
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-26-2020 

Relational Database Design and Multi-Objective Database Queries Relational Database Design and Multi-Objective Database Queries 

for Position Navigation and Timing Data for Position Navigation and Timing Data 

Sean A. Mochocki 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Databases and Information Systems Commons, and the Navigation, Guidance, Control and 

Dynamics Commons 

Recommended Citation Recommended Citation 
Mochocki, Sean A., "Relational Database Design and Multi-Objective Database Queries for Position 
Navigation and Timing Data" (2020). Theses and Dissertations. 3184. 
https://scholar.afit.edu/etd/3184 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.afit.edu%2Fetd%2F3184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholar.afit.edu%2Fetd%2F3184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholar.afit.edu%2Fetd%2F3184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3184?utm_source=scholar.afit.edu%2Fetd%2F3184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


RELATIONAL DATABASE DESIGN AND
MULTI-OBJECTIVE DATABASE QUERIES

FOR POSITION NAVIGATION AND TIMING
DATA

THESIS

Sean A. Mochocki, Captain, USAF

AFIT-ENG-MS-20-M-045

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-MS-20-M-045

RELATIONAL DATABASE DESIGN AND MULTI-OBJECTIVE DATABASE

QUERIES FOR POSITION NAVIGATION AND TIMING DATA

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Sean A. Mochocki, B.S.E.E., B.S.M.E.

Captain, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-20-M-045

RELATIONAL DATABASE DESIGN AND MULTI-OBJECTIVE DATABASE

QUERIES FOR POSITION NAVIGATION AND TIMING DATA

THESIS

Sean A. Mochocki, B.S.E.E., B.S.M.E.
Captain, USAF

Committee Membership:

Robert C Leishman, Ph.D.
Chair

Kyle J Kauffman, Ph.D.
Member

John F Raquet, Ph.D.
Member



AFIT-ENG-MS-20-M-045

Abstract

Performing flight tests is a natural part of researching cutting edge sensors and filters

for sensor integration. Unfortunately, tests are expensive, and typically take many

months of planning. A sensible goal would be to make previously collected data

readily available to researchers for future development.

The Air Force Institute of Technology (AFIT) has hundreds of data logs poten-

tially available to aid in facilitating further research in the area of navigation. A

database would provide a common location where older and newer data sets are

available. Such a database must be able to store the sensor data, metadata about the

sensors, and affiliated metadata of interest.

This thesis proposes a standard approach for sensor and metadata schema and

three different design approaches that organize this data in relational databases.

Queries proposed by members of the Autonomy and Navigation Technology (ANT)

Center at AFIT are the foundation of experiments for testing. These tests fall into

two categories, downloaded data, and queries which return a list of missions. Test

databases of 100 and 1000 missions are created for the three design approaches to

simulate AFIT’s present and future volume of data logs. After testing, this thesis

recommends one specific approach to the ANT Center as its database solution.

In order to enable more complex queries, a Genetic algorithm and Hill Climber

algorithm are developed as solutions to queries in the combined Knapsack/Set Cov-

ering Problem Domains. These algorithms are tested against the two test databases

for the recommended database approach. Each algorithm returned solutions in under

two minutes, and may be a valuable tool for researchers when the database becomes

operational.

iv



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Design Objectives and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Position Navigation and Timing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Scorpion Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 YAML Ain’t Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Lightweight Communications and Marshalling . . . . . . . . . . . . . . . . . 6

2.3 Big Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Definitions of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Five V Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Entity Relationship Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Structured Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.4 SQLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.5 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Non-Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.1 The Consistent, Available, or Partition Tolerant

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Basically Available, Soft state, Eventual

consistency Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.3 Standard Types of Not only SQL Databases . . . . . . . . . . . . . . . . . . 22

2.7 Data Warehouses, OLTPs and OLAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 NewSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Multi-Objective Database Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Relevant Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



Page

2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 ION/PLANS Paper Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Relevant Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 PNT Database Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Non-Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Database Decision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Database Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Requirements and Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Table and Relationship Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Database Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Test Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Expected Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Download Test Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 SDM Query Test Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Database Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.1 Log File Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.2 Non-Sensor Metadata Insertion Algorithms . . . . . . . . . . . . . . . . . . 64
3.7.3 insertChannelInformation Function . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.4 insertRandomSensorMetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.5 insertSDMData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Removed Metadata Query Test Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV. Experimental Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Journal Of Evolutionary Computation Paper . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Background and Related Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Set Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Combined Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Stochastic Algorithms for the Combined MO KP/SCP . . . . . . . . . . . . . . 88
4.4.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Hill Climber Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.3 GA and HC Algorithm Expected Performance . . . . . . . . . . . . . . . . 93

4.5 Design and Evaluation of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



Page

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix A. Full Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix B. Tester Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix C. Database Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix D. KP/SCP GA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix E. SQL Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix F. SQL Database and Index Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix G. Genetic Algorithm Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix H. Hill Climber Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendix I. Proof that KP/SCP Decision Problem is
NP-Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

vii



List of Figures

Figure Page

1. Big Data use in Social Media [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. The Four V’s of Big Data [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. The Five Vs of Big Data [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. The Consistent, Available, or Partition Tolerant (CAP)
theorem visualized [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. OLAP vs OLTP [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. Cloud Computing Services [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. Relational PNT Database Overview For All Design
Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8. Primary File Download Test: Lower times indicate a
better performance. Each test was performed 11 times
for each approach and database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9. Trim By Altitude Test: Lower times indicate a better
performance. Each test was performed 11 times for each
approach and database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10. Trim By Velocity Test: Lower times indicate a better
performance. Each test was performed 11 times for each
approach and database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11. Trim By Time Cut Beginning Test: Lower times
indicate a better performance. Each test was performed
11 times for each approach and database. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12. Trim By Time Cut Ending Test: Lower times indicate a
better performance. Each test was performed 11 times
for each approach and database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

13. Platform Dynamics Test: Queries the IMU data type to
check for High (4 g’s) Medium (Between 4 and 2 g’s) or
Low (Less than 2 g’s) dynamics. Each test was
performed 11 times for each approach and database . . . . . . . . . . . . . . . . . 59

viii



Figure Page

14. Time Of Day Test: Queries the IMU data type to check
for if the data log began in the morning, or ended in the
afternoon, Eastern Standard Time. Each test was
performed 11 times for each approach and database . . . . . . . . . . . . . . . . . 59

15. Velocity Test: Queries the PositionVelocityAttitude
table to see if a data log exceeded 5m/s in any
direction. Each test was performed 11 times for each
approach and database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

16. Satellite Type Test: Queries the GNSS table to see if a
randomly chosen satellite constellation provided a
measurement for that data log. Each test was
performed 11 times for each approach and database . . . . . . . . . . . . . . . . . 60

17. Latitude Longitude Bounding Test: Checks the
GeodeticPosition 3D table to see if any measurement
in the data log took place within a certain Latitude and
Longitude. Each test was performed 11 times for each
approach and database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

18. Sensor Quality Test Results: Runs queries which
identify which data logs which used a IMU sensor have
specified intrinsic values. Each test was performed 11
times for each approach and database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

19. Non-Sensor Metadata Queries Result: Runs queries
concerning Weather, Terrain, and Maneuvers. Each test
was performed 11 times for each approach and database . . . . . . . . . . . . . 74

20. Vehicle Queries Results: Runs various Vehicle related
queries. Each test was performed 11 times for each
approach and database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

21. Sensor Type Test Results: Runs various Sensor Type
related queries, as well as queries looking for random
combinations of two sensor. Each test was performed 11
times for each approach and database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

22. Relational PNT Database Overview: Every row in
missionDescription Table is an independent data log in
the Scorpion Data Model format which is uploaded in
the database. The SDM tables contain all of the
navigation data associated with the data logs. . . . . . . . . . . . . . . . . . . . . . . 81

ix



Figure Page

23. Genetic Algorithm Population Comparison: Compares
GA values with populations of 10, 25, and 50 with
Databases of sizes 100 and 1,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

24. Genetic Algorithm and Hill Climber: Compares GC
(Population: 25) Values against HC Values . . . . . . . . . . . . . . . . . . . . . . . . . 99

25. Genetic Algorithm and Hill Climber: Compares GC
(Population: 25) Times against HC Times . . . . . . . . . . . . . . . . . . . . . . . . 100

26. nonSensorMetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

27. missionDescription and channelInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

28. SDM Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

29. SensorInstallationInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

30. SensorIntrinsic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

31. Full Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

x



List of Tables

Table Page

1. LCM Event format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. missionDescription Table: Each row represents a sensor
data log and associated metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3. Non Sensor Metadata Tables: These Tables record data
that helps distinguish between data logs but is not
directly associated with the sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. channelInfo Table: Connects a data log with its SDM
data, and with sensor metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. sensorMetaData Tables: describes the sensors used to
collect data on specific channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Other sensorInstallation Tables: These tables record
additional sensor information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7. SDM Data Types: Describes the standardized types of
sensor data recorded in each data log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8. Testing Equipment and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9. Database File Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10. High Level Message Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11. SDM Message Breakout By Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12. GenericFetchEventBundle Attribute Table . . . . . . . . . . . . . . . . . . . . . . . . . 70

13. GenericFetchEventBundle Operations Table . . . . . . . . . . . . . . . . . . . . . . . . 71

14. SDM Common Columns Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

15. SDM Data Types: Describes the standardized types of
sensor data recorded in each data log. A new table is
created for each data type and for each data log. The
IMU table, for instance, would have 430 Million rows for
the 1000 mission database if they were not split between
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

16. Genetic Algorithm Possible Feasibility Conditions . . . . . . . . . . . . . . . . . . . 91

xi



Table Page

17. Missions Value and Weight Based On Structured Query
Language (SQL) Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

18. Testing Equipment and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

19. Number of Solutions Found for HC and GA algorithms
(Population: 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

20. Recordings for loop closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

21. Recordings for Way Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

22. Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

23. Altitude Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

24. Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

25. Sensor Outages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

26. GPS Outages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

27. System Malfunctions and Unexpected Results . . . . . . . . . . . . . . . . . . . . . 113

28. Approach1 100 Missions Download Test in Milliseconds . . . . . . . . . . . . . 115

29. Approach2 100 Missions Download Test in Milliseconds . . . . . . . . . . . . . 116

30. Approach3 100 Missions Download Test in Milliseconds . . . . . . . . . . . . . 117

31. Approach1 1000 Missions Download Test in Milliseconds . . . . . . . . . . . . 118

32. Approach2 1000 Missions Download Test in Milliseconds . . . . . . . . . . . . 119

33. Approach3 1000 Missions Download Test in Milliseconds . . . . . . . . . . . . 120

34. Approaches 1,2,3 SDM Data Test 100 Missions in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

35. Approaches 1,2,3 SDM Data Test 1000 Missions in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

36. Approach1 100 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



Table Page

37. Approach2 100 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

38. Approach3 100 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

39. Approach1 1000 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

40. Approach2 1000 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

41. Approach3 1000 Missions Metadata Queries in
Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

42. Genetic Algorithm 100 Missions Results . . . . . . . . . . . . . . . . . . . . . . . . . . 130

43. Genetic Algorithm 1000 Missions Results . . . . . . . . . . . . . . . . . . . . . . . . . 131

44. HillClimber 100/1000 Missions Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiii



List of Acronyms

ACID Atomicity, Consistency, Isolation, and Durability

AFIT Air Force Institute of Technology

ANT Autonomy and Navigation Technology

BASE Basically Available, Soft state, Eventual consistency

BLOB Binary Large OBject

CAP Consistent, Available, or Partition Tolerant

DBMS Database Management System

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

ERD Entity Relationship Diagrams

GA Genetic Algorithm

GNSS Global Navigation Satellite System

HC Hill Climber

IaaS Cloud Infrastructure as a Service

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

ION Institute of Navigation

JSON JavaScript Object Notation

KP Knapsack Problem

LCM Lightweight Communications and Marshalling

MO Multi-Objective

NewSQL New Structured Query Language

xiv



NIST National Institute of Standards and Technology

NoSQL Not only SQL

NP Non-deterministic Polynomial

OID Object Identifier

OLAP Online Analytical Processing

OLTP Online Transaction Processing

PaaS Cloud Platform as a Service

PD Problem Domain

PLANS Position Location and Navigation Symposium

PNT Position, Navigation and Timing

RDBMS Relational Database Management System

SaaS Cloud Software as a Service

SCP Set Covering Problem

SDM Scorpion Data Model

SQL Structured Query Language

SSD Solid State Drive

TCL Transaction Control Language

YAML YAML Ain’t Markup Language

xv



RELATIONAL DATABASE DESIGN AND MULTI-OBJECTIVE DATABASE

QUERIES FOR POSITION NAVIGATION AND TIMING DATA

I. Introduction

1.1 Background and Motivation

This thesis presents the research, design, and testing of three relational database

approaches intended to store Position, Navigation and Timing (PNT) data in the

Scorpion Data Model (SDM) format, as well as two stochastic algorithms designed to

solve the combined Knapsack Problem (KP)/Set Covering Problem (SCP) problem

in the Non-deterministic Polynomial (NP)-Hard problem domain. The SDM format

allows for a standardization of the PNT data collected from sensors. Due to this

standardization, a relational database, which fundamentally relies on normalization

to avoid repeated data, is a possible fit for this problem. PostgreSQL is used to

implement the databases and they and are queried via test scripts written in Java. The

best overall performing database is then tested using the two stochastic algorithms.

Chapter 1 provides an overview, along with the problem statement and the limi-

tations and assumptions associated with the design. Chapter 2 is a literature review

which goes into the necessary background to understand the design, and considers

other relevant ongoing research. Chapters 3 and 4 are each composed of a paper,

one which details the design and testing of the three database approaches, and the

other which performs a top-down design of the stochastic algorithms used to solve

the combined KP/SCP problem. Chapter 5 will discuss the conclusions presented in

these two papers and include any additional conclusions and future work which did

1



not fit in these papers.

1.2 Problem Background

Performing flight tests is a common part of sensor and filter research for sensor

integration. These tests allow for different arrangements of sensors to be tested,

along with their integrating software frameworks. Unfortunately, tests cost money

and time for necessary resources to be available. A sensible goal is to make collected

data readily available to researchers, so that they can test filters designed in software

against data as if they were flying live on the aircraft.

The Air Force Institute of Technology has hundred(s) of data logs potentially

available to aid in facilitating further research in the area of navigation. Unfortu-

nately, these logs exist in a variety of formats, some of which were only known to

the testers at the time of collection, and many which are in disparate locations not

readily available to those performing research today. This leads to a problem where

researchers may be performing new flights to test their filters, not realizing that data

logs are available in Air Force Institute of Technology (AFIT)’s possession which are

a good fit for their specific use cases. If they knew that this data was available, and

if enough information was logged so that they could use it effectively, it would save

time and money on their research. Then, if the flight test was still necessary, their

filter would be more mature and the test would be more successful. This problem

lends itself to the need for a database to store organize this data.

1.3 Design Objectives and Characteristics

The database will have the following characteristics:

1. The database will be updated when flight tests occur (infrequent writes).

2



2. The database will be used daily (frequent reads).

3. The sensor data will be in the SDM 2.0 format.

4. Sensor data will be wrapped in Lightweight Communications and Marshalling

(LCM) events.

5. Every update to the database will include over one-million sensor measurements,

and assorted sensor metadata.

6. The database will be updated with approximately one-hundred sensor data logs

after it is first launched. These will be converted from legacy sensor formats

and may have incomplete metadata.

7. The database will be a distributed system when it is first launched.

8. The database will be available over a cloud service.

This database is designed to meet the following objectives:

1. Database metadata must be easily queried for ease of analysis.

2. Database queries must be optimized for speed.

3. Database log files must be available for download from the database.

The two stochastic Multi-Objective (MO) algorithms presented in Chapter 4 will

also be optimized for speed. For these algorithms, there is the additional trade-off of

the fitness of their returned solution sets and the speed at which they return these

answers.

3



II. Background and Related Work

2.1 Overview

Chapter 2 of this thesis will focus on the relevant background material which

informs the decisions and assumptions carried forward in the next three chapters. In

Section 2.2, an overview of the anticipated PNT data to be stored will be presented.

In Section 2.3, an overview of big data and some industry use cases will be considered.

In Section 2.4 some data modeling definitions will be reviewed. In Section 2.5 and

2.6, Relational and Not only SQL (NoSQL) databases will be presented. In Section

2.7, the concepts of Online Transaction Processing (OLTP) and Online Analytical

Processing (OLAP) will be addressed. In Section 2.8, the New Structured Query

Language (NewSQL) databases will be introduced. Section 2.9 will review the concept

of multi-objective database queries, and Section 2.10 will address Cloud Computing

as it relates to database design. Section 2.11 addresses relevant research in the area of

PNT databases. Finally, Section 2.12 will provide a summary of the literature review

as a segue to the rest of thesis.

2.2 Position Navigation and Timing Data

The bulk of this literature review will be specifically related to the various types of

databases, how data is modeled, and some modern implementations of databases in

industry. All of this is intended to provide a foundation to help with understanding the

design laid out in Section 3. Before discussing database design itself, it is prudent to

discuss the nature of the data to be stored, as this, along with a good understanding of

theoretical principles and practical experimentation, will drive the bulk of the design

choices.

As observed in the thesis title, the database is intended to store PNT data, along

4



with its relevant useful metadata. More specifically, the SDM standard 2.0 as defined

in its YAML Ain’t Markup Language (YAML) documentation serves as the baseline

of the data to be converted. For simplicity, this data will be transmitted in the LCM

standard, though it is anticipated that it will be able to be transmitted in additional

standards as well. High-level discussion of each of these topics will be offered in this

section, and additional detail provided in the rest of the paper as necessary in order

to aid with understanding the underlying design decisions.

2.2.1 Scorpion Data Model

SDM is defined in YAML documentation and defines basic PNT data types. This

data includes such types as PositionVelocityAttitude and IMU, and specifies their

data fields of interest. An example of the IMU message defined in YAML is shown

below. This data is agnostic from how it is collected, and is tabular in nature. More

specifically, if there is an instance of SDM data, it is by definition known what kind

of data it contains, and how that data is formatted and can be retrieved [7]. This

standardization lends itself to a database solution which will help make this data

useful. To design a database for this data, it is not necessary to understand the data

in detail from a navigation perspective, except where it would be helpful to make sure

that this data is easily queried and retrievable by an expert in this field. Members

of the Autonomy and Navigation Technology (ANT) center at AFIT provided this

expertise when necessary.

1 name : IMU

2 number : ”2001.0”

3 ve r s i on : ”2 .0”

4 d e s c r i p t i o n : |

5 I n e r t i a l Measurement Unit (IMU) de l t a v e l o c i t y and de l t a

6 r o t a t i on measurements from the device ’ s th ree ax i s

7 ac c e l e r omet e r s and three ax i s gyroscopes .

8 f i e l d s :

5



9 − name : header

10 type : types . header

11 un i t s : none

12 d e s c r i p t i o n : |

13 Header conta in s measurement timestamps , dev i c e i d ,

14 and sequence number .

15 − name : d e l t a v

16 type : f l o a t 6 4 [ 3 ]

17 un i t s : m/ s

18 d e s c r i p t i o n : |

19 Acce l e r a t i on i n t e g r a t ed over per iod de l t a t , prov id ing

20 an ” average change in v e l o c i t y ” measurement .

21 − name : d e l t a t h e t a

22 type : f l o a t 6 4 [ 3 ]

23 un i t s : rad

24 d e s c r i p t i o n : |

25 Angular ra t e i n t e g r a t ed over per iod de l t a t , prov id ing

26 an ” average change in ang le ” measurement .

2.2.2 YAML Ain’t Markup Language

SDM messages are defined in YAML. YAML is a data serialization format that

strives for its first priority to be human readable and to support the serialization of

native data structures. YAML is related to JavaScript Object Notation (JSON) in

that every valid JSON file is also a YAML file [8].

2.2.3 Lightweight Communications and Marshalling

LCM is a set of tools which provides message passing and data marshalling ca-

pability. The aim is to simulated real-time data flow, and supports a variety of

applications and programming languages. While LCM will not be necessary to utilize

the database in theory, LCM provides a useful and convenient suite of abilities that

will allow the database to be tested to help confirm its functionality [9]. One of the

main purposes of LCM is to improve message passing modularity, and LCM is de-

6



signed with simplicity in mind to make this modularity easier to implement [10]. The

set of files which were used extensively to test the database are in the LCM format,

and can be thought of as a series of LCM events which wrap SDM data. Table 1

shows the major fields of an LCM event [11].

2.3 Big Data Overview

Big data is a well-recognized field of information management where large amounts

of data have to be stored and accessed efficiently. Due to the recent meteoric growth

of big data, it is projected that world data production will be 44 times greater in

2020 than in 2009 [12]. Another way to consider this is that by 2003, only 2 Exabytes

of data had been generated in the world, whereas by 2018 this same amount of data

is being generated every two days [13]. Big data has made its way into a variety of

major industries. Figure 1 provides an idea of the scale of the data which is used by

social media, which is one of these major industries.

The bio-medical industry is another example of an important big data applica-

tion. The completion of the Human Genome Project and development of sequencing

technology has contributed to the continued push of big data into this field [14]. As

an example, a single sequencing of human genome may result in as much as 100 in-

Table 1. LCM Event format

Field Name Field Description

event number
monotonically increasing 64-bit integer
that identifies each event. It should start at zero,
and increase in increments of one.

timestamp

monotonically increasing 64-bit integer that
identifies the number of microseconds since
the epoch (00:00:00 UTC on January 1, 1970)
at which the event was received

channel
UTF-8 string identifying the LCM channel
on which the message was received.

data binary blob consisting of the exact message received.

7



Figure 1. Big Data use in Social Media [1]

stances of 600GB of raw data. Big data is an extensive part of the medical field, as

disparate types of medical records and images need to be readily available to hospital

staff and patients [15].

2.3.1 Definitions of Big Data

Even though the concept of big data has been conceived relatively recently, there

already exist a wide variety of definitions depending on which aspect one chooses

to emphasize. One such definition is: “the datasets that could not be perceived,

acquired, managed, and processed by traditional IT and software/hardware tools

within a tolerable time” [15]. Another definition is that big data “refers to datasets

whose size is beyond the ability of typical database software tools to capture, store,

manage, and analyze” [16]. A more colorful definition is that big data refers to data

which is: “too big, too fast, or too hard for existing tools to process ”[17]. Per this

definition, “too big” refers to the volume of incoming data, “too fast” refers to the

8



processing speed required to adequately digest this data, and too hard refers to any

other challenges not adequately captured by the first two concepts [17].

Authors who provide definitions for big data are deliberately vague, as the capa-

bility of modern technology to handle different sizes of data may change over time.

In some sense, as the available technologies to handle big data improve, so will the

requirements, such that the category described as “big data” will continue to evolve

over time.

2.3.2 Five V Model

The Five V Model [3] [18] [19] (sometimes three or four V’s) was created as part

of an effort to characterize what is meant by big data. The Five V’s refer to Volume,

Variety, Velocity, Veracity, and Value:

• Volume: The size of the data set. How much volume is necessary for data to

be big data is difficult to define, as some older definitions cite 1 Terabyte as

qualifying for big data, while more modern definitions may require Pedabytes

or more. The concept of volume captures not just a static size of required data,

but that the size of the data is ever increasing. [3]

• Variety: The different types of information that industries may want to cap-

ture, which do not necessarily fit well together under traditional paradigms.

Some examples may be: streaming videos, customer click streams, pictures,

audio, comments, transaction histories, etc. [3]

• Velocity The speed at which new data is being accumulated, the speed required

for data streaming, and the speed at which decisions are made. [20]

• Veracity: The inherent uncertainty that exists in data. For instance, social

9



media posts reflect user sentiment and often are not fact based. Even so, col-

lecting this kind of data can be extremely useful for some industries. [21]

• Value: refers to the value of the data itself, which for big data applications

often comes from the high quantity of data and how it can be integrated and

understood. In order words, this data is valuable because of its volume, small

volumes of this kind of data would not have the same value. [21]

Figure 2, created by IBM, provides additional context for the Five V’s with respect

to how they comprise big data.

In order to derive additional nuance from the Five V model, Figure 3 adds the

characteristics of ambiguity, viscosity, virality, complexity and variability [3]. These

terms are discussed here to add additional context for Figure 3

• Ambiguity: The lack of appropriate metadata for characterizing data. Acts

across Volume and Variety [3] [19] .

• Viscosity: Any types of slowdowns that may occur to the data, whether they

are technological or social in nature. Acts across Volume and Velocity [3] [19].

• Virality: How quickly data can be shared in a peer-to-peer network. Acts

across Variety and Velocity [3] [19] .

• Complexity: Associated with the need to “connect, match, cleanse, and trans-

form data received from different sources [21].”

• Variability: Changes in the rates of data flow. Many mediums will have peak

hours where data flow rates are higher than others [21].

10



?

Extracting business value
from the 4 V’s of big data

The fifth “V”?
Big data = the
ability to achieve
greater Value
through insights
from superior
analytics

Volume

Veracity Variety

Velocity

90%

90%

80%

of today’s
data
has been created 
in just the last
2 years

is the estimated
amount of money that
poor data quality costs
the US economy per year

                   of data
growth is video,
images and
documents

(...enough to fill
10 million
Blu-ray
discs)

72 hours
of footage

uploaded to 
YouTube

216,000
Instagram posts

204,000,000
emails sent

This includes tweets, photos, 
customer purchase histories
and customer service calls

is the estimated
rate of global

Internet 
traffic 

by 2018

50,000
GB/second

$3.1 trillion of generated data
is “unstructured”

Every day
we create

2.5
quintillion

bytes of data

1 in 3
business leaders
 don’t trust the
  information they use   
   to make decisions

Every 

60
seconds
there are:

Scale of data Speed of data

Certainty of data Diversity of data

Case study: A US-based aircraft engine manufacturer 
now uses analytics to predict engine events that lead to 
costly airline disruptions, with 97% accuracy. If this
prediction capability had been available in the previous 
year, it would have saved $63 million.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in 
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list 
of IBM trademarks is available on the web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Unlock the value of your big data.
Start here: ibm.co/technologyplatform 

Figure 2. The Four V’s of Big Data [2]
11



Figure 3. The Five Vs of Big Data [3]

2.4 Data Modeling

Data Modeling is an aspect of the database design where the relationship between

data of interest is modeled, and the appropriate schema and naming conventions

chosen and applied. When done well, it makes the actual implementation of the

database easier, and aids with updates and changing requirements in the future.

There are generally considered to be at least three stages or layers of data modeling:

The Conceptual Layer, Logical Layer, and Physical Layer [22] [23].

• Conceptual Layer: The highest level of data modeling and describes what

the database contains. This would be typically developed by the business stake-

holders and the database architects. This layer is agnostic with regards to the

12



specific implementation of the database, it will serve to help organize the rele-

vant PNT metadata once collected [22].

• Logical Layer: Goes into additional detail on the specific rules and schemas

that relate the data together, designating how the database should be imple-

mented. It is still above the level of a specific Database Management System

(DBMS) implementation [22].

• Physical Layer: Describes the database with respect to how it will be imple-

mented in a specific DBMS. The relationships between data, types of data, and

names should should be detailed in whatever convention is appropriate for a

specific implementation [22].

One of the key concepts when asking the question of the intended purpose of

relational vs non-relational data bases is that of polyglot persistence. This refers

to understanding the nature of the data which is to be stored, so that that the

appropriate database model and tool can be used. The end result is that even a

single organization may end up using multiple different types of databases base on

their different data storage requirements and the nature of the data to be stored [24].

Programs are well-known to consist of a fusion of algorithms and data structures.

In older relational database models, the algorithms which defined how data was orga-

nized and queried were more sophisticated than the data itself. In modern big data

applications this is reversed. The sheer amount of data requires more sophisticated

data structures organized by simpler algorithms [15]. Still, relational databases offer

powerful capabilities, and efforts are being made to generated databases which offer

the power of relational databases with more modern database models [25].

For most of the history of database development, the relational database model

has been considered to be the standard. As will be discussed in the next section,

13



non-relational databases (sometimes called NoSQL), have risen in prominence in the

2000’s mostly due to problems associated with “big data,” especially as it relates to

Volume, Velocity, and Variety [19].

2.5 Relational Databases

The relational database was created by E.F. Codd in 1970 [26]. It was based on

principles of Mathematical Set Theory and Relational Theory in order to establish

relationships between pieces of information [27]. The primary data structure in the

relational database is the table. Every row of the table contains unique information,

and multiple related tables are linked together by the use of keys [28].

One of the main features of relational databases is that they are Atomicity, Con-

sistency, Isolation, and Durability (ACID) compliant as defined below [27] [29]:

• Atomicity: If a transaction is left unfinished, the entire transaction is consid-

ered to have failed and the database is unaffected.

• Consistency: The database is in a valid state both before and after transac-

tions.

• Isolation: Multiple simultaneous transactions do not impact each other’s out-

come.

• Durability: Once data has been updated, this data will endure even in the

case of an inelegant system failure.

Another key characteristic of relational databases is that they are aggregate-

ignorant in nature [24]. This means that, outside of the relationship between tables

that are created by primary and foreign keys and brought together by joins, data is

distributed between tables and not inherently connected. In general, the appropriate-

ness of aggregates for big data applications is what gave rise to NoSQL applications.

14



Similar to how all elements of engineering design include trade-offs, whether or not

an aggregate based database approach is appropriate is entirely based on the nature

and intended purpose of the data [24].

2.5.1 Normalization

Normalization is one of the main methods used to prepare data to be stored in a

relational database. Normalization is mathematical, and proceeds in discrete steps,

each of which build on each other to produce a progressively more normalized set of

data. Normalization serves to break up data into smaller parts so that useful rela-

tionships between them can be examined, and that they can be managed efficiently.

One goal of normalization is that data duplication is avoided [30].

Normalization comes with benefits and hazards, and for that reason must be bal-

anced based on the intended database application. Some advantages to normalization

are that less physical space is required to store the data, the data is better organized,

and that minute changes can be made to the database. Some disadvantages are that

additional normalization results in additional tables, resulting in larger queries that

are potentially time consuming, and a database that is overall less user friendly [30].

Data normalization progresses according to the following forms. Each form as-

sumes that the data is compliant with the prior forms.

• First Normal Form: Dictates that only a single piece of information is stored

in a given field. The classical example of this is how an address might be broken

into a street, city, and zip code [31].

• Second Normal Form: When data is converted to this form, partial depen-

dencies are removed from from the database tables. In other words, all fields in

table rely on the primary key of that table exclusively [30]. An example might

15



be a table which contains a student, a student id, and class id. The class id

does not depend on a given student, and so should be in its own table.

• Third Normal Form: When data is in third normal form, this means that

a table “is in second normal form AND no non-key fields depend on a field(s)

that is not the primary key. [31]” Another way to say this is that all transitive

dependencies are removed. A potential example of this is if both a student’s

city and country of origin are included in the table. However, if a student is

from a given city, they will always be also from the country in which that city

is located, so a transitive dependency is present and the table is not in Third

Normal Form. The solution involves creating an additional table and separating

out this information, or not including it at all [32].

• Boyce Codd Normal Form: This form, which is sometimes called Normal

Form 3.5, is a slightly stronger version of Third Normal Form. For Boyce Codd

Normal Form, every determinant must be able to be the primary key. In other

words, if any value in a row can be used to determine another value in a row,

that value must be capable of being the primary key of the row [31].

There are additional normal forms beyond those listed here which become increas-

ingly mathematical and complex. They are not necessary to understand the design

laid out in this thesis.

2.5.2 Entity Relationship Diagrams

An Entity Relationship Diagrams (ERD) is a standard way to show the relation-

ships between tables in a relational database [30]. The specific details of how ERDs

are constructed will not be detailed here, as there is abundant available information

online [33] [34] [28], but in general they are simple to understand. ERDs are used in

16



Section 3 and in Appendix A to help describe the database design.

2.5.3 Structured Query Language

SQL is the standard language used to implement relational databases. SQL is

considered to be a declarative language, meaning that a programmer would enter

commands related to the desired result, rather than explicitly telling the program

what to do (in contrast to most programming languages) [35]. As there are a multitude

of free resources available to learn SQL online [36] [37] [38] only the highlights will be

reviewed here. SQL will be one of the main features of this thesis, so as additional

concepts associated with design and testing will be reviewed as they are introduced.

The details of how SQL is used to build out the databases and test queries are available

in Appendixes E and E.

SQL is considered to be composed of four smaller programming languages: [35]

• Data Definition Language (DDL): All SQL commands which define the

structures of the tables, views, and objects along with other data containers

within the database. Commands such as TABLE fall into this category.

• Data Manipulation Language (DML): The commands which insert and

delete data to and from the data structures generated with DDL.

• Transaction Control Language (TCL): The commands which control the

transactions of DDL and DML commands.

• Data Control Language (DCL): The ability to grant or deny access to the

use of DDL and DML commands. This is associated with administrator control

over a database.

17



2.5.4 SQLite

SQLite is a serverless, zero configuration, self-contained Relational Database Man-

agement System (RDBMS) which implements the SQL. It runs directly after down-

loaded, and does not require installation. SQLite is commonly used in portable

devices, such as smart phones and smart TVs, and is a common fixture in portable

applications. SQLite is limited in its size potential, as the entirety of a database is

recorded within a single file on a computer, and is therefore not a good fit for the

entirety of this big data project. Even so, it is a natural fit for prototyping a database,

and iterating quickly through the trial and error process before the database is ready

to store a library of PNT data [35].

2.5.5 PostgreSQL

PostgreSQL is an open source, object-relational database system which dates back

to 1986 at the University of California at Berkely [39]. PostgreSQL offers a variety of

attractive features which make it a strong candidate for developing a PNT database.

This RDBMS supports arrays and documents (such as JSON), along with 160 of the

179 SQL features. Furthermore, PostgreSQL supports table partitioning, which would

allow for a database to be distributed across multiple computers [40]. PostgreSQL is

also extensible, in that additional data types, functions, and operators can be added

[39]. Given this suite of features, PostgreSQL would be a good solution for many big

data problems, depending on their specific requirements [40].

2.6 Non-Relational Databases

Relational databases have been the standard approach to database design since

their inception. However, the relational database model has not traditionally been

a good fit for many modern big data applications, especially in the case where large

18



amounts of unstructured data are necessary. It is in response to this that NoSQL

databases have been designed and popularized [27].

The term NoSQL refers to the set of database options which do not use the re-

lational model (with SQL as its most common implementation language), as their

primary approach. NoSQL, and the related requirements which lead to the incep-

tion of its various implementations, warrant additional paradigms to help understand

its role in database design. The CAP theorem will be discussed in order to help

understand some of the limitations facing databases when applied to big data [41].

Following this, the Basically Available, Soft state, Eventual consistency (BASE) prop-

erties of NoSQL will be reviewed in order to help understand how NoSQL deals with

the shortcomings of not utilizing the relational model. Finally, the four standard

categories of NoSQL will be reviewed.

2.6.1 The Consistent, Available, or Partition Tolerant Theorem

The CAP theorem was theorized by Eric Brewer in 2000 based on his work at

the University of California, Berkley [42]. This theorem applies to distributed data

systems, and theorizes such systems are fundamentally limited. Figure 4 provides a

visual depiction of the CAP theorem, along with how it relates to various common

database programs. In effect, only two of the following three traits is available for a

distributed database [43].

The explanation of the CAP theorem is as follows: [43] [44]

• Consistent: Writes are atomic and that once an update takes place, that

update is immediately available to all users of the database.

• Availability: The database will always return a value as long as at least one

server is running.

