
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2007

Analysis of Routing Worm Infection Rates on an IPV4 Network Analysis of Routing Worm Infection Rates on an IPV4 Network

James Gorsuch

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons, and the Digital Communications and Networking

Commons

Recommended Citation Recommended Citation
Gorsuch, James, "Analysis of Routing Worm Infection Rates on an IPV4 Network" (2007). Theses and
Dissertations. 3110.
https://scholar.afit.edu/etd/3110

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3110?utm_source=scholar.afit.edu%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

ANALYSIS OF ROUTING WORM INFECTION RATES ON AN IPV4

NETWORK

THESIS

James E. Gorsuch, First Lieutenant, USAF

AFIT/GCS/ENG/07-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/07-04

ANALYSIS OF ROUTING WORM INFECTION RATES ON AN IPV4

NETWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

James E. Gorsuch, BS

First Lieutenant, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/07-M

Abstract

Malicious logic, specifically worms cost network users an enormous amount of

time and money. Worms, like Slammer and Code Red, infect thousands of systems and

denied whole networks access to the Internet. This research examines the ability of the

original Slammer worm, a Slammer based routing worm, and a new Single Slash Eight

(SSE) routing worm to infect vulnerable systems within a given address space. The

ability of Slammer to generate a uniform random IP addresses in a given address space is

established. Finally, a comparison of the speed increase from a worm on a computing

system in 2003 to those available today is performed.

Both the Slammer based routing worm and the SSE routing worm spread faster

than the original Slammer. The random number generator of the original Slammer worm

generates a statistically uniform distribution of addresses within the range under test.

Furthermore, despite the previous research into the speed of worm propagation, there is

still a need to test worms on the current systems. The speed of the computing systems

that the worms operated on in the past were more than three times slower than today’s

systems. As the speed of computer systems continue to grow, the speed of worm

propagation should increase with it as their scan rates directly relate to their infection

rate. As such, any inherent immunity of an IPv6 network from scanning worms should

be reexamined.

iv

Thanks to

God

For all He has given me,

and

For my wife

One of God’s many gifts,

For without her love and understanding

My life would be naught.

v

vii

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Barry E.

Mullins, my committee members Dr. Rusty O. Baldwin and Dr. Richard A. Raines for their

guidance and support throughout the course of this thesis effort. The help of Major David M.

Kaziska during the final weeks of my thesis writing was a Godsend and I owe him a large debt of

gratitude. All of the Instructors at the Air Force Institute of Technology (AFIT) were top-notch

and helped in too many ways to be covered here.

Additionally, I need to heap thanks on all of fellow students who helped me survive my

time at the AFIT. I have truly stood on the shoulders of giants. Without their help I would have

drowned under the work and been left behind. There are so many students that have become my

friends and played significant roles in my survival of AFIT. They all deserve to be named, but

naming them all and praising their aid would be another thesis. For those not named individually,

you know who you are, and I will always remember the constant help and support you gave me.

Specifically, I need to thank Lt Charles Fetzek for assisting in the last minute editing and

proofreading of this piece of work. The leadership, guidance, and friendship of our section leader

Maj. Timothy Franz was a stable and welcome influence during my tour at AFIT. Capt. Sean

Hudson’s friendship and aid during our many shared group projects will not be forgotten.

Finally, I would be remiss if I failed to mention the complete appreciation I have for the

sacrifices my lovely wife and son had to endure due to this life experience at AFIT. The long

hours of studying, loss of focus on family, and the final weeks of almost complete isolation

required to finish this thesis was handled without serious complaint and with the loving support I

have come to know from them both. Thank you all!

 James E. Gorsuch

viii

Table of Contents

Abstract ..v

Table of Contents..viii

List of Figures ..xii

List of Tables ...xv

I. Introduction..1

1.1 Motivation ..1

1.2 Overview and Goals ...3

1.3 Thesis Overview...3

1.4 Summary...5

II. Literature Review..6

2.1 Introduction ..6

2.2 Worms ..6

2.2.1 Pseudo Random Number Generation in Worms.. 9

2.2.2 Code Red.. 10

2.2.3 Slammer ... 11

2.2.4 The Border Gateway Protocol (BGP) and /8 Routing Worms 12

2.2.5 The BGP Routing Worm Propagation ... 14

2.3 Internet Modeling ...17

2.4 Internet Protocol Addressing..19

2.5 Increasing Speed of Technology ..21

2.6 Related Research ..21

2.7 Summary...26

ix

III. Methodology ...27

3.1 Introduction ..27

3.2 Problem Definition ...27

3.2.1 Goals and Hypothesis .. 27

3.2.2 Approach.. 28

3.2.3 Assumptions and Limitations .. 29

3.3 System Boundaries ...29

3.4 System Services..30

3.5 Workload ..31

3.6 Performance Metrics ..31

3.7 Parameters ..31

3.7.1 System Parameters ... 31

3.7.2 Workload Parameters... 33

3.8 Factors ..33

3.9 Evaluation Technique...34

3.10 Experimental Design ..34

3.10.1 Network Configuration and System Infection Procedure.......................... 34

3.10.2 Experimental Exploration of Slammer Randomness................................. 35

3.10.3 Matlab Model of Infection Rate... 38

3.10.4 Experimental Validation of Matlab Model Infection Rate Simulation...... 40

3.10.5 Experimental Examination of the Slammer Scanning Rate....................... 46

3.10.6 Examination of the Slammer Infection Doubling Rate.............................. 47

x

3.11 Analysis and Interpretation of Results ...48

3.12 Summary...50

IV. Analysis and Results...51

4.1 Slammer Packet Generation ...51

4.2 Slammer Randomness ..54

4.2.1 Slammer IP Address Randomness ... 54

4.2.2 Slammer Octet Randomness .. 58

4.3 Matlab Model Simulation of Slammer Routing Worm Operation.......................68

4.3.1 Validation of Matlab Model Infection Rate Simulation 68

4.3.2 Matlab Model of Doubling Rate versus Observed Slammer Rate............... 75

4.3.3 Matlab Model versus Wei Slammer Infection Rate..................................... 81

4.4 Scanning Worms in a Computing Architecture of Today....................................83

4.5 Single Slash Eight (SSE) Routing Worm...89

4.5.1 SSE Routing Worm Creation... 89

4.5.2 Matlab Model of the SSE Routing Worm.. 90

4.5.3 SSE Routing Worm Infection Rate Comparison ... 90

4.6 Summary...93

V. Conclusions and Recommendations ..95

5.1 Restatement of the Problem and Conclusions..95

5.2 Contributions and Significance of Research ..96

5.3 Recommendations for Future Research..97

5.4 Summary...98

Appendix A..99

xi

A.1 Experiment Hardware..99

A.2 Experiment Software ...100

Appendix B ..101

B.1 Slammer Code..Error! Bookmark not defined.

