
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

Comparison of Visual Simultaneous Localization and Mapping Comparison of Visual Simultaneous Localization and Mapping

Methods for Fixed-Wing Aircraft Using SLAMBench2 Methods for Fixed-Wing Aircraft Using SLAMBench2

Patrick R. Latcham

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Other Electrical and Computer Engineering Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
Latcham, Patrick R., "Comparison of Visual Simultaneous Localization and Mapping Methods for Fixed-
Wing Aircraft Using SLAMBench2" (2020). Theses and Dissertations. 3176.
https://scholar.afit.edu/etd/3176

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholar.afit.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3176?utm_source=scholar.afit.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

COMPARISON OF VISUAL SIMULTANEOUS
LOCALIZATION AND MAPPING METHODS

FOR FIXED-WING AIRCRAFT USING
SLAMBENCH2

THESIS

Patrick R. Latcham, 2d Lt, USAF

AFIT-ENG-MS-20-M-034

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-034

COMPARISON OF VISUAL SIMULTANEOUS LOCALIZATION AND

MAPPING METHODS FOR FIXED-WING AIRCRAFT USING SLAMBENCH2

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Patrick R. Latcham, B.S.E.E.

2d Lt, USAF

March 19, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-034

COMPARISON OF VISUAL SIMULTANEOUS LOCALIZATION AND

MAPPING METHODS FOR FIXED-WING AIRCRAFT USING SLAMBENCH2

THESIS

Patrick R. Latcham, B.S.E.E.
2d Lt, USAF

Committee Membership:

Clark N. Taylor, Ph.D
Chair

Maj Aaron J. Canciani, Ph.D
Member

Robert C. Leishman, Ph.D
Member

AFIT-ENG-MS-20-M-034

Abstract

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved

rapidly in the last few years, however there has been little research evaluating current

algorithm’s effectiveness and limitations when applied to tracking the position of a

fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM

algorithms’ performance on aerial vehicle datasets using the SLAMBench2 bench-

marking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM,

ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The

algorithms’ performance is evaluated using simulated datasets generated in the Af-

trBurner Engine. The datasets were designed to test the quality of each algorithm’s

tracking solution, as well as finding any dependence on camera field of view (FOV),

aircraft altitude, bank angle, and bank rate.

Through these tests, it was found that LSDSLAM, ORB-SLAM2, and SVO are

good candidates for further research, with MonoSLAM, PTAM, and OKVIS failing

to track any datasets. All algorithms were found to fail when the capturing camera

had a horizontal FOV of less than 60 degrees, with peak performance occurring at

a FOV of 75 degrees or above. LSDSLAM was found to fail when the aircraft bank

angle exceeded half of the camera’s FOV, and SVO was found to fail below 450 meters

altitude. The simulations were also tested against a comparable real world dataset,

with agreeable results, although the FOV of the real world dataset was too small to be

a particularly useful test. Further research is required to determine the applicability

of these results to the real world, as well as fuse VSLAM algorithms with other sensors

and solutions to form a more robust navigation solution.

iv

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Clark Taylor, for his

guidance, mentorship, and unending patience through this process. Without his

input, this work would not have been possible.

I would also like to thank Dr. Robert Leishman and Maj Aaron Canciani, as

well as the rest of the AFIT faculty, for their excellent instruction and professional

support.

A special thanks to Capt Sarantsev for being available whenever I needed him to

make, remake, or re-remake a dataset, even at the latest of hours.

Finally, I am grateful for my family, friends, and especially my wife for supporting

me throughout this process.

Patrick R. Latcham

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 1
1.3 Research Objectives . 2
1.4 Approach . 2
1.5 Assumptions/Limitations . 3
1.6 Contributions . 3
1.7 Thesis Overview. 4

II. Background and Literature Review . 5

2.1 Visual SLAM . 5
2.1.1 Camera Calibration, Field of View, and Image

Width . 6
2.2 VSLAM Algorithms . 8

2.2.1 MonoSLAM . 9
2.2.2 PTAM . 9
2.2.3 LSD-SLAM . 10
2.2.4 ORB-SLAM2 . 10
2.2.5 SVO . 11
2.2.6 Tuning Parameters . 11

2.3 Visual SLAM Datasets . 11
2.3.1 ICL-NUIM . 12
2.3.2 TUM-RGBD . 12
2.3.3 EuRoC MAV . 13
2.3.4 SUSEX . 13

2.4 SLAMBench2 Benchmarking Suite . 13
2.5 Related Works . 14
2.6 Background Summary . 15

vi

Page

III. Methodology . 16

3.1 Variables of Interest . 16
3.2 Simulation . 17

3.2.1 Dataset Group 1 . 18
3.2.2 Dataset Group 2 . 19
3.2.3 Simulated Flight 12 . 19

3.3 VSLAM Algorithms . 22
3.4 Processing Platform . 22
3.5 Performance Metrics . 23
3.6 Summary . 24

IV. Results and Analysis . 25

4.1 Simulation Results . 25
4.1.1 Altitude and FOV Results . 25
4.1.2 Bank Angle vs Bank Rate Results . 26
4.1.3 SUSEX Flight 12 - Real and Simulated . 26

4.2 Analysis . 49
4.2.1 Impact of FOV and Image Width . 49
4.2.2 Impact of Bank Angle vs FOV . 50
4.2.3 Impact of Bank Rate vs FOV . 50
4.2.4 Impact of Altitude . 51
4.2.5 Real World vs Simulation . 52
4.2.6 Algorithm Choice . 52
4.2.7 Impact of Tuning Parameters . 53

4.3 Summary . 54

V. Conclusions . 55

5.1 Results Discussion . 55
5.2 Future Work . 56

Bibliography . 58

vii

List of Figures

Figure Page

1 The Pinhole Model . 7

2 Image Width Illustration . 8

3 Real World vs Simulation Imagery . 18

4 Dataset Group 1 Ground Truth . 20

5 Dataset Group 2 Ground Truth . 21

6 SUSEX Flight 12 Ground Truth . 21

7 LSDSLAM Altitude vs FOV Results . 27

8 LSDSLAM cpp Altitude vs FOV Results . 28

9 ORB-SLAM2 Altitude vs FOV Results . 29

10 SVO Altitude vs FOV Results . 30

11 LSDSLAM Error Accumulation Part 1 . 31

12 LSDSLAM Error Accumulation Part 2 . 32

13 LSDSLAM cpp Error Accumulation Part 1 . 33

14 LSDSLAM cpp Error Accumulation Part 2 . 34

15 ORB-SLAM2 Error Accumulation Part 1 . 35

16 ORB-SLAM2 Error Accumulation Part 2 . 36

17 SVO Error Accumulation Part 1 . 37

18 SVO Error Accumulation Part 2 . 38

19 FOV vs RMSE - Dataset Group 1 . 40

20 Altitude vs RMSE part 1 . 41

21 Altitude vs RMSE part 1 . 42

22 Image Width vs FOV - Bank Angle Completion . 43

viii

Figure Page

23 LSDSLAM Bank Angle vs Bank Rate Test Results 44

24 LSDSLAM cpp Bank Angle vs Bank Rate Test Results 45

25 ORB-SLAM2 Bank Angle vs Bank Rate Test Results 46

26 SVO Bank Angle vs Bank Rate Test Results . 47

27 FOV vs RMSE - Dataset Group 2 . 48

28 Simulated Flight 12 Results . 48

ix

List of Tables

Table Page

1 Processing Platform Specifications . 23

2 Altitude vs FOV Results . 39

3 Bank Angle vs Bank Rate Results . 42

x

COMPARISON OF VISUAL SIMULTANEOUS LOCALIZATION AND

MAPPING METHODS FOR FIXED-WING AIRCRAFT USING SLAMBENCH2

I. Introduction

1.1 Background

Current aerial vehicle navigation is heavily reliant on the Global Positioning Sys-

tem (GPS), which can be degraded or denied. As such, reliable alternatives to GPS

are desirable. Visual Simultaneous Localization and Mapping (VSLAM) algorithms

have matured rapidly in the last few years, potentially becoming a viable solution

for aerial vehicle navigation. VSLAM algorithms use the images from a camera to

measure the camera’s change in pose, building an internal map which can be used for

localization [1]. VSLAM has been successfully used for ground and quadrotor based

navigation [2][3][4][5], but has only recently started to be applied to fixed wing aerial

vehicles [6] [7].

