4

66
78

32
.6

5.
12

7
5.

66
9

13
78

24
80

4
10

03
0

6
B

E
16

0k
88

.5
96

30
.7

92
.1

68
72

33
.9

5.
66

9.
19

9
14

59
22

85
2

96
18

5
A

B
E

16
0k

92
98

28
.5

45
.2

66
85

33
.7

5.
61

6
7.

22
6

14
54

94
85

6
91

51
5

A
B

E
16

0k
88

.2
99

23
.6

31
66

68
33

.2
5.

15
5

5.
59

3
14

22
95

82
8

10
64

3
6

A
B

E
16

0k
89

.4
10

0
20

.5
27

66
85

32
.8

4.
89

9
5.

32
6

14
25

96
83

5
10

76
8

6
A

B
E

16
0k

87
.1

10
0

23
26

.1
66

75
32

.9
5.

12
2

5.
32

6
13

49
78

80
6

12
05

2
7

A
B

E
16

0k
89

.3
96

42
.3

99
69

90
34

.3
6.

25
2

9.
31

13
64

84
82

5
10

02
5

6
C

E
16

0k
86

.7
94

36
.8

70
.9

67
66

33
.9

6.
23

8
7.

83
4

13
84

67
80

8
86

93
5

C
E

16
0k

90
.1

97
24

.8
38

.3
67

29
33

.4
5.

29
1

5.
97

3
14

29
15

83
9

94
42

6
C

E

130

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
88

.5
98

21
.5

26
.9

67
35

33
5.

00
8

5.
82

1
13

58
46

81
8

10
65

0
6

C
E

16
0k

89
96

23
.3

30
.2

67
39

33
5.

18
5

5.
47

8
14

10
93

82
4

10
10

8
6

C
E

16
0k

90
.9

99
24

.9
49

.6
69

39
34

5.
31

8
6.

57
9

14
36

40
84

2
97

58
5

A
C

E
16

0k
90

.2
95

32
.1

86
.4

67
10

34
.3

5.
84

2
8.

66
7

14
11

61
85

6
79

27
4

A
C

E
16

0k
88

.9
10

0
24

.4
42

.8
66

93
33

.6
5.

25
8

6.
73

1
14

31
46

83
7

10
05

1
6

A
C

E
16

0k
89

96
21

.4
30

.8
67

02
33

.2
4.

97
5

6.
16

3
13

73
21

80
5

10
14

2
6

A
C

E
16

0k
88

.7
97

23
.3

26
67

06
33

.4
5.

14
5

5.
85

9
14

00
53

84
7

10
17

5
6

A
C

E
16

0k
90

.4
95

29
.9

89
.3

67
99

34
.4

5.
6

9.
23

7
13

72
26

80
6

88
56

5
B

C
E

16
0k

0
0

27
95

.2
66

26
34

.3
5.

39
7

9.
19

6
14

10
55

82
2

10
08

2
6

B
C

E
16

0k
87

.9
10

0
23

.1
27

.4
66

25
33

.9
5.

14
4

5.
63

1
14

39
17

84
0

94
20

6
B

C
E

16
0k

88
.2

10
0

25
89

.2
66

40
33

.6
5.

28
9.

04
7

14
37

89
83

9
10

34
6

6
B

C
E

16
0k

87
.6

99
24

68
.7

66
36

33
.4

5.
17

5
7.

26
4

14
47

09
84

6
94

41
6

B
C

E
16

0k
90

.3
97

23
.7

35
.3

68
54

34
5.

25
7

6.
35

4
13

59
11

82
3

10
05

8
6

A
B

C
E

16
0k

89
.6

96
27

.6
93

.4
66

75
34

.1
5.

43
3

8.
59

1
14

22
05

83
4

97
72

6
A

B
C

E
16

0k
89

.4
99

23
26

.6
66

52
33

.8
5.

13
4

5.
47

8
14

06
10

82
6

10
48

2
6

A
B

C
E

16
0k

92
.7

98
19

.8
23

.8
66

74
33

.3
4.

84
5.

28
8

14
37

08
84

3
10

62
7

6
A

B
C

E
16

0k
92

.2
96

22
.9

25
.8

66
60

33
.6

5.
12

5.
82

1
13

73
62

83
3

10
77

1
6

A
B

C
E

16
0k

88
.8

96
42

.4
99

.1
69

42
34

.7
6.

26
3

9.
27

2
14

18
07

82
4

11
27

5
7

D
E

16
0k

87
.6

10
0

41
.2

94
.5

67
11

34
.9

6.
55

7
9.

12
3

13
78

19
80

8
93

22
6

D
E

16
0k

89
.5

98
26

61
.5

66
58

34
.2

5.
37

5
7.

41
6

14
08

59
82

6
10

11
2

6
D

E
16

0k
92

98
21

.9
38

.1
66

66
33

.9
5.

06
1

6.
54

1
13

40
26

81
2

10
21

5
6

D
E

16
0k

89
.9

97
26

.8
93

.1
66

63
34

5.
40

5
9.

19
6

14
51

82
85

3
97

40
6

D
E

16
0k

92
.8

98
28

.2
85

.5
69

13
34

.9
5.

47
8

8.
62

9
13

98
64

85
0

96
48

6
A

D
E

16
0k

90
.3

96
30

.6
67

.8
67

36
34

.8
5.

77
7.

94
5

14
56

61
85

3
88

60
5

A
D

E
16

0k
88

.8
98

23
.4

31
.2

67
33

34
.2

5.
14

7
5.

70
7

14
11

04
82

3
10

75
4

6
A

D
E

16
0k

88
.8

96
20

.9
83

.9
67

28
33

.9
4.

96
4

8.
74

3
13

96
57

81
8

10
00

0
6

A
D

E

131

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
88

.3
10

0
22

.9
26

.2
67

23
33

.8
5.

12
5

5.
32

6
14

03
89

81
9

10
52

1
6

A
D

E
16

0k
89

.4
95

29
.6

86
.2

69
87

34
.7

5.
57

5
9.

19
6

14
46

34
84

7
98

79
5

B
D

E
16

0k
87

.9
95

38
.1

71
67

34
35

.1
6.

37
2

8.
05

9
14

21
66

86
1

81
15

5
B

D
E

16
0k

88
.8

99
26

58
.3

67
01

34
.5

5.
36

5
6.

92
1

14
27

27
83

4
11

30
6

7
B

D
E

16
0k

89
.5

96
21

.6
52

.9
67

09
34

4.
97

5
6.

76
9

14
12

40
82

6
10

30
5

6
B

D
E

16
0k

92
.6

97
23

.3
29

.4
67

08
34

5.
12

6
5.

59
3

13
80

75
83

7
10

44
7

6
B

D
E

16
0k

91
.1

97
24

.1
36

69
13

34
.8

5.
21

6
6.

01
1

14
04

09
82

3
10

27
4

6
A

B
D

E
16

0k
91

.2
97

32
.2

56
.9

67
30

35
.1

5.
86

8
7.

34
14

45
82

84
5

94
28

5
A

B
D

E
16

0k
89

.5
97

24
.4

42
.4

67
18

34
.4

5.
25

2
6.

69
3

13
59

77
79

5
10

66
2

6
A

B
D

E
16

0k
86

.4
10

0
20

.6
27

67
32

34
.1

4.
93

5.
28

8
13

39
05

77
7

13
09

8
8

A
B

D
E

16
0k

90
.3

97
23

.1
26

67
28

34
.1

5.
12

5
5.

47
8

13
84

15
83

7
11

93
9

7
A

B
D

E
16

0k
90

.8
10

0
28

.8
81

.4
68

93
35

5.
49

8
9.

12
3

14
16

03
83

1
10

64
4

6
C

D
E

16
0k

86
.9

99
34

.9
64

.7
66

92
35

.3
6.

12
8.

28
7

13
73

81
82

8
89

87
5

C
D

E
16

0k
87

.6
96

21
.1

28
.2

66
86

34
.4

5.
09

3
5.

44
14

35
73

83
9

10
56

8
6

C
D

E
16

0k
87

.6
99

22
.4

86
.4

66
88

34
.2

5.
03

4
8.

66
7

13
82

09
83

2
11

43
0

7
C

D
E

16
0k

89
.9

96
23

.3
29

.4
66

88
34

.1
5.

15
6

5.
44

14
32

85
83

9
11

17
8

6
C

D
E

16
0k

91
.3

95
28

.9
86

.3
68

72
35

.2
5.

55
2

9.
00

9
13

83
26

83
5

10
73

6
6

A
C

D
E

16
0k

90
10

0
32

.9
61

.1
66

76
35

.3
5.

93
5

7.
83

1
14

36
67

83
9

91
59

5
A

C
D

E
16

0k
88

.8
98

23
.9

38
.9

66
42

34
.9

5.
20

7
6.

20
1

13
65

25
79

7
10

41
2

6
A

C
D

E
16

0k
93

.3
97

21
.3

27
.4

66
50

34
.7

4.
98

8
5.

59
3

13
85

71
84

2
11

08
5

6
A

C
D

E
16

0k
92

.1
98

22
.9

25
.7

66
53

34
.5

5.
10

7
5.

55
5

13
80

92
83

6
10

73
1

6
A

C
D

E
16

0k
87

.4
99

29
.4

96
.5

69
17

35
.3

5.
62

6
9.

19
9

13
96

82
84

3
11

19
8

6
B

C
D

E
16

0k
86

.6
96

39
99

.8
66

88
35

.7
6.

3
9.

42
4

14
31

23
83

7
88

85
5

B
C

D
E

16
0k

88
10

0
24

.5
37

.9
66

78
35

.1
5.

25
9

6.
80

7
14

21
36

82
9

11
35

7
7

B
C

D
E

16
0k

89
.6

99
19

.9
23

.6
66

91
34

.7
4.

87
6

5.
47

8
14

14
14

83
2

10
45

0
6

B
C

D
E

16
0k

89
.7

98
27

.7
88

.9
66

89
35

5.
42

1
8.

81
9

14
49

65
85

1
97

27
6

B
C

D
E

132

T
a
b
le

1
3

co
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
p
u
t

p
p
s

p
id

cp
u

a
v
g

p
id

cp
u

m
a
x

sy
s

cp
u

a
v
g

sy
s

cp
u

m
a
x

sy
s

M
B

m
in

te
m

p
a
v
g

(c
)

p
o
w

e
r

a
v
g

(w
)

p
o
w

e
r

m
a
x

(w
)

rx
p
p
s

a
v
g

rx
m

b
p
s

a
v
g

n
ic

d
ro

p
a
v
g

n
ic

d
ro

p
%

te
st

fa
ct

o
r

co
d

e
16

0k
91

.6
96

29
.1

95
.3

68
77

35
.6

5.
51

4
9.

16
1

13
75

33
82

8
10

64
2

6
A

B
C

D
E

16
0k

90
.7

98
28

.6
44

.6
66

84
35

.7
5.

64
6

7.
03

5
14

51
06

84
6

94
49

5
A

B
C

D
E

16
0k

89
.9

98
23

.5
29

.7
66

70
35

.3
5.

19
1

5.
82

1
14

36
51

87
0

10
83

5
6

A
B

C
D

E
16

0k
88

.5
10

0
19

.8
24

.2
66

81
34

.9
4.

87
5.

17
6

14
33

07
83

2
11

61
2

7
A

B
C

D
E

16
0k

89
.3

10
0

27
.1

95
66

47
35

.2
5.

40
9

8.
85

7
14

10
84

85
3

10
36

1
6

A
B

C
D

E

133

Appendix D. Source Code

Setup and Usage

Full code, and latest user guide is on the GitHub repository [9].

1. Install Ansible package on control workstation (i.e.)
apt install ansible

2. Install OS and desired network configuration for systems under test

3. If environment has no DNS, add IP addresses to the hosts file of the Ansible
control workstation. This is important, do not skip.

nano /etc/hosts...
10.0.0.1 tx1
10.0.0.2 tx2
10.0.0.3 rpi3bp
10.0.0.4 rpi4
10.0.0.5 xavier
10.10.10.60 maas-1
10.10.10.61 maas-2

4. Build inventory.yml file with device specific variables

sensors:
children:

rpi:
hosts:

rpi4:
...

vars:
ansible_user: pi
ansible_become_method: sudo
sensor_dir: /sensor

nvidia:
hosts:

tx2:
capture_interface: eth0
send_interface: eth3
rps_mask: 3E #0011 1110
NAPI_budget_best: 300
backlog_best: 1000
backlog_weight_best: 300

vars:
ansible_user: nvidia
...

5. Build vars.yml, static-controls.yml, and variable-controls.yml playbooks with
desired experiment variables. See fully implemented tests (interface, pcap, suricata)
for examples

134

6. Fill playbook benchmark-innerloop.yml with the workload to test and fill in
placeholders.

#This playbook is the "inner" loop
- name: Launch Performance Monitor (Factors {{ current_factor_list }})
shell: "./gather_stats.bash <<**PID**>> <<**SAMPLE RATE**>> {{

current_factor_list }}"↪→
args:
chdir: "{{ experiment_dir }}/"

register: results_async
poll: 0
async: 3600
become: yes
changed_when: false

<<**YOUR WORKLOAD TASK(S) GOES HERE.....**>>
SEE RATELIMIT TEST FOR EXAMPLE

7. Replace placeholders (shown as %%%%) in benchmark-middleloop.yml, benchmark-
outerloop.yml and benchmark-main.yml with appropriate variable names.

- name: Record Initial Variable Levels
set_fact:
A_levels: "{{A_levels}} + ['%%%%%']"
B_levels: "{{B_levels}} + ['%%%%%']"
C_levels: "{{C_levels}} + ['%%%%%']"
D_levels: "{{D_levels}} + ['%%%%%']"
E_levels: "{{E_levels}} + ['%%%%%']"

8. Generate some SSH keys if you don’t have them already
ssh-keygen

9. If first time, run prep-playbook.yml to setup SSH keys and dependencies
ansible-playbook -i inventory.yml --ask-pass --ask-become-pass prep-playbook.yml

10. Run the main playbook once all placeholders have been filled and set:
ansible-playbook -i inventory.yml suricata-bench-playbook.yml

11. Intermediate and raw .csv results will be generated on each device and copied
back to the current working directory

12. At the end of all testing, a final log will be generated that details the best
level of each factor and a final performance score.

135

Tips and Tricks

Overriding variables from command line is done with -e:
ansible-playbook -i inventory.yml -e "pps_limit=104000" suricata-benchmark-main.yml

Limiting to only certain hosts from inventory is done with -l:
ansible-playbook -i inventory.yml -l nvidia,rpi4 pcap-bench-playbook.yml

Play only certain factors on certain devices:
ansible-playbook -i inventory.yml -l rpi4 -e '{"factor_combos": [E,AE,BE,ABE,CE,ACE,BCE,ABCE,

DE,ADE,BDE,ABDE,CDE,ACDE,BCDE,ABCDE]}' suricata-benchmark-main.yml

Jump directly into the third iteration of a optimization loop
ansible-playbook -i inventory.yml -l rpi4 -e "test_counter=3" -e '{"significant_factors_array":

[ABCE]}' -e "last_loop_best=3940539" -e "target_to_beat=5084844" suricata-benchmark-main.yml

Debug ”play” is very useful and can grab stdout from each device:

- name: Send Traffic via tcpreplay.
local_action:

module: shell
_raw_params: sudo tcpreplay -i {{send_interface}} -p {{interface_pps}}

1.pcap↪→
warn: false

ignore_errors: yes
register: sender

#Debug
- name: Generator Debug
debug:

var: sender.stdout

136

Common Code Core

gather-stats.bash

1 #!/bin/bash
2

3 #Command line args
4 PPS=$1
5 PID=$2
6 IFACE=$3
7 SAMPLE_RATE=$4
8 PACKETS_EXPECTED=$5
9 TUNING_FACTORS=$6

10

11

12 #TOTAL_RUNTIME=£((£PACKETS_EXPECTED / £PPS + 5)) #plus for cooldown buffer
13 #TOTAL_RUNTIME=60
14

15 if [-z "$4"]; then
16 echo "Usage: bash $0 <test pps rate> <monitor pid> <capture interface> <sample

rate in sec> optional: <packets expected> <tuning_factors>"↪→
17 echo "ex: bash $0 100000 8912 eth0 0.5 2000000 ABCD"
18 echo "a negative pid will watch only the interface / softirq handler"
19 echo "**sudo access required**"
20 exit 1
21 elif [-z "$5"]; then
22 TOTAL_RUNTIME=60
23 TUNING_FACTORS=N
24 elif [-z "$6"]; then
25 TOTAL_RUNTIME=$(($PACKETS_EXPECTED / $PPS + 5)) #plus for cooldown buffer
26 TUNING_FACTORS=N
27 elif [-z "$7"]; then
28 TOTAL_RUNTIME=$(($PACKETS_EXPECTED / $PPS + 5)) #plus for cooldown buffer
29 fi
30

31

32 cd "$(dirname "$0")"
33 if [-f gather.pid]; then
34 echo "Unclean shutdown of previous run. Ending it now.."
35 sudo kill $(cat gather.pid)
36 sleep 2
37 fi
38 echo $$ > gather.pid
39 tmp=$(mktemp -d)
40

41

42 if [$PID -lt '0']; then
43 echo "Using interface rate mode only";
44 #Watching softirq daemon, that handles the last half of the interrupt from the

NIC↪→
45 #Thread 0 is most likely on the ARM based boards (first thread)
46 #kernel threads like this wont show memory stats
47 PID=$(top -b -n1 | grep ksoftirq | head -1 | awk '{ print $1 }');
48 PROCESS_NAME=ksoftirqd0;
49 elif [! -d /proc/$PID]; then
50 echo "supplied PID $PID isn't running, exiting";
51 exit 1;
52 else PROCESS_NAME=$(ps -p $PID -o comm=); fi
53