B.1.1 Slammer Code with ASCIIError! Bookmark not defined.

B.1.2 Disassembly of Slammer CodeError! Bookmark not defined.

B.2 Slammer Stack Manipulation...............................Error! Bookmark not defined.

B.3 Slammer Code Corrections..................................Error! Bookmark not defined.

Appendix C ..102

C.1 Matlab Model Infection Rate Simulation Code...102

Appendix D..105

D.1 Slammer UDP Packet Example...........................Error! Bookmark not defined.

D.2 Slammer UDP Packet Header Breakout..............Error! Bookmark not defined.

D.3 Slammer UDP Packet Multicast DetailError! Bookmark not defined.

Appendix E ..106

E.1 SSE Routing Worm Assembly CodeError! Bookmark not defined.

Bibliography...107

Vita...111

xii

List of Figures

Figure Page

1. Slammer Global Infection... 2

2. Zou Code Red Worm Simulation ... 15

3. Zou Slammer Worm Simulation... 17

4. Pattern of Daily Network Traffic.. 19

5. Wei Slammer Worm Simulation... 24

6. Wei Slammer Worm propagation with Network Congestion....................................... 25

7. Network Under Attack.. 30

8. Network Configuration ... 35

9. Netcat Infection Command ... 35

10. Statistical Model Graph Example ... 37

11. Matlab Model Infection Rate Example... 40

12. Lag Plot of Slammer-Generated IP Addresses ... 55

13. Residual Plots of Slammer IP Address Generation .. 57

14. Fitted Line Plot of Slammer versus Statistical Model .. 58

15. Lag Plot of Slammer-Generated Second Octet... 59

16. Residual Plot for Slammer-Generated Second Octet.. 61

17. Fitted Line Plot for Slammer-Generated Second Octet .. 62

18. Lag Plot of Slammer-Generated Third Octet.. 63

19. Lag Plot of Slammer-Generated Fourth Octet .. 64

20. Residual Plot for Slammer-Generated Third Octet... 66

xiii

Figure Page

21. Residual Plot for Slammer-Generated Fourth Octet... 66

22. Fitted Line Plot for Slammer-Generated Third Octet ... 67

23. Fitted Line Plot for Slammer-Generated Fourth Octet ... 67

24. Zou Code Red versus Matlab Model Code Red Infection Rates 69

25. Zou Slammer Worm versus Zou Slammer Routing Worm .. 70

26. Matlab Model of Zou Slammer Routing Worm @ 3,108 pps 71

27. Matlab Model of Original Slammer Worm @ 4,000 pps ... 72

28. Matlab Model of Zou Slammer Routing Worm @ 4,000 pps 72

29. Matlab Model Composite of Slammer Infection Rates .. 73

30. Matlab Model Slammer Worms versus Zou Slammer Worms................................... 74

31. Matlab Model-Generated Doubling Rate.. 76

32. Slammer Doubling Rate.. 77

33. Matlab Model versus Observed Slammer Doubling Rate .. 78

34. Matlab Model versus Slammer Doubling Rate Detailed .. 79

35. Matlab Model-Generated Slammer Worm 2003 .. 80

36. Wei Slammer Worm Simulation... 82

37. Matlab Model Slammer Worm versus Wei Slammer Worm...................................... 83

38. Zou Slammer Worm versus Matlab Model Slammer Worm 2003............................. 84

39. Matlab Model-Generated Slammer Worm 2003 .. 86

40. Matlab Model-Generated Slammer Worm 2007 .. 87

41. Matlab Model-Generated Slammer Routing Worm 2003 .. 87

xiv

Figure Page

42. Matlab Model-Generated Slammer Routing Worm 2007 .. 88

43. Matlab Model-Generated Slammer Worms and Slammer Routing Worms............... 88

44. SSE Routing Worm Assembly CodeError! Bookmark not defined.

45. Matlab Model-Generated SSE Routing Worm 2003 .. 91

46. Matlab Model-Generated SSE Routing Worm 2007 .. 92

47. Matlab Model SSE Routing Worms versus Slammer Worms.................................... 92

48. Slammer Code with ASCII ..Error! Bookmark not defined.

49. Slammer UDP Packet ExampleError! Bookmark not defined.

50. Slammer Infection Packet SamplesError! Bookmark not defined.

xv

List of Tables

Table Page

1. Zou Worm Simulation Variables .. 17

2. Netcat Infection Command Description ... 35

3. Statistical Model Example .. 37

4. Experiment Statistical Model.. 38

5. Matlab Model Infection Rate Example... 39

6. Matlab Model Variables for Code Red Worms .. 42

7. Matlab Model Variables for Zou Slammer Worms .. 43

8. Matlab Model Variables for the Slammer Worms.. 44

9. Matlab Model Variables for the Slammer Routing Worms.. 45

10. Matlab Model Variables for the SSE Routing Worms ... 46

11. Worm Variables for Year Simulations ... 47

12. Slammer Packet Per Second on A/C Power ... 52

13. Slammer Packet Per Second on Battery Power .. 52

14. Slammer IP Address Generation Regression Analysis... 56

15. Slammer-Generated Second Octet Regression Analysis .. 60

16. Slammer-Generated Third Octet Regression Analysis ... 64

17. Slammer-Generated Fourth Octet Regression Analysis ... 64

18. Matlab Model Variables for 2003 versus 2007 Worm Comparison........................... 86

19. Matlab Model of 2003 versus 2007 Infection Rates... 89

20. Matlab Model Variables for SSE Routing Worm... 90

xvi

Table Page

21. SSE Routing Worm Speed Comparison ... 93

22. Experiment Computer Specifications ... 99

23. Port Switch Specifications .. 99

24. Experiment Software Versions ... 100

25. Opening Portion of Slammer Code..............................Error! Bookmark not defined.

26. Payload Fix-up of Slammer Code................................Error! Bookmark not defined.

27. IAT and Process Locating of Slammer CodeError! Bookmark not defined.

28. Send To Protocol of Slammer CodeError! Bookmark not defined.

29. IP Address Generation and Loop of Slammer Code....Error! Bookmark not defined.

30. Stack Contents Through Command B2Error! Bookmark not defined.

31. Stack Contents Through Command E2........................Error! Bookmark not defined.

32. Stack Contents Through Command ED.......................Error! Bookmark not defined.

33. Stack Contents Through Command 107Error! Bookmark not defined.

34. Stack Contents Through Command 123Error! Bookmark not defined.

35. Stack Contents Through Command 12BError! Bookmark not defined.

36. Stack Contents Through Command 136Error! Bookmark not defined.

37. Stack Contents Through Command 174Error! Bookmark not defined.

38. Slammer Random Number Generator Code Corrections Error! Bookmark not

defined.

