
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-6-2007

Implementation and Optimization of the Advanced Encryption Implementation and Optimization of the Advanced Encryption

Standard Algorithm on an 8-Bit Field Programmable Gate Array Standard Algorithm on an 8-Bit Field Programmable Gate Array

Hardware Platform Hardware Platform

Ryan J. Silva

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Silva, Ryan J., "Implementation and Optimization of the Advanced Encryption Standard Algorithm on an
8-Bit Field Programmable Gate Array Hardware Platform" (2007). Theses and Dissertations. 3142.
https://scholar.afit.edu/etd/3142

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F3142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F3142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3142?utm_source=scholar.afit.edu%2Fetd%2F3142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

 xz

IMPLEMENTATION AND OPTIMIZATION OF THE ADVANCED
ENCRYPTION STANDARD ALGORITHM ON AN 8-BIT FIELD
PROGRAMMABLE GATE ARRAY HARDWARE PLATFORM

THESIS

Ryan J. Silva, 2nd Lieutenant, USAF

AFIT/GE/ENG/07-21

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GE/ENG/07-21

IMPLEMENTATION AND OPTIMIZATION OF THE ADVANCED
ENCRYPTION STANDARD ALGORITHM ON AN 8-BIT FIELD
PROGRAMMABLE GATE ARRAY HARDWARE PLATFORM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Ryan J. Silva, BSEE

2nd Lieutenant, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/07-21

Abstract

The contribution of this research is three-fold. The first is a method of converting

the area occupied by a circuit implemented on a Field Programmable Gate Array (FPGA)

to an equivalent (memory included) as a measure of total gate count. This allows direct

comparison between two FPGA implementations independent of the manufacturer or

chip family. The second contribution improves the performance of the Advanced

Encryption Standard (AES) on an 8-bit computing platform. This research develops an

AES design that occupies less than three quarters of the area reported by the smallest

design in current literature as well as significantly increases area efficiency. The third

contribution of this research is an examination of how various designs for the critical

AES SubBytes and MixColumns transformations interact and affect the overall

performance of AES. The transformations responsible for the largest variance in

performance are identified and the effect is measured in terms of throughput, area

efficiency, and area occupied.

iv

AFIT/GE/ENG/07-21

Shout out to Jesus

v

Table of Contents

Page

Abstract .. iv

Table of Contents... vi

List of Figures .. ix

List of Tables ... xi

I. Introduction ...1

1.1 Background...1
1.2 Research Goals and Hypothesis ...2
1.3 Document Overview...3

II. Literature Review..4

2.1 Chapter Overview...4
2.2 Description ...4
2.3 Necessary Mathematical Background ..5

2.3.1 Finite Fields ..5
2.3.2 Finite Field Arithmetic..8

2.4 Description of the AES Algorithm...14
2.5 Current Research into AES Implementations on FPGAs.....................................22

2.5.1 Optimization Techniques ..22
2.6 Typical Design Parameter Values ..29

2.6.1 AES Throughput ...29
2.6.2 AES Area Efficiency...29
2.6.3 AES Area Optimization ..31

2.7 Overview of research into the validation of encryption circuits32
2.8 Summary...34

III. Methodology ...35

3.1 Chapter Overview...35
3.2 Problem Definition ...35

3.2.1 Goals and Hypothesis ...35
3.2.2 Approach...36

3.3 System Boundaries ...37
3.4 System Services..38
3.5 Workload ..39
3.6 Performance Metrics ..39
3.7 Parameters ..40

3.7.1 System...40

vi

3.7.2 Workload...42
3.8 Factors ..42
3.9 Experimental Factor Designs ...44

3.9.1 SubBytes ...44
3.9.1.1 Modular Inversion in an Extended Field ...44
3.9.1.2 Modular Inversion in a Composite Field ...49

3.9.2 MixColumns ...58
3.9.2.1 Half LUT..58
3.9.2.2 Arithmetic ..60

3.10 Evaluation Technique...63
3.11 Experimental Design ..64
3.12 Methodology Summary ..65

IV. Analysis and Results...67

4.1 Chapter Overview...67
4.2 Results of Experimental Scenarios and Literature Comparison...........................67
4.3 Analysis of the Data ...73

4.3.1 Visual Analysis of Means ...74
4.4 Performance Analysis through ANOVA..82

4.4.1 ANOVA for Throughput...82
4.4.2 ANOVA for Area Occupied ...84
4.4.3 ANOVA on Area Efficiency...86

4.5 Summary...88

V. Conclusions and Recommendations ..89

5.1 Chapter Overview...89
5.2 Significance of Research ..89
5.3 Recommendations for Future Research..91
5.4 Conclusions of Research ..91

Appendix A: Data Tables...93

Appendix B: Complete VHDL Code for Each Design..96

SubBytes Full LUT...96
SubBytes Extended Field Inversion ...106
SubBytes Composite Field Inversion ...112
MixColumns Full LUT...116
MixColumns Half LUT ..122
MixColumns Arithmetic...126

Appendix C: Statistical Data Tables ..128

Bibliography ..130

vii

Vita...133

viii

List of Figures

Figure Page

1. Basic Operation of a Symmetric Key Cipher ... 15

2. High Level Encryption Procedure for AES Algorithm [DaR98].................................. 16

3. AddRoundKey [Wik07a] .. 17

4. ShiftRows [Wik07a].. 18

5. MixColumns [Wik07a] ... 19

6. FPGA Design Methodology [ZCN04].. 23

7. Loop Unrolling an AES Architecture [QIS05] ... 26

8. Parallelization of MixColumns [CaA03] .. 27

9. System Under Test.. 37

10. VHDL Code Implementing the Affine Transform ... 46

11. VHDL Code Implementing the Inverse Affine Transform... 47

12. SubBytes design flow for Modular Inversion in an Extended Field........................... 48

13. Inverse SubBytes design flow for Modular Inversion in an Extended Field.............. 48

14. SubBytes Design Flow for Composite Field Inversion .. 49

15. Inverse SubBytes Design Flow for Composite Field Inversion.................................. 49

16. Schematic of Modular Inversion in a Composite Field .. 50

17. VHDL Code Implementing the Transform Matrix... 53

18. VHDL Code Implementing the Inverse Transform Matrix .. 54

19. VHDL Implementation of Multiplication in GF(24)... 56

20. VHDL Implementation of Squaring in GF(24) ... 57

ix

21. VHDL Implementation of the Highlighted Portion of Table 10................................. 60

22. VHDL Implementation of xtime in Combinational Logic ... 62

23. VHDL Implementation of the Column Transform Routine 63

24. Block Diagram of Testing Environment... 65

25. Individual Values Plot for Throughput ... 70

27. Individual Values Plot for Area Efficiency .. 72

28. Main Effects Plot for SubBytes on Area Occupied .. 74

29. Main Effects Plot for SubBytes on Throughput ... 75

30. Main Effects Plot for SubBytes on Area Efficiency... 76

31. Main Effects Plot for MixColumns on Area Occupied .. 77

32. Main Effects Plot for MixColumns on Throughput.. 78

33. Main Effects Plot for MixColumns on Area Efficiency ... 79

34. Main Effects Plot for Synthesis Goal on Throughput... 80

35. Main Effects Plot for Synthesis Goal on Area Occupied ... 81

36. Main Effects Plot for Synthesis Goal on Area Efficiency .. 81

x

List of Tables

Table Page

1. Truth Table for Addition in GF(2).. 6

2. Truth Table for Multiplication in GF(2) ... 6

3. Examples of Representing Polynomials in GF(2)| 8 ... 8

4. Throughput Comparison of Previous AES Designs ... 29

5. Area Efficiency Comparison of Previous AES Designs... 31

6. Performance Comparison: Area, Area Efficiency, and Throughput............................. 32

7. Variable Key Known Answer Test Values for Keysize = 128 34

8. AES FPGA Performance in Current Literature .. 35

9. Factor Levels... 43

10. Xtime Table: Elements Not Requiring Modulus Reduction Highlighted................... 59

11. Summary of Experimental Data.. 68

12. Analysis of Variance Table for Throughput ... 83

13. Quantification of Effects for Throughput ... 83

14. Percentage of Variance Explained for Throughput .. 84

15. Order of Importance for Throughput’s Factors and Interactions................................ 84

16. Percentage of Variance Explained for Area Occupied ... 85

17. Order of Importance for Area Occupied’s Factors and Interactions........................... 86

18. Percentage of Variance Explained for Area Efficiency.. 87

19. Order of Importance for Area Efficiency’s Factors and Interactions 88

20. Modular Inverses in the Rijndael Field [Odr01]... 93

xi

21. S-Box Look-Up Table [Odr01]... 93

22. Inverse S-Box Look-Up Table [Odr01].. 94

23. Modular Inverses in GF(24) .. 94

24. Tabular Representation of xtime... 95

25. Analysis of Variance Table for Area Occupied.. 128

26. Quantification of Effects for Area Occupied .. 128

27. Analysis of Variance Table for Area Efficiency... 129

28. Quantification of Effects for Area Efficiency... 129

xii

IMPLEMENTATION AND OPTIMIZATION OF THE ADVANCED
ENCRYPTION STANDARD ALGORITHM ON AN 8-BIT FIELD
PROGRAMMABLE GATE ARRAY HARDWARE PLATFORM

I. Introduction

1.1 Background

This research implements the US National Institute of Standards and Technology

(NIST) Advanced Encryption Standard (AES) algorithm on an FPGA device and

develops three designs for each of the AES transformations SubBytes and MixColumns.

The results of this research can be used in areas such as onboard encryption of satellite

communication. Most satellites being launched into orbit today are equipped with

FPGAs. This allows controllers on the ground to change the configuration of electronic

hardware on the satellite without having physical contact with the satellite. The amount

of hardware a satellite can carry is limited but the need for high throughput remains the

same. Achieving high area efficiency balances the amount of hardware the satellite must

carry, while maintaining a reasonably high throughput.

Nine AES designs account for the various combinations of SubBytes and

MixColumns designs. These designs use the Daemen and Rijmen’s Rijndael algorithm

targeting an 8-bit platform as a baseline [DaR98]. Each change to the baseline is an

attempt to increase the throughput of the AES algorithm while decreasing the total area

occupied, which results in increased area efficiency.

1

1.2 Research Goals and Hypothesis

This research has two primary goals. The first is to improve the speed of the AES

algorithm on an 8-bit platform while reducing the chip area of the implementation. This

goal is met when a design is produced that has a better performance than the baseline

implementation. The second goal of this research is to determine the effect of factor

interaction on the speed and space required to implement AES. This goal directly

supports the hypothesis to be tested. By using modular inversion in an extended field and

composite modular inversion in a subfield during the transformation of SubBytes in lieu

of a full look up table; and by utilizing a bitwise shift and combinational logic in the

transformation of MixColumns, the performance of AES and can be improved to a level

that surpasses AES performance relative to a baseline level.

The approach used to satisfy the two goals uses various SubBytes and

MixColumns designs to analyze the performance based on the three metrics and

compares the results to the baseline algorithm as well as other optimized designs

including Caltagirone’s fully pipelined architecture and Good’s compact Xilinx Spartan

implementation [CaA03][GoB05].

The performance of AES on 8-bit processing platforms is an important issue in

the AES design because most smart cards have such processors and many cryptographic

applications run on smart cards [DaR98]. Tailoring a compact AES design specifically

for an 8-bit platform would increase the overall usefulness of the algorithm. This compact

AES design could then be used more efficiently on smart cards and for other processor-

limited applications.

2

1.3 Document Overview

Chapter II presents an overview of the mathematical foundation of AES and

introduces the original design of the algorithm targeted to an 8-bit processing platform.

This chapter also reviews current research into AES implementations on FPGAs. Chapter

III defines the experiment conducted in this research. Chapter IV presents and interprets

the data collected from the experiment. The goal of Chapter IV is to answer the

investigative research questions posed in Chapter III: (1) how do experimental factors

interact and affect the overall performance metrics, and (2) how does each SubBytes and

MixColumns design affect performance? Chapter V summarizes the conclusions drawn

from the analysis of experimental data in Chapter IV. This chapter also highlights the

significance of this work and its impact on current research methods involving the

implementation of AES on FPGAs. Recommendations for future research are also

included.

3

II. Literature Review

2.1 Chapter Overview

This chapter provides an overview of the mathematics behind AES and presents

the design specified by the creators of the algorithm targeted to an 8-bit processing

platform. This chapter also provides a review of current research into AES

implementations on FPGAs.

2.2 Description

Implementing encryption algorithms on an FPGA brings many advantages such as

flexibility of re-design, run-time reconfiguration, and a vast amount of logic on a single

chip. The major drawback of an FPGA implementation is reduced throughput compared

to an equivalent AISC implementation. Through the use of a Xilinx Virtex II Pro FPGA

and Xilinx ISE software, nine different designs of the AES algorithm are created with the

ultimate goal of reducing the total equivalent gate count while increasing area efficiency.

On 2 October, 2000, the National Institute of Standards and Technology

announced that the Rijndael algorithm would be adopted as the Advanced Encryption

Standard [ZCN04]. Rijndael is a block cipher with a variable block and key length. The

block length and key length can be independently specified to be any integer multiple of

32 bits, with a minimum of 128 bits and a maximum of 256 bits. The AES algorithm

adopted by NIST is the unmodified Rijndael cipher except that AES has a fixed block

length of 128 bits and only supports key lengths of 128, 192 or 256 bits [DaR98]. This

research considers AES designs with a key length of 128 bits.

4

2.3 Necessary Mathematical Background

A grasp of the mathematics behind the Advanced Encryption Standard is

necessary to understand the algorithm’s design [DaR98]. AES utilizes the nonlinear

properties of abstract algebra to encrypt input data; consequently, a condensed discussion

in finite fields and how they are represented is presented before discussing design options

that optimize the AES algorithm.

2.3.1 Finite Fields

In abstract algebra, a field is an algebraic structure where the operations of

addition, subtraction, multiplication and division (except by zero) may be defined, and

the same rules from the arithmetic of ordinary numbers hold [Wik07b]. A finite field, or

Galois field, is a field that contains a finite number of elements. The number of elements

in a set defined as a finite field is termed the order of that field. A field with order m

exists iff m is a prime power. A prime power is any integer m for which m=pn for some

integer n and some prime integer p. The characteristic of a finite field is defined as p. All

finite fields used in AES have a characteristic of 2 [DaR98]. Finite fields with the same

order are isomorphic. Since only prime powers are considered for the AES algorithm, for

each prime power there is only one finite field denoted by GF(pn). Rijmen and Daemen

provide intuitive examples of finite fields of prime order p. The elements of a prime order

finite field GF(p) can be represented by the integers 0, 1, …, p-1. The two operations of

the field are integer addition modulo p and integer multiplication modulo p [DaR98].

Example 1 illustrates these properties.

5

Example 1. In the field GF(2) The elements of the field are 0 and 1; therefore the

two operations of the field are defined as integer addition modulo 2 and integer

multiplication modulo 2. The following truth tables define the operations of

addition and multiplication in the field GF(2)

Table 1. Truth Table for Addition in GF(2)

 A B A + B
0 0 0
0 1 1
1 0 1
1 1 0

Table 2. Truth Table for Multiplication in GF(2)

 A B A · B
0 0 0
0 1 0
1 0 0
1 1 1

Finite fields with an order that is not prime excludes the premise that addition and

multiplication can occur by simple addition and multiplication of integers modulo a

number [DaR98]. This results in a more complex representation of elements. AES chose

to represent finite fields GF(pn), with n > 1, by means of polynomials over GF(p) because

it provides an easy method of converting complex polynomials into binary strings, which

make implementations of the algorithm much more manageable.

The transformation of a polynomial residing in a finite field F into a binary string

begins with the following expression for a polynomial of the form

b(x)=bn-1 xn-1+bn-2 xn-2+…+b2 x2+b1 x+b0
 (1)

6

where x is the indeterminate of the polynomial and bi in the field F are the coefficients

[DaR98]. Since all finite fields used in AES have a characteristic of 2, the coefficients, bi,

can only be represented by 2 numbers; in the case of AES those numbers are 0 and 1.

It is helpful to work out definitions of important terms and symbols the designers

of AES use throughout the algorithm. First, the degree of a polynomial equals l if bj = 0,

j > l, and l is the smallest number with that property [DaR98]. In other words, the

degree of a polynomial is equal to the largest power of x. The set of polynomials over a

field F is denoted by F[x]. Finally, The set of polynomials over a field F, which have a

degree below l, is denoted by F[x]|

∀

l [DaR98].

It is important to note that these polynomials are abstract entities in that they are

never evaluated. The elements of a finite field are represented as polynomials to simplify

storing the coefficients in computer memory as well as to increase the mathematical

complexity of the algorithm (it is much more difficult to find the modulus of a

polynomial than it is to find the modulus of an integer). For the purposes of AES, the

coefficients of the polynomials are stored in computer memory as a string. Examples 2

and 3 demonstrate how polynomials are converted to strings of bits and vice versa.

Example 2 Let the field F be GF(2), and let l = 8. The polynomials can be stored

as 8-bit values, or bytes [DaR98]

 b(x) → b7b6b5b4b3b2b1b0. (2)

The reverse holds true as well. A byte can be considered as a polynomial with

coefficients in GF(2)

b7b6b5b4b3b2b1b0 → b(x), or (3)

7

b(x) → b7 x7 + b6 x6 + b5 x5+ b4 x4 + b3 x3 + b2 x2 + b1 x + b0. (4)

Example 3. The following table shows polynomials in GF(2)| 8, their

corresponding bit string, and that bit string’s hexadecimal value.

Table 3. Examples of Representing Polynomials in GF(2)| 8
Polynomial Bit string Hexadecimal value

x6 + x4 + x2+ x + 1 01010111 57

x7 + x6 + x5+ x4 + x3 + x2 + x + 1 11111111 FF

x2 + 1 00000101 05

x7 + x5 + x3 + x 10101010 AA

2.3.2 Finite Field Arithmetic

AES uses only two operations on polynomials in a finite field: addition and

multiplication. The addition of polynomials consists of summing the coefficients with

equal powers of x, where the summing of the coefficients occurs in the underlying field F

[DaR98]. Since AES operates in a finite field with a characteristic of 2, the summing of

coefficients in the underlying field is equal to summing the coefficients modulo 2, which

is also the equivalent of using an XOR.

Example 4. Evaluate the following expression in GF(2n) (the notation GF(2n)

indicates that the problem is to be solved in a finite field with an order that is not

prime and has a characteristic of 2)

Polynomial representation:

(x6 + x5 + x2 + x + 1) + (x7 + x5 + x3 + x)

8

 Binary representation:

 {01100111} + {10101010}

 Hexadecimal representation:

 {67} + {AA}

 Solution

According to the definition of the addition of polynomials in a finite field above,

the solution can be found by simply applying an XOR (denoted as) to the

coefficients with equal powers of x:

⊕

 Polynomial:

x7 + x6 + (1 ⊕ 1) x5 + x3 + x2 + (1 ⊕ 1) x + 1

 = x7 + x6 + x3 + x2 + 1

 Binary:

 01100111

 ⊕10101010

 11001101

 Hexadecimal:

 {67} + {AA} = {CD}

 The operation of addition in a finite field with a characteristic of 2 can be

implemented using an XOR operator; multiplication in a finite field will prove much

more complex. Multiplication of polynomials in a finite field has much of the same

properties of ordinary polynomial multiplication. These properties are the associative,

9

commutative, and distributive property with respect to addition of polynomials [DaR98].

Since the underlying property of a finite field is that it is a closed set (finite number of

elements), the multiplication of two elements in a finite field must yield another element

of that field. This property is not intuitive because usually the magnitude of the product

of two numbers is not less than the magnitude of the two numbers originally multiplied

(i.e., 6 x 7 = 1 ?!). To make the multiplication closed over F[x]| l a polynomial of degree l

called the reduction polynomial [DaR98]. The reduction polynomial for all byte

multiplications will be designated throughout this document as m(x). The designers of

AES selected the following polynomial as the reduction polynomial for all 8-bit

multiplications throughout AES [DaR98].

m(x) = x8+ x4 + x3+ x + 1 (5)

This polynomial’s corresponding bit string is 100011011. Therefore all multiplications in

the Rijndael field are defined as

c(x) = a(x) · b(x) ↔ c(x) ≡ (a(x) x b(x)) mod m(x) [DaR98]. (6)

This reducing polynomial is not an arbitrary choice for it displays a characteristic known

as irreducibility. According the Daemen and Rijmen, a polynomial d(x) is considered

irreducible over the field GF(p) iff there are no two polynomials a(x) and b(x) with

coefficients in GF(p) such that d(x) = a(x) · b(x). Since the reduction polynomial is itself

irreducible, it effectively constructs a representation for the field GF(28), which is known

as the Rijndael field. In AES, all bytes are considered elements of GF(28). All subsequent

operations on bytes are defined as operations in GF(28) [DaR98]. The following example

10

illustrates how the reduction polynomial is used during polynomial multiplication in a

finite field.

Example 5. Evaluate the following expression for byte multiplication in the

Rijndael finite field:

{11110011} · {00110100}

or in hexadecimal, {F9} · {34}

 Solution

 The bytes above correspond to the following polynomials in Rijndael’s finite

field

 {x7 + x6 + x5+ x4+ x + 1} · {x5+ x4+ x2}.

Ordinary polynomial multiplication (FOIL method) yields the following product:

 x12 +x11+x11+ x10+x10+ x9+x9+x9+ x8+ x8+x7+x6+ x6+ x5+ x5+x4+ x3+ x2

The addition of polynomials utilizes the XOR operation resulting in the removal

of all pairs of x with equal degree (shown in bold). This yields

 x12 + x9+ x7+ x4+ x3+ x2.

The final procedure takes the modulus of the above result with the reducing

polynomial m(x):

 x12 + x9+ x7+ x4+ x3+ x2 modulo x8+ x4 + x3+ x + 1

 or in binary {1001010011100} modulo {100011011}

This operation can be performed using the “long division” method below (note

XOR is used in lieu of subtraction in ordinary long division). The result of the

modulo operation is highlighted.

11

 0000000010010
100011011)1001010011100
 100011011
 00110010110
 100011011
 100011010
 100011011
 000000001

Therefore the answer to Example 5 is:

{11110011} · {00110100} = {00000001}

or in hexadecimal,

{F9} · {34} = {01}

AES uses one other reducing polynomial during the transformation operation

called MixColumns. This reducing polynomial is only used during the process of

MixColumns and only when multiplying with a constant polynomial. This operation is

treated differently because all inputs will have a degree smaller than four (l = 4). To

define the multiplication operation in this transformation, the following reduction

polynomial is used [DaR98],

 l(x) = x4 + 1. (7)

This polynomial is not irreducible since in the Rijndael field

 x4 + 1 = (x + 1)4. (8)

Since the polynomial is not irreducible and is an element of the Rijndael field, all

operations during MixColumns remain in GF(28) with the exception that l(x) is the

reducing polynomial rather than m(x). It is important to note that the reducing polynomial

l(x) is only used to multiply with a fixed polynomial.

12

Daemen and Rijmen outline a matrix method for multiplying with a fixed

polynomial using l(x) as the reduction polynomial [DaR98]. A summary of this method is

outlined below.

 Let c(x) be the fixed polynomial with degree three or

 c(x) = c3 x3 + c2 x2 + c1 x + c0. (9)

Further, let a(x) and b(x) be two variable polynomials with coefficients ai and bi

respectively with i being less than 4 such that b(x) = c(x) · a(x). The matrix representation

of the transformation takes the coefficients of polynomial a as input and produces as

output the coefficients of the polynomial b or

b(x) = c(x) · a(x)

≡ (c3 x3 + c2 x2 + c1 x + c0) · (a3 x3 + a2 x2 + a1 x + a0) (11)

≡ (b3 x3 + b2 x2 + b1 x + b0) mod (x4 + 1) (12)

After working out the product through ordinary polynomial multiplication, separating the

conditions for different powers of x, and accounting for the modulus operation, Daemen

and Rijmen give the following matrix representation of (12) [DaR98]

0 0 3 2 1

1 1 0 3 2 1

2 2 1 0 3

3 3 2 1 0

b c c c c a
b c c c c a
b c c c c a
b c c c c a

0

2

3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ×
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (13)

This representation is only used for multiplication with a fixed polynomial during the

MixColumns transformation.

One significant property of a finite field is that each element of a finite field F has

an inverse under multiplication. This property is used throughout the algorithm because it

13

allows a number to refer back to itself through a complex operation (i.e., multiplication).

This characteristic is what allows ciphertext to be decrypted back into the original

message. The method for determining the inverse element for a multiplication operation

in a finite field is via the extended Euclidean Algorithm. The Euclidean Algorithm takes

an element of the finite field, a(x), and finds the inverse element, b(x), while satisfying

the following identity,

a(x) x b(x) = 1 mod m(x) (14)

where m(x) is the reducing polynomial. If the above equation holds, then b(x) is the

inverse element of a(x) in a finite field F under multiplication ‘·’ [DaR98]. Recall the

solution to Example 5 was {F9} · {34} = {01} in the Rijndael finite field. According to

the above property then F9 is the multiplicative inverse of 34 and vice versa. The

extended Euclidean algorithm is applied to each element of the Rijndael finite field and

the multiplicative inverses of all elements are recorded in Table 20 in Appendix A.