19



Figure 4. The CAP theorem visualized [4]

• Partition Tolerant: The database will continue to function even if server

connection is lost (amongst host computers). It is implied that if a server is

partition tolerant, then it is not distributed.

Determining which of these traits should be compromised is based on the specific

design application. In general, PostgreSQL, which is the database design approach of

choice for this project, is considered to be Consistent and Available but not Partition

Tolerant [43]. In comparison, MongoDB, which was the potential NoSQL solution of

choice, is considered to be Consistent and Partition Tolerant but not always available

[43]. Based on design choices, PostgreSQL is capable of utilizing partitions, whether

by Master/Slave configurations across multiple computers [43] or by separating out

rows between schema in a single database [39].

20



The PNT database design laid out in this thesis recommends a distributed solu-

tion, as the database will grow prohibitively large to be contained on a single com-

puter. Also, ultimate usage of the database will likely discriminate between very large

files such as images and the type of data that would be stored in rows. There will be

rows which contain pointers, called Object Identifier (OID)(s), which lead to other

large files, potentially on other computers. Under such a distributed design approach,

the database would be Partition Tolerant, but may not be Consistent or Available

in every case depending on implementation. For the purposes of this project, every

database tested is not partitioned, as all testing took place on a single test computer.

2.6.2 Basically Available, Soft state, Eventual consistency Properties

The BASE properties are considered to be an alternative to ACID and are essen-

tially an extension of the CAP theorem, noting that these properties are continuous

and not discrete [45]. It is sometimes said that NoSQL databases have the BASE

properties in lieu of SQL’s ACID, meaning that they are Partition Tolerant and

Available but not Consistent [41] [24]. The elements of BASE are as follows: [46]

• Basically Available: Data is mostly available, but due to updates internal

to the database it may take time in some cases to get at the data, or at other

times the request might fail altogether.

• Soft State: The database is consistently updating over time, so that even when

it is not being utilized updates may be occurring.

• Eventual Consistency: Consistency is not guaranteed after every transaction,

but over time the system will return to consistency.

21



2.6.3 Standard Types of Not only SQL Databases

As discussed before, the defining characteristic of NoSQL is that it is not SQL,

or not based exclusively on the relational model. To understand the use cases and

potential benefits of NoSQL, it is prudent to discuss its main categories and their key

characteristics.

2.6.3.1 Key-Value Databases

Key-Value databases are the simplest type of NoSQL database. They are es-

sentially hash tables that only have two values, the primary key and the file that’s

associated with it [41]. Key-Value databases do not care what that file is, it could

be a Binary Large OBject (BLOB) containing any kind of information. It is the

responsible of the application to understand how to utilize this information. One

possible application is a shopping cart on a popular website. The primary key might

be associated with a specific user, and the contents of their shopping cart would be

what they have selected to potentially buy. This system is very fast, but also very

simple, and does not allow for the sophisticated queries available to RDBMS [24].

SimpleDB, which was created by Amazon, is an example of a key-value databse [47].

2.6.3.2 Document Databases

Document databases utilize documents of various types, with JSON being one of

the more common formats. Unlike the RDBMS model, these documents can contain

different information from each other, even if they have some common elements [41].

Depending on the application, these documents may have no structure at all. The

document database collection could be considered analogous to a RDBMS table, and

individual documents could be considered similar to rows [48]. Document databases

often use master/slave setups along with replica sets to increase data availability. In

22



this setup, duplicate nodes vote amongst themselves based on design parameters to

decide which is the master and slaves, and in the case of a master going offline a slave is

elevated to master. The master accepts all transactions and sends them to the slaves,

all to increase availability. Unlike the key-value database, the document database

does allow for queries to interact with the contents of the documents. MongoDB

in particular has its own language which is similar to SQL. Due to the flexibility

of the schema, queries may be difficult if there are substantial differences between

documents [24].

2.6.3.3 Column Family Stores

The general idea of a column family store is that columns are the primary data

structure feature, as opposed to rows. In a column family store, all of the relevant

information will be stored within a column, along with an associated id for each

piece of information which correlates to ids located in other columns, along with a

time stamp. A column family is a set of associated columns, which could almost

be thought of as a table in a RDBMS. One critical difference is that the rows do

not have to have the same columns, or this could be thought of not all columns

applying to every row. In comparison to RDBMS, column family stores do not have

as sophisticated of a query system. They are also not good for integrating data

using mathematical operators [24]. Cassandra, which was created by Facebook, is an

example of a column-oriented database [47].

2.6.3.4 Graph Databases

Graph databases use nodes and the links between the nodes to structure data. The

nodes can be thought of as objects, as the links between them define their relationships

to each other. The schema is flexible, so that the relationship, “likes,” could be used

23



to link a person object to a food object. Note that these links are one-way, so the

person would like the food, but not the other way around. The flexibility of these

schema make adding relationships easier in graph databases than in RDBMS. Query

systems such as Gremlin are available to perform queries on graph based databases

[24].

2.7 Data Warehouses, OLTPs and OLAPs

A data warehouse has been defined as “a subject-oriented, integrated, time-

varying, non-volatile collection of data that is used primarily in organizational de-

cision making [49].” The data warehouse supports the functions of OLAP. When

designing a data warehouse for a big data solution, the data volume, variety, and

velocity, and ambiguity all need to be understood [19]. Typically, data stored in a

data warehouse is considered to be heterogeneous and derived from multiple sources

[50]. Data warehouses are used in conjunction with OLAPs for data analysis.

OLAPs are online tools which are used by businesses for data analysis, and serve

to integrate data from multiple databases to inform business decisions. OLAPs typi-

cally have a low number of users in comparison to OLTPs [51], and do not typically

result in updates to these databases. Typical analytical services provided by OLAPs

are planning, budgeting, forecasting, and analysis. A potential example of a OLAP

system is comparing the number of phone sales between separate months at one loca-

tion, and to the phone sales of another location where that data is stored in a separate

database [52].

OLTP services, in contrast, typically have many more users per day. OLTPs are

ACID compliant and are used to process data, in contrast to analyzing data [52].

OLTPs are typically used for short, repetitive, clerical work that is atomic in nature

[49]. Figure 5 shares additional differences between OLAPs and OLTPs.

24



Figure 5. OLAP vs OLTP [5]

The database in this thesis in general can be thought of as a data warehouse with

an OLAP application. Researchers will use this data to perform analysis and to select

data sets which are of interest to their research. This is not a perfect fit, as SDM

data is normalized, in contrast to the general view of OLAP. Also, even though this

database will be distributed, it is still a single database.

2.8 NewSQL

NewSQL has been defined as “a class of modern relational DBMSs that seek to

provide the same scalable performance of NoSQL for OLTP read-write workloads

while still maintaining ACID guarantees for transactions [53].” Rather than retrofit

existing SQL DBMSs for scalability, which they were not originally designed for, many

NewSQL DBMSs are designed from the bottom up with scalability and cloud com-

puting in mind from the beginning. NewSQL tend to focus more on the Consistency

25



and Partition Tolerant elements of the CAP theorem over Availability [51]. Some

have also referred to NewSQL as “ScalableSQL,” while acknowledging that “the new

thing about the NewSQL vendors is the vendor, not the SQL [54] .”

Citus is one possible open source NewSQL product which extends PostgreSQL

rather than designing a new product from the ground up [51]. Citus acts by dividing

tables horizontally across multiple nodes, so that they appear as separate tables to

an actual user. This allows for horizontal scaling, which is not typically associated

with SQL databases [51]. However this does not fit a strict definition of NewSQL

as defined by Pavlo and Aslett (2016) which requires that they not be built on the

infrastructure of existing SQL systems [53].

As NewSQL is essentially a way to apply the scalability of NoSQL to OLTP

systems, further review is not necessary to help understand the underlying design

decisions of presented in this thesis.

2.9 Multi-Objective Database Queries

MO database queries are queries where the result set balances multiple user-

objectives. MO Retrieval can be defined as a database containing N objects, n char-

acteristics which describe the objects, and m monotonic functions which score the N

objects based on the n characteristics [55]. The goal is to score and return the objects

based on the their collective scores from all the m monotonic functions.

One major categories of MO database queries is the top k query, which is where

users set preferences for query returns. These preferences are not requirements, and

a result set will still be returned in the case that not all preferences are met. The

objects in the database are scored according to these preferences and returned to the

user [55], and only the top k are returned, where k is an arbitrary number defined to

reduce the size of the result set [56] A straight forward example would be a real-estate

26



database which contains information on a set of houses for sale. A user searching a

real-estate database would set the preference for a number of bedrooms and a certain

price range. Even if no houses meet these specific requests, the houses which best fit

this preference would still be returned [57].

An additional major category of MO database queries is the skyline query. Sky-

line queries return the result set of objects, which, given a dominance relationship,

cannot be dominated [58]. Given a data set of multidimensional objects, an object is

considered to dominate another object if it is equal in all respects, and better in at

least one respect [58].

The available literature offers a variety of algorithms to perform these queries and

their variants [59] [60] [55] [56] [57] [58]. While not used to help discriminate between

possible database designs, these algorithms are available to aid in the construction of

more advanced queries once the final database is operational.

2.10 Cloud Computing

Cloud computing represents the availability of resources over what is called a

cloud, which is information or capability that is available online and can be utilized

remotely. A definition provided by the National Institute of Standards and Technol-

ogy (NIST) Cloud Research Team is that “Cloud Computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction [61].”

There are three essential cloud service models which are highlighted in Figure 6:

Cloud Software as a Service (SaaS), Cloud Platform as a Service (PaaS), and Cloud

Infrastructure as a Service (IaaS). A description of each is provided below [6] [61]

27



[62].

• SaaS: A web-based application which gives access to vendor provided software

over a network. Facebook, Gmail, and others are examples. It is not necessary

that the providers software be download in this model.

• PaaS: A cloud base for developing and testing different applications. PaaS

provides a location for user created software to be deployed to the cloud.

• IaaS Computing resources which are provided over a cloud. IaaS provides an

infrastructure over which customers can design and utilize applications. This

infrastructure may include storage, servers, networking hardware, etc.

Many big data applications utilize some kind of cloud service to make themselves

available to their customers [61] [6]. The PNT database operational solution will need

to be deployed in some kind of a cloud service to be useful to researchers. Of the

service models discussed above, SaaS is the best fit, as the database will be accessed

online, where researchers will perform queries with a user interface, which will then

access the database and return the solutions to the users.

2.11 Relevant Research

Following a full literature review, the relevant research on big data as it relates to

PNT data is sparse. Most sources discuss traditional vs modern big data paradigms,

how big data is applicable to major fields such bio-medical and social engineering,

and its benefit to the medical community (amongst other topics) [63] [64] [13] [65]

[25] [48].

One particular area of interest is the Resonant Girder service. Girder is a system

designed for large data and analytics management and is implemented in MongoDB

28



Figure 6. Cloud Computing Services [6]

and is available over Amazon Web Services. Girder works with blobs and their meta-

data, and is very versatile, providing data indexing, provenance and abstraction.

Girder is not a general purpose database, and is not designed to handle tabular data

[66]. While interesting, it is not a good fit for this project, due to the tabular nature

of the SDM.

2.12 Summary

This literature review covered a variety of topics with respect to database design,

especially as it relates to the concept of big data. The topics of data modeling were

discussed, along with the concept of the Five V’s and its variations. It is envisioned

that the data to be recorded in this database will be relatively low on Variety and

Velocity, but relatively high in Volume. This is owing to the expectation that AFIT

29



will host a limited number of test flights per year, but that the test flights will be in

the SDM format and in some cases can be millions of LCM events per flight. This

indicates that use of the database will be relatively frequent, potentially being queried

dozens of times, that the database will be updated only a few times per year, and

that each update will add millions of rows.

Following this, Relational Databases, NoSQL, and NewSQL, along with OLTP,

OLAP, and data warehousing were all reviewed. These topics are related, and in many

cases were designed in to solve different types of problems related to the changing

nature of data over time. Given that the SDM format is standardized and tabular

in nature, it is reasonable to expect that a RDBMS utilizing SQL is a good choice

as a solution. Specifically, PostgreSQL offers a suite of useful capabilities, and is

capable of being distributed across multiple database. The qualities of Consistency

and Partition Tolerance of the CAP theorem will likely be emphasized, but this does

not mean that the database will frequently be unavailable. Due to updates being

relatively infrequent once the database is fully operational, the database manager

can schedule downtime when uploading new data so that the cost to availability is

limited. The service that the database provides falls more into the category of OLAP

than OLTP, due to the primary use case being data analysis and the expectation that

mundane users will not be performing transaction updates against the database. The

specific management details for this database are beyond the scope of this thesis.

Next, the concept of MO database queries was introduced. This is intended to lay

the groundwork for understanding more advanced queries that can be used against

the database designed in this thesis. In Section 4, a paper proposing the combination

of the KP and the SCP as a multi-objective NP-Hard database query is presented.

The proposed algorithms do not incorporate sky-lining or top-k queries, but it would

be possible to utilizing these as researchers utilize the database and more realistic use

30



cases emerge.

Finally, the literature review covered the concept of cloud computing. It is envi-

sioned that the database will be made available on a cloud so that it can be accessed

remotely by researchers. This will most likely be a SaaS, as researchers would be

interested in directly accessing the user interface for the database in order to per-

form queries. The development of this user interface and its subsequent deployment

to a cloud service is beyond the scope of this thesis, but it will be one of the first

implementation details to consider once a database schema is chosen.

31



III. Design

3.1 ION/PLANS Paper Introduction

Section 3 of this thesis summarizes the design decisions and test results of the

database. Sections 3.1-3.6 are composed of a paper submitted to the Institute of

Electrical and Electronics Engineers (IEEE) Institute of Navigation (ION)/Position

Location and Navigation Symposium (PLANS) Conference scheduled for April 23rd to

April 27th. Sections 3.7-3.9 are composed of material removed from the ION/PLANS

paper due to space restrictions. Section 3.7 discusses details of how the test databases

are generated. Section 3.8 presents indexes that are used to speed up queries against

the SDM data type tables, and Section 3.9 presents three figures for the Metadata

Query Test that are summarized in Section 3.5.2.1.

Performing flight tests is a common part of researching complementary PNT sen-

sors and filters for sensor integration. These tests allow for different arrangements of

sensors to be tested, along with their integrating software frameworks. Unfortunately,

tests cost time and money, and require planning for necessary resources to be avail-

able. It would be helpful for researchers if this collected data were readily accessible,

in order to facilitate filter research without needing to run redundant tests.

As an example, the AFIT has approximately one-hundred navigation data logs

(missions) available to help facilitate research. If these data logs were collected into a

database with a standard format, it would provide a common location for researchers

to look for helpful data, and to place new collected data. Other organizations in

the navigation community may also benefit from adapting the database design to

their data sets. The design will allow for testers to record observations from the day

of testing in standardized formats, store details of sensor and vehicle arrangements,

and record data necessary to model the test sensors at a later time. Testing three

32



different database schema against queries of interest will demonstrate that the schema

are useful, and testing them with 1000 log files containing hundreds of million of rows

of navigation data will demonstrate that the schema scale.

We propose a standard schema for sensor and metadata schema for navigation

flight tests and three different designs that organize this data in relational databases.

These schemas allow researchers to distinguish between logs based on the types of data

stored, the sensors and configurations used to record this data, the type of vehicle(s)

affiliated with the data set, the environments that the vehicle(s) operated in, and more

nuanced elements based on the specific recordings of the data itself. These databases

are able to store the sensor data, metadata about the sensors, and affiliated metadata

of interest. This paper details the schema for these database approaches, the queries

and test scripts used to test these approaches, along with testing results and analysis.

The test results are expected, and are explained based on the database structure and

how it relates to the queries used. The paper recommends the best overall performing

database design in Sections 3.5 and 3.6.

3.2 Relevant Background

This paper specifically concerns the design of a database to store PNT data, along

with necessary metadata, using the SDM as the sensor data baseline. Due to AFIT’s

available data logs originally having been recorded as LCM messages, LCM is used

as a database data storage format. These logs can be thought of as a series of LCM

events which contain SDM data. Additional information on the LCM event format

is available here [11] [67]. It is anticipated that SDM messages could be transmitted

in additional standards.

SDM is defined in YAML, a human-readable markup language. To design a

database for this data, it is not necessary to understand the data in detail from

33



a navigation perspective, except that the database needs to be optimized for the

types of queries that a member of this field is interested in. Members of the ANT

center at AFIT provided the basis for the queries outlined in this paper.

The remainder of Section 3.2 will discuss the background of two major database

categories, and present justification for which category was chosen for this project.

Section 3.3 will present design requirements and approaches, Section 3.4 will present

the design of experiments, Section 3.5 will present the testing results and analysis,

and Section 3.6 will summarize this paper and discuss future work.

3.2.1 PNT Database Characteristics

The database characteristics are presented here to keep the high level database

background in context, and to help other organizations tailor their database imple-

mentations based on their specific use case.

1. The database will be updated when flight tests occur (infrequent writes).

2. The database will be used daily (frequent reads).

3. The sensor data will be in the SDM 2.0 format.

4. Sensor data will be wrapped in LCM events.

5. Every update to the database will include over one-million sensor measurements,

and assorted sensor metadata.

6. The database will be updated with approximately one-hundred sensor data logs

after it is first launched. These will be converted from legacy sensor formats

and may have incomplete metadata.

7. The database will be a distributed system when it is first launched.

34



8. The database will be available over a cloud service.

The database designs presented in this paper do not address numbers 7 or 8 in

the list above. These two characteristics will be addressed when choosing a database

program to ensure that they are supported to enable future work.

3.2.2 Relational Databases

The relational database was created by E.F. Codd in 1970 [26]. It was based on

principles of Mathematical Set Theory and Relational Theory to establish relation-

ships between pieces of information [27]. The primary data structure in the relational

database is the table. Every row of the table contains unique information, and mul-

tiple related tables are linked together by the use of keys [28]. Relational databases

are commonly associated with SQL.

A main feature of relational databases is that they are ACID-compliant, defined

as guaranteeing: [27] [29].

• Atomicity: If a transaction is left unfinished, the entire transaction is consid-

ered to have failed and the database is unaffected.

• Consistency: The database is in a valid state both before and after transac-

tions.

• Isolation: Multiple simultaneous transactions do not impact each other’s out-

come.

• Durability: Once data has been updated, this data will endure even in the

case of an inelegant system failure.

Another key characteristic of relational databases is that they are aggregate-

ignorant in nature [24]. This means that, outside of the relationship between tables

35



that are created by primary and foreign keys and brought together by joins, data is

distributed between tables and not inherently connected. In general, the appropri-

ateness of aggregates for database applications is what gave rise to NoSQL. Whether

an aggregate based database approach is appropriate is entirely based on the nature

and intended purpose of the data [24].

3.2.2.1 SQL

SQL is the standard language used to implement relational databases. SQL is

considered to be a declarative language, meaning that a programmer would enter

commands related to the desired result, rather than explicitly telling the program

what to do (in contrast to most programming languages) [35]. SQL will be one of the

main features of this research, so as additional concepts associated with design and

testing will be reviewed as they are introduced.

SQL is composed of four smaller programming languages: [35]

• DDL: SQL commands which define the structures of the tables, views, and

objects along with other data containers within the database.

• DML: The commands which insert and delete data to and from the data struc-

tures generated with DDL.

• TCL: The commands which control the transactions of DDL and DML com-

mands.

• DCL: The ability to grant or deny access to the use of DDL and DML com-

mands. This is associated with administrator control over a database.

36



3.2.2.2 PostgreSQL

PostgreSQL is an open source, object-relational database system which dates back

to 1986 at the University of California at Berkely. PostgreSQL offers a variety of

attractive features which make it a strong candidate for developing a PNT database.

This RDBMS supports arrays and documents (such as JSON), along with 160 of

the 179 SQL features. Furthermore, PostgreSQL supports table partitioning, which

allows for a database to be distributed across multiple computers. [40] Given this

suite of features, PostgreSQL would be a good solution for many big data problems,

depending on their specific requirements [40].

3.2.3 Non-Relational Databases

Relational databases have been the standard approach to database design since

their inception. However, the relational database model has not traditionally been a

good fit for many modern applications, especially in the case where large amounts of

unstructured data are necessary. It is in response to this that NoSQL databases have

been designed and popularized [27]. The term NoSQL refers to the set of database

options which do not use the relational model (with SQL as its most common imple-

mentation language), as their primary approach.

3.2.3.1 The CAP Theorem

The CAP theorem was presented by Eric Brewer in 2000 based on his work at the

University of California, Berkley [42]. This theorem applies to distributed data sys-

tems, and postulates that such systems are fundamentally limited. The explanation

of the CAP theorem is as follows: [43]

• Consistent: Writes are atomic and that once an update takes place, that

update is immediately available to all users of the database.

37



• Available: The database will always return a value as long as at least one

server is running.

• Partition Tolerant: The database will continue to function even if the network

connections among nodes of the distributed data system are interrupted. It is

implied that if a server is partition tolerant, then it is not distributed.

There are four major categories of NoSQL: Key-Value Databases, Document

Databases, Column Family Stores, and Graph Databases. As MongoDB, which is

a Document Database, is the primary NoSQL program considered for this project,

Document Databases will be discussed in detail here.

3.2.3.2 Document Databases

The collection is one of the main features of Document Databases. They could

be considered analogous to a RDBMS table, and individual documents could be

considered similar to rows [48]. Unlike the RDBMS model, these documents are not

required to conform to a consistent tabular structure, even if they have some common

elements [41]. Depending on the application, these documents may have no structure

at all. Document databases often use master/slave setups along with replica sets to

increase data available. In this setup, duplicate nodes vote amongst themselves based

on design parameters to decide which is the master and slaves, and in the case of a

master going offline a slave is elevated to master. The master accepts all transactions

and sends them to the slaves, the document database allows for queries to interact

with the contents of the documents. MongoDB in particular has its own language

which is similar to SQL. Due to the flexibility of the schema, queries may be difficult

if there are substantial differences between documents [24].

38



3.2.4 Database Decision Summary

The author chose between PostgreSQL and MongoDB as the possible SQL and

NoSQL solutions for this database. Both programs are free and open-source, and are

well-known database programs. The database designed in this paper is intended to

store standardized sensor data, which is why a relational database was chosen as a

candidate for a solution. The available sets of sensor data are stored in LCM log files,

and could be stored as documents in a document NoSQL database.

We considered the CAP theorem when choosing between PostgreSQL and Man-

goDB. Despite PostgreSQL being typically characterized as being Consistent and

Partition Tolerant, it is capable of utilizing partitions, whether by Master/Slave con-

figurations across multiple computers [43] or by separating out rows between schema

in a single database [39]. MongoDB is designed to function as a distributed database

[43]. Therefore, both MongoDB and PostgreSQL can be Consistent and Partition

Tolerant at all times, and Available except during database updates. They are both

acceptable for this database solution under the terms of the CAP theorem.

Both PostgreSQL [68] and MongoDB [69] are supported by Amazon Web Service,

and are therefore acceptable as a database solution in terms of cloud service support.

Comparative query speed is the final factor when comparing MongoDB and Post-

greSQL. Typically, MongoDB performed better when data was unstructured, and

PostgreSQL performed better when data was structured [70]. PostgreSQL was also

found to be almost four times as fast in query speed compared to MongoDB in both

single node and distributed systems with respect to standardized data [71]. When

considering the storage of sensor data, PostgreSQL outperformed MongoDB when

query flexibility was necessary and read performance was prioritized [72].

Based on the superior performance of PostgreSQL when data is standardized,

PostgreSQL is chosen as the database program of choice for this project.

39



3.3 Database Designs

3.3.1 Requirements and Approaches

The following is a list of database requirements developed to serve as the founda-

tion for initial PNT database design decisions.

• Database metadata must be easily queried for ease of analysis.

• Database queries must be optimized for speed.

• Database log files must be available for download from the database.

For this paper, three distinct approaches are implemented and tested. They are

referred to as Approach 1, Approach 2, and Approach 3. The only difference between

them is how they store data collected by sensors. Here is a brief description of each

approach:

• Approach 1: One table is created for each SDM data type. When a log is

added to the database, sensor data is deserialized and added directly to the

corresponding SDM table to create symantically equivalent rows. Row ids are

used to record the original order of the sensor data. Indexes are used to optimize

reads of these tables.

• Approach 2: A new table is created for each SDM data type and each data

log. When a log is added to the database, new tables will be created for each

data type present in the new log. Indexes are not necessary, because the rows

with the lowest and highest ids in each SDM table will be the first and last rows

for that table and that mission.

• Approach 3: The same as Approach 1, with the exception that tables are

not included for the IMU (Inertial Measurement Unit) and OpticalCameraImage

40



SDM data types (described in Table 7. The original data log is also included

in the database to be available for download. In the case that queries need

to look at the IMU or OpticalCameraImage data, the original log file will be

downloaded and parsed using Java. In order to create the original files when

necessary, this approach includes a pointer which links to the original data file

[73].

3.3.2 Table and Relationship Descriptions

Each approach has identical relationships for the sensor Metadata and non-sensor

Metadata sections. The database schema that is common to the three approaches

will be discussed first, followed by the schema which is different.

Figure 7 gives a high level of view of how elements in the database are related.

This figure is presented as an ERD, a standard way to show the relationships between

tables in a relational database [30]. Each box represents either a single table, or a set

of tables which share the relationships shown. All three approaches compared in this

paper share this database overview.

As this is a relational database, each table will be related through foreign keys

which hold pointers to primary keys, and each column will have a specific data type.

Each element will be explored in greater detail in subsequent sections, and a complete

schema is available [67].

3.3.2.1 missionDescription

The missionDescription table is the hierarchical starting point of the database.

Each primary key in the missionDescription table describes a data log which was

uploaded into the database. The columns shown in Table 2 are designed to offer

useful high level metadata to distinguish between data logs.

41



missionDescription Table

Non_Sensor Metadata Tables

channelInfo Table

Sensor Metadata Tables

SDM Data Tables

channelOutage Table

Figure 7. Relational PNT Database Overview For All Design Approaches

Table 2. missionDescription Table: Each row represents a sensor data log and associ-
ated metadata

Column Description Data Type
id Primary id for mission INTEGER
startDate UTC UTC start date DATE
endDate UTC UTC end date DATE
organization Organization running test TEXT
missionLocationStart Name of starting location TEXT
missionLocationEnd Name of ending location TEXT

missionLength Seconds
Time difference between
first and last sensor recording

BIGINT

dataFileSize
Size of the data log
file

BIGINT

fileName
Name of the original
data log

TEXT

logFILE

Approach 3 only: An
Object Identifier which
links to the original log file
in the database

OID

42



3.3.2.2 Non-Sensor Metadata

The non-sensor metadata tables refer to data that was not generated by sensors

nor is associated with sensors. These tables do not change based on the design

approach.

3.3.2.3 channelInfo Table

The channelInfo table, shown in Table 4 holds the data for all of the channels

which were used on every mission. A channel is the measured data for a specific

sensor and for a specific mission. A given mission will have one or more channels.

Each channel will only ever be associated with a single mission. Each channel has

a foreign key to the sensorInstallationInfo table, which describes a given sensor

and its related sensor metadata.

3.3.2.4 Sensor Metadata

The sensor metadata section of the database design is focused on the sensorInstallationInfo

table described in Table 5. The sensorInstallationInfo table acts as a map to the

other sensor tables of interest. Depending on the use case, especially when converting

older data sets into this schema, not all sensor information may be known. In other

words, it may be known that an IMU sensor was affiliated with a channel, but the

sensor model and more specific intrinsic information may be unknown.

Table 6 shows the other tables associated with the sensorInstallation table

that are not explicitly shown in Figure ??. These provide additional information

about the sensors and vehicles associated with each channel. They are not fully

comprehensive for all possible sensors or vehicles, but do demonstrate the potential

relationships between intrinsic sensor and vehicle data and their associated missions

and data collects.

43



Table 3. Non Sensor Metadata Tables: These Tables record data that helps distinguish
between data logs but is not directly associated with the sensors

Table Description Data Stored

precipitation
Type of precipitation
and intensity

precipitation
intensity

obscuration camera obscuration obscuration

terrain
Land environment(s)
where test was performed

terrain

skyCover
How much
sky is exposed

skyCover

maneuvers
Maneuvers performed
during flight

maneuver

loopClosures
Locations and times
where an aircraft crossed
its own path

time
latitude
longitude

wayPoints
WayPoints designated
as part of the
test planning process

time
latitude
longitude

altitudeSegments
Recorded segments of
increasing, decreasing,
or unchanging altitude

start altitude
end altitude
approximate duration

unexpectedResults
Any recorded occurrence
during testing

unexpectedResults

Table 4. channelInfo Table: Connects a data log with its SDM data, and with sensor
metadata

Column Description Data Type
id Primary id for channel INTEGER

channelName
Name given channel by
testers in data log

TEXT

channelUse
Channel’s intended use
provided by testers

TEXT

truth
Designates if the channel
recorded truth data

BOOLEAN

missionDescription id
FOREIGN KEY to
missionDescription Table

INTEGER

sensorInstallation id
FOREIGN KEY to
sensorInfo Table

INTEGER

44



Table 5. sensorMetaData Tables: describes the sensors used to collect data on specific
channels

Table Description Data Stored

sensorInstallationInfo
Holds foreign keys to all
sensor metadata

Foreign Keys

sensorModel
Describes sensor Model
and Type associated with
channel.

id
make
manufacturer
type

vehicle
Describes which vehicle
is associated with which
channel

vehicle

extrinsicSensor
-Configuration

Describes the
extrinsic values
to characterize
a sensor configuration

leverArm
orientationX
orientationY
orientationZ

sensorSpecific
Data to identify a
specific sensor

sensorUID

3.3.2.5 Outage Table

The outage table has a many-to-many relationship with the channelInfo table.

This means that an outage may have occurred across multiple channels, and a given

channel may have multiple outages. More details on this table are available [67].

3.3.2.6 SDM Data

The SDM data type is a standardized way to store PNT data. In the six log files

used to test the three database designs, there were eleven distinct SDM data types.

Each of these data types are highlighted in Table 7 along with their description. A

more detailed description of SDM is beyond the scope of this paper, but is available

for review [7] [74]. How this SDM data is stored is the only difference between the

database approaches.

45



Table 6. Other sensorInstallation Tables: These tables record additional sensor infor-
mation.

Table Data Stored

aircraft
aircraftType
tailNumber

groundVehicle
make
model
year

GPS Intrinsic
gps antenna make
gps antenna model
sensorSpecific id

externalAidingClock
make
model
GPS Intrinsic id

system signals tracked
systemTracked
signalTracked
GPS Inrinsic id

supportedAugmentationSystems supportedAugmentationSystem

IMU Intrinsic

timeCorrelated accelBiasSigma
timeCorrelated accelBiasTau
timeCorrelated gyroBiasSigma
timeCorrelated gyroBiasTau
velocityRandomWalk
angularRandomWalk
accelerometerScaleFactorUncertainty
gyroScaleFactorUncertainty

clock Intrinsic

h0
h1
h2
x0Array
p0Array

camera
focalLength
cameraImageCenter
lensDistortion

46



Table 7. SDM Data Types: Describes the standardized types of sensor data recorded
in each data log

SDM Data Types Description

imu

Inertial Measurement Unit (IMU) delta
velocity and delta rotation measurements
from the device’s three axis accelerometers
and three axis gyroscopes.

velocity3d 3-dimensional velocity
velocity1d 1-dimensional velocity
speed Speed as the magnitude of the velocity vector
altitude Height above a specific world frame
geodeticposition3d 3D WGS-84 GeodeticPosition

threeaxismagnetometer
Measures magnetic field as a 3-dimensional
vector

positionvelocityattitude
Includes position, velocity, and rotation,
and uncertainty

opticalcameraimage Image from an optical camera
gnss Raw measurements from a GNSS receiver
gpsephemeris Ephemeris describing GPS satellite locations.
sensorRegistrationAck Message to register sensor
non SDM Message LCM message is not an SDM data type

47



3.4 Design of Experiments

Table 8 describes the test equipment. The databases are stored on the Solid

State Drive (SSD), while the test scripts are run within the Integrated Development

Environment (IDE) which is installed on the laptop hard drive.

3.4.1 Database Population

We used six databases to test the three approaches. Each approach was built once

with 100 data logs, and once with 1000 data logs. These databases are constructed

from six files containing SDM data in the LCM format, which are repeatedly loaded

into the databases using the schema described in Section 3.3. The databases are also

updated with randomized sensor metadata and non-sensor metadata. We expect that

this may cause some variation between how the six data bases perform with respect to

the metadata queries. This is acceptable, because the three approaches have identical

schemas for how this data is stored, and will not be distinguished by this data. The

databases of equivalent sizes (100 data logs and 1000 data logs) have identical data

logs installed in identical order. We expect that differences in performance for the

download related queries and the SDM related queries are due to the differences in

the schemas. Additional details in how this data was uploaded are available [67].

Table 8. Testing Equipment and Software

Manufacturer Lenovo
Model ThinkPad P52 20M9

Processor
Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz

Installed memory 40GB

System type
Windows 10 Pro
64 Bit Processing System

SSD Samsung SSD 970 EVO Plus 2TB
IDE Eclipse Version 2019-09 R (4.13.0)
RDBMS PostgreSQL 11.6

48



3.4.2 Test Designs

Once populated with SDM data and randomized metadata, the six databases were

tested according to three major testing categories. These categories are based on a

survey performed on the AFIT ANT center.

• Download Test: This test either recreates the original LCM log file that was

uploaded to the database for a given mission, or a subset of that log file based

on user inputs. In the case of Approach 1 and Approach 2, each LCM event

is populated with data from a series of queries against the tables and rows

associated with the specific mission that the user desires to download. In the

case of Approach 3, the original file is downloaded directly from the OID stored

in the database, and then a new file which is a subset of the old is generated

based on parsing the original file.

• SDM Query Test: The SDM Query Test queries the SDM data and returns

the set of data logs which meet the requirements of the queries. The SDM

Query Test and the Download Test are used to compare the design approaches.

• Metadata Query Test: Return the set of data logs (also referred to as mis-

sions) which meet certain metadata characteristics. These include: sensor types,

vehicles/platform classes, maneuvers performed, and weather and terrain condi-

tions encountered during the mission. In each case, a random query is generated

based on the possible search elements, and a search then returns the set of mis-

sions which correspond to this query. As each approach has a common schema

for metadata, it is expected that databases of the same size should perform ap-

proximately the same, with some variation due to the randomized data entered

in the metadata categories.

The design approaches are compared not just on how quickly they perform the

49



tests at 100 missions and at 1000 missions, but also on the basis of how well they

scale between these sizes.

3.4.2.1 Download Test

The download test is composed of five smaller tests.

• Primary File Download: This tests how fast original the original LCM file

can be downloaded from the database.

• Trim By Altitude: This tests how fast a subset of the original LCM file start-

ing and ending with the first and last sensor measurements recorded above a user

provided altitude can be downloaded from the database. The GeodeticPosition

3D SDM data type is used to determine this range of measurements.

• Trim By Velocity: This test produces a subset of the original LCM file start-

ing with first event which is greater than a given velocity in x, y or z compo-

nents. The PositionVelocityAttitude SDM data type is used to determine

these events.

• Trim By Time Cut Beginning: This test produces a subset of original LCM

file by trimming a user-specified time off of the beginning of the file. The IMU

data type is used to determine these events.

• Trim By Time Cut Ending: This test produces a subset of the original LCM

file by trimming a user-specified time off of end. The IMU data type is used to

determine these events.

3.4.2.2 SDM Query Test

The SDM Query Test is a set of five smaller tests.