39. Matlab Model Experiment Variable Values ... 103

40. Slammer UDP Packet Header DescriptionError! Bookmark not defined.

xvii

41. Slammer UDP Packet Destination IP Address Detail..Error! Bookmark not defined.

Table Page

42. SSE Routing Worm Code ..Error! Bookmark not defined.

1

ANALYSIS OF ROUTING WORM INFECTION RATES ON AN IPV4

NETWORK

I. Introduction

1.1 Motivation

 The dream of one world, one community has all but become a reality as a

network of computers now connects the world both virtually and physically via the

Internet. Though originally implemented as a way to share information between

universities, the Internet has grown to encompass every nation. This has allowed for an

amazing sharing of information and resources across the globe. However, with this great

good also comes the bad. The global community’s interconnectedness and reliance on

the Internet has led to many using the Internet for nefarious purposes. There are people

using the Internet to perform corporate espionage, steal identities, and in general, create

havoc. To that end, one of the most costly sources of this havoc for businesses and users

alike on the Internet is malicious logic. Of all the forms of malicious logic, computer

worms have shown themselves to be one of the most costly for the Internet community.

Worms can infect thousands of systems in just minutes. These fast infection rates

reduce or eliminate the access of large corporations to the average person to Internet

services. Slammer, also known as Sapphire and SQL Slammer, was one of the fastest

worms ever released onto the Internet. As shown in Figure 1, Slammer spread

throughout the world in just minutes. This figure identifies the areas of the world

infected by Slammer in less than 30 minutes [MPW03]. The blue infection circles do not

accurately represent the number of systems infected per area, but identifies the areas

2

covered in order to limit the overlap with adjacent zones [MPW03]. This coverage is

consistent with every major technological center and city across the globe and illustrates

how interconnected the world was in 2003. Since then, the global community has grown

larger and even more interconnected.

Figure 1. Slammer Global Infection

Mi2g, a London based market intelligence firm, calculated that the Slammer

worm caused “between $950 Million and $1.2 Billion in lost productivity in its first five

days” of operation worldwide [Lem03]. Even so, Slammer was just another in a line of

costly malicious actors–the estimated costs of Code Red, the LoveLetter virus, and the

Klaz virus were $2.6 Billion, $8.8 Billion, and $9.0 Billion, respectively. These costs

include damage directly caused by the malicious code and the administrative costs to

correct the infected systems, including the initial cleansing and repair of the systems.

Companies must now maintain a constant vigil against malicious actors by keeping staff

updated and equipment protected against future attacks. However, the largest financial

impact is the loss of the ability to conduct business [Lem03].

3

The large financial impact of these various malicious logics show organizations

need to analyze their operation and capabilities to detect and even prevent future attacks.

Researchers and the computing community must understand the operation of malicious

logic to provide an effective detection, prevention, and response to future attacks.

 1.2 Overview and Goals

This research determines through the use of mathematical simulation and live

analysis of malicious code on an infected system, whether the Slammer based routing

worm proposed by Zou is faster than the previously observed Slammer worm [ZTG05].

This research also determines through those same simulations and analyses whether the

Single Slash Eight (SSE) routing worm proposed in this research is faster than the

Slammer based routing worm proposed by Zou [ZTG05]. A third goal of this research is

to analyze the statistical randomness of the IP addresses generated by the Slammer worm

to establish a basis for the use of random number generators in the mathematical models

used to generate infection rates. As part of the validation effort, the Matlab mathematical

model simulation is compared to previously observed Slammer data. The final goal of

this research is to compare the various 2003 scanning worm infection, the year Slammer

was originally released, to the speed that could be possible on computing systems of

today.

1.3 Thesis Overview

Chapter 1 provides a brief synopsis of the motivation for this research, an

overview of the experiment, the goals of the research, and an overview of the thesis

structure. Chapter 2 covers the basics of malicious logic operation with particular

4

emphasis on worms and delves into the previous research conducted in the area of

worms. Modeling of the Internet, Internet protocol addressing, and the concept of the

continual increase of computing system speed are also addressed.

A detailed explanation of the experimental design is provided in Chapter 3

including the problem definition with the goals and hypothesis, the experimental

approach, and the assumptions and limitations for this research. Chapter 3 also discusses

the system boundaries and services, the workload for the system, and performance

metrics used in this research. The parameters and factors that form the basis of this

research are also discussed. Finally, the evaluation technique, experiment design and

configuration, and a discussion of the analysis and interpretation for this research are

discussed.

The results and analysis of the data collected are presented in Chapter 4. The first

section determines the packet generation capabilities of the original Slammer worm. The

second section analyzes the randomness of the Slammer worm IP address generation.

The third section determines the infection rates of the original Slammer worm and the

Slammer routing worm proposed by Zou [ZTG05]. Chapter 4 demonstrates the speed

difference between the worms on systems available today compared to that in use during

the original Slammer worm outbreak. Chapter 4 ends with the coverage of the Single

Slash Eight routing worm developed herein.

Chapter 5 is a short summary of the research problem and conclusions. The

contributions and significance to the computing community and recommendations for

future research are also contained in Chapter 5.

5

Throughout this thesis to improve the readability and flow, the research cited

directly in the thesis text is referred to by the last name of the first author credited in that

research. As such, the research performed and data created by Zou et al [ZTG05] in their

research of routing worms will be referred to simply as Zou. The Slammer worm

research completed by Wei et al [WMS05] is referred to as Wei and so on. There are

two Slammer analyses cited in this research that were completed by Moore et al [MPS03]

[MPW03] where the same authors wrote both documents. Both of these are referred

within the text by simply Moore however, the end citation specifically names which

research the information came from.