1.2 Problem Statement

While researching the viability of using existing Visual Odometry (VO) algorithms

on aerial vehicles, it was found that the existing algorithms did not work at all with

the datasets used. It is theorized that the algorithms failed due to the small field of

view (FOV) of the capturing camera combined with the altitude of the aircraft. This

research aims to determine the effect, if any, that the FOV of the capturing camera

has on the quality of the navigation solution given by VSLAM algorithms, as well as

investigate how this effect compounds with the aircraft’s bank angle, bank rate, and

1

altitude.

1.3 Research Objectives

This work attempts to rigorously determine the effect of the following variables

on the quality and robustness of solutions from several state of the art VSLAM

algorithms.

• The capturing camera’s FOV

• The aircraft’s altitude

• The aircraft’s bank angle

• The aircraft’s bank rate

It also looks to determine any interdependencies between the above variables.

1.4 Approach

Seven implementations of VSLAM algorithms are tested using simulated flight

datasets: MonoSLAM [8], PTAM [9], OKVIS [10], LSD-SLAM and its c++ imple-

mentation [3], ORB-SLAM2 [2], and SVO [11]. These algorithms are tested with

datasets created using the AftrBurner Engine [12]. Several datasets are created, with

varying FOV of the capturing camera, altitude of the aircraft, and bank rate. The

flight path is designed to incrementally test higher bank angles to determine the qual-

ity of the tracking solution. The VSLAM algorithms are applied to the datasets using

the SLAMBench2 software suite [13], which gives a consistent environment for testing

all algorithms. The estimated trajectories are then aligned and analyzed using the

rpg trajectory evaluation software from [14].

2

A simulated flight is also made to match a real-world flight test, with the only

difference being the increased FOV of the camera, to determine applicability of the

simulations to real-world situations.

1.5 Assumptions/Limitations

The following assumptions/limitations are taken during this research and analysis:

• The camera always points down in the aircraft body reference frame.

• The simulated terrain accurately represents real-world terrain, as parallax ef-

fects are minimized at a sufficient altitude.

• The camera is modeled as an ideal pinhole camera with zero distortion.

• The VSLAM algorithms are initialized when the aircraft is flying straight and

level.

• This research only looks at the translational solution of the VSLAM algorithms,

not the rotational accuracy.

• The algorithms are used as-is with default tuning parameters.

1.6 Contributions

This thesis contributes to the field of fixed-wing aerial vehicle VSLAM a more thor-

ough understanding of the effect that camera FOV and flight characteristics (namely,

roll rate and roll angle) have on the quality of VSLAM solutions, including the min-

imum FOV that can be expected to give accurate results.

3

1.7 Thesis Overview

This thesis is organized into five chapters. Chapter II gives a brief summary of

VSLAM algorithms, introduces the algorithms and programs used in this research,

and presents other related research in this field. Chapter III gives a more detailed

explanation of the simulated datasets used and describes the methodology with which

the VSLAM algorithms are tested against those datasets. The results of the research

and subsequent analysis are given in Chapter IV. Chapter V presents a summary of

this work as well as suggestions for future research.

4

II. Background and Literature Review

This chapter provides a brief introduction to the concepts, tools, and algorithms

used in this research. It begins with a background on Visual Simultaneous Local-

ization and Mapping (VSLAM) and the model used to describe a camera in section

2.1. Section 2.2 gives backgrounds on each of the monocular Simultaneous Localiza-

tion and Mapping (SLAM) algorithms used. Section 2.3 follows with a discussion

on Visual SLAM testing datasets, including the datasets used in this research. The

chapter then gives background on SLAM benchmarking suites in section 2.4, specifi-

cally the KITTI Benchmark and SLAMBench 1 and 2. Finally, the chapter ends with

a discussion of related research in section 2.5.

2.1 Visual SLAM

VSLAM is a method of using a sequence of images to build a map of the surround-

ings, while also solving for the location and trajectory of the vehicle within the map.

Typically, VSLAM algorithms consist of a front-end Visual Odometry (VO) system

which incrementally updates the pose of the camera, and a back-end framework which

uses the odometry data to build a map, localize itself within that map, and handles

loop closures and additional sensor inputs [1].

VO is the method by which odometry data can be obtained from a sequence of

images. It can use monocular, stereo, or monocular-plus-depth data to calculate the

camera’s current pose relative to its prior pose. Stereo and depth based methods

offer the advantage of being able to judge absolute scale, while monocular methods

can only give relative scale. In the situation of aerial vehicle navigation, however,

the camera is often too far above the ground for stereo or depth based methods to

accurately give depth measurements, thus only monocular methods are explored in

5

this research.

2.1.1 Camera Calibration, Field of View, and Image Width

Core to VSLAM algorithms is the camera itself. VO algorithms most commonly

use the pinhole model to calibrate the camera and model the camera’s intrinsic pa-

rameters [15]. Fig. 1 shows the pinhole model, which assumes that all the light rays

go through a single point in the camera.

Using this model, the projection of a point in space pk onto the image plane Ik is:

u

v

1

 =
1

z
Kpk =

1

z

fx 0 u0

0 fy v0

0 0 1

x

y

z

 (1)

where K is the camera calibration matrix representing the camera intrinsics. Specifi-

cally, these intrinsics are fx, fy, u0, and v0, with u0 and v0 representing the coordinates

of the center of the projection, and fx and fy representing the focal length (in pixels)

in each direction. The pinhole model also provides intrinsics for distortion, but in

this research all distortion is assumed to be zero. Practically, fx and fy are taken to

be equal, as the camera ideally has the same focal length in each direction, while u0

and v0 are taken to be half of the camera resolution width and height, respectively.

The field of view (FOV) of the camera is directly related to the focal lengths by

the following equations:

fovx = 2arctan
w

2fx
fovy = 2arctan

h

2fy
(2)

where w and h are the width and height of the image in pixels. In this research,

as the focal lengths are taken to be equal, the vertical FOV of the image is taken

6

Figure 1: The Pinhole Model

to be dependent on the horizontal FOV. Further discussion about camera’s FOV is

understood to be referencing the horizontal FOV.

The optical flow of each image, or how much each pixel moves from image to image,

is actually controlled by a combination of the horizontal FOV, aircraft altitude, and

aircraft speed. To evaluate this combination of variables, we look at a factor called

Image Width, measured in meters. This is a measure of how much ground the camera

can see during straight and level flight. Image Width can be calculated using the

equation:

IW = 2(Alt)tan
fovx

2
(3)

where IW is the image width in meters, Alt is the altitude of the aircraft in meters,

and fovx is the horizontal FOV of the camera. This is shown graphically in Fig. 2.

7

Figure 2: Image Width Illustration

2.2 VSLAM Algorithms

This research only focuses on monocular VSLAM methods, as stereo images and

depth sensors are ineffective at high altitudes. VO methods can also be categorized

based on how they track changes in the images captured. Feature based algorithms

use a variety of methods to find unique features in each image, such as sharp corners.

This allows for matching of features between images with large movement in between,

at the cost of relying on a large number of tuning parameters which can drastically

effect performance [11]. Direct algorithms estimate motion from the intensity values

in the image, using every pixel available. This allows direct algorithms to use all

of the information in an image, leading to more robust results. [3]. VO algorithms

may also use a hybrid of both methods, typically called semi-direct VO [11]. In this

research, all three types of VO algorithms will be used. The feature based methods

include MonoSLAM [8], PTAM [9], OKVIS [10], and ORB-SLAM2 [2]. SVO [11]

8

is the only semi-direct method used. LSD-SLAM [3] is a direct method. Below, a

brief description is given on each of the monocular VSLAM algorithms used in this

research.

2.2.1 MonoSLAM

MonoSLAM was the first real time VSLAM algorithm, published by Davison et

al. in 2007 [8]. It creates a probabilistic 3D map representing all current estimates

of the states of the camera, image features, and all uncertainties associated with

these measurements. This map is then updated using an Extended Kalman Filter

as new images are received. This map is then used to locate the camera approxi-

mately 30 times a second. It is a sparse SLAM implementation, relying on features

extracted from the images and tracked within the internal map. As a symptom of

being monocular, MonoSLAM has no way to determine the scale of the map it main-

tains. Davison et al. deal with this by initializing the algorithm with known features

to give an absolute scale.

2.2.2 PTAM

Also published in 2007, Klein and Murray developed the Parallel Tracking and

Mapping (PTAM) algorithm [9]. PTAM had the novel idea of separating the tracking

and mapping processes into separate threads to increase performance and accuracy.

This allows the mapping process to be performed on keyframes instead of every frame.

Whenever the algorithms recognizes a new video frame that is significantly different

from the last keyframe, it can add it as a new keyframe. Bundle adjustment is

then performed on the map, allowing for high accuracy estimates of the map. The

tracking loop can continue in real time, separate from the mapping thread, allowing for

incremental pose estimates to be calculated. PTAM also suffers from scale ambiguity,

9

which is resolved by translating a set distance of 10 cm between the first two images

in the dataset.