50



• Velocity: This test looks at the PositionVelocityAttitude table and de-

termines if there is any component of speed (x, y, or z) which is above a user-

provided criteria for that mission. For this test, the user-provided criteria is

5 m/s. This query only requires that a single row be found that meets this

requirement for a given data log to be included in solution.

• Latitude Longitude Bounding Box: This test looks at the GeodeticPosition

3D table and checks if the latitude and longitude of any rows fall within specific

boundaries. For this test, the boundaries are (-2, 2) degrees for latitude and (-2,

2) degrees for longitude. These are wide ranges, which will result in the queries

being faster. The query will terminate early once an element is identified for a

mission.

• Platform Dynamics: This test looks at the IMU table, and performs row-

by-row comparisons to calculate the acceleration in g’s encountered by each

mission. If a mission encounters at least 4 g’s it is considered a high-dynamic

mission, 2 g’s is medium dynamic, and less is low dynamic. It is assumed that

constant gravity, 9.81m
s2

, is acting on the accelerometer used to make the IMU

recording, so tihs gravity value is subtracted out of the absolute value of gravity.

Equation 1 is used to define acceleration. For Approach 3, each file will have to

be individually downloaded and parsed to make this determination, as it does

not have an IMU table.

• Time Of Day: This test creates two lists to record which missions start before

noon and which end in the afternoon. This is done by checking the utime of the

first entry in the IMU table and the last utime of the IMU table. The utime is

the number of seconds that the measurement was taken after the epoch, defined

as: January 1, 1970, 00:00:00 GMT [75].

51



• Satellite System: This test checks the GNSS table to determine which missions

using a randomly selected satellite system.

a =

∣∣∣∣∣∣−9.81 +

√(
∆Vx2 −∆Vx1

∆tx2 −∆tx1

)2

+

(
∆Vy2 −∆Vy1

∆ty2 −∆ty1

)2

+

(
∆Vz2 −∆Vz1

∆tz2 −∆tz1

)2

∣∣∣∣∣∣ (1)

3.4.2.3 Metadata Query Test

The Metadata Query Test queries the non-SDM data and returns the set of data

logs which meet the requirements of the queries. All approaches share a common

schema for non-SDM data, so variance between them for this series of tests will

partially depend on differences in the size of the database (100 missions versus 1000

missions) and on the randomness of the entered metadata. The following is a list of

the tests used in the Metadata Query Section.

• Vehicle: This test checks the database for which missions have a random

vehicle.

• Sensor Type: This test checks the database for which missions have a single

random sensor, and a random pair of sensors.

• Weather: This function queries the weather conditions of each mission.

• Sensor Quality: This test returns the imu intrinsic data for all of the mis-

sions which have the imu sensorType.

• Maneuver: This test queries which maneuvers were performed on which mis-

sions.

• Terrain: This test returns the list of which missions have a certain terrain.

52



The Vehicle, Sensor Type, and Sensor Quality subtests are each performed twice,

once using an ordinary SELECT query, and once using CREATE VIEW.

3.4.3 Expected Performance

Each design approach stores the SDM data in different ways which will impact

how they perform on the Download Test and the SDM Query Test. IMU data in

our sample files was recorded at high frequency, with some files having as many as

530,000 measurements, and in some of ours tests represented over 400 million rows.

We expect Approach 1 to have slowdowns associated with identifying which rows are

associated with which missions at this kind of scale. Approach 2 mitigates this by

making different tables for each mission, so that the largest IMU table will be capped

at approximately 530,000. This will result in a small difference between Approach 1

and 2 for the Download test, and a larger difference for the SDM Query test, and will

be more pronounced with the 1000 mission database.

Approach 3 will have much of the same utility as Approach 1 due to having all but

two of the SDM tables. We expect that file downloads will be faster for Approach 3

than for Approaches 1 and 2 due to the original file being available for download. We

also expect that Approach 3 will be slower than Approaches 1 and 2 in the case that

the IMU or OpticalCameraImage data needs to be downloaded and parsed. Some of

the files are very large, and therefore there will be a high overhead for looking at the

IMU data for those files. The larger databases also have a lower concentration of large

vs small files, so this may change the ratio of performance between the approaches.

3.4.4 Test Procedures

Testing is broken out into two independent scripts. The test computer is restarted

prior to running each script, and no other programs are run while the tests are

53



running. In all cases, a connection is opened to the database under test, the test

functions are run against that database eleven times, and then the connection is

closed. As each PostgreSQL database has its own cache we do not expect that the

database testing order impacts testing performance.

During each iteration of the download test, six log files are downloaded consecu-

tively. Three are highlighted in the results section. The sizes of the highlighted files

are 62Mb, 256Mb, and 32Gb. The tests are performed in the order they are listed in

Section 3.4.2.1

The SDM Query Test is performed in the same order listed in Section 3.4.2.2.

The Metadata Query Test is performed in the following order:

1. Vehicle Test View Update

2. Sensor Type Test With View

3. Terrain Single Query Test

4. Weather Test

5. Sensor Quality Test With View

6. Maneuver Test

7. Sensor Type Test With Select

8. Vehicle Test With Select

9. Sensor Quality Test Without Sensor Types View

10. Terrain Combination Query Test

54



3.5 Test Results

3.5.1 Download Test Results Summary

The results from the Download Test are shown in Figures 8, 9, 10, 11, and 12.

These are as predicted in Section 3.4.3, with Approach 2 outperforming Approach

1 in most cases. In the cases where Approach 2 did not outperform Approach 1,

they were milliseconds apart. The difference in performance between Approach 2 and

Approach 1 is more pronounced with the small and medium file sizes than with the

larger database size. This difference is due to the increased time for Approach 1 to

identify the first and last SDM messages of each table when the tables become larger.

For the 32GB file, this difference is less significant (955s for Approach 1 vs 952s for

Approach 2), due to most of the time to download the file coming from downloading

the OpticalCameraImage SDM messages.

Approach 3 is also much faster for most of the tests, which is as predicted (1.3s

for the 62Mb File with the smaller database vs 8 or 7 seconds for the other two

approaches). There is an interesting corner case for Trim By Altitude and Trim By

Time Cut Ending for the 32GB file where Approach 3 is slower than the other two

approaches. This is due to Approach 3 downloading the file in its entirety and then

parsing it, whereas Approaches 1 and 2 identified the specific events necessary and

downloaded only those from their respective databases. The tests trimmed most of

the SDM events, and what remained was faster to download for Approaches 1 and 2.

Approach 3 is the best performing schema for the Download Test. Approaches 1

and 2 have acceptable times, as they completed the downloads in under one minute

in all cases for the 256 Mb data log, and in under 16 minutes for the 32Gb data log.

They are about equal in performance, with Approach 2 being a few seconds faster in

most cases for the 1000 data log databases.

55



1

10

100

1000

62 Mb File 

Approach1

62 Mb File 

Approach2

62 Mb File 

Approach3

256 Mb File 

Approach1

256 Mb File 

Approach2

256 Mb File 

Approach3

32 Gb File 

Approach1

32 Gb File 

Approach2

32 Gb File 

Approach3

T
im

e
(s

)

Primary File Download Test

100 Missions Average 1000 Missions Average

Figure 8. Primary File Download Test: Lower times indicate a better performance.
Each test was performed 11 times for each approach and database.

1

10

100

1000

62 Mb File

Approach1

62 Mb File

Approach2

62 Mb File

Approach3

256 Mb File

Approach1

256 Mb File

Approach2

256 Mb File

Approach3

32 Gb File

Approach1

32 Gb File

Approach2

32 Gb File

Approach3

T
im

e
(s

)

Trim By Altitude

100 Missions Average 1000 Missions Average

Figure 9. Trim By Altitude Test: Lower times indicate a better performance. Each
test was performed 11 times for each approach and database.

1

10

100

1000

62 Mb File

Approach1

62 Mb File

Approach2

62 Mb File

Approach3

256 Mb File

Approach1

256 Mb File

Approach2

256 Mb File

Approach3

32 Gb File

Approach1

32 Gb File

Approach2

32 Gb File

Approach3

T
im

e
(s

)

Trim By Velocity

100 Missions Average 1000 Missions Average

Figure 10. Trim By Velocity Test: Lower times indicate a better performance. Each
test was performed 11 times for each approach and database.

56



1

10

100

1000

62 Mb File

Approach1

62 Mb File

Approach2

62 Mb File

Approach3

256 Mb File

Approach1

256 Mb File

Approach2

256 Mb File

Approach3

32 Gb File

Approach1

32 Gb File

Approach2

32 Gb File

Approach3

T
im

e
(s

)

Trim By Time Cut Beginning

100 Missions Average 1000 Missions Average

Figure 11. Trim By Time Cut Beginning Test: Lower times indicate a better perfor-
mance. Each test was performed 11 times for each approach and database.

1

10

100

1000

62 Mb File 

Approach1

62 Mb File 

Approach2

62 Mb File 

Approach3

256 Mb File 

Approach1

256 Mb File 

Approach2

256 Mb File 

Approach3

32 Gb File 

Approach1

32 Gb File 

Approach2

32 Gb File 

Approach3

T
im

e
(s

)

Trim By Time Cut Ending 

100 Missions Average 1000 Missions Average

Figure 12. Trim By Time Cut Ending Test: Lower times indicate a better performance.
Each test was performed 11 times for each approach and database.

3.5.2 SDM Query Test Results Summary

Figures 13, 14, 15, 16, and 17 show the results from the SDM Query. Once again,

these results are as predicted from Section 3.4.3. Approach 1 is slower when there

are more data logs due to the SDM tables becoming bigger and the additional time

to identify which rows are associated with which mission. Approach 2 is on average

faster than Approaches 1 and 3 in all cases, and this becomes more pronounced as

the databases become larger due to Approach 2 not needing to compute which rows

are associated with which mission. Approach 3 performs similarly to Approach 1 for

tests that do not require the IMU table, and performs orders of magnitude worse for

ones that do.

Overall, Approach 2 is the fastest schema for the SDM Query Test. Approach 3 is

the slowest, and in the case of queries that require the IMU table, at least by a factor

57



of four. When the queries are relatively simple, like with the Time of Day Test, this

becomes even more pronounced.

3.5.2.1 Metadata Query Test Results Summary

Figure 18 shows the results of the Sensor Quality Test. The figures showing the

results of the Terrain Test, Maneuver Test, and Weather Test are available here [67].

All Metadata Query tests, with the exception of the Sensor Quality Test, took place

in under 200ms for both databases. This is an indication that these database designs

will scale effectively even when 1000 independent data logs are loaded.

These tests are not meant to distinguish between the database approaches, as each

database had identical schema for this data. However, due to the randomized nature

of the entered data, we expected that there should be some difference in performance

between the databases of the same size. This difference is displayed in Figure 18.

The Sensor Quality test showed a spike in performance from 100 to 1000 missions,

going from 125ms at 100 missions to 13s at 1000 missions for Approach 2. There are

two likely reasons for this. The first is that is that there are 18 randomly generated

numbers that are checked against the intrinsic Inertial Measurement Unit (IMU) data

to verify if a given IMU is to be returned as part of the solution set. The second is that

the query performs a JOIN with the sensorTypes View and the appropriate intrinsic

IMU data. This will also take additional time as the database becomes larger.

Overall, the Metadata Query Test results demonstrate that the database schema

perform all queries, with one exception, in less than half a second. The Sensor Quality

Test takes about about 15 seconds in the worst case.

58



Figure 13. Platform Dynamics Test: Queries the IMU data type to check for High (4
g’s) Medium (Between 4 and 2 g’s) or Low (Less than 2 g’s) dynamics. Each test was
performed 11 times for each approach and database

Figure 14. Time Of Day Test: Queries the IMU data type to check for if the data log
began in the morning, or ended in the afternoon, Eastern Standard Time. Each test
was performed 11 times for each approach and database

Figure 15. Velocity Test: Queries the PositionVelocityAttitude table to see if a data log
exceeded 5m/s in any direction. Each test was performed 11 times for each approach
and database

59



Figure 16. Satellite Type Test: Queries the GNSS table to see if a randomly chosen satel-
lite constellation provided a measurement for that data log. Each test was performed
11 times for each approach and database

Figure 17. Latitude Longitude Bounding Test: Checks the GeodeticPosition 3D table
to see if any measurement in the data log took place within a certain Latitude and
Longitude. Each test was performed 11 times for each approach and database

60



110

115

120

125

130

135

140

145

150

Approach1

100 Missions

Average

Approach2

100 Missions

Average

Approach3

100 Missions

Average

T
im

e
 (

m
s)

SensorQualityTest 100 Missions

SensorQualityTest using temporary table

SensorQualityTest using sensorTypes view

12000

12500

13000

13500

14000

14500

15000

15500

Approach1

1000

Missions

Average

Approach2

1000

Missions

Average

Approach3

1000

Missions

Average

T
im

e
(m

s)

SensorQualityTest 1000 Missions

SensorQualityTest using temporary table

SensorQualityTest using sensorTypes view

Figure 18. Sensor Quality Test Results: Runs queries which identify which data logs
which used a IMU sensor have specified intrinsic values. Each test was performed 11
times for each approach and database

3.6 Conclusion

We propose three relational database schemas to store standardized navigation

data in the SDM format, along with their associated metadata. Approach 1 places

all sensor data of a specific type into a single table. Approach 2 places sensor data

of a specific type into different tables for each data log. Approach 3 is the same as

Approach 1, except that it includes the original file for download and does not include

tables for the IMU or OpticalCameraImage data types. In the case that these tables

are necessary for queries, they are downloaded and parsed. Two databases are used

to test each schema, one with 100 data logs and one with 1000 data logs, for a total of

six databases. In all cases, the three design approaches under consideration returned

correct answers for the known class of queries proposed by the ANT center faculty.

Approach 2 performs slightly better than Approach 1 when downloading the orig-

inal log file or a subset. With the exception of two test cases, Approach 3 has the

fastest download speed, often by a factor of 10. There is no discernible difference in

speed between the 100 and 1000 mission database for Approach 2 and Approach 3.

61



While Approach 3 has the best performance for download a file, Approach 1 and 2

have acceptable performances, with Approach 2 being faster than Approach 1 by a

few seconds across most test cases.

There are differences in performance for the tests where the SDM sensor data

tables are queried. When the IMU table is queried, both Approaches 1 and 2 out-

perform Approach 3. Approach 3 completes this test for 1000 missions in an hour

and forty minutes, whereas Approaches 2 and 1 complete it in about 25 minutes and

36 minutes, respectively. Approach 2 outperforms Approaches 1 and 3 for all other

SDM tests, with Approach 3 performing about as well as Approach 1 for the data

tests where they share the same schema.

The tests for the non-SDM database tables (Metadata Query Test) demonstrate

that the proposed schema scales well from 100 data logs to 1000 data logs, completing

all but one query in under half a second even for the larger databases, and that

various databases containing randomized data perform similarly well using the same

underlying schema.

These results demonstrate that Approach 2 has the best performance overall for

databases with 100 and 1000 SDM data logs. With Approach 1, some of the SDM

tables become very large at 1000 data logs, such as the IMU table which exceeds 400

million rows. Even though Approach 1 uses indexes, it still loses minutes when these

large tables need to be queried for each data log. Approach 3 has the best performance

when downloading files in most cases, but Approaches 1 and 2 still have acceptable

times that are under a minute for medium and small files. Approach 3, due to the

need to download and parse all files when the data type is unavailable, performed

100’s or 1000’s of times slow in those cases. This performance is prohibitively poor

for Approach 3.

We therefore recommend Approach 2 as the database schema moving forward.

62



Its schema scales, and will make implementation on a distributed database easier

due to the ability to place different tables on different nodes. Users will be able to

choose which subset of missions to run queries against, and will be able to identify

the missions of interest for their specific research interests. Splitting tables will not

be necessary, as would eventually be the case with Approach 1. If space allowed, it

may be advantageous to make the original data logs available for download directly

from the database. In this scenario, the performance for Approach 2 and Approach

3 would be captured in a single database schema.

The next step is implement the database with real data logs and tester-recorded

metadata. This includes designing the distributed aspect of the database, and getting

it live on a cloud server to help with research.

3.7 Database Population

This section was removed from the paper entitled “Relational Database for PNT

Data” due to space restrictions. It presents the methodology used for populating the

test databases.

3.7.1 Log File Ordering

The six databases are populated with SDM data from six LCM files. Files one

through five are parsed and read into the databases repeatedly and consecutively, and

File six is uploaded in place of File one once every 250 missions. The breakdown of

these files for each database is shown in Table 9.

Table 10 shows the respective size of each file, and the total number of LCM events

per file. File 6 is the only file to include OpticalCameraImage messages, which is the

reason that it is many orders of magnitude larger than the other files. Due to space

restrictions, File 6 is repeated less often in the databases.

63



Table 9. Database File Breakdown

File Insertion Order Per 100 Per 1000
1 %5 = 0 19 196
2 %5 = 1 20 200
3 %5 = 2 20 200
4 %5 = 3 20 200
5 %5 = 4 20 200
6 %250 = 0 1 4

Table 10. High Level Message Breakdown

File
File Size
(Mb)

Total Number
LCM Messages

Messages per
Database:100

Messages per
Database:1000

1 62.816 242,660 4,610,540 47,561,360
2 170.336 622,913 12,458,260 124,582,600
3 256.002 1,050,467 21,009,340 210,093,400
4 256.001 1,022,437 20,448,740 204,487,400
5 229.928 827,900 16,558,000 165,580,000
6 32,764.69 599,952 599,952 2,399,808

Total Messages: 75,684,832 754,704,568

Table 11 shows the number of messages for each data type that were recorded

in each database. For the database with 1000 missions, Approach 1 has 426,795,808

rows in the imu table, whereas Approach 2 has 1000 individual tables named imu 1,

imu 2, ... imu 1000, each with a number of rows corresponding to the specific file

used to generated that table. This naming schema applies to all data types.

3.7.2 Non-Sensor Metadata Insertion Algorithms

The metadata in the databases can be broken into two large categories, random-

ized metadata not affiliated with the sensors and randomized metadata affiliated with

the sensors. All three approaches shared a common metadata schema. Each sub-type

of: terrain, obscuration, precipitation, skyCover, maneuvers, loopClosures,

and Waypoints, has a 20% probability of being updated.

64



Table 11. SDM Message Breakout By Type

Message Type
Messages per
Database: 100

Messages per
Database: 1000

altitude 3,992,520 39,925,200
geodeticposition3d 2,995,123 30,026,212
gnss 214,650 2,137,200
gpsephemeris 139,340 1,393,400
imu 42,865,882 426,795,808
opticalcameraimage 49,160 196,640
positionvelocityattitude 8,013,503 79,989,932
speed 3,009,100 30,091,000
threeaxismagnetometer 7,846,420 78,464,200
velocity1d 3,992,520 39,925,200
velocity3d 2,565,343 25,747,012
sensorregistrationack 1,112 11,168
non SDM message 159 1,596
Total 75,684,832 754,704,568

3.7.3 insertChannelInformation Function

The insertChannelInformation function is called every time a new channel

is identified in an LCM file. The channelInfo table holds a foreign key to the

sensorInstallationInfo table, so a new sensor is randomly created and entered

into the relevant sensorInstallationInfo table. There is a 1/3 probability that a

sensor will be generated for a given channel. In the case that a sensor is not created

the sensorInstallation id is left null. The list below describes the process that

the channelInfo function follows.

1. 10% probability that a channel is randomly set as truth data

2. perform insertSensorInstallation Function.

3. update channelInfo based on missionDescription id, sensorInstallation id,

channelName, deviceId, and truth.

65



3.7.4 insertRandomSensorMetadata

The list below walks through the process of populating the sensorMetadata ta-

bles and the sensorInstallation table. The sensorInstallationInfo table holds

foreign keys to their other relevant sensor tables, meaning that appropriate rows need

to either be identified or updated in these other tables so that their keys can be used

to identify or update the appropriate row in the sensorInstallationInfo table.

Once this update is either complete or not performed due to no sensor model being

assigned to this channel, this key or a null value will be returned to the channelInfo

table.

1. insertRandomSensorModel function

2. insertRandomExtrinsicSensorMetadata function

3. insertSensorUID function

4. insertVehicle function

5. Update sensorInstallationInfo table

6. return sensorInstallationInfo id

These functions are discussed below. The entered values are intended to be in the

appropriate format and orders of magnitude expected of actual recorded missions.

• insertRandomSensorModel: For the purposes of this project, there are

eight designated sensor types: BAROMETER, MAGNETOMETER, GNSS, GPS, IMU, IMS,

CLOCK, and CAMERA. There is a 1/24 probability that one of these types will be

assigned to a given channel (with an 8/24 probability that a channel will be

assigned a type at all).

66



• sensorModelId: Takes input with the format: manufacturer, model, and

sensorType, and checks to see if this row already exists in the sensorModelId

table. If not, the function then updates the table with the new row.

• insertRandomExtrinsicSensorMetadata: This function randomly creates

numbers between 0 and 2 for the leverArm, orientationX, orientationY, and

orientationZ matrix columns in the extrinsicSensorConfiguration table.

• insertSensorUID: This function updates the sensoruid column of the sensorSpecific

table. The letters XYZ are combined with a random number from 0 to 99999 to

update the table. Once this update is complete, the insertSensorIntrinsic

table is updated using the new UID as the primary key. If this number already

exists, the UID is returned to be included in the sensorInstallationInfo

table.

• insertSensorIntrinsic: This function updates the IMU Intrinsic table, the

clock Intrinsic table, the camera table, and the GPS Intrinsic table. In

an actual application, only one of these tables would be updated in association

with the specific sensor model and type used to populate the sensorInstallationInfo

table (i.e. an IMU would have IMU Intrinsic data).

• insertVehicle: This function updates the vehicle associated with the specific

channel of interest. For the purposes of this experiment, a different vehicle

may be assigned to each channel, even though in practice the channels in each

LCM log file were each collected by individual vehicles. The vehicle table holds

foreign keys to the aircraft and groundVehicle tables. More may be added

based on how data is collected. The vehicle table recognizes eight types of

vehicles: GROUND VEHICLE, PEDESTRIAN, MISSILE, UAV, SUB, and AIRCRAFT.

67



3.7.5 insertSDMData

The specific details of inserting SDM data into a database vary by the data type.

There are thirteen individual functions, one for each SDM data type and two addi-

tional for sensorRegistrationAck and for non sdm data. In general, data is read

out of each LCM event and then written directly into the database using a prepared

statement.

1. identify message type

2. identify message channel name

3. insert new channel information into channelInfo

4. insert message data in SDM table

Most of the work around Approach 1 and Approach 2 download test is centered on

the GenericFetchEventBundle class. This class is initialized according to the specific

SDM data type and the table name. If the database of interest is based on Approach

2, the table name will have the format sdmDataType missionDescription id. For

example, if the data type is IMU and the mission id is 737, the table name will be

imu 737. The main purpose for the GenericFetchEventBundle class is to provide a

convenient wrapper for a series of SQL queries which allow the LCM events of the

original log file to be created. This allows them to be written back to a log file,

creating the original log file or a subset. Thus the following query is an example for

the imu table, the g.delta v and g.delta theta data types would be replaced with

those of the appropriate types for the given table of interest.

1 SELECT
2 c.channelname ,
3 g.utime ,
4 g.eventNumber ,
5 c.deviceid ,
6 g.timestamp_arrival_sec ,

68



7 g.timestamp_arrival_nsec ,
8 g.timestamp_valid_sec ,
9 g.timestamp_valid_nsec ,

10 g.seqnumber ,
11 g.delta_v ,
12 g.delta_theta ,
13 FROM
14 "channelInfo" c
15 INNER JOIN
16 imu g
17 ON g.channel_id = c.id
18 WHERE
19 g.id BETWEEN (next_sdm_id) AND
20 (
21 next_sdm_id + bundle_size - 1
22 )
23 ;

Note that the SENSOR REGISTRATION ACK and NON SDM MESSAGE have different

headers from the other SDM data types due to different available information in

the original LCM events. For these, the header becomes:

1 SELECT
2 c.channelname ,
3 g.utime ,
4 g.eventNumber

and excludes the additional information leading up to the table-specific columns

The GenericFetchEventBundle class is ultimately designed to return bundles of

completed events of the appropriate data type. The bundle size is set to 100,000

for all data types except for OpticalCameraImage, which is set to 1 (so as to avoid

an OutOfMemoryError Exception). When this class is created as an object, a list

of Strings called columnNames is initialized with the appropriate SDM data types

according to the table columns of interest. The setEventsBundle Function informs

the GenericFetchEventBundle of the missionDescription id and bundle size,

passes in the database Connection, and further defines the specific channels and

minimum and maximum ids of the table of interest. Table 12 shows a list of attributes

of the GenericFetchEventBundle class and Table 13 shows the operations for this

class.

69



Table 12. GenericFetchEventBundle Attribute Table

Attribute Data Type Description

bundle size int
The number of events
returned with one
execution of getEventBundle

next sdm id int id of next SDM event in table

last sdm id int
id of last SDM event to be
returned in table

eventNumber min int
The number of the minimum
eventNumber to be called

eventNumber max int
The number of the maximum
eventNumber to be called

approach int Approach 1, 2, or 3
tableName String The table name to be called

channel ids List<Integer>
The channel ids affiliated with
mission. Used for Approach 1

channel id in String
A reusable portion of SQL
Query

columnNames List<String>
A list of column Names
used for SDM specific data

message sdm message
Defines the message type of
the table to be called

stmt Statement

A statement created from the
database connection which
is closed when the class is
deleted

nextRowValid boolean

A boolean which is true when
the database has additional
events, and false when there
are no additional events

header String
A reusable portion of SQL
Query

innerjoin String
A reusable portion of SQL
Query

closer String
A reusable portion of SQL
Query

70



Table 13. GenericFetchEventBundle Operations Table

Operations
Return
Type

Description

setEventsBundle void
Passes in specific information
necessary to use class

trimByMinMax

Events
void

Used in conjunction with
Trim by Altitude, Trim by Velocity
and the Trim by Time test
functions to trim the ids
of the events to be returned

getEventsBundle
List
<Event>

Returns a list of events for that
data type and table.
This function demonstrates the
main purpose of this class.

writeLogEvent Event

This function is used internally
to discriminate between
sdm message types and construct
lcm events. The getEventsBundle

class will call this function
multiple times in order to
construct a list of events to return

nextRowValid boolean

This function returns a boolean
which indicates whether this
specific object has any additional
valid rows

71



3.8 Indexes

This section was removed from the paper entitled “Relational Database for PNT

Data” due to space restrictions.

Due to early experimentation showing significant slow downs for queries on the

SDM tables for Approaches 1 and 3, indexes are added for each SDM table. These

indexes are on the channel id, eventnumber, and the table id. Each are discussed

in Table 14. Including these indexes allows for a convenient sequence of SQL queries

which allows an automated program to readily identify the beginning and ending ids

for a given SDM table which correspond to a specific mission. For Approach 1 and

Approach 2, the ids are ever increasing, however the eventNumbers always start at a

low number and end at a high number (corresponding to whatever the first and last

eventNumbers are for that data type and mission in the original LCM log file).

The results listed in section 4 include these indexes. An example of the SQL DDL

to create one of these indexes for the imu table is as follows:

1 CREATE INDEX imu_eventnumber_id
2 ON imu (channel_id , eventnumber , id);
3 ntNumber

The following sequence of SQL demonstrates the query series utilized to determine

the beginning and ending ids of an SDM table for a specific mission. For Approach

2 the first and last ids of the table and mission of interest are just identified directly,

as they only correspond to that specific mission.

1 SELECT DISTINCT
2 (id)
3 FROM
4 "channelInfo"
5 WHERE
6 missionDescription_id = ? ;
7 SELECT
8 min_max (eventNumber)
9 FROM

10 "tableName"
11 WHERE
12 channel_id IN
13 (
14 ?,

72



Table 14. SDM Common Columns Subset

Column Name Column Description

id

An integer description of a unique
row in an sdm table. This integer
autoincrements as each additional
row is added

eventNumber
A number which describes message
order in the original LCM log file

channel id

A number which describes which channel
an sdm message was transmitted on. This
number allows messages to be linked
back to the original missionDescription id

utime
The utime when the message was transmitted
in microseconds. This number will be used
to determine timing in queries.

15 ?,
16 ...,
17 ?
18 )
19 ;
20 SELECT
21 min_max(id)
22 FROM
23 "tableName"
24 WHERE
25 channel_id IN
26 (
27 ?,
28 ?,
29 ...,
30 ?
31 )
32 AND
33 (
34 eventNumber = ?
35 )
36 ;

3.9 Removed Metadata Query Test Figures

Figures 19, 20 and 21 were removed from the ION/PLANS paper due to space

restrictions.

73



0

0.2

0.4

0.6

0.8

1

1.2

1.4

Approach1

100 Missions

Average

Approach1

1000 Missions

Average

Approach2

100 Missions

Average

Approach2

1000 Missions

Average

Approach3

100 Missions

Average

Approach3

1000 Missions

Average

T
im

e
(m

s)

Non-Sensor Metadata Queries

Terrain query Terrain combination query skyCover query

obscuration query precipitation query maneuver query

Figure 19. Non-Sensor Metadata Queries Result: Runs queries concerning Weather,
Terrain, and Maneuvers. Each test was performed 11 times for each approach and
database

0

20

40

60

80

100

120

Approach1

100 Missions

Average

Approach1

1000 Missions

Average

Approach2

100 Missions

Average

Approach2

1000 Missions

Average

Approach3

100 Missions

Average

Approach3

1000 Missions

Average

T
im

e
(m

s)

Vehicle Queries

Vehicle View Update Vehicle Query Vehicle Query with select statement

Figure 20. Vehicle Queries Results: Runs various Vehicle related queries. Each test
was performed 11 times for each approach and database

74



0

20

40

60

80

100

120

140

160

Approach1 100

Missions Average

Approach1 1000

Missions Average

Approach2 100

Missions Average

Approach2 1000

Missions Average

Approach3 100

Missions Average

Approach3 1000

Missions Average

T
im

e
 (

m
s)

Sensor Type Queries

sensorType View update Type query using sensorTypes View

Type combination query using sensorTypesView Type Query using SELECT statement

Type combination query defining a temporary table

Figure 21. Sensor Type Test Results: Runs various Sensor Type related queries, as well
as queries looking for random combinations of two sensor. Each test was performed 11
times for each approach and database

75



IV. Experimental Scenarios

4.1 Journal Of Evolutionary Computation Paper

This section consists of a paper which will be submitted to the Journal of Evolu-

tionary Computation entitled ”Multi-Objective Database Queries in Combined Knap-

sack and Set Covering Problem Domains.” This paper addresses the combined MO

KP/SCP and two stochastic algorithms which return solutions to complex queries for

the database discussed in Section 3.

Consider a relational database that is designed to organize PNT metadata specif-

ically related to test flights which were conducted by the AFIT. AFIT has approx-

imately 100 data logs (also called missions) which will be stored in this relational

database. This database requires a number of queries from parties interested in using

this data for research.

Two relevant well-known NP-Complete problems are the 0/1 KP and the 0/1 SCP

[76] [77] [78] [79]. The terms 0 and 1 indicate that, given a Problem Domain (PD)

of objects, each object is either included in a specific solution (1), or excluded (0).

An answer in this PD is one that meets all of the problem constraints, and a global

optimum is one that has a better objective function then all other solutions in the

search space [80]. The specific details of the KP PD, the SCP PD, and the combined

KP/SCP PD is provided in Section 4.4.

Consider the following brief description of the combined MO KP/SCP when con-

verted to a database query: “Return the set of data logs where at least one data log

meets n different criteria, and for which at least one each of x category are utilized

with the summation of z number totaling no more than c number, and maximizing

k.” A specific implementation of this query may be: Return the set of data logs

where a given set of sensor types and terrain types are represented across the set

76



of returned data logs, and where the number of sensor readings recorded over 1000

meters in altitude across all data logs is maximized, and the total summed time of

all data logs does not exceed 2 hours.

To the best knowledge of computer scientists today, problems which are NP-

Complete do not have available polynomial time algorithms [78], and for that reason

stochastic-algorithms and metaheuristics are used to find approximate answers [80]

[81]. This paper proposes a Genetic Algorithm (GA) stochastic population based

search algorithm and a Hill Climber (HC) stochastic local search algorithm to return

answers to this problem domain. Both are based on a GA developed by Beasley and

Chu (1996) [82], and utilize modified code based on work by Cobonkerr(2020) [83].

These algorithms are tested against two relational databases, one with 100 navi-

gation data logs, and one with 1000 data logs. These databases are populated with

six files of repeated sensor data in the SDM format, which is discussed in Section 4.3,

and randomly entered metadata. They are implemented in Java, and use SQL queries

to populate Java data structures, which then run the algorithms and return answers

to the NP-Hard combined MO KP/SCP. In application, this Java program functions

as part of the User Interface, and would interact with the underlying database on

behalf of the researcher. The benefit is that the queries are simple, but allow for

more complex results to be returned. The queries in the next section could modified

at will. As long as the input to the MO KP/SCP implementations fits the format

defined in this paper, it allows for any sub-queries to populate the relevant problem

data structures.

The applications of NP-Hard combinatorial problems is well recognized in the

literature [80] [84] [85] [86]. Rosendo and Pozo (2010) [87] discuss the application of

particle swarm optimization with respect to Database vertical partitioning. Vertical

partitioning optimization is critical with regards to speeding up user queries that may

77



be spread across multiple fragments of a database.

A preliminary literature review did not discover other studies with comparable

results to those laid out here, nor did it uncover the combination of the KP and SCP.

However, Balke and Güntzer (2004) wrote an article which highlighted optimization

and constraint concerns for MO queries of databases which are similar to those pro-

posed by this paper. They specify cite real estate queries and web information services

as examples of databases where customers may have competing priorities that require

optimization [55]. Specific comparative examples of these conflicting examples will

come along as this PNT database is used by researchers with varying interests. This

paper as it is written describes one possible application of a MO query.

Section 4.2 discusses the background of the relational databases used to test the

stochastic algorithms. Section 4.3 discusses the PD of the SCP and the KP, and

the combined KP/SCP. Section 4.4 develops the pseudo code for the GA and the

HC. Section 4.5 presents the test experiment and section 4.6 provides the experiment

results. Section 4.7 is the paper conclusion.

4.2 Background and Related Queries

This section covers some specific details of the database design in order to motivate

how the SCP and KP can combine to help facilitate database queries. This database

is implemented in PostgreSQL, which is an open source, object-relational database

system which dates back to 1986 at the University of California at Berkely. This

RDBMS supports arrays and documents (such as JSON), is also extensible, in that

additional data types, functions, and operators can be added [39].

Three potential PostgreSQL relational database designs are compared to store

PNT data [67]. These designs offer identical ways to store sensor metadata and non-

sensor metadata, and differing ways to store sensor data which is recorded in the

78



SDM format. A database overview from [67] is shown in Figure 22:

The missionDescription table in the overview above depicts the various missions

stored in the database. In other words, a row in the missionDescription table,

along with all of the other data related to that row in the children tables, together

comprise all of the available information for that mission. The Sensor Metadata

table is coupled with the channelInfo table so that specific sensors can be affiliated

with channels for a given mission, and the SDM Data tables are comprised of the data

collected by those sensors. For the chosen approach, a new table is created for each

SDM data type and for each mission. Kauffman et al. (2017, 2020) provide additional

background on the data available in Table 15. (Mochocki, 2020) goes into additional

detail on the tests which discriminated between these three solutions, and provides

rational for the solution chosen to meet AFIT’s data storage needs [7] [74].