1.4 Summary

This chapter provides a brief synopsis of the motivation for this research with an

introduction to the significant impact caused by malicious logic. The goals, with an

overview, of the experiment for this thesis was provided in Section 1.2. Finally, an

overview of the structure of this document was presented in Section 1.3.

6

II. Literature Review

2.1 Introduction

This chapter presents the fundamentals of worm propagation and recent research

into worm propagation and modeling. Section 2.2 discusses the basics of computer

worms and their operation when released onto a network, as well as a more detailed

analysis of the routing worms being assessed in the experiment. Section 2.3 investigates

the difficult process of accurately simulating the Internet. The discussion of the division

of Internet addresses is given in Section 2.4. Within Section 2.5, the concept of Moore’s

law as it relates to the increasing speed of computing systems is examined. Section 2.6

discusses previous worm propagation modeling, results, and limitations. Finally, Section

2.7 summarizes all of the previous sections.

2.2 Worms

This research considers the operation of random address scanning computer

worms across an IPv4 network. One of the major reasons computer worms work so well

is that Microsoft Windows, the operating system used throughout the world, has a market

share of 94% [Fes04]. This homogeneity, or genetically similar software makeup, has

both negative consequences and provides the consumer great benefits. The benefits

include lower cost products, easier portability and increased services. The consequences

associated with this homogeneity are the ease with which a malicious logic program can

move from system to system.

The cost of malicious logic to consumers, companies, and the government is the

motivation for this research. It is estimated that computer virus attacks caused $55

7

billion in damages in 2003 and that sum was on the rise in 2004 [Mar04]. With the costs

from the damages skyrocketing and money to prevent and protect against malicious logic

becoming a mandatory expenditure, one can easily see that malicious logic is and has

been a serious threat to home computer users, businesses, and the Internet community in

general.

Dr. Fred Cohen coined the term “computer virus” in 1984 due to the similarity to

their biological counterparts plaguing the human race [Sla95]. His research formed the

basis for the epidemiological models. If system A can infect system B, and system B can

infect system C then system A can infect system C [KeW91]. Since that initial

comparison, a virus has been defined as “a set of instructions which, when executed,

spreads itself to other, previously unaffected, programs or files” [Hof90]. However, this

does not fully define malicious code, as some malicious code requires a user to open an

attachment or possibly an email. In these cases the user is not “directly” acting upon the

code; they are activating the “trigger” (e.g., the opening of an attachment). A more

complete definition of malicious logic is a program that “modifies or destroys data, steals

data, allows unauthorized access, exploits or damages a system” [Hei04] and in general

“does something that the user did not intend” [Hei04].

Although, computer viruses are not “living” entities with the ability to build up

“immunities,” the programmers of malicious logic are becoming better at creating and

writing malicious code. This, in effect, makes the viruses more resilient to correction,

detection and prevention, and more tenacious in their ability to infect new systems. This

problem of evolution makes defending against and defeating malicious code more

difficult with every new generation and makes computer viruses similar in that sense to

8

their biological counterparts [ZTG05]. Given that expectation, each worm’s infection

rate should be faster than the last; the SSE routing worm should be faster than the

Slammer based routing worm which should be faster than the original Slammer worm.

Worms are often confused with viruses. This confusion is due to the merging of

malicious code techniques and the blurring of the lines between application operations.

Worms, unlike viruses, have tended in the past to not directly harm the system they are

on. Worms replicated in the background and most computers continued to operate. The

Witty worm was an exception to this. It contained code that randomly deleted portions of

a hard drive attached to the system it was residing on [ShM04]. Even so, all worms are

malicious actors. First, worms perform actions not intended by the owner of the system.

Worms often increase in size filling up a hard drive, perform data mining, and can bring

Internet communication to a standstill through the flooding of the Internet with

overwhelming amounts of infected packets.

A proper definition of a worm is a form of malicious code, either standalone or

file infecting, that acts with or without human intervention and spreads across a network

[KiE03]. This simple definition combines all the aspects of a worm while separating it

from a virus or a Trojan horse. A Trojan Horse is a set of malicious code that is hidden

within another program, much like the mythical Trojan Horse of the Greeks. Viruses

differ from worms in that, a worm does not attach directly to another object or program;

worms are standalone code. Worms, unlike Trojan horses, replicate for further infections

[KiE03].

Worms can be classified into three groups based on how they operate: E-mail (or

client application) worms, Windows file sharing worms, and traditional worms [KiE03].

9

E-mail worms, as the name suggests, exploit weaknesses in an e-mail system or in

application software to propagate (e.g., Melissa [KiE03] used e-mail, and Bilbrog

[KiE03] used Internet Relay Chat). This style of worm usually requires some form of

user action, such as opening an e-mail attachment. Windows file sharing worms exploit

the various file sharing capabilities (i.e., Server Message Block and Common Internet

File System) of Windows that allow small groups to work on the same files (e.g., Nimda

and Gaobot worms [KiE03]). Traditional worms attack using standard Internet protocols

(e.g., TCP/IP, UDP) and operate autonomously once activated [KiE03]. Within this class

of traditional worms are the scanning worms. Code Red, Slammer, Witty, and the

Slammer based routing worm proposed by Zou are all types of scanning worms [ZTG05].

They all probe the available IP address space to find and infect vulnerable systems

[ZTG05].

2.2.1 Pseudo Random Number Generation in Worms

All scanning worms use some form of Pseudo Random Number Generation

(PRNG). As the name implies, a PRNG generates pseudo random numbers for use in

various applications. The problem with PRNG is that it is not a truly random process but

rather an algorithm that generates a sequence of numbers with little or no discernable

pattern present in the sequence [Bla06]. This means that no matter how random the

numbers generated appear to be, they are predictable. Thus, if a person knows the

number that “seeded” the PRNG they will be able to predict the series of numbers

generated by the algorithm [Haa99]. However, for the purpose of generating a varied

distribution of numbers to be used as target addresses, the PRNG works well as has been

shown by the speed at which the worms studied in this research propagate.