 A key element of the algorithm is the Rijndael finite field. From F in the field

GF(2), a suitable reduction polynomial m(x) is found. This defines multiplication and

addition over a set of polynomials less than degree = 8, or F[x]| 8 as a field with 28

elements denoted GF(28), and otherwise known as the Rijndael finite field.

2.4 Description of the AES Algorithm

The Data Encryption Standard expired in 1998 and the US National Institute of

Standards and Technology (NIST) announced an open international competition for

cipher designs to replace DES as the federal information processing standard [ZCN04].

Rijndael won the competition based on security, simplicity, and suitability for both

14

hardware and software implementations, and was designated the Advanced Encryption

Standard. AES, like DES, is a symmetric key block cipher encryption algorithm. The

basic operation of a symmetric key block cipher with 128 bit blocks and a 128 bit key is

shown in Figure 1. A block cipher operates on fixed-length blocks of data, while

symmetric key algorithms use the same key for encryption and decryption.

Symmetric Key
Cipher

128 Bit Plaintext Inverse
Symmetric
Key Cipher

128 Bit Key

Ciphertext 128 Bit Plaintext

Figure 1. Basic Operation of a Symmetric Key Cipher

The standard AES algorithm operates on 128 bit blocks of data at a time, which is

twice the block size of DES. AES supports keys of 128, 192, or 256 bit keys. The first

stage of the algorithm is the KeyExpansion function which uses the Rijndael key

schedule to produce separate 4x4 matrix of keys for each of the 10 encryption rounds

used. Each round of encryption operates on a 4x4 matrix of bytes called the state and

each encryption round has four stages or transformations: SubBytes, MixColumns,

ShiftRows, and AddRoundKey [Wik07a]. The transformations targeted in this research

are SubBytes and MixColumns for reasons to be discussed in Chapter III. A very basic

discussion of the KeyExpansion, ShiftRows, and AddRoundKey follows while a more in

depth description of SubBytes and MixColumns is presented.

The algorithm shown in Figure 2 is a modified version of the original AES

algorithm and shows a high-level procedure for encryption.

15

AES(State, CipherKey)
{
KeyExpansion(CipherKey, ExpandedKey);
AddRoundKey(State, ExpandedKey[0]);
for(i = 1; i < 10; i++) Round(State, ExpandedKey[i]);
Final Round(State, ExpandedKey[10]);
}

Round(State, ExpandedKey[i])
{
SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,ExpandedKey[i]);
}

Final Round(State, ExpandedKey[10])
{
SubBytes(State);
ShiftRows(State);
AddRoundKey(State, ExpandedKey[10]);
}
Figure 2. High Level Encryption Procedure for AES Algorithm [DaR98]

The following descriptions of the particular stages of the AES algorithm follow

Daemen and Rijmen’s design for AES targeting an 8-bit processor [DaR98]. This

constraint excludes designs that operate on word lengths of 32 or greater for reasons of

efficiency.

The first operation to occur in AES is the KeyExpansion step. The input to this

step is a 32-bit word, but the only time the entire word is operated on is during an 8-bit

left rotate immediately after the data is input, which can be handled by an 8-bit processor.

After the 8-bit shift, the SubBytes step is performed on all four individual bytes of the

rotated word. The leftmost byte of the resulting word is XORed with the output of a

procedure called Rcon. Rcon is defined as [Wik06b]

16

Rcon(i) = x(254+i) mod m(x) (15)

where, i is the iteration number. The most important aspect of the KeyExpansion step, as

far as this research is concerned, is that KeyExpansion uses the SubBytes operation; thus

the performance of KeyExpansion is directly related to that of SubBytes.

The simplest AES transformation is the AddRoundKey step, shown in Figure 3,

and it consists of XORing each byte of the particular state with the 4x4 key matrix

created in the KeyExpansion stage for that specific encryption round.

.

Figure 3. AddRoundKey [Wik07a]

Figure 4 shows the ShiftRows transformation. This step cyclically shifts each byte

in each row of the state to the left by a predetermined amount. The standard AES

algorithm does not shift any bytes in the first row, shifts each byte in the second row left

by one byte, shifts each byte in the third row left by two bytes, and shifts each byte in the

fourth row left by three bytes. This ensures that each column of the output will have

elements of each column of the input.

17

http://en.wikipedia.org/wiki/Image:AES-AddRoundKey.png

Figure 4. ShiftRows [Wik07a]

Outside of the Rcon operation during KeyExpansion, the transformations

presented thus far have not reached beyond the computational complexity of bitwise

XORing two bytes of data or shifting bytes left by a predetermined amount. The

computational complexity of the KeyExpansion step directly relates to the computation

complexity of SubBytes. The SubBytes and MixColumns transformations are the most

complicated and hardware intensive steps in the AES process, therefore they are the

transformations most attractive for optimization. What follows is a description of the

specific designs for the AES transformations MixColumns and SubBytes for an 8-bit

processor from The Design of Rijndael [DaR98].

In SubBytes, each byte in the state is replaced with its specific entry, S, in a fixed

256 byte look-up table (LUT), which can be found in Table 21 in Appendix A. This look-

up table, known as an S-box, is generated using inverse functions of a finite field and

provides an element of non-linearity to the system. During decryption, a separate 256

byte look-up table containing the values of the inverse SubBytes transformation is used.

This look-up table can be found in Table 22 in Appendix A. More detail in the generation

of these tables is provided in the SubBytes designs outlined in Chapter III. This SubBytes

implementation is the standard design for the SubBytes transformation for use on an 8-

Bit processor [DaR98]. This design is called a LUT design for obvious reasons.

18

http://en.wikipedia.org/wiki/Image:AES-ShiftRows.png

The MixColumns step combines all four bytes of each of the four columns of the

state using an invertible linear transformation polynomial. The four bytes of each column

are inputs and each input affects all four bytes of the output. Since the dimensions of the

columns consist of 4 bytes, this is optimal for 32-bit architectures using look-up table

implementations [DaR98]. This fact makes the implementation of MixColumns in an 8-

bit architecture without using LUTs an extremely difficult and hardware intensive

process. Daemen and Rijmen point out that good MixColumn performance on 8-bit

processors is not trivial to obtain because its design is best suited for a 32-bit processor.

The MixColumns transformation takes the columns of the state in polynomial form over

the Rijndael finite field and multiplies them modulo l(x) (cf. (7)) with a fixed polynomial

c(x). Figure 5 shows how each column is multiplied by a fixed polynomial c(x).

Figure 5. MixColumns [Wik07a]

The polynomial c(x) is

 c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. (16)

This polynomial is coprime to l(x) and is therefore invertible [DaR98]. The inverse of

c(x) is d(x) and is used for the inverse MixColumns routine during the process of

decryption. The polynomial d(x) is

19

http://en.wikipedia.org/wiki/Image:AES-MixColumns.png

d(x) = 0B · x3 + 0D · x2 + 09 · x + 0E. (17)

By substituting c(x) into (13), the matrix representation for multiplication in the Rijndael

specified MixColumns stage of AES is obtained below (i.e., b(x) = c(x) · a(x) mod l(x)) or

0 0

1

2 2

3 3

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

b a
b a
b a
b a

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢=
⎢ ⎥ ⎢ ⎥⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

1⎥×
⎥

. (18)

 Recall that the input to MixColumns is a 32 bit string representing the four

columns in the state. Thus, each coefficient of a is comprised of four bits in F[x]| 4. To

implement this on an 8-bit processor, (18) must be executed in hardware. Multiplication

with the coefficient 01 requires no processing power because the input equals the output.

Daemen and Rijmen outline a process for multiplication with 02 and 03 on an 8-bit

platform. This process takes advantage of the fact that all elements of the Rijndael finite

field can be written as a sum of powers of 02 since the characteristic of the Rijndael finite

field is 2. This fact coupled with the idea that the value 02 is associated with the

polynomial x makes it possible to construct a 256 byte table of all possible 8-bit input

values and their subsequent values after being multiplied by 02 in the Rijndael field. The

multiplication by 02 is denoted xtime(y) where y is the value to be multiplied. Example 6

illustrates how xtime is used to multiply an input b by the constant value 05.

Example 6. Use xtime to multiply the input value b by the constant value 05.

Solution

b · 05 = b · (01 04) = b · (01 ⊕ ⊕022)

Now, xtime is used to multiply a value by 02. To multiply a value by 022, xtime is

20

used twice or

 = b ⊕xtime(xtime(b)).

The look-up table for the xtime process can be found in Table 24 in Appendix A.

This table is used to determine the product of any two 8-bit input values. The most

complex multiplication during MixColumns is a multiplication by 03, as shown in (13).

Since the coefficients of d(x) (c.f., (17)) are much higher than c(x) (c.f., (16)), the

Rijndael design for an 8-bit platform uses a simple property of matrix multiplication to

develop a preprocessing step used during the inverse MixColumns routine. The following

relationship holds between the MixColumns polynomial c(x) and the inverse

MixColumns polynomial d(x) [DaR98]

d(x) = (04 x2 + 05) c(x) mod l(x). (19)

This follows from the matrix notation

0 0 0 09 02 03 01 01 05 00 04 00
09 0 0 0 01 02 03 01 00 05 00 04
0 09 0 0 01 01 02 03 04 00 05 00
0 0 09 0 03 01 01 02 00 04 00 05

E B D
E B D

D E B
B D E

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢= ×
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 (20)

which is the inverse MixColumns matrix as defined in (17) and (13) obtained by

multiplying the original MixColumns matrix in (18) by a preprocessing matrix [DaR98].

This preprocessing step reduces the number of 256 byte look-up tables needed to one and

can be used for both MixColumns and inverse Mixcolumns as opposed to SubBytes,

which requires two tables (one for SubBytes and one for inverse SubBytes). This design

for MixColumns is designated the Full LUT design.

21

The specification of the above designs for MixColumns and SubBytes effectively

outlines the baseline AES design used during the experiment outlined in Chapter III.

2.5 Current Research into AES Implementations on FPGAs

2.5.1 Optimization Techniques

Most research uses three metrics to evaluate AES system performance. These

three metrics are: throughput, area efficiency, and area occupied. Throughput is defined

as

128*
_ _

clkfThroughput
cycles per block

= (21)

where is how many clock cycles is required for the input block to be

fully encrypted and

_ _cycles per block

clkf is the MAXIMUM clock frequency [ZCN04]. The constant 128

is the number of bits in an input block.

Area Occupied is a contentious issue. “It is difficult to make direct comparisons

between FPGA implementations of any algorithm since the specific hardware target is

often different” [ZCN04]. Some authors, such as Zambreno and Saqib, define Area

Occupied as the number of Configurable Logic Blocks (CLBs) used by a particular

design [ZCN04] [SDR]. Other authors, such as Good, properly include the amount of

block RAM (measured in equivalent CLBs) a design requires into area efficiency

[GoB05].

22

Figure 6. FPGA Design Methodology [ZCN04]

 Area Occupied should be measured in total equivalent gates required to

implement the design. This goes against the current research standard but it allows an

objective comparison of the size of a design between chip families. Design areas reported

in CLB slices and equivalent CLB slices can only be independently compared to designs

which are implemented on the same chip or, to some lesser degree, the same chip family.

When design areas are reported in CLB slices between two chips that are not of the same

chip family or even the same manufacturer, it cannot be an accurate comparison because

of variations in CLB slice capacity across chip families/manufacturers; for example, a

Xilinx Spartan CLB capacity is not as large as a Xilinx Virtex 5 CLB.

Rudra contends that only total equivalent gate count (memory included) can

accurately measure and provide an objective comparison of design area between designs

implemented on various chips [Rud01]. His research metrics are summarized in Table 4.

Since most operational systems requiring AES implement the algorithm on ASICs rather

23

than FPGAs, it makes sense to report area occupied as a measure of gates, which can be

compared to both ASIC and FPGA designs, rather than CLBs, which can only be

accurately compared to designs implemented on the same FPGA chip. Research that

presents designs measured in some estimate of theoretical gate counts are considered

unreliable. Therefore gate counts only obtained by HDL synthesizers or by ASIC design

fabrication methods are used herein. Theoretical gate counts are unreliable since they

cannot be directly implemented in hardware nor do they account for buffers required to

achieve correct timing as well as other factors which may increase the gate count at the

place and route stage of synthesis.

 Since most of the current literature reviewed reports area occupied in CLBs or

slices, a method for estimating gate counts must be devised. For each FPGA chip it

manufactures, Xilinx provides a maximum gate capability (logic and RAM) as well as a

total number of CLBs. From these two measures it is possible to devise a conversion

factor which translates an area in CLBs to an estimate of area given in total equivalent

gate count as shown below. This conversion factor is unique for each Xilinx chip model

used and is

_ _
_

gates maximum gate capability
CLB total CLBs

= (22)

where the conversion factor is gates
CLB

. maximum_gate_capability is the maximum

number of gates an FPGA has the potential of implementing and total_CLBs is the total

number of CLBs the FPGA contains. Both maximum_gate_capability and total_CLBs are

reported by the chip manufacturer.

24

Much research has focused on increasing the performance of the various stages of

AES (MixColumns, SubBytes, KeyExpansion, AddRoundKey, and ShiftRows) but this

same research does not account for how the different transformations interact with each

other to affect the design of AES as a whole. The only recent research on AES designs

targeting an 8-bit processor found that “a good FPGA based 8-bit datapath for

comparison could not be found”[GoB05].

Zambreno attempts to balance throughput, latency, and area efficiency by

searching for an optimal point in the pyramid in Figure 6. As the figure illustrates, simple

methods of increasing throughput have a negative effect on area efficiency. One such

method is loop unrolling. A loop will normally execute an operation in the same area of

hardware numerous times. When loop unrolling is used, that area of hardware is

replicated as many times as the loop needs to execute so the loop can execute in parallel.

It is easy to see how this method has a dramatically negative effect on area efficiency.

Loop unrolling is a common method of optimizing encryption algorithms since

encryption performs multiple operations on blocks of input data numerous times.

Figure 7a shows the Rijndael algorithm without modification. The algorithm runs

a loop using rotating inputs from the key expansion block and the 128-bit state register to

hold all plaintext input states. As shown in Figure 7b, This function can be optimized by

unrolling this loop and executing each encryption round using its own dedicated

hardware circuit for each of 10 rounds and storing the results of each round in 10

different 128 bit registers [QIS05]. The pyramid in Figure 6 would show a significant

25

increase in throughput, although since the hardware already used large area, increasing

throughput in this fashion will result in a dramatic decrease in area efficiency.

Figure 7. Loop Unrolling an AES Architecture [QIS05]

Another method of increasing throughput is pipelining. Pipelining maximizes

hardware utilization by executing multiple instructions simultaneously with each

instruction being in a different stage of execution at any one moment. Pipelining does not

require the addition of any new functional hardware, in fact pipelining is a simple method

of making the most of the hardware already available. For this reason, except for the

overhead associated with starting a pipeline, it is possible to increase throughput and

decrease latency with a small effect on area efficiency.

26

Another technique increases the throughput of AES by parallelizing stages of

Rijndael’s algorithm [CaA03]. Figure 8 reduces the entire MixColumns stage of AES

into simple combinational logic.

Figure 8. Parallelization of MixColumns [CaA03]

Although it may be the dominant catalyst for optimization, throughput is not the

only important measure of an implementation. Area efficiency is a design consideration

when implementing AES since an increase in area efficiency means an AES chip can

operate using less hardware as well as requiring less power. Many portable electronic

devices such as cell phones or mobile WLAN terminals could benefit from AES, but

since they require batteries, power consumption is an issue. For these hardware

platforms, an efficient design should deliver an acceptable throughput while maintaining

high area efficiency to reduce power consumption. A quick analysis of Figure 6 shows

how difficult this is to reach. In fact, most methods designed to increase area efficiency

have a detrimental impact on the system’s overall throughput.

27

There are minor variations in the definition of area efficiency; for example,

Zambreno and Saqib define area efficiency as

Area Efficiency = ()
_ (

Throughput kbps
Area Occupied CLBs)

 (23)

which measures the throughput per CLB or slice [ZCN04][SDR]. Therefore, a high Area

Efficiency implies a more efficient design. In contrast Pionteck defines area efficiency as

the inverse of (23) or

Area Efficiency = _ (
()

Area Occupied CLBs
Throughput kbps

) (24)

which measures the area in CLBs needed per one kbps [Pio04]. Therefore, a low number

signifies a more efficient design. This research reports area in terms of total equivalent

gates rather than CLBs or slices,

Area Efficiency = ()
_ (

Throughput kbps
Area Occupied gates)

. (25)

Recently the AES algorithm was selected for the upcoming WLAN standard

IEEE 802.11i [Pio04]. This means portable electronic devices using this new WLAN

standard such as network cards for laptops and mobile WLAN terminals will benefit from

a design with optimized power consumption through a highly efficient area design.

 Area efficiency is a significant design goal when dealing with devices that require

a small amount of hardware as well as relatively high throughput. Some designs have

modest throughput requirements but require the hardware to be as small as possible. For

these systems, reducing hardware area will come at a dramatic cost in throughput.

28

2.6 Typical Design Parameter Values

2.6.1 AES Throughput

The fastest FPGA implementation of the AES algorithm transmits at 23.65 Gbps

[GoB05]. Since this implementation had maximizing throughput as the primary objective,

area occupied and area efficiency suffer. It is because of this trade-off that this design is

the largest of those reported in Table 4. The data for gates per slice is from the

documentation for the Xilinx Virtex-II family of FPGAs [Xil07]. Similar results were

produced by Zambreno although the maximum optimized throughput was only 23.57

Gbps [ZCN04]. Another high-speed implementation of the AES algorithm achieved a

throughput of 16.5 Gbps [JST03].

Table 4. Throughput Comparison of Previous AES Designs
Design FPGA Area

(Slices)
Gates
Slice

Area
(Gates)

Freq.
MHz

Throughput
(Gbps)

Zambreno
[ZCN04]

Virtex-II
XC2V4000

16938 173 2,930,274 184.1 23.57

Järvinen
[JST03]

Virtex- E
XCV1000c-8

11719 195 2,285,205 129.2 16.50

Good
[GoB05]

Virtex-E
XCV2000E-8

16693 186 3,104,898 184.8 23.65

Rudra
[Rud01]

ASIC - - 256,000 32.0 7.50

2.6.2 AES Area Efficiency

AES operates on 128 bit blocks of data for each encryption round. Current

literature has numerous examples of partitioning the blocks of 128 bits into smaller sub-

blocks called datapaths to maximize area efficiency [GoB05]. However, by breaking one

128 bit block of data into smaller, more manageable sub-blocks, a number of additional

cycles are required to complete each encryption round. As the 128 bit block of data is

29

divided into datapaths, the number of cycles required to complete an encryption round

increases and consequently has a detrimental effect on throughput. The most common

datapath size is 32 bits and can only be implemented on a platform with 32-bit processing

capability [GoB05]. The Good design achieves a balance between area efficiency and

throughput is achieved at this datapath size.

When calculating total area occupied by a particular design, the size of a

particular FPGA’s block memory should be included [GoB05]. Different FPGAs have

different sizes of block memories. For example, the block memory size on a Xilinx

Spartan-II is only 4 kbits whereas the block memory sizes on a Xilinx Spartan-III or

Vertex-II are 18 kbits [GoB05]. Translating this into the equivalent number of slices

those bits will occupy gives a common basis for comparison [GoB05]. Another method

of determining area is in the number of Configurable Logic Block (CLB) slices used by

the design [SDR]. Many studies do not include the block RAM used by a design, but only

report the number of CLBs or slices and thereby underestimate the actual hardware

required.

As shown in Table 5, the highest area efficiency, as calculated by (25) while

ignoring block RAM was 15.72 [Rou04]. However, when block RAM is included, this

number drops to 1.89. Chodowiec and Gaj have the most area efficient AES design

including block RAM with 2.30; when block RAM is not considered efficiency rises to

5.42 [ChG01]. Table 5 summarizes area efficiency results of other designs.

30

Table 5. Area Efficiency Comparison of Previous AES Designs
 Chodowiec

& Gaj
[ChG01]

Rouvroy
and others

[Rou04]

Rouvroy
and others

[Rou04]
Device XC2S30-6 XC3S50-4 XC2V40-6
Slices 222 163 146

Gates / Slice 138 130 156
Gates (Ignoring

RAM)
30,636 21,190 22,776

Throughput (kbps) 166,000 208,000 358,000
Area Efficiency

(ignoring block RAM)
5.42 9.82 15.72

Bits of block RAM
used

9600 34176 34176

Equiv slices for block
RAM

300 1068 1068

Total equiv slices 522 1231 1214
Total equivalent gate

count
72,036 160,030 189,384

Area Efficiency
(accounting for block

RAM)

2.30 1.30 1.89

2.6.3 AES Area Optimization

The smallest AES design, in equivalent gates required to implement the design

used only 41,184 gates on a Xilinx XC2S15-6 using an 8-bit platform [GoB05]. Table 6

illustrates how the optimization of area usage affects throughput and area efficiency.

The highlighted values in Table 6 correspond to the largest values in the most

important measures of merit: area, throughput, and area efficiency. Good’s design is the

lowest in both gates used as well as total equivalent gates when accounting for the

amount of FPGA block RAM being used. Chodowiec and Gaj boast the highest area

efficiency while accounting for block RAM [ChG01]. Rouvroy achieves the best area

efficiency when block RAM is ignored [Rou04].

31

Table 6. Performance Comparison: Area, Area Efficiency, and Throughput
 Good

[GoB05]
Chodowiec &

Gaj
[ChG01]

Rouvroy and
others

[Rou04]
Device XC2S15-6 XC2S30-6 XC2V40-6

Datapath
Length (bits)

8 32 32

CLB Slices 124 222 146
Gates / Slice 156 138 156

Gates (Ignoring
Block Ram)

19,344 30,636 22,776

Throughput
(kbps)

2200 166,000 358,000

Area Efficiency
(ignoring block

RAM)

0.018 0.75 15.72

Bits of Block
RAM used

4480 9600 34176

Equiv Slices for
Block RAM

140 300 1068

Total Equiv
Slices

264 522 1214

Total Equiv
Gates

41,184 72,036 189,384

Area Efficiency
(accounting for

block RAM)

0.0534 2.30 0.529

2.7 Overview of research into the validation of encryption circuits

When NIST selected one of the many candidates to replace DES as the new

encryption standard AES, three evaluation criteria were used to determine which

algorithm was best: security, cost, and algorithm and implementation characteristics

[Nis01]. The most important factor in NIST’s decision was the overall security of the

algorithm using two different criteria: a quantitative analysis of the general security of the

algorithm and the algorithm’s ability to withstand attack. For AES optimization research

32

however, the most important characteristic is the correctness of the implementation (i.e.,

whether or not the implemented algorithm EXACTLY matches the specification of AES).

NIST released the Advanced Encryption Standard Algorithm Validation Suite

(AESAVS) in November 2002. The suite provides three different tests which validate the

functionality of the AES algorithm: the Monte Carlo algorithm test, the Multi-Block

Message test, and the Known Answer Test. AES is a substitution cipher. That is, if the

same block of data is run through the algorithm multiple times with the same key, the

output ciphertext will be exactly the same each time. The Known Answer Tests take

advantage of this and are an easy method of determining the functionality of a particular

AES implementation through the use of look up tables containing the expected answers.

There are four different types of known answer tests: GFSbox, KeySbox, Variable Key,

and Variable Text. GFSbox and KeySbox each test the functionality of the Substitution

Box (S-Box) elements of the AES and DES ciphers.

Variable Key and Variable Text Known Answer Tests are the most easily

realizable methods of testing the functionality of an AES implementation. The Variable

Key test simply keeps the plain text input block constant at all zeros and varies the value

of the key. The AES validation suite provides look up tables containing the known

ciphertext output for zeroed out plain text and different key values. Table 7 is an example

of a Variable Key Known Answer Test value look up table. The Variable Text works the

same way as the Variable Key test but Variable Text operates on a zeroed out key and

varies the value of the plaintext.

33

Table 7. Variable Key Known Answer Test Values for Keysize = 128

2.8 Summary

 This chapter describes the baseline AES design. The design is specified by the

creators of AES and is composed of a full LUT design for both the SubBytes and

MixColumns transformations. This chapter also presents current research topics on the

implementation of AES on FPGAs and provides tables of common values associated with

each performance metric to be tested. The designs that perform best for each metric are

highlighted. These designs allow a comparison to be made between the performance of

AES designs in current literature and the new AES designs specified in Chapter III.

34

III. Methodology

3.1 Chapter Overview

The purpose of this chapter is to define the experiment conducted in this research.

3.2 Problem Definition

 3.2.1 Goals and Hypothesis

This research has two primary goals. The first is to improve the performance of

the baseline design of AES targeting an 8-bit platform based on throughput, area

occupied, and area efficiency. This goal is met when a design is produced has a better

performance than the baseline design. Designs developed herein are compared to designs

from literature that specifically target each metric. Table 8 lists the best values for each

AES metric as reported in current literature. These designs target each specific metric

individually (i.e., throughput, area efficiency, and area occupied) and use hardware

optimization techniques not considered in this effort for reasons of area efficiency.