For each approach, two databases were created, one with 100 missions and one

with 1000 missions, in order to help show how these approaches scale as they become

larger. The missions are composed of six log files in the LCM format, which are

uploaded repeatedly into the databases, along with randomized sensor and non-sensor

metadata which are associated with each data log.

In order to populate the data structures discussed later in this article, a series of

SQL queries are used in conjunction with the PNT database. The following queries

are written for the chosen database design and are discussed here, along with their

use in populating data for this algorithm:

1 SELECT
2 MAX (id)
3 FROM
4 missionDescription;

Purpose: Every mission is a column which may be part of a returned solution. This

query identifies the number of missions in the database and updates the total number

of columns in the problem based on this number

1 SELECT

79



Table 15. SDM Data Types: Describes the standardized types of sensor data recorded
in each data log. A new table is created for each data type and for each data log. The
IMU table, for instance, would have 430 Million rows for the 1000 mission database if
they were not split between tables

SDM Data Types Description

IMU

Inertial Measurement Unit (IMU) delta velocity
and delta rotation measurements from the device’s
three axis accelerometers and three axis gyroscopes.

Velocity (3D) 3-dimensional velocity
Velocity (1D) 1-dimensional velocity
Speed Speed as the magnitude of the velocity vector
Altitude Height above the WGS-84 ellipsoid
GeodeticPosition (3D) 3D WGS-84 GeodeticPosition
ThreeAxisMagnetometer Measures magnetic field as a 3-dimensional vector

PositionVelocityAttitude Includes position, velocity, rotation, and uncertainty
OpticalCameraImage Image from an optical camera

GNSS

Raw measurements from a
Global Navigation Satellite System (GNSS)
receiver

GPSEphemeris Ephemeris describing GPS satellite locations.
SensorRegistrationAck Message to register sensor

non SDM Message
LCM
message is not an SDM data type

80



missionDescription Table

Non_Sensor Metadata Tables

channelInfo Table

Sensor Metadata Tables

SDM Data Tables

channelOutage Table

Figure 22. Relational PNT Database Overview: Every row in missionDescription Table
is an independent data log in the Scorpion Data Model format which is uploaded in
the database. The SDM tables contain all of the navigation data associated with the
data logs.

2 COUNT (DISTINCT type) AS some_alias
3 FROM
4 sensorTypes
5 UNION
6 SELECT
7 COUNT (DISTINCT terrain) AS some_alias
8 FROM
9 terrain;

Purpose: This query determines the number of sensor types and terrain types to be

covered. This returns the number of rows

1 SELECT
2 missionlength_seconds
3 FROM
4 missionDescription
5 ORDER BY
6 id;

Purpose: This query returns the weight of each column for the combined KP/SCP

1 SELECT

81



2 c.missionDescription_id ,
3 MAX(e.eventNumber) - MIN(g.eventNumber)
4 AS value
5 FROM geodeticposition3d_? g
6 INNER JOIN
7 channelInfo c
8 ON c.id = g.channel_id
9 WHERE g.altitude > 1000

10 AND c.missionDescription_id BETWEEN 1 AND numColumns
11 GROUP BY
12 c.missionDescription_id;

Purpose: This query returns the value of each column for the combined KP/SCP.

The GeodeticPosition (3D) data type is chosen to determine the minimum and

maximum event numbers because it is a common data type which exists across most

missions

1
2 SELECT
3 id,
4 type
5 FROM
6 sensorTypes
7 ORDER BY
8 id;

Purpose: This query returns a list of sensor types and their associated mission iden-

tifiers. These are the first eight rows to be covered by the KP/SCP

1
2 SELECT
3 missionDescription_id ,
4 terrain
5 FROM
6 terrain
7 ORDER BY
8 missionDescription_id;

Purpose: This query returns a list of terrains and their associated mission identifiers.

These are the last 5 rows to be covered by the KP/SCP.

These queries take time and have an overhead observable in the testing data.

They take approximately 2 seconds to complete for the 100 mission database, and

17 seconds to complete for the 1000 mission database. This will help contextualize

the performance of the GA and HC algorithms. The next two sections of this paper

82



discuss the combined KP/SCP PDs, and the GA and HC algorithm.

4.3 Problem Domain

In order to define how the problem space of the SCP and KP combine, each one

is defined individually. Following this, their combination is addressed.

4.3.1 Set Covering Problem

The general SCP entails having a group of sets which are to be covered (defining

the universe), and a group of families, each which is composed of a subset of sets, so

that a complete covering of the sets is composed of a group of families, the combined

sets of which include all of the sets to be covered. According to [88] the SCP is defined

as:

Set Covering Problem: Given a set R = {r1, ..., rm} and a family F = {S1, ..., SN}

of sets Sj ⊂ R any subfamily F ′ = {Sj1, Sj2, ...Sjk} of F such that ∪k
i=1 Sji = R

is called a subset covering of R, and the Sji are called the covering sets.

According to Caprara et al. (2000) , SCP can be thought of in terms of [76]:

Ji = {j ∈ J : aij = 1}

Ij = {i ∈ I : aij = 1}

which describes the columns which cover the rows and the rows which are covered by

the columns. This concept is applied in code by defining two dimensional array lists

in Java.

83



Typically the SCP is thought of as having costs such that the goal is to Minimize

∑
j∈J

cjxj

which means that the families chosen to be part of the solution have associated costs

which are to be minimized. This minimization is part of the optimization process.

Solution Space: The SCP is O(2n) [89]. This is due to a full solution having to

consider all possible combinations of the available sets.

Problem Class: NP-Complete [78].

The SCP can be framed as a query for the PNT database described in Sections

3.2 and 4.3: Return a subset of data logs that minimize the total summed time of the

missions such that all terrain types and sensor types are represented.

4.3.2 The Knapsack Problem

In the general form of the KP problem, objects have an associated weight and

value which are not (necessarily) related, and bins have a certain weight capacity. An

optimal answer returns the set of items that fit in this bin that have the maximum

value.

84



Knapsack Problem: Given a set of n items. Each item i = 1...n has two parameters,

a weight wi and a value vi. Given a knapsack capacity X, find a subset Xof items

of maximum value that does not exceed the weight restriction. The goal is to

maximize
∑
i∈S

vi such that
∑
i∈S

wi ≤ X [78].

Solution Space: The KP is O(2n). This is due to a full solution having to consider

all possible combinations of the available sets [78].

Problem Class: NP-Complete [78].

The KP can be framed as a query for the PNT database described in Sections 3.2 and

3.3: Return a subset of data logs where the total summed time of missions does not

exceed X seconds, and where the total number of sensor measurements taken above

Y altitude are maximized.

4.3.3 Combined Problem

Find a solution such that both problem domains are satisfied and optimized. SQL

queries are used against the PNT database to populate data structures affiliated

with the combined KP/SCP. These data structures are used with conjunction with a

Population (GA) and Local Search (HC) algorithm to return answers to the queries

in the combined KP/SCP problem domains.

English Description: Given a knapsack capacity, a set of rows to be covered,

and a set of families which each have some subset of these rows, and also have an

associated value and weight. Return a subset of these families which covers all of

85



these rows (combinatorial problem, one type of optimization), and for which the

combined weight does not exceed the knapsack capacity (constraint), and which has

the maximum possible combined value for the sets (optimization).

The KP/SCP: Given a capacity X, a set R = {r1, ...rm}, and a family F = {S1, ...SN}

of sets Sj ⊂ R and associated weights Fw = {w1, ..., wN} and values Fv = {v1, ...vN},

return a subfamily F ′ = {Sj1, Sj2, ...Sjk} of F such that ∪k
i=1 Sji = R, which

maximizes
∑
i∈F

vi such that
∑
i∈F

wi ≤ X and for which @[(Sn)|Sn ⊂ (F ′ − Sn)]

The goal in this problem domain is to optimize the combined value

∑
i∈F

vi (2)

and to provide a set covering such that

∪k
i=1Sji = R

The weight

FW = {w1, ...wN}

can be thought of in terms of the cost from the original SCP problem, but this is not

a perfect corollary. For instance, it does not matter if

∑
i∈F

wi = X

or if the combined weight is arbitrarily lower, so just trying to minimize weight is

not necessarily an optimization goal. The goal is to provide a set covering so that

86



value is maximized, while not exceeding the aforementioned constraints. These are

competing optimizations, as there may be solutions to the Knapsack Problem which

have higher values yet which do not provide a set cover, and there may be smaller set

coverings with lower weights which provide less value.

Solution Space: Both of these problems could be solved independently if the rele-

vant parameters from the other problem were ignored. Even so, each is a permutation

problem, resulting in them having equivalently sized solution spaces. Therefore this

problem has a solution space of O(2n), which is the same as if they were solved inde-

pendently.

Problem Class: The KP/SCP PD can be thought of as a decision problem. For a

given answer to a SCP, is it a valid minimal set cover that meets the three combined

conditions:

∪k
i=1Sji = R (3)

@[(Sn)|Sn ⊂ (F ′ − Sn)] (4)

∑
i∈F

wi ≤ X (5)

The SCP decision problem reduces to the combined KP/SCP Problem. A proof

is available in Mochocki (2020) [67]. This shows that the KP/SCP decision problem

is NP-Complete. The KP/SCP problem is likely NP-Hard, as it would be difficult

to provide a polynomial time certifier that a given answer is indeed optimal. The

next section describes the top down design of algorithms to solve the combined MO

KP/SCP. The SQL queries in Section 3.3 are used to populate data structures, which

are used with these algorithms to return answers to this PD.

87



4.4 Stochastic Algorithms for the Combined MO KP/SCP

The code for the GA and HC algorithms sections are based on the work by

Cobonkerr (2020), which implements the algorithm designed by Chu and Beasley

(1997)[83] [90]. Some sections of the code required major rewrites to implement the

modified algorithms. The pseudo code is available in the appendix of Mochocki (2020)

[67].

4.4.1 Genetic Algorithm

Consider the general description of a GA [91]:

1. Initialize a population of chromosomes; (Set of Candidates)

2. Evaluate each chromosome in the population; (Feasibility)

3. Create new chromosomes by mating current chromosomes – apply mutation and

recombination as the chromosome mate; (Next State Generator)

4. Evaluate the new chromosomes (Feasibility) and insert them into the popula-

tion; (Objective Function)

5. If time is up, stop and return the best chromosome; (Solution), if not, goto 3.

Encoding: Utilize a binary encoding (0/1) for each column to indicate whether or not

that specific column is considered as part of a given solution. Each column has an

associate weight and value. A specific solution is represented as a genome (equivalent

to a chromosome).

Initial Population (Set of Candidates): This is generated at the beginning of the

program based on the specific column/row/weight/value parameters. Each member

88



of the population is checked for feasibility, as detailed below, and to ensure lack of

redundancy between answers.

Training Solutions (Next State Generator):

• Use a k-ary tournament selection to select two parents, each is the most fit

of its respective tournament (participants are randomly selected). [80]. This

approach gives preference to the more fit parent, but does not guarantee that

a bit from that parent is selected.

• Perform a crossover between the two parents to produce a child. Consider each

bit in parents. If bits match, pass bit to child. If bits do not match: Generate

fitness number: fprob = fp2
fp1+fp2

. Generate a random number r with the range

0...(fp1 + fp2).

• if r > fprob take the bit from p2 else p1.

• Perform a mutation on the child to produce a new solution. Select a random

bit from child and flip

• Check the child for feasibility, perform a modification on the child to make

feasible

• Add the child back to the population, replacing a less fit member. Calculate

average fitness of population pa = (
∑n

i=1 vi
1
n
) . Randomly choose a member of

population. If vm ≤ pa replace, else choose a new member.

Feasibility: The feasibility of the population is checked once generated, and every

new possible solution is checked before being returned to the population.

89



• Per the SCP, the set of rows which are part of the solution need to be checked

to confirm that every row is covered.

• The answer needs to be a minimal subset so that there is no column for which

every covered row is a subset of the rows covered by all of the other combined

columns.

• The combined weight of all columns needs to not exceed the weight restriction.

Mathematically, feasibility is defined as:

1. ∪k
i=1Sji = R

2. @[(S)|S ⊂ (F ′ − S)]

3.
∑

i∈F wi ≤ X

In the case a given solution is not feasible, it is fixed or discarded deterministically.

Note, it is assumed that Feasibility Condition 2 can only occur if Feasibility Condi-

tion 1 is valid. In other words, a solution cannot be a minimal SCP if it is not an SCP.

Make Feasible: Consider cases in Table 16

Case Descriptions:

(a) All three conditions are true. This means that the solution is feasible. Return

genome.

(b) Min SCP conditions are satisfied but KP condition is not. Discard this genome.

(c) Answer is a SCP and satisfies KP, but is not minimal. Identify redundant family

of lowest value (if multiple) and delete. Return modified genome.

90



Table 16. Genetic Algorithm Possible Feasibility Conditions

Case 1 2 3
a T T T
b T T F
c T F T
d T F F
e F T T
f F T F
g F F T
h F F F

(d) Answer is a SCP but there are redundant columns and KP weight condition is

violated. Identify redundant columns and remove so that weight falls within

restriction. If weight still exceeds limit even once all possible columns are re-

moved, discard this genome.

(e) The solution is not a set cover but the columns proposed so far do not violate

weight limits. See if any columns can be added which meet condition 1 without

violating the weight restriction. Then check for redundancy with added rows.

(f) The solution is not a set cover and it busts the weight limits. Discard this

genome.

(g) Condition 2 assumes that condition 1 is valid, so this combination is meaning-

less.

(h) Condition 2 assumes that condition 1 is valid, so this combination is meaning-

less.

Fitness (Objective Function): Assuming that all solutions are feasible, the best an-

swer, also called the most fit, is the one with the highest value.

91



Convergence:

1. Hard time restriction: This value can be set as a problem parameter and sets

a limit to for how long the algorithm will continue to hunt for better solutions

even while these solutions are actively being found. This time restriction is only

checked in between attempts to evolve new solutions, it will not interrupt an

evolution attempt.

2. Population fitness has not changed in at least 60 iterations. This implies that

a more fit solution is relatively difficult to find.

4.4.2 Hill Climber Algorithm

The Hill Climber Algorithm uses the same problem encoding, queries, and gen-

eration of the initial solution as the GA. The main difference is that the HC only

generates a single solution, and then explores the neighborhood of that solution look-

ing for better answers, terminating when it is completely explored.

Encoding: Use a binary encoding (0/1) for each column/item to indicate whether or

not that specific column is considered as part of a given solution. Each column/item

also has an associated weight and value.

Neighborhood: A given subfamily F ′ = {Sj1, SJ2, ..., Sjk} of F such that ∪k
i=1Sji = R

and feasibility constraints are met, subject to all possible Swap combinations O(n2).

Initial Population (Set of Candidates): A single solution S0 is generated as the initial

solution. The generation of this solution matches the process described for the GA.

92



Next State Generator: Utilize swap operation. ∀F (S1, ..., SN) if Sj =“1” and Sk =

“0” Swap (Sj, Sk). Then check for feasibility

Feasibility: The solution encoding is identical to the GA. Therefore, the constraints

and challenges associated with the feasibility of a particular swap operation are the

same. The feasibility function returns either the ∅ or Sjn.

Selection: If Ft+1 > Ft, Make St+1 the new current state, else, discard St+1 and gen-

erate a new next solution per Next State Generator

Solution: Terminate either when: t = T , i.e. a defined amount of time has elapsed or

entire neighborhood has been explored and no better solution returned.

Fitness (i.e. Objective Function): Assuming that all solutions are feasible, the best

answer (i.e. most fit) is the one with the highest value.

4.4.3 GA and HC Algorithm Expected Performance

Section 4.4 laid out the background for the GA and the HC pseudo code. The

key difference between them is that the GA uses a population based approach, k-ary

tournament selection, a fitness-based crossover, mutation, and returns the genome to

the population based on a fitness comparison with the genome to be replaced. The GA

does not run the risk of getting stuck in a single neighborhood, even though the fittest

answers may trend towards a local maximum, and not reach the absolute maximum

which may be somewhere else in the solution space, especially if the crossover and

mutation operators alone are not able to get any of the genomes in the population

there.

93



The Hill Climber explores a specific neighborhood, which is defined as the swap of

all bits for a randomly generated started genome. The make feasible function of the

GA is used only for the generation of the initial solution, any non-feasible solutions

for the HC are discarded, even if they might potentially lead to more fit answers.

Functionally, the HC uses much of the structure of the GA.

Based on their design, we expect that the GA will in general produce more fit

answers to the combined MO SCP/KP in comparison to the HC. The GA is not

restricted to a particular neighborhood, and multiple neighborhoods may be repre-

sented in the population. The HC is expected to find its solutions faster than the GA.

Once the initial solution is discovered, the HC deterministically searches its neigh-

borhood in polynomial time, whereas the GA stochastically generates the entirety of

its initial population before beginning to the genome mutation process.

In Section 4.5, the GA is tested with populations of 10, 25, and 50 genomes

for the 100 and 1000 mission databases. The PD search space represented by the

two databases used to test these algorithms is critical when comparing how the GA

performs between population sizes. As is discussed in the next section, these databases

are composed of repeated files and randomized metadata, with values and weights

stochastically modified after being queried to add nuance to the search space. Even

so, certain combinations of files with high value and low weight are expected to be

present in most answers, especially as the weight limits increase, so it is expected

that GAs with population sizes of 50 will produce similarly fit solutions as the GAs

with a population sizes of 10. In general, for populations that use a binary encoding

smaller population sizes are sufficient to find relatively fit answers [92]. For complex

search spaces (with multiple local maxima) there is not a direct correlation between

population size and the fitness of the returned answers [93].

94



4.5 Design and Evaluation of Experiments

In general, the goals of the experiments are:

1. To validate the functioning of the code and the underlying algorithm implemen-

tation

2. To demonstrate timeliness of execution and the quality of the answers

3. To compare the various implementations

4. To learn about algorithm execution, and to help design potential future work

The two databases that the GA and HC algorithm interface with are composed

of six separate files which were replicated 100 times and 1000 times. This replication

means that there are a predictably finite number of value and weight combinations,

which are derived directly from the SDM data. As the sensor and terrain metadata

is randomly entered, the Set Covering portion of each mission varies. Table 17 shows

the value and weight of the six data logs replicated in the databases:

As is discussed in Section 4.2, the value is the number of recorded events from the

GeodeticPosition (3D) table above 1000 meters and the weight is the total number

of seconds of the mission. While these are specific units, the result of any query could

Table 17. Missions Value and Weight Based On SQL Queries

Mission Value Weight
1 418,653 4940
2 606,444 4743
3 1,036,695 4743
4 694,528 5229
5 712,219 5311
6 231,187 1837

95



replace these in the algorithm depending on what the researcher is attempting to

optimize.

In order to prevent the algorithm from converging prematurely due to a lack of

potential higher value answers, the value and weight are randomly altered before

being added to the problem data structure. The values of the columns are assigned

± 200,000, and the weights of the columns are assigned ± 1,000 in comparison to

what is shown in Table 17. As this adds an additional element of randomness to

algorithms which are already stochastic in nature, the Genetic Algorithm and Hill

Climber Algorithm are compared on the basis of trends in performance, and not on

individual experiments. Each experiment is repeated 10 times.

In general, each algorithm performs as expected. For a given Weight Limit, the

Hill Climber Algorithm tends to return less fit answers in a faster time, and the

Genetic Algorithm tends to return more fit answers in a slower time. The population

size does not produce much variation in returned value. All testing is done on the

laptop shown in Table 18:

Both the Genetic and the Hill Climber Algorithms are tested against Weight

Limits of 6,000, 10,000, and 20,000, and against the databases with 100 missions and

with 1000 missions. Furthermore, the Genetic Algorithm is tested with populations

Table 18. Testing Equipment and Software

Manufacturer Lenovo
Model ThinkPad P52 20M9

Processor
Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz

Installed memory 40GB

System type
Windows 10 Pro
64 Bit Processing System

SSD Samsung SSD 970 EVO Plus 2TB
IDE Eclipse Version 2019-09 R (4.13.0)
RDBMS PostgreSQL 11.6

96



of 10, 25, and 50 elements. Figure 23 Compares how the GA performed for trials

with variations in population and database size.

The population size does not consistently impact the final fitness of the returned

solution for a given weight or database size. With a weight limit of 6,000 and a

database size of 1,000, the population of 50 slightly outperforms the population size

of 25, while with a database size of 1,000 and weight limit of 10,000, the other two

population sizes slightly outperform the population size of 50. In general, with the

larger database, the variances of the population sizes were more compact and more

similar than with the smaller databases.

Figure 24 compares the returned values of the GA against the HC algorithm across

ten trials. As expected, the GA overall had a lower variance when compared to the

HC and more fit values. The overall fitness of the answers returned by both the HC

increased with the larger database, likely because the neighborhoods are larger with

more available solutions. The GA also tended to have lower variance and more fit

answers with the larger database size. This is likely due to more variety with respect

to the higher value files and which sets they are covering.

Figure 25 shows the time and variance of the GA and HC algorithm. The HC

finished in under 2 seconds for the 100 mission database and around 17 seconds for

the 1000 mission database. Most of this is due to the overhead completing the SQL

queries listed in Section 4.2, and not due to performing the HC algorithm. The GA

ranged between 18 seconds and just over 100 seconds.

Table 19 shows the average number of solutions found for the HC and GA. As

expected, the GA found more solutions than the HC, and both algorithms found more

solutions when going from the database with 100 missions to the database with 1000

missions.

97



Figure 23. Genetic Algorithm Population Comparison: Compares GA values with
populations of 10, 25, and 50 with Databases of sizes 100 and 1,000

4.6 Conclusion

This paper demonstrates two algorithms which successfully return solutions to

the additive MO KP/SCP problem query. The Genetic Algorithm GA uses a binary

encoding, a k-ary tournament selection, crossover, mutation, and feasibility functions

to continuously develop new solutions from a population. New solutions are tested

for fitness with respect to the population, and are added back in replacing a less

fit member. The algorithm concludes if a certain amount of time has passed or if

the most fit member of the population has not changed after 60 iterations of the

genetic algorithm. The Hill Climber HC algorithm uses the binary encoding from the

GA, and generates a single valid solution. The algorithm then flips every 0 and 1

in its solution (searching the neighborhood), and checks for more fit solutions. The

algorithm concludes when all 0s and 1s are flipped.

98



Figure 24. Genetic Algorithm and Hill Climber: Compares GC (Population: 25) Values
against HC Values

For the GA, differences in population size did not consistently make a difference

in performance. This may be due to the relatively small size of the databases and the

repetitive nature of the data. When comparing the GA and HC algorithms, the GA

consistently gives answers of higher value, and the HC algorithm consistently returns

answers more quickly. This difference is more pronounced with the larger database.

There is significant future work for each algorithm implementation. As the database

is implemented and goes live with SDM data and its associated metadata, these algo-

rithms should be tested and compared with these operational data sets. Furthermore,

the code should be rewritten to make it more useful friendly. Allowing researchers

to write their own queries which could populate the problem data structures, and

to choose an arbitrary number of row types, could potentially enhance the database

usefulness. Another possibility would be to add additional value categories, and to

99



Figure 25. Genetic Algorithm and Hill Climber: Compares GC (Population: 25) Times
against HC Times

Table 19. Number of Solutions Found for HC and GA algorithms (Population: 10)

Algorithm GA HC GA HC GA HC
Weight Limit 6,000 6,000 10,000 10,000 20,000 20,000
Average Number of
Solutions Found:
100 Mission Database

793 2 11034 2 72751 4

Average Number of
Solutions Found:
1000 Missions Database

4411 4 91003 4 388705 7

develop a way to prioritize and optimize between them.

Finally, both the HC and the GA should be kept available, as some filter re-

searchers may prefer solutions which are more fit and are willing to wait for them,

and others may desire solutions which are faster and are willing to accept less fitness.

The desired solution fitness may vary based on the specific context of a problem,

and multiple runs of the GA and HC may be necessary to find data sets that meet

specifications. While both algorithms appear to scale well for databases composed of

repeated files and randomized metadata, it is impossible to know precisely how they

will perform with varied files and non-randomized metadata without testing them in

this context. How the HC and GA perform for these more interesting and realistic

problems should be researched as they become available, and the algorithms updated

100



as necessary.

101



V. Conclusion

This thesis presents three different relational database schemas based on the Scor-

pion Data Model format [7]. Each approach has common schemas for storing sensor

and non-sensor related metadata, and different schemas for storing SDM data. Ap-

proach 1 places all SDM data of a given type into a corresponding table. These

tables grow indefinitely as additional data is added. This approach limits the num-

ber of tables which must be created, but results with queries taking longer as the

tables grow larger. Approach 2 places SDM data into a table corresponding to both

data type and mission number, which limits their size. This will result in more ta-

bles, but helps speed up searches and with distributing the tables between nodes.

Approach 3 is a variation of Approach 1, except that tables are not made for the

IMU and OpticalCameraImage data types due to their frequency and size, and the

original data log is made available for download in the case that these tables were

queried. The need to download the original data log for all missions of interest make

queries against the IMU and OpticalCameraImage data types take longer, but speeds

up downloading the original log file. There are two test databases for each approach,

one with 100 missions and one with 1000 missions, for a total of six databases. These

numbers are selected based on the number of data logs that AFIT is estimated to

have, and to allow room for growth in the future.

The ANT center provided a set of questions which were used to build the SQL

queries to test the three approaches. There are three query categories in testing,

one where the SDM tables are queried (SDM Query Test), one where the original

file or a subset is downloaded (Download Test), and one where non-SDM data is

queried (Metadata Query Test). Each test is composed of multiple sub-tests, and

each sub-test was run 11 times for each of the six databases.

In all but two cases, Approach 3 outperforms the other two approaches for the

102



Download Test. Approach 1 and 2 outperform Approach 3 when the subset of the

downloaded file is small enough that it is quicker to reconstruct it using queries

to populate LCM events and write these events to a file, rather than downloading

and parsing the original file. Approaches 1 and 2 perform almost equally well, with

Approach 2 outperforming Approach 1 in most cases. This is more pronounced for the

larger databases, with Approach 2 typically being between 1 and 2 seconds faster than

Approach 1. Overall, Approach 3 has the strongest performance for the Download

Test, with both Approaches 1 and 2 having acceptable performances.

For the SDM Query Test, Approach 2 outperforms Approaches 1 and 3 in all

cases. For the Platform Dynamics Test, which consults the IMU tables for magnitude

of g’s experienced during the mission, Approach 2 performs a factor of 4 faster than

Approach 3, and an average of 11 minutes faster than Approach 1 for the 1000

mission databases. For the Satellite Type Test, which consults the GNSS table, the

three approaches perform equivalently well, with Approach 2 being approximately

200ms faster than the other two approaches. For the other three tests, Approach

2 on average was twice as fast or more than the other approaches. The difference

between Approaches 1 and 2 is due to the time it take to query the larger tables. This

difference all but disappears for the GNSS table, due to it only having 2 million rows

in the 1000 mission database, in comparison to 426 million rows in the IMU table.

The difference between Approach 2 and Approach 3 is due to Approach 3 having to

download and parse all 1000 log files when the IMU table is consulted. For the SDM

Query Test, Approach 3 performs prohibitively badly, and Approach 2 has the best

overall performance.

The tests for the non-SDM database tables (Metadata Query Test) demonstrate

that the proposed schema scales well from 100 data logs to 1000 data logs, completing

all but one query in under half a second even for the larger databases, and that

103



various databases containing randomized data perform similarly well using the same

underlying schema.

Once testing showed that Approach 2 had the best overall performance, the two

test databases were used with the Hill Climber algorithm and Genetic Algorithm for

Multi-Objective queries in the combined KP/SCP Problem Domain. This problem

domain allows researchers to use simple queries to return solutions to more complex

ones. The examples used with the GA and HC algorithm attempt to maximize the

number of recorded events that took place above 1000 meters, include at least one of a

set of sensor types and terrain types, and keep the total time of the returned missions

below a certain limit. Any queries could be used to replace those listed here and work

with the algorithms, as long as their returned answers met the correct formats.

The GA creates a population of 10, 25 or 50 solutions, and then uses stochastic

and deterministic processes to crossover and mutate these solutions, and then add

them back in to the population if their fitness is improved. The GA terminates if

a certain amount of time passes or if 100 iterations pass without a better solution

being found. The HC algorithm finds a single solution, and then swaps all 0’s and

1’s looking for a better solution.

Both of these algorithms returned correct solution sets that met the PD con-

straints, and were tested 10 times for each permutation and each database. These

queries demonstrated that the HC algorithm returned less-optimal solutions more

quickly, and the GA algorithm returned more-optimal solutions less quickly. The

population size did not make a noticeable difference for the returned value of the GA.

The next step is to implement the Approach 2 schema with AFIT’s set of data.

The first design decision is to determine the details of the database distribution, load

it with real data, and then offer it on a cloud service. Following this, AFIT students

should use it to enable their own research, and provide feedback for improvement.

104



The HC and GA should be incorporated as part of the user interface to help students

perform queries, and if desired queries are sufficiently complex they could be used to

facilitate additional research.

105



Appendix A. Full Database Schema

missionDescription

id INTEGER PK

startDate_UTC DATE

endDate_UTC DATE

organization TEXT

missionLocationStart TEXT

missionLocationEnd TEXT

platform TEXT

missionLength_Seconds BIGINT

dataFileSize BIGINT

PK_missionDescription

loopClosures

id TEXT PK

time INTEGER

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

missionDescription_id INTEGER FK

PK_loopClosures

wayPoints

id INTEGER PK

time INTEGER

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

missionDescription_id INTEGER FK

PK_wayPoints

altitudeSegments

id INTEGER PK

start_altitude INTEGER

end_altitude INTEGER

approximate_duration INTEGER

missionDescription_id INTEGER FK

PK_altitudeSegments

obscuration

obscuration TEXT PK

missionDescription_id INTEGER PK FK

PK_obscuration

precipitation

precipitation TEXT PK

intensity NUMERIC PK

missionDescription_id INTEGER PK FK

PK_precipitation

terrain

type TEXT PK

missionDescription_id INTEGER PK FK

PK_terrain

manuevers

id INTEGER PK

manuever TEXT

approximate_duration INTEGER

missionDescription_id INTEGER FK

PK_manuevers

skycover

skycover TEXT PK

missionDescription_id INTEGER PK FK

PK_skycover

unexpectedResults

unexpectedResults TEXT

id INTEGER FK

Figure 26. nonSensorMetadata

106



missionDescription

id INTEGER PK

startDate_UTC DATE

endDate_UTC DATE

organization TEXT

missionLocationStart TEXT

missionLocationEnd TEXT

platform TEXT

missionLength_Seconds BIGINT

dataFileSize BIGINT

PK_missionDescription

channelInfo

id INTEGER PK

channelName TEXT

channelUse TEXT

deviceID TEXT

truth BOOLEAN

missionDescription_id INTEGER FK

sensorInstallation_id INTEGER FK

PK_channelInfo

sensorModel

outage

id INTEGER PK

planned BOOLEAN

approximate_duration INTEGER

intermittent BOOLEAN

PK_outage

outage_channel

channel_id INTEGER FK

outage_id INTEGER FK

Figure 27. missionDescription and channelInfo

107



channelInfo

id INTEGER PK

channelName TEXT

channelUse TEXT

deviceID TEXT

truth BOOLEAN

missionDescription_id INTEGER FK

sensorInstallation_id INTEGER FK

PK_channelInfo

velocity3d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

x DOUBLE PRECISION

y DOUBLE PRECISION

z DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_velocity3d

velocity1d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

x DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_velocity1d

speed

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

speed DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_speed

altitude

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

altitude DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_altitude

geodeticposition3d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

altitude DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_geodeticposition3d

threeaxismagnetometer

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

field DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_threeaxismagnetometer

positionvelocityattitude

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

altitude DOUBLE PRECISION

velocity DOUBLE PRECISION

attitude DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_positionvelocityattitude