54 #Might be a better way to fingerprint the machine
55 if [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'Raspberry'];

then DEVICE_FAM=pi;↪→
56 elif [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'Jetson-TX1'

]; then DEVICE_FAM=nvidia-tx1;↪→
57 elif [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'quill'];

then DEVICE_FAM=nvidia-tx2;↪→
58 elif [$(sudo lshw -short -c system | awk 'FNR == 3 {print $2}') == 'Jetson-AGX'

]; then DEVICE_FAM=nvidia-xavier;↪→

137

59 else DEVICE_FAM=unknown; fi
60

61 #top has to be kept running to gather accurate CPU stats over time.
62 #See man page for how it calcs this. ps doesn't provide useful data, see man page

as well↪→
63 #debian buster has newer version of top that defaults to MB, we want KB
64 if [$(lsb_release -c -s) == 'buster']; then
65 top -p $PID -b -d 1 -E k > $tmp/toptmp &
66 sleep 2
67 else
68 top -p $PID -b -d 1 > $tmp/toptmp &
69

70 fi
71

72 #let top warmup..very important. rip my 3 hours troubleshooting this regression
73 sleep 3
74

75 sudo renice -n -15 $(pidof top) &> /dev/null #bump my top process priority
76 sudo renice -n -20 $$ &> /dev/null #bump my priority to max
77

78 #Initialize vars
79 declare -a PID_CPU_PERCENT
80 declare -a PID_MEM_PERCENT
81 declare -a PID_MEM_MB
82 declare -a UTILIZATION_CPU
83 declare -a TEMPERATURE_CPU
84 declare -a POWER_CPU
85 declare -a MEM_AVAIL_PERCENT
86 declare -a MEM_AVAIL_MB
87 declare -a RXPPS
88 declare -a RXBPS
89 declare -a IFACE_DROPS
90 declare -a KERN_DROPS
91

92 NIC_DRIVER=$(ethtool -i $IFACE | head -1 | awk '{ print $2 }')
93 TOTAL_MEM_MB=$(bc <<< 'scale=2; '$(tail -5 $tmp/toptmp | head -n 1 | awk '{ print

$4 }')' / 976.562')↪→
94 RX_PKTS_LAST=$(cat /sys/class/net/$IFACE/statistics/rx_packets)
95 RX_PKTS_FIRST=$RX_PKTS_LAST
96 RX_BPS_LAST=$(cat /sys/class/net/$IFACE/statistics/rx_bytes)
97 TIMEFORMAT=%R
98 LOOP_COUNT=0
99 LOOP_TIME_REAL=$SAMPLE_RATE

100 IFACE_DROPS_PERCENT=0
101 KERN_DROPS_PERCENT=0
102 #SUM_PACKETS=0
103

104 KERN_DROP_LAST=0
105 if ["$NIC_DRIVER" == 'e1000e'] || ["$NIC_DRIVER" == 'igb'] || ["$NIC_DRIVER"

== 'tg3'] || ["$NIC_DRIVER" == 'bcmgenet'] ; then↪→
106 IFACE_DROP_LAST=$(cat /sys/class/net/$IFACE/statistics/rx_missed_errors);
107 elif ["$NIC_DRIVER" == 'lan78xx']; then
108 IFACE_DROP_LAST=$(ethtool -S $IFACE | grep "RX Dropped Frames:" | awk '{ print $4

}');↪→
109 elif ["$NIC_DRIVER" == 'eqos']; then
110 IFACE_DROP_LAST=$(ethtool -S $IFACE | grep rx_fifo_overflow | awk '{ print $2

}');↪→
111 fi
112

113 function captureLap {
114 #Time dependant ("per second") samples below.
115 RX_PKTS_NOW=$(cat /sys/class/net/$IFACE/statistics/rx_packets)
116 RXPPS[$LOOP_COUNT]=$(bc <<< "scale=0; ($RX_PKTS_NOW - $RX_PKTS_LAST) /

($LOOP_TIME_REAL)")↪→
117 RX_PKTS_LAST=$RX_PKTS_NOW
118 RX_BPS_NOW=$(cat /sys/class/net/$IFACE/statistics/rx_bytes)
119 RXBPS[$LOOP_COUNT]=$(bc <<< "scale=0; (($RX_BPS_NOW - $RX_BPS_LAST) / 125000) /

($LOOP_TIME_REAL) ")↪→
120 RX_BPS_LAST=$RX_BPS_NOW

138

121

122 #Handle bizzare rare case where a negative number gets calculated on super
heavily loaded machine↪→

123 #Happens on Pi based boards, the interface seems to temporarily "reset" its stats
counters?↪→

124 if [${RXBPS[$LOOP_COUNT]} -lt "0"]; then RXBPS[$LOOP_COUNT]=0; fi
125 if [${RXPPS[$LOOP_COUNT]} -lt "0"]; then RXPPS[$LOOP_COUNT]=0; fi
126

127 #Specific to suricata...
128 #TX1 and rpi3 version of suricatasc have this in a different spot..
129 if ["$PROCESS_NAME" == "Suricata-Main"]; then
130 if ["$DEVICE_FAM" == 'nvidia-tx1']; then
131 KERN_DROP_NOW=$(suricatasc /var/run/suricata-command.socket -c "iface-stat

$IFACE" | awk '{ print $5 }'| egrep -o [0-9]+)↪→
132 #elif ["£NIC_DRIVER" == 'lan78xx']; then
133 # KERN_DROP_NOW=£(suricatasc /var/run/suricata-command.socket -c "iface-stat

£IFACE" | awk '{ print £11 }'| egrep -o [0-9]+)↪→
134 else
135 KERN_DROP_NOW=$(suricatasc /var/run/suricata-command.socket -c "iface-stat

$IFACE" | awk '{ print $7 }'| egrep -o [0-9]+)↪→
136 fi
137 KERN_DROPS[$LOOP_COUNT]=$(bc <<< "scale=0; ($KERN_DROP_NOW - $KERN_DROP_LAST) /

$LOOP_TIME_REAL ")↪→
138 KERN_DROP_LAST=$KERN_DROP_NOW
139 else
140 KERN_DROPS[$LOOP_COUNT]=NA
141 fi
142

143 #Driver specific stat locations
144 if ["$NIC_DRIVER" == 'lan78xx']; then
145 IFACE_DROP_NOW=$(ethtool -S $IFACE | grep "RX Dropped Frames:" | awk '{print

$4}')↪→
146 IFACE_DROPS[$LOOP_COUNT]=$(bc <<< "scale=0; ($IFACE_DROP_NOW-$IFACE_DROP_LAST) /

$LOOP_TIME_REAL ")↪→
147 IFACE_DROP_LAST=$IFACE_DROP_NOW
148 elif ["$NIC_DRIVER" == 'e1000e'] || ["$NIC_DRIVER" == 'igb'] || [

"$NIC_DRIVER" == 'tg3'] || ["$NIC_DRIVER" == 'bcmgenet']; then↪→
149 IFACE_DROP_NOW=$(cat /sys/class/net/$IFACE/statistics/rx_missed_errors)
150 IFACE_DROPS[$LOOP_COUNT]=$(bc <<< "scale=0; ($IFACE_DROP_NOW-$IFACE_DROP_LAST) /

$LOOP_TIME_REAL ")↪→
151 IFACE_DROP_LAST=$IFACE_DROP_NOW
152 elif ["$NIC_DRIVER" == 'eqos']; then
153 IFACE_DROP_NOW=$(ethtool -S $IFACE | grep rx_fifo_overflow | awk '{ print $2

}');↪→
154 IFACE_DROPS[$LOOP_COUNT]=$(bc <<< "scale=0; ($IFACE_DROP_NOW-$IFACE_DROP_LAST) /

$LOOP_TIME_REAL ")↪→
155 IFACE_DROP_LAST=$IFACE_DROP_NOW
156 fi
157

158 #Device specific sensors, not super efficient
159 if ["$DEVICE_FAM" == 'pi']; then
160 TEMPERATURE_CPU[$LOOP_COUNT]=$(vcgencmd measure_temp | grep -ow

"[0-9][0-9].[0-9]")↪→
161 POWER_CPU[$LOOP_COUNT]=$(expr $(vcgencmd measure_clock arm | grep -oP "([0-9]+)"

| tail -1) / 1000000)↪→
162 elif ["$DEVICE_FAM" == 'nvidia-tx1']; then
163 TEMPERATURE_CPU[$LOOP_COUNT]=$(bc <<< 'scale=1; '$(cat

/sys/devices/virtual/thermal/thermal_zone1/temp)' / 1000')↪→
164 POWER_CPU[$LOOP_COUNT]=$(bc <<< 'scale=3; '$(cat

/sys/devices/7000c400.i2c/i2c-1/1-0040/iio_device/in_power0_input)' /
1000')

↪→
↪→

165 elif ["$DEVICE_FAM" == 'nvidia-tx2']; then
166 TEMPERATURE_CPU[$LOOP_COUNT]=$(bc <<< 'scale=1; '$(cat

/sys/devices/virtual/thermal/thermal_zone1/temp)' / 1000')↪→
167 POWER_CPU[$LOOP_COUNT]=$(bc <<< 'scale=3; '$(cat

/sys/bus/i2c/drivers/ina3221x/0-0041/iio_device/in_power0_input)' / 1000')↪→

139

168 elif ["$DEVICE_FAM" == 'nvidia-xavier']; then
169 TEMPERATURE_CPU[$LOOP_COUNT]=$(bc <<< 'scale=1; '$(cat

/sys/devices/virtual/thermal/thermal_zone0/temp)' / 1000')↪→
170 POWER_CPU[$LOOP_COUNT]=$(bc <<< 'scale=3; '$(cat

/sys/bus/i2c/drivers/ina3221x/1-0040/iio_device/in_power1_input)' / 1000')↪→
171 else
172 TEMPERATURE_CPU[$LOOP_COUNT]=NA
173 POWER_CPU[$LOOP_COUNT]=NA
174 fi
175

176 #Regular sensors / reports
177 PID_MEM_PERCENT[$LOOP_COUNT]=$(ps -p $PID -o pmem --no-headers)
178 PID_MEM_MB[$LOOP_COUNT]=$(bc <<< 'scale=0; '$(ps -p $PID -o rss --no-headers)' /

976.562')↪→
179 PID_CPU_PERCENT[$LOOP_COUNT]=$(tail -1 $tmp/toptmp | awk '{ print $9 }')
180 MEM_AVAIL_MB[$LOOP_COUNT]=$(bc <<< 'scale=0; '$(tail -5 $tmp/toptmp | head -n 1 |

awk '{ print $6 + $10 }')' / 976.562')↪→
181 MEM_AVAIL_PERCENT[$LOOP_COUNT]=$(bc <<< "scale=1; ${MEM_AVAIL_MB[$LOOP_COUNT]} /

$TOTAL_MEM_MB * 100")↪→
182 UTILIZATION_CPU[$LOOP_COUNT]=$(tail -6 $tmp/toptmp | head -n 1 | awk '{ print $2

+ $4 + $6 + $10 + $12 + $14 }')↪→
183

184

185 # uncomment for live debugging
186 # echo txPPS\: £PPS - \%CPU\: £{PID_CPU_PERCENT[£LOOP_COUNT]} - TOTAL CPU\:

£{UTILIZATION_CPU[£LOOP_COUNT]} - \%MEM\: £{PID_MEM_PERCENT[£LOOP_COUNT]} -
MEM MB\: £{PID_MEM_MB[£LOOP_COUNT]} - \

↪→
↪→

187 # MB FREE\: £{MEM_AVAIL_MB[£LOOP_COUNT]} - TEMPERATURE_CPU\(C\)\:
£{TEMPERATURE_CPU[£LOOP_COUNT]} - CPU POWER\: £{POWER_CPU[£LOOP_COUNT]} -
rxPPS\: £{RXPPS[£LOOP_COUNT]} - \

↪→
↪→

188 #rxmbps\: £{RXBPS[£LOOP_COUNT]} - iface drps\: £{IFACE_DROPS[£LOOP_COUNT]}, krn
drps\: £{KERN_DROPS[£LOOP_COUNT]}, loop\: £LOOP_TIME_REAL↪→

189

190 ((LOOP_COUNT=LOOP_COUNT+1))
191 }
192

193 function buildFinalStats {
194

195 #Moved out of critial loop region
196 IFS=$'\n'
197 MAX_PID_CPU_PERCENT=$(echo "${PID_CPU_PERCENT[*]}" | sort -nr | head -n1)
198 MAX_PID_MEM_PERCENT=$(echo "${PID_MEM_PERCENT[*]}" | sort -nr | head -1)
199 MAX_PID_MEM_MB=$(echo "${PID_MEM_MB[*]}" | sort -nr | head -1)
200 MAX_UTILIZATION_CPU=$(echo "${UTILIZATION_CPU[*]}" | sort -nr | head -1)
201 MIN_MEM_AVAIL_PERCENT=$(echo "${MEM_AVAIL_PERCENT[*]}" | sort -nr | tail -1)
202 MIN_MEM_AVAIL_MB=$(echo "${MEM_AVAIL_MB[*]}" | sort -nr | tail -1)
203 MAX_TEMPERATURE_CPU=$(echo "${TEMPERATURE_CPU[*]}" | sort -nr | head -1)
204 MAX_POWER_CPU=$(echo "${POWER_CPU[*]}" | sort -nr | head -1)
205 MAX_RXBPS=$(echo "${RXBPS[*]}" | sort -nr | head -1)
206 MAX_RXPPS=$(echo "${RXPPS[*]}" | sort -nr | head -1)
207

208 #Averages.
209 #Zeros may throw off averages if they're not likely (fully overloaded,etc)
210 #Can count the number of zeros in the array so they dont throw off averages
211 #(All items in array / (Array size - zero count))
212 IFS='+'
213 ((RX_PKTS_TOTAL=RX_PKTS_LAST-RX_PKTS_FIRST))
214

215 #currently only suricata gives access to real time kernel drops. dont remove
zeros↪→

216 if ["$PROCESS_NAME" == "Suricata-Main"]; then
217 SUM_KERN_DROPS=$(echo "${KERN_DROPS[*]}"|bc)
218 echo "kern drop number: ${#KERN_DROPS[@]}"
219 AVG_KERN_DROPS=$(echo "(${KERN_DROPS[*]}) / ${#KERN_DROPS[@]}" | bc 2>

/dev/null)↪→
220 KERN_DROPS_PERCENT=$(bc <<< "scale=2; $SUM_KERN_DROPS / $RX_PKTS_TOTAL * 100")
221 elif ["$PROCESS_NAME" == "tcpdump"]; then

140

222 AVG_KERN_DROPS=NA
223 SUM_KERN_DROPS=$(cat counters | awk ' FNR == 4 {print $1}')
224 KERN_DROPS_PERCENT=$(bc <<< "scale=3; $SUM_KERN_DROPS / $RX_PKTS_TOTAL")

#Percent dropped after making it past the first round...↪→
225 rm -rf counters
226 rm -rf tcpdump.pid
227 else
228 AVG_KERN_DROPS=NA
229 SUM_KERN_DROPS=NA
230 KERN_DROPS_PERCENT=NA
231 fi
232

233 SUM_IFACE_DROPS=$(echo "${IFACE_DROPS[*]}"|bc)
234 AVG_IFACE_DROPS=$(echo "(${IFACE_DROPS[*]}) / (${#IFACE_DROPS[*]} - $(echo

${IFACE_DROPS[*]} | grep -ow '0' | wc -l))"|bc 2> /dev/null)↪→
235 IFACE_DROPS_PERCENT=$(bc <<< "scale=2; $SUM_IFACE_DROPS / $PACKETS_EXPECTED *

100")↪→
236 AVG_RXPPS=$(echo "(${RXPPS[*]}) / (${#RXPPS[*]} - $(echo ${RXPPS[*]} | grep -ow

'0' | wc -l))"|bc 2> /dev/null)↪→
237 AVG_RXBPS=$(echo "(${RXBPS[*]}) / (${#RXBPS[*]} - $(echo ${RXBPS[*]} | grep -ow

'0' | wc -l))"|bc 2> /dev/null)↪→
238 AVG_PID_MEM_PERCENT=$(echo "scale=1; (${PID_MEM_PERCENT[*]}) /

(${#PID_MEM_PERCENT[*]} - $(echo ${PID_MEM_PERCENT[*]} | grep -ow '0.0' | wc
-l))"|bc 2> /dev/null)

↪→
↪→

239 AVG_PID_CPU_PERCENT=$(echo "scale=1; (${PID_CPU_PERCENT[*]}) /
(${#PID_CPU_PERCENT[*]} - $(echo ${PID_CPU_PERCENT[*]} | grep -ow '0.0' | wc
-l))"|bc 2> /dev/null)

↪→
↪→

240 AVG_POWER_CPU=$(echo "scale=3; (${POWER_CPU[*]}) / (${#POWER_CPU[*]} - $(echo
${POWER_CPU[*]} | grep -ow '0' | wc -l))"|bc 2> /dev/null)↪→

241 AVG_TEMPERATURE_CPU=$(echo "scale=1; (${TEMPERATURE_CPU[*]}) /
(${#TEMPERATURE_CPU[*]} - $(echo ${TEMPERATURE_CPU[*]} | grep -ow '0.0' | wc
-l))"|bc 2> /dev/null)

↪→
↪→

242 AVG_UTILIZATION_CPU=$(echo "scale=1; (${UTILIZATION_CPU[*]}) /
(${#UTILIZATION_CPU[*]} - $(echo ${UTILIZATION_CPU[*]} | grep -ow '0.0' | wc
-l))"|bc 2> /dev/null)