2.2.3 LSD-SLAM

Engel et al. developed Large-Scale Direct SLAM (LSD-SLAM) in 2014 [3]. LSD-

SLAM is the only fully direct SLAM algorithm tested in this research. It differs by

using all of the information in an image, instead of extracting features from the image

to help in building a map. LSD-SLAM is split into three main components: tracking,

depth map estimation, and map optimization. The tracking component tracks the

current camera pose with respect to the last keyframe. The depth map estimation

component updates the keyframes using small-baseline stereo comparisons to create

a depth map. The map optimization component incorporates these keyframe maps

into the global map, and also detects loop closures and scale drifting. LSD-SLAM is

also scale ambiguous, and needs to be paired with other systems to resolve absolute

scales.

2.2.4 ORB-SLAM2

ORB-SLAM2 is one of the current state-of-the-art SLAM systems, introduced by

Mur-Artal and Tardós in October 2017 [2]. It builds on the original ORB-SLAM

system [16], which only worked on RGB-D systems. ORB-SLAM2 can work with

monocular, stereo, or RGB-D datasets, incorporating keyframe tracking, local and

global bundle adjustment, loop closure, place tracking, and pose-graph estimation. By

combining all of these techniques into three parallel threads, ORB-SLAM2 has become

one of the most robust and accurate VSLAM algorithms. Scale is still ambiguous in

the monocular tracking case, but is absolute in the stereo and RGB-D cases.

10

2.2.5 SVO

SVO, introduced by Forster, Pizzoli, and Scaramuzza in 2014, is a hybrid semi-

direct VSLAM algorithm [11]. Developed specifically for monocular VO on Micro

Aerial Vehicles (MAVs), this method combines the robustness and speed of direct

methods with the benefits of feature based tracking. SVO differs from other direct

methods by extracting features during keyframes which are used to initialize depth

filters, which are updated between keyframes to build the map. Motion estimation is

accomplished by obtaining an initial guess of the new pose using direct model-based

image alignment, then refining that guess using feature-based alignment. The motion

estimation and mapping tasks are carried out in two separate threads for a significant

performance gain. As a monocular algorithm, SVO has no way of extracting scale

from its image sets, and thus the solution must be aligned to ground truth for accurate

comparison.

2.2.6 Tuning Parameters

It should be noted that many of these algorithms have built in tuning parameters

that can tweak performance to fit certain use cases. Common parameters include

the changing the frequency of keyframes, turning loop closure on or off, as well as

parameters associated with feature extraction for feature based algorithms. This

research uses all of the algorithms as provided, with default parameters, although an

effort is made to determine if a change in parameters will significantly impact results.

This is further discussed in the Analysis section of Chapter 4.

2.3 Visual SLAM Datasets

Several common datasets have been used to compare the effectiveness of different

VSLAM algorithms. While a custom simulated dataset is being used in this research,

11

these common datasets are used to help ensure that each VSLAM algorithm is working

as intended. A brief overview of each dataset is given below:

2.3.1 ICL-NUIM

The Imperial College London and National University of Ireleand Maynooth (ICL-

NUIM) dataset was introduced by Handa et al. in 2014 [17]. It is a series of handheld

RGB-D sequences within synthetically generated environments. This allowed for

the creation of extremely precise datasets with exact truth trajectories, as well as

accurate surface truth models. The synthetic nature of the dataset also allows for

different versions of each trajectory: one a noiseless trajectory with perfect depth

measurements, and a more real-world scenario where the quality of the image is

degraded, and the depth and image measurements suffer from noise. These various

indoor scenes provide repeatable, accurate datasets for the comparison of VSLAM

algorithms.

2.3.2 TUM-RGBD

The TUM-RGBD dataset is a widely used dataset consisting of 39 real-world

sequences recorded using a Microsoft Kinect Sensor. It was presented by Sturm et al.

in 2012 [18]. The sequences cover a wide variety of scenes and camera movements,

including sequences for debugging, small scale desk scenes, and larger scale sequences

with and without loop closures. Sequences were captured with the Kinect being both

handheld and mounted to a robot. The large variety of real-world scenes in this

dataset makes it useful for debugging and testing various VSLAM algorithms.

12

2.3.3 EuRoC MAV

The European Robotics Challenge Micro Aerial Vehicle (EuRoC MAV) dataset

contains real-world data collected by a small aerial vehicle operating in an indoors

environment. It was presented by Burri et al. in 2016 [19]. This dataset includes

stereo images, inertial measurement unit (IMU) measurements, and highly accurate

ground truth data. The dataset is split into two batches, with the first batch facil-

itating the evaluation of visual-inertial algorithms, and the second batch evaluating

precise 3D environment reconstruction.

2.3.4 SUSEX

The Small Unmanned Systems Exploitation (SUSEX) dataset is a product of the

Air Force Research Laboratory (AFRL) Sensors Directorate SUSEX team. It includes

several real world flight datasets from a fixed-wing small unmanned aerial vehicle

(UAV). The dataset was taken over Avon Park, FL in December 2016. It includes

a large array of sensor data, including IMU, Global Positioning System (GPS), and

monocular imagery. It was collected to facilitate a wide array of testing using many

sensors. For this research, the GPS/IMU combined (INS) solution is being used as

a truth trajectory, with the IMU and monocular imagery data being given to the

VSLAM algorithms.

2.4 SLAMBench2 Benchmarking Suite

With so many different datasets and algorithms, the need to benchmark and

compare algorithms within the same framework has been recognized. Several bench-

marking suites exist, often tailored to their specific usecases. For example, the KITTI

Vision Benchmark Suite is a software suite designed to compare VSLAM algorithms

for use in self driving cars [20]. It includes its own datasets, including stereo cam-

13

eras, GPS, and a 360 degree laserscanner. Its utility in evaluating algorithms for

applications besides autonomous driving, however, is limited.

To create a more general benchmarking software suite, SLAMBench, published by

Nardi et al. in 2015, was designed to run different implementations of the KinectFu-

sion algorithm [21] on various hardware. It was, however, limited to using KinectFu-

sion and the ICL-NUIM dataset.

In an effort to release a truly general benchmark suite, Bodin et al. developed

SLAMBench2 in 2018 [13]. This updated version of the software implements eight

different SLAM algorithms natively: ORB-SLAM2 [2], MonoSLAM [8], OKVIS [10],

PTAM [9], ElasticFusion [22], InfiniTAM [23], KinectFusion [21], and LSD-SLAM [3].

It also supports the ICL-NUIM dataset [17], the TUM-RGBD dataset [18], and the

EuRoC MAV dataset [19] natively. More importantly, however, it provides an easy

to use interface for implementing new SLAM algorithms and datasets natively within

the software. Modifying SLAMBench2 to support testing of navigation algorithms

for fixed-wing aircraft was the goal of this research.

2.5 Related Works

While most new VSLAM algorithms make a point to compare themselves against

the current state of the art [2, 3, 22], these are all compared using indoor or ground-

level trajectories. Due to the large distances from the camera to the objects being

observed inherent in fixed-wing flight, these comparisons did not address our need for

a fixed-wing VSLAM system.

Some work has been done in evaluating and developing VO algorithms for aerial

applications. Carson investigated the feasibility of implementing visual-inertial odom-

etry on a fixed-wing aircraft using a Kalman Filter [5]. In this work, Carson imple-

mented four VO variants, and compared them against the Semi-Direct Visual Odom-

14

etry (SVO) algorithm [11]. Carson’s work was limited to visual odometry, however,

and did not expand into a full VSLAM system.

Ellingson et al. also published a work on visual-inertial SLAM for fixed wing air-

craft in 2018 [24]. This work presented using a relative front end for state estimation

while using a global back end for optimizations and loop closures. This was tested

using custom simulated data, but was found to not be able to run in real time.

More recently, Kim evaluated several VO algorithms on aerial fixed-wing datasets,

both simulated and real-world [6]. In this work, SVO was tested against DSO and

ORB-SLAM2 with loop closures disabled. Each VO algorithm was tested on multiple

simulated and real-world datasets. It was found that ORB-SLAM2 was the most

robust solution, with all of the algorithms struggling to initialize in real-world con-

ditions. Another limitation of this research was the disabling of ORB-SLAM2’s loop

closures to more accurately compare it to the other algorithms. Again, none of the

systems tested were full VSLAM systems.

In this thesis, we attempt to overcome the shortcomings of this prior work by

(1) using common datasets across all algorithms that are representative of fixed-wing

flight and (2) running full VSLAM algorithms that are available in the literature.