Table 8. AES FPGA Performance in Current Literature
Metric Design FPGA Value
Throughput Good

[GoB05]
Virtex-II
XC2V2000E-8

23.65 Gbps

Area Efficiency
(ignoring block
RAM)

Rouvroy
[Rou04]

XC2V40-6 15.72

Area Efficiency
(accounting for
block RAM)

Chodowiec & Gaj
[ChG01]

XC2S30-6 2.30

Area Occupied Good
[GoB05]

XC2S15-6 41,184 Total
Equivalent Gates

35

 The second goal of this research is to answer the following question: how does

each factor interact and affect each metric and do the changes to the baseline design

increase performance? This goal directly supports the hypothesis to be tested. By using

modular inversion in an extended field and composite modular inversion in a subfield

during the transformation of SubBytes in lieu of a full look up table as defined in the

baseline design; and by utilizing a bitwise shift and combinational logic in the

transformation of MixColumns, it is expected that the performance of AES can be

improved to a level that surpasses the baseline AES performance.

3.2.2 Approach

The approach to achieving the first goal uses four techniques to reduce hardware

requirements in the transformations for MixColumns and SubBytes. The amount of

hardware needed can be reduced by computing values rather than using LUTs. SubBytes

requires a table of 256 bytes to store the SubBytes step and another table of 256 bytes to

perform the inverse of SubBytes. MixColumns uses one 256 byte table and together with

SubBytes these two transformations use a total of 768 bytes of memory (these values are

the uncompressed storage requirement). Table 8 illustrates the significant impact memory

usage has on area efficiency. When total memory usage is not accounted for, the best area

efficiency attained by current research is 15.72, but when memory is taken into account

the area efficiency drops to 2.30. MixColumns and SubBytes are targeted because they

are the only transformations to use any operations outside of combinational logic and use

LUTs as their primary means of execution. The second goal is realized by evaluating

each technique’s impact on performance separately. The experiment compares these

36

results with the results obtained from each possible combination of optimization

techniques.

3.3 System Boundaries

The system under test is called the Data Encryption System. The Data Encryption

System consists of four components illustrated in Figure 9. The first component of the

Data Encryption System is the hardware description language used to create the

component under test, the AES algorithm.

SUT

(Data Encryption System)

Hardware
Description
Language

AES
Algorithm Hardware

NIST Algorithm
Validation Suite

System Parameters

Area Efficiency

Area Occupied

Throughput

Optimization
Techniques

C
lock S

peed

FP
G

A
 Typ

e

H
D

L Syn
th

esis
Tool

Fu
ll Factorial

D
esign

S
yn

th
esis D

irection

S
u

b
B

ytes
D

esign

M
ixC

olum
ns

D
esign

Speed of In
pu

t
D

ata Stream

K
ey Len

g
th

Figure 9. System Under Test

The AES algorithm component always contains the verified inverse cipher

(decryption). It is assumed that the design used for encrypting data will also be used for

decrypting data (i.e., a MixColumns Full LUT design for encryption will not be

37

combined with a MixColumns combinational logic design for decryption). While

combining different designs for encryption and decryption will still properly encrypt and

decrypt data, this method is avoided in order to maintain symmetry in the experiment.

The third component is the FPGA being used as well as the development board. This

device is the Xilinx Virtex-II PRO XC2VP30. The final component is the various design

techniques used to improve the algorithm’s performance. The scope of this study is

limited to controlling the three factors and observing the three metrics. The input

(workload) to the system under test is the NIST Algorithm Validation Suite.

3.4 System Services

The Data Encryption System encrypts the input data stream using the AES

algorithm. The first, and most desirable, outcome is for the Data Encryption System to

correctly encrypt the input data stream. The verification of proper encryption is done

using the NIST Algorithm Validation Suite. The second possible outcome of the system

is for the Data Encryption System to improperly encrypt the input data stream. The result

of this outcome is that the system will be unable to recover the entire, correct input data

stream. The third possible outcome of the data encryption system is that no encryption

occurs. The result of this outcome is that the input data stream is exactly the same as the

output of the system. The final possibility is that nothing occurs. The result of this

outcome is that no signal is observed at the output. This indicates a complete malfunction

of the system.

38

3.5 Workload

The workload for the Data Encryption System is the NIST Algorithm Validation

Suite. When applied to an implementation, the suite verifies the correctness of the

implementation. This is a suitable workload for the Data Encryption System because it is

provided by the institute responsible for the creation of the Advanced Encryption

Standard. Another added benefit of using the NIST Algorithm Validation Suite is that it

not only provides a suitable input data stream for the system, but also verifies that the

system is providing the correct service (i.e., properly encrypting the input data stream).

3.6 Performance Metrics

Three performance metrics are used to evaluate system performance: throughput,

area efficiency, and area occupied. Throughput is defined as

128*()
_ _

clkfThroughput kbps
cycles per block

= (25)

where is the number of clock cycles required for the input block to

be fully encrypted and

_ _cycles per block

clkf is the MAXIMUM clock frequency as identified by the

hardware description language (HDL) synthesizer. The HDL synthesizer is the Xilinx

XST synthesizer, which identifies a design’s critical path and subsequently determines

the theoretical maximum combinational delay measured in seconds. This measurement is

the minimum clock period and since frequency is the inverse of period, the maximum

clock frequency can easily be determined. The constant 128 is the number of bits in an

input block. Maximum clock frequency does not solely determine throughput as

39

throughput is also inversely related to the number of clock cycles required to operate on a

block of data.

Area efficiency is defined as

Area Efficiency = (
()

Throughput kbps
Area gates

) (26)

where throughput is from (25) and Area is measured in gates. The total equivalent gate

count is measured by the HDL synthesizer.

3.7 Parameters

3.7.1 System

• FPGA Type – Different FPGA’s have inherent differences in performance; for

example, a Xilinx Spartan CLB slice is different from a Xilinx Virtex CLB

slice.

• HDL Synthesis Tool – It is unlikely that two different synthesis tools will

implement the same HDL code the same way. The synthesis tool used in this

experiment is the Xilinx XST tool packaged with the full version of the Xilinx

ISE 8.2i software.

• Synthesis Goal – The Xilinx XST synthesis tool requires a user defined input

as to the desired overall goal of the design synthesis. The two options are

synthesize to reduce area or synthesize to increase speed. The option to

increase speed does so by reducing the number of logic levels required by the

design. This means that synthesizing for speed does not necessarily indicate

40

an increase in area occupied nor is it certain that synthesizing for area will

result in a decrease in speed.

• ShiftRows Design – There are many designs that properly implement the

ShiftRows transformation. The ShiftRows design used in this research is

defined by The Design of Rijndael for an 8-bit platform as described in

Chapter II [DaR98].

• AddRoundKey Design – The AddRoundKey design used in this research is

implemented as a bitwise XOR of the round key and the state as defined by

The Design of Rijndael for an 8-bit platform as described in Chapter II.

• KeyExpansion Design – The KeyExpansion step requires using the SubBytes

transformation. SubBytes is considered an experimental factor yet

KeyExpansion is not. This is possible by using a function call for SubBytes

within the KeyExpansion HDL design. This allows for hardware executing the

KeyExpansion transformation to remain the same but permits the hardware

implementing SubBytes to change. Thus the SubBytes design can be

considered an experimental factor while the KeyExpansion design remains a

constant system parameter.

• MixColumns Design – The baseline design for MixColumns is explained in

detail in Chapter II. The MixColumns transformation is the most difficult to

achieve good performance on an 8-bit processor due to 4 byte column blocks

of data [DaR98].

41

• SubBytes Design – The baseline specification for the SubBytes transformation

on an 8-bit platform consumes the most memory in AES. The baseline design

uses two independent 256 byte LUTs; one for the encryption cipher

(SubBytes) and one for the decryption cipher (inverse SubBytes).

3.7.2 Workload

• Validation Suite – The NIST Algorithm Verification Suite validates the AES

algorithm through a number of tests. One such test is the Known Answer Test.

This test takes advantage of the fact that AES is a substitution cipher and if

the same input is used with the same key, the cipher text will always be the

same. The entire battery of Known Answer Tests is run on each design of

AES to ensure correctness, but only one Known Answer Test is used as the

workload in this experiment. This test is the rotating plaintext test, which

maintains an all zero key and varies the input plaintext.

• Key Length –AES has the option of using a 128, 192, or 256 bit key.

Increasing key length increases the amount of computation required to encrypt

and therefore decreases throughput. For this experiment, the key length is set

at 128 bits.

3.8 Factors

The factors for this experiment are: MixColumns design, SubBytes design, and

Synthesis Goal. The specific levels of the transformation factors (MixColumns and

SubBytes) are determined by which design is utilized during an experiment. The levels

42

for the factor of synthesis goal are area or speed. These factors and their levels are

summarized in Table 9. SubBytes was chosen as an experimental factor because it

consumes the most memory in AES. There are a number of alternative designs for

implementing a more compact version of the AES S-box, but most of these designs use

multiplication or access memory in a way that cannot be easily supplied by an 8-bit

processor. The three designs chosen for SubBytes in this experiment can be executed on

an 8-bit platform. The first of these designs is the LUT design outlined in Chapter II (cf.

Description of the AES Algorithm) and is the Rijndael specified baseline design for AES

on an 8-bit platform. The other two designs focus on modular inversion in a finite field.

These designs are called Modular Inversion in an Extended Field and Modular Inversion

in a Composite Field.

Table 9. Factor Levels

Factor Level
SubBytes Design Full LUT,

Modular Inversion in an Extended Field,
Modular Inversion in a Composite Field

MixColumns Design Full LUT,
Half LUT,
Combinational Logic

Synthesis Direction Area, Speed

The size of the input and output blocks for the MixColumns routine makes the

transform ideal for implementation on a 32-bit platform. For this reason, the task of

implementing the MixColumns stage of AES on an 8-bit platform with good performance

(i.e., low area and high throughput) is not a trivial task [DaR98]. MixColumns is chosen

as a factor for this reason. Past research on MixColumns has introduced a number of

alternative designs. These designs encompass a range of implementation options for

43

MixColumns. The first is the Rijndael specified Full LUT design, as described in Chapter

II. The second design was developed during this research and is the baseline design

modified such that it requires half of the original LUT to operate. This design is titled the

Half LUT design. The final design was developed by Satyanarayana and follows an

algorithm created by Trenholme, which implements MixColumns using combinational

logic alone [Sat04]. These three design levels were chosen because they represent the

entire spectrum of MixColumns designs from a full look up table design to an entirely

combinational logic design. These designs are described in detail in the following section

labeled “Experimental Factor Designs”.

3.9 Experimental Factor Designs

3.9.1 SubBytes

3.9.1.1 Modular Inversion in an Extended Field

There are two fundamental steps performed in the SubBytes transformation. The

first step is the most mathematically complex and the most difficult to implement in

hardware: the modular inversion of a polynomial in the Rijndael finite field. The second

step is an invertible operation known as an affine transformation. A critical aspect of this

design is the fact that the inverse SubBytes transform is simply the two steps reversed.

Thus, during decryption the inverse SubBytes step executes the inverse affine transform

and then determines the modular inverse, as shown in Figure 13. This is important

because it allows the entire SubBytes operation (both encryption and decryption) to use

one 256 byte look-up table containing all modular inverses in a Rijndael Field. The

44

generation of this table is explained in the Chapter II and the table itself can be found in

Table 20 in Appendix A.

 Both the affine transform and its inverse are specified in The Design of Rijndael.

The affine transform used during SubBytes is

7 7

6 6

5 5

4

3 3

2 2

1 1

0 0

1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0
1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1
1 1 1 1 0 0 0 1 1

b a
b a
b a
b a
b a
b a
b a
b a

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

4

⎡ ⎤
⎢
⎢
⎢
⎢
⎢× ⊕ ⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (27)

where b is the affine transform of a [DaR98]. The coefficients of the polynomial to be

transformed in (27), a, is multiplied with a binary matrix; the result of which is XORed

with a constant bit pattern {01100011}. Implementing (27) in VHDL using only 8-bit

operations would be a complex operation if the elements of the matrix were anything but

binary. Since, however, the matrix is binary, the product of the matrix multiplication will

only yield either the identity of coefficient ai (multiply by 1) or 0 (multiply by 0). If each

coefficient of b is treated as a separate entity rather than as elements of a column vector,

it is possible to map a unique equation for each coefficient of b. This can be achieved via

ordinary matrix multiplication on the 8x8 binary matrix and the vector of a coefficients.

This result is XORed with the corresponding bit from the constant bit pattern, which

results in the following equations for each coefficient of b

45

7 7 6 5 4 3

6 6 5 4 3 2

5 5 4 3 2 1

4 4 3 2 1 0

3 7 3 2 1 0

2 7 6 2 1 0

1 7 6 5 1 0

0 7 6 5 4 0

0,
1,
1,
0,
0,
0,
1,
1.

b a a a a a
b a a a a a
b a a a a a
b a a a a a
b a a a a a
b a a a a a
b a a a a a
b a a a a a

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

 (28)

The equations in (28) are equivalent to (27) except that (28) replaces matrix arithmetic,

which is difficult to implement in hardware, with simple combinational logic using only

XOR gates. (28) can be implemented on an 8-bit platform using the VHDL code in

Figure 10. Notice that as the number of ‘1’s in the binary matrix increases, so too does

the number of XOR gates required to implement the necessary matrix multiplication.

variable a: std_logic_vector(7 downto 0);
variable b: std_logic_vector(7 downto 0);

 b(7) := a(7) xor a(6) xor a(5) xor a(4) xor a(3) xor '0';
 b(6) := a(6) xor a(5) xor a(4) xor a(3) xor a(2) xor '1';
 b(5) := a(5) xor a(4) xor a(3) xor a(2) xor a(1) xor '1';
 b(4) := a(4) xor a(3) xor a(2) xor a(1) xor a(0) xor '0';
 b(3) := a(7) xor a(3) xor a(2) xor a(1) xor a(0) xor '0';
 b(2) := a(7) xor a(6) xor a(2) xor a(1) xor a(0) xor '0';
 b(1) := a(7) xor a(6) xor a(5) xor a(1) xor a(0) xor '1';
 b(0) := a(7) xor a(6) xor a(5) xor a(4) xor a(0) xor '1';

Figure 10. VHDL Code Implementing the Affine Transform

 The inverse affine transform used during decryption precedes the modular

inversion step. Daemen and Rijmen determine that the inverse operation of (27) is

46

7 7

6 6

5 5

4

3 3

2 2

1 1

0 0

0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0
1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1 0
1 0 0 1 0 0 1 0 1
0 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1

a b
a b
a b
a b
a b
a b
a b
a b

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

4

⎡ ⎤
⎢
⎢
⎢
⎢
⎢× ⊕ ⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (29)

where b is the input polynomial [DaR98]. Applying the same technique used above to

derive (28) from (27), (29) is reduced into individual equations for each coefficient of b.

This yields

7 6 4 1

6 5 3 0

5 7 4 2

4 6 3 1

3 5 2 0

2 7 4 1

1 6 3 0

0 7 5 2

0,
0,
0,
0,
0,
1,
0,
1.

a b b b
a b b b
a b b b
a b b b
a b b b
a b b b
a b b b
a b b b

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

 (30)

which can be implemented on an 8-bit platform using the VHDL code in Figure 11.

variable a: std_logic_vector(7 downto 0);
variable b: std_logic_vector(7 downto 0);

 a(7) := b(6) xor b(4) xor b(1) xor '0';
 a(6) := b(5) xor b(3) xor b(0) xor '0';
 a(5) := b(7) xor b(4) xor b(2) xor '0';
 a(4) := b(6) xor b(3) xor b(1) xor '0';
 a(3) := b(5) xor b(2) xor b(0) xor '0';
 a(2) := b(7) xor b(4) xor b(1) xor '1';
 a(1) := b(6) xor b(3) xor b(0) xor '0';
 a(0) := b(7) xor b(5) xor b(2) xor '1';

Figure 11. VHDL Code Implementing the Inverse Affine Transform

47

The design Modular Inversion in an Extended Field consists of the three parts

outlined above: 256 byte modular inversion LUT, affine transform, and inverse affine

transform. The affine transform is only used during encryption and is executed after

modular inversion. The inverse affine transform is only used during decryption and is

executed before modular inversion. The entire VHDL code used for implementing the

SubBytes design Modular Inversion in an Extended Field can be found in Appendix B.

The objective of this design is to reduce the memory required to perform SubBytes by

replacing the two 256 byte LUTs (one for encryption and one for decryption) with one

256 byte LUT that can be used for both encryption and decryption. The cost of this

replacement is an increase in combinational logic used to perform the affine transforms.

Figure 12 illustrates a block diagram of this design during encryption and Figure 13

illustrates the design for decryption. In both figures y represents the input to the

transformation while z is the output.

Affine TransformModular Inversion
in GF(28)

y y-1 z

Figure 12. SubBytes design flow for Modular Inversion in an Extended Field

Affine Transform Modular Inversion
in GF(28)

y z

Figure 13. Inverse SubBytes design flow for Modular Inversion in an Extended Field

48

3.9.1.2 Modular Inversion in a Composite Field

The most mathematically complex operation of the AES cipher is modular

inversion in a finite field. A more compact implementation of the cipher’s S-box can be

obtained by performing modular inversion in the field GF(24)2 rather than in GF(28)

[Rij94]. The field over GF(28) called an extended field while the more compact

representation GF(24)2 is called a composite field. The field GF(24) is referred to as a

subfield. To perform modular inversion in the extended field requires a 256 byte LUT.

An equivalent representation of the extended Rijndael field into a more compressed

subfield over GF(24)2 reduces the size of the LUT to just 8 bytes. Figure 14 illustrates the

design flow of SubBytes for Rijmen’s efficient S-box implementation for encryption and

Figure 15 shows the process for decryption.

Modular Inversion
in GF(24)2 Affine TransformMapping to

GF(24)2
Inverse Mapping

to GF(28)

b

c

p

q

y y-1 z

Figure 14. SubBytes Design Flow for Composite Field Inversion

Modular Inversion
in GF(24)2Affine Transform Mapping to

GF(24)2
Inverse Mapping

to GF(28)

b

c

p

q

y z

Figure 15. Inverse SubBytes Design Flow for Composite Field Inversion

Every element of GF(28) can be written as a polynomial of the first degree with

coefficients from GF(24). This polynomial has the form bx + c, where b and c are

coefficients from GF(24) [Rij94]. The reducing polynomial for multiplication in this field

49

is an irreducible second degree polynomial of the form x2 + Ax + B where the A and B

coefficients are constants from GF(24) [Rij94]. The values for the A and B coefficients

are unspecified. However, the inverse of an element of GF(28) represented in GF(24)2 as

bx + c is [Rij94]

(bx + c)-1 = b(b2 B + bcA + c2)-1 x + (c + bA) (b2 B + bcA + c2)-1. (31)

b

c

x2

q

p

x-1

B

A

x2

⊗
⊕⊗

⊗

⊕

⊗

⊗

⊗

Figure 16. Schematic of Modular Inversion in a Composite Field

Figure 16 illustrates a schematic representation of (31) where p represents the b(b2 B +

bcA + c2)-1 term and q represents the (c + bA) (b2 B + bcA + c2)-1 term. The schematic

shown in Figure 16 corresponds to the “Modular Inversion in GF(24)2” blocks in Figures

4 and 5. Before Figure 16 can be implemented, an invertible method for mapping

elements of GF(28) into polynomials with coefficients in GF(24) must be defined.

50

Paar and Rosner map a finite field over GF(28) into an equivalent representation

over GF(24)2 using a transformation matrix. However, this method is only valid for fields

that use primitive reducing polynomials [PaR97]. The Rijndael field reducing polynomial

m(x) is irreducible but not primitive [Rud01]. Therefore, the Paar and Rosner method

cannot be used directly. However, Rudra used the Paar and Rosner method to develop an

algorithm for determining transformation matrices specifically for the Rijndael field. This

algorithm is composed of three steps that ensure the matrix has the required mathematical

properties [Rud01]. These steps are iterated until a matrix has all of the properties

specified in the algorithm. Rudra uses his algorithm to determine a transformation matrix

which correctly splits a polynomial in GF(28) into a first degree polynomial with

coefficients in GF(24). The mapping equation with Rudra’s transformation matrix is

3 7

2 6

1 5

0 4

3 3

2 2

1 1

0 0

1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0
1 1 0 1 1 1 0 1

b y
b y
b y
b y
c y
c y
c y
c y

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢=⎢ ⎥ ⎢ ⎥⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥×⎥ (32)

where b and c are the coefficients of the polynomial bx + c and y is a polynomial in

GF(28) [Rud01]. The matrix which maps from GF(24)2 back to GF(28) is the

mathematical inverse of the original transformation matrix shown in (32). Therefore, the

inverse mapping equation is [Rud01]

51

7 3

6 2

5 1

4 0

3 3

2 2

1 1

0 0

0 0 1 0 0 1 0 0
1 1 1 0 1 1 1 0
1 0 1 0 0 1 0 0
0 1 0 1 1 0 1 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 1

y b
y b
y b
y b
y c
y c
y c
y c

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢=⎢ ⎥ ⎢ ⎥⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥×⎥

⎥×⎥

. (33)

As the number of ‘1’s a matrix contains increases, so does the number of XOR

operations required to perform the matrix multiplication. The transformation matrix in

(32) contains 28 ‘1’s and its inverse in (33) contains 29 ‘1’s for a total of 57 ‘1’s in both

matrices. O’Driscoll’s research uses the Paar algorithm determining a transform matrix to

find a more efficient (i.e., less ‘1’s) version of the transform matrix. He was able to find a

transform matrix containing 27 ‘1’s and whose corresponding inverse matrix contains 24

‘1’s for a total of 51 ‘1’s between the two matrices. Therefore the mapping equations in

this research will use O’Driscoll’s more efficient transform matrix. The mapping

equation used herein is [Odr01]

3 7

2 6

1 5

0 4

3 3

2 2

1 1

0 0

1 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 0 0 1 0
1 0 1 0 0 0 0 0
1 1 0 1 1 0 0 1
0 1 0 0 0 1 0 0
1 0 1 0 0 1 1 0
1 0 1 1 0 1 1 0

b y
b y
b y
b y
c y
c y
c y
c y

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢=⎢ ⎥ ⎢ ⎥⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. (34)

The inverse mapping equation is [Odr01]

52

7 3

6 2

5 1

4 0

3 3

2 2

1 1

0 0

0 0 1 1 0 1 0 1
1 0 0 0 0 1 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 1 1 1 1 0 1 0

y b
y b
y b
y b
y c
y c
y c
y c

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢=⎢ ⎥ ⎢ ⎥⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥×⎥ . (35)

 O’Driscoll uses the European standard “little-endian” ordering of bit strings;

therefore the bits are switched and the inverse of the transform matrix is recalculated to

match the “big-endian” convention used in this research. The mapping equation in (34) is

implemented in hardware using the VHDL code in Figure 17.

variable y: std_logic_vector(7 downto 0);
variable b: std_logic_vector(3 downto 0);
variable c: std_logic_vector(3 downto 0);

b(3) := y(7) xor y(5) xor y(1);
b(2) := y(3) xor y(2);
b(1) := y(7) xor y(6) xor y(4) xor y(1);
b(0) := y(7) xor y(5);
c(3) := y(7) xor y(6) xor y(4) xor y(3) xor y(0);
c(2) := y(6) xor y(2);
c(1) := y(7) xor y(5) xor y(2) xor y(1);
c(0) := y(7) xor y(5) xor y(4) xor y(2) xor y(1);

Figure 17. VHDL Code Implementing the Transform Matrix

The inverse mapping equation in (35) is implemented using the the VHDL code in Figure

18.

Using the mapping blocks in Figures 14 and 15 as defined in VHDL in Figures 17

and 18, the complicated process of modular inversion in GF(24)2 must be implemented.

Modular inversion is accomplished using VHDL circuits for each block shown in

Rijmen’s schematic as illustrated in Figure 16.

53

variable y: std_logic_vector(7 downto 0);
variable b: std_logic_vector(3 downto 0);
variable c: std_logic_vector(3 downto 0);

y(7) := b(1) xor b(0) xor c(2) xor c(0);
y(6) := b(3) xor c(2) xor c(1);
y(5) := b(1) xor c(2) xor c(0);
y(4) := c(1) xor c(0);
y(3) := b(3) xor b(2) xor c(1);
y(2) := b(3) xor c(1);
y(1) := b(3) xor b(0);
y(0) := b(2) xor b(1) xor b(0) xor c(3) xor c(1);

Figure 18. VHDL Code Implementing the Inverse Transform Matrix

 Figure 16 shows four primary operations: addition, multiplication, squaring, and

inversion. All of these operations are performed in the subfield GF(24). Since the subfield

still has a characteristic of 2, addition will remain the same (addition modulo 2). The

remaining operations require a new reducing polynomial to account for the shift in finite

fields. Rijmen does not specify a reducing polynomial for the subfield, nor does he

specify the values of the constants A and B in (31). The reducing polynomial for the

subfield is denoted as q(x) and the reducing polynomial for the extended field is p(x)

[Odr01]. Choosing the suitable value for the subfield reducing polynomial was

investigated extensively by O’Driscoll. Through a method which computes all possible

cyclotomic cosets over 2 of degree 4 in GF(28) he concluded that there were only three

choices for a reducing polynomial in the subfield GF(24) [Odr01]. Further, he calculates

the number of XOR and AND operations required by multiplication in the subfield using

each of the three possible polynomials and determined the most efficient choice for the

reducing polynomial q(x) is

q(x) = x4 + x + 1. (36)

54

 Now that the subfield reducing polynomial has been established, the extended

field irreducible, p(x), of the form x2 + Ax + B can be determined. However, p(x) is

specified only when values for the constants A and B have been chosen. These constants

represent polynomials in the subfield GF(24). An exhaustive search of the 120 possible

p(x) polynomials determined that the least number of XOR and AND operations to

perform multiplication is

p(x) = x2 + x + β14 (37)

where β14 is an element of the subfield and is defined by the polynomial x4 + 1 [Odr01].