↪→
↪→

243

244 unset IFS
245 }
246

247 function printVerboseStats {
248

249 echo "New run -- tx PPS: $PPS -- Sample rate: $4 -- Driver: $NIC_DRIVER -- tuning
factors $TUNING_FACTORS" >>
$HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results-verbose.csv

↪→
↪→

250 echo
"txpps,%pidcpu,%totalcpu,%pidmem,pidmemMB,memavailMB,%memavail,cpu_temp(c),cpu_power(w),rxpps,rxmbps,iface_drop,kern_drop"
>> $HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results-verbose.csv

↪→
↪→

251

252 for ((i = 0; i < $LOOP_COUNT; i++)); do
253 echo

$PPS,${PID_CPU_PERCENT[$i]},${UTILIZATION_CPU[$i]},${PID_MEM_PERCENT[$i]},${PID_MEM_MB[$i]},${MEM_AVAIL_MB[$i]},${MEM_AVAIL_PERCENT[$i]},${TEMPERATURE_CPU[$i]},\↪→
254 ${POWER_CPU[$i]},${RXPPS[$i]},${RXBPS[$i]},${IFACE_DROPS[$i]},${KERN_DROPS[$i]}>>

$HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results-verbose.csv↪→
255 done
256 }
257

258 function finish {
259 rm -rf "$tmp"
260 rm -rf gather.pid
261

262 killall top 2> /dev/null
263 buildFinalStats
264 printVerboseStats
265

266 if [! -f $HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results.csv]; then

141

267 echo
'tx,pidcpu,pidcpu,syscpu,syscpu,pidmem,pidmem,pidmem,sysmemfree,sysmemfree,temp,temp,power,power,rxpps,rxpps,rxmbps,rxmbps,nicdrop,nicdrop,nicdrop,kerndrop,kerndrop,factors'
>> $HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results.csv;

↪→
↪→

268 echo
'pps,%avg,%max,%avg,%max,%avg,%max,MBmax,MBmin,%min,avg(c),max(c),avg,max,avg,max,avg,max,sum,avg,%,sum,avg,code'
>> $HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results.csv;

↪→
↪→

269 fi
270

271 #handle some empty cases before writing to file
272 if [-z "$AVG_IFACE_DROPS"]; then AVG_IFACE_DROPS=0; fi
273 if [-z "$AVG_KERN_DROPS"]; then AVG_KERN_DROPS=0; fi
274 if [-z "$AVG_RXBPS"]; then AVG_RXBPS=0; fi
275 if [-z "$AVG_RXPPS"]; then AVG_RXPPS=0; fi
276 if [-z "$AVG_PID_CPU_PERCENT"]; then AVG_PID_CPU_PERCENT=0.0; fi
277 if [-z "$AVG_PID_MEM_PERCENT"]; then AVG_PID_MEM_PERCENT=0.0; fi
278 if [-z "$AVG_UTILIZATION_CPU"]; then AVG_UTILIZATION_CPU=0.0; fi
279 if [${TEMPERATURE_CPU[0]} == 'NA']; then AVG_TEMPERATURE_CPU=NA;

MAX_TEMPERATURE_CPU=NA; fi↪→
280 if [${POWER_CPU[0]} == 'NA']; then AVG_POWER_CPU=NA; MAX_POWER_CPU=NA; fi
281

282 echo
$PPS,$AVG_PID_CPU_PERCENT,$MAX_PID_CPU_PERCENT,$AVG_UTILIZATION_CPU,$MAX_UTILIZATION_CPU,$AVG_PID_MEM_PERCENT,$MAX_PID_MEM_PERCENT,\↪→

283 $MAX_PID_MEM_MB,$MIN_MEM_AVAIL_MB,$MIN_MEM_AVAIL_PERCENT,$AVG_TEMPERATURE_CPU,$MAX_TEMPERATURE_CPU,$AVG_POWER_CPU,$MAX_POWER_CPU,$AVG_RXPPS,$MAX_RXPPS,$AVG_RXBPS,\
284 $MAX_RXBPS,$SUM_IFACE_DROPS,$AVG_IFACE_DROPS,$IFACE_DROPS_PERCENT,$SUM_KERN_DROPS,$AVG_KERN_DROPS,$TUNING_FACTORS

>> "$HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results.csv"↪→
285

286

287 echo "Total packets past kernel phase: $RX_PKTS_TOTAL"
288 #echo "Iface Drops: £SUM_IFACE_DROPS £IFACE_DROPS_PERCENT%"
289 #echo "kern drops: £SUM_KERN_DROPS £KERN_DROPS_PERCENT%"
290

291 (head -n2 && tail -n1) < $HOSTNAME-$NIC_DRIVER-$PROCESS_NAME-results.csv | column
-t -s ,↪→

292 #column -t -s , £HOSTNAME-£NIC_DRIVER-£PROCESS_NAME-results.csv
293 exec 3>&1- 4>&2-
294 exit 0
295 }
296

297 ##"main" function below
298 #sleep 2 #brief warmup
299 trap finish EXIT #Capture ctrl-c or kill signals so I can cleanup
300

301 echo "Watching process: $PROCESS_NAME ($PID)"
302 echo "I'm running on a: $DEVICE_FAM board with a $NIC_DRIVER interface "
303 echo "runtime will be $TOTAL_RUNTIME with factors $TUNING_FACTORS"
304 SECONDS=0
305 exec 3>&1 4>&2 #bash magic to get the output of the time command and save the

functions stdout/stderr↪→
306 while [[-d /proc/$PID && $SECONDS -lt $TOTAL_RUNTIME]]
307 do
308 #This needs to be as close as possible to SAMPLE_RATE sec for "per second"

calculations to be accurate↪→
309 #As system load nears 100% the loop will likely drift, so try to account for it.
310 #Still not perfect, but close enough for now.
311 { time {
312 sleep $SAMPLE_RATE & captureLap 1>&3 2>&4;
313 if [${RXPPS[$LOOP_COUNT-1]} -lt '10']; then SECONDS=0; fi #Dont start the

countdown till packets start arriving. 10 accounts for random broadcasts↪→
314 wait $!; } } 2>"$tmp/lastloop"
315 LOOP_TIME_REAL=$(cat $tmp/lastloop)
316 done

142

anova.py

1 #The pandas .convert_objects() function is deprecated
2 #Couldnt get the new function to work properly, didnt want to waste more time on

it↪→
3 import warnings
4 warnings.simplefilter(action='ignore', category=FutureWarning)
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 from scipy import stats
8 from scipy.stats import norm
9 import numpy as np

10 import seaborn as sns
11 import statsmodels.api as sm
12 from statsmodels.formula.api import ols
13 import statsmodels.stats.multicomp
14 import probscale
15 import sys
16

17 #ANOVA
18 #Thanks to Marvin for Python help
19

20 if len(sys.argv) <= 5:
21 print("Not enough args usage: anova.py <*.csv> <rv1,rv2> <factors> <replicates>

<alpha> optional: device")↪→
22 print("ex: anova.py testdata.csv nicdrop,avg 5 10 .05 TX1")
23 print("<rv> is response variable, note comma in example")
24 print("\"Device\" is used in normplot of effects, omit to skip graph")
25 exit()
26

27 n = int(sys.argv[4]) #replicates
28 k = int(sys.argv[3]) #factors
29 alpha = float(sys.argv[5])
30 rv = sys.argv[2].split(',')
31 input_csv_parse = sys.argv[1].split('-')
32

33

34 if k > 5 or k < 1:
35 print("Max factors is 5, Min is 1")
36 exit()
37

38

39 data2 = pd.read_csv(sys.argv[1], header=[0,1])
40 response_var = data2[[rv[0],'factors']]
41 response_var.columns = response_var.columns.get_level_values(1)
42 #print(response_var.groupby('code').mean().sort_values(by=[rv[1]]).round(0))
43

44 if(k >= 1):
45 df_index=['A', 'Error', 'Total']
46 one = response_var[response_var['code'] == 'N'].loc[:,rv[1]].to_numpy()
47 a = response_var[response_var['code'] == 'A'].loc[:,rv[1]].to_numpy()
48 means_all = np.array([np.mean(a)])
49 total = np.array([one, a])
50 contrast_A = np.sum(-one + a)
51 contrasts_all = np.array([contrast_A])
52 if(k >= 2):
53 df_index=['A', 'B', 'AB', 'Error', 'Total']
54 one = response_var[response_var['code'] == 'N'].loc[:,rv[1]].to_numpy()
55 a = response_var[response_var['code'] == 'A'].loc[:,rv[1]].to_numpy()
56 b = response_var[response_var['code'] == 'B'].loc[:,rv[1]].to_numpy()
57 ab = response_var[response_var['code'] == 'AB'].loc[:,rv[1]].to_numpy()
58 means_all = np.array([np.mean(a), np.mean(b), np.mean(ab)])
59 total = np.array([one, a, b, ab])
60 contrast_A = np.sum(-one + a - b + ab)
61 contrast_B = np.sum(-one - a + b + ab)
62 contrast_AB = np.sum(one - a - b + ab)
63 contrasts_all = np.array([contrast_A, contrast_B, contrast_AB])
64 if(k >= 3):

143

65 df_index=['A', 'B', 'AB', 'C', 'AC', 'BC', 'ABC', 'Error', 'Total']
66 c = response_var[response_var['code'] == 'C'].loc[:,rv[1]].to_numpy()
67 ac = response_var[response_var['code'] == 'AC'].loc[:,rv[1]].to_numpy()
68 bc = response_var[response_var['code'] == 'BC'].loc[:,rv[1]].to_numpy()
69 abc = response_var[response_var['code'] == 'ABC'].loc[:,rv[1]].to_numpy()
70 means_all = np.array([np.mean(a), np.mean(b), np.mean(ab), np.mean(c),

np.mean(ac), np.mean(bc), np.mean(abc)])↪→
71 total = np.array([one, a, b, ab, c, ac, bc, abc])
72 contrast_A = np.sum(-one + a - b + ab - c + ac - bc + abc)
73 contrast_B = np.sum(-one - a + b + ab - c - ac + bc + abc)
74 contrast_AB = np.sum(one - a - b + ab + c - ac - bc + abc)
75 contrast_C = np.sum(-one - a - b - ab + c + ac + bc + abc)
76 contrast_AC = np.sum(one - a + b - ab - c + ac - bc + abc)
77 contrast_BC = np.sum(one + a - b - ab - c - ac + bc + abc)
78 contrast_ABC= np.sum(-one+ a + b - ab + c - ac - bc + abc)
79 contrasts_all = np.array([contrast_A, contrast_B, contrast_AB, contrast_C,

contrast_AC, contrast_BC, contrast_ABC])↪→
80 if(k >= 4):
81 df_index=['A', 'B', 'AB', 'C', 'AC', 'BC', 'ABC', 'D', 'AD', 'BD', 'ABD', 'CD',

'ACD', 'BCD', 'ABCD', 'Error', 'Total']↪→
82 d = response_var[response_var['code'] == 'D'].loc[:,rv[1]].to_numpy()
83 ad = response_var[response_var['code'] == 'AD'].loc[:,rv[1]].to_numpy()
84 bd = response_var[response_var['code'] == 'BD'].loc[:,rv[1]].to_numpy()
85 abd = response_var[response_var['code'] == 'ABD'].loc[:,rv[1]].to_numpy()
86 cd = response_var[response_var['code'] == 'CD'].loc[:,rv[1]].to_numpy()
87 acd = response_var[response_var['code'] == 'ACD'].loc[:,rv[1]].to_numpy()
88 bcd = response_var[response_var['code'] == 'BCD'].loc[:,rv[1]].to_numpy()
89 abcd = response_var[response_var['code'] == 'ABCD'].loc[:,rv[1]].to_numpy()
90 means_all = np.array([np.mean(a), np.mean(b), np.mean(ab), np.mean(c),

np.mean(ac), np.mean(bc), np.mean(abc), np.mean(d),↪→
91 np.mean(ad), np.mean(bd), np.mean(abd), np.mean(cd), np.mean(acd),

np.mean(bcd), np.mean(abcd)])↪→
92 total = np.array([one, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd,

abcd])↪→
93 contrast_A = np.sum(-one + a - b + ab - c + ac - bc + abc - d + ad - bd + abd -

cd + acd - bcd + abcd)↪→
94 contrast_B = np.sum(-one - a + b + ab - c - ac + bc + abc - d - ad + bd + abd -

cd - acd + bcd + abcd)↪→
95 contrast_AB = np.sum(one - a - b + ab + c - ac - bc + abc + d - ad - bd + abd +

cd - acd - bcd + abcd)↪→
96 contrast_C = np.sum(-one - a - b - ab + c + ac + bc + abc - d - ad - bd - abd +

cd + acd + bcd + abcd)↪→
97 contrast_AC = np.sum(one - a + b - ab - c + ac - bc + abc + d - ad + bd - abd -

cd + acd - bcd + abcd)↪→
98 contrast_BC = np.sum(one + a - b - ab - c - ac + bc + abc + d + ad - bd - abd -

cd - acd + bcd + abcd)↪→
99 contrast_ABC= np.sum(-one+ a + b - ab + c - ac - bc + abc - d + ad + bd - abd +

cd - acd - bcd + abcd)↪→
100 contrast_D = np.sum(-one- a - b - ab - c - ac - bc - abc + d + ad + bd + abd +

cd + acd + bcd + abcd)↪→
101 contrast_AD= np.sum(one - a + b - ab + c - ac + bc - abc - d + ad - bd + abd -

cd + acd - bcd + abcd)↪→
102 contrast_BD = np.sum(one + a - b - ab + c + ac - bc - abc - d - ad + bd + abd -

cd - acd + bcd + abcd)↪→
103 contrast_ABD= np.sum(-one + a + b - ab - c + ac + bc - abc + d - ad - bd + abd +

cd - acd - bcd + abcd)↪→
104 contrast_CD = np.sum(one + a + b + ab - c - ac - bc - abc - d - ad - bd - abd +

cd + acd + bcd + abcd)↪→
105 contrast_ACD = np.sum(-one + a - b + ab + c - ac + bc - abc + d - ad + bd - abd -

cd + acd - bcd + abcd)↪→
106 contrast_BCD = np.sum(-one - a + b + ab + c + ac - bc - abc + d + ad - bd - abd -

cd - acd + bcd + abcd)↪→
107 contrast_ABCD = np.sum(one - a - b + ab - c + ac + bc - abc - d + ad + bd - abd +

cd - acd - bcd + abcd)↪→

144

108 contrasts_all = np.array([contrast_A, contrast_B, contrast_AB, contrast_C,
contrast_AC, contrast_BC, contrast_ABC,↪→

109 contrast_D, contrast_AD, contrast_BD, contrast_ABD,
contrast_CD, contrast_ACD, contrast_BCD,
contrast_ABCD])

↪→
↪→

110 if(k >= 5):
111 df_index=['A', 'B', 'AB', 'C', 'AC', 'BC', 'ABC', 'D', 'AD', 'BD', 'ABD', 'CD',

'ACD', 'BCD', 'ABCD', 'E', 'AE', 'BE', 'ABE',↪→
112 'CE', 'ACE', 'BCE', 'ABCE','DE', 'ADE', 'BDE', 'ABDE', 'CDE', 'ACDE', 'BCDE',

'ABCDE', 'Error', 'Total']↪→
113 e = response_var[response_var['code'] == 'E'].loc[:,rv[1]].to_numpy()
114 ae = response_var[response_var['code'] == 'AE'].loc[:,rv[1]].to_numpy()
115 be = response_var[response_var['code'] == 'BE'].loc[:,rv[1]].to_numpy()
116 abe = response_var[response_var['code'] == 'ABE'].loc[:,rv[1]].to_numpy()
117 ce = response_var[response_var['code'] == 'CE'].loc[:,rv[1]].to_numpy()
118 ace = response_var[response_var['code'] == 'ACE'].loc[:,rv[1]].to_numpy()
119 bce = response_var[response_var['code'] == 'BCE'].loc[:,rv[1]].to_numpy()
120 abce = response_var[response_var['code'] == 'ABCE'].loc[:,rv[1]].to_numpy()
121 de = response_var[response_var['code'] == 'DE'].loc[:,rv[1]].to_numpy()
122 ade = response_var[response_var['code'] == 'ADE'].loc[:,rv[1]].to_numpy()
123 bde = response_var[response_var['code'] == 'BDE'].loc[:,rv[1]].to_numpy()
124 abde = response_var[response_var['code'] == 'ABDE'].loc[:,rv[1]].to_numpy()
125 cde = response_var[response_var['code'] == 'CDE'].loc[:,rv[1]].to_numpy()
126 acde = response_var[response_var['code'] == 'ACDE'].loc[:,rv[1]].to_numpy()
127 bcde = response_var[response_var['code'] == 'BCDE'].loc[:,rv[1]].to_numpy()
128 abcde = response_var[response_var['code'] == 'ABCDE'].loc[:,rv[1]].to_numpy()
129 means_all = np.array([np.mean(a), np.mean(b), np.mean(ab), np.mean(c),

np.mean(ac), np.mean(bc), np.mean(abc), np.mean(d),↪→
130 np.mean(ad), np.mean(bd), np.mean(abd), np.mean(cd), np.mean(acd),

np.mean(bcd), np.mean(abcd),np.mean(e),↪→
131 np.mean(ae),np.mean(be),np.mean(abe),np.mean(ce),np.mean(ace),np.mean(bce),np.mean(abce),np.mean(de),np.mean(ade),
132 np.mean(bde),np.mean(abde),np.mean(cde),np.mean(acde),np.mean(bcde),np.mean(abcde)])
133 total = np.array([one, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd,

abcd,↪→
134 e,ae,be,abe,ce,ace,bce,abce,de,ade,bde,abde,cde,acde,bcde,abcde])
135 contrast_A = np.sum(-one + a - b + ab - c + ac - bc + abc - d + ad - bd