2.6 Background Summary

This chapter introduced core concepts behind VSLAM methods. It also gave

backgrounds on the VSLAM algorithms and datasets used in this research. It dis-

cussed the SLAMBench2 benchmarking suite that is core to this research. Finally, it

summarized related research in aerial visual odometry and visual SLAM. This thesis

looks to enable the testing of VSLAM algorithms on data collected from fixed-wing

aircraft.

15

III. Methodology

The primary purpose of this thesis is to evaluate the effectiveness of existing VS-

LAM algorithms on data from fixed-wing aircraft. To perform this analysis, we first

tried several different algorithms on a preexisting dataset (the SUSEX dataset) rep-

resenting mid-level UAV flight. Unfortunately, none of the algorithms had acceptable

performance with this dataset. Therefore, we shifted to using primarily simulated

data to understand the system parameters that could be prohibiting any of the al-

gorithms from performing appropriately. Specifically, we used simulated datasets to

test the effect of the camera’s field of view (FOV), the aircraft’s bank angle, and the

aircraft’s bank rate on the performance of several Visual Simultaneous Localization

and Mapping (VSLAM) algorithms.

This chapter goes over the experimental design of this research, starting with a

discussion of the variables of interest and following with an overview on the simulated

datasets that were created. It then overviews which VSLAM algorithms were used

in testing, including any changes made to those algorithms, if any. It outlines the

platform on which this testing was performed, and finally discusses the performance

metrics used to determine the quality of the tracking solutions. It concludes with a

summary of the chapter.

3.1 Variables of Interest

This research examines the effect of the camera’s FOV, the aircraft’s bank angle,

bank rate, and altitude on the quality of the VSLAM solution. We chose to test FOV

first, as it seemed to be a reasonable explanation for why the algorithms failed on

the original dataset. When the initial simulations supported this, we then decided to

test the altitude, bank angle, and bank rate to see how they affected the solutions.

16

Here, the bank angle is defined as the roll angle of the aircraft during a coordinated

turn, while the bank rate is the rate at which the aircraft transitions from level flight

to that bank angle. While these are related (reaching a higher bank angle in the

same amount of time will also mean a higher bank rate), it is one of the goals of this

research to isolate the effects of the bank rate vs bank angle, and to find out which,

if any, is the limiting factor in the performance of the VSLAM tracking solution.

Note that for the rest of this thesis, the word tracking is used to refer to when an

algorithm successfully initializes, produces a position solution that is non-zero, and

does not throw a runtime error. We also look at Image Width to try and isolate the

effect of FOV from the effect of Altitude.

3.2 Simulation

The majority of the datasets used in this research were simulated in order to isolate

the effects of the variables of interest, as well as to provide repeatable results over

various trial runs. In addition to isolating changes in specific variables, simulation

also increases the amount of data that can be “collected” in a given time frame, as far

less time has to be spent capturing simulated data than real world flight tests. This

section includes an overview on the simulation software used to create these datasets,

a discussion of how these simulations compare to real flight paths, and a discussion

of the variables these simulations help isolate in the datasets.

The simulated datasets in this research are generated using the AftrBurner Engine,

an educational game engine created by Nykl et al. as the successor to the STEAMiE

game engine [12]. This engine allows for the use of satellite imagery from Google

Maps, as well as the ability to script camera movement in accordance with a ground

truth file. An example of the imagery produces by this software is shown in Fig. 3.

It also allows for the defining of the camera in terms of its resolution, distortion

17

coefficients, and FOV, or by using the camera calibration matrix directly, whichever

is preferred. The AftrBurner engine can also map the satellite images to 3D ground

geometry, as done by Kim in [6], however this research uses the 2D imagery directly.

A total of 59 flight datasets were used to perform this research. The first set of 40

datasets served to test each VSLAM algorithm for dependencies on altitude, camera

FOV, and bank angle. To further test the dependency on bank angle and bank rate,

a second set of datasets was created, consisting of 16 further datasets. This second

set tested dependence on bank rate and bank angle independently, as well as further

testing dependence on camera FOV. (We discuss how these datasets were created to

test the desired parameters in the following sub-sections.) Finally, a single real world

flight was used from the SUSEX flight dataset, paired with two equivalent simulated

datasets. This served as a parity check between the simulated datasets and a real

world dataset. All datasets used a camera resolution of 1600x1200 pixels.

3.2.1 Dataset Group 1

The first group of datasets consisted of a flight path that was created starting with

30 seconds of straight and level flight at 15 m/s. The flight path then took a series

of 90 degree coordinated turns at increasing bank angles, starting with a 5 degree

Figure 3: Left shows the real world imagery taken from the SUSEX Flight 12 dataset.
Right shows the equivalent imagery created in the AftrBurner Engine.

18

bank angle and continuing until reaching a 30 degree bank angle. Bank angles were

reached by linearly rolling for 1.5 seconds before and after each turn. Each 90 degree

turn was connected with another 30 second straight and level section. Finally, after

the last 90 degree turn at a 30 degree bank angle, another 30 second straight and

level section was added. This flight path can be seen in Fig. 4.

This flight path was created with 5 different altitudes, 100, 450, 800, 1150, and

1500 meters to create 5 different ground truths for testing. These 5 ground truths

were then simulated with 8 different camera FOVs: 30, 45, 60, 75, 90, 105, 120, and

135 degrees for a total of 40 datasets.

3.2.2 Dataset Group 2

The second group of datasets was created to test if sharper bank angles would

have an effect on tracking, as well as test if the bank rate was the limiting factor

instead of the bank angle. This dataset group was constructed similarly to the first,

with an aircraft traveling at 15 m/s, this time at a fixed altitude of 800m. Straight

sections were limited to 15 seconds (225m) to limit the length of the dataset. Bank

angles again started at 5 degrees and increased in 5 degree increments, this time up

to a 60 degree bank. Finally, two different ground truths were made from this, one

taking 1.5 seconds to reach the bank angle, similar to before, and the other taking 3

seconds to reach the bank angle. This way it could be determined if the algorithms

were failing at a certain bank angle, or if they were instead failing at a specific bank

rate. The ground truth for this flight path can be seen in Fig. 5.

3.2.3 Simulated Flight 12

A small section of the SUSEX 12 Avon Park Flight 12 dataset was chosen to help

test against the simulation. The section chosen had a loop with bank angles less than

19

Figure 4: Ground truth used for Dataset Group 1. Aircraft moves at 15 m/s, with each
straight section being 30 seconds long (450m). Each 90 degree turn has a successively
higher bank angle, starting at 5 degrees and working up to 30 degrees in 5 degree
increments.

30 degrees at an average altitude of 483m. The SUSEX dataset did not have the

camera pointing straight down in the aircraft body frame, instead it was oriented 50

degrees below horizontal, and pointed towards the aircraft’s right wing, inside of the

loop taken. Additionally, the camera used had a horizontal FOV of only 25 degrees.

The ground truth for this dataset is shown in Fig. 6.

Two simulated datasets were made based on this flight. One was made exactly

according to the original flight. The only change made for the second simulation was

the camera FOV was increased to 90 degrees. These simulated and real world flights

allowed testing the parity of the simulations to real world flight tests.

20

Figure 5: Ground truth used for Dataset Group 2. Aircraft moves at 15 m/s, with each
straight section being 15 seconds long (225m). Each 90 degree turn has a successively
higher bank angle, starting at 5 degrees and working up to 60 degrees in 5 degree
increments.

Figure 6: Ground truth taken from Flight 12 of the 12 Avon park dataset from the
SUSEX group. The aircraft here flies in a loop, taking less than 30 degree bank angle
turns, at an average altitude of 1587m.

21

3.3 VSLAM Algorithms

This research focuses on the monocular VSLAM algorithms that were implemented

in the SLAMBench2 benchmarking suite [13]. These include: ORB-SLAM2 [2], LSD-

SLAM [3], PTAM [9], MonoSLAM [8], OKVIS [10], and SVO [11]. Of these, the imple-

mentations of ORB-SLAM2 and OKVIS had to be modified within the SLAMBench2

framework to accept monocular datasets, as the original implementation only pro-

vided support for stereo imagery. It should be noted that the algorithms themselves

were not modified, only the SLAMBench library file that interfaced the algorithms to

SLAMBench2. LSDSLAM was also run using two different implementations available

in SLAMBench2, noted as LSDSLAM and LSDSLAM cpp, which has the LSDSLAM

library entirely implemented in the c++ programing language. For completeness,

both are analyzed in this research.