This constant polynomial’s corresponding bit string is {1001}. Therefore the value

chosen for the constant A in (31) is 1 and the bit string representing the constant B is

{1001}[Odr01].

 Given p(x) and q(x), Figure 16 can be implemented in hardware. The

multiplication operation in the subfield, designated by the⊗operator, can be

implemented using (36) to perform a multiplication operation of the form c = (a · b) mod

q(x) where a, b, and c are polynomials. Paar uses this technique to create a so-called Z

matrix [PaR97]. Multiplication in a subfield using the Z matrix method takes two

polynomials in GF(24) and applies the Z matrix to either input (the result of the

multiplication is the same when the Z matrix is applied to either). This multiplication in

matrix form is

3 3 0 1 2

2 2 3 0 1 0 2 1

1 1 2 3 0 1 0

0 0 1 2 3 0

c a a a a b
c a a a a a a a b
c a a a a a a b
c a a a a a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ×
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3

2

1

0

 (38)

55

where c = (a · b) mod q(x) [PaR97]. Paar’s Z matrix uses a “little-endian” ordering,

therefore the entire matrix is recalculated to match the “big-endian” convention used in

this research. Since the elements of the matrix in (38) are not constant, the

implementation in hardware is not solely XOR operations but must include ANDs as

well. Multiplying the vector through the matrix in (38) yields the following equations for

each element of the c vector

3 3 3 2 0 1 1 0 2

2 3 2 2 3 0 1 1 0 0 2 1

1 3 1 2 2 1 3 0 0 1 0

0 3 0 2 1 1 2 0 3 0

,
() () (

() (),
()

c b a b a b a b a
c b a b a a b a a b a a
c b a b a b a a b a a
c b a b a b a b a a

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕

),
 (39)

which can be reduced to combinational logic consisting of 2-input AND and XOR gates.

Equation (39) contains redundant logic in the 3 0()a a⊕ , 1 0()a a⊕ , and terms.

These can be evaluated once and reused. The VHDL implementations of these are

designated q, r, and s. The VHDL code in Figure 19 implements multiplication in the

subfield GF(2

2 1(a a⊕)

4).

variable a: std_logic_vector(3 downto 0);
variable b: std_logic_vector(3 downto 0);
variable c: std_logic_vector(3 downto 0);
variable q: std_logic;
variable r: std_logic;
variable s: std_logic;

q := a(3) xor a(0);
r := a(1) xor a(0);
s := a(2) xor a(1);

c(3) := (b(3) and a(3)) xor (b(2) and a(0)) xor (b(1) and a(1)) xor (b(0) and a(2));
c(2) := (b(3) and a(2)) xor (b(2) and q) xor (b(1) and r) xor (b(0) and s);
c(1) := (b(3) and a(1)) xor (b(2) and a(2)) xor (b(1) and q) xor (b(0) and r);
c(0) := (b(3) and a(0)) xor (b(2) and a(1)) xor (b(1) and a(2)) xor (b(0) and q);

Figure 19. VHDL Implementation of Multiplication in GF(24)

 The remaining operations in the subfield are squaring and inversion. Squaring in

the subfield could be implemented using the same polynomial as both inputs in the

56

multiplication function shown above. However, O’Driscoll develops a much more

computationally efficient method of squaring a polynomial in the subfield. O’Driscoll

found a constant binary matrix that will, when multiplied with a polynomial’s bit string,

produce the square of that polynomial in the subfield. This operation is

3 3

2

1 1

0 0

1 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1

b a
b a
b a
b a

2

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥= ⎢ ⎥×
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥

⎣ ⎦
⎥

⎣ ⎦ ⎣ ⎦

 (40)

where b = a2 [Odr01]. Multiplying the a vector with the constant bit matrix yields the

following set of equations for the elements of b

3 3 1

2 1

1 2 0

0 0

,
,

,
.

b a a
b a
b a a
b a

= ⊕
=
= ⊕
=

 (41)

Thus, squaring a polynomial in the subfield can be implemented using only two XOR

gates. The VHDL code implementing squaring in a subfield is in Figure 20.

variable b: std_logic_vector(3 downto 0);
variable b: std_logic_vector(3 downto 0);

b(3) := a(3) xor a(1);
b(2) := a(1);
b(1) := a(2) xor a(0);
b(0) := a(0);

Figure 20. VHDL Implementation of Squaring in GF(24)

 The final operation in the schematic in Figure 16 is modular inversion. The

Extended Euclidean algorithm method for modular inversion used to generate the table of

57

inverses in GF(28) in Appendix A is the same process as that of determining a table of

inverses in GF(24), but uses q(x) as the reducing polynomial. If

a(x) x b(x) = 1 mod q(x) (42)

holds, then a(x) is the inverse of b(x) in GF(24) and vice versa. The extended Euclidean

Algorithm is used to find polynomials that satisfy (42). The subsequent polynomials and

their inverses are recorded in an 8 byte look up table that can be found in Table 23 in

Appendix A.

 With all blocks of the schematic in Figure 16 implemented a VHDL circuit that

performs the operation of SubBytes in a composite field can be realized. The design

flows of Figures 14 and 15 summarize the circuit. The complete VHDL code for the

implementation of SubBytes and inverse SubBytes in a composite field is in Appendix B.

3.9.2 MixColumns

3.9.2.1 Half LUT

Chapter II outlines the baseline MixColumns design Daemen and Rijmen

specified for an 8-bit platform. The design described below for the MixColumns

transformation uses a 256 byte look up table containing the values of the xtime operation.

Xtime takes an 8-bit polynomial and produces the product multiplied by 02 in the

Rijndael field using l(x) as the reducing polynomial. This table has a property which can

be exploited to halve the amount of memory required to perform MixColumns. The xtime

table’s purpose was to avoid performing complex polynomial multiplication modulo the

58

reducing polynomial l(x). Consider, however, an important property of modular

arithmetic

x modulo y = x, 0 < x < y. (43)

This means when every element of GF(28) is multiplied by 02, half of the elements would

create a product less than the modulus and (43) could be applied. Careful examination of

the xtime table shows that half of the table consists of simple multiplication by 02 with

no modulus operation as indicated by the highlighted portion of Table 10.

Table 10. Xtime Table: Elements Not Requiring Modulus Reduction Highlighted
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
1 02 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E
2 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E
3 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E
4 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E
5 A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE
6 C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DC DE
7 E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FC FE
8 1B 19 1F 1D 13 11 17 15 0B 09 0F 0D 03 01 07 05
9 3B 39 3F 3D 33 31 37 35 2B 29 2F 2D 23 21 27 25
A 5B 59 5F 5D 53 51 57 55 4B 49 4F 4D 43 41 47 45
B 7B 79 7F 7D 73 71 77 75 6B 69 6F 6D 63 61 67 65
C 9B 99 9F 9D 93 91 97 95 8B 89 8F 8D 83 81 87 85
D BB B9 BF BD B3 B1 B7 B5 AB A9 AF AD A3 A1 A7 A5
E DB D9 DF DD D3 D1 D7 D5 CB C9 CF CD C3 C1 C7 C5
F FB F9 FF FD F3 F1 F7 F5 EB E9 EF ED E3 E1 E7 E5

x

y

 Another important property of multiplication by 02 in the Rijndael field is its

equivalence to multiplying a polynomial by x. This is because the hexadecimal number

02 is equal to the bit string {00000010} which represents the polynomial x. Any

polynomial multiplied by x will result in increasing the power of each indeterminate by

one. The corresponding bit string of the product of any polynomial multiplied by x would

be the original bit string shifted left by one. Example 7 illustrates this property.

 Example 7. Evaluate the following expression:

(x6 + x4 + x2+ x + 1) • x

59

Solution

Polynomial Representation Bit String Representation

(x6 + x4 + x2+ x + 1) • x 01010111 • 00000010

= x7 + x5 + x3+ x2 + x = 10101110

=Bitwise shift to the left!

A bitwise shift to the left is implemented in VHDL below in Figure 21 and simply

changing the wiring utilizes no hardware resources.

variable input: std_logic_vector(7 downto 0);
variable output: std_logic_vector(7 downto 0);

if input < X"80" then

output := (input(6 downto 0) & '0');
end if

Figure 21. VHDL Implementation of the Highlighted Portion of Table 10

The above VHDL circuit effectively implements all highlighted elements of Table

10, thereby eliminating the need to store these values in memory. This results in a 128

byte decrease in memory at absolutely no cost (assuming the HDL synthesizer chooses

not to register the 8 bit value of output). The complete VHDL circuit for this

MixColumns labeled “Half LUT” can be found in Appendix B.

3.9.2.2 Arithmetic

The final design is due to Satyanarayana following an algorithm created by

Trenholme [Sat04][Wik06a]. Satyanarayana’s implementation is open source VHDL

code. This design implements MixColumns using no look up tables by implementing the

xtime function in combinational logic rather than through a LUT. Recall that xtime

60

multiplies an 8-bit polynomial by 02 in the Rijndael field. Thus, a way to multiply two

polynomials in the Rijndael finite field using only combinational logic is needed and

Trenholme’s algorithm provides a method for implementing exactly that. Trenholme’s

algorithm for multiplying two polynomials in the Rijndael finite field is concisely

described and has the following steps [Wik06a]

• Take two eight-bit numbers, a and b, and an eight-bit product p.

• Set the product to zero.

• Make a copy of a and b, which will be called a and b for the rest of this algorithm

• Run the following loop eight times:

1. If the low bit of b is set, XOR the product p by the value of a

2. Keep track of whether the high (leftmost) bit of a is set to one

3. Rotate a one bit to the left, discarding the high bit, and making the low bit

have a value of zero

4. If a's high bit had a value of one prior to this rotation, XOR a with the

hexadecimal number 0x1b (27 in decimal). 0x1b corresponds to the

irreducible polynomial x8 + x4 + x3 + x + 1.

5. Rotate b one bit to the right, discarding the low bit, and making the high

(leftmost) bit have a value of zero.

• The product p now has the product of a and b

Trenholme’s algorithm is designed for two 8-bit numbers to be multiplied in the

Rijndael field, which means the algorithm’s loop must be run eight times. If one of the

input polynomials were to be held at a constant level of 02 then the loop would only have

61

to be run once and steps 1 and 5 of the loop (highlighted above) could be eliminated. The

VHDL code in Figure 22 was written by Satyanarayana and effectively implements the

xtime function in combinational logic.

-- Copyright (C) 2004 Author (Satyanarayana)
variable input: std_logic_vector(7 downto 0);
variable output: std_logic_vector(7 downto 0);

 if(p(0)(7) = '1') then
 m := (p(0)(6 downto 0) & '0') xor "00011011";
 else
 m := (p(0)(6 downto 0) & '0');
 end if;

Figure 22. VHDL Implementation of xtime in Combinational Logic

This xtime process was created to take advantage of the fact that all elements of

the Rijndael finite field can be written as a sum of powers of 02 since the characteristic of

the Rijndael finite field is 2 (cf., Example 6, Chapter II). The VHDL function in Figure

23 by Satyanarayana, with comments added, implements the column transform routine on

an input array p consisting of four 8-bit elements (i.e., a column of the 4x4 state matrix).

The procedure in Figure 23 is extended for the inverse MixColumns transform

(cf., Chapter II). The complete VHDL code for the MixColumns Arithmetic design can

be found in Appendix B.

-- Copyright (C) 2004 Author (Satyanarayana)
function col_transform(p: state_array_type) return std_logic_vector is
 variable result: std_logic_vector(7 downto 0);
 variable m,n: std_logic_vector(7 downto 0);
 begin

--Multiply by 02 in Rijndael field
 if(p(0)(7) = '1') then
 m := (p(0)(6 downto 0) & '0') xor "00011011";
 else
 m := (p(0)(6 downto 0) & '0');
 end if;

--Multiply by 03 by performing xtime and then XORing with p(1)

62

 if(p(1)(7) = '1') then
 n := (p(1)(6 downto 0) & '0') xor "00011011" xor p(1);
 else
 n := (p(1)(6 downto 0) & '0') xor p(1);
 end if;

--Bytes p(2) and p(3) require no processing since they are multiplied
-- by 01 as specified in Chapter II equation (18)
 result := m xor n xor p(2) xor p(3);
 return result;
end function col_transform;

Figure 23. VHDL Implementation of the Column Transform Routine

3.10 Evaluation Technique

The NIST Algorithm Validation Suite is the result of the findings of an analytical

evaluation of AES by NIST. The evaluation of a candidate implementation is verified

using the NIST Algorithm Validation Suite’s Known Answer Test. AES is a substitution

cipher; so, if the same block of data is run through the algorithm multiple times with the

same key, the output ciphertext will be exactly the same each time. The Known Answer

Test takes advantage of this and provides an easy method of determining the functionality

of a particular AES implementation. This method uses look up tables containing known

answer values given an input key and plaintext (i.e., validation against analytic analysis).

The experiment testing environment consists of an HDL module which contains

the NIST Algorithm Validation Suite. This module provides the workload and key entry

for the data encryption system. The internal signals of the data encryption system is

monitored using the Xilinx software package ChipScope. A separate HDL module

implements the actual data encryption system which is monitored via ChipScope. Most of

the testing environment is localized to the FPGA chip. The FPGA sends the input/output

data to two separate pins on the Xilinx board such that they can be viewed on a computer

63

running the ChipScope software. ChipScope verifies the maximum clock frequency

dictated by the critical path found by the HDL synthesizer using an iterative process by

which the frequency of the system clock is increased by 0.01 MHZ until the output of the

data encryption system does not pass the known answer test as defined by the validation

suite. Area Occupied is measured by the Xilinx XST HDL synthesis software. After the

software finishes synthesizing the VHDL code and routes all logic blocks, the total

number of gates (including memory) required to implement the design is given in the

synthesis report. Figure 24 is a block diagram outlining the testing environment.

3.11 Experimental Design

There are three factors in each experiment (SubBytes design, MixColumns

Design, and Synthesis goal). The two transformation factors (SubBytes and MixColumns

design) each have three different levels (cf., Table 9). The Synthesis goal factor has two

levels (area and speed). The total number of factors and their levels require 32 • 21 or 18

different experiments for each algorithm in order to account for every possible

combination of factors and levels. After each experiment is run, values for all three

metrics are recorded. For example, the first experiment implements the baseline AES

design on the FPGA and runs the NIST Algorithm Validation Suite. Values for all

metrics (throughput, area efficiency, area occupied) are recorded after the suite has been

completed. Each subsequent experiment is a permutation of experimental factor levels.

The expected variance of the data is minimal, meaning it is assumed that the performance

of the system given the same design, workload, and HDL compilation will have similar

results. Data is analyzed using ANOVA and other statistical tests as appropriate.

64

Figure 24. Block Diagram of Testing Environment

3.12 Methodology Summary

This research has two primary goals; to optimize the AES algorithm’s

performance based on the chosen metrics and to answer the following questions: How

does each factor of optimization interact and affect the overall values of each

optimization metric, and how does each SubBytes and MixColumns design affect

performance with respect to the full factorial design? The metrics are throughput, area

efficiency, and area occupied. These questions are investigated by controlling the level of

the following three factors: SubBytes design, MixColumns design, and Synthesis Goal.

The approach used to satisfy the two goals of the research uses a variety of SubBytes and

MixColumns designs to analyze the performance based on the three metrics with respect

to the baseline AES design for an 8-bit processor.

65

The system under test is called the data encryption system and consists of HDL

modules, the AES algorithm, and an FPGA board. A functional implementation of this

system provides a properly encrypted data stream of a defined workload, which in this

experiment is the NIST Algorithm Validation Suite. This system is evaluated by

performing multiple experiments on multiple system designs and measuring values for

the performance metrics. These measurements are validated by comparing them to the

findings of the analysis provided by the validation suite.

66

IV. Analysis and Results

4.1 Chapter Overview

This chapter presents and interprets the data collected from executing the

experiment outlined in Chapter III. The goal of this chapter is to answer the investigative

research questions posed in Chapter III: (1) how do experimental factors interact and

affect the overall performance metrics, and (2) how does each SubBytes and

MixColumns design affect performance? A tabular summary and graphs are used to give

a quick overview of the raw data. The data is then examined through an analysis of

means. Finally the percentage of variation explained by each factor and their interactions

is determined through an analysis of variance (ANOVA). This analysis allows the effects

to be sorted and the most important effects and interactions identified.

4.2 Results of Experimental Scenarios and Literature Comparison

Total equivalent gate count and maximum clock frequency data from all

experimental scenarios are summarized in Table 11. This data is represented graphically

in Figures 25, 26 and 27. The theoretical maximum clock frequency matched the

measured clock frequency to 1 kHz. Using this data, throughput, area occupied, and

subsequently area efficiency are calculated. The number of clock cycles required to

encrypt a block of data for all designs is 12. The highlighted values are the maximum

(minimum) values obtained by this research. Table 11 reflects only one replication of

each experiment. Pilot studies using two different methods were used to generate

multiple replications of the experiment and neither method resulted in any significant

67

variance in the data. The first method cleared the FPGA and then reprogrammed it using

the already synthesized design and recorded values for the metrics. It was expected that

data for the exact same design re-implemented on the FPGA (using the same workload)

had little variation. The second method for generating replications re-synthesized the

VHDL circuit and programmed the FPGA using the re-synthesized design. The size of

the .BIT files of the re-synthesized designs vary by no more than ±87 bits compared to

the original. So, there was some difference but no variation in the data resulted. This was

expected because the synthesizer is creating a design based on the same VHDL

definition. The reason the .BIT files are different is due to the synthesizer, but did not

affect the circuit produced.

Table 11. Summary of Experimental Data

Max Freq (MHz) Eq Gate Ct Throughput (kbps) Area Efficiency
Full LUT Full LUT 53.714 156616.000 572949.333 3.658
Full LUT Half LUT 82.747 113742.000 882634.667 7.760
Full LUT Arithmetic 87.524 109456.000 933589.333 8.529

Extended Field Inversion Full LUT 56.459 121384.000 602229.333 4.961
Extended Field Inversion Half LUT 82.912 51500.000 884394.667 17.173
Extended Field Inversion Arithmetic 81.880 50289.000 873386.667 17.367

Composite Field Inversion Full LUT 52.151 108382.000 556277.333 5.133
Composite Field Inversion Half LUT 70.057 33916.000 747274.667 22.033
Composite Field Inversion Arithmetic 69.955 33973.000 746186.667 21.964

Max Freq (MHz) Eq Gate Ct Throughput (bps) Area Efficiency
Full LUT Full LUT 36.688 154176.000 391338.667 2.538
Full LUT Half LUT 52.260 89799.000 557440.000 6.208
Full LUT Arithmetic 48.483 90516.000 517152.000 5.713

Extended Field Inversion Full LUT 49.584 106617.000 528896.000 4.961
Extended Field Inversion Half LUT 69.737 43722.000 743861.333 17.013
Extended Field Inversion Arithmetic 64.748 44850.000 690645.333 15.399

Composite Field Inversion Full LUT 36.945 91353.000 394080.000 4.314
Composite Field Inversion Half LUT 47.039 29049.000 501749.333 17.273
Composite Field Inversion Arithmetic 44.593 29628.000 475658.667 16.054

SPEED

AREA
SUBBYTES MIXCOLUMNS

SUBBYTES MIXCOLUMNS

68

The smallest area occupied uses 29,049 total equivalent gates using the

Composite Field Inversion SubBytes design, Half LUT MixColumns design, and a

Synthesis Goal of area. Since the Composite Field Inversion design for SubBytes is the

design that uses the least amount of memory, the fact that the overall AES design

achieves the smallest area occupied is expected. The Half LUT MixColumns design uses

128 bytes of memory, whereas the Arithmetic design uses no look-up table. The reason

the Half LUT MixColumns design results in the AES design achieving the lowest total

area occupied is because the sheer amount of combinational logic required to perform the

complex finite field arithmetic for the MixColumns transform. The logic required for the

combinational logic design outweighs the memory required for the Half LUT design. It is

also expected that the smallest design would be achieved by synthesizing for area. The

smallest area found in current research occupies an estimated 41,184 total equivalent

gates [GoB05]. Thus, the design developed in this research occupies 29.5% less space.

The largest area efficiency (including memory) achieved by this research is

22.033 for the Composite Field Inversion SubBytes design, Half LUT MixColumns

design, and Synthesis Goal of speed. Since the area efficiency metric is obtained by

dividing throughput by area, a sound strategy is to keep the area occupied figure low. It is

no surprise that the SubBytes and MixColumns designs used to generate the lowest total

area occupied for the overall AES algorithm (Composite Field Inversion and Half LUT)

are responsible for achieving the lowest area efficiency. The only difference in the factor

levels used to produce the lowest total area and the highest area efficiency is that the

HDL synthesizer’s goal for high area efficiency is speed rather than area. This is a vast

69

improvement over the 2.30 obtained by Chodowiec & Gaj. These results are estimates

because the total area occupied as reported in current research is specified in CLBs or

slices. Converting CLBs or slices to total equivalent gate count used the conversion factor

described in Chapter II (22). This transformation is based on logic capabilities published

by the manufacturer of the device and does not account for the specific design or

implementation considerations such as routing. Furthermore, this estimate also assumes

that all slices or CLBs are completely occupied by relevant logic, which may or may not

be the case for some designs.

Th
ro

ug
hp

ut
 (

kb
ps

)

SubBytes Design

MixColumns Design

Synthesis Goal

LU
T

EF
I

CF
I

LU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ith
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

1000000

900000

800000

700000

600000

500000

400000

Individual Values for Throughput

Figure 25. Individual Values Plot for Throughput

The maximum throughput achieved is about 934 Mbps for the Full LUT SubBytes

design, Arithmetic MixColumns design, and Speed Synthesis Goal. The Full LUT

SubBytes design results in highest throughput since in the Full LUT design the entire

SubBytes transform is reduced to a single table look-up. Arithmetic MixColumns design

70

is faster than the LUT table MixColumns design is because the LUT design, unlike the

SubBytes Full LUT design, requires combinational logic as well as a table look-up. The

gate delay involved with performing the MixColumns transformation entirely through

combinational logic (i.e., Arithmetic design) is not as large as the latency required to

access memory for a table look-up on top of a combinational logic delay (i.e., LUT

design).

To
ta

l E
qu

iv
al

en
t

Ga
te

 C
ou

nt

SubBytes Design

MixColumns Design

Synthesis Goal

LU
T

EF
I

CF
I

LU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ith
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

160000

140000

120000

100000

80000

60000

40000

20000

Individual Values for Area Occupied

Figure 26. Individual Values Plot for Area Occupied

Although the maximum throughput achieved by this research is not close to the

maximum throughput obtained by Good of 23.5 Gbps, the objective of this research was

to maximize area efficiency, not speed. Thus, this research used methods that reduced the

memory required to complete the transformations. This limits design goals solely to the

correct operation of AES and not to the hardware responsible for implementing it. For

example, pipelining was not used even though the fastest current implementation is

71

pipelined because pipelining has no impact on the correct functioning of AES. Another

powerful method for increasing throughput at the hardware level is loop unrolling. Loop

unrolling was not implemented for the same reason.

A
re

a
Ef

fic
ie

nc
y

SubBytes Design

MixColumns Design

Synthesis Goal

LU
T

EF
I

CF
I

LU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ithLU
T

Ha
lf L

UT
Ar

ith
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

Sp
ee

d
Ar

ea
Sp

ee
d

Ar
ea

20

15

10

5

0

Individual Values for Area Efficiency

Figure 27. Individual Values Plot for Area Efficiency

The individual values plots shown in Figures 25, 26 and 27 show the highest and

lowest values obtained for each metric. Figure 25 shows that the design with the slowest

throughput is the baseline AES design for an 8-bit processor (Full LUT designs for both

SubBytes and MixColumns) synthesized for area. Since the HDL synthesizer has a goal

of area, it does not route the design to reduce the latency required for a table look-up. The

baseline AES design uses table look-ups as its primary means of operation, and this

coupled with the high latency attributed to LUT designs synthesized for area explains the

slow throughput value for this particular design.

72

Figure 26 shows the largest (highest area occupied) overall AES design is the

baseline AES design for an 8-bit platform synthesized for speed. One of the goals of this

research is to improve the performance of the baseline AES design. This goal was

achieved by reducing the design’s dependence on look-up tables and memory. The

design’s large area can be attributed to its three 256 byte look-up tables coupled with

synthesizing for speed.

4.3 Analysis of the Data

The individual values plots shown in Figures 25, 26 and 27 illustrate the

performance of individual AES designs, but they do not reveal how individual

experimental factors and their associated levels affect the performance metrics. Through

the analysis of the baseline experimental design outlined in Chapter III it is possible to

associate individual factor levels and assess their impact on performance. A visual

analysis of the data is accomplished using main effects plots. This provides insight into

the first research goal that is to determine how each factor level affects the performance

of the design as a whole. It does not, however, address the second goal, which is to

quantify the interactions of the factors and explain how these interactions affect the

system as a whole. An analysis of an ANOVA table will aid in quantifying the main

effects of each factor and, more importantly, their interactions. The interactions are

quantified as percentages of variation explained by each factor. The final product of this

analysis is an enumeration the significance of each factor and interaction.