10

2.2.2 Code Red

Code Red was released on the Internet at 1000 hrs UTC on 13 July 2001 and

exploited a vulnerability in the Windows Internet Information Services (IIS) that was

discovered almost a month earlier by eEye [MSB02]. Windows IIS is a web server

architecture for managing website and application availability. The vulnerability was an

error in the Window IIS Indexing Services that allowed a remote intruder to run arbitrary

code on the victim system [CER02]. Code Red had an error in its random number

generator that limited its ability to scan for IP addresses and so its propagation speed was

inadvertently restricted. Code Red version II (hereafter called Code Red as the two

versions operated identically other than the random number generator), released six days

after Code Red, corrected this coding error in the random number generator and infected

systems at an exponential rate. Code Red generated 100 scanning threads; each thread

randomly selected an IP address and tried to set up a connection on port 80. Code Red

was programmed to scan the IP address space uniformly [MSB02].

An unusual characteristic of the scanning threads was that the 100th thread would

try to deface the currently infected system’s web site if it was an English Windows 2000

system. If the target of the 100th thread was not an English Windows 2000 system, the

thread would be used to infect other systems rather than trying to deface the web site.

Once infected, the system would become a platform for launching new attacks. If the

target system was not a web server or it could not be infected, the thread would generate

a new random IP address and try again [MSB02].

The Code Red worm could only infect a Windows system with IIS installed. At

the time, Microsoft estimated there were six million Windows IIS servers on the Internet.

11

However, Code Red was programmed with a stop time and did not have the opportunity

to infect the entire population. It stopped its propagation at 0000 hrs UTC on 19 July

2001 after infecting an estimated 359,000 computers in less than 14 hours. The cost of

this worm was estimated to be in excess of $2.6 billion [MSB02].

As Code Red was, at the time, one of the most aggressive worms observed, there

have been many experiments and research projects analyzing its operation. Code Red

was one of the worms used by Zou as a basis for validating the speed of their proposed

routing worms. The Zou routing worm research is discussed in more detail in Section

2.2.4 [ZTG05].

2.2.3 Slammer

Slammer, also known as SQL Slammer and Sapphire, did not attack the end

system computers (i.e., the personal home computer), but it wreaked havoc by virtually

shutting down portions of the Internet as it spread itself among the core servers and

throughout Internet [HyE03]. Core servers provide Internet access for multiple

computers at a company or small network. Of the 13 Internet root name servers, the

servers that form the essence of the domain name system, five were shutdown by

Slammer traffic and close to 20% of all data sent across the Internet was lost during the

outbreak [HyE03]. Slammer was the fastest spreading worm ever observed [MPS03]. It

doubled the number of infected systems every 7.5 – 9.5 seconds in the first minute and

managed to infect over 90% of its potential 75,000 victims in about 10 minutes [MPS03].

Slammer operated by exploiting a “buffer overflow” vulnerability in the

Microsoft SQL Server 2000 Operating System by gaining access to the computer

memory stack and replicating itself. Slammer sent massive amounts of data across the

12

Internet during its attempt to infect other systems; reaching over 55 million scans per

second in just three minutes [MPS03]. The small size of Slammer added to its

effectiveness by allowing it to be sent in a short time. This small size provided an

additional benefit of initially hiding its existence since the large file transfers prevalent on

the Internet masked its presence. Even with the small size of 404 bytes, the amount of

data being sent across the Internet by Slammer during the three minute interval was over

23,000 gigabytes every second.

Also aiding Slammer’s effectiveness was its use of User Datagram Protocol

(UDP) for communication [HyE03]. UDP allows transmission with no requirement to

establish a return path acknowledgement. This meant Slammer could scan the Internet

without concern for establishing a connection to the targets, thereby further increasing its

speed. The consequences could have been much worse; Slammer had a small flaw in its

program that limited the number of Internet system addresses it could scan for infection

[MPS03]. However, this did not appear to impact the speed at which Slammer was able

to spread. This flaw did, however, limit the ability of researchers to calculate the IP

address range vulnerable to the Slammer worm, as they had been able to do with previous

worms [MPS03].

2.2.4 The Border Gateway Protocol (BGP) and /8 Routing Worms

The Border Gateway Protocol (BGP) and “/8” routing worms are malicious code

proposed by Zou [ZTG05]. These worms are an advanced form of malicious code using

two techniques to increase their speed of infecting vulnerable systems and creating an

overload of malicious packet traffic on the Internet backbone.

13

The BGP routing worm is, as the name implies, a scanning of the BGP routing

tables for valid computer addresses to attack. The BGP routing worm is named after the

protocol used by Internet Service Providers (ISPs) of various tier sizes as their inter-

autonomous system routing protocol to exchange information between ISPs. The BGP

routers contain ISP IP addresses, and Zou proposed an autonomous worm that harvests

valid IP address tables from the BGP routers. Thus, this makes the BGP routing worm a

more precise Internet scannerand should be at least three times faster than any previous

worm [ZTG05]. The second capability of a BGP routing worm is the ability to attack,

say, only a specific country, company, Internet service provider, due to the inherent

geographical information in routing tables [ZTG05].

The “/8” routing worm implements similar techniques with one difference from

the BGP routing worm. Instead of a large block of code to query the BGP routers for

their prefixes to hone the worm’s search, the “/8” routing worm is pre-coded with the 116

IPv4 “/8” routable addresses. This reduces the amount of code required and therefore the

size compared to the BGP routing worm. Inserting the 116 IPv4 “/8” routable address

prefixes would only increase Slammer’s size by 116 bytes to 520 bytes [ZTG05]. The

code to perform this modification was not available in published research.

Due to the public availability of the BGP routing tables, developing an effective

worm is comparatively easy because the tables provide a known good range of Internet

protocol addresses to attack which make the worm spread more effectively by reducing

the required scanning space without the risk of missing a target. As of September 2003,

over 28% of the IPv4 addresses were BGP routable, reducing the required scanning space

by almost 70% [ZTG05].

14

In addition to spreading quicker and being able to target a specific region or range

of IP addresses for attack, there are two other challenges that make the worms

problematic for the Internet community. First, the BGP and “/8” routing worm can cause

even more congestion than Slammer because the IP addresses generated by the routing

worms are inherently BGP routable. Unlike the other traditional scanning worms

including Slammer which use TCP/UDP that can be easily dropped if the generated

address is invalid, the addresses generated by a BGP worm are always valid at the BGP

router and therefore forwarded. Since Slammer and other worms scan the entire IPv4

address space 70% of their IP addresses generated are non-routable and dropped

[ZTG05]. Therefore, a majority of the traffic generated by Slammer, did not even appear

on the Internet backbone and did not cause any congestion. Despite this fact, Slammer

caused severe congestion to several local area networks and the Internet as a whole.