These algorithms were first tested with dataset group 1 to determine whether or

not the algorithms would even function on aerial vehicle datasets. If so, they were

tested with all of the datasets to determine performance dependencies as outlined

above.

3.4 Processing Platform

All processing was done on a dedicated platform, the specifications of which are

outlined in Table 1. SLAMBench2 does provide metrics for processing time and

memory used, but as this will change depending on the platform used, we do not

report it in this thesis.

22

Operating System Ubuntu 18.04.3 LTS - 64 bit

Processor Intel Core i5-3570k @ 3.40 GHz

Graphics Intel Ivybridge Integrated Graphics

Memory 24 GB Patriot Viper DDR3-2133

Table 1: Processing Platform Specifications

3.5 Performance Metrics

This research will primarily look at the accuracy of the position solution given

by the VSLAM algorithms. As SLAMBench2 does not output rotational information

when outputting solutions, only the accuracy of the positional solution will be consid-

ered. As all of the VSLAM algorithms tested are monocular algorithms, none of the

solutions will be in the correct scale, and thus need to be aligned. This alignment was

done using the trajectory alignment tool developed by Zhang and Scaramuzza [14].

This tool gives us the Root Mean Squared Error (RMSE) of each trajectory compared

to the ground truth. It should be noted that SLAMBench2 includes an alignment

step as well as outputting performance metrics, however Zhang and Scaramuzza’s

tool was found to be more robust for the datasets used in this research.

The RMSE compared for each solution was computed only for the part of the

solution that successfully tracked the ground truth without producing an error. If

an algorithm completely lost tracking during the dataset, the solution was trimmed

there and the RMSE only computed up to that point. Thus where the algorithm

failed in the dataset is also an important metric to determining the performance of

the solution.

23

3.6 Summary

This chapter described the simulated datasets relied on in this research, detailing

the software used to create them as well as the content of the datasets themselves.

It then laid out the experimental design used to test these datasets, including all

assumptions and limitations, the software and hardware used, and the algorithms

being tested. It finished with a discussion on the performance metrics used to evaluate

the solutions gained.

24

IV. Results and Analysis

This chapter describes the results obtained from the datasets detailed in Chapter

III. Each algorithm is analyzed with respect to its viability for use with aerial vehicles,

as well as its dependency on aircraft altitude, bank angle, bank rate, and camera field

of view (FOV).

4.1 Simulation Results

This section describes the results gained from testing using the simulated datasets.

These results are analyzed separately in section 4.2.

4.1.1 Altitude and FOV Results

Dataset group 1 was tested with each of the algorithms. The trajectory align-

ments for LSDSLAM, LSDSLAM cpp, ORB-SLAM2, and SVO are shown in Fig. 7

- Fig. 10, respectively. These figures show the aligned trajectory solution given by

each algorithm, up to the point where the algorithms failed. Empty boxes denote

where algorithms failed to initialize altogether. Fig. 11 through Fig. 18 show the

accumulated error for each algorithm. The scales are kept constant to allow for easier

comparison. PTAM, MonoSLAM, and OKVIS are notably missing from the results,

as they were unable to initialize on any of the test datasets used, and thus are consid-

ered poor candidates for aerial vehicle navigation. It should also be noted that SVO

consistently failed early, possible due to a memory leak. This is discussed further in

the Analysis section.

The numerical results are shown in Table 2, which shows the Root Mean Squared

Error (RMSE) for each algorithm at each altitude and FOV, as well as the maximum

bank angle turn completed by each algorithm, corresponding to Fig. 7 - Fig. 10. An X

25

in the table represents where the algorithm failed to initialize. The table only shows

statistics for the portion of the trajectory successfully tracked by the algorithm (e.g.

if an algorithm failed part way through the dataset, only the error statistics up to

that point are reported). Fig. 19 shows the RMSE for each FOV at each altitude

and algorithm tested. Fig. 20 and Fig. 21 show the RMSE for each altitude for each

FOV and algorithm tested. The results were also converted to use Image Width and

graphed in Fig. 22. These results are discussed in the Analysis section.

4.1.2 Bank Angle vs Bank Rate Results

Fig. 23 through Fig. 26 show the results of each of the algorithms tested against

dataset group 2. Blank boxes denote where algorithms failed to initialize. Again,

each trajectory is only shown to the point where the algorithm failed. Table 3 shows

the RMSE and maximum bank angle turn for each of these runs as well, with each

”X” denoting the algorithm failing to initialize. Fig. 27 shows the RMSE vs FOV,

comparing the time to bank for each algorithm.

4.1.3 SUSEX Flight 12 - Real and Simulated

None of the algorithms were able to successfully track the real world SUSEX Flight

12 dataset, or the simulated Flight 12 dataset with a 25 degree FOV. The algorithms’

position solutions to the simulated Flight 12 dataset with a 90 degree FOV are shown

in Fig. 28.

26

Figure 7: LSDSLAM trajectory alignment for dataset group 1, comparing solution
performance at various altitudes and camera FOVs.

27

Figure 8: LSDSLAM cpp trajectory alignment for dataset group 1, comparing solu-
tion performance at various altitudes and camera FOVs.

28

Figure 9: ORB-SLAM2 trajectory alignment for dataset group 1, comparing solution
performance at various altitudes and camera FOVs.

29

Figure 10: SVO trajectory alignment for dataset group 1, comparing solution perfor-
mance at various altitudes and camera FOVs.

30

Figure 11: LSDSLAM error accumulation graphs for dataset group 1 altitudes 100-
800m, showing total error accumulated at various altitudes and camera FOVs.

31

Figure 12: LSDSLAM error accumulation graphs for dataset group 1 altitudes 1150m
and 1500m, showing total error accumulated at various altitudes and camera FOVs.

32

Figure 13: LSDSLAM cpp error accumulation graphs for dataset group 1 altitudes
100-800m, showing total error accumulated at various altitudes and camera FOVs.

33

Figure 14: LSDSLAM cpp error accumulation graphs for dataset group 1 altitudes
1150m and 1500m, showing total error accumulated at various altitudes and camera
FOVs

34

Figure 15: ORB-SLAM2 error accumulation graphs for dataset group 1 altitudes
100-800m, showing total error accumulated at various altitudes and camera FOVs.

35

Figure 16: ORB-SLAM2 error accumulation graphs for dataset group 1 altitudes
1150m and 1500m, showing total error accumulated at various altitudes and camera
FOVs.

36

Figure 17: SVO error accumulation graphs for dataset group 1 altitudes 100-800m,
showing total error accumulated at various altitudes and camera FOVs.

37

Figure 18: SVO error accumulation graphs for dataset group 1 altitudes 1150m and
1500m, showing total error accumulated at various altitudes and camera FOVs.

38

Altitude (m) FOV (deg)
Position RMSE (m) / Maximum Successful Bank Angle Turn (deg)
LSDSLAM LSDSLAM cpp ORBSLAM2 mono SVO

100

30 X X X X
45 X X X X
60 X X 0.860 / 30 X
75 1.211 / 0 0.236 / 0 1.095 / 30 0.029 / 0
90 2.003 / 25 1.190 / 10 0.455 / 30 X
105 3.030 / 30 0.907 / 10 0.699 / 30 5.428 / 0
120 2.506 / 30 1.998 / 30 0.502 / 30 0.292 / 0
135 3.890 / 30 1.793 / 30 0.330 / 30 0.660 / 0

450

30 X X X 0.399 / 0
45 X X X 0.400 / 0
60 1.837 / 25 1.860 / 30 1.026 / 30 0.954 / 25
75 1.451 / 30 1.909 / 30 0.493 / 30 0.256 / 25
90 1.426 / 30 0.257 / 30 0.521 / 30 0.736 / 10
105 0.862 / 30 0.153 / 30 0.498 / 30 1.660 / 25
120 0.718 / 30 0.163 / 30 0.548 / 30 1.715 / 25
135 0.372 / 30 0.136 / 30 0.956 / 30 3.688 / 10

800

30 X X X 0.631 / 0
45 3.834 / 20 0.762 / 5 X 7.316 / 25
60 1.507 / 25 0.509 / 25 3.301 / 30 1.320 / 25
75 2.471 / 30 0.508 / 30 0.647 / 30 0.630 / 25
90 0.848 / 30 0.422 / 30 0.793 / 30 1.232 / 25
105 0.642 / 30 0.263 / 30 0.778 / 30 1.821 / 25
120 0.412 / 30 0.170 / 30 1.184 / 30 2.963 / 25
135 0.322 / 30 0.240 / 30 1.085 / 30 5.444 / 25