73

 4.3.1 Visual Analysis of Means

 The first step in evaluating the data is to visually determine how each factor level

impacts the performance of the system using the chosen metrics. The first factor to be

analyzed is SubBytes design. The main effects plot in Figure 28 shows the Full LUT

design drastically increases the total area occupied. The graph in Figure 28 shows the

mean of the gate count attributed to the Extended Field Inversion design is roughly half

of the gates required to implement the Full LUT design. This makes intuitive sense

because Extended Field Inversion is intended to halve the amount of memory required by

the Full LUT design by reducing the required amount of look-up tables from two 256

byte LUTs to one 256 byte LUT.

SubBytes Design

M
ea

n
of

 T
ot

al
 E

qu
iv

al
en

t
Ga

te
 C

ou
nt

Full LUTExtended Field InversionComposite Field Inversion

120000

110000

100000

90000

80000

70000

60000

50000

Main Effects Plot for SubBytes' Impact on Area Occupied

Figure 28. Main Effects Plot for SubBytes on Area Occupied

74

Figure 29 indicates that the Composite Field Inversion design has the lowest mean

throughput of the three designs tested. This is because of the complexity of the

combinational logic required to implement the entire SubBytes transform using a single

64 bit LUT. What is surprising is that the mean throughput of Extended Field Inversion is

higher than simply using the Full LUT design. This is linked to the percentage of

variation explained by each design. This will become clearer once the ANOVA results

are presented. Figure 29 also shows that the Extended Field Inversion design, which

blends combinational logic and one 256 byte LUT, has a higher mean throughput than the

designs at either end of the combinational logic / LUT spectrum.

SubBytes Design

M
ea

n
of

 T
hr

ou
gh

pu
t

(k
bp

s)

Full LUTExtended Field InversionComposite Field Inversion

725000

700000

675000

650000

625000

600000

575000

550000

Main Effects Plot for SubBytes' Impact on Throughput

Figure 29. Main Effects Plot for SubBytes on Throughput

The mean area efficiency of the Full LUT design for SubBytes is by far the lowest

shown in Figure 30. Thus, the additional throughput value of a Full LUT SubBytes

75

design does not come close to justifying its large memory consumption (512 bytes). The

SubBytes design which makes the best use of the area it occupies is Composite Field

Inversion. This design boasts such a small total equivalent gate count that its subsequent

reduction in throughput does not significantly impact its efficiency. It must also be noted

that the area efficiency of the Extended Field Inversion design is similar to Composite

Field Inversion, yet Extended Field Inversion achieves the highest throughput of the three

designs tested.

SubBytes Design

M
ea

n
of

 A
re

a
Ef

fic
ie

nc
y

Full LUTExtended Field InversionComposite Field Inversion

14

13

12

11

10

9

8

7

6

5

Main Effects Plot for SubBytes' Impact on Area Efficiency

Figure 30. Main Effects Plot for SubBytes on Area Efficiency

The additional computational complexity of the Arithmetic MixColumns design is

what makes the design’s area occupied almost equivalent to that of the Half LUT design,

as shown in Figure 31. Figure 31 also shows the Half LUT design, which was to halve

the amount of memory required by the full factorial design, does indeed do so. What is

76

interesting is that, on average, the Half LUT and the Arithmetic designs require about the

same amount of equivalent gates even though the Arithmetic design uses only

combinational logic while the Half LUT design uses one 128 byte LUT as well as

combinational logic. This is because the hardware required to implement the LUT

entirely in combinational logic, as is the intention of the Arithmetic design, approaches

the resources required to simply use the table look-up.

MixColumns Design

M
ea

n
of

 T
ot

al
 E

qu
iv

al
en

t
Ga

te
 C

ou
nt

LUTHalf LUTArithmetic

130000

120000

110000

100000

90000

80000

70000

60000

Main Effects Plot for MixColumns Design's Impact on Area Occupied

Figure 31. Main Effects Plot for MixColumns on Area Occupied

The results obtained in Figure 32 for the MixColumns design’s impact on

throughput are similar to those observed for SubBytes’ effect on throughput in Figure 29.

The average throughput for the MixColumns LUT design is the lowest of the three, while

the Half LUT design obtained the highest throughput with the Arithmetic design

achieving a throughput comparable to the Half LUT design. Just as with the SubBytes

77

designs, the designs tested for MixColumns encompass the entire spectrum of design

options ranging from a full LUT design to an entirely combinational logic design.

MixColumns Design

M
ea

n
of

 T
hr

ou
gh

pu
t

(k
bp

s)

LUTHalf LUTArithmetic

750000

700000

650000

600000

550000

500000

Main Effects Plot for MixColumn Design's Impact on Throughput

Figure 32. Main Effects Plot for MixColumns on Throughput

Memory latency again proves to be a weakness of the LUT design. The Half LUT

design requires a table look-up on half of the values operated on. This halves the amount

of memory latency associated with table look-ups and thus increases the overall average

throughput of the design. The throughput obtained by the Arithmetic design is

comparable to the Half LUT because the combinational logic delay associated with the

complex mathematical operations the Arithmetic design must execute is similar to the

memory latency associated with a table look-up on half of the values operated on.

The average effects of MixColumns design on area efficiency are summarized in

Figure 33. This figure shows how inefficient the full factorial MixColumns LUT design

78

is compared to the other two options. The average area efficiency performance of both

the Arithmetic and Half LUT designs are above 14, whereas the baseline design specified

by Daemen and Rijmen for an 8-bit processor is below one third of that. The full factorial

LUT design for MixColumns occupies the most area and achieves the slowest

throughput, and therefore it has an extremely low average area efficiency.

MixColumns Design

M
ea

n
of

 A
re

a
Ef

fic
ie

nc
y

LUTHalf LUTArithmetic

15.0

12.5

10.0

7.5

5.0

Main Effects Plot for MixColumns Design's Impact on Area Efficiency

Figure 33. Main Effects Plot for MixColumns on Area Efficiency

The best average area efficiency is obtained through the Half LUT design. This

design is successful because it allows half of the full factorial LUT to be reduced to a

simple bitwise shift. This shift is accomplished through the changes in wiring and halves

the memory required from the full factorial design at the cost of a mere 8-bit register.

The main effects plot in Figure 34 illustrates the positive impact synthesizing a

VHDL design for speed has on throughput. This is expected. It is assumed that

79

synthesizing for speed comes at a cost, namely an increase in area. This raises an

interesting question as to whether the increase in throughput as a result of synthesizing

for speed justifies an increase in area.

Synthesis Goal

M
ea

n
of

 T
hr

ou
gh

pu
t

(k
bp

s)

SpeedArea

750000

700000

650000

600000

550000

Main Effects Plot for Synthesis Goal's Impact on Throughput

Figure 34. Main Effects Plot for Synthesis Goal on Throughput

Figure 35 shows that synthesizing for speed does, in fact, increase the average

area occupied by a design, thus proving the above supposition. But the answer to the

question as to whether the increase in throughput as a result of synthesis for speed is

worth the cost of an increase in average area occupied is given in Figure 36. Figure 36

shows that synthesis for speed increases the average area efficiency, which means that the

synthesis goal of speed will, on average, increase a design’s ability to efficiently use its

available hardware resources. Thus, the increase in throughput resulting from synthesis

for speed justifies the cost of a subsequent increase in area occupied.

80

Synthesis Goal

M
ea

n
of

 T
ot

al
 E

qu
iv

al
en

t
Ga

te
 C

ou
nt

SpeedArea

87500

85000

82500

80000

77500

75000

Main Effects Plot for Synthesis Goal's Impact on Area Occupied

Figure 35. Main Effects Plot for Synthesis Goal on Area Occupied

Synthesis Goal

M
ea

n
of

 A
re

a
Ef

fic
ie

nc
y

SpeedArea

12.0

11.5

11.0

10.5

10.0

Main Effects Plot for Synthesis Goal's Impact on Area Efficiency

Figure 36. Main Effects Plot for Synthesis Goal on Area Efficiency

81

4.4 Performance Analysis through ANOVA

The analysis of the data in Table 11 through visual analysis of means, as

presented above, indicates how each factor individually affects the average performance

of the entire AES system, but it does not reveal how the factors interact to affect the

performance metrics. Through an ANOVA it is possible to determine which factor is

responsible for the most variance in each performance metric and consequently which

factor level is most suitable when optimizing AES for a particular performance metric.

 4.4.1 ANOVA for Throughput

The data in Table 11 is analyzed by MINITAB’s Analyze Factorial Design feature

for a three factor General Factorial Design. MINITAB’s output for the Balanced

ANOVA for throughput is reproduced in Table 12.

Table 12. Analysis of Variance Table for Throughput
Source DF Seq SS Adj SS Adj MS
SubBytes Design 2 67861330654 67861330654 33930665327
MixColumns Design 2 1.68976E+11 1.68976E+11 84487864855
Synthesis Goal 1 2.21800E+11 2.21800E+11 2.21800E+11
SubBytes Design*MixColumns Design 4 8597865719 8597865719 2149466430
SubBytes Design*Synthesis Goal 2 23149318959 23149318959 11574659480
MixColumns Design*Synthesis Goal 2 17579150621 17579150621 8789575310
SubBytes Design*MixColumns Design* 4 2696989634 2696989634 674247408
 Synthesis Goal
Error 0 * * *
Total 17 5.10661E+11

Table 12 displays the Sum of Squares values, the Adjusted Sum of Squares, and

the Mean Square Values. Most notably the values of Error for all three columns is zero

since the experiment has only one replication, therefore no error can be calculated. The

output of MINITAB’s Factorial Design Analysis also includes a quantification of the

main effects as shown in Table 13. Note the difference in terminology, what this research

calls an effect, MINITAB calls a coefficient (Coef).

82

The quantification of the effects, as shown in Table 13 are raw values, the

magnitudes of which can be used to determine which factors have the most overall

impact on throughput. An easier method of determining the impact of factors on

throughput is through a simple calculation using the ANOVA Table in Table 12. This

method divides the each Sum of Squares (SS) value in Table 12 by the total SS value,

thus providing a percent of variation explained by each factor and interaction. The results

of this are summarized in Table 14.

Table 13. Quantification of Effects for Throughput
 SE

Term Coef Coef T P
Constant 644430 * * *

SubBytes Des
Composite Field Inversion -74225.8 * * *
Extended Field Inversion 76138.7 * * *

MixColumns D
Arithmetic 61672.9 * * *
Half LUT 75128.9 * * *

Synthesis Go
Area -111006 * * *

SubBytes Des*MixColumns D
Composite Field Inversion Arithmetic -20954.7 * * *
Composite Field Inversion Half LUT -20821.3 * * *
Extended Field Inversion Arithmetic -225.778 * * *
Extended Field Inversion Half LUT 18430.2 * * *

SubBytes Des*Synthesis Go

Composite Field Inversion Area -2036.15 * * *
Extended Field Inversion Area 44904.3 * * *

MixColumns D*Synthesis Go
Arithmetic Area -33945.5 * * *
Half LUT Area -7536.59 * * *

SubBytes Des*MixColumns D*Synthesis Go
Composite Field Inversion Arithmetic Area 11723.3 * * *
Composite Field Inversion Half LUT Area -2184.30 * * *
Extended Field Inversion Arithmetic Area 8676.15 * * *
Extended Field Inversion Half LUT Area 3371.26 * * *

Table 14 shows that Synthesis Goal is responsible for 43.43% of the variance in

throughput data. This indicates that the factor that influences throughput the most is

Synthesis Goal. The next most important factor is MixColumns design, which is

responsible for 33.09% of throughput variation. Table 14 concludes that the interaction of

83

factors does not account for as much percentage of variance for throughput as the

individual factors themselves, for the highest interaction percentage is 4.53% (interaction

of SubBytes Design and Synthesis Goal) and the lowest individual factor percentage is

13.29% (SubBytes Design).

Table 14. Percentage of Variance Explained for Throughput

 Sum of Squares
% Variance
Explained

SubBytes Design 67861330654 13.29
MixColumns Design 1.68976E+11 33.09
Synthesis Goal 2.218E+11 43.43
SubBytes * MixColumns 8597865719 1.68
SubBytes * Synthesis Goal 23149318959 4.53
MixColumns * Synthesis Goal 17579150621 3.44
SubBytes * MixColumns * Synthesis Goal 2696989634 0.53

Total 5.10661E+11

 Table 15 ranks each factor and interaction in descending order of importance as

defined by percentage of variation explained.

Table 15. Order of Importance for Throughput’s Factors and Interactions
Importance Factor

1 Synthesis Goal
2 MixColumns Design
3 SubBytes Design
4 SubBytes * Synthesis Goal
5 MixColumns * Synthesis Goal
6 SubBytes * MixColumns
7 SubBytes * MixColumns * Synthesis Goal

4.4.2 ANOVA for Area Occupied

Doing a similar analysis on area occupied yields Table 16. The MINITAB output

for the balanced ANOVA for area occupied is reproduced in Table 25 in Appendix C and

the quantification of the main effects table is summarized in Table 26 in Appendix C.

84

Table 16 summarizes the percentages of variance explained by each factor and interaction

for area occupied.

Table 16. Percentage of Variance Explained for Area Occupied

 Sum of Squares
% Variance
Explained

SubBytes Design 13700255055 44.86
MixColumns Design 15902640562 52.07
Synthesis Goal 550544684 1.80
SubBytes * MixColumns 150371320 0.49
SubBytes * Synthesis Goal 37100094 0.12
MixColumns * Synthesis Goal 5430919 0.02
SubBytes * MixColumns * Synthesis Goal 196245452 0.64

Total 30542588085

 Table 16 shows that MixColumns Design is responsible for 52.07% of the

variance in total equivalent gate count. This indicates that the factor which influences

area occupied the most is MixColumns Design. The next most important factor is

SubBytes Design and is responsible for 44.86% of total equivalent gate count variation.

The full ordering of each factor and interaction is shown in Table 17. It is surprising that

MixColumns Design is responsible for more variation in area occupied than SubBytes

since alternative SubBytes designs eliminated the need for more memory than alternative

MixColumns Designs.

The full factorial SubBytes design requires 512 bytes of memory while the least

memory consuming SubBytes design requires 64 bits of memory, thus reducing the

original design’s memory usage by 508 bytes. The full factorial MixColumns requires

256 bytes of memory while the Arithmetic design requires no memory to execute, thus

saving a total of 256 bytes of memory. The reason MixColumns still accounts for more

variance in total equivalent gate count is because the combinational logic needed for

85

reducing the memory requirements of the baseline SubBytes design is much more

complicated than reducing the full factorial MixColumns design. This large requirement

for logic across all designs of SubBytes is why the variance in area for MixColumns due

to this factor is so small. Table 16 reveals that the interaction of factors accounts for little

variance in total equivalent gate count, for the highest interaction percentage is only 0.64

(interaction of SubBytes, MixColumns, and Synthesis Goal).

Table 17. Order of Importance for Area Occupied’s Factors and Interactions
Importance Factor

1 MixColumns Design
2 SubBytes Design
3 Synthesis Goal
4 SubBytes * MixColumns * Synthesis Goal
5 SubBytes * MixColumns
6 SubBytes * Synthesis Goal
7 MixColumns * Synthesis Goal

 4.4.3 ANOVA on Area Efficiency

Performing a similar analysis on area efficiency yields Table 18. The MINITAB

output for the Balanced ANOVA for area occupied is reproduced in Table 27 in

Appendix C and the quantification of the main effects table is summarized in Table 28 in

Appendix C. Table 18 summarizes the percentages of variance explained by each factor

and interaction for area efficiency.

The hypothesis that MixColumns will produce a large percentage of variation

explained due to the large magnitudes of MixColumns effects is confirmed by Table 18.

The percentage of variation explained by the factor MixColumns Design is 52.11% and is

larger than any other factor or interaction. This makes intuitive sense because

MixColumns Design is responsible for the most variation in area occupied and the second

86

most variation in throughput. Since area efficiency is related to both throughput and area

occupied, it would make sense that MixColumns should be responsible for a large

amount of variation in area efficiency.

Table 18. Percentage of Variance Explained for Area Efficiency

 Sum of Squares
% Variance
Explained

SubBytes Design 257.976 32.82
MixColumns Design 409.585 52.11
Sythesis Goal 20.278 2.58
SubBytes * MixColumns 81.639 10.39
SubBytes * Synthesis Goal 7.496 0.95
MixColumns * Synthesis Goal 6.39 0.81
SubBytes * MixColumns * Synthesis Goal 2.71 0.34

Total 786.074

 Table 18 shows the first instance of an interaction being more significant to

variation than an individual factor. The interaction of SubBytes Design and MixColumns

Design is responsible for 10.39% of variance in area efficiency which is much greater

than the percentage explained by the individual factor of Synthesis Goal (2.58%). This

can be attributed to the observations evident in Figures 34 and 35. That is, synthesizing

for area decreases average throughput while synthesizing for speed increases average

area. Since area efficiency relates both throughput and area occupied, these observations

offset each other and results in a small percentage of variance attributed to Synthesis

Goal. Therefore since individually, MixColumns Design and SubBytes Design share a

large percentage of variation explained and the interaction of these two factors should

have a large impact on variation for area efficiency as well. The ordering of importance

for each factor and interaction is shown in Table 19.

87

Table 19. Order of Importance for Area Efficiency’s Factors and Interactions
Importance Factor

1 MixColumns Design
2 SubBytes Design
3 SubBytes * MixColumns
4 Sythesis Goal
5 SubBytes * Synthesis Goal
6 MixColumns * Synthesis Goal
7 SubBytes * MixColumns * Synthesis Goal

4.5 Summary

This chapter shows that the baseline SubBytes and MixColumns designs (i.e., Full

LUT designs) always perform poorly in area efficiency and area occupied. The only

design to produce a lower performance than the baseline Full LUT design for any metric

is the SubBytes design Composite Field Inversion, which produced a lower throughput

than the baseline design. Composite Field Inversion has the highest area efficiency of the

three SubBytes design, thus justifying the reduction in throughput for more efficient area

usage. MixColumns Design and Synthesis Goal are responsible for the largest variance in

performance of the AES algorithm in terms of throughput, area efficiency, and area

occupied.

88

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter presents the conclusions drawn from the analysis of experimental

data. This chapter also highlights the significance of this work and its impact on current

research methods involving the implementation of AES on FPGAs, as well as provides

recommendations for future research in this area.

5.2 Significance of Research

The significance of this research is three-fold. This research establishes a method

of comparing AES FPGA implementations across FPGAs independent of chip family or

manufacturer by normalizing measures of area. This research also provides an in depth

analysis of design considerations for AES implementations on 8-bit processing platforms.

Finally, this research compares the performance of each AES transformation design

implementation as a part of the AES system as a whole, rather than as its own separate

entity.

The trend in current research for specific AES transformations (i.e., designs for

SubBytes, MixColumns, KeyExpansion, AddRoundKey, or ShiftRows) is to implement a

design independent of the AES algorithm and compare the result to some baseline

transformation. This method, essentially, takes an incremental step in a process and treats

the individual transformation as its own system. The problem with this approach is that it

ignores the impact the new design may have on the algorithm as a whole. This research

addresses this issue by assessing the impact of each new transformation as a part of the

89

overall AES system, which allows a more comprehensive perspective on how the new

transformation affects the algorithm as a whole.

The state of current research to minimize area occupied is summed up best by

Zambreno: “It is difficult to make direct comparisons between FPGA implementations of

any algorithm since the specific hardware target is often different” [ZCN04]. This

research addresses this concern by proposing a way to estimate the area occupied by an

implementation independent of manufacturer or chip family using a conversion factor

(cf., Chapter II (22)). Area occupied is measured in terms of total equivalent gate count

rather than CLBs or slices. Comparing gate count rather than CLB or slice count

eliminates the specific hardware target’s architecture from consideration because the

number of gates required to implement a design on any hardware platform is measured

using the same units, whereas the number of CLB or slices required to implement a

design is a function of the specific hardware target.

Research that has examined throughput, area, or efficiency of AES

implementations often does so with no consideration to the usefulness of the design in

practice, especially if they assume the availability of a 32-bit processor. Most

implementations of AES requiring a small area also have a correspondingly small

processing capability (e.g., smart card). This research realistically assumes an 8-bit

processing capability. The importance of this constraint is so significant that the

designers of AES incorporated into their specification of the algorithm a separate design

intended to perform well on an 8-bit platform. This research succeeds in its goal of

90

increasing the performance of this constrained AES design based on the metrics of

throughput, area occupied, and area efficiency.

5.3 Recommendations for Future Research

Future AES transformation designs are possible. Some examples include a

SubBytes design that uses no table look-ups, which can be accomplished by reducing the

64 bit LUT associated with Composite Field Inversion to combinational logic by

reducing the composite field GF(24)2 to the field GF((22)2)2 . Since this experiment

concentrated on design considerations at the algorithmic level, future research could also

carry out a similar performance analysis on designs targeting the hardware level using

optimization techniques such as loop unrolling, pipelining, and speculation.

The process of mapping GF(28) to the composite field GF(24)2 could be expanded

to research work being done in GF(216). Through further research, operations in GF(216)

could be reduced to the composite field GF(28)2, which could be reduced again to the

composite field GF((24)2)2.

5.4 Conclusions of Research

This research has two primary goals, the first of which is to improve the

performance of the baseline design of AES targeting an 8-bit platform based on the

chosen metrics. The second goal of this research is to quantify how each factor interacts

and affects the overall values of each metric and to identify which factors are responsible

for the largest variance in performance of the AES algorithm measured in throughput,

area efficiency, and area occupied.

91

92

The first goal is accomplished through the visual analysis of means plots shown in

Chapter IV (cf., Figures 28-36). These plots show that the baseline SubBytes and

MixColumns designs (i.e., Full LUT designs) are always the poorest performers in area

efficiency and area occupied. The only design to produce a lower performance than the

baseline Full LUT design for any metric is the SubBytes design Composite Field

Inversion, which produced a lower throughput than the baseline design. Figure 30 shows

Composite Field Inversion has the highest area efficiency of the three SubBytes design,

thus justifying the reduction in throughput for more efficient area usage. Thus, the first

goal of improving the performance of the baseline design of AES targeting an 8-bit

platform is achieved.

The second research goal is to determine how each factor interacts and affects the

overall values of each metric. This is accomplished through the identification of which

factors are responsible for the largest variance in performance of the AES algorithm

measured in throughput, area efficiency, and area occupied by quantifying the percentage

of variance attributed to each factor. Table 15 identifies the factor most responsible for

affecting throughput is Synthesis Goal. Tables 17 and 19 identify that the factor most

responsible for variance in both area efficiency and area occupied is MixColumns design.

This research also contributes a method of estimating area as a measure of total

equivalent gate count. This method allows a direct comparison to be made between two

FPGA implementations independent of manufacturer or chip family. Thus, this research

meets both research goals and answers both investigative questions posed through a

quantitative and qualitative analysis of the data collected through experimentation.