opticalcameraimage

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

encoding DOUBLE PRECISION

height DOUBLE PRECISION

width INTEGER

num_channels INTEGER

array_length INTEGER

data BYTEA

channel_id INTEGER FK

PK_opticalcameraimage

imu

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

delta_v DOUBLE PRECISION

delta_theta DOUBLE PRECISION

channel_id INTEGER FK

PK_imu

gpsephemeris

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

prn INTEGER

wn_t_oc INTEGER

t_oc DOUBLE PRECISION

t_gd DOUBLE PRECISION

af_0 DOUBLE PRECISION

af_1 DOUBLE PRECISION

af_2 DOUBLE PRECISION

m_0 DOUBLE PRECISION

delta_n DOUBLE PRECISION

e DOUBLE PRECISION

sqrt_a DOUBLE PRECISION

omega_0 DOUBLE PRECISION

i_0 DOUBLE PRECISION

i_dot DOUBLE PRECISION

omega DOUBLE PRECISION

omega_dot DOUBLE PRECISION

c_uc DOUBLE PRECISION

c_us DOUBLE PRECISION

c_rc DOUBLE PRECISION

c_rs DOUBLE PRECISION

c_ic DOUBLE PRECISION

c_is DOUBLE PRECISION

wn_t_oe INTEGER

t_oe DOUBLE PRECISION

channel_id INTEGER FK

PK_gpsephemeris

gnss

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

week_number DOUBLE PRECISION

seconds_of_week DOUBLE PRECISION

time_system TEXT

epoch_flag INTEGER

num_satellites INTEGER

num_measurements INTEGER

obs_prn INTEGER

satellite_system TEXT

type TEXT

band TEXT

attribute TEXT

observation DOUBLE PRECISION

LLI INTEGER

signal_strength INTEGER

lock_count INTEGER

channel_id INTEGER FK

PK_gnss

sensorRegistrationAck

id INTEGER PK

utime BIGINT

eventNumber BIGINT

logByteOffset BIGINT

registered BOOLEAN

sensorUID TEXT

channel_id INTEGER FK

PK_sensorRegistrationAck

non_SDM_Message

id INTEGER PK

utime BIGINT

eventNumber BIGINT

logByteOffset BIGINT

data BYTEA

channel_id INTEGER FK

PK_non_SDM_Message

Figure 28. SDM Tables

108



channelInfo

id INTEGER PK

channelName TEXT

channelUse TEXT

deviceID TEXT

truth BOOLEAN

missionDescription_id INTEGER FK

sensorInstallation_id INTEGER FK

PK_channelInfo

sensorModel

id INTEGER PK

make TEXT

manufacturer TEXT

type TEXT

PK_sensorModel

sensorInstallationInfo

id INTEGER PK

extrinsicSensorConfiguration_id INTEGER FK

sensorModel_id INTEGER FK

sensorSpecific_id INTEGER FK

vehicle_id INTEGER FK

PK_sensorInstallationInfo

extrinsicSensorConfiguration

id INTEGER PK

leverArm DOUBLE PRECISION

orientationX DOUBLE PRECISION

orientationY DOUBLE PRECISION

orientationZ DOUBLE PRECISION

PK_extrinsicSensorConfiguration

aircraft

id INTEGER PK

type TEXT

tailNumber TEXT

PK_aircraft

groundVehicle

id INTEGER PK

make TEXT

model TEXT

year TEXT

PK_groundVehicle

vehicle

id INTEGER PK

vehicle TEXT

groundVehicle_id INTEGER FK

aircraft_id INTEGER FK

PK_vehicle

Figure 29. SensorInstallationInfo

sensorInstallationInfo

id INTEGER PK

extrinsicSensorConfiguration_id INTEGER FK

sensorModel_id INTEGER FK

sensorSpecific_id INTEGER FK

vehicle_id INTEGER FK

PK_sensorInstallationInfo

sensorSpecific

id INTEGER PK

sensorUID TEXT

PK_sensorSpecific

IMU_Intrinsic

id INTEGER PK

timeCorrelated_accelBiasSigmaArray DOUBLE PRECISION

timeCorrelated_accelBiasTauArray DOUBLE PRECISION

timeCorrelated_gyraBiasSigmaArray DOUBLE PRECISION

timeCorrelated_gyroBiasTauArray DOUBLE PRECISION

velocityRandomWalkArray DOUBLE PRECISION

angularRandomWalkArray DOUBLE PRECISION

accelerometerScaleFactorUncertainty DOUBLE PRECISION

gyraScaleFactorUncertainty DOUBLE PRECISION

sensorSpecific_id INTEGER FK

PK_IMU_Intrinsic

clock_Intrinsic

id INTEGER

h0 DOUBLE PRECISION

h1 DOUBLE PRECISION

h2 DOUBLE PRECISION

x0Array DOUBLE PRECISION

p0Array DOUBLE PRECISION

sensorSpecific_id INTEGER FK

camera_Intrinsic

id INTEGER PK

focalLength DOUBLE PRECISION

cameraImageCenter DOUBLE PRECISION

lensDistortion DOUBLE PRECISION

sensorSpecific_id INTEGER FK

PK_camera_Intrinsic

GPS_Intrinsic

id INTEGER PK

gpsAntennaMake TEXT

gpsAntennaModel TEXT

sensorSpecific_id INTEGER FK

PK_GPS_Intrinsic

externaAidingClock

id INTEGER PK

make TEXT

model TEXT

GPS_Intrinsic_id INTEGER FK

PK_externaAidingClock

systemSignalsTracked

id INTEGER PK

systemTracked TEXT

signalTracked TEXT

GPS_Intrinsic_id INTEGER FK

PK_systemSignalsTracked

supportedAugmentationSystems

id INTEGER PK

supportedAugmentationSystem TEXT

GPS_Intrinsic_id INTEGER FK

PK_supportedAugmentationSystems

Figure 30. SensorIntrinsic

109



missionDescription

id INTEGER PK

startDate_UTC DATE

endDate_UTC DATE

organization TEXT

missionLocationStart TEXT

missionLocationEnd TEXT

platform TEXT

missionLength_Seconds BIGINT

dataFileSize BIGINT

PK_missionDescription

channelInfo

id INTEGER PK

channelName TEXT

channelUse TEXT

deviceID TEXT

truth BOOLEAN

missionDescription_id INTEGER FK

sensorInstallation_id INTEGER FK

PK_channelInfo

sensorModel

id INTEGER PK

make TEXT

manufacturer TEXT

PK_sensorModel

sensorType

id INTEGER PK

type TEXT

model_id INTEGER FK

sensorInstallation

id INTEGER PK

extrinsicSensorConfiguration_id INTEGER FK

sensorModel_id INTEGER FK

sensorSpecific_id INTEGER FK

PK_sensorInstallation

FK_channelInfo_missionDescription

FK_sensorType_sensorModel

sensorSpecific

id INTEGER PK

sensorUID TEXT

PK_sensorSpecific

FK_sensorInstallation_sensorModel

FK_sensorInstallation_sensorSpec ific

outage

id INTEGER PK

planned BOOLEAN

approximate_duration INTEGER

intermittent BOOLEAN

PK_outage

outage_track

channel_id INTEGER FK

outage_id INTEGER FK

extrinsicSensorConfiguration

id INTEGER PK

leverArm DOUBLE PRECISION

orientationX DOUBLE PRECISION

orientationY DOUBLE PRECISION

orientationZ DOUBLE PRECISION

PK_extrinsicSensorConfiguration

FK_sensorInstallation_extrinsicSensorConfiguration

FK_outage_track_outage

FK_outage_track_channelInfo

IMU_Intrinsic

id INTEGER PK

timeCorrelated_accelBiasSigmaArray DOUBLE PRECISION

timeCorrelated_accelBiasTauArray DOUBLE PRECISION

timeCorrelated_gyraBiasSigmaArray DOUBLE PRECISION

timeCorrelated_gyroBiasTauArray DOUBLE PRECISION

velocityRandomWalkArray DOUBLE PRECISION

angularRandomWalkArray DOUBLE PRECISION

accelerometerScaleFactorUncertainty DOUBLE PRECISION

gyraScaleFactorUncertainty DOUBLE PRECISION

sensorSpecific_id INTEGER FK

PK_IMU_Intrinsic

FK_IMU_Intrinsic_sensorSpec ific

clock_Intrinsic

id INTEGER

h0 DOUBLE PRECISION

h1 DOUBLE PRECISION

h2 DOUBLE PRECISION

x0Array DOUBLE PRECISION

p0Array DOUBLE PRECISION

sensorSpecific_id INTEGER FK

FK_clock_Intrinsic_sensorSpecific

camera_Intrinsic

id INTEGER PK

focalLength DOUBLE PRECISION

cameraImageCenter DOUBLE PRECISION

lensDistortion DOUBLE PRECISION

sensorSpecific_id INTEGER FK

PK_camera_Intrinsic

FK_camera_Intrinsic_sensorSpec ific

GPS_Intrinsic

id INTEGER PK

gpsAntennaMake TEXT

gpsAntennaModel TEXT

sensorSpecific_id INTEGER FK

PK_GPS_Intrinsic

FK_GPS_Intrinsic_sensorSpec ific

externaAidingClock

id INTEGER PK

make TEXT

model TEXT

GPS_Intrinsic_id INTEGER FK

PK_externaAidingClock

systemSignalsTracked

id INTEGER PK

systemTracked TEXT

signalTracked TEXT

GPS_Intrinsic_id INTEGER FK

PK_systemSignalsTracked

supportedAugmentationSystems

id INTEGER PK

supportedAugmentationSystem TEXT

GPS_Intrinsic_id INTEGER FK

PK_supportedAugmentationSystems

FK_externaAidingClock_GPS_Intrinsic

FK_systemSignalsTracked_GPS_Intrinsic

FK_supportedAugmentationSystems_GPS_Intrinsic

FK_channelInfo_sensorInstallation

velocity3d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

x DOUBLE PRECISION

y DOUBLE PRECISION

z DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_velocity3d

velocity1d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

x DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_velocity1d

speed

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

speed DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_speed

altitude

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

altitude DOUBLE PRECISION

variance DOUBLE PRECISION

channel_id INTEGER FK

PK_altitude

geodeticposition3d

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

altitude DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_geodeticposition3d

threeaxismagnetometer

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

field DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_threeaxismagnetometer

positionvelocityattitude

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

altitude DOUBLE PRECISION

velocity DOUBLE PRECISION

attitude DOUBLE PRECISION

covariance DOUBLE PRECISION

channel_id INTEGER FK

PK_positionvelocityattitude

opticalcameraimage

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

encoding DOUBLE PRECISION

height DOUBLE PRECISION

width INTEGER

num_channels INTEGER

array_length INTEGER

data BYTEA

channel_id INTEGER FK

PK_opticalcameraimage

imu

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

delta_v DOUBLE PRECISION

delta_theta DOUBLE PRECISION

channel_id INTEGER FK

PK_imu

gnss

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

week_number DOUBLE PRECISION

seconds_of_week DOUBLE PRECISION

time_system TEXT

epoch_flag INTEGER

num_satellites INTEGER

num_measurements INTEGER

obs_prn INTEGER

satellite_system TEXT

type TEXT

band TEXT

attribute TEXT

observation DOUBLE PRECISION

LLI INTEGER

signal_strength INTEGER

lock_count INTEGER

channel_id INTEGER FK

PK_gnss

gpsephemeris

id INTEGER PK

timeStamp_arrival_second BIGINT

timeStamp_arrival_nsec INTEGER

timeStamp_valid_sec BIGINT

timeStamp_valid_nsec INTEGER

utime BIGINT

eventNumber BIGINT

seqNumber BIGINT

logByteOffset BIGINT

prn INTEGER

wn_t_oc INTEGER

t_oc DOUBLE PRECISION

t_gd DOUBLE PRECISION

af_0 DOUBLE PRECISION

af_1 DOUBLE PRECISION

af_2 DOUBLE PRECISION

m_0 DOUBLE PRECISION

delta_n DOUBLE PRECISION

e DOUBLE PRECISION

sqrt_a DOUBLE PRECISION

omega_0 DOUBLE PRECISION

i_0 DOUBLE PRECISION

i_dot DOUBLE PRECISION

omega DOUBLE PRECISION

omega_dot DOUBLE PRECISION

c_uc DOUBLE PRECISION

c_us DOUBLE PRECISION

c_rc DOUBLE PRECISION

c_rs DOUBLE PRECISION

c_ic DOUBLE PRECISION

c_is DOUBLE PRECISION

wn_t_oe INTEGER

t_oe DOUBLE PRECISION

channel_id INTEGER FK

PK_gpsephemeris

sensorRegistrationAck

id INTEGER PK

utime BIGINT

eventNumber BIGINT

logByteOffset BIGINT

registered BOOLEAN

sensorUID TEXT

channel_id INTEGER FK

PK_sensorRegistrationAck

non_SDM_Message

id INTEGER PK

utime BIGINT

eventNumber BIGINT

logByteOffset BIGINT

data BYTEA

channel_id INTEGER FK

PK_non_SDM_Message

FK_veloc ity3d_channelInfo

FK_veloc ity1d_channelInfo

FK_speed_channelInfo

FK_altitude_channelInfo

FK_geodeticposition3d_channelInfo

FK_threeaxismagnetometer_channelInfo

FK_imu_channelInfo

FK_gpsephemeris_channelInfo

FK_sensorRegistrationAck_channelInfo

FK_non_SDM_Message_channelInfo

FK_positionveloc ityattitude_channelInfo
FK_opticalcameraimage_channelInfo

FK_gnss_channelInfo

loopClosures

id TEXT PK

time INTEGER

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

missionDescription_id INTEGER FK

PK_loopClosures

wayPoints

id INTEGER PK

time INTEGER

latitude DOUBLE PRECISION

longitude DOUBLE PRECISION

missionDescription_id INTEGER FK

PK_wayPoints

altitudeSegments

id INTEGER PK

start_altitude INTEGER

end_altitude INTEGER

approximate_duration INTEGER

missionDescription_id INTEGER FK

PK_altitudeSegments

obscuration

obscuration TEXT PK

missionDescription_id INTEGER PK FK

PK_obscuration

precipitation

precipitation TEXT PK

intensity NUMERIC PK

missionDescription_id INTEGER PK FK

PK_precipitation

terrain

type TEXT PK

missionDescription_id INTEGER PK FK

PK_terrain

aircraft_missionDescription

missionDescription_id INTEGER

aircraft_id INTEGER

missionDescription_id1 INTEGER FK

aircraft_id1 INTEGER FK

aircraft

id INTEGER PK

type TEXT

tailNumber TEXT

PK_aircraft

groundVehicle_missionDescription

groundVehic le_id INTEGER FK

missionDescription_id INTEGER FK

groundVehicle

id NUMERIC PK

make TEXT

model TEXT

year TEXT

PK_groundVehicle

manuevers

id INTEGER PK

manuever TEXT

approximate_duration NUMERIC

missionDescription_id INTEGER FK

PK_manuevers

FK_aircraft_missionDescription_aircraft

FK_aircraft_missionDescription_missionDescription

FK_groundVehicle_missionDescription_groundVehic le

FK_groundVehicle_missionDescription_missionDescription

FK_terrain_missionDescription

FK_prec ipitation_missionDescription

FK_obscuration_missionDescription

skycover

skycover TEXT PK

missionDescription_id INTEGER PK FK

PK_skycover

FK_skycover_missionDescription

FK_manuevers_missionDescription

FK_altitudeSegments_missionDescription

FK_wayPoints_missionDescription

FK_loopClosures_missionDescription

unexpectedResults

unexpectedResults TEXT

id INTEGER FK

FK_unexpectedResults_missionDescription

Figure 31. Full Database Schema

110



Appendix B. Tester Questionnaire

The Tester Questionnaire is designed for testers to complete immediately after

testing in under five minutes. It captures data of interest from the test to be recorded

in the relational database described in this thesis. When formatted and printed it

fits on a single piece of paper front and back.

Instructions:

1. Please keep answers as short as possible

2. Leave answers blank if unknown

Date:

Vehicle Type:

Vehicle Tail Number:

Testers:

Table 20. Recordings for loop closures

Loop Closures
Time Latitude Longitude

Table 21. Recordings for Way Points

Way Points
Time Latitude Longitude

111



Table 22. Maneuvers

Maneuvers (Figure 8, Figure S, Circle, etc.
Maneuver Approximate Duration

Table 23. Altitude Segments

Altitude Segments (ascending, descending, unchanging, etc.)
Start Altitude End Altitude Approximate Duration

Table 24. Precipitation

Precipitation (leave unmarked if none)
Light Moderate Heavy

Rain
Snow
Hail

Other conditions (Cloudy, Sunny?):

If you have an EO/IR sensor facing the ground, please fill out obscuration and terrain

sections:

Obscuration (Fog, Mist, Smoke, Dust?):

112



Terrain Type (Hills, Flat, Canopy, Water, Desert?):

Table 25. Sensor Outages

Sensor Outages

Sensor Type Model LCM Channel Planned?
Approximate
Duration

Intermittent?

Table 26. GPS Outages

GPS Outages
Simulated or Actual? Planned or Unplanned? Approximate Duration Intermittent?

Table 27. System Malfunctions and Unexpected Results

System Malfunctions and Unexpected Results
Description Approximate Duration

113



Appendix C. Database Test Results

Appendix C provides the raw test data associated with the ION/PLANS confer-

ence paper.

114



Table 28. Approach1 100 Missions Download Test in Milliseconds

Approach1 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 7251 6696 6479 6481 6899 6899 6527 6550 6599 6464 6657

File1 TrimByAltitude 6013 5962 5923 5909 6402 6921 5950 6244 6251 5882 5808

File1 trimByVelocity 5016 5066 4925 4916 5169 5038 5279 5694 5099 4890 4939

File1 trimByTime cutBeginning 5240 5328 5127 5173 5401 5282 5288 6412 5343 5082 5121

File1 trimByTime cutEnding 921 1237 899 928 1192 1041 2113 1025 1862 874 878

File2 Primary Download 23076 23236 22887 23070 22633 23054 22551 22605 24134 23059 22807

File2 TrimByAltitude 22334 22289 21800 22757 21937 22921 21887 23026 22100 21880 21879

File2 trimByVelocity 21372 20843 21636 21271 21398 21528 20762 21045 20671 21230 20705

File2 trimByTime cutBeginning 20644 20476 21492 20746 20611 20388 20962 20587 20878 20875 21171

File2 trimByTime cutEnding 1208 1486 1972 1220 1186 1816 1220 1548 1455 1295 1275

File3 Primary Download 54286 54305 53673 53528 53182 54073 53208 53219 52857 52933 53810

File3 TrimByAltitude 53204 52435 52433 53325 52199 52576 51870 52225 52912 51975 53077

File3 trimByVelocity 49281 47761 48206 47316 47983 47669 47931 47787 47816 47140 48307

File3 trimByTime cutBeginning 49653 48740 48680 48368 48771 48315 48545 48408 48604 48252 49724

File3 trimByTime cutEnding 2396 1508 2558 2187 1590 1578 1473 1937 1511 1421 1715

File4 Primary Download 49523 49408 49091 48788 48989 48985 48637 49289 49067 49272 49005

File4 TrimByAltitude 28839 28783 27547 28628 27570 27793 28629 27945 28054 27914 28278

File4 trimByVelocity 48712 46989 46876 47082 47217 47121 47012 47207 48436 47939 47868

File4 trimByTime cutBeginning 45102 45775 46162 45593 45700 45196 44975 45812 45052 45056 45287

File4 trimByTime cutEnding 1775 1636 2288 1651 1877 1562 1821 1566 2390 1660 1896

File5 Primary Download 34061 33196 32919 33302 32829 32638 32929 33049 33150 33237 33008

File5 TrimByAltitude 28767 28763 28081 29203 28137 28123 28557 28168 28604 27732 27860

File5 trimByVelocity 29786 29390 29377 29617 29847 29157 30323 30535 29220 29083 29075

File5 trimByTime cutBeginning 31614 31097 31304 31816 31902 32292 32033 32029 32160 31128 31083

File5 trimByTime cutEnding 1877 1323 1260 2229 1337 1343 1502 1337 1817 1275 1665

File6 Primary Download 885226 958023 959831 967451 980076 966335 929821 937865 983100 960855 966798

File6 TrimByAltitude 522699 533552 526741 533526 525667 528368 526891 523982 549154 549005 555565

File6 trimByVelocity 782373 799845 805984 800062 791063 794739 795880 803028 790207 800745 817442

File6 trimByTime cutBeginning 840805 827414 872103 844905 835162 826723 826971 823463 818708 826610 825277

File6 trimByTime cutEnding 41684 40876 43062 43054 40712 41591 41569 42890 44228 43140 42077

115



Table 29. Approach2 100 Missions Download Test in Milliseconds

Approach2 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 6412 6450 6411 6536 6450 6440 6367 6457 6402 6362 6443

File1 TrimByAltitude 5834 5826 5852 5812 5809 5807 5845 5783 5818 5835 5792

File1 trimByVelocity 4815 4817 4878 4885 4889 4851 4853 4806 4875 4853 4846

File1 trimByTime cutBeginning 5357 5788 5502 5576 5693 5279 5282 5708 5247 5356 5205

File1 trimByTime cutEnding 1232 1096 2093 1488 2083 1266 990 1741 1514 1357 1946

File2 Primary Download 22387 22209 22318 22391 22323 22417 22463 22543 22291 22257 22202

File2 TrimByAltitude 21555 21757 21906 21607 21626 21375 21386 21404 21434 21470 21323

File2 trimByVelocity 20463 20506 20393 20401 20291 20496 20676 20544 20406 20325 20466

File2 trimByTime cutBeginning 20479 20051 20705 20720 20774 21095 20603 20448 21176 20494 20400

File2 trimByTime cutEnding 1525 2317 1473 1492 1381 1582 2342 1291 1501 1483 1320

File3 Primary Download 52517 53382 52946 53025 52556 52781 52516 52525 52588 52555 53177

File3 TrimByAltitude 51670 51230 53310 51333 51546 51391 51401 51186 51132 51463 51243

File3 trimByVelocity 47051 47175 47093 47082 47143 46886 47019 46888 47013 47044 46909

File3 trimByTime cutBeginning 49102 48319 48061 48526 48589 48330 47912 47905 48406 48181 47565

File3 trimByTime cutEnding 2786 2459 1523 1825 1863 1554 2262 2041 1868 1760 1525

File4 Primary Download 48301 48449 48344 49011 48333 48966 48727 48667 48462 48426 48143

File4 TrimByAltitude 27730 27665 27687 27820 27527 27575 27768 27469 27287 27411 27715

File4 trimByVelocity 47031 46542 46721 46781 47709 46800 46626 48156 48076 46831 47129

File4 trimByTime cutBeginning 44829 44918 44392 44805 44716 44891 44907 45219 45005 44684 45247

File4 trimByTime cutEnding 2292 1879 1644 1625 1584 1943 1650 2844 2284 1935 1684

File5 Primary Download 32914 32534 32754 32849 32406 32601 32792 32744 33070 32730 32910

File5 TrimByAltitude 27759 27680 27630 27701 27438 27346 27634 27534 27650 27202 27789

File5 trimByVelocity 29050 28943 28739 29026 28784 28921 29313 29158 29172 28788 29017

File5 trimByTime cutBeginning 30701 30809 31391 31060 31506 30904 30719 31194 30947 31590 30672

File5 trimByTime cutEnding 1636 1372 2659 1833 2551 1883 1745 1734 1831 2182 1389

File6 Primary Download 937514 946676 945481 951807 949381 945337 942822 958700 963268 955885 954274

File6 TrimByAltitude 529335 518194 517359 536222 540111 543750 536315 537412 542968 543102 539398

File6 trimByVelocity 792029 809202 774991 782501 781273 788009 776597 785413 781905 791396 787424

File6 trimByTime cutBeginning 833252 847842 811126 808748 814748 809813 810243 815209 810383 810804 819083

File6 trimByTime cutEnding 43267 45106 44664 43813 44397 43168 43089 44016 44521 43806 43723

116



Table 30. Approach3 100 Missions Download Test in Milliseconds

Approach3 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 1436 1287 1262 1266 1280 1263 1262 1276 1277 1271 1275

File1 TrimByAltitude 1443 1464 1469 1482 1460 1485 1441 1492 1466 1460 1458

File1 trimByVelocity 1405 1448 1476 1482 1469 1533 1453 1461 1472 1456 1582

File1 trimByTime cutBeginning 1363 1431 1408 1410 1438 1419 1413 1408 1414 1406 1406

File1 trimByTime cutEnding 1291 1287 1272 1274 1253 1274 1272 1317 1294 1320 1269

File2 Primary Download 3242 3296 3257 3282 3245 3243 3246 3241 3269 3323 3256

File2 TrimByAltitude 4101 3786 4413 3795 3864 3998 3875 3887 4136 4217 3989

File2 trimByVelocity 3793 3864 3956 3993 3977 3969 3942 4065 3989 4000 4014

File2 trimByTime cutBeginning 3709 3875 3835 3871 3862 3826 3827 3893 3839 3817 3847

File2 trimByTime cutEnding 3286 3357 3344 3419 3368 3325 3332 3363 3346 3316 3322

File3 Primary Download 4832 4846 4800 4825 4821 4790 4825 4813 4811 4814 4809

File3 TrimByAltitude 5842 5800 5779 6116 6469 5778 5732 5835 6479 5910 5757

File3 trimByVelocity 5830 5859 5916 5965 5979 5873 6022 5918 5965 6021 5942

File3 trimByTime cutBeginning 5621 5782 5799 5849 5770 5800 5729 5743 5723 5782 5735

File3 trimByTime cutEnding 4896 5030 4969 4998 5026 4943 4974 4987 4984 5081 4964

File4 Primary Download 4882 4833 4811 4903 4848 4937 4898 4952 4834 4897 4886

File4 TrimByAltitude 5806 5944 5948 5968 6011 5684 5750 5642 5686 5641 5874

File4 trimByVelocity 6063 6087 6154 6022 6026 5970 6046 5983 6026 5961 5974

File4 trimByTime cutBeginning 5660 5841 5746 5796 5788 5793 5794 5739 5832 5763 5749

File4 trimByTime cutEnding 4951 5157 5042 5085 5085 5051 5082 5062 5080 5013 5035

File5 Primary Download 4312 4406 4305 4351 4334 4316 4326 4327 4310 4364 4296

File5 TrimByAltitude 5006 5135 5009 5102 5361 5428 5330 5357 5372 5107 5085

File5 trimByVelocity 5119 5177 5180 5292 5235 5195 5252 5212 5250 5216 5209

File5 trimByTime cutBeginning 5069 5126 5134 5162 5176 5146 5154 5224 5137 5094 5149

File5 trimByTime cutEnding 4369 4429 4478 4490 4465 4370 4434 4537 4474 4345 4452

File6 Primary Download 557343 558547 552750 556998 555479 552195 554342 554592 554684 557302 554697

File6 TrimByAltitude 711925 722079 714926 719022 715251 717668 714244 716104 716267 717080 719023

File6 trimByVelocity 749713 754664 753218 756507 755805 753602 751971 754475 758313 754743 755199

File6 trimByTime cutBeginning 762137 764899 762001 765277 762012 761531 761050 763898 764149 764106 762222

File6 trimByTime cutEnding 614183 612351 610746 613478 613903 608618 611491 610503 613230 613290 613215

117



Table 31. Approach1 1000 Missions Download Test in Milliseconds

Approach1 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 8203 7739 7545 7338 7471 7401 7342 7210 7415 8304 7719

File1 TrimByAltitude 7029 7261 6671 6898 7173 7542 7064 6682 6936 7059 7215

File1 trimByVelocity 6118 6117 6495 7015 7612 6021 6069 6261 6078 6479 6109

File1 trimByTime cutBeginning 6675 7219 6741 6671 6456 6243 7043 6485 6538 7220 6491

File1 trimByTime cutEnding 1913 2047 3293 2089 1965 2173 2129 2365 2050 2269 1992

File2 Primary Download 23872 23637 24065 23184 23213 24234 23527 23511 23713 24567 24104

File2 TrimByAltitude 23486 22938 23471 24031 23369 22595 22588 23206 23645 23640 24068

File2 trimByVelocity 22595 22415 21928 22963 22172 23040 22141 22084 22229 21888 23437

File2 trimByTime cutBeginning 21664 21791 23036 21583 22883 21928 21660 21785 22208 21568 21649

File2 trimByTime cutEnding 2364 2814 2395 1887 2960 2669 2880 2184 2662 2552 2226

File3 Primary Download 54692 53972 53941 53778 54294 53090 53433 54277 54617 53926 54248

File3 TrimByAltitude 53090 52786 53305 53487 53823 53202 53602 53248 53652 54571 53600

File3 trimByVelocity 48844 49736 49886 49174 48842 48873 49005 48906 50065 49123 49145

File3 trimByTime cutBeginning 49844 49680 49576 50162 49785 49903 49726 49415 50353 49750 50378

File3 trimByTime cutEnding 2602 2611 3653 2745 2768 3170 2821 3185 2829 2736 2670

File4 Primary Download 50101 49660 49449 51121 49377 49424 49887 49602 50712 49440 49302

File4 TrimByAltitude 30616 28922 29766 28764 29664 28625 29167 29352 29543 28671 29576

File4 trimByVelocity 49308 48505 48756 48147 48030 48231 48938 50144 48839 48501 48689

File4 trimByTime cutBeginning 46351 46522 48795 46117 48069 46253 46531 47748 47144 46244 46840

File4 trimByTime cutEnding 3127 2982 3014 3384 2579 2439 2630 3235 3470 3093 2394

File5 Primary Download 34674 33585 34853 34533 33614 33812 34860 34368 34534 33909 34501

File5 TrimByAltitude 29178 29398 30206 29360 29455 28663 29530 28927 29393 28795 29905

File5 trimByVelocity 30629 32456 30931 30569 31306 30184 31044 30218 30564 30278 31681

File5 trimByTime cutBeginning 32443 33229 32467 32954 34190 32368 33431 33188 32618 32530 32593

File5 trimByTime cutEnding 3052 2279 2644 2274 2630 2635 2221 3278 3042 2615 2481

File6 Primary Download 955836 950462 955211 943122 951358 947089 968926 958714 964837 955520 957770

File6 TrimByAltitude 540698 548014 551136 549914 548565 543242 553859 551339 550874 547900 546223

File6 trimByVelocity 815060 815919 819587 823458 814353 812884 820942 818868 819733 826711 817730

File6 trimByTime cutBeginning 842195 866693 849751 846574 848027 850153 856063 847475 842059 851290 858601

File6 trimByTime cutEnding 44368 45062 44402 45092 45305 44612 45375 44451 44888 45012 44116

118



Table 32. Approach2 1000 Missions Download Test in Milliseconds

Approach2 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 7010 6509 6448 6518 6517 6448 6633 6477 6473 6527 6479

File1 TrimByAltitude 5850 5862 5864 5796 5846 5846 5930 5900 5842 5874 5865

File1 trimByVelocity 4887 4898 4816 4850 4833 4886 4950 4852 4859 4873 4868

File1 trimByTime cutBeginning 5703 5683 5809 5340 5361 5474 5278 5605 5372 5525 5407

File1 trimByTime cutEnding 2148 1337 1297 1026 1244 1111 2346 1587 1069 1429 1432

File2 Primary Download 22810 22736 22513 22689 22385 22536 22507 22543 23208 22735 22408

File2 TrimByAltitude 21441 21556 21751 21609 21634 21562 21624 21114 21589 21470 21555

File2 trimByVelocity 20549 20576 20524 20697 20465 20394 20614 20504 20594 20602 20649

File2 trimByTime cutBeginning 20786 22105 20608 20426 20308 20584 21343 21257 20911 21512 21619

File2 trimByTime cutEnding 1231 1469 1592 1243 1810 1390 1813 1623 1917 1425 1660

File3 Primary Download 53101 53110 53219 52899 52653 52809 52641 52781 52581 52784 52756

File3 TrimByAltitude 51253 51687 51867 51748 51144 51660 51577 51608 51235 51628 51303

File3 trimByVelocity 46997 46900 46884 47216 47363 47589 47202 47619 46921 47103 47470

File3 trimByTime cutBeginning 48316 47980 49432 47973 47942 48316 48255 49210 48724 48509 49384

File3 trimByTime cutEnding 2551 1597 1611 1669 1907 1954 1787 2027 1890 1841 2041

File4 Primary Download 48322 48233 48514 47936 48542 48596 48798 48215 48577 48495 48020

File4 TrimByAltitude 27729 28136 27652 27587 27713 27533 27693 27201 27426 27493 27558

File4 trimByVelocity 46816 46806 47360 46998 47236 47140 46994 46869 47115 47281 47110

File4 trimByTime cutBeginning 45556 44412 44915 44993 44991 44818 45217 44922 44617 44974 44758

File4 trimByTime cutEnding 2530 2318 2362 1879 2391 2075 1675 1937 2281 1717 1655

File5 Primary Download 32813 33042 32612 32500 32582 32840 32816 32873 32871 32395 32511

File5 TrimByAltitude 27689 27572 27536 27441 27762 27830 28802 27739 27802 27565 27606

File5 trimByVelocity 29205 28913 28904 28732 28642 29081 29183 28995 29093 28821 28804

File5 trimByTime cutBeginning 30594 31351 31793 30931 30510 31175 30773 31353 31511 31451 30948

File5 trimByTime cutEnding 1348 1751 1378 2693 1568 2005 2247 2034 2365 2159 1367

File6 Primary Download 940253 947083 947466 963360 967268 945172 955504 957794 948114 950145 957650

File6 TrimByAltitude 548446 551369 544816 554685 542897 548294 549436 549880 545917 553087 549236

File6 trimByVelocity 810270 818876 825100 817508 815628 816905 820049 816418 821459 810337 809665

File6 trimByTime cutBeginning 846116 842375 852431 845981 852031 847880 845182 843237 847360 843714 847935

File6 trimByTime cutEnding 44144 44868 44561 44555 44062 44524 45112 43359 45287 44216 44715

119



Table 33. Approach3 1000 Missions Download Test in Milliseconds

Approach3 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

File1 Primary Download 1337 1273 1413 1404 1401 1380 1281 1439 1293 1275 1269

File1 TrimByAltitude 1545 1513 1506 1515 1469 1505 1459 1515 1462 1497 1480

File1 trimByVelocity 1674 1496 1528 1541 1502 1508 1493 1572 1489 1520 1486

File1 trimByTime cutBeginning 1398 1426 1419 1447 1432 1517 1415 1457 1427 1428 1467

File1 trimByTime cutEnding 1269 1285 1290 1360 1306 1286 1285 1354 1330 1284 1267

File2 Primary Download 3860 3293 3268 3966 3892 3310 3961 3453 3957 3852 3252

File2 TrimByAltitude 3913 3924 3933 3813 3969 3820 3930 4000 3847 3954 3823

File2 trimByVelocity 3891 4031 4006 4027 4008 4042 4037 4103 4079 4005 4041

File2 trimByTime cutBeginning 3801 3921 3895 3939 3938 3884 3896 4043 3896 3897 3869

File2 trimByTime cutEnding 3301 3401 3377 3392 3382 3356 3378 3493 3380 3333 3369

File3 Primary Download 5216 4883 4817 4869 4885 4834 4821 5379 5187 4846 5193

File3 TrimByAltitude 6032 5771 5761 5795 5763 5745 5760 6376 6147 5747 6147

File3 trimByVelocity 6200 6065 5989 6029 6030 6015 6045 6528 6367 5991 6370

File3 trimByTime cutBeginning 6078 5858 5843 5843 5847 5807 5763 6445 6086 5825 6048

File3 trimByTime cutEnding 5442 5095 5089 5065 5122 5035 5083 5514 5555 5064 5499

File4 Primary Download 4889 5001 4941 4961 4984 4966 5317 5489 5312 5314 4964

File4 TrimByAltitude 5462 5608 5577 5599 5616 5615 5911 6201 5944 5905 5579

File4 trimByVelocity 5943 6081 6055 6095 6072 6019 6361 6582 6398 6379 6060

File4 trimByTime cutBeginning 5727 5829 5801 5831 5847 5793 6073 6224 6101 6082 5791

File4 trimByTime cutEnding 4974 5115 5089 5079 5123 5080 5362 5588 5490 5424 5045

File5 Primary Download 4317 4725 4706 4672 4388 4356 4337 4402 4387 4748 4678

File5 TrimByAltitude 4974 5453 5446 5408 5086 5086 5076 5149 5102 5458 5490

File5 trimByVelocity 5143 5655 5644 5599 5314 5259 5258 5373 5287 5627 5652

File5 trimByTime cutBeginning 5115 5444 5359 5466 5187 5232 5214 5344 5165 5411 5467

File5 trimByTime cutEnding 4394 4733 4713 4872 4376 4421 4500 4558 4366 4727 4735

File6 Primary Download 561818 559917 558891 564451 559044 558695 558890 562641 559027 556841 559821

File6 TrimByAltitude 731920 730663 727610 727424 728492 728559 725682 727552 725281 724773 727244

File6 trimByVelocity 768512 769403 765052 766587 763907 767130 763222 765305 766346 764353 767640

File6 trimByTime cutBeginning 771440 772340 769359 768401 770870 770476 773847 773614 772600 774492 777021

File6 trimByTime cutEnding 616533 614722 615246 615000 615728 614667 616442 614073 615601 612358 616040

120



Table 34. Approaches 1,2,3 SDM Data Test 100 Missions in Milliseconds

Approach1 100missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 2536 1863 1811 1812 1766 1764 1766 1760 1753 1761 1772

latLongBounding Test 747 652 645 632 635 630 633 636 634 634 626

testPlatformDynamics 178652 176205 180053 196104 203520 194478 205279 194847 209737 185722 200264

timeOfDay 16630 19310 18819 16154 15006 14640 18403 17508 17158 17143 15448

satelliteType 916 154 157 557 556 563 555 556 566 565 555

Approach2 100missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 824 296 284 284 281 281 293 286 290 286 286

latLongBounding Test 151 15 14 14 14 13 14 15 13 15 13

testPlatformDynamics 164975 158363 147161 180177 207023 186084 148071 191408 184771 150931 156426

timeOfDay 381 43 38 38 34 39 33 39 35 40 33

satelliteType 932 390 392 387 383 395 390 395 394 394 400

Approach3 100missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 2424 2291 2343 2253 2286 2321 2277 2278 2285 2246 2262

latLongBounding Test 705 675 712 673 670 683 676 669 672 684 669

testPlatformDynamics 936987 912878 925321 916060 919380 943424 920056 919861 923213 934552 918725

timeOfDay 967436 974936 945189 946264 949603 949480 949760 950070 947507 948262 947275

satelliteType 922 946 904 915 930 907 199 890 906 196 1469

121



Table 35. Approaches 1,2,3 SDM Data Test 1000 Missions in Milliseconds

Approach1 1000missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 110001 129120 146723 141105 142176 140631 145876 137654 146436 142488 130459

latLongBounding Test 22468 17373 20192 17634 19053 18613 19640 18947 19805 20307 18140

testPlatformDynamics 2104957 2142552 2224422 2197395 2214467 2175068 2215909 2203566 2176183 2129028 2138310

timeOfDay 227280 211323 221173 226943 215222 231791 238245 219019 226476 225422 217044

satelliteType 9443 9307 9360 9349 9394 9355 9479 9459 9468 9338 9285

Approach2 1000missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 10240 8455 7808 8042 7730 7944 7797 7891 7965 7978 8066

latLongBounding Test 1821 834 764 847 852 794 921 821 807 799 704

testPlatformDynamics 1545762 1518939 1490109 1493251 1475384 1540886 1493612 1488796 1480156 1491464 1493620

timeOfDay 2031 1990 2128 1958 1920 2611 1896 1776 1985 1960 1875

satelliteType 10044 8638 9227 8752 8773 8634 8634 8678 8855 8932 9339

Approach3 1000missions

Data Test 1 2 3 4 5 6 7 8 9 10 11

velocity test 116495 112052 109173 103852 104105 102533 101678 103875 114582 108867 107151

latLongBounding Test 19682 19982 19557 17257 18488 18928 17494 18058 18719 18941 16754

testPlatformDynamics 6115114 6091754 6085870 6097646 6111151 6104714 6095368 6104707 6092079 6107109 6099022

timeOfDay 6264344 6251619 6252919 6262508 6262713 6245122 6246740 6256094 6251540 6264365 6257381

satelliteType 9316 9174 9238 9097 9081 9181 9167 9135 9310 9290 9122

122



Table 36. Approach1 100 Missions Metadata Queries in Milliseconds

Approach1 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 126 3 3 2 293 2 2 2 2 2 2