+ abd - cd + acd - bcd + abcd↪→
136 - e + ae - be + abe - ce + ace - bce + abce - de + ade - bde + abde - cde +

acde - bcde + abcde)↪→
137 contrast_B = np.sum(-one - a + b + ab - c - ac + bc + abc - d - ad + bd

+ abd - cd - acd + bcd + abcd↪→
138 - e - ae + be + abe - ce - ace + bce + abce - de - ade + bde + abde - cde -

acde + bcde + abcde)↪→
139 contrast_AB = np.sum(one - a - b + ab + c - ac - bc + abc + d - ad - bd

+ abd + cd - acd - bcd + abcd↪→
140 + e - ae - be + abe + ce - ace - bce + abce + de - ade - bde + abde + cde -

acde - bcde + abcde)↪→
141 contrast_C = np.sum(-one - a - b - ab + c + ac + bc + abc - d - ad - bd

- abd + cd + acd + bcd + abcd↪→
142 - e - ae - be - abe + ce + ace + bce + abce - de - ade - bde - abde + cde +

acde + bcde + abcde)↪→
143 contrast_AC = np.sum(one - a + b - ab - c + ac - bc + abc + d - ad + bd

- abd - cd + acd - bcd + abcd↪→
144 + e - ae + be - abe - ce + ace - bce + abce + de - ade + bde - abde - cde +

acde - bcde + abcde)↪→
145 contrast_BC = np.sum(one + a - b - ab - c - ac + bc + abc + d + ad - bd

- abd - cd - acd + bcd + abcd↪→
146 + e + ae - be - abe - ce - ace + bce + abce + de + ade - bde - abde - cde -

acde + bcde + abcde)↪→
147 contrast_ABC= np.sum(-one + a + b - ab + c - ac - bc + abc - d + ad + bd

- abd + cd - acd - bcd + abcd↪→
148 - e + ae + be - abe + ce - ace - bce + abce - de + ade + bde - abde + cde

- acde - bcde + abcde)↪→
149 contrast_D = np.sum(-one - a - b - ab - c - ac - bc - abc + d + ad + bd

+ abd + cd + acd + bcd + abcd↪→

145

150 - e - ae - be - abe - ce - ace - bce - abce + de + ade + bde + abde + cde
+ acde + bcde + abcde)↪→

151 contrast_AD= np.sum(one - a + b - ab + c - ac + bc - abc - d + ad - bd
+ abd - cd + acd - bcd + abcd↪→

152 + e - ae + be - abe + ce - ace + bce - abce - de + ade - bde + abde - cde +
acde - bcde + abcde)↪→

153 contrast_BD = np.sum(one + a - b - ab + c + ac - bc - abc - d - ad + bd
+ abd - cd - acd + bcd + abcd↪→

154 + e + ae - be - abe + ce + ace - bce - abce - de - ade + bde + abde - cde -
acde + bcde + abcde)↪→

155 contrast_ABD= np.sum(-one + a + b - ab - c + ac + bc - abc + d - ad - bd
+ abd + cd - acd - bcd + abcd↪→

156 - e + ae + be - abe - ce + ace + bce - abce + de - ade - bde + abde + cde -
acde - bcde + abcde)↪→

157 contrast_CD = np.sum(one + a + b + ab - c - ac - bc - abc - d - ad - bd
- abd + cd + acd + bcd + abcd↪→

158 + e + ae + be + abe - ce - ace - bce - abce - de - ade - bde - abde + cde +
acde + bcde + abcde)↪→

159 contrast_ACD = np.sum(-one + a - b + ab + c - ac + bc - abc + d - ad +
bd - abd - cd + acd - bcd + abcd↪→

160 - e + ae - be + abe + ce - ace + bce - abce + de - ade + bde - abde - cde
+ acde - bcde + abcde)↪→

161 contrast_BCD = np.sum(-one - a + b + ab + c + ac - bc - abc + d + ad -
bd - abd - cd - acd + bcd + abcd↪→

162 - e - ae + be + abe + ce + ace - bce - abce + de + ade - bde - abde - cde
- acde + bcde + abcde)↪→

163 contrast_ABCD = np.sum(one - a - b + ab - c + ac + bc - abc - d + ad +
bd - abd + cd - acd - bcd + abcd↪→

164 + e - ae - be + abe - ce + ace + bce - abce - de + ade + bde - abde + cde
- acde - bcde + abcde)↪→

165 contrast_E = np.sum(-one - a - b - ab - c - ac - bc - abc - d - ad - bd
- abd - cd - acd - bcd - abcd↪→

166 + e + ae + be + abe + ce + ace + bce + abce + de + ade + bde + abde + cde +
acde + bcde + abcde)↪→

167 contrast_AE = np.sum(one - a + b - ab + c - ac + bc - abc + d - ad + bd
- abd + cd - acd + bcd - abcd↪→

168 - e + ae - be + abe - ce + ace - bce + abce - de + ade - bde + abde -
cde + acde - bcde + abcde)↪→

169 contrast_BE= np.sum(one + a - b - ab + c + ac - bc - abc + d + ad - bd
- abd + cd + acd - bcd - abcd↪→

170 - e - ae + be + abe - ce - ace + bce + abce - de - ade + bde + abde - cde -
acde + bcde + abcde)↪→

171 contrast_ABE= np.sum(-one + a + b - ab - c + ac + bc - abc - d + ad + bd
- abd - cd + acd + bcd - abcd↪→

172 + e - ae - be + abe + ce - ace - bce + abce + de - ade - bde + abde + cde
- acde - bcde + abcde)↪→

173 contrast_CE= np.sum(one + a + b + ab - c - ac - bc - abc + d + ad + bd
+ abd - cd - acd - bcd - abcd↪→

174 - e - ae - be - abe + ce + ace + bce + abce - de - ade - bde - abde + cde +
acde + bcde + abcde)↪→

175 contrast_ACE= np.sum(-one + a - b + ab + c - ac + bc - abc - d + ad - bd
+ abd + cd - acd + bcd - abcd↪→

176 + e - ae + be - abe - ce + ace - bce + abce + de - ade + bde - abde - cde
+ acde - bcde + abcde)↪→

177 contrast_BCE= np.sum(-one - a + b + ab + c + ac - bc - abc - d - ad + bd
+ abd + cd + acd - bcd - abcd↪→

178 + e + ae - be - abe - ce - ace + bce + abce + de + ade - bde - abde -
cde - acde + bcde + abcde)↪→

179 contrast_ABCE= np.sum(one - a - b + ab - c + ac + bc - abc + d - ad - bd
+ abd - cd + acd + bcd - abcd↪→

180 - e + ae + be - abe + ce - ace - bce + abce - de + ade + bde - abde + cde
- acde - bcde + abcde)↪→

181 contrast_DE= np.sum(one + a + b + ab + c + ac + bc + abc - d - ad - bd
- abd - cd - acd - bcd - abcd↪→

182 - e - ae - be - abe - ce - ace - bce - abce + de + ade + bde + abde + cde +
acde + bcde + abcde)↪→

146

183 contrast_ADE= np.sum(-one + a - b + ab - c + ac - bc + abc + d - ad + bd
- abd + cd - acd + bcd - abcd↪→

184 + e - ae + be - abe + ce - ace + bce - abce - de + ade - bde + abde - cde
+ acde - bcde + abcde)↪→

185 contrast_BDE= np.sum(-one - a + b + ab - c - ac + bc + abc + d + ad - bd
- abd + cd + acd - bcd - abcd↪→

186 + e + ae - be - abe + ce + ace - bce - abce - de - ade + bde + abde - cde
- acde + bcde + abcde)↪→

187 contrast_ABDE= np.sum(one - a - b + ab + c - ac - bc + abc - d + ad + bd
- abd - cd + acd + bcd - abcd↪→

188 - e + ae + be - abe - ce + ace + bce - abce + de - ade - bde + abde + cde
- acde - bcde + abcde)↪→

189 contrast_CDE= np.sum(-one - a - b - ab + c + ac + bc + abc + d + ad + bd
+ abd - cd - acd - bcd - abcd↪→

190 + e + ae + be + abe - ce - ace - bce - abce - de - ade - bde - abde + cde
+ acde + bcde + abcde)↪→

191 contrast_ACDE= np.sum(one - a + b - ab - c + ac - bc + abc - d + ad - bd
+ abd + cd - acd + bcd - abcd↪→

192 - e + ae - be + abe + ce - ace + bce - abce + de - ade + bde - abde - cde
+ acde - bcde + abcde)↪→

193 contrast_BCDE= np.sum(one + a - b - ab - c - ac + bc + abc - d - ad + bd
+ abd + cd + acd - bcd - abcd↪→

194 - e - ae + be + abe + ce + ace - bce - abce + de + ade - bde - abde - cde
- acde + bcde + abcde)↪→

195 contrast_ABCDE= np.sum(-one + a + b - ab + c - ac - bc + abc + d - ad -
bd + abd - cd + acd + bcd - abcd↪→

196 + e - ae - be + abe - ce + ace + bce - abce - de + ade + bde - abde +
cde - acde - bcde + abcde)↪→

197

198 contrasts_all = np.array([contrast_A, contrast_B, contrast_AB, contrast_C,
contrast_AC, contrast_BC, contrast_ABC,↪→

199 contrast_D, contrast_AD, contrast_BD, contrast_ABD, contrast_CD,
contrast_ACD, contrast_BCD, contrast_ABCD,↪→

200 contrast_E, contrast_AE, contrast_BE, contrast_ABE, contrast_CE,
contrast_ACE, contrast_BCE, contrast_ABCE,↪→

201 contrast_DE, contrast_ADE, contrast_BDE, contrast_ABDE, contrast_CDE,
contrast_ACDE, contrast_BCDE, contrast_ABCDE])↪→

202

203

204 # Sum Squares
205 num_effects = np.power(2,k)-1
206 num_elements = num_effects+2
207 sum_squares = np.ones(num_elements) #All effects plus error and total
208 for i in range(num_effects):
209 sum_squares[i] = np.square(contrasts_all[i])/(n*np.power(2,k))
210 total_mean = np.mean(total)
211 SST = np.sum(np.square(total - total_mean))
212 SSE = SST - np.sum(sum_squares[0:num_effects])
213 sum_squares[num_effects] = SSE
214 sum_squares[num_effects+1] = SST
215

216 #Degrees of Freedom
217 DF = np.ones(num_elements)
218 DF[num_effects] = np.power(2,k)*(n-1) # Error DoF
219 DF[num_effects+1] = n*np.power(2,k)-1 # Total DoF
220

221 #Mean Squares
222 mean_squares = np.ones(sum_squares.size)
223 for i in range(num_elements):
224 mean_squares[i] = sum_squares[i]/DF[i]
225 MSE = mean_squares[num_effects]
226

227 #F-values
228 f_vals = np.ones(num_elements)
229 f_vals[num_effects:] = -1
230 f_crits = np.ones(num_elements)
231 f_crits[num_effects:] = -1

147

232

233 #P-values
234 p_vals = np.ones(num_elements)
235 p_vals[num_effects:] = -1
236

237 #Effect Estimates
238 effects = np.ones(num_elements)
239 effects[num_effects:] = -1
240

241 #Response variable averages
242 means = np.ones(num_elements)
243 means[num_effects:] = -1
244

245 #Build datafile
246 for i in range(num_effects):
247 F0 = mean_squares[i]/MSE
248 f_vals[i] = F0
249 f_crits[i] = stats.f.ppf(1-alpha,DF[i],DF[num_effects])
250 p_vals[i] = 1 - stats.f.cdf(F0, DF[i],DF[num_effects])
251 effects[i] = contrasts_all[i]/(n*np.power(2,k-1))
252 means[i] = means_all[i]
253

254 anova_df_numpy = np.array([means, effects, sum_squares, DF, mean_squares, f_vals,
f_crits, p_vals])↪→

255 anova_df_pandas = pd.DataFrame(data=anova_df_numpy.T, index=df_index,
columns=['Sample Mean','Effect Est.','Sum of Squares', 'df', 'Mean Square',
'F0', 'F Threshold', 'p-value'])

↪→
↪→

256 anova_df_pandas = anova_df_pandas.replace(to_replace=-1,value='')
257

258 #The deprecated function. Changes p-value to float64 so it can be rounded properly
259 anova_df_pandas['p-value']=

anova_df_pandas['p-value'].convert_objects(convert_numeric=True)↪→
260 print("Unoptimized Mean: " + str(np.mean(one)))
261 print(anova_df_pandas.round(5))
262

263 ##Significant Factors
264 significant_factors = anova_df_pandas[(anova_df_pandas['p-value'] <

alpha)].round(5)↪→
265

266 #Ideal candidates are less then the unoptimized mean...
267 candidiate_factors = significant_factors[(significant_factors['Sample Mean'] <

np.mean(one))].sort_values(by=['Sample Mean'])↪→
268

269 longest = ""
270

271 #Print all the significant factors at chosen p-value
272 if significant_factors.empty == False:
273 anova_df_pandas[(anova_df_pandas['p-value'] < alpha)].to_csv("results/anova/" +

sys.argv[6]+"-"+input_csv_parse[2]+"-"+rv[0]+"-"+rv[1]+"-anova-significant.csv")↪→
274

275 #Print them all to another file
276 anova_df_pandas.to_csv("results/anova/" + sys.argv[6]+"-"+

input_csv_parse[2]+"-"+rv[0]+"-"+rv[1]+"-anova-all.csv")↪→
277

278 #If I have significant candidate factors with sample mean < unoptimized mean:
279 if candidiate_factors.empty == False:
280 print("\nSignificant Factors (alpha = " + str(alpha) + ")")
281 print(significant_factors.sort_values(by=['Sample Mean']))
282 #candidiate_factors_index = candidiate_factors[(candidiate_factors['Sample Mean']

< np.mean(one))].sort_values(by=['Sample Mean']).index.array↪→
283 candidiate_factors_index = candidiate_factors.sort_values(by=['Sample

Mean']).index.array↪→
284

285 for x in candidiate_factors_index:
286 if len(x) > len(longest):
287 longest = x
288

289 print("\n!!--Statistically Significant Effects--!! ")

148

290 all = ""
291 for y in candidiate_factors_index:
292 all = all + y + ","
293 print("Lowest observed mean (Target to Beat)")
294 print(int(significant_factors['Sample Mean'].min()))
295 print("Effects")
296

297 #If all my significant candidate factors actually have a worse sample mean:
298 else:
299 print("\n ***No statistically significant effects with sample mean < unoptimized

mean***\n")↪→
300 candidiate_factors_index = anova_df_pandas[(anova_df_pandas['Sample Mean'] <

np.mean(one))].sort_values(by=['Sample Mean']).index.array↪→
301

302 all = ""
303 for y in candidiate_factors_index:
304 all = all + y + ","
305

306 if len(all) == 0:
307

308 print("Unoptimized Mean")
309 print(str(np.mean(one)))
310 print("***ALL effects attempted have sample mean > unoptimized mean***")
311 print("NONE")
312 exit()
313

314 #Take the factor combo with the best sample mean and keep trying
315 print("Lowest observed sample mean (Target to Beat)")
316 print(int(anova_df_pandas[(anova_df_pandas['Sample Mean'] <

np.mean(one))]['Sample Mean'].min()))↪→
317 print("Next best guesses (produced a sample mean lower than unoptimized)")
318

319 if len(all) == 0:
320 print("NONE - ERROR") #I shouldn't get here...
321 else:
322 print(all.rstrip(','))
323

324 #Normplot of effects
325 if len(sys.argv) == 7:
326 fig = plt.figure(figsize=(6,4))
327 probscale.probplot(effects,plottype='prob',probax='y',problabel='Standard Normal

Probabilities',bestfit=True)↪→
328 plt.xlabel("Normal Probability Plot of Effect Estimates")
329 plt.title(rv[0] +" - " + rv[1] + " [" + sys.argv[6] +"]")
330 plt.tight_layout()
331 plt.savefig("results/anova/"+sys.argv[6]+"-"+input_csv_parse[2]+"-"+rv[0]+"-"+rv[1]+"-anova-normplot.png")

149

best-mean.py

1 import pandas as pd
2 import numpy as np
3 import sys
4

5 #Best Mean Test
6 if len(sys.argv) <= 3:
7 print("Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>")
8 print("ex: best-mean.py testdata.csv nicdrop 95000")
9 print("<rv> is response variable")

10 exit()
11

12 target_to_beat = int(sys.argv[3]) #factors
13 rv = sys.argv[2].split(',')
14

15 data = pd.read_csv(sys.argv[1], header=[0,1])
16 response_var = data[[rv[0],'factors']]
17 response_var.columns = response_var.columns.get_level_values(1)
18

19 print("Re-run factor means")
20 print(response_var.groupby('code')[rv[1]].mean())
21

22 print("Lowest observed sample mean (target to beat)")
23 print(response_var.groupby('code')[rv[1]].mean().min())
24

25 #print factors still remaining as viable
26 candidiate_factors_index =

response_var.groupby('code')[rv[1]].mean().index.array.to_numpy() #all
factors from csv

↪→
↪→

27 improved_factors_bools = (response_var.groupby('code')[rv[1]].mean() <
target_to_beat).to_numpy() #boolean series↪→

28 all = ""
29 i=0
30 for y in candidiate_factors_index:
31 if improved_factors_bools[i]:
32 all = all + y + ","
33 i=i+1
34 print("Effects")
35 if len(all) == 0:
36 print("NONE")
37 exit()
38 print(all.rstrip(','))

150

prep-playbook.yml

1 ############Setup pre-reqs#############
2 #https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts
3 - name: Prepare Sensors
4 connection: ssh
5 gather_facts: true
6 hosts: all
7 vars_files: vars.yml
8

9 ###Install environment
10 tasks:
11

12 #Only supporting debian sensors at this point though yum should not be a
problem as future work↪→