Appendix A: Data Tables

Table 20. Modular Inverses in the Rijndael Field [Odr01]

Table 21. S-Box Look-Up Table [Odr01]

93

Table 22. Inverse S-Box Look-Up Table [Odr01]

Table 23. Modular Inverses in GF(24)
X x-1

0 0
1 1
2 9
3 E
4 D
5 B
6 7
7 6
8 F
9 2
A C
B 5
C A
D 4
E 3
F 8

94

Table 24. Tabular Representation of xtime
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
1 02 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E
2 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E
3 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E
4 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E
5 A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE
6 C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DC DE
7 E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FC FE
8 1B 19 1F 1D 13 11 17 15 0B 09 0F 0D 03 01 07 05
9 3B 39 3F 3D 33 31 37 35 2B 29 2F 2D 23 21 27 25
A 5B 59 5F 5D 53 51 57 55 4B 49 4F 4D 43 41 47 45
B 7B 79 7F 7D 73 71 77 75 6B 69 6F 6D 63 61 67 65
C 9B 99 9F 9D 93 91 97 95 8B 89 8F 8D 83 81 87 85
D BB B9 BF BD B3 B1 B7 B5 AB A9 AF AD A3 A1 A7 A5
E DB D9 DF DD D3 D1 D7 D5 CB C9 CF CD C3 C1 C7 C5
F FB F9 FF FD F3 F1 F7 F5 EB E9 EF ED E3 E1 E7 E5

x

y

95

Appendix B: Complete VHDL Code for Each Design

SubBytes Full LUT

--Copyright (C) 2004 Hemanth Satyanarayana

--This function implements the S-Box LUT
function sbox_val(address: std_logic_vector(7 downto 0)) return
std_logic_vector is
variable data: bit_vector(7 downto 0);
variable data_stdlogic: std_logic_vector(7 downto 0);
begin
case address is

 when "00000000" => data := X"63";
 when "00000001" => data := X"7C";
 when "00000010" => data := X"77";
 when "00000011" => data := X"7B";
 when "00000100" => data := X"F2";
 when "00000101" => data := X"6B";
 when "00000110" => data := X"6F";
 when "00000111" => data := X"C5";
 when "00001000" => data := X"30";
 when "00001001" => data := X"01";
 when "00001010" => data := X"67";
 when "00001011" => data := X"2B";
 when "00001100" => data := X"FE";
 when "00001101" => data := X"D7";
 when "00001110" => data := X"AB";
 when "00001111" => data := X"76";
 when "00010000" => data := X"CA";
 when "00010001" => data := X"82";
 when "00010010" => data := X"C9";
 when "00010011" => data := X"7D";
 when "00010100" => data := X"FA";
 when "00010101" => data := X"59";
 when "00010110" => data := X"47";
 when "00010111" => data := X"F0";
 when "00011000" => data := X"AD";
 when "00011001" => data := X"D4";
 when "00011010" => data := X"A2";
 when "00011011" => data := X"AF";
 when "00011100" => data := X"9C";
 when "00011101" => data := X"A4";
 when "00011110" => data := X"72";
 when "00011111" => data := X"C0";
 when "00100000" => data := X"B7";
 when "00100001" => data := X"FD";
 when "00100010" => data := X"93";
 when "00100011" => data := X"26";
 when "00100100" => data := X"36";
 when "00100101" => data := X"3F";
 when "00100110" => data := X"F7";

96

 when "00100111" => data := X"CC";
 when "00101000" => data := X"34";
 when "00101001" => data := X"A5";
 when "00101010" => data := X"E5";
 when "00101011" => data := X"F1";
 when "00101100" => data := X"71";
 when "00101101" => data := X"D8";
 when "00101110" => data := X"31";
 when "00101111" => data := X"15";
 when "00110000" => data := X"04";
 when "00110001" => data := X"C7";
 when "00110010" => data := X"23";
 when "00110011" => data := X"C3";
 when "00110100" => data := X"18";
 when "00110101" => data := X"96";
 when "00110110" => data := X"05";
 when "00110111" => data := X"9A";
 when "00111000" => data := X"07";
 when "00111001" => data := X"12";
 when "00111010" => data := X"80";
 when "00111011" => data := X"E2";
 when "00111100" => data := X"EB";
 when "00111101" => data := X"27";
 when "00111110" => data := X"B2";
 when "00111111" => data := X"75";
 when "01000000" => data := X"09";
 when "01000001" => data := X"83";
 when "01000010" => data := X"2C";
 when "01000011" => data := X"1A";
 when "01000100" => data := X"1B";
 when "01000101" => data := X"6E";
 when "01000110" => data := X"5A";
 when "01000111" => data := X"A0";
 when "01001000" => data := X"52";
 when "01001001" => data := X"3B";
 when "01001010" => data := X"D6";
 when "01001011" => data := X"B3";
 when "01001100" => data := X"29";
 when "01001101" => data := X"E3";
 when "01001110" => data := X"2F";
 when "01001111" => data := X"84";
 when "01010000" => data := X"53";
 when "01010001" => data := X"D1";
 when "01010010" => data := X"00";
 when "01010011" => data := X"ED";
 when "01010100" => data := X"20";
 when "01010101" => data := X"FC";
 when "01010110" => data := X"B1";
 when "01010111" => data := X"5B";
 when "01011000" => data := X"6A";
 when "01011001" => data := X"CB";
 when "01011010" => data := X"BE";
 when "01011011" => data := X"39";
 when "01011100" => data := X"4A";
 when "01011101" => data := X"4C";

97

 when "01011110" => data := X"58";
 when "01011111" => data := X"CF";
 when "01100000" => data := X"D0";
 when "01100001" => data := X"EF";
 when "01100010" => data := X"AA";
 when "01100011" => data := X"FB";
 when "01100100" => data := X"43";
 when "01100101" => data := X"4D";
 when "01100110" => data := X"33";
 when "01100111" => data := X"85";
 when "01101000" => data := X"45";
 when "01101001" => data := X"F9";
 when "01101010" => data := X"02";
 when "01101011" => data := X"7F";
 when "01101100" => data := X"50";
 when "01101101" => data := X"3C";
 when "01101110" => data := X"9F";
 when "01101111" => data := X"A8";
 when "01110000" => data := X"51";
 when "01110001" => data := X"A3";
 when "01110010" => data := X"40";
 when "01110011" => data := X"8F";
 when "01110100" => data := X"92";
 when "01110101" => data := X"9D";
 when "01110110" => data := X"38";
 when "01110111" => data := X"F5";
 when "01111000" => data := X"BC";
 when "01111001" => data := X"B6";
 when "01111010" => data := X"DA";
 when "01111011" => data := X"21";
 when "01111100" => data := X"10";
 when "01111101" => data := X"FF";
 when "01111110" => data := X"F3";
 when "01111111" => data := X"D2";
 when "10000000" => data := X"CD";
 when "10000001" => data := X"0C";
 when "10000010" => data := X"13";
 when "10000011" => data := X"EC";
 when "10000100" => data := X"5F";
 when "10000101" => data := X"97";
 when "10000110" => data := X"44";
 when "10000111" => data := X"17";
 when "10001000" => data := X"C4";
 when "10001001" => data := X"A7";
 when "10001010" => data := X"7E";
 when "10001011" => data := X"3D";
 when "10001100" => data := X"64";
 when "10001101" => data := X"5D";
 when "10001110" => data := X"19";
 when "10001111" => data := X"73";
 when "10010000" => data := X"60";
 when "10010001" => data := X"81";
 when "10010010" => data := X"4F";
 when "10010011" => data := X"DC";
 when "10010100" => data := X"22";

98

 when "10010101" => data := X"2A";
 when "10010110" => data := X"90";
 when "10010111" => data := X"88";
 when "10011000" => data := X"46";
 when "10011001" => data := X"EE";
 when "10011010" => data := X"B8";
 when "10011011" => data := X"14";
 when "10011100" => data := X"DE";
 when "10011101" => data := X"5E";
 when "10011110" => data := X"0B";
 when "10011111" => data := X"DB";
 when "10100000" => data := X"E0";
 when "10100001" => data := X"32";
 when "10100010" => data := X"3A";
 when "10100011" => data := X"0A";
 when "10100100" => data := X"49";
 when "10100101" => data := X"06";
 when "10100110" => data := X"24";
 when "10100111" => data := X"5C";
 when "10101000" => data := X"C2";
 when "10101001" => data := X"D3";
 when "10101010" => data := X"AC";
 when "10101011" => data := X"62";
 when "10101100" => data := X"91";
 when "10101101" => data := X"95";
 when "10101110" => data := X"E4";
 when "10101111" => data := X"79";
 when "10110000" => data := X"E7";
 when "10110001" => data := X"C8";
 when "10110010" => data := X"37";
 when "10110011" => data := X"6D";
 when "10110100" => data := X"8D";
 when "10110101" => data := X"D5";
 when "10110110" => data := X"4E";
 when "10110111" => data := X"A9";
 when "10111000" => data := X"6C";
 when "10111001" => data := X"56";
 when "10111010" => data := X"F4";
 when "10111011" => data := X"EA";
 when "10111100" => data := X"65";
 when "10111101" => data := X"7A";
 when "10111110" => data := X"AE";
 when "10111111" => data := X"08";
 when "11000000" => data := X"BA";
 when "11000001" => data := X"78";
 when "11000010" => data := X"25";
 when "11000011" => data := X"2E";
 when "11000100" => data := X"1C";
 when "11000101" => data := X"A6";
 when "11000110" => data := X"B4";
 when "11000111" => data := X"C6";
 when "11001000" => data := X"E8";
 when "11001001" => data := X"DD";
 when "11001010" => data := X"74";
 when "11001011" => data := X"1F";

99

 when "11001100" => data := X"4B";
 when "11001101" => data := X"BD";
 when "11001110" => data := X"8B";
 when "11001111" => data := X"8A";
 when "11010000" => data := X"70";
 when "11010001" => data := X"3E";
 when "11010010" => data := X"B5";
 when "11010011" => data := X"66";
 when "11010100" => data := X"48";
 when "11010101" => data := X"03";
 when "11010110" => data := X"F6";
 when "11010111" => data := X"0E";
 when "11011000" => data := X"61";
 when "11011001" => data := X"35";
 when "11011010" => data := X"57";
 when "11011011" => data := X"B9";
 when "11011100" => data := X"86";
 when "11011101" => data := X"C1";
 when "11011110" => data := X"1D";
 when "11011111" => data := X"9E";
 when "11100000" => data := X"E1";
 when "11100001" => data := X"F8";
 when "11100010" => data := X"98";
 when "11100011" => data := X"11";
 when "11100100" => data := X"69";
 when "11100101" => data := X"D9";
 when "11100110" => data := X"8E";
 when "11100111" => data := X"94";
 when "11101000" => data := X"9B";
 when "11101001" => data := X"1E";
 when "11101010" => data := X"87";
 when "11101011" => data := X"E9";
 when "11101100" => data := X"CE";
 when "11101101" => data := X"55";
 when "11101110" => data := X"28";
 when "11101111" => data := X"DF";
 when "11110000" => data := X"8C";
 when "11110001" => data := X"A1";
 when "11110010" => data := X"89";
 when "11110011" => data := X"0D";
 when "11110100" => data := X"BF";
 when "11110101" => data := X"E6";
 when "11110110" => data := X"42";
 when "11110111" => data := X"68";
 when "11111000" => data := X"41";
 when "11111001" => data := X"99";
 when "11111010" => data := X"2D";
 when "11111011" => data := X"0F";
 when "11111100" => data := X"B0";
 when "11111101" => data := X"54";
 when "11111110" => data := X"BB";
 when "11111111" => data := X"16";
 when others => null;
end case;
data_stdlogic := to_StdLogicVector(data);

100

return data_stdlogic;
end function sbox_val;

--This function implements the inverse S-Box LUT
function inv_sbox_val(address: std_logic_vector(7 downto 0)) return
std_logic_vector is
variable inv_data: bit_vector(7 downto 0);
variable inv_data_stdlogic: std_logic_vector(7 downto 0);
begin
case address is

 when "00000000" => inv_data := X"52";
 when "00000001" => inv_data := X"09";
 when "00000010" => inv_data := X"6a";
 when "00000011" => inv_data := X"d5";
 when "00000100" => inv_data := X"30";
 when "00000101" => inv_data := X"36";
 when "00000110" => inv_data := X"a5";
 when "00000111" => inv_data := X"38";
 when "00001000" => inv_data := X"bf";
 when "00001001" => inv_data := X"40";
 when "00001010" => inv_data := X"a3";
 when "00001011" => inv_data := X"9e";
 when "00001100" => inv_data := X"81";
 when "00001101" => inv_data := X"f3";
 when "00001110" => inv_data := X"d7";
 when "00001111" => inv_data := X"fb";
 when "00010000" => inv_data := X"7c";
 when "00010001" => inv_data := X"e3";
 when "00010010" => inv_data := X"39";
 when "00010011" => inv_data := X"82";
 when "00010100" => inv_data := X"9b";
 when "00010101" => inv_data := X"2f";
 when "00010110" => inv_data := X"ff";
 when "00010111" => inv_data := X"87";
 when "00011000" => inv_data := X"34";
 when "00011001" => inv_data := X"8e";
 when "00011010" => inv_data := X"43";
 when "00011011" => inv_data := X"44";
 when "00011100" => inv_data := X"c4";
 when "00011101" => inv_data := X"de";
 when "00011110" => inv_data := X"e9";
 when "00011111" => inv_data := X"cb";
 when "00100000" => inv_data := X"54";
 when "00100001" => inv_data := X"7b";
 when "00100010" => inv_data := X"94";
 when "00100011" => inv_data := X"32";
 when "00100100" => inv_data := X"a6";
 when "00100101" => inv_data := X"c2";
 when "00100110" => inv_data := X"23";
 when "00100111" => inv_data := X"3d";
 when "00101000" => inv_data := X"ee";
 when "00101001" => inv_data := X"4c";
 when "00101010" => inv_data := X"95";
 when "00101011" => inv_data := X"0b";

101

 when "00101100" => inv_data := X"42";
 when "00101101" => inv_data := X"fa";
 when "00101110" => inv_data := X"c3";
 when "00101111" => inv_data := X"4e";
 when "00110000" => inv_data := X"08";
 when "00110001" => inv_data := X"2e";
 when "00110010" => inv_data := X"a1";
 when "00110011" => inv_data := X"66";
 when "00110100" => inv_data := X"28";
 when "00110101" => inv_data := X"d9";
 when "00110110" => inv_data := X"24";
 when "00110111" => inv_data := X"b2";
 when "00111000" => inv_data := X"76";
 when "00111001" => inv_data := X"5b";
 when "00111010" => inv_data := X"a2";
 when "00111011" => inv_data := X"49";
 when "00111100" => inv_data := X"6d";
 when "00111101" => inv_data := X"8b";
 when "00111110" => inv_data := X"d1";
 when "00111111" => inv_data := X"25";
 when "01000000" => inv_data := X"72";
 when "01000001" => inv_data := X"f8";
 when "01000010" => inv_data := X"f6";
 when "01000011" => inv_data := X"64";
 when "01000100" => inv_data := X"86";
 when "01000101" => inv_data := X"68";
 when "01000110" => inv_data := X"98";
 when "01000111" => inv_data := X"16";
 when "01001000" => inv_data := X"d4";
 when "01001001" => inv_data := X"a4";
 when "01001010" => inv_data := X"5c";
 when "01001011" => inv_data := X"cc";
 when "01001100" => inv_data := X"5d";
 when "01001101" => inv_data := X"65";
 when "01001110" => inv_data := X"b6";
 when "01001111" => inv_data := X"92";
 when "01010000" => inv_data := X"6c";
 when "01010001" => inv_data := X"70";
 when "01010010" => inv_data := X"48";
 when "01010011" => inv_data := X"50";
 when "01010100" => inv_data := X"fd";
 when "01010101" => inv_data := X"ed";
 when "01010110" => inv_data := X"b9";
 when "01010111" => inv_data := X"da";
 when "01011000" => inv_data := X"5e";
 when "01011001" => inv_data := X"15";
 when "01011010" => inv_data := X"46";
 when "01011011" => inv_data := X"57";
 when "01011100" => inv_data := X"a7";
 when "01011101" => inv_data := X"8d";
 when "01011110" => inv_data := X"9d";
 when "01011111" => inv_data := X"84";
 when "01100000" => inv_data := X"90";
 when "01100001" => inv_data := X"d8";
 when "01100010" => inv_data := X"ab";

102

 when "01100011" => inv_data := X"00";
 when "01100100" => inv_data := X"8c";
 when "01100101" => inv_data := X"bc";
 when "01100110" => inv_data := X"d3";
 when "01100111" => inv_data := X"0a";
 when "01101000" => inv_data := X"f7";
 when "01101001" => inv_data := X"e4";
 when "01101010" => inv_data := X"58";
 when "01101011" => inv_data := X"05";
 when "01101100" => inv_data := X"b8";
 when "01101101" => inv_data := X"b3";
 when "01101110" => inv_data := X"45";
 when "01101111" => inv_data := X"06";
 when "01110000" => inv_data := X"d0";
 when "01110001" => inv_data := X"2c";
 when "01110010" => inv_data := X"1e";
 when "01110011" => inv_data := X"8f";
 when "01110100" => inv_data := X"ca";
 when "01110101" => inv_data := X"3f";
 when "01110110" => inv_data := X"0f";
 when "01110111" => inv_data := X"02";
 when "01111000" => inv_data := X"c1";
 when "01111001" => inv_data := X"af";
 when "01111010" => inv_data := X"bd";
 when "01111011" => inv_data := X"03";
 when "01111100" => inv_data := X"01";
 when "01111101" => inv_data := X"13";
 when "01111110" => inv_data := X"8a";
 when "01111111" => inv_data := X"6b";
 when "10000000" => inv_data := X"3a";
 when "10000001" => inv_data := X"91";
 when "10000010" => inv_data := X"11";
 when "10000011" => inv_data := X"41";
 when "10000100" => inv_data := X"4f";
 when "10000101" => inv_data := X"67";
 when "10000110" => inv_data := X"dc";
 when "10000111" => inv_data := X"ea";
 when "10001000" => inv_data := X"97";
 when "10001001" => inv_data := X"f2";
 when "10001010" => inv_data := X"cf";
 when "10001011" => inv_data := X"ce";
 when "10001100" => inv_data := X"f0";
 when "10001101" => inv_data := X"b4";
 when "10001110" => inv_data := X"e6";
 when "10001111" => inv_data := X"73";
 when "10010000" => inv_data := X"96";
 when "10010001" => inv_data := X"ac";
 when "10010010" => inv_data := X"74";
 when "10010011" => inv_data := X"22";
 when "10010100" => inv_data := X"e7";
 when "10010101" => inv_data := X"ad";
 when "10010110" => inv_data := X"35";
 when "10010111" => inv_data := X"85";
 when "10011000" => inv_data := X"e2";
 when "10011001" => inv_data := X"f9";

103

 when "10011010" => inv_data := X"37";
 when "10011011" => inv_data := X"e8";
 when "10011100" => inv_data := X"1c";
 when "10011101" => inv_data := X"75";
 when "10011110" => inv_data := X"df";
 when "10011111" => inv_data := X"6e";
 when "10100000" => inv_data := X"47";
 when "10100001" => inv_data := X"f1";
 when "10100010" => inv_data := X"1a";
 when "10100011" => inv_data := X"71";
 when "10100100" => inv_data := X"1d";
 when "10100101" => inv_data := X"29";
 when "10100110" => inv_data := X"c5";
 when "10100111" => inv_data := X"89";
 when "10101000" => inv_data := X"6f";
 when "10101001" => inv_data := X"b7";
 when "10101010" => inv_data := X"62";
 when "10101011" => inv_data := X"0e";
 when "10101100" => inv_data := X"aa";
 when "10101101" => inv_data := X"18";
 when "10101110" => inv_data := X"be";
 when "10101111" => inv_data := X"1b";
 when "10110000" => inv_data := X"fc";
 when "10110001" => inv_data := X"56";
 when "10110010" => inv_data := X"3e";
 when "10110011" => inv_data := X"4b";
 when "10110100" => inv_data := X"c6";
 when "10110101" => inv_data := X"d2";
 when "10110110" => inv_data := X"79";
 when "10110111" => inv_data := X"20";
 when "10111000" => inv_data := X"9a";
 when "10111001" => inv_data := X"db";
 when "10111010" => inv_data := X"c0";
 when "10111011" => inv_data := X"fe";
 when "10111100" => inv_data := X"78";
 when "10111101" => inv_data := X"cd";
 when "10111110" => inv_data := X"5a";
 when "10111111" => inv_data := X"f4";
 when "11000000" => inv_data := X"1f";
 when "11000001" => inv_data := X"dd";
 when "11000010" => inv_data := X"a8";
 when "11000011" => inv_data := X"33";
 when "11000100" => inv_data := X"88";
 when "11000101" => inv_data := X"07";
 when "11000110" => inv_data := X"c7";
 when "11000111" => inv_data := X"31";
 when "11001000" => inv_data := X"b1";
 when "11001001" => inv_data := X"12";
 when "11001010" => inv_data := X"10";
 when "11001011" => inv_data := X"59";
 when "11001100" => inv_data := X"27";
 when "11001101" => inv_data := X"80";
 when "11001110" => inv_data := X"ec";
 when "11001111" => inv_data := X"5f";
 when "11010000" => inv_data := X"60";

104

 when "11010001" => inv_data := X"51";
 when "11010010" => inv_data := X"7f";
 when "11010011" => inv_data := X"a9";
 when "11010100" => inv_data := X"19";
 when "11010101" => inv_data := X"b5";
 when "11010110" => inv_data := X"4a";
 when "11010111" => inv_data := X"0d";
 when "11011000" => inv_data := X"2d";
 when "11011001" => inv_data := X"e5";
 when "11011010" => inv_data := X"7a";
 when "11011011" => inv_data := X"9f";
 when "11011100" => inv_data := X"93";
 when "11011101" => inv_data := X"c9";
 when "11011110" => inv_data := X"9c";
 when "11011111" => inv_data := X"ef";
 when "11100000" => inv_data := X"a0";
 when "11100001" => inv_data := X"e0";
 when "11100010" => inv_data := X"3b";
 when "11100011" => inv_data := X"4d";
 when "11100100" => inv_data := X"ae";
 when "11100101" => inv_data := X"2a";
 when "11100110" => inv_data := X"f5";
 when "11100111" => inv_data := X"b0";
 when "11101000" => inv_data := X"c8";
 when "11101001" => inv_data := X"eb";
 when "11101010" => inv_data := X"bb";
 when "11101011" => inv_data := X"3c";
 when "11101100" => inv_data := X"83";
 when "11101101" => inv_data := X"53";
 when "11101110" => inv_data := X"99";
 when "11101111" => inv_data := X"61";
 when "11110000" => inv_data := X"17";
 when "11110001" => inv_data := X"2b";
 when "11110010" => inv_data := X"04";
 when "11110011" => inv_data := X"7e";
 when "11110100" => inv_data := X"ba";
 when "11110101" => inv_data := X"77";
 when "11110110" => inv_data := X"d6";
 when "11110111" => inv_data := X"26";
 when "11111000" => inv_data := X"e1";
 when "11111001" => inv_data := X"69";
 when "11111010" => inv_data := X"14";
 when "11111011" => inv_data := X"63";
 when "11111100" => inv_data := X"55";
 when "11111101" => inv_data := X"21";
 when "11111110" => inv_data := X"0c";
 when "11111111" => inv_data := X"7d";
 when others => null;
end case;
inv_data_stdlogic := to_StdLogicVector(inv_data);
return inv_data_stdlogic;
end function inv_sbox_val;

105

SubBytes Extended Field Inversion

function sbox_val(inp: std_logic_vector(7 downto 0); mode: std_logic)
return std_logic_vector is
variable address: std_logic_vector(7 downto 0);
variable data: bit_vector(7 downto 0);
variable data_stdlogic: std_logic_vector(7 downto 0);
variable outdata: std_logic_vector(7 downto 0);
begin

--Performs affine transform first if in Decrypt mode
if mode='0' then
 address(7) := inp(6) xor inp(4) xor inp(1) xor '0';
 address(6) := inp(5) xor inp(3) xor inp(0) xor '0';
 address(5) := inp(7) xor inp(4) xor inp(2) xor '0';
 address(4) := inp(6) xor inp(3) xor inp(1) xor '0';
 address(3) := inp(5) xor inp(2) xor inp(0) xor '0';
 address(2) := inp(7) xor inp(4) xor inp(1) xor '1';
 address(1) := inp(6) xor inp(3) xor inp(0) xor '0';
 address(0) := inp(7) xor inp(5) xor inp(2) xor '1';
else
 address := inp;
end if;

--Modular inversion in the extended field LUT
case address is

 when "00000000" => data := "00000000";
 when "00000001" => data := "00000001";
 when "00000010" => data := "10001101";
 when "00000011" => data := "11110110";
 when "00000100" => data := "11001011";
 when "00000101" => data := "01010010";
 when "00000110" => data := "01111011";
 when "00000111" => data := "11010001";
 when "00001000" => data := "11101000";
 when "00001001" => data := "01001111";
 when "00001010" => data := "00101001";
 when "00001011" => data := "11000000";
 when "00001100" => data := "10110000";
 when "00001101" => data := "11100001";
 when "00001110" => data := "11100101";
 when "00001111" => data := "11000111";
 when "00010000" => data := "01110100";
 when "00010001" => data := "10110100";
 when "00010010" => data := "10101010";
 when "00010011" => data := "01001011";
 when "00010100" => data := "10011001";
 when "00010101" => data := "00101011";
 when "00010110" => data := "01100000";
 when "00010111" => data := "01011111";
 when "00011000" => data := "01011000";
 when "00011001" => data := "00111111";
 when "00011010" => data := "11111101";
 when "00011011" => data := "11001100";

106

 when "00011100" => data := "11111111";
 when "00011101" => data := "01000000";
 when "00011110" => data := "11101110";
 when "00011111" => data := "10110010";
 when "00100000" => data := "00111010";
 when "00100001" => data := "01101110";
 when "00100010" => data := "01011010";
 when "00100011" => data := "11110001";
 when "00100100" => data := "01010101";
 when "00100101" => data := "01001101";
 when "00100110" => data := "10101000";
 when "00100111" => data := "11001001";
 when "00101000" => data := "11000001";
 when "00101001" => data := "00001010";
 when "00101010" => data := "10011000";
 when "00101011" => data := "00010101";
 when "00101100" => data := "00110000";
 when "00101101" => data := "01000100";
 when "00101110" => data := "10100010";
 when "00101111" => data := "11000010";
 when "00110000" => data := "00101100";
 when "00110001" => data := "01000101";
 when "00110010" => data := "10010010";
 when "00110011" => data := "01101100";
 when "00110100" => data := "11110011";
 when "00110101" => data := "00111001";
 when "00110110" => data := "01100110";
 when "00110111" => data := "01000010";
 when "00111000" => data := "11110010";
 when "00111001" => data := "00110101";
 when "00111010" => data := "00100000";
 when "00111011" => data := "01101111";
 when "00111100" => data := "01110111";
 when "00111101" => data := "10111011";
 when "00111110" => data := "01011001";
 when "00111111" => data := "00011001";
 when "01000000" => data := "00011101";
 when "01000001" => data := "11111110";
 when "01000010" => data := "00110111";
 when "01000011" => data := "01100111";
 when "01000100" => data := "00101101";
 when "01000101" => data := "00110001";
 when "01000110" => data := "11110101";
 when "01000111" => data := "01101001";
 when "01001000" => data := "10100111";
 when "01001001" => data := "01100100";
 when "01001010" => data := "10101011";
 when "01001011" => data := "00010011";
 when "01001100" => data := "01010100";
 when "01001101" => data := "00100101";
 when "01001110" => data := "11101001";
 when "01001111" => data := "00001001";
 when "01010000" => data := "11101101";
 when "01010001" => data := "01011100";
 when "01010010" => data := "00000101";