Vehicle query 62 1 1 1 1 1 1 0 1 1 1

sensorType View update 7 3 3 11 10 12 4 2 3 13 4

Type query using sensorTypes View 2 1 1 1 1 1 3 1 1 1 1

Type combination query using sensorTypes
View

1 1 1 1 1 1 1 1 1 1 1

Terrain query 3 0 0 0 0 0 0 0 0 0 0

skyCover query 2 0 0 0 0 0 0 0 0 0 0

obscuration query 2 0 0 0 0 0 0 0 0 0 0

precipitation query 1 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 142 130 131 131 131 135 133 132 132 128 128

maneuver query 2 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 1 1 1 1 1 1 1 1 1 1 1

Type combination query defining a
temporary table

1 1 1 1 1 1 1 1 1 1 1

Vehicle query with select statement 1 1 1 1 1 2 1 1 1 1 1

SensorQualityTest using sensorTypes View 137 128 128 126 136 135 133 131 130 126 125

Terrain combination query 0 0 0 0 0 1 0 0 0 0 0

123



Table 37. Approach2 100 Missions Metadata Queries in Milliseconds

Approach2 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 119 4 2 2 2 132 2 3 2 2 2

Vehicle query 23 1 1 1 1 1 1 1 1 1 0

sensorType View update 7 4 3 3 3 12 3 3 3 3 3

Type query using sensorTypes View 2 1 1 1 1 1 1 1 1 1 1

Type combination query using sensorTypes
View

1 1 1 1 1 1 1 1 1 1 1

Terrain query 4 0 0 0 0 0 0 0 0 0 0

skyCover query 2 0 0 0 0 0 0 0 0 0 0

obscuration query 1 0 0 0 0 0 0 0 0 0 0

precipitation query 1 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 136 125 126 129 139 129 126 138 126 124 124

maneuver query 2 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 1 1 1 1 1 1 1 1 1 1 1

Type combination query defining a
temporary table

1 1 1 1 1 1 1 1 1 1 1

Vehicle query with select statement 1 1 1 1 1 1 1 1 1 1 1

SensorQualityTest using sensorTypes View 130 125 122 123 123 124 123 123 123 122 121

Terrain combination query 0 0 0 0 0 0 0 0 0 0 0

124



Table 38. Approach3 100 Missions Metadata Queries in Milliseconds

Approach3 100missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 42 2 2 2 2 34 27 2 11 2 2

Vehicle query 14 1 1 1 0 0 1 0 1 0 1

sensorType View update 5 3 12 5 2 27 3 4 4 2 3

Type query using sensorTypes View 2 1 1 1 1 1 1 1 1 1 1

Type combination query using sensorTypes
View

1 1 1 1 1 1 1 1 1 1 1

Terrain query 3 0 0 0 0 0 0 0 0 0 0

skyCover query 1 0 0 0 0 0 0 0 0 0 0

obscuration query 2 0 0 0 0 0 0 0 0 0 0

precipitation query 1 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 149 155 145 141 142 145 142 144 155 156 139

maneuver query 2 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 1 2 1 1 1 1 1 1 1 1 1

Type combination query defining a
temporary table

1 1 1 1 1 1 1 1 1 1 1

Vehicle query with select statement 1 1 1 1 1 1 1 1 1 1 0

SensorQualityTest using sensorTypes View 137 136 138 140 139 140 142 140 140 136 136

Terrain combination query 0 0 0 0 0 0 0 0 0 0 0

125



Table 39. Approach1 1000 Missions Metadata Queries in Milliseconds

Approach1 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 41 2 2 46 3 2 14 4 2 161 2

Vehicle query 21 3 3 3 3 3 3 3 3 3 3

sensorType View update 8 5 5 326 1127 7 9 5 5 5 7

Type query using sensorTypes View 10 8 8 9 8 8 8 8 8 8 8

Type combination query using sensorTypes
View

6 5 6 6 5 6 6 5 5 5 5

Terrain query 4 1 1 1 1 1 1 1 1 1 1

skyCover query 3 0 0 0 0 0 0 0 0 0 0

obscuration query 3 0 0 0 0 0 0 0 0 0 0

precipitation query 2 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 14972 14746 14893 15171 14912 15255 15322 15218 15601 15012 14878

maneuver query 6 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 8 8 8 8 8 8 8 8 8 8 8

Type combination query defining a
temporary table

8 8 8 8 8 8 9 8 8 8 8

Vehicle query with select statement 6 6 6 6 5 6 6 6 6 6 6

SensorQualityTest using sensorTypes View 14470 14414 14604 14462 15018 14723 14858 14499 14400 14400 14519

Terrain combination query 4 0 0 0 0 0 0 0 0 0 0

126



Table 40. Approach2 1000 Missions Metadata Queries in Milliseconds

Approach2 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 107 2 2 3 2 3 15 4 4 4 911

Vehicle query 76 3 3 4 3 3 3 3 3 3 3

sensorType View update 13 5 15 5 5 6 5 5 5 5 5

Type query using sensorTypes View 9 8 8 9 8 8 8 8 8 8 7

Type combination query using sensorTypes
View

6 6 5 6 5 5 6 5 5 5 5

Terrain query 7 0 0 1 1 1 0 0 0 1 1

skyCover query 4 0 0 0 0 0 0 0 0 0 0

obscuration query 3 0 0 0 0 0 0 0 0 0 0

precipitation query 2 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 13215 13147 13081 13278 13059 13081 13736 13205 13051 13085 13127

maneuver query 5 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 8 8 7 8 8 8 8 8 8 8 8

Type combination query defining a
temporary table

8 8 8 9 8 8 8 8 8 9 8

Vehicle query with select statement 6 6 6 6 5 5 6 6 5 6 6

SensorQualityTest using sensorTypes View 12868 13857 13979 12824 12852 13460 13098 12892 12866 13069 12946

Terrain combination query 11 0 0 0 0 0 0 0 0 0 0

127



Table 41. Approach3 1000 Missions Metadata Queries in Milliseconds

Approach3 1000missions

Trial 1 2 3 4 5 6 7 8 9 10 11

Vehicle View Update 68 3 2 2 3 157 2 4 2 2 2

Vehicle query 65 3 3 3 3 3 3 3 3 3 3

sensorType View update 19 5 5 5 5 6 5 5 33 5 5

Type query using sensorTypes View 9 8 8 8 8 9 8 9 9 8 8

Type combination query using sensorTypes
View

5 5 6 5 5 6 5 5 6 5 5

Terrain query 3 0 0 0 0 1 0 0 1 0 0

skyCover query 2 0 0 0 0 0 0 0 0 0 0

obscuration query 2 0 0 0 0 0 0 0 0 0 0

precipitation query 2 0 0 0 0 0 0 0 0 0 0

SensorQualityTest using temporary table 13829 13758 13747 13733 13954 14251 13965 14549 13708 13772 13704

maneuver query 10 0 0 0 0 0 0 0 0 0 0

Type query using SELECT statement 8 8 8 8 8 8 8 8 8 8 8

Type combination query defining a
temporary table

8 8 8 9 8 8 8 8 8 8 8

Vehicle query with select statement 6 6 6 6 6 5 6 6 6 6 5

SensorQualityTest using sensorTypes View 13567 13548 13576 13557 13590 13472 13541 13579 14227 13550 13573

Terrain combination query 2 0 0 0 0 0 0 0 0 0 0

128



Appendix D. KP/SCP GA Results

Appendix D provides the raw test data associated with the KP/SCP Genetic and

Hill Climber Algorithms.

129



Table 42. Genetic Algorithm 100 Missions Results
Database Size 100 100 100 100 100 100 100 100 100
Weight 6000 6000 6000 10000 10000 10000 20000 20000 20000
Population 10 25 50 10 25 50 10 25 50

Trial 1

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 956005 817515 1550018 2100740 1920942 2527973 4729692 4061681 4511575
Total # Solutions Found 90 33 52 1123 24562 21292 57242 56356 72945
Total Time (s) 4 4 6 3 3 5 3 3 3

Trial 2

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 772209 1309627 822646 2290239 2744832 2379700 4240545 4715164 4678303
Total # Solutions Found 794 36 60 1581 40376 18417 36354 75909 72807
Total Time (s) 4 4 4 3 4 5 2 3 3

Trial 3

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1354229 1242903 1636310 1912613 2692832 2599731 4392349 4238890 4716433
Total # Solutions Found 1625 299 68 25785 15836 5198 88817 65622 69407
Total Time (s) 5 3 10 3 4 4 3 3 3

Trial 4

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1081510 1017604 1158841 1936078 2402159 2608313 4658891 4225231 4755117
Total # Solutions Found 2095 25 68 2315 6154 12252 73690 30524 63645
Total Time (s) 4 15 7 10 3 3 3 2 3

Trial 5

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1470576 1077449 594993 1925262 1831532 2502679 4178501 4488439 4479200
Total # Solutions Found 54 37 50 16205 24733 6791 65413 76548 51315
Total Time (s) 3 3 8 4 4 3 2 3 3

Trial 6

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1557442 888586 1116481 2482974 2588883 1840408 4635833 4316923 4431443
Total # Solutions Found 12 36 63 5564 3684 33765 97612 85650 59380
Total Time (s) 11 4 6 3 3 4 3 3 3

Trial 7

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1188001 1173926 1174679 1867831 2210820 2459377 4429288 4710421 4472417
Total # Solutions Found 1360 31 54 3055 33013 18156 87068 75672 66572
Total Time (s) 4 5 4 7 4 4 3 3 3

Trial 8

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1297874 1743462 909097 2199366 2284828 2322725 4372641 4427751 4335357
Total # Solutions Found 155 47 61 19692 18654 28044 75919 67200 73176
Total Time (s) 2 4 5 3 3 4 3 3 3

Trial 9

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 1310773 1435684 1186052 2191914 2418029 2466837 4667241 4676728 4561610
Total # Solutions Found 1732 35 64 23756 19785 13132 51535 58742 64689
Total Time (s) 5 5 5 4 4 4 2 3 3

Trial 10

Query Times (s) 1 1 1 1 1 1 1 1 1
High Value 870228 1504014 1271538 2316823 2789346 2438774 4511834 4500857 4596302
Total # Solutions Found 10 638 66 11259 2708 16588 93857 66326 54870
Total Time (s) 10 4 6 3 3 4 3 3 3

130



Table 43. Genetic Algorithm 1000 Missions Results
Database Size 1000 1000 1000 1000 1000 1000 1000 1000 1000
Weight 6000 6000 6000 10000 10000 10000 20000 20000 20000
Population 10 25 50 10 25 50 10 25 50

Trial 1

Query Times (s) 17 16 16 16 16 15 15 15 15
High Value 1824382 1551112 1990971 2869563 2818750 2615439 4033536 4704251 4891902
Total # Solutions Found 1926 14188 45133 108144 66480 3583 89 749017 425375
Total Time (s) 22 72 81 63 56 17 15 59 61

Trial 2

Query Times (s) 15 15 16 16 15 15 15 15 15
High Value 1654887 1778683 1856345 2767677 2735280 2735422 4455408 4877707 4875485
Total # Solutions Found 5080 751 25160 149892 1092 2121 106 357232 343676
Total Time (s) 25 17 82 63 17 17 15 63 61

Trial 3

Query Times (s) 15 15 16 16 16 15 15 15 15
High Value 1378533 1839203 1473415 2796623 2675304 2684612 4912851 4878532 4872604
Total # Solutions Found 4487 41764 521 34570 3728 2124 311030 385607 241497
Total Time (s) 26 79 19 64 17 16 62 62 59

Trial 4

Query Times (s) 16 15 16 16 19 15 15 15 15
High Value 1256481 1694443 1880444 2742370 3195731 2229854 4774508 4840780 4879704
Total # Solutions Found 3563 1197 869 63651 91036 87 307241 1698758 495149
Total Time (s) 38 17 20 62 82 16 62 104 107

Trial 5

Query Times (s) 16 15 16 16 16 15 15 15 15
High Value 1935222 1536342 1692546 2506393 2836878 2812476 4852791 4911892 4765623
Total # Solutions Found 4326 938 668 69 61565 2615 355270 347674 468523
Total Time (s) 22 17 20 16 55 16 62 59 60

Trial 6

Query Times (s) 18 15 16 16 16 15 15 15 15
High Value 1393765 1814725 1882978 2823372 2656556 2798542 4895407 3974590 4884083
Total # Solutions Found 4097 529 1071 146472 2971 142758 388211 82 321472
Total Time (s) 24 17 19 64 17 79 63 15 60

Trial 7

Query Times (s) 16 15 16 15 16 15 15 15 15
High Value 1341025 1854657 1813020 2770434 2785024 2775594 4416206 4860122 4893845
Total # Solutions Found 7297 466 988 184816 173751 2126 114 422839 223403
Total Time (s) 32 17 18 42 57 16 15 60 59

Trial 8

Query Times (s) 16 15 16 16 15 15 15 15 15
High Value 1437048 1847669 2000198 3116437 2815843 2732844 4785043 4899658 5251788
Total # Solutions Found 3804 26564 729 86080 2905 3837 553117 380481 297063
Total Time (s) 155 102 19 63 16 16 60 63 60

Trial 9

Query Times (s) 16 16 16 16 15 15 15 15 15
High Value 1410037 1398820 1547180 2705815 2780848 2971723 4272059 4891970 4855794
Total # Solutions Found 4266 36 1043 69965 3249 2398 97 664947 347124
Total Time (s) 196 17 19 60 16 16 15 104 60

Trial 10

Query Times (s) 16 30 16 16 15 15 15 15 15
High Value 1321880 1822874 1664516 2806521 2872001 2811913 4889882 4851477 5224653
Total # Solutions Found 5262 774 693 66366 2548 2513 1971770 301897 339324
Total Time (s) 196 32 19 59 16 16 109 59 62

131



Table 44. HillClimber 100/1000 Missions Results

Database Size 100 100 100 1000 1000 1000
Weight 6000 10000 20000 6000 10000 20000

Trial 1

Query Times (s) 1 1 1 18 16 16
High Value 309817 1420066 4236426 521123 974609 2461836
Total # Solutions Found 2 4 8 1 4 8
Total Time (s) 2 1 1 18 17 16

Trial 2

Query Times (s) 1 1 1 16 16 16
High Value 1381472 1265121 1238870 1190342 2069674 3460606
Total # Solutions Found 4 2 1 3 4 6
Total Time (s) 1 1 1 16 16 17

Trial 3

Query Times (s) 1 1 1 16 16 16
High Value 1147166 1021666 3035028 1306170 2153661 4746294
Total # Solutions Found 2 2 3 3 1 11
Total Time (s) 1 1 1 16 17 16

Trial 4

Query Times (s) 1 1 1 16 16 16
High Value 628935 2159280 3879872 1051911 2164604 4268168
Total # Solutions Found 1 2 2 8 3 13
Total Time (s) 1 1 1 16 16 16

Trial 5

Query Times (s) 1 1 1 16 16 16
High Value 1005519 2198260 3238765 898947 2125600 3124768
Total # Solutions Found 4 2 4 7 8 6
Total Time (s) 1 1 1 17 16 16

Trial 6

Query Times (s) 1 1 1 16 16 16
High Value 286475 1415617 3591181 815342 2716075 2004085
Total # Solutions Found 2 2 7 7 4 3
Total Time (s) 1 1 1 16 16 16

Trial 7

Query Times (s) 1 1 1 16 16 15
High Value 1046692 1115558 2210963 873491 2441861 3528764
Total # Solutions Found 1 2 2 3 3 8
Total Time (s) 1 1 1 16 16 16

Trial 8

Query Times (s) 1 1 1 16 16 15
High Value 1372693 1363302 3044141 957555 1976702 2721342
Total # Solutions Found 2 1 3 4 7 6
Total Time (s) 1 1 1 16 16 16

Trial 9

Query Times (s) 1 1 1 16 16 16
High Value 828801 2175846 3044422 1181700 1627541 4165800
Total # Solutions Found 3 4 5 5 3 6
Total Time (s) 1 1 1 16 16 16

Trial 10

Query Times (s) 1 1 1 16 16 16
High Value 759819 1887990 3360566 1254653 1971049 2707224
Total # Solutions Found 2 2 5 1 7 6
Total Time (s) 1 1 1 16 16 16

132



Appendix E. SQL Queries

1 -- SQL Queries
2 -- Updated By: Capt Sean Mochocki
3
4 -----------------------------------------------------------
5 -- SQL queries in support of PNT database testing
6 -----------------------------------------------------------
7 --The following sql queries are used in conjunction with the

functions in the download test.
8
9 --In the case of Approach 1, the following SQL statement is

used to determine which channels are affiliated with the
mission of interest. These channels are then used to
determine the starting and ending ids of the rows in the
sdm table for that mission.

10
11 SELECT DISTINCT
12 (id)
13 FROM
14 "channelInfo"
15 WHERE
16 missionDescription_id = ? ;
17
18 --The following SQL statements are used for Approach 1 and

Approach 3 for the trimByAltitude function:
19
20 SELECT
21 MIN(eventNumber),
22 MAX(eventNumber)
23 FROM
24 geodeticposition3d
25 WHERE
26 channel_id IN
27 (
28 channelList
29 )
30 AND
31 (
32 altitude > ?
33 )
34 ;
35
36 --The following SQL statement is used for Approach 2 for the

trimByAltitude function
37
38 SELECT
39 MIN(eventNumber),
40 MAX(eventNumber)
41 FROM
42 geodeticposition3d_ ?
43 WHERE
44 altitude > ? ;
45
46 --The following -SQL statement is used for Approach 1 and

Approach 3 for the trimByVelocity function:
47

133



48 SELECT
49 MIN(g.eventNumber)
50 FROM
51 positionvelocityattitude g
52 INNER JOIN
53 "channelInfo" c
54 ON c.id = g.channel_id
55 WHERE
56 channel_id IN
57 (
58 channelList
59 )
60 AND
61 (
62 velocity [1] > ?
63 OR velocity [2] > ?
64 OR velocity [3] > ?
65 )
66 ;
67
68 --The following SQL statement is used for Approach 2 for the

trimByVelocity function:
69
70 SELECT
71 MIN(eventNumber)
72 FROM
73 positionvelocityattitude_ ?
74 WHERE
75 (
76 velocity [1] > ?
77 OR velocity [2] > ?
78 OR velocity [3] > ?
79 )
80 ;
81
82 --The following SQL statements is used for Approach 1 to

determine what the minimum imu utime is for a user -
specified mission.

83
84 SELECT
85 MIN(g.utime)
86 FROM
87 imu g
88 INNER JOIN
89 channelInfo c
90 ON c.id = g.channel_id
91 WHERE
92 channel_id IN
93 (
94 channelList
95 )
96 ;
97
98 --The following SQL statement is used for Approach 1 to

determine the pivoting eventNumber for the trimByTime
functions

99
100 SELECT

134



101 MIN (g.eventNumber)
102 FROM
103 imu g
104 INNER JOIN
105 channelInfo c
106 ON c.id = g.channel_id
107 WHERE
108 channel_id IN
109 (
110 channelList
111 )
112 AND g.utime >=
113 (
114 minEventNumber + time
115 )
116 ;
117
118 --The following SQL statements is used for Approach 2 to

determine what the minimum imu utime is for a user
specified mission.

119
120 SELECT
121 MIN(utime)
122 FROM
123 imu_ ?
124
125 --The following SQL statement is used for Approach 2 to

determine the pivoting eventNumber for the trimByTime
functions

126
127 SELECT
128 MIN (g.eventNumber)
129 FROM
130 imu_ ?
131 WHERE
132 utime >=
133 (
134 minEventNumber + time
135 )
136 ;
137
138 --In the case of Approach 3, the same event numbers are

identified as for Approaches 1 and 2 by identifying the
utime of the first imu event and then finding the event
number of the imu event which is at least a user specified
later utime.

139
140 --The following sequence of SQL demonstrates the query series

utilized to determine the beginning and ending ids of an
SDM table for a specific mission. For Approach 2 the first
and last ids of the table and mission of interest are just
identified directly , as they only correspond to that
specific mission.

141
142 SELECT DISTINCT
143 (id)
144 FROM
145 "channelInfo"

135



146 WHERE
147 missionDescription_id = ? ;
148 SELECT
149 min_max (eventNumber)
150 FROM
151 "tableName"
152 WHERE
153 channel_id IN
154 (
155 ?,
156 ?,
157 ...,
158 ?
159 )
160 ;
161 SELECT
162 min_max(id)
163 FROM
164 "tableName"
165 WHERE
166 channel_id IN
167 (
168 ?,
169 ?,
170 ...,
171 ?
172 )
173 AND
174 (
175 eventNumber = ?
176 )
177 ;
178
179 --The following statement is the SQL statement which generates

the result set with the necessary information to recreate
the original imu LCM Event

180 SELECT
181 c.channelname ,
182 g.utime ,
183 g.eventNumber ,
184 c.deviceid ,
185 g.timestamp_arrival_sec ,
186 g.timestamp_arrival_nsec ,
187 g.timestamp_valid_sec ,
188 g.timestamp_valid_nsec ,
189 g.seqnumber ,
190 g.delta_v ,
191 g.delta_theta ,
192 FROM
193 "channelInfo" c
194 INNER JOIN
195 imu g
196 ON g.channel_id = c.id
197 WHERE
198 g.id BETWEEN (next_sdm_id) AND
199 (
200 next_sdm_id + bundle_size - 1
201 )

136



202 ;
203
204 --metaData Tests
205 --The following SQL statements are used with conjunction with

the vehicleTestViewUpdate function.
206
207 DROP VIEW IF EXISTS vehicleClass;
208 CREATE VIEW vehicleClass AS
209 SELECT DISTINCT
210 m.id,
211 v.vehicle
212 FROM
213 "channelInfo" c
214 INNER JOIN
215 "missionDescription" m
216 ON m.id = c.missionDescription_id
217 INNER JOIN
218 sensorInstallationInfo s
219 ON c.sensorInstallation_id = s.id
220 INNER JOIN
221 vehicle v
222 ON v.id = s.sensorModel_id
223 ORDER BY
224 m.id;
225 SELECT
226 id
227 FROM
228 vehicleClass
229 WHERE
230 vehicle = ’randomVehicle ’;
231
232 --The following SQL statements are used in conjunction with

the sensorTypeTestWithView function.
233
234 DROP VIEW IF EXISTS sensorTypes;
235 CREATE VIEW sensorTypes AS
236 SELECT DISTINCT
237 m.id,
238 sm.type
239 FROM
240 "channelInfo" c
241 INNER JOIN
242 "missionDescription" m
243 ON m.id = c.missionDescription_id
244 INNER JOIN
245 sensorInstallationInfo s
246 ON c.sensorInstallation_id = s.id
247 INNER JOIN
248 sensorModel sm
249 ON sm.id = s.sensorModel_id
250 ORDER BY
251 m.id;
252 SELECT
253 id
254 FROM
255 sensorTypes
256 WHERE
257 type = ’randomSensorTypes ’;

137



258
259 SELECT DISTINCT
260 a.id
261 from
262 sensorTypes a
263 INNER JOIN
264 sensorTypes b
265 ON a.id = b.id
266 WHERE
267 a.type = ’randomType1 ’
268 AND b.type = ’randomType2 ’;
269
270 --The following SQL statements are used in conjuction with the

weatherTest function.
271
272 WITH Temporary AS
273 (
274 SELECT DISTINCT
275 missionDescription_id ,
276 skycover
277 FROM
278 "skyCover"
279 ORDER BY
280 missionDescription_id
281 )
282 SELECT
283 missionDescription_id
284 FROM
285 Temporary
286 WHERE
287 skycover = ’randomSkyCover ’;
288
289 WITH Temporary AS
290 (
291 SELECT DISTINCT
292 missionDescription_id ,
293 obscuration
294 FROM
295 "obscuration"
296 ORDER BY
297 missionDescription_id
298 )
299 SELECT
300 missionDescription_id
301 FROM
302 Temporary
303 WHERE
304 obscuration = ’randomObscuration ’;
305
306 WITH Temporary AS
307 (
308 SELECT DISTINCT
309 missionDescription_id ,
310 precipitation
311 FROM
312 "precipitation"
313 ORDER BY
314 missionDescription_id

138



315 )
316 SELECT
317 missionDescription_id
318 FROM
319 Temporary
320 WHERE
321 precipitation = ’randomPrecipitation ’;
322
323
324 --The following SELECT query uses the sensorTypes view to

perform the sensorQualityTestWithView. the
sensorQualityTestWithoutSensorTypesView is similar , except
that the content of the sensorTypes view is created
temporarily as part of the query.

325
326 WITH Temporary AS
327 (
328 SELECT DISTINCT
329 m.id,
330 ss.sensorUID ,
331 imu.timeCorrelated_accelBiasSigma ,
332 imu.timeCorrelated_accelBiasTau ,
333 imu.timeCorrelated_gyroBiasSigma ,
334 imu.timeCorrelated_gyroBiasTau ,
335 imu.velocityRandomWalk ,
336 imu.angularRandomWalk ,
337 imu.accelerometerScaleFactorUncertainty ,
338 imu.gyroScaleFactorUncertainty
339 FROM
340 "channelInfo" c
341 INNER JOIN
342 "missionDescription" m
343 ON m.id = c.missionDescription_id
344 INNER JOIN
345 "sensorInstallationInfo" s
346 ON c.sensorInstallation_id = s.id
347 INNER JOIN
348 "sensorSpecific" ss
349 ON s.sensorSpecific_id = ss.id
350 INNER JOIN
351 "IMU_Intrinsic" imu
352 ON imu.sensorSpecific_id = ss.id
353 INNER JOIN
354 sensorTypes a
355 ON a.type = ’IMU’
356 ORDER BY
357 m.id
358 )
359
360 SELECT DISTINCT id FROM Temporary WHERE (
361 timeCorrelated_accelBiasSigma > random
362 AND timeCorrelated_accelBiasTau > random
363 AND timeCorrelated_gyraBiasSigma > random
364 AND timeCorrelated_gyroBiasTau > random
365 AND velocityRandomWalk > random
366 AND angularRandomWalk > random
367 )
368 ORDER BY

139



369 id;
370
371 --The following query provides the necessary information for

the maneuver test.
372
373 WITH Temporary AS
374 (
375 SELECT
376 missionDescription_id , maneuver , approximate_duration
377 FROM
378 maneuvers
379 ORDER BY
380 id)
381 SELECT
382 missionDescription_id
383 FROM
384 Temporary
385 WHERE
386 maneuver = randomManeuver
387 ORDER BY
388 id;
389
390 The following query provides the necessary information for the

terrainSingleQueryTest
391
392 SELECT DISTINCT
393 m.id,
394 t.terrain
395 FROM
396 terrain.t
397 INNER JOIN
398 "missionDescription" m
399 ON m.id = t.missionDescription_id
400 ORDER BY
401 m.id;
402
403 Data Tests
404
405 --The following query is used for the testVelocity function

and is run against the min and max ids for every mission in
Approach 1 and Approach 3. The query for Approach 2 is the
same except that the tableName specifies the mission of

interest and the requirement for minimum and maximum ids is
not included.

406
407 SELECT
408 EXISTS
409 (
410 SELECT
411 1
412 FROM
413 positionvelocityattitude
414 WHERE
415 (
416 velocity [1] > ?
417 OR velocity [2] > ?
418 OR velocity [3] > ?
419 )

140



420 AND
421 (
422 id BETWEEN id_min AND id_max
423 )
424 )
425 ;
426
427 --The following query is used for the testLatLongBoundingBox

function and is run against the min and max ids for every
mission in Approach 1 and Approach 3. Like with
testVelocity , the Approach 2 query is the same with the
exception of the tableName and not requiring the min and
max ids.

428 SELECT
429 EXISTS
430 (
431 SELECT
432 1
433 FROM
434 geodeticposition3d
435 WHERE
436 (
437 ( latitude > latLow
438 AND latitude < latHigh)
439 AND
440 (
441 longitude > longLow
442 AND longitude < longHigh
443 )
444 AND
445 (
446 id BETWEEN id_min AND id_max
447 )
448 )
449 )
450 ;
451
452
453 --The following query is used for testPlatformDynamics

Approaches 1 and 2, with the difference of not needing to
identify the beginning and ending ids on Approach 2. For
Approach 3, the original file is downloaded and then parsed
line by line identifying imu events , with the program

recording what the delta velocity is for the prior event so
that the acceleration can be calculated.

454
455 WITH acceleration AS
456 (
457 SELECT
458 ((imu2.delta_v [1] - imu1.delta_v [1]) / (imu2.utime - imu1.

utime))*1000000 AS accel_x ,
459 (
460 (imu2.delta_v [2] - imu1.delta_v [2]) / (imu2.utime - imu1.utime

)
461 )
462 *1000000 AS accel_y ,
463 (

141



464 (imu2.delta_v [3] - imu1.delta_v [3]) / (imu2.utime - imu1.utime
)

465 )
466 *1000000 AS accel_z
467 FROM
468 imu imu1
469 INNER JOIN
470 imu imu2
471 ON (imu2.id = imu1.id + 1)
472 WHERE
473 (
474 imu1.channel_id IN channel_id
475 )
476 AND
477 (
478 imu2.channel_id IN channel_id
479 )
480 ORDER BY
481 imu1.id
482 )
483 SELECT
484 EXISTS
485 (
486 SELECT
487 1
488 FROM
489 acceleration
490 WHERE
491 ABS(sqrt(POWER(accel_x , 2) + POWER(accel_y , 2) +

POWER(accel_z , 2)) - 9.81) BETWEEN (2*9.81) AND
492 (
493 4*9.81
494 )
495 )
496 ;
497
498 --The testTimeOfDay follows the previously discussed process

for identifying the first and last ids for the mission of
interest in the imu table , and then identifies the utime
for those two rows. For Approach 3, the file is downloaded
and the utime for the first and last imu events is read.
The SQL for this query is below:

499
500 SELECT
501 utime
502 FROM
503 imu
504 WHERE
505 id = imu_min
506 AND eventNumber = eventNumber_min;
507 SELECT
508 utime
509 FROM
510 imu
511 WHERE
512 id = imu_max
513 AND eventNumber = eventNumber_max;
514

142



515 --For testSatelliteSystem , the following query is used for
Approaches 1 and 2:

516
517 SELECT
518 EXISTS
519 (
520 SELECT
521 1
522 FROM
523 gnss
524 WHERE
525 ’SYS_G’ = ANY(satellite_system)
526 AND id BETWEEN min_id AND max_id
527 )
528 ;

143



Appendix F. SQL Database and Index Scripts

1 -- SQL Database Creation Scripts
2 -- Updated By: Capt Sean Mochocki
3
4 -- Database script used in the creation of Approach1 Database
5 CREATE TABLE IF NOT EXISTS "missionDescription" (id SERIAL

PRIMARY KEY , startDate_UTC DATE , endDate_UTC DATE ,
organization TEXT , missionLocationSTART TEXT ,
missionLocationEnd TEXT , missionLength_Seconds BIGINT ,
dataFileSize BIGINT , fileName Text);

6 DO $$
7 BEGIN
8 CREATE TYPE vehicle_type AS ENUM (’PLANE’, ’GROUND_VEHICLE ’

, ’PEDESTRIAN ’, ’MISSILE ’, ’UAV’, ’SUB’);
9 EXCEPTION

10 WHEN
11 duplicate_object
12 THEN
13 null;
14 END
15 $$ ;
16 CREATE TABLE IF NOT EXISTS "aircraft" (id SERIAL PRIMARY KEY ,

aircraftType TEXT , tailNumber TEXT);
17 CREATE TABLE IF NOT EXISTS "groundVehicle" (id SERIAL PRIMARY

KEY , make TEXT , model TEXT , year INTEGER);
18 CREATE TABLE IF NOT EXISTS vehicle (id SERIAL PRIMARY KEY ,

vehicle vehicle_type , groundVehicle_id INTEGER REFERENCES "
groundVehicle" (id), aircraft_id INTEGER REFERENCES "
aircraft"(id));

19 DO $$
20 BEGIN
21 CREATE TYPE sensor_type AS ENUM (’BAROMETER ’, ’MAGNETOMETER

’, ’GPS’, ’IMS’, ’CLOCK’, ’CAMERA ’, ’IMU’, ’GNSS’);
22 EXCEPTION
23 WHEN
24 duplicate_object
25 THEN
26 null;
27 END
28 $$ ;
29 CREATE TABLE IF NOT EXISTS "sensorModel" (id SERIAL PRIMARY

KEY , model TEXT , manufacturer TEXT , type sensor_type ,
UNIQUE (model , manufacturer , type));

30 CREATE TABLE IF NOT EXISTS "extrinsicSensorConfiguration" (id
SERIAL PRIMARY KEY , leverArm DOUBLE PRECISION [3],
orientationX DOUBLE PRECISION [3], orientationY DOUBLE
PRECISION [3], orientationZ DOUBLE PRECISION [3]);

31 CREATE TABLE IF NOT EXISTS "sensorSpecific" (id SERIAL PRIMARY
KEY , sensorUID TEXT);

32 CREATE TABLE IF NOT EXISTS "GPS_Intrinsic" (id SERIAL PRIMARY
KEY , gps_antenna_make TEXT , gps_antenna_model TEXT ,
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

33 CREATE TABLE IF NOT EXISTS "externalAidingClock" (id SERIAL
PRIMARY KEY , make TEXT , model TEXT , GPS_Intrinsic_id
INTEGER REFERENCES "GPS_Intrinsic" (id));

144



34 CREATE TABLE IF NOT EXISTS "system_signals_Tracked" (id SERIAL
PRIMARY KEY , systemTracked TEXT , signalTracked TEXT ,

GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));
35 CREATE TABLE IF NOT EXISTS "supportedAugmentationSystems" (id

SERIAL PRIMARY KEY , supportedAugmentationSystem TEXT ,
GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));