1150

30 1.739 / 10 2.165 / 10 X 11.268 / 15
45 2.140 / 20 0.436 / 5 X 4.876 / 25
60 2.271 / 25 1.534 / 25 4.839 / 30 4.524 / 25
75 0.927 / 30 0.366 / 30 0.875 / 30 0.964 / 25
90 0.839 / 30 0.325 / 30 1.467 / 30 2.229 / 25
105 0.349 / 30 0.207 / 30 1.257 / 30 3.375 / 25
120 0.447 / 30 0.134 / 30 1.215 / 30 5.619 / 25
135 0.425 / 30 0.307 / 30 1.835 / 30 10.386 / 25

1500

30 X X X 4.311 / 10
45 5.538 / 20 3.924 / 25 X 3.138 / 10
60 1.920 / 30 0.717 / 25 5.385 / 30 2.454 / 25
75 1.446 / 30 0.824 / 30 1.617 / 30 1.027 / 25
90 0.740 / 30 0.340 / 30 1.752 / 30 3.313 / 25
105 0.343 / 30 0.224 / 30 1.834 / 30 5.404 / 25
120 0.384 / 30 0.180 / 30 1.804 / 30 9.277 / 25
135 0.504 / 30 0.380 / 30 2.317 / 30 17.072 / 25

Table 2: Altitude vs FOV results using dataset group 1. RMSE and the maximum
bank angle turn reached by each algorithm is reported. Reaching the 30 degree turn
indicates that the algorithm successfully tracked the entire dataset. An X denotes
when the algorithm failed to initialize for that dataset. These statistics only take
the portion of the trajectory that was successfully tracked into account. (e.g. if an
algorithm failed on the 10 degree turn of a dataset, only the error statistics up to
that turn are reported.) Green boxes highlight the best RMSE for each altitude/FOV
combination.

39

(a) 100m altitude (b) 450m altitude

(c) 800m altitude (d) 1150m altitude

(e) 1500m altitude

Figure 19: Field of View vs RMSE for each dataset at each altitude.

40

(a) 30 degree Field of View (b) 45 degree Field of View

(c) 60 degree Field of View

(d) 75 degree Field of View

Figure 20: Altitude vs RMSE for 30 - 75 degree Field of View.

41

(a) 90 degree Field of View (b) 105 degree Field of View

(c) 120 degree Field of View (d) 135 degree Field of View

Figure 21: Altitude vs RMSE for 90-135 degree Field of View.

Position RMSE (m) / Maximum Successful Bank Angle Turn (deg)
Algorithm: LSDSLAM LSDSLAM cpp ORB-SLAM2 SVO

Time to Bank: 1.5s 3s 1.5s 3s 1.5s 3s 1.5s 3s

FOV
(deg)

30 X X X X X X X X
45 X X X X X X X 0.524 / 10
60 1.987 / 0 1.898 / 0 1.803 / 0 1.829 / 0 0.823 / 60 0.975 / 60 0.105 / 0 0.097 / 0
75 2.923 / 45 3.213 / 45 2.268 / 45 2.441 / 45 0.850 / 60 0.681 / 60 0.791 / 20 1.608 / 35
90 0.836 / 45 1.306 / 45 0.254 / 45 1.392 / 45 0.715 / 60 0.637 / 60 0.475 / 45 1.664 / 45
105 0.725 / 50 0.872 / 50 0.425 / 50 0.284 / 60 0.733 / 60 0.941 / 60 0.786 / 45 0.667 / 45
120 0.456 / 55 0.673 / 60 0.171 / 60 0.144 / 60 1.075 / 60 1.305 / 60 0.543 / 45 0.584 / 45
135 1.239 / 60 1.062 / 60 0.344 / 55 0.388 / 60 1.505 / 60 1.398 / 60 0.565 / 45 0.621 / 45

Table 3: Algorithm RMSE results when tested on dataset group 2. RMSE and the
Maximum Bank Angle Turn reached by each algorithm is reported. Reaching the
60 degree turn indicates that the algorithm successfully tracked the entire dataset.
”X”s indicate where the algorithm failed to initialize. Green boxes highlight the best
RMSE for each altitude/FOV combination.

42

Figure 22: Image Width vs FOV - Bank Angle Completion. Graphs show where each
algorithm failed, if applicable, for a given Image Width and FOV.

43

Figure 23: LSDSLAM results using dataset group 2 to test the effect of aircraft bank
angle vs bank rate. Blank boxes indicate where the algorithms failed to initialize.

44

Figure 24: LSDSLAM cpp results using dataset group 2 to test the effect of aircraft
bank angle vs bank rate. Blank boxes indicate where the algorithms failed to initialize.

45

Figure 25: ORB-SLAM2 results using dataset group 2 to test the effect of aircraft
bank angle vs bank rate. Blank boxes indicate where the algorithms failed to initialize.

46

Figure 26: SVO results using dataset group 2 to test the effect of aircraft bank angle
vs bank rate. Blank boxes indicate where the algorithms failed to initialize.

47

(a) LSDSLAM results (b) LSDSLAM cpp results

(c) ORB-SLAM2 results (d) SVO results

Figure 27: Field of View vs RMSE for each dataset in group 2.

Figure 28: Position solutions of each algorithm on the simulated SUSEX Flight 12
dataset.

48

4.2 Analysis

This section analyzes the results produced in this research. It looks at the impact

of each of the variables tested, including algorithm choice, aircraft altitude, bank

angle, bank rate, camera FOV, and any interdependencies between these.

4.2.1 Impact of FOV and Image Width

Camera FOV in general had the largest impact on each algorithm. At 30 and

45 degree FOV, every algorithm failed to completely track the datasets, with only

SVO and LSDSLAM able to initialize on some of the datasets. This is shown in

Fig. 7 through Fig. 18. With this narrow FOV, ORB-SLAM2 failed to initialize,

LSDSLAM and LSDSLAM cpp only initialized on 4 of 13 datasets, and SVO did the

best by initializing on 10 of the 13, though 5 of those failed after the first straight

section of the dataset. The remaining 5 datasets had a larger RMSE than higher

FOV datasets, showing that even for SVO, the small field of view caused a significant

degradation in the performance. At 60 degrees FOV, all of the algorithms started

to track successfully, as can be seen in Table 2. All of the algorithms tended to be

most accurate at 75 degree FOV and above, although SVO dropped in accuracy at

120 degrees and above, as shown in Fig. 19. FOV also showed an inter-dependency

with bank rate and bank angle, which is explored in the next subsections.

To make sure the effect of FOV was truly uncoupled from the effect of Altitude,

FOV was also compared to Image Width in meters, as shown in Fig. 22. In this

chart it can be seen that ORB-SLAM2 is purely dependent on FOV, only failing to

initialize when the FOV is 45 degrees or below. SVO, on the other hand, looks to

be almost entirely dependent on the Image Width, only failing to track the dataset

to completion when the Image Width is less than 500 meters. It did have a slight

dependence on FOV being above 30 degrees, though it is within the margin of error.

49

Finally, LSDSLAM and LSDSLAM cpp showed mixed dependence between FOV and

Image Width. Below about 260m Image Width they both struggled to initialize or

fully complete the datasets. Above 260m, they seemed to be FOV dependent, with

FOVs of 60 degrees and below either failing to initialize, or failing to track the entire

dataset. Above 260m Image Width, higher FOVs were consistently able to track the

entire dataset, even with similar Image Widths as lower FOV datasets that had failed

early.

4.2.2 Impact of Bank Angle vs FOV

Depending on the specific algorithm, the bank angle used during the 90 degree

turns had a significant effect on the performance of the algorithm. While ORB-

SLAM2 showed no dependence on the bank angle, LSDSLAM and LSDSLAM cpp

show a dependency between the aircraft’s bank angle and camera FOV, namely failing

when the bank angle exceeds more than half of the camera’s FOV, as seen in Table

2 and Table 3. SVO seems to show the same relationship as LSDSLAM, but is

inconclusive due to SVO being unable to track the full dataset, as discussed in the

algorithm choice section below.

4.2.3 Impact of Bank Rate vs FOV

Dataset group 2 was used to test the effect of bank rate, as seen in Fig. 23 through

Fig. 26. Namely, if the algorithm consistently tracks more turns when the time to

achieve a certain bank angle is doubled, then we can assume the algorithm is sensitive

to bank rate. The RMSE results can be seen in Table 3.

LSDSLAM tended to fail on the same turn in both of its implementations, al-

though it did have two pairs where the slower bank rate tracked an extra turn. It

also had a pair of datasets where the sharper bank rate went an extra turn, so we

50

assume that the differences are more due to random perturbations than algorithmic

attributes. Overall, LSDSLAM did not seem to have a dependence on the bank rate

itself.