107

 when "01010011" => data := "11001010";
 when "01010100" => data := "01001100";
 when "01010101" => data := "00100100";
 when "01010110" => data := "10000111";
 when "01010111" => data := "10111111";
 when "01011000" => data := "00011000";
 when "01011001" => data := "00111110";
 when "01011010" => data := "00100010";
 when "01011011" => data := "11110000";
 when "01011100" => data := "01010001";
 when "01011101" => data := "11101100";
 when "01011110" => data := "01100001";
 when "01011111" => data := "00010111";
 when "01100000" => data := "00010110";
 when "01100001" => data := "01011110";
 when "01100010" => data := "10101111";
 when "01100011" => data := "11010011";
 when "01100100" => data := "01001001";
 when "01100101" => data := "10100110";
 when "01100110" => data := "00110110";
 when "01100111" => data := "01000011";
 when "01101000" => data := "11110100";
 when "01101001" => data := "01000111";
 when "01101010" => data := "10010001";
 when "01101011" => data := "11011111";
 when "01101100" => data := "00110011";
 when "01101101" => data := "10010011";
 when "01101110" => data := "00100001";
 when "01101111" => data := "00111011";
 when "01110000" => data := "01111001";
 when "01110001" => data := "10110111";
 when "01110010" => data := "10010111";
 when "01110011" => data := "10000101";
 when "01110100" => data := "00010000";
 when "01110101" => data := "10110101";
 when "01110110" => data := "10111010";
 when "01110111" => data := "00111100";
 when "01111000" => data := "10110110";
 when "01111001" => data := "01110000";
 when "01111010" => data := "11010000";
 when "01111011" => data := "00000110";
 when "01111100" => data := "10100001";
 when "01111101" => data := "11111010";
 when "01111110" => data := "10000001";
 when "01111111" => data := "10000010";
 when "10000000" => data := "10000011";
 when "10000001" => data := "01111110";
 when "10000010" => data := "01111111";
 when "10000011" => data := "10000000";
 when "10000100" => data := "10010110";
 when "10000101" => data := "01110011";
 when "10000110" => data := "10111110";
 when "10000111" => data := "01010110";
 when "10001000" => data := "10011011";
 when "10001001" => data := "10011110";

108

 when "10001010" => data := "10010101";
 when "10001011" => data := "11011001";
 when "10001100" => data := "11110111";
 when "10001101" => data := "00000010";
 when "10001110" => data := "10111001";
 when "10001111" => data := "10100100";
 when "10010000" => data := "11011110";
 when "10010001" => data := "01101010";
 when "10010010" => data := "00110010";
 when "10010011" => data := "01101101";
 when "10010100" => data := "11011000";
 when "10010101" => data := "10001010";
 when "10010110" => data := "10000100";
 when "10010111" => data := "01110010";
 when "10011000" => data := "00101010";
 when "10011001" => data := "00010100";
 when "10011010" => data := "10011111";
 when "10011011" => data := "10001000";
 when "10011100" => data := "11111001";
 when "10011101" => data := "11011100";
 when "10011110" => data := "10001001";
 when "10011111" => data := "10011010";
 when "10100000" => data := "11111011";
 when "10100001" => data := "01111100";
 when "10100010" => data := "00101110";
 when "10100011" => data := "11000011";
 when "10100100" => data := "10001111";
 when "10100101" => data := "10111000";
 when "10100110" => data := "01100101";
 when "10100111" => data := "01001000";
 when "10101000" => data := "00100110";
 when "10101001" => data := "11001000";
 when "10101010" => data := "00010010";
 when "10101011" => data := "01001010";
 when "10101100" => data := "11001110";
 when "10101101" => data := "11100111";
 when "10101110" => data := "11010010";
 when "10101111" => data := "01100010";
 when "10110000" => data := "00001100";
 when "10110001" => data := "11100000";
 when "10110010" => data := "00011111";
 when "10110011" => data := "11101111";
 when "10110100" => data := "00010001";
 when "10110101" => data := "01110101";
 when "10110110" => data := "01111000";
 when "10110111" => data := "01110001";
 when "10111000" => data := "10100101";
 when "10111001" => data := "10001110";
 when "10111010" => data := "01110110";
 when "10111011" => data := "00111101";
 when "10111100" => data := "10111101";
 when "10111101" => data := "10111100";
 when "10111110" => data := "10000110";
 when "10111111" => data := "01010111";
 when "11000000" => data := "00001011";

109

 when "11000001" => data := "00101000";
 when "11000010" => data := "00101111";
 when "11000011" => data := "10100011";
 when "11000100" => data := "11011010";
 when "11000101" => data := "11010100";
 when "11000110" => data := "11100100";
 when "11000111" => data := "00001111";
 when "11001000" => data := "10101001";
 when "11001001" => data := "00100111";
 when "11001010" => data := "01010011";
 when "11001011" => data := "00000100";
 when "11001100" => data := "00011011";
 when "11001101" => data := "11111100";
 when "11001110" => data := "10101100";
 when "11001111" => data := "11100110";
 when "11010000" => data := "01111010";
 when "11010001" => data := "00000111";
 when "11010010" => data := "10101110";
 when "11010011" => data := "01100011";
 when "11010100" => data := "11000101";
 when "11010101" => data := "11011011";
 when "11010110" => data := "11100010";
 when "11010111" => data := "11101010";
 when "11011000" => data := "10010100";
 when "11011001" => data := "10001011";
 when "11011010" => data := "11000100";
 when "11011011" => data := "11010101";
 when "11011100" => data := "10011101";
 when "11011101" => data := "11111000";
 when "11011110" => data := "10010000";
 when "11011111" => data := "01101011";
 when "11100000" => data := "10110001";
 when "11100001" => data := "00001101";
 when "11100010" => data := "11010110";
 when "11100011" => data := "11101011";
 when "11100100" => data := "11000110";
 when "11100101" => data := "00001110";
 when "11100110" => data := "11001111";
 when "11100111" => data := "10101101";
 when "11101000" => data := "00001000";
 when "11101001" => data := "01001110";
 when "11101010" => data := "11010111";
 when "11101011" => data := "11100011";
 when "11101100" => data := "01011101";
 when "11101101" => data := "01010000";
 when "11101110" => data := "00011110";
 when "11101111" => data := "10110011";
 when "11110000" => data := "01011011";
 when "11110001" => data := "00100011";
 when "11110010" => data := "00111000";
 when "11110011" => data := "00110100";
 when "11110100" => data := "01101000";
 when "11110101" => data := "01000110";
 when "11110110" => data := "00000011";
 when "11110111" => data := "10001100";

110

 when "11111000" => data := "11011101";
 when "11111001" => data := "10011100";
 when "11111010" => data := "01111101";
 when "11111011" => data := "10100000";
 when "11111100" => data := "11001101";
 when "11111101" => data := "00011010";
 when "11111110" => data := "01000001";
 when "11111111" => data := "00011100";
 when others => null;
end case;
data_stdlogic := to_StdLogicVector(data);

--Performs the affine transform after inversion if in Encrypt mode
if mode='1' then
 outdata(7) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(4) xor data_stdlogic(3) xor '0';
 outdata(6) := data_stdlogic(6) xor data_stdlogic(5) xor
data_stdlogic(4) xor data_stdlogic(3) xor data_stdlogic(2) xor '1';
 outdata(5) := data_stdlogic(5) xor data_stdlogic(4) xor
data_stdlogic(3) xor data_stdlogic(2) xor data_stdlogic(1) xor '1';
 outdata(4) := data_stdlogic(4) xor data_stdlogic(3) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(3) := data_stdlogic(7) xor data_stdlogic(3) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(2) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(1) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(1) xor data_stdlogic(0) xor '1';
 outdata(0) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(4) xor data_stdlogic(0) xor '1';
else
 outdata := data_stdlogic;
end if;
return outdata;
end function sbox_val;

111

SubBytes Composite Field Inversion

--Function performs multiplication in the subfield
function mult(
 inmult1: std_logic_vector(3 downto 0);
 inmult2: std_logic_vector(3 downto 0)
)
return std_logic_vector is

variable outmult: std_logic_vector(3 downto 0);
variable a: std_logic;
variable b: std_logic;
variable c: std_logic;
begin

a := inmult1(3) xor inmult1(0);
b := inmult1(1) xor inmult1(0);
c := inmult1(2) xor inmult1(1);

outmult(3) := (inmult2(3) and inmult1(3)) xor (inmult2(2) and
inmult1(0)) xor (inmult2(1) and inmult1(1)) xor (inmult2(0) and
inmult1(2));
outmult(2) := (inmult2(3) and inmult1(2)) xor (inmult2(2) and a) xor
(inmult2(1) and b) xor (inmult2(0) and c);
outmult(1) := (inmult2(3) and inmult1(1)) xor (inmult2(2) and
inmult1(2)) xor (inmult2(1) and a) xor (inmult2(0) and b);
outmult(0) := (inmult2(3) and inmult1(0)) xor (inmult2(2) and
inmult1(1)) xor (inmult2(1) and inmult1(2)) xor (inmult2(0) and a);

return outmult;
end function mult;

--Function squares in the subfield
function squarer(in_sq: std_logic_vector(3 downto 0)) return
std_logic_vector is
variable out_sq: std_logic_vector(3 downto 0);
begin

out_sq(3) := in_sq(3) xor in_sq(1);
out_sq(2) := in_sq(1);
out_sq(1) := in_sq(2) xor in_sq(0);
out_sq(0) := in_sq(0);

return out_sq;
end function squarer;

--Function inverts polynomials in the subfield
function inv_val(input: std_logic_vector(7 downto 0)) return
std_logic_vector is
variable z1: std_logic_vector(3 downto 0);
variable input2: std_logic_vector(7 downto 0);
variable z0: std_logic_vector(3 downto 0);
variable z1_squared: std_logic_vector(3 downto 0);
variable z0_squared: std_logic_vector(3 downto 0);

112

variable z1z0: std_logic_vector(3 downto 0);
variable bz1 : std_logic_vector(3 downto 0);
variable F: std_logic_vector(3 downto 0);
variable Finv: bit_vector(3 downto 0);
variable Finv_stdlogic: std_logic_vector(3 downto 0);
variable D1: std_logic_vector(3 downto 0);
variable D0: std_logic_vector(3 downto 0);
variable z1xorz0: std_logic_vector(3 downto 0);
variable final : std_logic_vector(7 downto 0);

constant b14: std_logic_vector := "1001";

begin

--Converts to “big endian” notation
input2(7) := input(0);
input2(6) := input(1);
input2(5) := input(2);
input2(4) := input(3);
input2(3) := input(4);
input2(2) := input(5);
input2(1) := input(6);
input2(0) := input(7);

--Computes Z values
z1(3) := input2(6) xor input2(2) xor input2(0);
z1(2) := input2(5) xor input2(4);
z1(1) := input2(6) xor input2(3) xor input2(1) xor input2(0);
z1(0) := input2(2) xor input2(0);
z0(3) := input2(7) xor input2(4) xor input2(3) xor input2(1) xor
input2(0);
z0(2) := input2(5) xor input2(1);
z0(1) := input2(6) xor input2(5) xor input2(2) xor input2(0);
z0(0) := input2(6) xor input2(5) xor input2(3) xor input2(2) xor
input2(0);

z1_squared := squarer(z1);
z0_squared := squarer(z0);
z1z0 := mult(z1,z0);
bz1 := mult(b14,z1_squared);

F(3) := z0_squared(3) xor z1z0(3) xor bz1(3);
F(2) := z0_squared(2) xor z1z0(2) xor bz1(2);
F(1) := z0_squared(1) xor z1z0(1) xor bz1(1);
F(0) := z0_squared(0) xor z1z0(0) xor bz1(0);

--Composite field inversion LUT
case F is

 when "0000" => Finv := "0000";
 when "0001" => Finv := "1111";
 when "0010" => Finv := "1011";
 when "0011" => Finv := "0101";
 when "0100" => Finv := "1001";
 when "0101" => Finv := "0011";

113

 when "0110" => Finv := "1110";
 when "0111" => Finv := "1100";
 when "1000" => Finv := "1000";
 when "1001" => Finv := "0100";
 when "1010" => Finv := "1101";
 when "1011" => Finv := "0010";
 when "1100" => Finv := "0111";
 when "1101" => Finv := "1010";
 when "1110" => Finv := "0110";
 when "1111" => Finv := "0001";
 when others => null;
end case;
Finv_stdlogic := to_StdLogicVector(Finv);

D1 := mult(z1, Finv_stdlogic);

z1xorz0(3) := z1(3) xor z0(3);
z1xorz0(2) := z1(2) xor z0(2);
z1xorz0(1) := z1(1) xor z0(1);
z1xorz0(0) := z1(0) xor z0(0);

D0 := mult(z1xorz0, Finv_stdlogic);

--[D1(3) D1(2) D1(1) D1(0) D0(3) D0(2) D0(1) D0(0)

final(0) := D1(2) xor D1(1) xor D1(0) xor D0(3) xor D0(1);
final(1) := D1(3) xor D1(0);
final(2) := D1(3) xor D0(1);
final(3) := D1(3) xor D1(2) xor D0(1);
final(4) := D0(1) xor D0(0);
final(5) := D1(1) xor D0(2) xor D0(0);
final(6) := D1(3) xor D0(2) xor D0(1);
final(7) := D1(1) xor D1(0) xor D0(2) xor D0(0);

return final;
end function inv_val;

--Function performs affine transforms depending on Encrypt/Decrypt mode
function sbox_val(inp: std_logic_vector(7 downto 0); mode: std_logic)
return std_logic_vector is
variable address: std_logic_vector(7 downto 0);
variable data_stdlogic: std_logic_vector(7 downto 0);
variable outdata: std_logic_vector(7 downto 0);
begin

if mode='0' then
 address(7) := inp(6) xor inp(4) xor inp(1) xor '0';
 address(6) := inp(5) xor inp(3) xor inp(0) xor '0';
 address(5) := inp(7) xor inp(4) xor inp(2) xor '0';
 address(4) := inp(6) xor inp(3) xor inp(1) xor '0';
 address(3) := inp(5) xor inp(2) xor inp(0) xor '0';
 address(2) := inp(7) xor inp(4) xor inp(1) xor '1';
 address(1) := inp(6) xor inp(3) xor inp(0) xor '0';
 address(0) := inp(7) xor inp(5) xor inp(2) xor '1';
else

114

 address := inp;
end if;

data_stdlogic := inv_val(address);

if mode='1' then
 outdata(7) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(4) xor data_stdlogic(3) xor '0';
 outdata(6) := data_stdlogic(6) xor data_stdlogic(5) xor
data_stdlogic(4) xor data_stdlogic(3) xor data_stdlogic(2) xor '1';
 outdata(5) := data_stdlogic(5) xor data_stdlogic(4) xor
data_stdlogic(3) xor data_stdlogic(2) xor data_stdlogic(1) xor '1';
 outdata(4) := data_stdlogic(4) xor data_stdlogic(3) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(3) := data_stdlogic(7) xor data_stdlogic(3) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(2) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(2) xor data_stdlogic(1) xor data_stdlogic(0) xor '0';
 outdata(1) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(1) xor data_stdlogic(0) xor '1';
 outdata(0) := data_stdlogic(7) xor data_stdlogic(6) xor
data_stdlogic(5) xor data_stdlogic(4) xor data_stdlogic(0) xor '1';
else
 outdata := data_stdlogic;
end if;
return outdata;
end function sbox_val;

115

MixColumns Full LUT

--xtime LUT
function xtimes(inp: std_logic_vector(7 downto 0)) return
std_logic_vector is
variable table: bit_vector(7 downto 0);
variable table_stdlogic: std_logic_vector(7 downto 0);
begin
case inp is

 when X"00" => table := X"00";
 when X"01" => table := X"02";
 when X"02" => table := X"04";
 when X"03" => table := X"06";
 when X"04" => table := X"08";
 when X"05" => table := X"0a";
 when X"06" => table := X"0c";
 when X"07" => table := X"0e";
 when X"08" => table := X"10";
 when X"09" => table := X"12";
 when X"0a" => table := X"14";
 when X"0b" => table := X"16";
 when X"0c" => table := X"18";
 when X"0d" => table := X"1a";
 when X"0e" => table := X"1c";
 when X"0f" => table := X"1e";
 when X"10" => table := X"20";
 when X"11" => table := X"22";
 when X"12" => table := X"24";
 when X"13" => table := X"26";
 when X"14" => table := X"28";
 when X"15" => table := X"2a";
 when X"16" => table := X"2c";
 when X"17" => table := X"2e";
 when X"18" => table := X"30";
 when X"19" => table := X"32";
 when X"1a" => table := X"34";
 when X"1b" => table := X"36";
 when X"1c" => table := X"38";
 when X"1d" => table := X"3a";
 when X"1e" => table := X"3c";
 when X"1f" => table := X"3e";
 when X"20" => table := X"40";
 when X"21" => table := X"42";
 when X"22" => table := X"44";
 when X"23" => table := X"46";
 when X"24" => table := X"48";
 when X"25" => table := X"4a";
 when X"26" => table := X"4c";
 when X"27" => table := X"4e";
 when X"28" => table := X"50";
 when X"29" => table := X"52";
 when X"2a" => table := X"54";
 when X"2b" => table := X"56";
 when X"2c" => table := X"58";

116

 when X"2d" => table := X"5a";
 when X"2e" => table := X"5c";
 when X"2f" => table := X"5e";
 when X"30" => table := X"60";
 when X"31" => table := X"62";
 when X"32" => table := X"64";
 when X"33" => table := X"66";
 when X"34" => table := X"68";
 when X"35" => table := X"6a";
 when X"36" => table := X"6c";
 when X"37" => table := X"6e";
 when X"38" => table := X"70";
 when X"39" => table := X"72";
 when X"3a" => table := X"74";
 when X"3b" => table := X"76";
 when X"3c" => table := X"78";
 when X"3d" => table := X"7a";
 when X"3e" => table := X"7c";
 when X"3f" => table := X"7e";
 when X"40" => table := X"80";
 when X"41" => table := X"82";
 when X"42" => table := X"84";
 when X"43" => table := X"86";
 when X"44" => table := X"88";
 when X"45" => table := X"8a";
 when X"46" => table := X"8c";
 when X"47" => table := X"8e";
 when X"48" => table := X"90";
 when X"49" => table := X"92";
 when X"4a" => table := X"94";
 when X"4b" => table := X"96";
 when X"4c" => table := X"98";
 when X"4d" => table := X"9a";
 when X"4e" => table := X"9c";
 when X"4f" => table := X"9e";
 when X"50" => table := X"a0";
 when X"51" => table := X"a2";
 when X"52" => table := X"a4";
 when X"53" => table := X"a6";
 when X"54" => table := X"a8";
 when X"55" => table := X"aa";
 when X"56" => table := X"ac";
 when X"57" => table := X"ae";
 when X"58" => table := X"b0";
 when X"59" => table := X"b2";
 when X"5a" => table := X"b4";
 when X"5b" => table := X"b6";
 when X"5c" => table := X"b8";
 when X"5d" => table := X"ba";
 when X"5e" => table := X"bc";
 when X"5f" => table := X"be";
 when X"60" => table := X"c0";
 when X"61" => table := X"c2";
 when X"62" => table := X"c4";
 when X"63" => table := X"c6";

117

 when X"64" => table := X"c8";
 when X"65" => table := X"ca";
 when X"66" => table := X"cc";
 when X"67" => table := X"ce";
 when X"68" => table := X"d0";
 when X"69" => table := X"d2";
 when X"6a" => table := X"d4";
 when X"6b" => table := X"d6";
 when X"6c" => table := X"d8";
 when X"6d" => table := X"da";
 when X"6e" => table := X"dc";
 when X"6f" => table := X"de";
 when X"70" => table := X"e0";
 when X"71" => table := X"e2";
 when X"72" => table := X"e4";
 when X"73" => table := X"e6";
 when X"74" => table := X"e8";
 when X"75" => table := X"ea";
 when X"76" => table := X"ec";
 when X"77" => table := X"ee";
 when X"78" => table := X"f0";
 when X"79" => table := X"f2";
 when X"7a" => table := X"f4";
 when X"7b" => table := X"f6";
 when X"7c" => table := X"f8";
 when X"7d" => table := X"fa";
 when X"7e" => table := X"fc";
 when X"7f" => table := X"fe";
 when X"80" => table := X"1b";
 when X"81" => table := X"19";
 when X"82" => table := X"1f";
 when X"83" => table := X"1d";
 when X"84" => table := X"13";
 when X"85" => table := X"11";
 when X"86" => table := X"17";
 when X"87" => table := X"15";
 when X"88" => table := X"0b";
 when X"89" => table := X"09";
 when X"8a" => table := X"0f";
 when X"8b" => table := X"0d";
 when X"8c" => table := X"03";
 when X"8d" => table := X"01";
 when X"8e" => table := X"07";
 when X"8f" => table := X"05";
 when X"90" => table := X"3b";
 when X"91" => table := X"39";
 when X"92" => table := X"3f";
 when X"93" => table := X"3d";
 when X"94" => table := X"33";
 when X"95" => table := X"31";
 when X"96" => table := X"37";
 when X"97" => table := X"35";
 when X"98" => table := X"2b";
 when X"99" => table := X"29";
 when X"9a" => table := X"2f";

118

 when X"9b" => table := X"2d";
 when X"9c" => table := X"23";
 when X"9d" => table := X"21";
 when X"9e" => table := X"27";
 when X"9f" => table := X"25";
 when X"a0" => table := X"5b";
 when X"a1" => table := X"59";
 when X"a2" => table := X"5f";
 when X"a3" => table := X"5d";
 when X"a4" => table := X"53";
 when X"a5" => table := X"51";
 when X"a6" => table := X"57";
 when X"a7" => table := X"55";
 when X"a8" => table := X"4b";
 when X"a9" => table := X"49";
 when X"aa" => table := X"4f";
 when X"ab" => table := X"4d";
 when X"ac" => table := X"43";
 when X"ad" => table := X"41";
 when X"ae" => table := X"47";
 when X"af" => table := X"45";
 when X"b0" => table := X"7b";
 when X"b1" => table := X"79";
 when X"b2" => table := X"7f";
 when X"b3" => table := X"7d";
 when X"b4" => table := X"73";
 when X"b5" => table := X"71";
 when X"b6" => table := X"77";
 when X"b7" => table := X"75";
 when X"b8" => table := X"6b";
 when X"b9" => table := X"69";
 when X"ba" => table := X"6f";
 when X"bb" => table := X"6d";
 when X"bc" => table := X"63";
 when X"bd" => table := X"61";
 when X"be" => table := X"67";
 when X"bf" => table := X"65";
 when X"c0" => table := X"9b";
 when X"c1" => table := X"99";
 when X"c2" => table := X"9f";
 when X"c3" => table := X"9d";
 when X"c4" => table := X"93";
 when X"c5" => table := X"91";
 when X"c6" => table := X"97";
 when X"c7" => table := X"95";
 when X"c8" => table := X"8b";
 when X"c9" => table := X"89";
 when X"ca" => table := X"8f";
 when X"cb" => table := X"8d";
 when X"cc" => table := X"83";
 when X"cd" => table := X"81";
 when X"ce" => table := X"87";
 when X"cf" => table := X"85";
 when X"d0" => table := X"bb";
 when X"d1" => table := X"b9";

119

 when X"d2" => table := X"bf";
 when X"d3" => table := X"bd";
 when X"d4" => table := X"b3";
 when X"d5" => table := X"b1";
 when X"d6" => table := X"b7";
 when X"d7" => table := X"b5";
 when X"d8" => table := X"ab";
 when X"d9" => table := X"a9";
 when X"da" => table := X"af";
 when X"db" => table := X"ad";
 when X"dc" => table := X"a3";
 when X"dd" => table := X"a1";
 when X"de" => table := X"a7";
 when X"df" => table := X"a5";
 when X"e0" => table := X"db";
 when X"e1" => table := X"d9";
 when X"e2" => table := X"df";
 when X"e3" => table := X"dd";
 when X"e4" => table := X"d3";
 when X"e5" => table := X"d1";
 when X"e6" => table := X"d7";
 when X"e7" => table := X"d5";
 when X"e8" => table := X"cb";
 when X"e9" => table := X"c9";
 when X"ea" => table := X"cf";
 when X"eb" => table := X"cd";
 when X"ec" => table := X"c3";
 when X"ed" => table := X"c1";
 when X"ee" => table := X"c7";
 when X"ef" => table := X"c5";
 when X"f0" => table := X"fb";
 when X"f1" => table := X"f9";
 when X"f2" => table := X"ff";
 when X"f3" => table := X"fd";
 when X"f4" => table := X"f3";
 when X"f5" => table := X"f1";
 when X"f6" => table := X"f7";
 when X"f7" => table := X"f5";
 when X"f8" => table := X"eb";
 when X"f9" => table := X"e9";
 when X"fa" => table := X"ef";
 when X"fb" => table := X"ed";
 when X"fc" => table := X"e3";
 when X"fd" => table := X"e1";
 when X"fe" => table := X"e7";
 when X"ff" => table := X"e5";
 when others => null;
end case;
table_stdlogic := to_StdLogicVector(table);
return table_stdlogic;
end function xtimes;