36 CREATE TABLE IF NOT EXISTS "IMU_Intrinsic" (id SERIAL PRIMARY
KEY , timeCorrelated_accelBiasSigma DOUBLE PRECISION [3],
timeCorrelated_accelBiasTau DOUBLE PRECISION [3],
timeCorrelated_gyroBiasSigma DOUBLE PRECISION [3],
timeCorrelated_gyroBiasTau DOUBLE PRECISION [3],
velocityRandomWalk DOUBLE PRECISION [3], angularRandomWalk
DOUBLE PRECISION [3], accelerometerScaleFactorUncertainty
DOUBLE PRECISION , gyroScaleFactorUncertainty DOUBLE
PRECISION , sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

37 CREATE TABLE IF NOT EXISTS "clock_Intrinsic" (id SERIAL
PRIMARY KEY , h0 DOUBLE PRECISION , h1 DOUBLE PRECISION , h2
DOUBLE PRECISION , x0Array DOUBLE PRECISION [], p0Array
DOUBLE PRECISION [], sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

38 CREATE TABLE IF NOT EXISTS "camera" (id SERIAL PRIMARY KEY ,
focalLength DOUBLE PRECISION , cameraImageCenter DOUBLE
PRECISION [3][3] , lensDistortion DOUBLE PRECISION [5],
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

39 CREATE TABLE IF NOT EXISTS "sensorInstallationInfo" (id SERIAL
PRIMARY KEY , sensorModel_id INTEGER REFERENCES "

sensorModel" (id), sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id), extrinsicSensorConfiguration_id
INTEGER REFERENCES "extrinsicSensorConfiguration" (id),
vehicle_id INTEGER REFERENCES "vehicle" (id));

40 CREATE TABLE IF NOT EXISTS "channelInfo" (id SERIAL PRIMARY
KEY , channelName TEXT , channelUse TEXT , deviceID TEXT ,
truth BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), sensorInstallation_id INTEGER
REFERENCES "sensorInstallationInfo" (id), UNIQUE (id,
missionDescription_id));

41 CREATE TABLE IF NOT EXISTS "outage" (id SERIAL PRIMARY KEY ,
planned BOOLEAN , approximate_duration INT , intermittent
BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), UNIQUE (id, missionDescription_id
));

42 CREATE TABLE IF NOT EXISTS "outage_channel" (channel_id
INTEGER REFERENCES "channelInfo" (id), outage_id INTEGER
REFERENCES outage (id), missionDescription_id INTEGER
REFERENCES "missionDescription" (id), FOREIGN KEY (
outage_id , missionDescription_id) REFERENCES outage (id ,
missionDescription_id));

43 CREATE TABLE IF NOT EXISTS "velocity3d" (id SERIAL PRIMARY KEY
, timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,

utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , y DOUBLE
PRECISION , z DOUBLE PRECISION , covariance DOUBLE PRECISION
[3][3] , channel_id INTEGER REFERENCES "channelInfo" (id));

44 CREATE TABLE IF NOT EXISTS "velocity1d" (id SERIAL PRIMARY KEY
, timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,

145



timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , variance DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

45 CREATE TABLE IF NOT EXISTS "speed" (id SERIAL PRIMARY KEY ,
timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , speed DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

46 CREATE TABLE IF NOT EXISTS "altitude" (id SERIAL PRIMARY KEY ,
timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , altitude DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

47 CREATE TABLE IF NOT EXISTS "geodeticposition3d" (id SERIAL
PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , covariance DOUBLE PRECISION [3][3] , channel_id
INTEGER REFERENCES "channelInfo" (id));

48 CREATE TABLE IF NOT EXISTS "threeaxismagnetometer" (id SERIAL
PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , field DOUBLE

PRECISION [3], covariance DOUBLE PRECISION [3][3] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

49 CREATE TABLE IF NOT EXISTS "positionvelocityattitude" (id
SERIAL PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , velocity DOUBLE PRECISION [3], attitude DOUBLE
PRECISION [3], covariance DOUBLE PRECISION [9][9] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

50 DO $$
51 BEGIN
52 CREATE TYPE encoding AS ENUM (’RAW_GRAY8 ’, ’RAW_RGB8 ’, ’

RAW_BGR8 ’, ’RAW_RGBA8 ’, ’JPG’, ’PNG’);
53 EXCEPTION
54 WHEN
55 duplicate_object
56 THEN
57 null;
58 END
59 $$ ;
60 CREATE TABLE IF NOT EXISTS "opticalcameraimage" (id SERIAL

PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,

146



seqNumber BIGINT , logByteOffset BIGINT , encoding encoding ,
height INT , width INT , num_channels INT , array_length INT ,
data BYTEA , channel_id INTEGER REFERENCES "channelInfo" (

id));
61 CREATE TABLE IF NOT EXISTS "imu" (id SERIAL PRIMARY KEY ,

timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , delta_v DOUBLE PRECISION [3],
delta_theta DOUBLE PRECISION [3], channel_id INTEGER
REFERENCES "channelInfo" (id));

62 DO $$
63 BEGIN
64 CREATE TYPE satellite_system AS ENUM (’SYS_G’, ’SYS_R’, ’

SYS_E ’, ’SYS_J ’, ’SYS_C ’, ’SYS_I ’, ’SYS_S ’, ’SYS_M ’, ’
SYS_O ’);

65 EXCEPTION
66 WHEN
67 duplicate_object
68 THEN
69 null;
70 END
71 $$ ;
72 DO $$
73 BEGIN
74 CREATE TYPE type AS ENUM (’OBS_C’, ’OBS_L’, ’OBS_D’, ’OBS_S

’, ’OBS_I’);
75 EXCEPTION
76 WHEN
77 duplicate_object
78 THEN
79 null;
80 END
81 $$ ;
82 DO $$
83 BEGIN
84 CREATE TYPE band AS ENUM (’BAND1’, ’BAND2’, ’BAND5’, ’BAND6

’, ’BAND7’, ’BAND8’, ’BAND9’, ’BAND0’);
85 EXCEPTION
86 WHEN
87 duplicate_object
88 THEN
89 null;
90 END
91 $$ ;
92 DO $$
93 BEGIN
94 CREATE TYPE attribute AS ENUM (’SIG_P’, ’SIG_C’, ’SIG_D’, ’

SIG_Y’, ’SIG_M ’, ’SIG_N ’, ’SIG_A ’, ’SIG_B ’, ’SIG_I ’, ’
SIG_Q’, ’SIG_S ’, ’SIG_L ’, ’SIG_X ’, ’SIG_W ’, ’SIG_Z ’, ’
SIG_BLANK ’);

95 EXCEPTION
96 WHEN
97 duplicate_object
98 THEN
99 null;

100 END
101 $$ ;

147



102 DO $$
103 BEGIN
104 CREATE TYPE time_system AS ENUM (’TIME_GLO ’, ’TIME_GPS ’, ’

TIME_GAL ’, ’TIME_BDT ’);
105 EXCEPTION
106 WHEN
107 duplicate_object
108 THEN
109 null;
110 END
111 $$ ;
112 CREATE TABLE IF NOT EXISTS "gnss" (id SERIAL PRIMARY KEY ,

timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , --week_number INTEGER ,
seconds_of_week DOUBLE PRECISION , time_system TEXT ,

113 week_number INTEGER , seconds_of_week DOUBLE PRECISION ,
time_system time_system , epoch_flag INTEGER , num_satellites
INTEGER , num_measurements INTEGER , obs_prn INT [],

satellite_system satellite_system [], type type [], band
band [], attribute attribute [], observation DOUBLE
PRECISION [], LLI INT [], signal_strength INT [],
lock_count INT [], channel_id INTEGER REFERENCES "
channelInfo" (id));

114 CREATE TABLE IF NOT EXISTS "gpsephemeris" (id SERIAL PRIMARY
KEY , timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec
INT , timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , prn INTEGER , wn_t_oc INTEGER , t_oc
DOUBLE PRECISION , t_gd DOUBLE PRECISION , af_0 DOUBLE
PRECISION , af_1 DOUBLE PRECISION , af_2 DOUBLE PRECISION ,
m_0 DOUBLE PRECISION , delta_n DOUBLE PRECISION , e DOUBLE
PRECISION , sqrt_a DOUBLE PRECISION , omega_0 DOUBLE
PRECISION , i_0 DOUBLE PRECISION , i_dot DOUBLE PRECISION ,
omega DOUBLE PRECISION , omega_dot DOUBLE PRECISION , c_uc
DOUBLE PRECISION , c_us DOUBLE PRECISION , c_rc DOUBLE
PRECISION , c_rs DOUBLE PRECISION , c_ic DOUBLE PRECISION ,
c_is DOUBLE PRECISION , wn_t_oe INTEGER , t_oe DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

115 CREATE TABLE IF NOT EXISTS "sensorRegistrationAck" (id SERIAL
PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , registered boolean , sensorUID TEXT ,
channel_id INTEGER REFERENCES "channelInfo" (id));

116 CREATE TABLE IF NOT EXISTS "non_SDM_Message" (id SERIAL
PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , data bytea , channel_id INTEGER
REFERENCES "channelInfo" (id));

117 DO $$
118 BEGIN
119 CREATE TYPE precipitation_type AS ENUM (’RAIN’, ’SNOW’, ’

SLEET ’, ’HAIL’);
120 EXCEPTION
121 WHEN
122 duplicate_object
123 THEN
124 null;

148



125 END
126 $$ ;
127 DO $$
128 BEGIN
129 CREATE TYPE intensity AS ENUM (’LIGHT’, ’MODERATE ’, ’HIGH’)

;
130 EXCEPTION
131 WHEN
132 duplicate_object
133 THEN
134 null;
135 END
136 $$ ;
137 CREATE TABLE IF NOT EXISTS "precipitation" (precipitation

precipitation_type , intensity intensity ,
missionDescription_id INTEGER REFERENCES "
missionDescription" (id), PRIMARY KEY (precipitation ,
intensity , missionDescription_id));

138 DO $$
139 BEGIN
140 CREATE TYPE obscuration_type AS ENUM (’FOG’, ’MIST’, ’SMOKE

’, ’DUST’);
141 EXCEPTION
142 WHEN
143 duplicate_object
144 THEN
145 null;
146 END
147 $$ ;
148 CREATE TABLE IF NOT EXISTS "obscuration" (obscuration

obscuration_type , missionDescription_id INTEGER REFERENCES
"missionDescription" (id), PRIMARY KEY (obscuration ,
missionDescription_id));

149 DO $$
150 BEGIN
151 CREATE TYPE terrain_type AS ENUM (’DESERT ’, ’FOREST ’, ’

URBAN ’, ’MOUNTAINS ’, ’WATER ’);
152 EXCEPTION
153 WHEN
154 duplicate_object
155 THEN
156 null;
157 END
158 $$ ;
159 CREATE TABLE iF NOT EXISTS "terrain" (terrain terrain_type ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (terrain ,
missionDescription_id));

160 DO $$
161 BEGIN
162 CREATE TYPE skyCover AS ENUM (’CLOUDY ’, ’MOSTLY_CLOUDY ’, ’

PARTLY_SUNNY ’, ’MOSTLY_SUNNY ’, ’SUNNY’);
163 EXCEPTION
164 WHEN
165 duplicate_object
166 THEN
167 null;
168 END

149



169 $$ ;
170 CREATE TABLE IF NOT EXISTS "skyCover" (skyCover skycover ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (skyCover ,
missionDescription_id));

171 DO $$
172 BEGIN
173 CREATE TYPE maneuver AS ENUM (’FIGURE_EIGHT ’, ’FIGURE_S ’, ’

CIRCLE ’, ’ELLIPSE ’, ’SPIRAL ’, ’INVERSION ’);
174 EXCEPTION
175 WHEN
176 duplicate_object
177 THEN
178 null;
179 END
180 $$ ;
181 CREATE TABLE IF NOT EXISTS "maneuvers" (id SERIAL PRIMARY KEY ,

maneuver maneuver , approximate_duration INTEGER ,
missionDescription_id INTEGER REFERENCES "
missionDescription"(id));

182 CREATE TABLE IF NOT EXISTS "loopClosures" (id SERIAL PRIMARY
KEY , time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "

missionDescription" (id));
183 CREATE TABLE IF NOT EXISTS "wayPoints" (id SERIAL PRIMARY KEY ,

time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "
missionDescription" (id));

184 CREATE TABLE IF NOT EXISTS "altitudeSegments" (id SERIAL
PRIMARY KEY , start_altitude INTEGER , end_altitude INTEGER ,
approximate_duration INTEGER , missionDescription_id INTEGER
REFERENCES "missionDescription" (id));

185 CREATE TABLE IF NOT EXISTS "unexpectedResults" (id SERIAL
PRIMARY KEY , unexpectedResults TEXT);

186
187 -- Database script used in the creation of Approach2 Database
188 CREATE TABLE IF NOT EXISTS "missionDescription" (id SERIAL

PRIMARY KEY , startDate_UTC DATE , endDate_UTC DATE ,
organization TEXT , missionLocationSTART TEXT ,
missionLocationEnd TEXT , missionLength_Seconds BIGINT ,
dataFileSize BIGINT , fileName Text);

189 DO $$
190 BEGIN
191 CREATE TYPE vehicle_type AS ENUM (’PLANE’, ’GROUND_VEHICLE ’

, ’PEDESTRIAN ’, ’MISSILE ’, ’UAV’, ’SUB’);
192 EXCEPTION
193 WHEN
194 duplicate_object
195 THEN
196 null;
197 END
198 $$ ;
199 CREATE TABLE IF NOT EXISTS "aircraft" (id SERIAL PRIMARY KEY ,

aircraftType TEXT , tailNumber TEXT);
200 CREATE TABLE IF NOT EXISTS "groundVehicle" (id SERIAL PRIMARY

KEY , make TEXT , model TEXT , year INTEGER);
201 CREATE TABLE IF NOT EXISTS vehicle (id SERIAL PRIMARY KEY ,

vehicle vehicle_type , groundVehicle_id INTEGER REFERENCES "

150



groundVehicle" (id), aircraft_id INTEGER REFERENCES "
aircraft"(id));

202 DO $$
203 BEGIN
204 CREATE TYPE sensor_type AS ENUM (’BAROMETER ’, ’MAGNETOMETER

’, ’GPS’, ’IMS’, ’CLOCK’, ’CAMERA ’, ’IMU’, ’GNSS’);
205 EXCEPTION
206 WHEN
207 duplicate_object
208 THEN
209 null;
210 END
211 $$ ;
212 CREATE TABLE IF NOT EXISTS "sensorModel" (id SERIAL PRIMARY

KEY , model TEXT , manufacturer TEXT , type sensor_type ,
UNIQUE (model , manufacturer , type));

213 CREATE TABLE IF NOT EXISTS "extrinsicSensorConfiguration" (id
SERIAL PRIMARY KEY , leverArm DOUBLE PRECISION [3],
orientationX DOUBLE PRECISION [3], orientationY DOUBLE
PRECISION [3], orientationZ DOUBLE PRECISION [3]);

214 CREATE TABLE IF NOT EXISTS "sensorSpecific" (id SERIAL PRIMARY
KEY , sensorUID TEXT);

215 CREATE TABLE IF NOT EXISTS "GPS_Intrinsic" (id SERIAL PRIMARY
KEY , gps_antenna_make TEXT , gps_antenna_model TEXT ,
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

216 CREATE TABLE IF NOT EXISTS "externalAidingClock" (id SERIAL
PRIMARY KEY , make TEXT , model TEXT , GPS_Intrinsic_id
INTEGER REFERENCES "GPS_Intrinsic" (id));

217 CREATE TABLE IF NOT EXISTS "system_signals_Tracked" (id SERIAL
PRIMARY KEY , systemTracked TEXT , signalTracked TEXT ,

GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));
218 CREATE TABLE IF NOT EXISTS "supportedAugmentationSystems" (id

SERIAL PRIMARY KEY , supportedAugmentationSystem TEXT ,
GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));

219 CREATE TABLE IF NOT EXISTS "IMU_Intrinsic" (id SERIAL PRIMARY
KEY , timeCorrelated_accelBiasSigma DOUBLE PRECISION [3],
timeCorrelated_accelBiasTau DOUBLE PRECISION [3],
timeCorrelated_gyroBiasSigma DOUBLE PRECISION [3],
timeCorrelated_gyroBiasTau DOUBLE PRECISION [3],
velocityRandomWalk DOUBLE PRECISION [3], angularRandomWalk
DOUBLE PRECISION [3], accelerometerScaleFactorUncertainty
DOUBLE PRECISION , gyroScaleFactorUncertainty DOUBLE
PRECISION , sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

220 CREATE TABLE IF NOT EXISTS "clock_Intrinsic" (id SERIAL
PRIMARY KEY , h0 DOUBLE PRECISION , h1 DOUBLE PRECISION , h2
DOUBLE PRECISION , x0Array DOUBLE PRECISION [], p0Array
DOUBLE PRECISION [], sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

221 CREATE TABLE IF NOT EXISTS "camera" (id SERIAL PRIMARY KEY ,
focalLength DOUBLE PRECISION , cameraImageCenter DOUBLE
PRECISION [3][3] , lensDistortion DOUBLE PRECISION [5],
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

222 CREATE TABLE IF NOT EXISTS "sensorInstallationInfo" (id SERIAL
PRIMARY KEY , sensorModel_id INTEGER REFERENCES "

sensorModel" (id), sensorSpecific_id INTEGER REFERENCES "

151



sensorSpecific" (id), extrinsicSensorConfiguration_id
INTEGER REFERENCES "extrinsicSensorConfiguration" (id),
vehicle_id INTEGER REFERENCES "vehicle" (id));

223 CREATE TABLE IF NOT EXISTS "channelInfo" (id SERIAL PRIMARY
KEY , channelName TEXT , channelUse TEXT , deviceID TEXT ,
truth BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), sensorInstallation_id INTEGER
REFERENCES "sensorInstallationInfo" (id), UNIQUE (id,
missionDescription_id));

224 CREATE TABLE IF NOT EXISTS "outage" (id SERIAL PRIMARY KEY ,
planned BOOLEAN , approximate_duration INT , intermittent
BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), UNIQUE (id, missionDescription_id
));

225 CREATE TABLE IF NOT EXISTS "outage_channel" (channel_id
INTEGER REFERENCES "channelInfo" (id), outage_id INTEGER
REFERENCES outage (id), missionDescription_id INTEGER
REFERENCES "missionDescription" (id), FOREIGN KEY (
outage_id , missionDescription_id) REFERENCES outage (id ,
missionDescription_id));

226 CREATE TABLE IF NOT EXISTS "velocity3d_*" (id SERIAL PRIMARY
KEY , timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec
INT , timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , y DOUBLE
PRECISION , z DOUBLE PRECISION , covariance DOUBLE PRECISION
[3][3] , channel_id INTEGER REFERENCES "channelInfo" (id));

227 CREATE TABLE IF NOT EXISTS "velocity1d_*" (id SERIAL PRIMARY
KEY , timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec
INT , timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , variance DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

228 CREATE TABLE IF NOT EXISTS "speed_*" (id SERIAL PRIMARY KEY ,
timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , speed DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

229 CREATE TABLE IF NOT EXISTS "altitude_*" (id SERIAL PRIMARY KEY
, timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,

utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , altitude DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

230 CREATE TABLE IF NOT EXISTS "geodeticposition3d_*" (id SERIAL
PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , covariance DOUBLE PRECISION [3][3] , channel_id
INTEGER REFERENCES "channelInfo" (id));

231 CREATE TABLE IF NOT EXISTS "threeaxismagnetometer_*" (id
SERIAL PRIMARY KEY , timeStamp_arrival_sec BIGINT ,

152



timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , field DOUBLE

PRECISION [3], covariance DOUBLE PRECISION [3][3] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

232 CREATE TABLE IF NOT EXISTS "positionvelocityattitude_*" (id
SERIAL PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , velocity DOUBLE PRECISION [3], attitude DOUBLE
PRECISION [3], covariance DOUBLE PRECISION [9][9] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

233 DO $$
234 BEGIN
235 CREATE TYPE encoding AS ENUM (’RAW_GRAY8 ’, ’RAW_RGB8 ’, ’

RAW_BGR8 ’, ’RAW_RGBA8 ’, ’JPG’, ’PNG’);
236 EXCEPTION
237 WHEN
238 duplicate_object
239 THEN
240 null;
241 END
242 $$ ;
243 CREATE TABLE IF NOT EXISTS "opticalcameraimage_*" (id SERIAL

PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , encoding encoding ,
height INT , width INT , num_channels INT , array_length INT ,
data BYTEA , channel_id INTEGER REFERENCES "channelInfo" (

id));
244 CREATE TABLE IF NOT EXISTS "imu_*" (id SERIAL PRIMARY KEY ,

timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , delta_v DOUBLE PRECISION [3],
delta_theta DOUBLE PRECISION [3], channel_id INTEGER
REFERENCES "channelInfo" (id));

245 DO $$
246 BEGIN
247 CREATE TYPE satellite_system AS ENUM (’SYS_G’, ’SYS_R’, ’

SYS_E ’, ’SYS_J ’, ’SYS_C ’, ’SYS_I ’, ’SYS_S ’, ’SYS_M ’, ’
SYS_O ’);

248 EXCEPTION
249 WHEN
250 duplicate_object
251 THEN
252 null;
253 END
254 $$ ;
255 DO $$
256 BEGIN
257 CREATE TYPE type AS ENUM (’OBS_C’, ’OBS_L’, ’OBS_D’, ’OBS_S

’, ’OBS_I’);
258 EXCEPTION
259 WHEN

153



260 duplicate_object
261 THEN
262 null;
263 END
264 $$ ;
265 DO $$
266 BEGIN
267 CREATE TYPE band AS ENUM (’BAND1’, ’BAND2’, ’BAND5’, ’BAND6

’, ’BAND7’, ’BAND8’, ’BAND9’, ’BAND0’);
268 EXCEPTION
269 WHEN
270 duplicate_object
271 THEN
272 null;
273 END
274 $$ ;
275 DO $$
276 BEGIN
277 CREATE TYPE attribute AS ENUM (’SIG_P’, ’SIG_C’, ’SIG_D’, ’

SIG_Y ’, ’SIG_M ’, ’SIG_N ’, ’SIG_A ’, ’SIG_B ’, ’SIG_I ’, ’
SIG_Q ’, ’SIG_S ’, ’SIG_L ’, ’SIG_X ’, ’SIG_W ’, ’SIG_Z ’, ’
SIG_BLANK ’);

278 EXCEPTION
279 WHEN
280 duplicate_object
281 THEN
282 null;
283 END
284 $$ ;
285 DO $$
286 BEGIN
287 CREATE TYPE time_system AS ENUM (’TIME_GLO ’, ’TIME_GPS ’, ’

TIME_GAL ’, ’TIME_BDT ’);
288 EXCEPTION
289 WHEN
290 duplicate_object
291 THEN
292 null;
293 END
294 $$ ;
295 CREATE TABLE IF NOT EXISTS "gnss_*" (id SERIAL PRIMARY KEY ,

timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , --week_number INTEGER ,
seconds_of_week DOUBLE PRECISION , time_system TEXT ,

296 week_number INTEGER , seconds_of_week DOUBLE PRECISION ,
time_system time_system , epoch_flag INTEGER , num_satellites
INTEGER , num_measurements INTEGER , obs_prn INT [],

satellite_system satellite_system [], type type [], band
band [], attribute attribute [], observation DOUBLE
PRECISION [], LLI INT [], signal_strength INT [],
lock_count INT [], channel_id INTEGER REFERENCES "
channelInfo" (id));

297 CREATE TABLE IF NOT EXISTS "gpsephemeris_*" (id SERIAL PRIMARY
KEY , timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec

INT , timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

154



logByteOffset BIGINT , prn INTEGER , wn_t_oc INTEGER , t_oc
DOUBLE PRECISION , t_gd DOUBLE PRECISION , af_0 DOUBLE
PRECISION , af_1 DOUBLE PRECISION , af_2 DOUBLE PRECISION ,
m_0 DOUBLE PRECISION , delta_n DOUBLE PRECISION , e DOUBLE
PRECISION , sqrt_a DOUBLE PRECISION , omega_0 DOUBLE
PRECISION , i_0 DOUBLE PRECISION , i_dot DOUBLE PRECISION ,
omega DOUBLE PRECISION , omega_dot DOUBLE PRECISION , c_uc
DOUBLE PRECISION , c_us DOUBLE PRECISION , c_rc DOUBLE
PRECISION , c_rs DOUBLE PRECISION , c_ic DOUBLE PRECISION ,
c_is DOUBLE PRECISION , wn_t_oe INTEGER , t_oe DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

298 CREATE TABLE IF NOT EXISTS "sensorRegistrationAck_*" (id
SERIAL PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , registered boolean , sensorUID TEXT ,
channel_id INTEGER REFERENCES "channelInfo" (id));

299 CREATE TABLE IF NOT EXISTS "non_SDM_Message_*" (id SERIAL
PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , data bytea , channel_id INTEGER
REFERENCES "channelInfo" (id));

300 DO $$
301 BEGIN
302 CREATE TYPE precipitation_type AS ENUM (’RAIN’, ’SNOW’, ’

SLEET ’, ’HAIL’);
303 EXCEPTION
304 WHEN
305 duplicate_object
306 THEN
307 null;
308 END
309 $$ ;
310 DO $$
311 BEGIN
312 CREATE TYPE intensity AS ENUM (’LIGHT’, ’MODERATE ’, ’HIGH’)

;
313 EXCEPTION
314 WHEN
315 duplicate_object
316 THEN
317 null;
318 END
319 $$ ;
320 CREATE TABLE IF NOT EXISTS "precipitation" (precipitation

precipitation_type , intensity intensity ,
missionDescription_id INTEGER REFERENCES "
missionDescription" (id), PRIMARY KEY (precipitation ,
intensity , missionDescription_id));

321 DO $$
322 BEGIN
323 CREATE TYPE obscuration_type AS ENUM (’FOG’, ’MIST’, ’SMOKE

’, ’DUST’);
324 EXCEPTION
325 WHEN
326 duplicate_object
327 THEN
328 null;
329 END
330 $$ ;

155



331 CREATE TABLE IF NOT EXISTS "obscuration" (obscuration
obscuration_type , missionDescription_id INTEGER REFERENCES
"missionDescription" (id), PRIMARY KEY (obscuration ,
missionDescription_id));

332 DO $$
333 BEGIN
334 CREATE TYPE terrain_type AS ENUM (’DESERT ’, ’FOREST ’, ’

URBAN ’, ’MOUNTAINS ’, ’WATER ’);
335 EXCEPTION
336 WHEN
337 duplicate_object
338 THEN
339 null;
340 END
341 $$ ;
342 CREATE TABLE iF NOT EXISTS "terrain" (terrain terrain_type ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (terrain ,
missionDescription_id));

343 DO $$
344 BEGIN
345 CREATE TYPE skyCover AS ENUM (’CLOUDY ’, ’MOSTLY_CLOUDY ’, ’

PARTLY_SUNNY ’, ’MOSTLY_SUNNY ’, ’SUNNY’);
346 EXCEPTION
347 WHEN
348 duplicate_object
349 THEN
350 null;
351 END
352 $$ ;
353 CREATE TABLE IF NOT EXISTS "skyCover" (skyCover skycover ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (skyCover ,
missionDescription_id));

354 DO $$
355 BEGIN
356 CREATE TYPE maneuver AS ENUM (’FIGURE_EIGHT ’, ’FIGURE_S ’, ’

CIRCLE ’, ’ELLIPSE ’, ’SPIRAL ’, ’INVERSION ’);
357 EXCEPTION
358 WHEN
359 duplicate_object
360 THEN
361 null;
362 END
363 $$ ;
364 CREATE TABLE IF NOT EXISTS "maneuvers" (id SERIAL PRIMARY KEY ,

maneuver maneuver , approximate_duration INTEGER ,
missionDescription_id INTEGER REFERENCES "
missionDescription"(id));

365 CREATE TABLE IF NOT EXISTS "loopClosures" (id SERIAL PRIMARY
KEY , time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "

missionDescription" (id));
366 CREATE TABLE IF NOT EXISTS "wayPoints" (id SERIAL PRIMARY KEY ,

time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "
missionDescription" (id));

367 CREATE TABLE IF NOT EXISTS "altitudeSegments" (id SERIAL

156



PRIMARY KEY , start_altitude INTEGER , end_altitude INTEGER ,
approximate_duration INTEGER , missionDescription_id INTEGER
REFERENCES "missionDescription" (id));

368 CREATE TABLE IF NOT EXISTS "unexpectedResults" (id SERIAL
PRIMARY KEY , unexpectedResults TEXT);

369
370 -- Database script used in the creation of Approach3 Database
371 CREATE TABLE IF NOT EXISTS "missionDescription" (id SERIAL

PRIMARY KEY , startDate_UTC DATE , endDate_UTC DATE ,
organization TEXT , missionLocationSTART TEXT ,
missionLocationEnd TEXT , missionLength_Seconds BIGINT ,
dataFileSize BIGINT , fileName Text , logFile oid);

372 DO $$
373 BEGIN
374 CREATE TYPE vehicle_type AS ENUM (’PLANE’, ’GROUND_VEHICLE ’

, ’PEDESTRIAN ’, ’MISSILE ’, ’UAV’, ’SUB’);
375 EXCEPTION
376 WHEN
377 duplicate_object
378 THEN
379 null;
380 END
381 $$ ;
382 CREATE TABLE IF NOT EXISTS "aircraft" (id SERIAL PRIMARY KEY ,

aircraftType TEXT , tailNumber TEXT);
383 CREATE TABLE IF NOT EXISTS "groundVehicle" (id SERIAL PRIMARY

KEY , make TEXT , model TEXT , year INTEGER);
384 CREATE TABLE IF NOT EXISTS vehicle (id SERIAL PRIMARY KEY ,

vehicle vehicle_type , groundVehicle_id INTEGER REFERENCES "
groundVehicle" (id), aircraft_id INTEGER REFERENCES "
aircraft"(id));

385 DO $$
386 BEGIN
387 CREATE TYPE sensor_type AS ENUM (’BAROMETER ’, ’MAGNETOMETER

’, ’GPS’, ’IMS’, ’CLOCK’, ’CAMERA ’, ’IMU’, ’GNSS’);
388 EXCEPTION
389 WHEN
390 duplicate_object
391 THEN
392 null;
393 END
394 $$ ;
395 CREATE TABLE IF NOT EXISTS "sensorModel" (id SERIAL PRIMARY

KEY , model TEXT , manufacturer TEXT , type sensor_type ,
UNIQUE (model , manufacturer , type));

396 CREATE TABLE IF NOT EXISTS "extrinsicSensorConfiguration" (id
SERIAL PRIMARY KEY , leverArm DOUBLE PRECISION [3],
orientationX DOUBLE PRECISION [3], orientationY DOUBLE
PRECISION [3], orientationZ DOUBLE PRECISION [3]);

397 CREATE TABLE IF NOT EXISTS "sensorSpecific" (id SERIAL PRIMARY
KEY , sensorUID TEXT);

398 CREATE TABLE IF NOT EXISTS "GPS_Intrinsic" (id SERIAL PRIMARY
KEY , gps_antenna_make TEXT , gps_antenna_model TEXT ,
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

399 CREATE TABLE IF NOT EXISTS "externalAidingClock" (id SERIAL
PRIMARY KEY , make TEXT , model TEXT , GPS_Intrinsic_id
INTEGER REFERENCES "GPS_Intrinsic" (id));

157



400 CREATE TABLE IF NOT EXISTS "system_signals_Tracked" (id SERIAL
PRIMARY KEY , systemTracked TEXT , signalTracked TEXT ,

GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));
401 CREATE TABLE IF NOT EXISTS "supportedAugmentationSystems" (id

SERIAL PRIMARY KEY , supportedAugmentationSystem TEXT ,
GPS_Intrinsic_id INTEGER REFERENCES "GPS_Intrinsic" (id));

402 CREATE TABLE IF NOT EXISTS "IMU_Intrinsic" (id SERIAL PRIMARY
KEY , timeCorrelated_accelBiasSigma DOUBLE PRECISION [3],
timeCorrelated_accelBiasTau DOUBLE PRECISION [3],
timeCorrelated_gyroBiasSigma DOUBLE PRECISION [3],
timeCorrelated_gyroBiasTau DOUBLE PRECISION [3],
velocityRandomWalk DOUBLE PRECISION [3], angularRandomWalk
DOUBLE PRECISION [3], accelerometerScaleFactorUncertainty
DOUBLE PRECISION , gyroScaleFactorUncertainty DOUBLE
PRECISION , sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

403 CREATE TABLE IF NOT EXISTS "clock_Intrinsic" (id SERIAL
PRIMARY KEY , h0 DOUBLE PRECISION , h1 DOUBLE PRECISION , h2
DOUBLE PRECISION , x0Array DOUBLE PRECISION [], p0Array
DOUBLE PRECISION [], sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id));

404 CREATE TABLE IF NOT EXISTS "camera" (id SERIAL PRIMARY KEY ,
focalLength DOUBLE PRECISION , cameraImageCenter DOUBLE
PRECISION [3][3] , lensDistortion DOUBLE PRECISION [5],
sensorSpecific_id INTEGER REFERENCES "sensorSpecific" (id))
;

405 CREATE TABLE IF NOT EXISTS "sensorInstallationInfo" (id SERIAL
PRIMARY KEY , sensorModel_id INTEGER REFERENCES "

sensorModel" (id), sensorSpecific_id INTEGER REFERENCES "
sensorSpecific" (id), extrinsicSensorConfiguration_id
INTEGER REFERENCES "extrinsicSensorConfiguration" (id),
vehicle_id INTEGER REFERENCES "vehicle" (id));

406 CREATE TABLE IF NOT EXISTS "channelInfo" (id SERIAL PRIMARY
KEY , channelName TEXT , channelUse TEXT , deviceID TEXT ,
truth BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), sensorInstallation_id INTEGER
REFERENCES "sensorInstallationInfo" (id), UNIQUE (id,
missionDescription_id));

407 CREATE TABLE IF NOT EXISTS "outage" (id SERIAL PRIMARY KEY ,
planned BOOLEAN , approximate_duration INT , intermittent
BOOLEAN , missionDescription_id INTEGER REFERENCES "
missionDescription" (id), UNIQUE (id, missionDescription_id
));

408 CREATE TABLE IF NOT EXISTS "outage_channel" (channel_id
INTEGER REFERENCES "channelInfo" (id), outage_id INTEGER
REFERENCES outage (id), missionDescription_id INTEGER
REFERENCES "missionDescription" (id), FOREIGN KEY (
outage_id , missionDescription_id) REFERENCES outage (id ,
missionDescription_id));

409 CREATE TABLE IF NOT EXISTS "velocity3d" (id SERIAL PRIMARY KEY
, timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,

utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , y DOUBLE
PRECISION , z DOUBLE PRECISION , covariance DOUBLE PRECISION
[3][3] , channel_id INTEGER REFERENCES "channelInfo" (id));

410 CREATE TABLE IF NOT EXISTS "velocity1d" (id SERIAL PRIMARY KEY
, timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,

158



timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , x DOUBLE PRECISION , variance DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

411 CREATE TABLE IF NOT EXISTS "speed" (id SERIAL PRIMARY KEY ,
timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , speed DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

412 CREATE TABLE IF NOT EXISTS "altitude" (id SERIAL PRIMARY KEY ,
timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

logByteOffset BIGINT , altitude DOUBLE PRECISION , variance
DOUBLE PRECISION , channel_id INTEGER REFERENCES "
channelInfo" (id));

413 CREATE TABLE IF NOT EXISTS "geodeticposition3d" (id SERIAL
PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , covariance DOUBLE PRECISION [3][3] , channel_id
INTEGER REFERENCES "channelInfo" (id));