13 - name: Check OS Version
14 fail: msg="Currently only supports Debian based sensors."
15 when: ansible_facts['os_family'] != "Debian"
16

17 #This assumes all your SSH passwords are the same.
18 #Or, run this playbook once per host with "-t auth -l "hostname" -k -K"
19 - name: Set SSH Keys
20 authorized_key:
21 user: "{{ansible_user}}"
22 state: present
23 key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
24 tags: auth
25

26 - name: Setup Passwordless sudo
27 lineinfile:
28 path: /etc/sudoers
29 state: present
30 regexp: '^%sudo'
31 line: '%sudo ALL=(ALL) NOPASSWD: ALL'
32 validate: 'visudo -cf %s'
33 tags: auth
34 become: yes
35

36 - name: Install Prerequisites (may take awhile)
37 apt:
38 name: "{{ packages }}"
39 #update_cache: yes
40 force_apt_get: yes
41 vars:
42 packages:
43 - lshw
44 - build-essential
45 - libyaml-0-2
46 - libyaml-dev
47 - pkg-config
48 - zlib1g
49 - zlib1g-dev
50 - libnet1-dev
51 - libpcre3
52 - libpcre3-dbg
53 - libpcre3-dev
54 - libyaml-dev
55 - libpcap-dev
56 - python-yaml
57 - libcap-ng-dev
58 - libcap-ng0
59 - libmagic-dev
60 - liblz4-dev
61 - libhtp-dev
62 - libjansson-dev
63 - libnspr4-dev
64 - libnss3-dev
65 - rustc
66 - libgeoip-dev
67 - liblua5.1-dev
68 - libhiredis-dev
69 - libevent-dev

151

70 - cargo
71 - bc
72 - git
73 - tcpdump
74 - python-apt
75 - make
76 - nano
77 - locate
78 ignore_errors: yes
79 become: yes
80

81 - name: Create Sensor Directory
82 file:
83 path: "{{ sensor_dir }}"
84 state: directory
85 owner: "{{ ansible_user }}"
86 group: "{{ ansible_user }}"
87 mode: '0777'
88 become: yes
89

90 - name: Create Log Directory
91 file:
92 path: "{{ sensor_dir }}/log"
93 state: directory
94 mode: '0777'
95

96 - name: Copy Default Suricata Rules
97 copy:
98 src: suricata.rules
99 dest: "{{ sensor_dir }}/suricata.rules"

100 mode: '0766'
101 tags: suricata
102

103 - name: Download and Unpack Suricata Source
104 unarchive:
105 src: https://www.openinfosecfoundation.org/download/suricata-5.0.0.tar.gz
106 dest: "{{ sensor_dir }}"
107 remote_src: yes
108 creates: "{{ sensor_dir }}/suricata-5.0.0/"
109 register: suricata_source
110 tags: suricata
111

112 - name: Check Previuos Installs
113 stat:
114 path: "/usr/bin/suricata"
115 register: previous_failure
116 tags: suricata
117

118 - name: Run configure
119 shell: "./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/"
120 args:
121 chdir: "{{ sensor_dir }}/suricata-5.0.0"
122 creates: "{{ sensor_dir }}/suricata-5.0.0/Makefile"
123 register: suricata_version
124 when: suricata_source is changed or not previous_failure.stat.exists
125 tags: suricata
126

127 - name: Build Suricata Latest
128 shell: make
129 args:
130 chdir: "{{ sensor_dir }}/suricata-5.0.0/"
131 register: suricata_build
132 when: suricata_version is changed
133 tags: suricata
134

135 - name: Install Suricata Latest
136 shell: |
137 make install-conf
138 make install
139 args:
140 chdir: "{{ sensor_dir }}/suricata-5.0.0/"

152

141 become: yes
142 tags: suricata
143 when: suricata_build is changed
144

145 - name: Standardize Hostname
146 shell: |
147 hostnamectl set-hostname {{ ansible_hostname }}
148 echo "127.0.0.1 {{ ansible_hostname }}" > /etc/hosts
149 become: yes
150 when: ansible_facts['hostname'] != ansible_hostname
151

152 - name: Clean Up old Results
153 shell: |
154 rm -rf {{ sensor_dir }}/*.csv
155 rm -rf {{ sensor_dir }}/*.pid
156 rm -rf counters
157 args:
158 warn: false
159 become: yes
160 tags: wipe
161

162 - name: Reboot to apply updates
163 reboot:
164 become: yes
165 tags: reboot
166

167 ##Generator Setup##
168 #This assumes your ansible host is also the traffic generator. It doesnt have to

be..↪→
169 - name: Prepare Traffic Generator
170 connection: local
171 gather_facts: true
172 hosts: localhost
173

174 tasks:
175 - name: Install Prerequisites (may take awhile)
176 when: ansible_facts['os_family'] == "Debian"
177 apt:
178 name: "{{ packages }}"
179 force_apt_get: yes
180 vars:
181 packages:
182 #this may be missing some things to build fragroute support
183 #fragrout and tcpreplay-edit are needed to fix dataset pcaps that have

jumbo (up to 64K) frames↪→
184 - build-essential
185 - libpcap-dev
186 - dnet-common
187 - libdumbnet-dev
188 - libdnet
189 - libevent1-dev
190 - libdnet-dev
191 - libdumbnet1
192 - nano
193 - locate
194 - docker.io
195 ignore_errors: yes
196 become: yes
197

198 - name: Set Docker Permissions
199 shell: usermod -aG docker $USER
200 become: yes
201 ignore_errors: yes
202

203 - name: Create Docker Network
204 docker_network:
205 name: experiment
206

207 - name: Grab required Python packages
208 pip:
209 name:

153

210 - matplotlib
211 - pandas
212 - scipy
213 - numpy
214 - researchpy
215 - seaborn
216 - probscale
217 - statsmodels
218 - pytest
219 become: yes
220

221 - name: Create Generator Directory
222 file:
223 path: |
224 "{{ generator_dir }}"
225 "{{ generator_dir }}/results"
226 "{{ generator_dir }}/results/verbose"
227 "{{ generator_dir }}/results/anova"
228 state: directory
229 mode: '0777'
230 become: yes
231

232

233 ## netmap ##
234 - name: Clone Latest netmap Source
235 git:
236 repo: https://github.com/luigirizzo/netmap.git
237 dest: "{{ generator_dir }}/netmap"
238 register: netmap_source
239 tags: netmap
240

241 #Using this specific NIC so select it's driver manually
242 #Netmaps auto detect is flaky esp on kernel 5+
243 - name: Build netmap Makefile
244 shell: ./configure --select-version=igb:5.3.5.39 --driver-suffix=-netmap
245 args:
246 chdir: "{{ generator_dir }}/netmap"
247 #creates: "{{ generator_dir }}/netmap/config.status"
248 register: netmap_version
249 when: netmap_source is changed
250 tags: netmap
251

252 - name: Build netmap
253 shell: make
254 args:
255 chdir: "{{ generator_dir }}/netmap"
256 #creates: "{{ generator_dir }}/netmap/netmap.ko"
257 register: netmap_build
258 when: netmap_version is changed
259 tags: netmap
260

261 - name: Install netmap
262 shell: make install
263 args:
264 chdir: "{{ generator_dir }}/netmap"
265 become: yes
266 register: netmap_install
267 when: netmap_build is changed
268 tags: netmap
269

270 #anytime the kernel is updated these modules will need rebuilt
271 #if this fails after a reboot the kernel may have changed,
272 #delete the netmap/ folder and rebuild it
273 - name: Enable Netmap Drivers
274 shell: |
275 rmmod igb 2> /dev/null
276 rmmod igb_netmap 2> /dev/null
277 rmmod netmap 2> /dev/null
278 insmod {{ generator_dir }}/netmap/netmap.ko
279 insmod {{ generator_dir }}/netmap/igb/igb-netmap.ko
280 become: yes

154

281 tags: netmap
282

283 ## tcpreplay ##
284 - name: Clone tcpreplay Source
285 unarchive:
286 src:

https://github.com/appneta/tcpreplay/releases/download/v4.3.1/tcpreplay-4.3.1.tar.xz↪→
287 dest: "{{ generator_dir }}"
288 remote_src: yes
289 creates: "{{ generator_dir }}/tcpreplay-4.3.1/"
290 register: tcpreplay_source
291

292 - name: Build tcpreplay Makefile
293 shell: "./configure --with-netmap={{ generator_dir }}/netmap"
294 args:
295 chdir: "{{ generator_dir }}/tcpreplay-4.3.1"
296 #creates: "{{ generator_dir }}/tcpreplay-4.3.1/Makefile"
297 when: tcpreplay_source is changed or netmap_build is changed
298 register: tcpreplay_version
299

300 - name: Build tcpreplay
301 shell: make
302 args:
303 chdir: "{{ generator_dir }}/tcpreplay-4.3.1/"
304 #creates: "{{ generator_dir }}/tcpreplay-4.3.1/src/tcpreplay"
305 register: tcpreplay_build
306 when: tcpreplay_version is changed
307

308 - name: Install tcpreplay
309 shell: make install
310 args:
311 chdir: "{{ generator_dir }}/tcpreplay-4.3.1/"
312 become: yes
313 when: tcpreplay_version is changed
314

315 - name: Pull Elasticsearch Docker Image
316 docker_container:
317 name: elastic
318 image: elasticsearch:7.5.0
319

320 - name: Pull Kibana Docker Image
321 docker_container:
322 name: kibana
323 image: kibana:7.5.0
324

325

326

327

328 # docker run -d --name kibana --net experiment -p 5601:5601 kibana:7.5.0
329 # docker run -d --name elasticsearch --net experiment -p 9200:9200 -p 9300:9300

-e "discovery.type=single-node" elasticsearch:7.5.0↪→

155

inventory.yml

1 #Interface numbers like to jump around on reboot...
2 all:
3 children:
4 sensors:
5 children:
6 rpi:
7 hosts:
8 rpi3bp:
9 send_interface: eth7

10 capture_interface: eth0
11 line_pps_limit: 160000
12

13 #Facts inherited from previous tests
14 interface_pps_limit: 70000
15 rps_mask: 0 #0000 All made it worse
16 NAPI_budget_best: 300
17 backlog_best: 32768
18 backlog_weight_best: 1200
19

20 rpi4:
21 send_interface: eth8
22 capture_interface: eth0
23 line_pps_limit: 160000
24

25 #Facts inherited from previous tests
26 interface_pps_limit: 158000
27 rps_mask: 0 #0000 All made it worse
28 NAPI_budget_best: 300
29 backlog_best: 1000
30 backlog_weight_best: 1200
31 vars:
32 ansible_user: pi
33 ansible_become_method: sudo
34 experiment_dir: /exp
35 ansible_python_interpreter: /usr/bin/python
36

37 nvidia:
38 hosts:
39 tx1:
40 capture_interface: eth0
41 send_interface: eth2
42 line_pps_limit: 160000
43

44 #Facts inherited from previous tests
45 interface_pps_limit: 102000
46 rps_mask: E #1110 (4 cpu total, CPU0 handling IRQ)
47 NAPI_budget_best: 1200
48 backlog_best: 32768
49 backlog_weight_best: 1200
50 tx2:
51 capture_interface: eth1
52 send_interface: eth6
53 line_pps_limit: 160000
54

55 #Facts inherited from previous tests
56 interface_pps_limit: 148000
57 rps_mask: 3E #0011 1110 (6 cpu total, CPU0 handling IRQ)
58 NAPI_budget_best: 300
59 backlog_best: 1000
60 backlog_weight_best: 300
61 xavier:
62 capture_interface: eth0
63 send_interface: eth7 #shared with rpi3bp due to quad nic

limit↪→
64 line_pps_limit: 160000
65

66 #Facts inherited from previous tests
67 interface_pps_limit: 159000
68 rps_mask: FE #1111 1110 (8 cpu total) CPU0 handling IRQ
69 NAPI_budget_best: 1200

156

70 backlog_best: 1000
71 backlog_weight_best: 300
72 vars:
73 ansible_user: nvidia
74 ansible_become_method: sudo
75 experiment_dir: /exp
76

77 vars:
78 ansible_host_dir: /ansible_working_dir

157

vars.yml

1 ###Master variable file for all playbooks
2

3 ### 5 Factors
4 total_factors: 5
5 factor_combos: [N,A,B,AB,C,AC,BC,ABC,
6 D,AD,BD,ABD,CD,ACD,BCD,ABCD,
7 E,AE,BE,ABE,CE,ACE,BCE,ABCE,
8 DE,ADE,BDE,ABDE,CDE,ACDE,BCDE,ABCDE]
9

10 ### 4 Factors
11 #total_factors: 4
12 #factor_combos: [N,A,B,AB,C,AC,BC,ABC,
13 # D,AD,BD,ABD,CD,ACD,BCD,ABCD]
14

15 total_combinations: "{{2 ** total_factors }}" #2^k
16

17 #replicates: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
18 replicates: [1,2,3,4,5]
19 #replicates: [1,2]
20 #must be an array like this for it to work
21

22

23 ###Variable controls###
24

25 #Used to store values actually attempted
26 A_levels: []
27 B_levels: []
28 C_levels: []
29 D_levels: []
30 E_levels: []
31 significant_factors_history: []
32 last_loop_best_history: []
33

34 #New API (NAPI) IRQ budget
35 #default = 300. Will eventually hit hard time limit of "2 jiffies"
36 NAPI_budget: 1200
37

38 #Max Kernel Backlog
39 #default = 1000
40 backlog: 32768
41

42 #Socket receive queue memory, in bytes
43 #default = 212992
44 rmem_max: 83886080
45

46 #Receive Flow Steering (RFS) hash table size and per queue flow count
47 #default = off
48 rfs_table: 32768
49 rfs_flow_cnt: 32768
50

51 #NAPI backlog poll loop weight
52 #default = 64
53 backlog_weight: 1200
54

55 #libpcap buffer size, in KiB
56 #default = 2 MB = ~2000 KiB
57 libpcap_buffer: 250000 #64 MB
58 libpcap_buffer_size: 2000 #initial
59

60 #suricata runmode
61 #default = autofp (flow pin)
62 suricata_runmode: workers
63

64 #suricata max-pending-packets
65 #default = 1024
66 suricata_max_pending: 8096
67

68 #suricata detect memory grouping aggressiveness
69 #default = medium

158

70 suricata_detect_profile: high
71

72 #af-packet memory map ring feature
73 #default = no
74 af_packet_mmap: 'yes'
75

76 ###Static controls###
77

78 #RX_checksumming on/off
79 #More research may be worthwhile here. It seemed to boost suricata when off?
80 #lan78xx driver on rpi3 fails to read random traffic from pkt-gen when on.
81 #probably due to UDP header / payload mismatch
82 #default = on
83 rx_checksum_status: 'off'
84

85 #RX_timestamping on/off
86 #Moves timestamping of rx packets to after they enter load balanced RPS queue vs

before↪→
87 #default = on
88 rx_timestamp_status: '0'
89

90 #Large Receive / Generic Receive offload on/off.
91 #Off for suricata
92 #default = on
93 lro_status: 'off'
94 gro_status: 'off'
95

96

97 ###other vars###
98 packet_size_max: "1500"
99 packet_size_min: "64"

100 num_packets_30sec: "{{ line_pps_limit|int * 30 }}"
101 num_packets_cic_monday: 17997887 #avg 590 bytes
102 num_packets_cic_thursday: 14106798 #avg size 576 bytes
103 test_counter: 1
104 loop_multiplier: 1

159

Ansible Templates

These are the template playbooks used to build the three specific tests
See begining of Appendix D for preparatory setup and general tips & tricks

160

general-benchmark-main.yml

1 #This playbook acts as the "main" function
2 #It has to be its own file since the "tasks:" keyword
3 #can only appear once within all the loops
4 - name: Generic Experiment Template
5 connection: ssh
6 hosts: all
7 vars_files: vars.yml
8 gather_facts: true
9

10 tasks:
11 - name: Clear gathered facts from all currently targeted hosts
12 meta: clear_facts #start fresh
13

14 - name: Clean Up old Results
15 shell: |
16 rm -rf "{{ experiment_dir }}"/*.csv
17 args:
18 warn: false
19 become: yes
20

21 - name: Record Initial Variable Levels
22 set_fact:
23 A_levels: "{{A_levels}} + ['%%%%%']"
24 B_levels: "{{B_levels}} + ['%%%%%']"
25 C_levels: "{{C_levels}} + ['%%%%%']"
26 D_levels: "{{D_levels}} + ['%%%%%']"
27 E_levels: "{{E_levels}} + ['%%%%%']"
28

29 - name: Begin New Test
30 include_tasks: general-benchmark-outerloop.yml
31

32

33 - name: Done Looping, Store Final Result Facts
34 set_fact:
35 your_result: "{{ %%%%% }}"
36 A_best: "{{ A_levels[-1] }}"
37 B_best: "{{ B_levels[-1] }}"
38 C_best: "{{ C_levels[-1] }}"
39 D_best: "{{ D_levels[-1] }}"
40 E_best: "{{ E_levels[-1] }}"
41 cacheable: yes
42

43 - name: Store Results File
44 local_action:
45 module: shell
46 _raw_params: |
47 echo "{{inventory_hostname}} Test Final"\
48 > results/"{{inventory_hostname}}"-testxyz-final.log
49

50 echo "- A levels: {{ A_levels | to_yaml }}\
51 - B levels: {{ B_levels | to_yaml }}\
52 - C levels: {{ C_levels | to_yaml }}\
53 - D levels: {{ D_levels | to_yaml }}\
54 - E levels: {{ E_levels | to_yaml }}"\
55 >> results/"{{inventory_hostname}}"-testxyz-final.log
56