The second challenge presented by the BGP and “/8” routing worms is they are

more difficult to detect compared to previously observed scanning worms (e.g. Code

Red, Slammer, Witty). One of the major identifiers used to track scanning worms is the

large amount of traffic generated without response. Because the BGP and “/8” routing

worms generate packets that will be dropped by the routers and furthermore since the

failed responses would be delayed due to the routability of the infection packets,

detecting the worm based on an illegal traffic method would be slow [ZTG05].

2.2.5 The BGP Routing Worm Propagation

The BGP and “/8” routing worms were based on a mathematical model that

reflects the actual propagation parametrics observed in previous worms. The infection

15

rate of the BGP and /8 routing worms were modeled using a uniform-scan worm model

described as [ZTG05]

()tt
t INI

dt

dI
-

W
=

h
 (1)

where It is the number of hosts infected at time t, N is the number of vulnerable systems,

η is the scanning rate, and W is the address space requiring scanning. Using Code Red as

a basis, the BGP and /8 routing worm infect rates versus the observed Code Red rates are

shown in Figure 2.

Figure 2. Zou Code Red Worm Simulation

The values used for the comparison were η = 358 scans per minute, N = 360,000,

and It = 10 systems infected. The address space to scan, W, was set to 4,294,967,296 for

the Code Red infection curve and 1.95 billion for the 116 Internet Assigned Numbers

Authority (IANA) “/8” BGP routable addresses for the “/8” routing worm. The BGP

routing worm had all of the same variables except for the available address space. For

16

the BGP routing worm W was set to 1,228,360,647 to reflect the further refinement of the

scanned address space. The outcome of this experiment showed that both the BGP and /8

worms operated significantly faster; more than 3 times as fast as the Code Red worm

[ZTG05]. Unlike the Zou Slammer-based worms (discussed below), there were no

changes in the scan rate made in the Zou Code Red-based Worms due to the the increase

of code size required to make the routing worms [ZTG05].

The model of Slammer as a “/8” routing worm was developed using the uniform-

scan worm model with η = 4000 scans per minute, N = 100,000, and It = 10 systems

infected [ZTG05]. The address space to scan, W, was set to 1,946,156,941 addresses.

The Slammer “/8” routing worm, referred to as the “routing Slammer worm,” used the

same values for N and It. However, to reflect the reduced address space of a “/8“ routing

worm and the increased code size of 520 bytes to incorporate the “/8” routing worm code

into Slammer, W was set to 1.95 billion and η was set to 3108.

A complete list of the variables used by Zou is provided in Table 1. The data

revealed that the new “routing Slammer worm” (hereafter called the Zou Slammer

routing worm) was more than twice as fast as the original Slammer infection rate as

shown in Figure 3 [ZTG05].

17

Figure 3. Zou Slammer Worm Simulation

Table 1. Zou Worm Simulation Variables

Number of IP
addresses

Number of
Vulnerable
Systems

Packet
Generation

Speed

Initial Number of
Infected Systems

Code Red Worm 4,294,967,296 360,000
358 per
Minute

Ten

Zou Code Red "/8"

Routing Worm
1,946,156,941 360,000

358 per

Minute
Ten

Zou Code Red BGP

Worm
1,228,360,647 360,000

358 per

Minute
Ten

Zou Slammer Worm 4,294,967,296 100,000
4,000 per

Second
Ten

Zou Slammer
Routing Worm

1,946,156,941 100,000
3,108 per
Second

Ten

2.3 Internet Modeling

Due to the Internet’s complexity, rapid growth, and constant change, any attempt

at modeling it will be severely limited. Mathematical models, software simulations, and

18

hardware simulations all suffer from a lack of size or ability to effectively mimic the

operation of the Internet. The biggest problem any model of the Internet is its inability to

model the true vastness of the global Internet community [FlP01]. There were an

estimated 16 million users in December of 1995 [Gro03], [IWS07]. The number of users

has increased to 1,093 million by December of 2006 [IWS07]. Even the most advanced

computer simulation software falls far short of being able to represent that many nodes on

a network.

Another problem with simulating the Internet is heterogeneity. The Internet,

while dominated by Microsoft products, is not a network of similar computers. There are

differences in platforms, link sizes, data rates, and network topologies that increase the

difficulty in accurately simulating the Internet even further. Also confusing the issue are

the differences in protocols used by these varied systems and networks. Each of these

protocols has their own operating characteristics, formats, and traffic loads to consider to

generate an accurate model [FlP01].

A third area of concern is the difficulty in representing the amount of traffic load.

The Internet has congestion control techniques and dynamic routing capability.

Simulating this adds significant complexity to a model. Further, Internet traffic is not

constant. The high traffic pattern for each network follow the same pattern as an average

workday; the traffic tends to increase as the workday begins, tails off over the lunch

period, starts to climb again after lunch until the end of the workday, and finally exhibits

some increase in the evening hours after dinner that has been attributed to

home/recreational computer use [FlP01]. Figure 4, shows a typical traffic pattern of

19

several states in the United States that exhibit this pattern for a rise as the workday begins

and a falloff of traffic as nightfall occurs [Whe02].

Weekday Traffic Patterns

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of Day (local).

New York

California

Texas

Illinois

Figure 4. Pattern of Daily Network Traffic

The final factor presented by Floyd and Paxson is that a model of the Internet will

likely not be useful tomorrow. The Internet changes everyday in its operation, size, and

use. Some of the areas that make the future Internet difficult to predict are pricing

structures, the explosive growth of wireless, and the currently undeveloped new “killer

application” [FlP01].

2.4 Internet Protocol Addressing

IPv4 is the predominant protocol used for Internet communication today, but on

the horizon is the IPv6. IPv4 has an address space of 232 yielding 4,294,967,296 IP

addresses. However, due to the reserved IP ranges and limitations on the range usable by

20

Internet community, there are just over 3.5 billion useable IP addresses [WaC02]. Sixty-

five percent of the IPv4 address space is assigned to the United States and the growth of

the Internet in Europe and Asia is causing problems with a lack of available address

space [Huf03].