414 CREATE TABLE IF NOT EXISTS "threeaxismagnetometer" (id SERIAL
PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , field DOUBLE

PRECISION [3], covariance DOUBLE PRECISION [3][3] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

415 CREATE TABLE IF NOT EXISTS "positionvelocityattitude" (id
SERIAL PRIMARY KEY , timeStamp_arrival_sec BIGINT ,
timeStamp_arrival_nsec INT , timeStamp_valid_sec BIGINT ,
timeStamp_valid_nsec INT , utime BIGINT , eventNumber BIGINT ,
seqNumber BIGINT , logByteOffset BIGINT , latitude DOUBLE

PRECISION , longitude DOUBLE PRECISION , altitude DOUBLE
PRECISION , velocity DOUBLE PRECISION [3], attitude DOUBLE
PRECISION [3], covariance DOUBLE PRECISION [9][9] ,
channel_id INTEGER REFERENCES "channelInfo" (id));

416 DO $$
417 BEGIN
418 CREATE TYPE encoding AS ENUM (’RAW_GRAY8 ’, ’RAW_RGB8 ’, ’

RAW_BGR8 ’, ’RAW_RGBA8 ’, ’JPG’, ’PNG’);
419 EXCEPTION
420 WHEN
421 duplicate_object
422 THEN
423 null;
424 END
425 $$ ;
426 DO $$
427 BEGIN
428 CREATE TYPE satellite_system AS ENUM (’SYS_G’, ’SYS_R’, ’

SYS_E ’, ’SYS_J ’, ’SYS_C ’, ’SYS_I ’, ’SYS_S ’, ’SYS_M ’, ’

159



SYS_O ’);
429 EXCEPTION
430 WHEN
431 duplicate_object
432 THEN
433 null;
434 END
435 $$ ;
436 DO $$
437 BEGIN
438 CREATE TYPE type AS ENUM (’OBS_C’, ’OBS_L’, ’OBS_D’, ’OBS_S

’, ’OBS_I’);
439 EXCEPTION
440 WHEN
441 duplicate_object
442 THEN
443 null;
444 END
445 $$ ;
446 DO $$
447 BEGIN
448 CREATE TYPE band AS ENUM (’BAND1’, ’BAND2’, ’BAND5’, ’BAND6

’, ’BAND7’, ’BAND8’, ’BAND9’, ’BAND0’);
449 EXCEPTION
450 WHEN
451 duplicate_object
452 THEN
453 null;
454 END
455 $$ ;
456 DO $$
457 BEGIN
458 CREATE TYPE attribute AS ENUM (’SIG_P’, ’SIG_C’, ’SIG_D’, ’

SIG_Y ’, ’SIG_M ’, ’SIG_N ’, ’SIG_A ’, ’SIG_B ’, ’SIG_I ’, ’
SIG_Q ’, ’SIG_S ’, ’SIG_L ’, ’SIG_X ’, ’SIG_W ’, ’SIG_Z ’, ’
SIG_BLANK ’);

459 EXCEPTION
460 WHEN
461 duplicate_object
462 THEN
463 null;
464 END
465 $$ ;
466 DO $$
467 BEGIN
468 CREATE TYPE time_system AS ENUM (’TIME_GLO ’, ’TIME_GPS ’, ’

TIME_GAL ’, ’TIME_BDT ’);
469 EXCEPTION
470 WHEN
471 duplicate_object
472 THEN
473 null;
474 END
475 $$ ;
476 CREATE TABLE IF NOT EXISTS "gnss" (id SERIAL PRIMARY KEY ,

timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec INT ,
timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT , utime
BIGINT , eventNumber BIGINT , seqNumber BIGINT ,

160



logByteOffset BIGINT , --week_number INTEGER ,
seconds_of_week DOUBLE PRECISION , time_system TEXT ,

477 week_number INTEGER , seconds_of_week DOUBLE PRECISION ,
time_system time_system , epoch_flag INTEGER , num_satellites
INTEGER , num_measurements INTEGER , obs_prn INT [],

satellite_system satellite_system [], type type [], band
band [], attribute attribute [], observation DOUBLE
PRECISION [], LLI INT [], signal_strength INT [],
lock_count INT [], channel_id INTEGER REFERENCES "
channelInfo" (id));

478 CREATE TABLE IF NOT EXISTS "gpsephemeris" (id SERIAL PRIMARY
KEY , timeStamp_arrival_sec BIGINT , timeStamp_arrival_nsec
INT , timeStamp_valid_sec BIGINT , timeStamp_valid_nsec INT ,
utime BIGINT , eventNumber BIGINT , seqNumber BIGINT ,
logByteOffset BIGINT , prn INTEGER , wn_t_oc INTEGER , t_oc
DOUBLE PRECISION , t_gd DOUBLE PRECISION , af_0 DOUBLE
PRECISION , af_1 DOUBLE PRECISION , af_2 DOUBLE PRECISION ,
m_0 DOUBLE PRECISION , delta_n DOUBLE PRECISION , e DOUBLE
PRECISION , sqrt_a DOUBLE PRECISION , omega_0 DOUBLE
PRECISION , i_0 DOUBLE PRECISION , i_dot DOUBLE PRECISION ,
omega DOUBLE PRECISION , omega_dot DOUBLE PRECISION , c_uc
DOUBLE PRECISION , c_us DOUBLE PRECISION , c_rc DOUBLE
PRECISION , c_rs DOUBLE PRECISION , c_ic DOUBLE PRECISION ,
c_is DOUBLE PRECISION , wn_t_oe INTEGER , t_oe DOUBLE
PRECISION , channel_id INTEGER REFERENCES "channelInfo" (id)
);

479 CREATE TABLE IF NOT EXISTS "sensorRegistrationAck" (id SERIAL
PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , registered boolean , sensorUID TEXT ,
channel_id INTEGER REFERENCES "channelInfo" (id));

480 CREATE TABLE IF NOT EXISTS "non_SDM_Message" (id SERIAL
PRIMARY KEY , utime BIGINT , eventNumber BIGINT ,
logByteOffset BIGINT , data bytea , channel_id INTEGER
REFERENCES "channelInfo" (id));

481 DO $$
482 BEGIN
483 CREATE TYPE precipitation_type AS ENUM (’RAIN’, ’SNOW’, ’

SLEET ’, ’HAIL’);
484 EXCEPTION
485 WHEN
486 duplicate_object
487 THEN
488 null;
489 END
490 $$ ;
491 DO $$
492 BEGIN
493 CREATE TYPE intensity AS ENUM (’LIGHT’, ’MODERATE ’, ’HIGH’)

;
494 EXCEPTION
495 WHEN
496 duplicate_object
497 THEN
498 null;
499 END
500 $$ ;
501 CREATE TABLE IF NOT EXISTS "precipitation" (precipitation

precipitation_type , intensity intensity ,

161



missionDescription_id INTEGER REFERENCES "
missionDescription" (id), PRIMARY KEY (precipitation ,
intensity , missionDescription_id));

502 DO $$
503 BEGIN
504 CREATE TYPE obscuration_type AS ENUM (’FOG’, ’MIST’, ’SMOKE

’, ’DUST’);
505 EXCEPTION
506 WHEN
507 duplicate_object
508 THEN
509 null;
510 END
511 $$ ;
512 CREATE TABLE IF NOT EXISTS "obscuration" (obscuration

obscuration_type , missionDescription_id INTEGER REFERENCES
"missionDescription" (id), PRIMARY KEY (obscuration ,
missionDescription_id));

513 DO $$
514 BEGIN
515 CREATE TYPE terrain_type AS ENUM (’DESERT ’, ’FOREST ’, ’

URBAN ’, ’MOUNTAINS ’, ’WATER ’);
516 EXCEPTION
517 WHEN
518 duplicate_object
519 THEN
520 null;
521 END
522 $$ ;
523 CREATE TABLE iF NOT EXISTS "terrain" (terrain terrain_type ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (terrain ,
missionDescription_id));

524 DO $$
525 BEGIN
526 CREATE TYPE skyCover AS ENUM (’CLOUDY ’, ’MOSTLY_CLOUDY ’, ’

PARTLY_SUNNY ’, ’MOSTLY_SUNNY ’, ’SUNNY’);
527 EXCEPTION
528 WHEN
529 duplicate_object
530 THEN
531 null;
532 END
533 $$ ;
534 CREATE TABLE IF NOT EXISTS "skyCover" (skyCover skycover ,

missionDescription_id INTEGER REFERENCES "
missionDescription"(id), PRIMARY KEY (skyCover ,
missionDescription_id));

535 DO $$
536 BEGIN
537 CREATE TYPE maneuver AS ENUM (’FIGURE_EIGHT ’, ’FIGURE_S ’, ’

CIRCLE ’, ’ELLIPSE ’, ’SPIRAL ’, ’INVERSION ’);
538 EXCEPTION
539 WHEN
540 duplicate_object
541 THEN
542 null;
543 END

162



544 $$ ;
545 CREATE TABLE IF NOT EXISTS "maneuvers" (id SERIAL PRIMARY KEY ,

maneuver maneuver , approximate_duration INTEGER ,
missionDescription_id INTEGER REFERENCES "
missionDescription"(id));

546 CREATE TABLE IF NOT EXISTS "loopClosures" (id SERIAL PRIMARY
KEY , time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "

missionDescription" (id));
547 CREATE TABLE IF NOT EXISTS "wayPoints" (id SERIAL PRIMARY KEY ,

time TIME , latitude DOUBLE PRECISION , longitude DOUBLE
PRECISION , missionDescription_id INTEGER REFERENCES "
missionDescription" (id));

548 CREATE TABLE IF NOT EXISTS "altitudeSegments" (id SERIAL
PRIMARY KEY , start_altitude INTEGER , end_altitude INTEGER ,
approximate_duration INTEGER , missionDescription_id INTEGER
REFERENCES "missionDescription" (id));

549 CREATE TABLE IF NOT EXISTS "unexpectedResults" (id SERIAL
PRIMARY KEY , unexpectedResults TEXT);

550
551 -- Index Creation Script For Approach 1
552 CREATE INDEX imu_eventnumber_id
553 ON imu (channel_id , eventnumber , id);
554 CREATE INDEX altitude_eventnumber_id
555 ON altitude (channel_id , eventnumber , id);
556 CREATE INDEX velocity3d_eventnumber_id
557 ON velocity3d (channel_id , eventnumber , id);
558 CREATE INDEX geodeticposition3d_eventnumber_id
559 ON geodeticposition3d (channel_id , eventnumber , id);
560 CREATE INDEX positionvelocityattitude_eventnumber_id
561 ON positionvelocityattitude (channel_id , eventnumber , id);
562 CREATE INDEX speed_eventnumber_id
563 ON speed (channel_id , eventnumber , id);
564 CREATE INDEX velocity1d_eventnumber_id
565 ON velocity1d (channel_id , eventnumber , id);
566 CREATE INDEX threeaxismagnetometer_eventnumber_id
567 ON threeaxismagnetometer (channel_id , eventnumber , id);
568 CREATE INDEX gnss_eventnumber_id
569 ON gnss (channel_id , eventnumber , id);
570 CREATE INDEX gpsephemeris_eventnumber_id
571 ON gpsephemeris (channel_id , eventnumber , id);
572 CREATE INDEX opticalcameraimage_eventnumber_id
573 ON opticalcameraimage (channel_id , eventnumber , id);
574
575 -- Index Creation Script For Approach 3
576 CREATE INDEX altitude_eventnumber_id
577 ON altitude (channel_id , eventnumber , id);
578 CREATE INDEX velocity3d_eventnumber_id
579 ON velocity3d (channel_id , eventnumber , id);
580 CREATE INDEX geodeticposition3d_eventnumber_id
581 ON geodeticposition3d (channel_id , eventnumber , id);
582 CREATE INDEX positionvelocityattitude_eventnumber_id
583 ON positionvelocityattitude (channel_id , eventnumber , id);
584 CREATE INDEX speed_eventnumber_id
585 ON speed (channel_id , eventnumber , id);
586 CREATE INDEX velocity1d_eventnumber_id
587 ON velocity1d (channel_id , eventnumber , id);
588 CREATE INDEX threeaxismagnetometer_eventnumber_id

163



589 ON threeaxismagnetometer (channel_id , eventnumber , id);
590 CREATE INDEX gnss_eventnumber_id
591 ON gnss (channel_id , eventnumber , id);
592 CREATE INDEX gpsephemeris_eventnumber_id
593 ON gpsephemeris (channel_id , eventnumber , id);
594 CREATE INDEX opticalcameraimage_eventnumber_id
595 ON opticalcameraimage (channel_id , eventnumber , id);

164



Appendix G. Genetic Algorithm Pseudo Code

Name: MO KP/SCP GA [82] [91] [83]

• Initialization Step 1:

1. Read in user inputs including: population size (int), max running time

(int), tournament size (int), maximum weight (int).

2. Generate representative data structure for KP/SCP, incorporating columns,

rows, weights, and values.

3. Run SQL queries against database and populate data structures.

4. Generate GA object and give it the KP/SCP problem object data struc-

ture, population size, running time, and tournament size.

5. Generate Initial Population randomly. (Set of candidates).

6. Implement Steps 4 and 5 (check initial population for feasibility and either

fix or discard).

• Run Genetic Algorithm Step 2: (next state generator)

1. Choose two parents at random from population by performing two k-ary

tournament selections (next state generator)

2. Fitness-Based Crossover [82] two parents to create child. Any bits that the

parents have in common will be replicated in the child. Generate fitness

number: fprob = fp2
fp1+fp2

. Generate a random number r with the range:

0...(fp1 + fp2). If r > fprob take the bit from p2 else p1.

3. Perform mutation on child by flipping a random bit.

4. Check child to ensure feasible solution, modify or discard if necessary (fea-

sibility)

165



5. Check child against current population to ensure uniqueness. If unique,

carry on to Step 5. If not, rerun Step2.

• Check Feasibility Step 3: (feasibility)

1. Confirm that the solution is a Set Cover ∪k
i=1Sji = R.

2. Confirm that the solution is a minimal Set Cover @[(S)|S ⊂ (F ′ − S)].

3. Sum the total weight of the solution and confirm that
∑

i∈F wi ≤ X.

4. Go to Step 4.

• Make Feasible Step 4: (next state generator)

(a) If all three conditions are true, return solution.

(b) If 1 and 2 are true, but 3 is not, discard solution.

(c) If 1 and 3 are true, but 2 is not, identify family of redundant genes, F ′R

and remove one: fR ∈ F ′R Recheck Step 2.

(d) If 1 is true, but 2 and 3 are not. Identify redundant columns F ′R and

remove in order to drop weight of solution. Rerun Step 2 once complete.

(e) If 1 is false, but 3 is true. Look for columns to add f ′ so that 1 is satisfied,

then rerun Step 2.

(f) If 1 and 3 are false, Discard.

(g) If 1 and 2 are both false, but 3 is true, invalid configuration.

(h) If 1 and 2 are both false, and 3 is false, invalid configuration.

• Add the child to current population Step 5:

1. Calculate the average fitness of population pa = (
∑n

i=1 vi
1
n
)

2. Randomly choose members of population (Selection)

166



3. If member’s fitness is worse than the average, replace member with new

solution, else, repeat from Step 5.2. If vm ≤ pa, replace, else choose a new

member. (objective)

• Check for Convergence Step 6: (Solution function, heuristic functions)

1. Check against the total elapsed time tT . If the elapsed time is greater than

the specific parameter, terminate and return best solution.

2. Check for convergence. If the fitness of the best solution has not changed

in the last X iterations, terminate and return best solution (heuristic and

solution).

3. If neither conditions hold, repeat Step 2, rerun algorithm

167



Appendix H. Hill Climber Pseudo Code

Name: MO KP/SCP HC Algorithm [82] [91] [83]

• Initialization Step 1

1. Read in user inputs including: max running time (int), maximum weight

(int)

2. Generate representative data structure for KP/SCP, incorporating columns,

rows, weights, and values.

3. Run SQL queries against database and populate data structures.

4. Generate problem object and give it the KP/SCP data structure, running

time.

5. Generate initial solution randomly. (Set of candidates).

6. Implement Step 3 (check initial solution for feasibility and either fix or

discard. If discard, create new solution)

• Run HC Algorithm Step 2 (next state generator)

1. (Loop) Run swap method on next valid pair in neighborhood (0 and 1).

Swap (Sj, Sj)∀(S1, ...SN). Check St+1 for feasibility Step 3.

• Check Feasibility Step 3 (feasibility)

1. Confirm that the solution is a Set Cover. ∪k
i=1Sji = R,

2. Confirm that the solution is a minimal Set Cover @[(S)|S ⊂ (F ′ − S)]

3. Sum the total weight of the solution and confirm that
∑

i∈F wi ≤ X.

4. If parts 1,2 and 3 are true return solution, else, discard

• Check fitness of St+1 Step 4 (objective function).

168



1. If Ft+1 > Ft set St+1 as new solution, if not, discard St+1

• Check for Termination Step 5: (solution function, heuristic functions)

1. Check against total elapsed time tT . If the elapsed time is greater than T,

terminate and return best solution

2. Check for neighborhood exploration. If all variations have been considered

∀F (S1, ..., SN) if Sj = “1” and Sk = “0” then terminate.

3. If neither conditions hold, repeat Step 2, rerun algorithm

169



Appendix I. Proof that KP/SCP Decision Problem is
NP-Complete

The KP/SCP: Given a capacity X, a set R = {r1, ...rm}, and a family F = {S1, ...SN}

of sets Sj ⊂ R and associated weights Fw = {w1, ..., wN} and values Fv = {v1, ...vN},

return a subfamily F ′ = {Sj1, Sj2, ...Sjk} of F such that ∪k
i=1 Sji = R, which

maximizes
∑
i∈F

vi such that
∑
i∈F

wi ≤ X and for which @[(Sn)|Sn ⊂ (F ′ − Sn)]

The goal in this problem domain is to optimize the combined value

∑
i∈F

vi

and to provide a set covering such that

∪k
i=1Sji = R

The weight

FW = {w1, ...wN}

can be thought of in terms of the cost from the original SCP problem, but this is not

a perfect corollary. For instance, it does not matter if

∑
i∈F

wi = X

or if the combined weight is arbitrarily lower, so just trying to minimize weight is

not necessarily an optimization goal. The goal is to provide a set covering so that

value is maximized, while not exceeding the aforementioned constraints. These are

170



competing optimizations, as there may be solutions to the Knapsack Problem which

have higher values yet which do not provide a set cover, and there may be smaller set

coverings with lower weights which provide less value.

Solution Space: Both of these problems could be solved independently if

the relevant parameters from the other problem were ignored. Even so, each is a

permutation problem, resulting in them having equivalently sized solution spaces.

Therefore this problem has a solution space of O(2n), which is the same as if they

were solved independently.

Problem Class: The KP/SCP PD can be thought of as a decision problem.

For a given answer to a SCP, is it a valid minimal set cover that meets the three

combined conditions:

Demonstrate that a decision problem has a polynomial time certifier: Proving

that the three constraints are met can be done in polynomial time:

1. Iterate through all columns and add their covered rows to a list. Check this list

against a list of required rows to confirm that they match

2. For each column, confirm that the rows which are contributed by that column

are not covered by the current solution minus that column.

3. Sum the weight of all of the items/columns and confirm that this is less than

the weight limit.

If the PD is framed as a decision problem, confirm that a given answer has a value

of at least Y.

Iterate through all items/columns and sum their values. If the summation is ≥ Y

and meets the above constraints, it is a valid answer.

The above polynomial time certifier demonstrates that the KP/SCP decision prob-

lem is NP-Complete (the full problem domain is likely NP-Hard, as it likely cannot

171



be proven that the given value of a solution is the “best” available value of the PD

in polynomial time.)

Perform a reduction from the SCP to the KP/SCP to demonstrate that the

KP/SCP decision problem is NP-Complete.

Consider a given SCP input domain. Does there exist a solution to the SCP such

that the cost is at most C?

Transform the SCP to the KP/SCP:

1. Set C to X, the maximum allowed weight

2. Set c of each column to x, the weight of each column

3. Set values v to 1. This means that the answer, though minimal from a SCP,

will not necessarily be the minimum SCP.

4. Consult the KP/SCP oracle. It will either return a family of sets that are less

than or equal to C, or will not return an answer at all.

This demonstrates that the SCP decision problem reduces to the KP/SCP. This

shows that the KP/SCP decision problem is NP-Complete. As discussed above, the

KP/SCP problem is likely NP-Hard, as it would be difficult to provide a polynomial

time certifier that a given answer is indeed optimal.

172



Bibliography

1. N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, M. Ali, W. Kamaleldin, M. Alam,

M. Shiraz, and A. Gani, “Big data: survey, technologies, opportunities, and

challenges,” The Scientific World Journal, vol. 2014, 2014.

2. “Extracting business value from the 4 v’s of big data,” https://www.

ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data, 2018.

3. C. Costa and M. Y. Santos, “Big data: state-of-the-art concepts, techniques, tech-

nologies, modeling approaches and research challenges,” IAENG International

Journal of Computer Science, vol. 43, no. 3, pp. 285–301, 2017.

4. N. Hurst, “Nathan hurst’s blog: thoughts on software, technology, and startups,”

http://blog.nahurst.com/visual-guide-to-nosql-systems, 2010.

5. P. Mathur, “Olap vs oltp,” http://olapsoftware.com/blog/olap-vs-oltp, 2013.

6. J. Abdullah, “Investigating interactive visualisation in a cloud computing envi-

ronment,” Ph.D. dissertation, Lincoln University, 2010.

7. K. Kauffman, D. Marietta, J. Kresge, M. Veth, R. Patton, J. Gray, J. Raquet,

and A. Schofield, “Field demonstration of plug and play navigation system using

scorpion and smart sensors/cables,” ION Joint Navigation Conference, 2017.

8. O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup language (yaml)(tm)

version 1.2,” https://yaml.org/spec/1.2/spec.html, 2009.

9. A. S. Huang, E. Olson, and D. C. Moore, “Lcm: Lightweight communications

and marshalling,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, 2010, pp. 4057–4062.

173



10. A. S. Huang, E. Olson, and D. Moore, “Lightweight communications and mar-

shalling for low latency interprocess communication,” Computer Science and Ar-

tificial Intelligence Laboratory Technical Report, Massachusetts Institute of Tech-

nology, MA, 2009.

11. “Lcm log file format,” https://lcm-proj.github.io/log file format.html.

12. I. Yaqoob, I. A. T. Hashem, A. Gani, S. Mokhtar, E. Ahmed, N. B. Anuar, and

A. V. Vasilakos, “Big data: From beginning to future,” International Journal of

Information Management, vol. 36, no. 6, pp. 1231–1247, 2016.

13. U. Kazemi, “A survey of big data: Challenges and specifications,” CiiT Interna-

tional Journal of Software Engineering and Technology, vol. 10, no. 5, 2018.

14. F. F. Costa, “Big data in biomedicine,” Drug discovery today, vol. 19, no. 4, pp.

433–440, 2014.

15. M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and appli-

cations, vol. 19, no. 2, pp. 171–209, 2014.

16. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.

Byers, “Big data: The next frontier for innovation, competition, and productiv-

ity,” 2011.

17. S. Madden, “From databases to big data,” IEEE Internet Computing, vol. 16,

no. 3, pp. 4–6, 2012.

18. J. Anil, “The 5 v’s of big data,” https://www.ibm.com/blogs/watson-health/

the-5-vs-of-big-data/, 2016.

19. K. Krishnan, Data warehousing in the age of big data. Newnes, 2013.

174



20. P. C. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch, and G. Lapis, Understanding

big data: Analytics for enterprise class hadoop and streaming data. Mcgraw-hill

New York, 2012.

21. A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and

analytics,” International Journal of Information Management, vol. 35, no. 2, pp.

137–144, 2015.

22. “What is data modeling? conceptual, logical, & physical data models,” https:

//www.guru99.com/data-modelling-conceptual-logical.html, april 2019.

23. D. Anderson, “Data model design and best practices = part 2,” https://www.

talend.com/resources/data-model-design-best-practices-part-2/, 2019.

24. P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the emerging

world of polyglot persistence. Pearson Education, 2013.

25. C. Li and J. Gu, “An integration approach of hybrid databases based on sql in

cloud computing environment,” Software: Practice and Experience, vol. 49, no. 3,

pp. 401–422, 2019.

26. E. F. Codd, “A relational model of data for large shared data banks,” Commu-

nications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

27. N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A survey and com-

parison of relational and non-relational database,” International Journal of En-

gineering Research & Technology, vol. 1, no. 6, pp. 1–5, 2012.

28. “Database design full course,” https://www.calebcurry.com/

freecodecamp-database-design-full-course/, 2018.

175



29. “What does acid mean in database systems,” https://database.guide/

what-is-acid-in-databases/, 2016.

30. G. Powell, Beginning database design. John Wiley & Sons, 2006.

31. C. Churcher, Beginning database design: From novice to professional. Apress,

2012.

32. S. Tuteja, “Database normalization, normal forms,” https://www.geeksforgeeks.

org/database-normalization-normal-forms/.

33. “Entity relationship diagram,” https://www.smartdraw.com/

entity-relationship-diagram/, 2019.

34. “What is entity relationship diagram,” https://www.visual-paradigm.com/

guide/data-modeling/what-is-entity-relationship-diagram/, 2019.

35. J. Kreibich, Using SQLite. O’Reilly Media, Inc., 2010.

36. “Intro to sql: Querying and managing data,” https://www.khanacademy.org/

computing/computer-programming/sql, 2019.

37. M. Dane, “Sql tutorial - full course for beginners,” https://www.youtube.com/

watch?v=HXV3zeQKqGY, 2018.

38. “Sql tutorial,” https://www.w3schools.com/sql/, 2019.

39. K. Douglas and S. Douglas, PostgreSQL, Second Edition. Sams, 2015.

40. “New to postgresql?” https://www.postgresql.org/about/, 2019.

41. A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases for

big data analytics-classification, characteristics and comparison,” arXiv preprint

arXiv:1307.0191, 2013.

176



42. E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7, 2000.

43. L. Perkins, E. Redmond, and J. Wilson, Seven databases in seven weeks: a guide

to modern databases and the NoSQL movement. Pragmatic Bookshelf, 2018.

44. C. Strauch, U.-L. S. Sites, and W. Kriha, “Nosql databases,” Lecture Notes,

Stuttgart Media University, vol. 20, 2011.

45. J. Cook, “Acid vs base for database transactions,” https://www.johndcook.com/

blog/2009/07/06/brewer-cap-theorem-base/, 2009.

46. R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, and R. Buyya, “The

anatomy of big data computing,” Software: Practice and Experience, vol. 46,

no. 1, pp. 79–105, 2016.

47. N. Leavitt, “Will nosql databases live up to their promise?” Computer, vol. 43,

no. 2, pp. 12–14, 2010.

48. Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing nosql mongodb to an sql db,”

in Proceedings of the 51st ACM Southeast Conference. ACM, 2013, p. 5.

49. S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap technol-

ogy,” ACM Sigmod record, vol. 26, no. 1, pp. 65–74, 1997.

50. B. Hüsemann, J. Lechtenbörger, and G. Vossen, Conceptual data warehouse de-

sign. Universität Münster. Angewandte Mathematik und Informatik, 2000.

51. G. Simsek, “What is new about newsql,” https://softwareengineeringdaily.com/

2019/02/24/what-is-new-about-newsql/, 2019.

52. “Oltp vs olap: What’s the difference?” https://www.guru99.com/oltp-vs-olap.

html, 2019.

177



53. A. Pavlo and M. Aslett, “What’s really new with newsql?” ACM Sigmod Record,

vol. 45, no. 2, pp. 45–55, 2016.

54. M. Aslett, “What we talk about when we talk about newsql,”

https://blogs.the451group.com/information management/2011/04/06/

what-we-talk-about-when-we-talk-about-newsql/, 2011.

55. W.-T. Balke and U. Güntzer, “Multi-objective query processing for database

systems,” in Proceedings of the Thirtieth international conference on Very large

data bases-Volume 30. VLDB Endowment, 2004, pp. 936–947.

56. A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and M. Vazirgiannis, “On efficient top-k

query processing in highly distributed environments,” in Proceedings of the 2008

ACM SIGMOD international conference on Management of data. ACM, 2008,

pp. 753–764.

57. S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries,” in VLDB,

vol. 99, 1999, pp. 397–410.

58. E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos, “Skyline queries: An

introduction,” in 2015 6th International Conference on Information, Intelligence,

Systems and Applications (IISA). IEEE, 2015, pp. 1–6.

59. D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online

algorithm for skyline queries,” in Proceedings of the 28th international conference

on Very Large Data Bases. VLDB Endowment, 2002, pp. 275–286.

60. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm

for skyline queries,” in Proceedings of the 2003 ACM SIGMOD international

conference on Management of data. ACM, 2003, pp. 467–478.

178



61. P. Mell and T. Grance, “Effectively and securely using the cloud computing

paradigm,” NIST, Information Technology Laboratory, vol. 2, no. 8, pp. 304–311,

2009.

62. V. Saratchandran, “Cloud service models saas, iaas, paas - choose

the right one for your business,” https://www.fingent.com/blog/

cloud-service-models-saas-iaas-paas-choose-the-right-one-for-your-business,

2018.

63. C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, “A comparative study: Mon-

godb vs. mysql,” in 2015 13th International Conference on Engineering of Modern

Electric Systems (EMES). IEEE, 2015, pp. 1–6.

64. I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan,

“The rise of “big data” on cloud computing: Review and open research issues,”

Information systems, vol. 47, pp. 98–115, 2015.

65. R. Laigner, M. Kalinowski, S. Lifschitz, R. S. Monteiro, and D. de Oliveira, “A

systematic mapping of software engineering approaches to develop big data sys-

tems,” in 2018 44th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). IEEE, 2018, pp. 446–453.

66. D. Manthey, “Resonant girder,” https://tinyurl.com/yy589rof, 2019.

67. S. Mochocki, K. Kauffman, R. Leishman, and J. Racquet, “Relational database

design and multi-objective database queries for position navigation and timing

data,” Master’s thesis, Air Force Institute of Technology, 2950 Hobson Way,

Wright-Patterson AFB, OH 45433, 2020.

68. “Amazon relational database service,” https://aws.amazon.com/rds/, 2019.

179



69. “Amazon documentdb (with mongodb compatability),” https://aws.amazon.

com/documentdb/, 2019.

70. M.-G. Jung, S.-A. Youn, J. Bae, and Y.-L. Choi, “A study on data input and

output performance comparison of mongodb and postgresql in the big data envi-

ronment,” in 8th International Conference on Database Theory and Application

(DTA). IEEE, 2015, pp. 14–17.

71. A. Makris, K. Tserpes, G. Spiliopoulos, and D. Anagnostopoulos, “Performance

evaluation of mongodb and postgresql for spatio-temporal data.” in EDBT/ICDT

Workshops, 2019.

72. J. S. Van der Veen, B. Van der Waaij, and R. J. Meijer, “Sensor data storage

performance: Sql or nosql, physical or virtual,” in IEEE fifth international con-

ference on cloud computing. IEEE, 2012, pp. 431–438.

73. “Object identifier types,” https://www.postgresql.org/docs/8.1/datatype-oid.

html, 2019.

74. K. Kauffman, J. Raquet, D. Marietta, D. Carson, A. Schofield, M. Caporellie,

A. Canciani, and R. Leishman, “A modular sensor fusion approach for comple-

mentary navigation sensors,” ION Joint Navigation Conference, 2020.

75. “Class date,” https://docs.oracle.com/javase/7/docs/api/java/util/Date.html,

2018.

76. A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the set covering problem,”

Annals of Operations Research, vol. 98, no. 1-4, pp. 353–371, 2000.

77. T. A. Feo and M. G. Resende, “A probabilistic heuristic for a computationally

difficult set covering problem,” Operations research letters, vol. 8, no. 2, pp. 67–

71, 1989.

180



78. J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.

79. C. Chekuri and S. Khanna, “A polynomial time approximation scheme for the

multiple knapsack problem,” SIAM Journal on Computing, vol. 35, no. 3, pp.

713–728, 2005.

80. E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley & Sons,

2009, vol. 74.

81. M. Solar, V. Parada, and R. Urrutia, “A parallel genetic algorithm to solve the

set-covering problem,” Computers & Operations Research, vol. 29, no. 9, pp.

1221–1235, 2002.

82. J. E. Beasley and P. C. Chu, “A genetic algorithm for the set covering problem,”

European journal of operational research, vol. 94, no. 2, pp. 392–404, 1996.

83. J. Cobonkerr, “scp-genetic-algorithm,” https://github.com/jamescobonkerr/

scp-genetic-algorithm, 2020.

84. S. Arnborg, “Efficient algorithms for combinatorial problems on graphs with

bounded, decomposability—a survey,” Bit, vol. 25, no. 1, pp. 2–23, 1985.

85. A. A. Lazarev and F. Werner, “A graphical realization of the dynamic program-

ming method for solving np-hard combinatorial problems,” Computers & Math-

ematics with Applications, vol. 58, no. 4, pp. 619–631, 2009.

86. M. S. Krishnamoorthy, “An np-hard problem in bipartite graphs,” ACM SIGACT

News, vol. 7, no. 1, pp. 26–26, 1975.

87. M. Rosendo and A. Pozo, “Applying a discrete particle swarm optimization al-

gorithm to combinatorial problems,” in 2010 Eleventh Brazilian Symposium on

Neural Networks. IEEE, 2010, pp. 235–240.

181



88. N. Christofides, Graph theory: An algorithmic approach (Computer science and

applied mathematics). Academic Press, Inc., 1975.

89. G. Lamont, “Scp/spp global depth-first search back-tracking design,” Depart of

Electrical and Computer Engineering, Air Force Institute of Technology, 2019.

90. P. C. Chu and J. E. Beasley, “A genetic algorithm for the generalised assignment

problem,” Computers & Operations Research, vol. 24, no. 1, pp. 17–23, 1997.

91. G. Konjevod, “Solving a set covering problem with genetic algorithms1,” Max

Planck Society Technical Report MPI-I-94-604, Potsdam, 1994.

92. C. R. Reeves, “Using genetic algorithms with small populations.” in ICGA, vol.

590, 1993, p. 92.

93. A. Piszcz and T. Soule, “Genetic programming: Optimal population sizes for

varying complexity problems,” in Proceedings of the 8th annual conference on

Genetic and evolutionary computation, 2006, pp. 953–954.

182



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2019 — Mar 2020

Relational Database Design and Multi-Objective Database Queries for
Position Navigation and Timing Data

Mochocki, Sean A., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-045

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The ANT center has access to over 100 position, navigation and timing data sets, which are stored in different formats
and locations. These data sets would be valuable to students designing filters as part of their research and could be used
to supplement physical testing, but are mostly unavailable. This thesis presents the design and testing of three possible
database approaches to store this PNT data in the Scorpion Data Model format. The best performing solution is then
used to test two stochastic algorithms for multi-objective database queries in the Knapsack and Set Covering problem
domains. This thesis provides valuable tools to enable future navigation research.

Relational Database, Multi-Objective Database Queries, Structured Query Language, Scorpion Data Model

U U U UU 199

Dr. Robert Leishman, AFIT/ENG

(937) 255-3636 x4755; robert.leishman@afit.edu


	Relational Database Design and Multi-Objective Database Queries for Position Navigation and Timing Data
	Recommended Citation

	tmp.1590083822.pdf.ZI99X