57 echo "- Best (A): {{ A_best | to_yaml }}\
58 - Best (B): {{ B_best | to_yaml }}\
59 - Best (C): {{ C_best | to_yaml }}\
60 - Best (D): {{ D_best | to_yaml }}\
61 - Best (E): {{ E_best | to_yaml }}"\
62 >> results/"{{inventory_hostname}}"-testxyz-final.log
63

64 echo "- Number of Loops: {{ test_counter | to_yaml }}\
65 - Factor History: {{ significant_factors_history | to_yaml }}\
66 - Loop Bests: {{ last_loop_best_history | to_yaml }}\
67 - your_result: {{ %%%%% }}"\

161

68 >> results/"{{inventory_hostname}}"-testxyz-final.log
69 ignore_errors: yes
70

71

72 - name: Display Variable States
73 debug:
74 msg: "
75 - A levels: {{ A_levels | to_yaml }}
76 - B levels: {{ B_levels | to_yaml }}
77 - C levels: {{ C_levels | to_yaml }}
78 - D levels: {{ D_levels | to_yaml }}
79 - E levels: {{ E_levels | to_yaml }}"
80

81 - name: Display Factor History
82 debug:
83 msg: "
84 - Number of Loops: {{ test_counter | to_yaml }}
85 - Factor History: {{ significant_factors_history | to_yaml }}"
86

87 - name: Display Final Optimization Results
88 debug:
89 msg: "
90 - Best (A): {{ A_best | to_yaml }}
91 - Best (B): {{ B_best | to_yaml }}
92 - Best (C): {{ C_best | to_yaml }}
93 - Best (D): {{ D_best | to_yaml }}
94 - Best (E): {{ E_best | to_yaml }}"
95

96 - name: Final Result
97 debug:
98 msg: "Your final score: {{ %%%%% }}"

162

general-benchmark-outerloop.yml

1 - name: Begin First Middle Loop
2 include_tasks: general-benchmark-middleloop.yml
3 loop: "{{ 5_factor_combos }}" #This will run 2^(#factors) times
4 loop_control:
5 loop_var: current_factor_list
6 index_var: factor_idx
7 extended: yes
8 when: "test_counter == 1"
9 tags:

10 - workload
11 - initial
12

13 - name: Run Initial ANOVA Test
14 local_action:
15 module: shell
16 _raw_params: |
17 python anova.py 'results/{{ inventory_hostname }}-results-run1.csv'

<<**RESPONSE VARIABLE**>> "{{total_factors}}" "{{replicates|length}}"
0.05 {{ inventory_hostname }}

↪→
↪→

18 register: anova
19 tags: anova
20 ignore_errors: yes
21 changed_when: false
22 when: "test_counter == 1"
23

24 - name: Set Initial Significant Factors
25 set_fact:
26 significant_factors_array: "{{anova.stdout_lines[anova.stdout_lines|length

-1].split(\",\")}}"↪→
27 significant_factors_string: "{{anova.stdout_lines[anova.stdout_lines|length

-1]}}"↪→
28 significant_factors_history: "{{significant_factors_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -1]}}']"↪→
29 target_to_beat: "{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}"
30 last_loop_best: "{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}"
31 last_loop_best_history: "{{last_loop_best_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}']"↪→
32 when: "test_counter == 1"
33

34 - name: Record Significant A Level
35 set_fact:
36 A_levels: "{{A_levels}} + ['{{%%%A%%%}}']"
37 when: "'A' in significant_factors_string"
38

39 - name: Record Significant B Level
40 set_fact:
41 B_levels: "{{B_levels}} + ['{{%%%B%%%}}']"
42 when: "'B' in significant_factors_string"
43

44 - name: Record Significant C Level
45 set_fact:
46 C_levels: "{{C_levels}} + ['{{%%%C%%%}}']"
47 when: "'C' in significant_factors_string"
48

49 - name: Record Significant D Level
50 set_fact:
51 D_levels: "{{D_levels}} + ['{{%%%D%%%}}']"
52 when: "'D' in significant_factors_string"
53

54 - name: Record Significant E Level
55 set_fact:
56 E_levels: "{{E_levels}} + ['{{%%%E%%%}}']"
57 when: "'E' in significant_factors_string"
58

59 - name: Increment Test Counter
60 set_fact:
61 test_counter: "{{ test_counter | int + 1 }}"
62

163

63 - name: Reset Results
64 shell: |
65 rm -rf "{{ experiment_dir }}"/*.csv
66 args:
67 warn: false
68 become: yes
69

70 - name: Target To Beat
71 debug:
72 msg: "Target to Beat is {{target_to_beat}}. Using Factors

{{significant_factors_array | to_yaml}}"↪→
73

74 - name: Increment Loop Multiplier
75 set_fact:
76 loop_multiplier: "{{ test_counter|int**test_counter|int }}"
77

78 - name: Continue Middle Loop
79 include_tasks: general-benchmark-middleloop.yml
80 loop: "{{significant_factors_array}}"
81 loop_control:
82 extended: yes
83 loop_var: current_factor_list
84 index_var: inner_index
85 when: "'NONE' not in significant_factors_array"
86

87 - name: Last Loop Results
88 debug:
89 msg: "Last Loop best was {{last_loop_best}}. Needs to beat {{target_to_beat}}.

Was Iteration {{ test_counter }}"↪→
90

91 - name: Check Last Loop Results
92 block:
93 - name: Check Recursive Base Case
94 fail:
95 #Maybe run a set number of times....
96 msg: "Continuing {{test_counter}} < 4"
97 when: "test_counter | int < 4"
98

99 #Or have a target
100 #msg: "Still room to improve {{last_loop_best}} < {{target_to_beat}}"
101 #when: "last_loop_best < target_to_beat"
102

103 rescue:
104 - name: Update Target to Beat
105 set_fact:
106 target_to_beat: "{{ last_loop_best }}"
107 loop_multiplier: "{{ test_counter|int**test_counter|int }}"
108

109 #Recursively call self to keep going
110 - name: Begin New Round
111 include_tasks: general-benchmark-recursive.yml

164

general-benchmark-middleloop.yml

1 #This playbook is the "middle" loop
2 - name: Reboot to Defaults. Beginning Factor {{current_factor_list}}

({{ansible_loop.index}} of {{ansible_loop.length}})↪→
3 reboot:
4 become: yes
5 tags: skippable
6

7 #If any configuration changes are not undone with a reboot,
8 #add a playbook here to manually "revert" them
9

10 - name: Set Static Controls
11 include_tasks: general-static-controls.yml
12

13 - name: Set Variable Factor Controls
14 include_tasks: general-variable-controls.yml
15

16 - name: Copy Performance Monitor
17 copy:
18 src: gather_stats.bash
19 dest: "{{experiment_dir}}/gather_stats.bash"
20 mode: '0755'
21

22 #Run repeats
23 - name: Begin Inner Loop
24 include_tasks: general-benchmark-innerloop.yml
25 loop: "{{ replicates }}"
26 loop_control:
27 extended: yes
28 loop_var: inner_counter
29 index_var: inner_idx
30 tags: workload
31

32 - name: End of Run Best Mean Test {{test_counter}}
33 local_action:
34 module: shell
35 _raw_params: |
36 python best-mean.py 'results/{{ inventory_hostname

}}-results-run{{test_counter}}.csv' <<**RESPONSE VARIABLE**>>
"{{target_to_beat}}"

↪→
↪→

37 register: anova
38 tags: anova
39 #if the last item in loop and not inital run
40 when: "ansible_loop.revindex == 1 and test_counter > 1"
41 changed_when: false
42 ignore_errors: yes
43

44 - name: Update Last Middle Loop Best
45 set_fact:
46 last_loop_best: "{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}"
47 significant_factors_array: "{{anova.stdout_lines[anova.stdout_lines|length

-1].split(\",\")}}"↪→
48 significant_factors_string: "{{anova.stdout_lines[anova.stdout_lines|length

-1]}}"↪→
49 significant_factors_history: "{{significant_factors_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -1]}}']"↪→
50 last_loop_best_history: "{{last_loop_best_history}} + [

'{{anova.stdout_lines[anova.stdout_lines|length -3]|int}}']"↪→
51 when: "ansible_loop.revindex == 1 and test_counter > 1"

165

general-static-controls.yml

1 ###Blanket Optimizations (always apply to all)
2

3 - name: Bump RPi Throttling Temp (3B+ only)
4 lineinfile:
5 path: /boot/config.txt
6 regex: "temp_soft_limit="
7 line: temp_soft_limit=70.0
8 when: "'nvidia' not in group_names"
9 become: yes

10

11 - name: Set MAXN Power Profile on NVIDIA Boards
12 shell: |
13 nvpmodel -m 0
14 jetson_clocks
15 become: yes
16 when: "'nvidia' in group_names"

166

general-variable-controls.yml

1 ##FACTORS UNDER EXPERIMENT
2

3 ###FACTOR A###
4 - name: (Factor A) <%%%>
5 shell: <%%%>
6 become: yes
7 when: "'A' in current_factor_list"
8

9 ###FACTOR B###
10 - name: (Factor B) <%%%>
11 shell: <%%%>
12 become: yes
13 when: "'B' in current_factor_list"
14

15 ###FACTOR C###
16 - name: (Factor C) <%%%>
17 shell: <%%%>
18 become: yes
19 ignore_errors: yes
20 when: "'C' in current_factor_list"
21

22 ###FACTOR D###
23 - name: (Factor D) <%%%>
24 shell: <%%%>
25 become: yes
26 ignore_errors: yes
27 when: "'D' in current_factor_list"
28

29 ###FACTOR E###
30 - name: (Factor E) <%%%>
31 shell: <%%%>
32 become: yes
33 ignore_errors: yes
34 when: "'E' in current_factor_list"
35

167

general-benchmark-innerloop.yml

1 #This playbook is the "inner" loop
2 - name: Launch Performance Monitor (Factors {{ current_factor_list }})
3 shell: "./gather_stats.bash <<**PID**>> <<**SAMPLE RATE**>> {{

current_factor_list }}"↪→
4 args:
5 chdir: "{{ experiment_dir }}/"
6 register: results_async
7 poll: 0
8 async: 3600
9 become: yes

10 changed_when: false
11

12 # <<**YOUR WORKLOAD TASK(S) GOES HERE.....**>>
13 # SEE RATELIMIT TEST FOR EXAMPLE
14

15 - name: Stop Everything
16 shell: kill "$(cat gather.pid)"
17 args:
18 chdir: "{{ experiment_dir }}"
19 become: yes
20 ignore_errors: yes
21 failed_when: false
22

23 - name: Wait for Results
24 async_status: jid="{{ results_async.ansible_job_id }}"
25 become: yes
26 register: results
27 until: results.finished
28 retries: 30
29 failed_when: false
30 ignore_errors: yes
31

32 - name: Copy Verbose Results
33 fetch:
34 src: "{{experiment_dir}}/{{ inventory_hostname }}-results-verbose.csv"
35 dest: "results/verbose/{{ inventory_hostname

}}-results-run{{test_counter}}-verbose.csv"↪→
36 flat: yes
37 changed_when: false
38

39 - name: Copy Totals
40 fetch:
41 src: "{{experiment_dir}}/{{ inventory_hostname }}-results.csv"
42 dest: "results/{{ inventory_hostname }}-results-run{{test_counter}}.csv"
43 flat: yes
44 changed_when: false
45

46 - name: Display Running Results
47 debug:
48 var: results.stdout

168

Bibliography

1. OISF, “Runmodes - Suricata Documentation,” 2019. [Online]. Available:
https://suricata.readthedocs.io/en/latest/performance/runmodes.html

2. S. Helme, “The encrypted web is coming!” 2016. [Online]. Available:
https://scotthelme.co.uk/the-encryted-web-is-coming/

3. M. Pilkington, “Protecting Privileged Domain Accounts:
Network Authentication In-Depth,” 2012. [Online]. Avail-
able: https://digital-forensics.sans.org/blog/2012/09/18/protecting-privileged-
domain-accounts-network-authentication-in-depth

4. D. Franklin, “NVIDIA® Jetson TX1 Supercomputer-on-Module
Drives Next Wave of Autonomous Machines,” 2015. [Online].
Available: https://devblogs.nvidia.com/nvidia-jetson-tx1-supercomputer-on-
module-drives-next-wave-of-autonomous-machines/

5. Imagimob, “Edge computing needs Edge AI,” 2018. [Online]. Available:
https://www.imagimob.com/blog/edge-computing-needs-edge-ai

6. S. M. Z. Iqbal, Y. Liang, and H. Grahn, “ParMiBench - An open-source bench-
mark for embedded multiprocessor systems,” IEEE Computer Architecture Let-
ters, vol. 9, no. 2, pp. 45–48, 7 2010.

7. MITRE, “Lateral Movement,” 2019. [Online]. Available: https://attack.mitre.
org/tactics/TA0008/

8. RedHat, “How Ansible Works,” 2020. [Online]. Available: https://www.ansible.
com/overview/how-ansible-works

9. K. Smathers, “EdgeBench Repository,” 2020. [Online]. Available: https:
//github.com/Jump-Industries/EdgeBench

10. MarketWatch, “Cyber Security Market Size and Share 2019 Global
Industry Demand, Growth Analysis, Revenue and Forecast 2023,” 2019.
[Online]. Available: https://www.marketwatch.com/press-release/cyber-
security-market-size-and-share-2019-global-industry-demand-growth-analysis-
revenue-and-forecast-2023-2019-05-30

11. C. Timberg, “The real story of how the Internet became so vulnerable,”
2015. [Online]. Available: https://www.washingtonpost.com/sf/business/2015/
05/30/net-of-insecurity-part-1/?utm term=.37f5b487e842

12. D. D. Clark, “The design philosophy of the DARPA internet protocols,”
in Symposium Proceedings on Communications Architectures and Protocols,
SIGCOMM 1988, vol. 18. ACM, 1988, pp. 106–114. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=52325.52336

169

https://suricata.readthedocs.io/en/latest/performance/runmodes.html
https://scotthelme.co.uk/the-encryted-web-is-coming/
https://digital-forensics.sans.org/blog/2012/09/18/protecting-privileged-domain-accounts-network-authentication-in-depth
https://digital-forensics.sans.org/blog/2012/09/18/protecting-privileged-domain-accounts-network-authentication-in-depth
https://devblogs.nvidia.com/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
https://devblogs.nvidia.com/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
https://www.imagimob.com/blog/edge-computing-needs-edge-ai
https://attack.mitre.org/tactics/TA0008/
https://attack.mitre.org/tactics/TA0008/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://github.com/Jump-Industries/EdgeBench
https://github.com/Jump-Industries/EdgeBench
https://www.marketwatch.com/press-release/cyber-security-market-size-and-share-2019-global-industry-demand-growth-analysis-revenue-and-forecast-2023-2019-05-30
https://www.marketwatch.com/press-release/cyber-security-market-size-and-share-2019-global-industry-demand-growth-analysis-revenue-and-forecast-2023-2019-05-30
https://www.marketwatch.com/press-release/cyber-security-market-size-and-share-2019-global-industry-demand-growth-analysis-revenue-and-forecast-2023-2019-05-30
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/?utm_term=.37f5b487e842
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/?utm_term=.37f5b487e842
http://portal.acm.org/citation.cfm?doid=52325.52336

13. K. Ingham and S. Forrest, “A history and survey of network firewalls,” Univer-
sity of New Mexico, Tech. Rep, 2002.

14. C. Stoll, “Stalking the wily hacker,” Commun. ACM, vol. 31, no. 5, pp. 484–497,
1988.

15. B. Cheswick, “An Evening with Berferd in which a cracker is Lured, Endured,
and Studied,” in Proc. Winter USENIX Conference, San Francisco, 1992, pp.
20–24.