ORBSLAM2 was also independent of bank rate, with near identical behavior

between the the slower and faster datasets.

SVO seemed to have a tenuous dependence on bank rate, with the 75 degree

dataset failing when the bank rates were similar instead of the same bank angle turn,

as seen in Table 3 and Fig. 26. As SVO failed prematurely, however, that is the

only dataset pair that had the range to show this result, and is thus taken to be

inconclusive.

As shown by Fig. 27 and Table 3, the accuracy of each algorithm was not notice-

ably impacted by the change in bank rate, showing similar RMSE across algorithms.

4.2.4 Impact of Altitude

The impact of altitude on the VSLAM algorithms is highly dependent on the

algorithm. ORB-SLAM2 appeared to be fairly altitude agnostic, with only a small

effect on RMSE as seen in Table 2. Namely, ORB-SLAM2 seems to be the most

accurate at lower altitudes with a high FOV. as seen in Fig. 20 and Fig. 21.

LSDSLAM and LSDSLAM cpp have a slightly worse RMSE at 100 meters than

the rest of the altitudes, failing altogether at 100m and 60 degrees FOV, as shown in

Fig. 7 and Fig. 8. LSDSLAM is slightly more accurate at higher altitudes and higher

FOVs, while LSDSLAM cpp is slightly more accurate at 450-800m and high FOVs,

as seen in Fig. 20 and Fig. 21. The difference in accuracy is relatively small, however.

LSDSLAM and LSDSLAM cpp also were able to track further into the dataset as the

altitude increased, shown in Table 2.

SVO is drastically effected by altitude, as shown in Fig. 10, where it struggles

51

to track in the 100m and 450m datasets. This is a similar result to the research by

Kim [6], where SVO failed to track below 300m altitude. On the other hand, the

accuracy of SVO tended to be better at lower altitudes, as seen in Table 2, though

this may be due to the algorithm failing earlier, thus only including the error for the

first straight section. SVO also tended to track more turns in each dataset as the

altitude increased, as shown in Table 2, though this is explained by the Image Width

results mentioned earlier.

4.2.5 Real World vs Simulation

The algorithms were unable to track either the real world or simulated SUSEX

Flight 12 dataset with only a 25 degree FOV. This reinforces the previous results

of algorithms generally failing on datasets with an FOV of below 60 degrees. When

the simulated dataset FOV is increased to 90 degrees, LSDSLAM, LSDSLAM cpp,

ORB-SLAM2, PTAM, and SVO were able to initialize, as shown in Fig. 28. PTAM

lost tracking almost immediately, degrading into noise that follows a vaguely loop

shape. LSDSLAM tracks most of the dataset, only failing on the last loop, which

throws off the trajectory alignment. LSDSLAM cpp similarly fails, throwing off the

alignment even further. ORB-SLAM2 and SVO both track the loop completely, with

ORB-SLAM2 being slightly more accurate.

These results suggest that use on a real world dataset is plausible, if given a wider

FOV camera and a robust algorithm.

4.2.6 Algorithm Choice

As shown in the previous sections, the different algorithms tested had wildly differ-

ent results. MonoSLAM, PTAM, and OKVIS failed entirely, and are thus considered

to be poor candidates for aerial vehicles. SVO seemed rather robust, initializing even

52

at some of the lowest FOVs, however proved to be less accurate than the other al-

gorithms. SVO also seemed to have a memory leak, as it failed in each dataset at

the same point after linearly consuming all 24 GB of the test system’s RAM. It is

unknown whether this memory leak is a result of the SVO algorithm itself, or if it is

a result of SVO’s implementation within the SLAMBench2 benchmarking software.

Unfortunately, this memory leak served to cut off all higher bank angle turns in each

dataset, leading to inconclusive results for the algorithm. This can be seen in Table

2, where the maximum bank angle turn reached is 25 degrees, as well as in Table

3, where the maximum bank angle turn reached is 45 degrees. ORB-SLAM2 also

seemed to be robust, tracking all datasets as long as the camera FOV was 60 degrees

or above, and performing quite well at 90 degrees and above. LSDSLAM proved to

be the most accurate algorithm, with both implementations having a lower RMSE

than the other algorithms. LSDSLAM, however, proved to be the least robust, with

a strong dependency on the bank angle staying under half of the camera’s FOV. LS-

DSLAM was also sensitive to it’s implementation, with LSDSLAM cpp yielding more

accurate results, as shown in Table 2 and Table 3.

4.2.7 Impact of Tuning Parameters

As discussed in Chapter 2, many of these algorithms do have tuning parameters

that can be changed to help improve performance. This research takes all parameters

at their default values for the above results, but some work was done to determine

whether or not the parameters would drastically change the results. Through tweak-

ing of all available parameters for LSDSLAM, ORB-SLAM2, and SVO, it was found

that changing these parameters did not change the initialization results for any of the

algorithms (i.e. none of the algorithms that failed to initialize under default parame-

ters would initialize when the parameters were changed). Of the algorithms that did

53

initialize, RMSE was minimally affected, having a variance of less than a meter, even

with drastic parameter changes. It should be noted that this parameter search was

not exhaustive, and is considered a limitation of this research and a subject for future

study.

4.3 Summary

This chapter provided the results of both dataset groups, as well as the simulated

SUSEX Flight 12 dataset. It then analyzed these results, showing the impact of

camera FOV, Image Width, aircraft altitude, bank angle, bank rate, and choice of al-

gorithm on each of the results. Overall, it was shown that LSDSLAM, ORB-SLAM2,

and SVO were all viable for aerial vehicle navigation, with each having different

strengths and weaknesses. All algorithms strongly depend on the FOV of the captur-

ing camera, failing entirely when the FOV is below 60 degrees, and performing best

at a 75 degree FOV. LSDSLAM was found to be the most accurate algorithm, but

was less robust, with a strong dependence on aircraft bank angle. ORB-SLAM2 was

found to be the most robust algorithm as long as the FOV was above 45 degrees,

but was less accurate than the other algorithms. SVO was found to be robust at

lower FOVs, as well as accurate at higher altitudes, but required an altitude of at

least 450m, and suffered from a memory leak of unknown origins, preventing further

analysis.

54

V. Conclusions

This chapter summarizes this research. It reviews and discusses the results ob-

tained, as well as the key contributions of this work. It concludes with suggestions

for future work in this area.

5.1 Results Discussion

Six current monocular Visual Simultaneous Localization and Mapping (VSLAM)

algorithms, MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, were

tested on 59 datasets designed to determine the algorithms viability for use on aerial

vehicle datasets, as well as their dependence on camera field of view (FOV), aircraft

altitude, bank angle, and bank rate. They were also tested against a real world SUSEX

flight dataset, along with two corresponding simulated datasets, to determine if the

simulated results are indicative of the real world scenario.

It was found that MonoSLAM, PTAM, and OKVIS were not viable for these

datasets, as they could not initialize tracking consistently. All other algorithms either

failed entirely or the solutions were extremely degraded when the camera FOV was

below 60 degrees, with the algorithms becoming most accurate around 75 degrees

FOV, as shown in Fig. 19. LSDSLAM cpp was found to the most accurate, ass seen

in Table 2, but reliant on the aircraft bank angle staying under half of the camera’s

FOV to maintain tracking. ORB-SLAM2 was found to be robust, not dependent on

altitude, bank angle, or bank rate, but did require at least a 60 degree camera FOV to

track at all. It was also found to be slightly less accurate than the other algorithms.

SVO was found to of middling accuracy, being more robust at low camera FOVs

than the other algorithms, but required a minimum altitude of 450m to track and a

minimum Image Width of 500m to perform well. SVO’s dependence on the bank rate

55

and angle were inconclusive due to a memory leak in the SVO implementation.

Across all algorithms, tracking quality was either completely broken or extremely

degraded when the camera FOV was below 60 degrees. The quality of the tracking

solution tended to be best around 75 degrees FOV and above, though extremely wide

angles such as 120 degrees degraded some of the tracking solutions.

5.2 Future Work

There are many opportunities for further research in the area of using VSLAM on

aerial vehicles. First and foremost, confirming the conclusions of this research on real-

world datasets would further contribute to this field. While this work strives to be

applicable to real world implementations, the simulated environment does purposely

provide ideal conditions in order to isolate the variables of interest.

More testing could also be done with more modern VSLAM algorithms not in-

cluded in SLAMBench2, which may give benefits to both accuracy and robustness as

the field has advanced rapidly within the last few years. A promising field that is

emerging is the use of machine learning in VSLAM algorithms. This could potentially

allow the algorithms to be more robust and adapt to the operating environment.