Internet Assigned Numbers Authority (IANA) assigns and manages the available

Internet address for the world. From the IANA the Regional Internet Registries (RIRs)

receive large groups of IP addresses. These RIRs manage their assigned smaller

addresses and distribute an even smaller range to the large Internet Service Providers

(ISPs) for their area of responsibility. In turn, the large ISPs provide Internet connection

service to the smaller local ISPs and end users.

Classless Inter-Domain Routing (CIDR) is a prefix based standard for the

interpretation of IP address groupings to allow easier use and discussion. The slash

number designation, such as “/8,” denotes the prefix aggregation of the IP address from

the full 32 bit IPv4 address. Thus, a “/8” takes the 32 bit IPv4 address from

approximately 4.3 billion possible addresses and reduces the address to the last 24 bits as

the first 8 bits are masked. This reduces the IPv4 address space under consideration to

16,777,216. This “/8” grouping is the typical CIDR size provided to the RIRs for

dispersal to the ISPs.

The “/8” routing worm reduces the overall IPv4 address space by instituting a

CIDR “/8” allocation table as part of its functionality [ZTG05]. Therefore, out of the

possible 256 “/8” address groups, only 116 are IANA IP routable addresses. Based on

these restrictions and reserved addresses dedicated under the authority of IANA, the

scanning required by a “/8” routing worm is reduced to 45.3% of the IPv4 address space

21

[ZTG05]. This means that instead of scanning the entire 4.3 billion IPv4 address space as

Slammer did, a CIDR “/8” based routing worm would only have to scan 1.95 billion

addresses.

2.5 Increasing Speed of Technology

The speed of both the Internet and computers is increasing each year. According

to the often-quoted Moore’s Law, the speed of computer processing power roughly

doubles every 18 months. Thus, if one uses Moore’s Law to compute the difference in a

computer attached to the Internet between 2003 and 2006, the system in 2006 should be

about 4 times faster. Moore’s Law has been used to predict everything from disk storage

capacity to digital camera resolution. Others have estimated the increase of network

capacity used Moore’s Law.

In fact, the growth of the Internet has more than matched the estimates of Moore’s

Law. During 1996-2002, the traffic on the Internet backbones in the United States

doubled every year and the infrastructure kept pace with this exponential growth [Odl03].

As previously mentioned, the number of users increased 68 times in just eleven years

from 16 million in 1995 to 1,093 million in 2006. This does not follow the Moore’s Law

rate of expansion.

2.6 Related Research

The primary focus of this research is to analyze the performance of the original

Slammer worm, the Slammer routing wom as proposed by Zou, and the SSE routing

proposed in this research on an IPv4 network [ZTG05]. The Slammer worm has been

used in many worm studies where a mathematical model was developed to simulate its

22

effects [WMS05] [PeS04] [YuW04]. The BGP and “/8” routing worms are worms

proposed by Zou and modeled mathematically to compare against the observations of

Slammer and Code Red [ZTG05].

The Directed-Graph Epidemiological (DGE) model has been the basis for many

worm models [KeW91]. It extended the standard epidemiological model to a directed-

graph model and uses in the analysis and simulation of viruses. DGE applied the simple

SIS (Susceptible -> Infected -> Susceptible) epidemiological model to various graphs to

emulate the propagation of viruses [KeW91]. This was one of the first attempts at

mathematically adapting virus propagation to the epidemiological model [KeW91] and

became a reference for future mathematical malicious logic modeling [CGK03] [KRD04]

[RSL04] [YuW04].

Chen used a mathematical model of Code Red to study the propagation

characteristics of worms [CGK03]. It was claimed that the model of Code Red closely

matched the infection rate curve data collected from the original Internet introduction of

Code Red, however no statistical basis for the claim was provided. The model provided a

formula for detecting, monitoring, and defending against further worm attacks and

provided a way to understand worms and aid in the defense against them in the future

[CGK03].

Permulla and Sundaragopalan extended worm modeling to the packet- level.

Their research developed a high-fidelity packet-level network simulation that emulated

the operation of worms on the Internet and included some real operational subsystems.

They included experiments with simulated live monitoring and defensive systems.

23

However, the monitoring and defense system was not included in the mathematical

model of worm propagation [PeS04].

Wei Yu considered four classes of worms and characterized their operation

through modeling and numerical analysis. Yu analyzed pure random-based, peer-to-peer

hit list-based, cooperation-based, and non-cooperation based strategies for worm

operation. The numerical analysis found the most effective worms used hit lists

[YuW04]. This is similar to Zou when considering the “/8” routing worm as a form of

“hit list” worm [ZTG05]. An epidemic model simulated the actions of worms on the

Internet [YuW04].

The goal of the research performed by Joshua Hansen was to prove that a worm

could be programmed to find exploits on a heterogeneous network and use those exploits

to propagate without interaction with its creator. Hansen defines a heterogeneous

network environment as a network that has different operating systems; however, these

systems have a common software program that could be exploited [Han03]. This is

consistent with current Internet topology since, in 2004 Microsoft had the clear majority

of operating systems on the Internet [Fes04]. Java was chosen as the basis for the Hansen

exploit because of the wide use of Java across many operating systems including

Microsoft and UNIX. A six-node network using IPv4 with three real and three simulated

nodes using a virtual machine was used for this simulation. Of those nodes, the

experiment included one real and one virtual node, which communicated wirelessly.

Hansen did not use a live worm, but hard coded the exploit parameters into the modeling

code and initially programmed an artificial vulnerability into each node [Han03].

24

Wei used Slammer data to validate a packet- level worm simulation on the Emulab

test bed using a realistic background traffic model [WMS05]. Their initial research used

the original Slammer data [MPW03], which consisted of 75,000 vulnerable systems and

an average scan rate of 4,000 packets per second and mathematical models of worm

propagation. The worm propagation models were built using the variables of

vulnerability ratio, scanning rate, infection delay, and scanning strategy. The scanning

strategy took into account how much of the address space the worm scanned and how the

worm performed the scan. It also modeled network congestion and network failures.

The resulting infection rate curves, shown in Figure 5, include an estimate of how quickly

a set of vulnerable system would be infected without network congestion [WMS05].

Figure 5. Wei Slammer Worm Simulation

Figure 6 shows Slammer worm propagation with the constant and random

background traffic values. Wei observed that there was a negligible difference between

25

the infect rate of Slammer in the exponential and constant background traffic experiments

and attributed this to Slammer using UDP packets that could easily overcome the model

of the background traffic and congestion. A worm based on TCP would likely exhibit a

larger sensitivity to the background traffic values [WMS05].