16. C. Barker, “Hackers and defenders continue cybersecurity game of cat and
mouse,” 2016. [Online]. Available: https://www.zdnet.com/article/hackers-
and-defenders-continue-cyber-security-game-of-cat-and-mouse/

17. K. Rekouche, “Early Phishing,” CoRR, vol. abs/1106.4, 2011. [Online].
Available: http://arxiv.org/abs/1106.4692

18. E. Chien, “W97M.Melissa.A — Symantec,” 2000. [Online]. Available:
https://www.symantec.com/security-center/writeup/2000-122113-1425-99

19. ——, “VBS.LoveLetter.Var,” 2000. [Online]. Available: https://www.symantec.
com/security-center/writeup/2000-121815-2258-99

20. I. Grigg, “Financial Cryptography: GP4.3 - Growth and Fraud - Case #3 -
Phishing,” 2005. [Online]. Available: https://www.financialcryptography.com/
mt/archives/000609.html

21. G. Keizer, “Suspected Chinese spear-phishing attacks con-
tinue to hit Gmail users,” 2011. [Online]. Avail-
able: https://www.computerworld.com/article/2510237/suspected-chinese-
spear-phishing-attacks-continue-to-hit-gmail-users.html

22. C. Drew and J. Markoff, “SecurID Breach Suggested in Hacking Attempt
at Lockheed - The New York Times,” 2011. [Online]. Available: https:
//www.nytimes.com/2011/05/28/business/28hack.html

23. Anti Phishing Working Group, “APWG — Phishing Activity Trends Reports,”
2018. [Online]. Available: http://www.antiphishing.org/trendsreports/

24. C. Doman, “The First Cyber Espionage Attacks: How Op-
eration Moonlight Maze made history,” 2016. [Online]. Avail-
able: https://medium.com/@chris doman/the-first-sophistiated-cyber-attacks-
how-operation-moonlight-maze-made-history-2adb12cc43f7

25. B. Brewin and D. Verton, “Cyberattacks spur talk of 3rd DOD network – FCW,”
1999. [Online]. Available: https://fcw.com/Articles/1999/06/20/Cyberattacks-
spur-talk-of-3rd-DOD-network.aspx

170

https://www.zdnet.com/article/hackers-and-defenders-continue-cyber-security-game-of-cat-and-mouse/
https://www.zdnet.com/article/hackers-and-defenders-continue-cyber-security-game-of-cat-and-mouse/
http://arxiv.org/abs/1106.4692
https://www.symantec.com/security-center/writeup/2000-122113-1425-99
https://www.symantec.com/security-center/writeup/2000-121815-2258-99
https://www.symantec.com/security-center/writeup/2000-121815-2258-99
https://www.financialcryptography.com/mt/archives/000609.html
https://www.financialcryptography.com/mt/archives/000609.html
https://www.computerworld.com/article/2510237/suspected-chinese-spear-phishing-attacks-continue-to-hit-gmail-users.html
https://www.computerworld.com/article/2510237/suspected-chinese-spear-phishing-attacks-continue-to-hit-gmail-users.html
https://www.nytimes.com/2011/05/28/business/28hack.html
https://www.nytimes.com/2011/05/28/business/28hack.html
http://www.antiphishing.org/trendsreports/
https://medium.com/@chris_doman/the-first-sophistiated-cyber-attacks-how-operation-moonlight-maze-made-history-2adb12cc43f7
https://medium.com/@chris_doman/the-first-sophistiated-cyber-attacks-how-operation-moonlight-maze-made-history-2adb12cc43f7
https://fcw.com/Articles/1999/06/20/Cyberattacks-spur-talk-of-3rd-DOD-network.aspx
https://fcw.com/Articles/1999/06/20/Cyberattacks-spur-talk-of-3rd-DOD-network.aspx

26. NSA, “Defense In Depth,” 2015. [Online]. Available:
https://apps.nsa.gov/iaarchive/customcf/openAttachment.cfm?FilePath=
/iad/library/ia-guidance/archive/assets/public/upload/Defense-in-Depth.pdf&
WpKes=aF6woL7fQp3dJizPwAnfAMjTrkVrn52VccuPXz

27. S. Woodside, “Defence in Depth: The medieval castle approach to internet se-
curity,” 2016. [Online]. Available: https://medium.com/@sbwoodside/defence-
in-depth-the-medieval-castle-approach-to-internet-security-6c8225dec294

28. P. Small, “Defense in Depth: An Impractical Strategy for a Cyber World,”
2011. [Online]. Available: https://www.sans.org/reading-room/whitepapers/
warfare/defense-depth-impractical-strategy-cyber-world-33896

29. L. J. Berman, “DoD (Finally) Begins Transition to RMF,” 2014. [Online].
Available: https://www.itdojo.com/dod-finally-begins-transition-to-rmf/

30. B. Graham, “Hackers Attack Via Chinese Web Sites,” 2005. [Online].
Available: http://www.washingtonpost.com/wp-dyn/content/article/2005/08/
24/AR2005082402318.html

31. K. Zetter, “Google Hack Attack Was Ultra Sophisticated, New Details Show
— WIRED,” 2010. [Online]. Available: https://www.wired.com/2010/01/
operation-aurora/

32. ——, Countdown to Zero Day. Broadway Books, 2014. [Online].
Available: https://gizmodo.com/the-incredible-tale-of-stuxnet-a-weapon-for-
the-digita-1656811897

33. ——, “Inside the Cunning, Unprecedented Hack of Ukraine’s Power Grid —
WIRED,” 2016. [Online]. Available: https://www.wired.com/2016/03/inside-
cunning-unprecedented-hack-ukraines-power-grid/

34. M. Quinn and Soltra, “Threat context TLP WHITE Cyber security
panel,” Soltra Edge, Tech. Rep., 2015. [Online]. Available: https:
//slideplayer.com/slide/8390853/

35. S. Losey, “Go cyber: Airmen can earn cash and promo-
tions, get set up for civilian life,” 2017. [Online]. Avail-
able: https://www.airforcetimes.com/news/your-air-force/2017/10/10/go-
cyber-airmen-can-earn-cash-and-promotions-get-set-up-for-civilian-life/

36. Mandiant FireEye, “M-Trends 2019,” Mandiant, Tech. Rep., 2019. [Online].
Available: https://content.fireeye.com/m-trends

37. MITRE, “Defense Evasion - Enterprise,” 2019. [Online]. Available: https:
//attack.mitre.org/tactics/TA0005/

171

https://apps.nsa.gov/iaarchive/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/archive/assets/public/upload/Defense-in-Depth.pdf&WpKes=aF6woL7fQp3dJizPwAnfAMjTrkVrn52VccuPXz
https://apps.nsa.gov/iaarchive/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/archive/assets/public/upload/Defense-in-Depth.pdf&WpKes=aF6woL7fQp3dJizPwAnfAMjTrkVrn52VccuPXz
https://apps.nsa.gov/iaarchive/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/archive/assets/public/upload/Defense-in-Depth.pdf&WpKes=aF6woL7fQp3dJizPwAnfAMjTrkVrn52VccuPXz
https://medium.com/@sbwoodside/defence-in-depth-the-medieval-castle-approach-to-internet-security-6c8225dec294
https://medium.com/@sbwoodside/defence-in-depth-the-medieval-castle-approach-to-internet-security-6c8225dec294
https://www.sans.org/reading-room/whitepapers/warfare/defense-depth-impractical-strategy-cyber-world-33896
https://www.sans.org/reading-room/whitepapers/warfare/defense-depth-impractical-strategy-cyber-world-33896
https://www.itdojo.com/dod-finally-begins-transition-to-rmf/
http://www.washingtonpost.com/wp-dyn/content/article/2005/08/24/AR2005082402318.html
http://www.washingtonpost.com/wp-dyn/content/article/2005/08/24/AR2005082402318.html
https://www.wired.com/2010/01/operation-aurora/
https://www.wired.com/2010/01/operation-aurora/
https://gizmodo.com/the-incredible-tale-of-stuxnet-a-weapon-for-the-digita-1656811897
https://gizmodo.com/the-incredible-tale-of-stuxnet-a-weapon-for-the-digita-1656811897
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://slideplayer.com/slide/8390853/
https://slideplayer.com/slide/8390853/
https://www.airforcetimes.com/news/your-air-force/2017/10/10/go-cyber-airmen-can-earn-cash-and-promotions-get-set-up-for-civilian-life/
https://www.airforcetimes.com/news/your-air-force/2017/10/10/go-cyber-airmen-can-earn-cash-and-promotions-get-set-up-for-civilian-life/
https://content.fireeye.com/m-trends
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/tactics/TA0005/

38. R. A. Grimes and R. Lee, “Who wants to go threat hunting?” 2018.
[Online]. Available: https://www.csoonline.com/article/3269779/who-wants-
to-go-threat-hunting.html

39. Air Forces Cyber, “92ND CYBERSPACE OPERATIONS SQ,” 2018. [On-
line]. Available: https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/
Article/962008/92nd-cyberspace-operations-squadron/

40. D. Miessler, “The Difference Between Red, Blue, and Purple Teams,” 2019.
[Online]. Available: https://danielmiessler.com/study/red-blue-purple-teams/

41. USCYBERCOM, “U.S. Cyber Command History,” 2019. [Online]. Available:
https://www.cybercom.mil/About/History/

42. O. Pawlyk, “Calling up the Reserves: Cyber mis-
sion is recruiting,” Air Force Times, 2015. [Online]. Avail-
able: https://www.airforcetimes.com/education-transition/jobs/2015/01/03/
calling-up-the-reserves-cyber-mission-is-recruiting/

43. DHS, “Information Sharing Specifications for Cybersecurity — CISA,”
2020. [Online]. Available: https://www.us-cert.gov/Information-Sharing-
Specifications-Cybersecurity

44. MITRE, “Known Groups,” 2019. [Online]. Available: https://attack.mitre.org/
groups/

45. J. Leffall, “Are Patches Leading to Exploits? – Redmondmag.com,”
2007. [Online]. Available: https://redmondmag.com/articles/2007/10/12/are-
patches-leading-to-exploits.aspx

46. AOL, “Moloch Estimators,” 2019. [Online]. Available: https://molo.ch/
estimators

47. OISF, “Suricata High Performance Configuration,” 2019. [On-
line]. Available: https://suricata.readthedocs.io/en/latest/performance/high-
performance-config.html

48. G. Grudo, “USAFs Network Gateways Changing Hands, Eliminat-
ing Blind Spots - Air Force Magazine,” 2017. [Online]. Avail-
able: https://www.airforcemag.com/usafs-network-gateways-changing-hands-
eliminating-blind-spots/

49. ——, “Hackers Infiltrate DOD, Earn Priciest Government Bug
Bounty Reward Ever - Air Force Magazine,” 2017. [Online].
Available: https://www.airforcemag.com/hackers-infiltrate-dod-earn-priciest-
government-bug-bounty-reward-ever/

172

https://www.csoonline.com/article/3269779/who-wants-to-go-threat-hunting.html
https://www.csoonline.com/article/3269779/who-wants-to-go-threat-hunting.html
https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/Article/962008/92nd-cyberspace-operations-squadron/
https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/Article/962008/92nd-cyberspace-operations-squadron/
https://danielmiessler.com/study/red-blue-purple-teams/
https://www.cybercom.mil/About/History/
https://www.airforcetimes.com/education-transition/jobs/2015/01/03/calling-up-the-reserves-cyber-mission-is-recruiting/
https://www.airforcetimes.com/education-transition/jobs/2015/01/03/calling-up-the-reserves-cyber-mission-is-recruiting/
https://www.us-cert.gov/Information-Sharing-Specifications-Cybersecurity
https://www.us-cert.gov/Information-Sharing-Specifications-Cybersecurity
https://attack.mitre.org/groups/
https://attack.mitre.org/groups/
https://redmondmag.com/articles/2007/10/12/are-patches-leading-to-exploits.aspx
https://redmondmag.com/articles/2007/10/12/are-patches-leading-to-exploits.aspx
https://molo.ch/estimators
https://molo.ch/estimators
https://suricata.readthedocs.io/en/latest/performance/high-performance-config.html
https://suricata.readthedocs.io/en/latest/performance/high-performance-config.html
https://www.airforcemag.com/usafs-network-gateways-changing-hands-eliminating-blind-spots/
https://www.airforcemag.com/usafs-network-gateways-changing-hands-eliminating-blind-spots/
https://www.airforcemag.com/hackers-infiltrate-dod-earn-priciest-government-bug-bounty-reward-ever/
https://www.airforcemag.com/hackers-infiltrate-dod-earn-priciest-government-bug-bounty-reward-ever/

50. T. Spring, “Critical Bug Opens Millions of HP OfficeJet Printers to Attack —
Threatpost,” 2018. [Online]. Available: https://threatpost.com/def-con-2018-
critical-bug-opens-millions-of-hp-officejet-printers-to-attack/134972/

51. Microsoft, “Remove-EventLog,” 2019. [Online]. Avail-
able: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.management/remove-eventlog?view=powershell-5.1

52. MITRE, “Lazarus Group, HIDDEN COBRA, Guardians of Peace, ZINC,
NICKEL ACADEMY,” 2019. [Online]. Available: https://attack.mitre.org/
groups/G0032/

53. ——, “APT29: YTTRIUM, The Dukes, Cozy Bear, CozyDuke,” 2019. [Online].
Available: https://attack.mitre.org/groups/G0016/

54. J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An Authentication
Service for Open Network Systems,” Massachusetts Institute of Technology,
Tech. Rep., 1988. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.39.606&rep=rep1&type=pdf

55. Novetta, “Operation Blockbuster: Tools Report,” Operation Blockbuster
Report, Tech. Rep., 2016. [Online]. Available: www.novetta.com

56. MITRE, “APT1: Comment Crew, Comment Group, Comment Panda,” 2019.
[Online]. Available: https://attack.mitre.org/groups/G0006/

57. ——, “APT3: Gothic Panda, Pirpi, UPS Team, Buckeye, Threat Group-0110,
TG-0110,” 2019. [Online]. Available: https://attack.mitre.org/groups/G0022/

58. ——, “BRONZE BUTLER, REDBALDKNIGHT,” 2019. [Online]. Available:
https://attack.mitre.org/groups/G0060/

59. ——, “APT32: SeaLotus, OceanLotus, APT-C-00,” 2019. [Online]. Available:
https://attack.mitre.org/groups/G0050/

60. Acalvio Threat Research Labs, “WannaCry Ransomware Analysis: Lateral
Movement Propagation,” 2017. [Online]. Available: https://www.acalvio.com/
wannacry-ransomware-analysis-lateral-movement-propagation/

61. A. Singh, “Spreading techniques used by malware,” 2016. [Online].
Available: https://www.virusbulletin.com/virusbulletin/2016/12/spreading-
techniques-used-malware/

62. D. Berman, “The Complete Guide to the ELK Stack — Logz.io,” 2019. [Online].
Available: https://logz.io/learn/complete-guide-elk-stack/#common-pitfalls

63. RockNSM Foundation, “Response Operation Collection Kit,” 2019. [Online].
Available: https://rocknsm.io/

173

https://threatpost.com/def-con-2018-critical-bug-opens-millions-of-hp-officejet-printers-to-attack/134972/
https://threatpost.com/def-con-2018-critical-bug-opens-millions-of-hp-officejet-printers-to-attack/134972/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-eventlog?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-eventlog?view=powershell-5.1
https://attack.mitre.org/groups/G0032/
https://attack.mitre.org/groups/G0032/
https://attack.mitre.org/groups/G0016/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.606&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.606&rep=rep1&type=pdf
www.novetta.com
https://attack.mitre.org/groups/G0006/
https://attack.mitre.org/groups/G0022/
https://attack.mitre.org/groups/G0060/
https://attack.mitre.org/groups/G0050/
https://www.acalvio.com/wannacry-ransomware-analysis-lateral-movement-propagation/
https://www.acalvio.com/wannacry-ransomware-analysis-lateral-movement-propagation/
https://www.virusbulletin.com/virusbulletin/2016/12/spreading-techniques-used-malware/
https://www.virusbulletin.com/virusbulletin/2016/12/spreading-techniques-used-malware/
https://logz.io/learn/complete-guide-elk-stack/#common-pitfalls
https://rocknsm.io/

64. Air Forces Cyber, “Cyberspace Vulnerability Assessment/Hunter,” 2018. [On-
line]. Available: https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/
Article/1186672/cyberspace-vulnerability-assessment-hunter-weapon-system/

65. American Airlines, “Special items American Airlines,” 2020. [Online]. Available:
https://www.aa.com/i18n/travel-info/baggage/specialty-and-sports.jsp

66. RaspberryPiFoundation, “Raspberry Pi Foundation - About Us.” [Online].
Available: https://www.raspberrypi.org/about/

67. Google, “Coral.” [Online]. Available: https://coral.ai/

68. NVIDIA, “Jetson AGX Xavier Series Thermal Design Guide,” NVIDIA, Tech.
Rep., 2019.

69. J. Hughes, “Raspberry Pi Documentation,” 2019. [Online]. Avail-
able: https://www.raspberrypi.org/documentation/hardware/raspberrypi/
frequency-management.md

70. Kangalow, “NVPModel - NVIDIA Jetson AGX Xavier Developer Kit -
JetsonHacks,” 2018. [Online]. Available: https://www.jetsonhacks.com/2018/
10/07/nvpmodel-nvidia-jetson-agx-xavier-developer-kit/

71. C. Rush, “How to save power on your Raspberry Pi Pi Supply Maker Zone.”
[Online]. Available: https://learn.pi-supply.com/make/how-to-save-power-on-
your-raspberry-pi/#turn-off-hdmi

72. G. Khalil, “Open Source IDS High Performance Shootout,” 2015. [Online].
Available: https://www.sans.org/reading-room/whitepapers/intrusion/open-
source-ids-high-performance-shootout-35772

73. X. Bu, “Benchmarking Suricata in Different Isolation Systems Using
TCPreplay,” 2017. [Online]. Available: https://github.com/xybu/cs590-
nfv/tree/master/experiments/suricata

74. D. J. Day, D. J. Day, and B. M. Burns, “A Performance Analysis of Snort
and Suricata Network Intrusion Detection and Prevention Engines,” in ICDS
2011: The Fifth International Conference on Digital Society, 2011. [Online].
Available: https://www.researchgate.net/publication/241701294

75. A. Kirk, “Comprehensive Threat Intelligence: Using Snort fast patterns wisely
for fast rules,” 2010. [Online]. Available: https://blog.talosintelligence.com/
2010/04/using-snort-fast-patterns-wisely-for.html

76. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “MiBench: A free, commercially representative embedded benchmark
suite,” in 2001 IEEE International Workshop on Workload Characterization,

174

https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/Article/1186672/cyberspace-vulnerability-assessment-hunter-weapon-system/
https://www.afcyber.af.mil/About-Us/Fact-Sheets/Display/Article/1186672/cyberspace-vulnerability-assessment-hunter-weapon-system/
https://www.aa.com/i18n/travel-info/baggage/specialty-and-sports.jsp
https://www.raspberrypi.org/about/
https://coral.ai/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/frequency-management.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/frequency-management.md
https://www.jetsonhacks.com/2018/10/07/nvpmodel-nvidia-jetson-agx-xavier-developer-kit/
https://www.jetsonhacks.com/2018/10/07/nvpmodel-nvidia-jetson-agx-xavier-developer-kit/
https://learn.pi-supply.com/make/how-to-save-power-on-your-raspberry-pi/#turn-off-hdmi
https://learn.pi-supply.com/make/how-to-save-power-on-your-raspberry-pi/#turn-off-hdmi
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
https://github.com/xybu/cs590-nfv/tree/master/experiments/suricata
https://github.com/xybu/cs590-nfv/tree/master/experiments/suricata
https://www.researchgate.net/publication/241701294
https://blog.talosintelligence.com/2010/04/using-snort-fast-patterns-wisely-for.html
https://blog.talosintelligence.com/2010/04/using-snort-fast-patterns-wisely-for.html

WWC 2001. Institute of Electrical and Electronics Engineers Inc., 2001, pp.
3–14.