A wider look at the effect of tuning parameters could be performed, to conclusively

determine how each parameter effects the performance on this use-case. This would

have to be done on a per-algorithm basis, preferably focusing on the most promising

algorithms to help improve performance.

The effect of including other sensors, such as inertial measurement unit (IMU)

or ground facing LIDAR measurements, could be analysed using algorithms such as

VINS Fusion [25]. Adding other sensors could increase the robustness of the tracking,

especially during large bank angle turns. Similarly, different camera arrangements

could be tested for effectiveness, such as having multiple cameras at different poses,

56

or even having a full 360 degree spherical image to allow ground tracking at any

aircraft pose. This could potentially also allow for more advanced features, such as

extracting the rotational information of the aircraft from horizon tracking.

The performance of these various algorithms on different hardware is also a line

of inquiry that could be followed, namely focusing on hardware that could readily

be adapted for use in aerial vehicles. This would determine the viability of different

algorithms, as only algorithms that can be run in real time on reasonable hardware

can be seriously considered for implementation.

Current algorithms could be analyzed for their uncertainty, to test the actual

accuracy of each algorithm and confirm if uncertainty figures given in their original

papers hold under the conditions presented in the aerial vehicle navigation case.

Eventually, these algorithms will also need to be tested for performance under dif-

ferent environmental conditions aircraft might face, such as the introduction of clouds

and other weather, different geological locations and the features they might present,

and even time of day. To be a viable navigation technique, the VSLAM algorithms

will need to be able to provide tracking over a wide variety of these conditions and

environments.

57

Bibliography

1. Khalid Yousif, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. An Overview to

Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Intelligent

Industrial Systems, 1(4):289–311, 2015.

2. Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An Open-Source SLAM

System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on

Robotics, 2017.

3. Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-Scale Di-

rect Monocular SLAM. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-

ume 8690 LNCS, pages 834–849. 2014.

4. Thomas Whelan, Renato F. Salas-Moreno, Ben Glocker, Andrew J. Davison,

and Stefan Leutenegger. ElasticFusion: Real-time dense SLAM and light source

estimation. The International Journal of Robotics Research, 35(14):1697–1716,

dec 2016.

5. Daniel J. Carson, John F. Raquet, and Kyle J. Kauffman. Aerial Visual-Inertial

Odometry Performance Evaluation. In Proceedings of the ION 2017 Pacific PNT

Meeting, Honolulu, Hawaii, May 2017, pages 137–154. Air Force Institute of

Technology, jun 2017.

6. Kyung M Kim. MONOCULAR VISUAL ODOMETRY FOR FIXED-WING

SMALL UNMANNED AIRCRAFT SYSTEMS. Master’s thesis, Air Force Insti-

tute of Technology, 2019.

58

7. Benjamin M Fain. SMALL FIXED-WING AERIAL POSITIONING USING

INTER-VEHICLE RANGING COMBINED WITH VISUAL ODOMETRY. PhD

thesis, Air Force Institute of Technology, 2017.

8. Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.

MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(6):1052–1067, 2007.

9. Georg Klein and David Murray. Parallel tracking and mapping for small AR

workspaces. In 2007 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality, ISMAR, 2007.

10. Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul

Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization.

International Journal of Robotics Research, 34(3):314–334, 2015.

11. Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct

monocular visual odometry. In Proceedings - IEEE International Conference on

Robotics and Automation, 2014.

12. Scott Nykl, Chad Mourning, Mitchell Leitch, David Chelberg, Teresa Franklin,

and Chang Liu. An overview of the STEAMiE Educational game engine. Pro-

ceedings - Frontiers in Education Conference, FIE, (November), 2008.

13. Bruno Bodin, Harry Wagstaff, Sajad Saeedi, Luigi Nardi, Emanuele Vespa,

John H Mayer, Andy Nisbet, Mikel Luján, Steve Furber, Andrew J Davison, Paul

H. J. Kelly, and Michael O’Boyle. SLAMBench2: Multi-Objective Head-to-Head

Benchmarking for Visual SLAM. aug 2018.

59

14. Zichao Zhang and Davide Scaramuzza. A Tutorial on Quantitative Trajectory

Evaluation for Visual(-Inertial) Odometry. IEEE International Conference on

Intelligent Robots and Systems, pages 7244–7251, 2018.

15. Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2nd edition, mar 2004.

16. Satoshi Fujimoto, Zhencheng Hu, Roland Chapuis, and Romuald Aufrère. ORB-

SLAM map initialization improvement using depth. Proceedings - International

Conference on Image Processing, ICIP, 2016-Augus:261–265, 2016.

17. Ankur Handa, Thomas Whelan, John Mcdonald, and Andrew J. Davison. A

benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. Pro-

ceedings - IEEE International Conference on Robotics and Automation, pages

1524–1531, 2014.

18. Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel

Cremers. A Benchmark for the Evaluation of RGB-D SLAM Systems. IEEE

International Conference on Intelligent Robots and Systems, 2012.

19. Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,

Sammy Omari, Markus W. Achtelik, and Roland Siegwart. The EuRoC micro

aerial vehicle datasets. International Journal of Robotics Research, 35(10):1157–

1163, 2016.

20. Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the KITTI vision benchmark suite. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 3354–

3361, 2012.

60

21. Richard A Newcombe, David Molyneaux, David Kim, Andrew J Davison, Jamie

Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion : Real-Time Dense

Surface Mapping and Tracking. 2011 10th IEEE International Symposium on

Mixed and Augmented Reality, ISMAR 2011, pages 127–136, 2011.

22. Ben Glocker, Renato Salas Moreno, Thomas Whelan, Andrew Davison, and Ste-

fan Leutenegger. ElasticFusion: Dense SLAM Without A Pose Graph. Robotics:

Science and Systems XI, 2016.

23. Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip Torr,

and David Murray. Very High Frame Rate Volumetric Integration of Depth

Images on Mobile Devices. IEEE Transactions on Visualization and Computer

Graphics, 21(11):1241–1250, 2015.

24. Gary Ellingson, Kevin Brink, and Tim McLain. Relative visual-inertial odometry

for fixed-wing aircraft in GPS-denied environments. 2018 IEEE/ION Position,

Location and Navigation Symposium, PLANS 2018 - Proceedings, pages 786–792,

2018.

25. Tong Qin, Shaozu Cao, Jie Pan, and Shaojie Shen. A General Optimization-based

Framework for Global Pose Estimation with Multiple Sensors. 2019.

61

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Comparison of Visual Simultaneous Localization and Mapping
Methods for Fixed-Wing Aircraft Using SLAMBench2

Latcham, Patrick R., 2d Lt USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-034

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however
there has been little research evaluating current algorithm’s effectiveness and limitations when applied to tracking the
position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms’
performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. It does so by using simulated
datasets generated in the AftrBurner Engine to test the quality of each algorithm’s tracking solution, as well as finding
any dependence on camera Field of View (FOV), aircraft altitude, bank angle, and bank rate.

Visual Simultaneous Localization and Mapping, Visual Odometry

U U U UU 73

Dr. Clark N. Taylor, AFIT/ENG

(937) 255-3636, ext 4614; Clark.Taylor@afit.edu

	Comparison of Visual Simultaneous Localization and Mapping Methods for Fixed-Wing Aircraft Using SLAMBench2
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Objectives
	Approach
	Assumptions/Limitations
	Contributions
	Thesis Overview

	Background and Literature Review
	Visual SLAM
	Camera Calibration, Field of View, and Image Width

	VSLAM Algorithms
	MonoSLAM
	PTAM
	LSD-SLAM
	ORB-SLAM2
	SVO
	Tuning Parameters

	Visual SLAM Datasets
	ICL-NUIM
	TUM-RGBD
	EuRoC MAV
	SUSEX

	SLAMBench2 Benchmarking Suite
	Related Works
	Background Summary

	Methodology
	Variables of Interest
	Simulation
	Dataset Group 1
	Dataset Group 2
	Simulated Flight 12

	VSLAM Algorithms
	Processing Platform
	Performance Metrics
	Summary

	Results and Analysis
	Simulation Results
	Altitude and FOV Results
	Bank Angle vs Bank Rate Results
	SUSEX Flight 12 - Real and Simulated

	Analysis
	Impact of FOV and Image Width
	Impact of Bank Angle vs FOV
	Impact of Bank Rate vs FOV
	Impact of Altitude
	Real World vs Simulation
	Algorithm Choice
	Impact of Tuning Parameters

	Summary

	Conclusions
	Results Discussion
	Future Work

	Bibliography