--Processing step for encryption
function col_transform(p: state_array_type) return std_logic_vector is
 variable result: std_logic_vector(7 downto 0);

120

 variable m,n: std_logic_vector(7 downto 0);
 begin
 m := xtimes(p(0));
 n := xtimes(p(1)) xor p(1);
 result := m xor n xor p(2) xor p(3);
 return result;
end function col_transform;

--Preprocessing step for decryption
function col_inv_transform(s: state_array_type) return std_logic_vector
is
variable u: std_logic_vector(7 downto 0);
variable v: std_logic_vector(7 downto 0);
variable result: std_logic_vector(7 downto 0);
variable prep: state_array_type;
begin

 u := xtimes(xtimes(s(0) xor s(2)));
 v := xtimes(xtimes(s(1) xor s(3)));
 prep(0) := s(0) xor u;
 prep(1) := s(1) xor v;
 prep(2) := s(2) xor u;
 prep(3) := s(3) xor v;
 result := col_transform(prep);
 return result;
end function col_inv_transform;

121

MixColumns Half LUT

function xtimes(inp: std_logic_vector(7 downto 0)) return
std_logic_vector is
variable table: bit_vector(7 downto 0);
variable table_stdlogic: std_logic_vector(7 downto 0);
begin

--replaces half of xtime LUT with a bitwise shift
if inp < X"80" then
 table_stdlogic := (inp(6 downto 0) & '0');
else

--the other half of the LUT
case inp is
 when X"80" => table := X"1b";
 when X"81" => table := X"19";
 when X"82" => table := X"1f";
 when X"83" => table := X"1d";
 when X"84" => table := X"13";
 when X"85" => table := X"11";
 when X"86" => table := X"17";
 when X"87" => table := X"15";
 when X"88" => table := X"0b";
 when X"89" => table := X"09";
 when X"8a" => table := X"0f";
 when X"8b" => table := X"0d";
 when X"8c" => table := X"03";
 when X"8d" => table := X"01";
 when X"8e" => table := X"07";
 when X"8f" => table := X"05";
 when X"90" => table := X"3b";
 when X"91" => table := X"39";
 when X"92" => table := X"3f";
 when X"93" => table := X"3d";
 when X"94" => table := X"33";
 when X"95" => table := X"31";
 when X"96" => table := X"37";
 when X"97" => table := X"35";
 when X"98" => table := X"2b";
 when X"99" => table := X"29";
 when X"9a" => table := X"2f";
 when X"9b" => table := X"2d";
 when X"9c" => table := X"23";
 when X"9d" => table := X"21";
 when X"9e" => table := X"27";
 when X"9f" => table := X"25";
 when X"a0" => table := X"5b";
 when X"a1" => table := X"59";
 when X"a2" => table := X"5f";
 when X"a3" => table := X"5d";
 when X"a4" => table := X"53";
 when X"a5" => table := X"51";
 when X"a6" => table := X"57";
 when X"a7" => table := X"55";

122

 when X"a8" => table := X"4b";
 when X"a9" => table := X"49";
 when X"aa" => table := X"4f";
 when X"ab" => table := X"4d";
 when X"ac" => table := X"43";
 when X"ad" => table := X"41";
 when X"ae" => table := X"47";
 when X"af" => table := X"45";
 when X"b0" => table := X"7b";
 when X"b1" => table := X"79";
 when X"b2" => table := X"7f";
 when X"b3" => table := X"7d";
 when X"b4" => table := X"73";
 when X"b5" => table := X"71";
 when X"b6" => table := X"77";
 when X"b7" => table := X"75";
 when X"b8" => table := X"6b";
 when X"b9" => table := X"69";
 when X"ba" => table := X"6f";
 when X"bb" => table := X"6d";
 when X"bc" => table := X"63";
 when X"bd" => table := X"61";
 when X"be" => table := X"67";
 when X"bf" => table := X"65";
 when X"c0" => table := X"9b";
 when X"c1" => table := X"99";
 when X"c2" => table := X"9f";
 when X"c3" => table := X"9d";
 when X"c4" => table := X"93";
 when X"c5" => table := X"91";
 when X"c6" => table := X"97";
 when X"c7" => table := X"95";
 when X"c8" => table := X"8b";
 when X"c9" => table := X"89";
 when X"ca" => table := X"8f";
 when X"cb" => table := X"8d";
 when X"cc" => table := X"83";
 when X"cd" => table := X"81";
 when X"ce" => table := X"87";
 when X"cf" => table := X"85";
 when X"d0" => table := X"bb";
 when X"d1" => table := X"b9";
 when X"d2" => table := X"bf";
 when X"d3" => table := X"bd";
 when X"d4" => table := X"b3";
 when X"d5" => table := X"b1";
 when X"d6" => table := X"b7";
 when X"d7" => table := X"b5";
 when X"d8" => table := X"ab";
 when X"d9" => table := X"a9";
 when X"da" => table := X"af";
 when X"db" => table := X"ad";
 when X"dc" => table := X"a3";
 when X"dd" => table := X"a1";
 when X"de" => table := X"a7";

123

 when X"df" => table := X"a5";
 when X"e0" => table := X"db";
 when X"e1" => table := X"d9";
 when X"e2" => table := X"df";
 when X"e3" => table := X"dd";
 when X"e4" => table := X"d3";
 when X"e5" => table := X"d1";
 when X"e6" => table := X"d7";
 when X"e7" => table := X"d5";
 when X"e8" => table := X"cb";
 when X"e9" => table := X"c9";
 when X"ea" => table := X"cf";
 when X"eb" => table := X"cd";
 when X"ec" => table := X"c3";
 when X"ed" => table := X"c1";
 when X"ee" => table := X"c7";
 when X"ef" => table := X"c5";
 when X"f0" => table := X"fb";
 when X"f1" => table := X"f9";
 when X"f2" => table := X"ff";
 when X"f3" => table := X"fd";
 when X"f4" => table := X"f3";
 when X"f5" => table := X"f1";
 when X"f6" => table := X"f7";
 when X"f7" => table := X"f5";
 when X"f8" => table := X"eb";
 when X"f9" => table := X"e9";
 when X"fa" => table := X"ef";
 when X"fb" => table := X"ed";
 when X"fc" => table := X"e3";
 when X"fd" => table := X"e1";
 when X"fe" => table := X"e7";
 when X"ff" => table := X"e5";
 when others => null;
end case;
table_stdlogic := to_StdLogicVector(table);
end if;
return table_stdlogic;
end function xtimes;

--Processing step for encryption
function col_transform(p: state_array_type) return std_logic_vector is
 variable result: std_logic_vector(7 downto 0);
 variable m,n: std_logic_vector(7 downto 0);
 begin
 m := xtimes(p(0));
 n := xtimes(p(1)) xor p(1);
 result := m xor n xor p(2) xor p(3);
 return result;
end function col_transform;

--Preprocessing step for decryption
function col_inv_transform(s: state_array_type) return std_logic_vector
is
variable u: std_logic_vector(7 downto 0);

124

variable v: std_logic_vector(7 downto 0);
variable result: std_logic_vector(7 downto 0);
variable prep: state_array_type;
begin

 u := xtimes(xtimes(s(0) xor s(2)));
 v := xtimes(xtimes(s(1) xor s(3)));
 prep(0) := s(0) xor u;
 prep(1) := s(1) xor v;
 prep(2) := s(2) xor u;
 prep(3) := s(3) xor v;
 result := col_transform(prep);
 return result;
end function col_inv_transform;

125

MixColumns Arithmetic

--Copyright (C) 2004 Hemanth Satyanarayana

--Uses Trenholme’s Algorithm to compute modulus for encryption
function col_transform(p: state_array_type) return std_logic_vector is
 variable result: std_logic_vector(7 downto 0);
 variable m,n: std_logic_vector(7 downto 0);
 begin
 if(p(0)(7) = '1') then
 m := (p(0)(6 downto 0) & '0') xor "00011011";
 else
 m := (p(0)(6 downto 0) & '0');
 end if;
 if(p(1)(7) = '1') then
 n := (p(1)(6 downto 0) & '0') xor "00011011" xor p(1);
 else
 n := (p(1)(6 downto 0) & '0') xor p(1);
 end if;
 result := m xor n xor p(2) xor p(3);
 return result;
end function col_transform;

--Uses Trenholme’s Algorithm to compute modulus values for decryption
function col_inv_transform(s: state_array_type) return std_logic_vector
is
variable result: std_logic_vector(7 downto 0);
variable sub0,sub1,sub2,sub3: std_logic_vector(7 downto 0);
variable x0,y0,z0: std_logic_vector(7 downto 0);
variable x1,y1,z1: std_logic_vector(7 downto 0);
variable x2,y2,z2: std_logic_vector(7 downto 0);
variable x3,y3,z3: std_logic_vector(7 downto 0);
begin
 if(s(0)(7) = '1') then
 x0 := (s(0)(6 downto 0) & '0') xor "00011011";
 else
 x0 := (s(0)(6 downto 0) & '0');
 end if;
 if(x0(7) = '1') then
 y0 := (x0(6 downto 0) & '0') xor "00011011";
 else
 y0 := (x0(6 downto 0) & '0');
 end if;
 if(y0(7) = '1') then
 z0 := (y0(6 downto 0) & '0') xor "00011011";
 else
 z0 := (y0(6 downto 0) & '0');
 end if;
 sub0 := (x0 xor y0 xor z0);----------

 if(s(1)(7) = '1') then
 x1 := (s(1)(6 downto 0) & '0') xor "00011011";
 else
 x1 := (s(1)(6 downto 0) & '0');
 end if;

126

 if(x1(7) = '1') then
 y1 := (x1(6 downto 0) & '0') xor "00011011";
 else
 y1 := (x1(6 downto 0) & '0');
 end if;
 if(y1(7) = '1') then
 z1 := (y1(6 downto 0) & '0') xor "00011011";
 else
 z1 := (y1(6 downto 0) & '0');
 end if;
 sub1 := (x1 xor z1 xor s(1));----------

 if(s(2)(7) = '1') then
 x2 := (s(2)(6 downto 0) & '0') xor "00011011";
 else
 x2 := (s(2)(6 downto 0) & '0');
 end if;
 if(x2(7) = '1') then
 y2 := (x2(6 downto 0) & '0') xor "00011011";
 else
 y2 := (x2(6 downto 0) & '0');
 end if;
 if(y2(7) = '1') then
 z2 := (y2(6 downto 0) & '0') xor "00011011";
 else
 z2 := (y2(6 downto 0) & '0');
 end if;
 sub2 := (y2 xor z2 xor s(2));----------

 if(s(3)(7) = '1') then
 x3 := (s(3)(6 downto 0) & '0') xor "00011011";
 else
 x3 := (s(3)(6 downto 0) & '0');
 end if;
 if(x3(7) = '1') then
 y3 := (x3(6 downto 0) & '0') xor "00011011";
 else
 y3 := (x3(6 downto 0) & '0');
 end if;
 if(y3(7) = '1') then
 z3 := (y3(6 downto 0) & '0') xor "00011011";
 else
 z3 := (y3(6 downto 0) & '0');
 end if;
 sub3 := (z3 xor s(3));----------

 result := sub0 xor sub1 xor sub2 xor sub3;
 return result;
end function col_inv_transform;

127

128

Appendix C: Statistical Data Tables

Table 25. Analysis of Variance Table for Area Occupied

Source DF Seq SS Adj SS Adj MS
SubBytes Design 2 13700255055 13700255055 6850127527
MixColumns Design 2 15902640562 15902640562 7951320281
Synthesis Goal 1 550544684 550544684 550544684
SubBytes Design*MixColumns Design 4 150371320 150371320 37592830
SubBytes Design*Synthesis Goal 2 37100094 37100094 18550047
MixColumns Design*Synthesis Goal 2 5430919 5430919 2715460
SubBytes Design*MixColumns Design* 4 196245452 196245452 49061363
 Synthesis Goal
Error 0 * * *
Total 17 30542588085

S = *

Table 26. Quantification of Effects for Area Occupied
 SE

Term Coef Coef T P
Constant 81053.8 * * *

SubBytes Des
Composite Field Inversion -26670.3 * * *
Extended Field Inversion -11326.8 * * *

MixColumns D
Arithmetic -21268.4 * * *
Half LUT -20765.8 * * *

Synthesis Go
Area -5530.44 * * *

SubBytes Des*MixColumns D
Composite Field Inversion Arithmetic -1314.56 * * *
Composite Field Inversion Half LUT -2135.22 * * *
Extended Field Inversion Arithmetic -889.056 * * *
Extended Field Inversion Half LUT -1350.22 * * *

SubBytes Des*Synthesis Go
Composite Field Inversion Area 1156.94 * * *
Extended Field Inversion Area 866.444 * * *

MixColumns D*Synthesis Go
Arithmetic Area 743.111 * * *
Half LUT Area -567.556 * * *

SubBytes Des*MixColumns D*Synthesis Go
Composite Field Inversion Arithmetic Area 1457.89 * * *
Composite Field Inversion Half LUT Area 2507.56 * * *
Extended Field Inversion Arithmetic Area 1201.39 * * *
Extended Field Inversion Half LUT Area 1342.56 * * *

129

Table 27. Analysis of Variance Table for Area Efficiency

Source DF Seq SS Adj SS Adj MS F P
SubBytes Design 2 257.976 257.976 128.988 **
MixColumns Design 2 409.585 409.585 204.792 **
Synthesis Goal 1 20.278 20.278 20.278 **
SubBytes Design*MixColumns Design 4 81.639 81.639 20.410 **
SubBytes Design*Synthesis Goal 2 7.496 7.496 3.748 **
MixColumns Design*Synthesis Goal 2 6.390 6.390 3.195 **
SubBytes Design*MixColumns Design* 4 2.710 2.710 0.677 **
 Synthesis Goal
Error 0 * * *
Total 17 786.074

S = *

Table 28. Quantification of Effects for Area Efficiency

 SE SE
Term Coef Coef T P
Constant 11.0028 * * *

SubBytes Des
Composite Field Inversion 3.45900 * * *
Extended Field Inversion 1.80950 * * *

MixColumns D
Arithmetic 3.16817 * * *
Half LUT 3.57383 * * *

Synthesis Go
Area -1.06139 * * *

SubBytes Des*MixColumns D
Composite Field Inversion Arithmetic 1.37900 * * *
Composite Field Inversion Half LUT 1.61733 * * *
Extended Field Inversion Arithmetic 0.402500 * * *
Extended Field Inversion Half LUT 0.706833 * * *

SubBytes Des*Synthesis Go
Composite Field Inversion Area -0.853444 * * *
Extended Field Inversion Area 0.706722 * * *

MixColumns D*Synthesis Go
Arithmetic Area -0.720944 * * *
Half LUT Area -0.017278 * * *

SubBytes Des*MixColumns D*Synthesis Go
Composite Field Inversion Arithmetic Area -0.319222 * * *
Composite Field Inversion Half LUT Area -0.447889 * * *
Extended Field Inversion Arithmetic Area 0.091611 * * *
Extended Field Inversion Half LUT Area 0.291944 * * *

130

Bibliography

[CaA03] C. Caltagirone and K. Anantha. High Throughput, Parallelized 128-bit
AES Encryption in a Resource-Limited FPGA. In Proceedings of the
Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 240-241, San Diego, CA, 2003.

[ChG01] P. Chodowiec and K. Gaj. Comparison of the Hardware Performance of

the AES Candidates using Reconfigurable Hardware. George Mason
University, Fairfax, VA, 2001.

[DaR98] J. Daemen and V. Rijmen. The Design of Rijndael. AES—The Advanced

Encryption Standard. Heidelberg: Springer-Verlag, 1998.

[GoB05] T. Good and M. Benaissa. AES on FPGA from the Fastest to the Smallest.

In Proceedings of the Cryptographic Hardware and Embedded Systems
Conference, Lecture Notes in Computer Science vol 3659, pages 427-440,
29 August 2005.

[JST03] K. Järvinen, J.O. Skyttä, and M.T. Tommiska. A Fully Pipelined

Memoryless 17.8 Gbps AES-128 Encryptor. In Proceedings of the 2003
ACM/SIGDA Elenventh International Symposium on FPGAs, pages 207-
215, Monterey, CA, 2003.

[Nis01] National Institute of Standards and Technology. Announcing the Advanced

Encryption Standard (AES). Federal Information Standards Publication,
2001.

[Odr01] C. O’Driscoll. Hardware Implementation Aspects of the Rijndael Block

Cipher. Masters thesis. National University of Ireland, Cork, Ireland 2001.

[PaR97] C. Paar and M. Rosner. Comparison of arithmetic architectures for Reed-

Solomon decoders in reconfigurable hardware. In Proceedings of the Fifth
IEEE Symposium on FPGA-Based Custom Compting Machines, pages
219-225, 1997.

[Pio04] T. Pionteck, T. Staake, T. Stiefmeier, L.D. Kabulepa, and M. Glesner.

Design of a reconfigurable AES encryption/decryption engine for mobile
terminals. In Proceedings of the 2004 International Symposium on
Circuits and Systems vol 2, pages 545-548, May 2004.

[QIS05] H. Qin, Y. Iguchi, and T. Sasao. An FPGA design of AES encryption

circuit with 128-bit keys. In Proceedings of the 15th ACM Great Lakes
Symposium on VLSI, pages 147-151, 2005.

131

[Rij94] V. Rijmen. Efficient Implementation of the Rijndael S-Box. Katholieke
Universiteit Leuven, Heverlee, Belgium, 1994.

[Rou04] G. Rouvroy, F.X. Standaert, J.J. Quisquater, and J.D. Legat. Compact and

Efficient Encryption/Decryption Module for FPGA Implementation of the
AES Rijndael Very Well Suited for Small Embedded Applications. In
Proceedings of the International Converence on Information Technology:
Coding and Computing vol 2, page 583, 2004.

[Rud01] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi.

Efficient Implementation of Rijndael Encryption with Composite Field
Arithmetic. In Proceedings of the Cryptographic Hardware and
Embedded Systems Conference, Lecture Notes in Computer Science vol
2162, pages 171-185, Paris, France, May 2001.

[Sat04] H. Satyanarayana. aes_crypto_core. open source VHDL
 http://www.opencores.org/projects.cgi/web/aes_crypto_core/overview
 28 December 2004.

[SDR] N.A. Saqib, A. Díaz-Pérez, and F. Rodríguez-Henriquez. A Compact and

Efficient FPGA Implementation of the DES Algorithm. Computer Science
Section, Electrical Engineering Department, Centro de Investigaci´on y de
Estudios Avanzados del IPN (Not Dated).

[Sti06] D.R. Stinson. Cryptography Theory and Practice (3rd Edition). Boca

Raton: Chapman & Hall/CRC, 2006.

[Wik06a] Wikipedia Contributors. “Finite Field Arithmetic”, Wikipedia, The Free

Encyclopedia. n. pag.
http://en.wikipedia.org/w/index.php?title=Finite_field_arithmetic&oldid=
95285693, 19 December 2006.

[Wik06b] Wikipedia Contributors. “Rijndael key schedule”, Wikipedia, The Free

Encyclopedia. n. pag.
http://en.wikipedia.org/w/index.php?title=Rijndael_key_schedule&oldid=
95563942, 20 December 2006.

[Wik07a] Wikipedia Contributors. “Advanced Encryption Standard”, Wikipedia, The

Free Encyclopedia. n. pag.
http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard
&oldid=102110762, 21 January 2007.

132

[Wik07b] Wikipedia Contributors. “Finite Field”, Wikipedia, The Free
Encyclopedia. n. pag.
http://en.wikipedia.org/w/index.php?title=Finite_field&oldid=99871161,
10 January 2007.

[Xil07] Xilinx. Xilinx Virtex-II Series FPGAs. page 2, 2007.

http://www.xilinx.com/publications/matrix/virtexmatrix.pdf.

[ZCN04] J. Zambreno, A. Choudhary, and D. Nguyen. Exploring Area/Delay

Tradeoffs in an AES FPGA Implementation. In Proceedings of the
International Conference on Field-Programmable Logic and its
Applications, pages 575-585, August 2004.

133

Vita

Second Lieutenant Ryan Jay Silva graduated from Regis Jesuit High School in

Aurora, Colorado. He entered undergraduate studies at the United States Air Force

Academy in Colorado Springs, Colorado where he graduated with a Bachelor of Science

degree in Electrical Engineering in June 2005. His first assignment was to complete this

thesis at the Air Force Institute of Technology. Upon graduation he will be assigned to

the 84 Radar Evaluation Squadron at Hill, AFB in Ogden, Utah. He looks forward to

leaving the dreary Midwestern landscape for the sunny mountains of Utah.

 Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To)

22-03-2007 Master’s Thesis August 2005 – March 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

134

4. TITLE AND SUBTITLE

Implementation and Optimization of the Advanced Encryption
Standard Algorithm on an 8-Bit Field Programmable Gate Array

Hardware Platform 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

6. AUTHOR(S)

5e. TASK NUMBER

Silva, Ryan J., 2LT, USAF

 5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640

 REPORT NUMBER

 AFIT/GE/ENG/07-21

 WPAFB OH 45433-8865
10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Christopher E Reuter, Civ, AFRL/SNTA
 (937) 320-9068 x163, Christopher.Reuter2@wpafb.af.mil
 2241 Avionics Circle
 WPAFB, OH 4433-7320

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The contribution of this research is three-fold. The first is a method of converting the area
occupied by a circuit implemented on a Field Programmable Gate Array (FPGA) to an equivalent
as a measure of total gate count. This allows direct comparison between two FPGA
implementations independent of the manufacturer or chip family. The second contribution
improves the performance of the Advanced Encryption Standard (AES) on an 8-bit computing
platform. This research develops an AES design that occupies less than three quarters of the area
reported by the smallest design in current literature as well as significantly increases area
efficiency. The third contribution of this research is an examination of how various designs for
the critical AES SubBytes and MixColumns transformations interact and affect the overall
performance of AES. The transformations responsible for the largest variance in performance are
identified and the effect is measured in terms of throughput, area efficiency, and area occupied.
15. SUBJECT TERMS
 Advanced Encryption Standard, Cryptology, Field Programmable Gate Array, Number Theory

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Rusty O. Baldwin

17. LIMITATION
OF

18.
NUMBER

 ABSTRACT OF 19b. TELEPHONE NUMBER (Include area code) a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

 PAGES 937-785-6565

rbaldwin@afit.edu 133 UU U
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

135

	Implementation and Optimization of the Advanced Encryption Standard Algorithm on an 8-Bit Field Programmable Gate Array Hardware Platform
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	
	List of Figures
	List of Tables
	I. Introduction
	1.1 Background
	1.2 Research Goals and Hypothesis
	1.3 Document Overview

	II. Literature Review
	2.1 Chapter Overview
	2.2 Description
	2.3 Necessary Mathematical Background
	2.3.1 Finite Fields
	2.3.2 Finite Field Arithmetic
	2.4 Description of the AES Algorithm
	2.5 Current Research into AES Implementations on FPGAs
	2.5.1 Optimization Techniques
	2.6 Typical Design Parameter Values
	2.6.1 AES Throughput
	2.6.2 AES Area Efficiency
	2.6.3 AES Area Optimization
	2.7 Overview of research into the validation of encryption circuits
	2.8 Summary

	III. Methodology
	3.1 Chapter Overview
	3.2 Problem Definition
	 3.2.1 Goals and Hypothesis
	3.2.2 Approach
	3.3 System Boundaries
	3.4 System Services
	3.5 Workload
	3.6 Performance Metrics
	3.7 Parameters
	3.7.1 System
	3.7.2 Workload
	3.8 Factors
	3.9 Experimental Factor Designs
	3.9.1 SubBytes
	3.9.1.1 Modular Inversion in an Extended Field
	3.9.1.2 Modular Inversion in a Composite Field
	3.9.2 MixColumns
	3.9.2.1 Half LUT
	3.9.2.2 Arithmetic
	3.10 Evaluation Technique
	3.11 Experimental Design
	3.12 Methodology Summary

	IV. Analysis and Results
	4.1 Chapter Overview
	4.2 Results of Experimental Scenarios and Literature Comparison
	4.3 Analysis of the Data
	 4.3.1 Visual Analysis of Means
	4.4 Performance Analysis through ANOVA
	 4.4.1 ANOVA for Throughput
	4.4.2 ANOVA for Area Occupied
	 4.4.3 ANOVA on Area Efficiency
	4.5 Summary

	V. Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Significance of Research
	5.3 Recommendations for Future Research
	5.4 Conclusions of Research

	Appendix A: Data Tables
	Appendix B: Complete VHDL Code for Each Design
	SubBytes Full LUT
	SubBytes Extended Field Inversion
	SubBytes Composite Field Inversion
	MixColumns Full LUT
	MixColumns Half LUT
	MixColumns Arithmetic

	Appendix C: Statistical Data Tables
	Bibliography
	 Vita