77. C. P. Kruger and G. P. Hancke, “Benchmarking Internet of things devices,” in
Proceedings - 2014 12th IEEE International Conference on Industrial Informat-
ics, INDIN 2014. Institute of Electrical and Electronics Engineers Inc., 11
2014, pp. 611–616.

78. Amido, “A Case Study of DevOps at Netflix ,” 2018. [Online]. Available:
https://amido.com/blog/a-case-study-of-devops-at-netflix/

79. Guru99, “Best 8 Ansible Alternatives in 2020,” 2020. [Online]. Available:
https://www.guru99.com/ansible-alternative.html

80. D. C. Montgomery, “The 2ˆk Factorial Design,” in Design and Analysis of Ex-
periments, 9th ed. Wiley, 2017, ch. 6.

81. AFLCMC/HNCDV, “CYBERSPACE VULNERABILITY ASSESSMEN-
T/HUNTER (CVA/H) WEAPON SYSTEM (WS),” 2019. [Online]. Available:
https://confluence.di2e.net/display/THISISCVAH/CVAH+Home

82. Smashicons, “Smashicons Icon Sets,” 2019. [Online]. Available: https:
//www.flaticon.com/authors/smashicons

83. L. Rizzo, “netmap: a novel framework for fast packet I/O,” Usenix ATC’12,
Tech. Rep., 2012.

84. A. Turner, F. Klassen, and AppNeta, “Tcpreplay - Pcap editing and replaying
utilities,” 2013. [Online]. Available: https://tcpreplay.appneta.com/

85. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating a New
Intrusion Detection Dataset and Intrusion Traffic Characterization,” ICISSP,
2018.

86. L. Rizzo, “netmap/README.md at master · luigirizzo/netmap,” 2019. [On-
line]. Available: https://github.com/luigirizzo/netmap/blob/master/LINUX/
README.md

87. F. Klassen and AppNeta, “tcprewrite,” 2019. [Online]. Available: http:
//tcpreplay.appneta.com/wiki/tcprewrite.html#dealing-with-mtu-problems

88. R. Donato, “The Journey of a Frame through a Linux Based System,” 2017.
[Online]. Available: https://www.fir3net.com/UNIX/Linux/the-journey-of-a-
frame-through-a-linux-based-system.html

89. packagecloud, “Monitoring and Tuning the Linux Networking Stack:
Receiving Data - Packagecloud Blog,” 2016. [Online]. Avail-
able: https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-

175

https://amido.com/blog/a-case-study-of-devops-at-netflix/
https://www.guru99.com/ansible-alternative.html
https://confluence.di2e.net/display/THISISCVAH/CVAH+Home
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/smashicons
https://tcpreplay.appneta.com/
https://github.com/luigirizzo/netmap/blob/master/LINUX/README.md
https://github.com/luigirizzo/netmap/blob/master/LINUX/README.md
http://tcpreplay.appneta.com/wiki/tcprewrite.html#dealing-with-mtu-problems
http://tcpreplay.appneta.com/wiki/tcprewrite.html#dealing-with-mtu-problems
https://www.fir3net.com/UNIX/Linux/the-journey-of-a-frame-through-a-linux-based-system.html
https://www.fir3net.com/UNIX/Linux/the-journey-of-a-frame-through-a-linux-based-system.html
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-tuning-the-linux-networking-stack
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-tuning-the-linux-networking-stack

linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-
tuning-the-linux-networking-stack

90. G. Schudel, “Bandwidth, Packets Per Second, and Other Network Performance
Metrics,” 2018. [Online]. Available: https://www.cisco.com/c/en/us/about/
security-center/network-performance-metrics.html

91. CAIDA, “The CAIDA UCSD Statistical information for the CAIDA
Anonymized Internet Traces,” 2019. [Online]. Available: https://www.caida.
org/data/passive/passive trace statistics.xml

92. W. E. Leland, M. S. Taqqu, and D. V. Wilson, “On the Self-Similar Nature of
Ethernet Traffic (Extended Version),” IEEE/ACM Transactions on Networking,
vol. 2, no. 1, pp. 1–15, 1994.

93. M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic:
Evidence and possible causes,” IEEE/ACM Transactions on Networking, vol. 5,
no. 6, pp. 835–846, 1997.

94. SUSE Support, “Improving network performance using Receive Packet
Steering (RPS) — Support — SUSE,” 2014. [Online]. Available: https:
//www.suse.com/support/kb/doc/?id=7015585

95. Mellanox Technologies, “Linux sysctl Tuning,” 2018. [Online]. Available:
https://community.mellanox.com/s/article/linux-sysctl-tuning

96. T. Herbet and W. de Bruijn, “Scaling in the Linux Networking Stack,” 2010.
[Online]. Available: https://www.kernel.org/doc/Documentation/networking/
scaling.txt

97. ARM, “ARM ® Generic Interrupt Controller Architecture version 2.0 Archi-
tecture Specification,” ARM, Tech. Rep., 2008.

98. mingo, “Linux Kernel IO-APIC.” [Online]. Available: https://www.kernel.org/
doc/Documentation/x86/i386/IO-APIC.txt

99. J. Corbet, “Receive packet steering [LWN.net],” 2009. [Online]. Available:
https://lwn.net/Articles/362339/

100. J. Bainbridge and J. Maxwell, “Red Hat Enterprise Linux Network Performance
Tuning Guide,” Red Hat Enterprise Linux, Tech. Rep., 2015. [Online]. Available:
www.redhat.com

101. J. Real, “Measuring the impact of tcpdump on Very Busy Hosts,” 2015.
[Online]. Available: https://www.percona.com/blog/2015/04/10/measuring-
impact-tcpdump-busy-hosts/

176

https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-tuning-the-linux-networking-stack
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-tuning-the-linux-networking-stack
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#general-advice-on-monitoring-and-tuning-the-linux-networking-stack
https://www.cisco.com/c/en/us/about/security-center/network-performance-metrics.html
https://www.cisco.com/c/en/us/about/security-center/network-performance-metrics.html
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.suse.com/support/kb/doc/?id=7015585
https://www.suse.com/support/kb/doc/?id=7015585
https://community.mellanox.com/s/article/linux-sysctl-tuning
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/x86/i386/IO-APIC.txt
https://www.kernel.org/doc/Documentation/x86/i386/IO-APIC.txt
https://lwn.net/Articles/362339/
www.redhat.com
https://www.percona.com/blog/2015/04/10/measuring-impact-tcpdump-busy-hosts/
https://www.percona.com/blog/2015/04/10/measuring-impact-tcpdump-busy-hosts/

102. Samsung, “Introducing eMMC 5.1: The Next Step
in Relentless Flash Innovation,” 2015. [Online]. Avail-
able: https://www.samsung.com/semiconductor/newsroom/tech-trends/
introducing-emmc-5-1-the-next-step-in-relentless-flash-innovation/

103. SD Association, “Speed Classes,” 2020. [Online]. Available: https://www.
sdcard.org/developers/overview/speed class/index.html

104. L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, “Characterizing the
Performance of Network Intrusion Detection Sensors,” in RAID 2003, 2003.
[Online]. Available: http://www.cs.utah.edu/∼lambert/pdf/nids raid03.pdf

105. NetSec Support Notes, “Bad Snort Rules — NetSec Support Notes and
Ramblings,” 2014. [Online]. Available: https://netsecsupport.wordpress.com/
2014/06/22/bad-snort-rules/

106. Emerging Threats, “Suricata 5 ET Rules,” 2020. [Online]. Available:
https://rules.emergingthreats.net/open/suricata-5.0/

107. X. Bu, “Performance Characterization of Suricata’s Thread Models,” 2017.
[Online]. Available: https://xbu.me/article/performance-characterization-of-
suricata-thread-models/

108. OISF, “Advanced Suricata Engine Documentation,” 2020. [Online].
Available: https://suricata.readthedocs.io/en/latest/configuration/suricata-
yaml.html#detection-engine

109. Martin, “Open-Source Security Tools: Network Intrusion Detection Systems,”
2011. [Online]. Available: http://ossectools.blogspot.com/2011/04/network-
intrusion-detection-systems.html

110. Elasticsearch, “Filebeat Reference [7.5],” 2020. [Online]. Available: https:
//www.elastic.co/guide/en/beats/filebeat/current/how-filebeat-works.html

111. L. H. Newman, “A Controversial Plan to Encrypt More of the Internet —
WIRED,” 2019. [Online]. Available: https://www.wired.com/story/dns-over-
https-encrypted-web/

112. M. Pilkington, “Kerberos in the Crosshairs: Golden Tick-
ets, Silver Tickets, MITM, and More,” 2014. [Online]. Avail-
able: https://digital-forensics.sans.org/blog/2014/11/24/kerberos-in-the-
crosshairs-golden-tickets-silver-tickets-mitm-more

113. A. Duckwall and C. Campbell, “Still Passing the Hash 15 Years
Later: Mimikatz and Golden Tickets... What’s the BFD?” 2014. [On-
line]. Available: http://passing-the-hash.blogspot.com/2014/08/mimikatz-and-
golden-tickets-whats-bfd.html

177

https://www.samsung.com/semiconductor/newsroom/tech-trends/introducing-emmc-5-1-the-next-step-in-relentless-flash-innovation/
https://www.samsung.com/semiconductor/newsroom/tech-trends/introducing-emmc-5-1-the-next-step-in-relentless-flash-innovation/
https://www.sdcard.org/developers/overview/speed_class/index.html
https://www.sdcard.org/developers/overview/speed_class/index.html
http://www.cs.utah.edu/~lambert/pdf/nids_raid03.pdf
https://netsecsupport.wordpress.com/2014/06/22/bad-snort-rules/
https://netsecsupport.wordpress.com/2014/06/22/bad-snort-rules/
https://rules.emergingthreats.net/open/suricata-5.0/
https://xbu.me/article/performance-characterization-of-suricata-thread-models/
https://xbu.me/article/performance-characterization-of-suricata-thread-models/
https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html#detection-engine
https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html#detection-engine
http://ossectools.blogspot.com/2011/04/network-intrusion-detection-systems.html
http://ossectools.blogspot.com/2011/04/network-intrusion-detection-systems.html
https://www.elastic.co/guide/en/beats/filebeat/current/how-filebeat-works.html
https://www.elastic.co/guide/en/beats/filebeat/current/how-filebeat-works.html
https://www.wired.com/story/dns-over-https-encrypted-web/
https://www.wired.com/story/dns-over-https-encrypted-web/
https://digital-forensics.sans.org/blog/2014/11/24/kerberos-in-the-crosshairs-golden-tickets-silver-tickets-mitm-more
https://digital-forensics.sans.org/blog/2014/11/24/kerberos-in-the-crosshairs-golden-tickets-silver-tickets-mitm-more
http://passing-the-hash.blogspot.com/2014/08/mimikatz-and-golden-tickets-whats-bfd.html
http://passing-the-hash.blogspot.com/2014/08/mimikatz-and-golden-tickets-whats-bfd.html

114. E. Nabigaev, “PROTECTING WINDOWS NETWORKS KER-
BEROS ATTACKS,” 2015. [Online]. Available: http://web.archive.org/
web/20160216185049/http://dfir-blog.com/2015/12/13/protecting-windows-
networks-kerberos-attacks/

115. MITRE, “Kerberoasting,” 2019. [Online]. Available: https://attack.mitre.org/
techniques/T1208/

116. ——, “APT28: SNAKEMACKEREL, Swallowtail, Group 74, Sednit, Sofacy,
Pawn Storm, Fancy Bear, STRONTIUM, Tsar Team, Threat Group-4127,
TG-4127,” 2019. [Online]. Available: https://attack.mitre.org/groups/G0007/

117. ——, “Indicator Removal on Host- MITRE ATT&CK,” 2020. [Online].
Available: https://attack.mitre.org/techniques/T1070/

178

http://web.archive.org/web/20160216185049/http://dfir-blog.com/2015/12/13/protecting-windows-networks-kerberos-attacks/
http://web.archive.org/web/20160216185049/http://dfir-blog.com/2015/12/13/protecting-windows-networks-kerberos-attacks/
http://web.archive.org/web/20160216185049/http://dfir-blog.com/2015/12/13/protecting-windows-networks-kerberos-attacks/
https://attack.mitre.org/techniques/T1208/
https://attack.mitre.org/techniques/T1208/
https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/techniques/T1070/

Acronyms

AFIT Air Force Institute of Technology. 9

ANOVA Analysis of Variance. 4, 30, 31, 34, 39, 43, 71, 72, 73, 110

APT Advanced Persistent Threat. 9, 12, 13, 17, 55, 123

CAIDA The Center for Applied Internet Data Analysis. 61

CCRI Command Cyber Readiness Inspection. 10

CIC Canadian Institute for Cybersecurity. 58, 63, 70

CPT Cyber Protection Team. 13

CPU Central Processing Unit. 25, 28, 39, 51, 58, 60, 73

CVA/H Cyberspace Vulnerability Assessment / Hunter. 20, 54, 98, 118

DC Domain Controller. 120, 121, 122

DIACAP DoD Information Assurance Certification and Accreditation Process. 10

DISA Defense Information Systems Agency. 10

DMA Direct Memory Access. 60

DNS Domain Name Service. 38

DOD Department of Defense. 9

DODI DoD Instruction. 10

GPU Graphics Processing Unit. 48

GRO Generic Receive Offload. 58, 74

GSO Generic Segmentation Offload. 58, 64

GUI Graphical User Interface. 25

HBSS Host Based Security System. 16

I/O Input / Output. 22, 56

IDS Intrusion Detection System. 20, 26, 54, 57, 98, 113, 119

IOC Indicator of Compromise. 13, 14

179

IoT Internet Of Things. iv, 1

IPI Inter-Processor Interrupt. 60, 75

IRQ Interrupt Request. 60

JRSS Joint Regional Security Stack. 15

KDC Key Distribution Center. 120, 121

LRO Large Receive Offload. 58, 74

MITM Main-in-the-Middle. 120

MTU Maximum Transmission Unit. 58, 59

NAPI New API. 59, 60, 78, 80

NIC Network Interface Card. 25, 54, 60, 73, 76, 81

NIDS Network Intrusion Detection System. 20

NIPRNET Non-classified Internet Protocol Router Network. 9

NIST National Institute of Standards and Technology. 10

NSA National Security Agency. 10

OS Operating System. 15, 29

PID Process ID. 49

PPS Packets Per Second. 61, 64, 69, 73, 81, 101, 117

RAM Random Access Memory. 28

RFS Receive Flow Steering. 60, 79, 80, 81, 82, 90, 91, 100

RockNSM Response Operations Collection Kit Network Security Monitor. 19

RPS Receive Packet Steering. 60, 74, 75, 79, 80

RV Response Variable. 112

SBC Single Board Computer. 22, 23

SDK Software Development Kit. 25

180

SIEM Security Information and Event Management. 20

SIPRNET Secret Internet Protocol Router Network. 9

skb Socket Buffer. 75, 78

SOC System on a Chip. 55

SSH Secure Shell. 35, 41

STIG Security Technical Implementation Guide. 10

STIX Structured Threat Information eXpression. 14

TAXII Trusted Automated eXchange of Indicator Information. 14

TCP Transmission Control Protocol. 25, 114

TGS Ticket Granting Service. 120, 122

TGT Ticket to Grant Tickets. 120, 121

TSO TCP Segmentation Offload. 58, 64

USCYBERCOM United States Cyber Command. 13

YAML Yet Another Markup Language. 36, 43, 66

181

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

A General Methodology to Optimize and Benchmark Edge Devices

Smathers, Kyle J., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-062

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States

A macro level methodology is proposed that iteratively benchmarks and optimizes specific workloads on edge devices.

With automation provided by Ansible, a multi stage 2k full factorial experiment and robust analysis process ensures the
test workload is maximizing the use of available resources before establishing a final benchmark score. By framing the
validation tests with a family of network security monitoring applications an end to end scenario fully exercises and
validates the developed process. This also provides an additional vector for future research in the realm of network
security. The analysis of the results show the developed process met it’s original design goals and intentions, with the
added fact that the latest edge devices like the XAVIER, TX2 and RPi4 can easily perform as a edge network sensor.

edge device, benchmarking, optimization, network monitoring

U U U UU 193

Lt Col Mark DeYoung, AFIT/ENG

(937)-255-6565 x7216 mark.deyoung@afit.edu

	A General Methodology to Optimize and Benchmark Edge Devices
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Background
	Research Objectives
	Design Goals
	Implementation
	Validation

	Document Overview

	Background and Literature Review
	Problem Domain - Network Defense
	Network Defense Background
	Blindspots & Modern Threats
	Emerging Defense Tactics

	Solution Domain - Edge Devices
	Survey of Edge Devices
	Edge Benchmarking Challenges

	Summary

	Methodology
	Design Goals
	General Test Methodology
	Analysis Design
	Automation Design
	Multi-Stage Optimization Design
	Limiting Factors

	Specific Application: Edge Network Sensors
	Experiment Architecture
	Traffic Generation
	Dataset Preparation
	Optimization Factor Selection

	Summary

	Results and Analysis
	Methodology Validation
	Automation Validation
	Multi-Stage Optimization Validation
	Analysis Validation

	Network Monitoring Results
	Interface Ratelimit Test
	Traffic Capture Ratelimit Test
	Suricata Ratelimit Test

	Summary

	Conclusions
	Overall Summary
	Future Work
	Benchmark Use & Expansion
	Network Monitoring Expansion

	Annotated Example Results Figure
	Employment Analysis
	Raw Data Examples
	Source Code
	Bibliography
	Acronyms