Figure 6. Wei Slammer Worm propagation with Network Congestion

Wagner also used Slammer to validate models of network and bandwidth latency

constraints. The simulator was based on observed speed and connection data gathered

from the peer-to-peer file sharing software Napster and Gnutella hosts. During the

Slammer portion of their research, Wagner created a 10-group network, set the initial

number of infected systems at 100, and the vulnerable systems at 75,000 [WPD03]. The

initial number of infected hosts appears to be arbitrarily assigned. The research found the

collected data matched the infection doubling rate observed during the original release of

the Slammer worm and the overall scanning rate after three minutes [MPW03], but

26

deviated significantly from the observed propagation speed. This deviation was attributed

to an increase in line speeds since Slammer was originally released [WMS05].

2.7 Summary

This chapter provides an overview of related research. Specifically, the operation

of malicious logic with an emphasis on worms is provided. More detailed coverage of

the Code Red, Slammer and routing worms and their previously observed propagation

characteristics is also provided. Each of the worms is a version of a scanning worm that

is programmed to randomly scan the available address space.

There have been many mathematical simulations and models of both Slammer

and other scanning worms on IPv4 networks. Only Perumalla, Sundaragopalan and

Hansen tried to include actual operational systems into their research; however they did

not use the actual worms [PeS04] [Han03]. Wei performed some detailed simulation of

worm propagation using mathematical models and a network of computers [WMS05].

Zou proposed and mathematically evaluated a pair of routing worms that proved to be

faster than both the Code Red worm and the Slammer worm [ZTG05]. None of the

previous research has involved re-releasing the Slammer worm onto an actual network to

observe its effects for analysis. Rather, they relied on matching the previously observed

data to build and validate their models.

27

III. Methodology

3.1 Introduction

This chapter describes the methodology used to create the experiment, the trials to

test the hypotheses, and the data analysis. Specifically, Section 3.2 present the problem

definition including the goals and hypotheses, the approach and the experimental

assumptions and limitations. Sections 3.3 and 3.4 cover the system boundaries and

system services. The workload, consisting of the various worms tested in this research, is

discussed in Section 3.5. Section 3.6 covers the metrics collected. The parameters and

factors for this experiment are in Sections 3.7 and 3.8. The techniques used for

evaluating the data collected in this research are covered in Section 3.9. The network

configuration and the design of each worm tested is defined in Section 3.10. Finally,

Section 3.11 presents the analysis and interpretation of the results.

3.2 Problem Definition

3.2.1 Goals and Hypothesis

The primary goal of this research is to characterize the ability of the original

Slammer worm, the Slammer based routing worm proposed by Zou, and a new Single

Slash Eight (SSE) routing worm proposed by this research to infect vulnerable systems

within a given address space on an IPv4 network. The infection rate of these routing

worms across an IPv4 network are determined and their operation compared to the

original Slammer worm. This research also investigates the Slammer worm’s ability to

generate a uniform random IP addresses in a given address space. Finally, the

28

implications of the speed increase of computing systems available today versus those in

use during the original Slammer release is discussed.

Since the Slammer routing worm has only been studied through mathematical

models [ZTG05], this research uses observed Slammer characteristics to mimic the

expected operation of a Slammer routing worm by analyzing its ability to generate

random IP addresses. To evaluate the randomness of the Slammer IP address operation,

each IP address generated will be evaluated as a whole and individually by octet. The

propagation speed of original Slammer worm, the Slammer routing worm, and the SSE

routing worms are compared assuming a computing system from 2003 and a system in

2007. This is accomplished using data collected from a modern infected system for the

2007 data and the use of the original Slammer characteristics for the 2003 data. The

experiment determines whether there is any significant difference between the

propagation speeds in 2003 versus 2007.

3.2.2 Approach

The original Slammer worm code is sent to a vulnerable system, also called the

victim, by a carrier workstation. Once the infection packet is received at the victim, the

worm code executes and the worm generates packets autonomously for further infections.

These infection packets generated by the victim are collected and used to characterize the

operation of the Slammer worm for simulation. These measured propagation

characteristics are combined with mathematical simulations and compared to the known

statistics of the Slammer worm in the wild.

The IP addresses of the Slammer infection packets are analyzed to determine the

worm’s ability to generate uniform random addresses. To ensure uniform distribution

29

within the IP addresses, each of the last three octets is evaluated individually to determine

whether they are each uniformly random in distribution within their smaller address

space. Because the first octet is being simulated for the various routing worms, it can be

represented by any valid octet value and is not germane to this experiment.

Once the randomness has been determined, a mathematical simulation of

infection rate is generated using the variables required for original Slammer, the Slammer

routing worm, and the SSE routing worm. Within the mathematical simulation, the size

of the IP addresses available for scanning, the initial number of infected systems, and the

number of vulnerable systems are controlled and modified based on the particular worm

being evaluated.

Finally, the propagation characteristics collected from the Slammer infected

system are evaluated for their generation speed. This data is compared to the original

Slammer characteristics for the 2003 computing systems versus the current computing

systems available in 2007.

3.2.3 Assumptions and Limitations

It is assumed that a future exploits allowing the propagation of a worm like

Slammer will continue to occur. The primary limitation of this experiment is the inability

to accurately represent the Internet architecture as mentioned in Chapter 2. Without the

ability to represent the Internet or a large network, the true propagation characteristics of

the worms is necessarily limited.

3.3 System Boundaries

The System Under Test (SUT) is an IP network known as the Network Under Attack. As

shown in Figure 7, the number of network nodes, protocol, topology, and links between

30

nodes are all components of the Network Under Attack. The specific Component Under

Test (CUT) is the Slammer worm, Slammer routing worm, and SSE routing worm.

Figure 7. Network Under Attack

3.4 System Services

The service provided by this system is the transport of user data between nodes.

The outcome of this service is success, failure, or degraded operation due to worm

infection. Failure could be due to worm infection preventing valid user data from

crossing the network.

An illegitimate but interesting use of the system service is the propagation of

worms. The outcome of this service is also success, failure, or degradation. Success is

defined as the transfer of a worm from one node to another. Failure occurs when a worm

cannot move from one node to another. Degradation could be caused by the reduction of

the worm’s capability to spread due to the large traffic load.

31

3.5 Workload

The workload of the system is the worms. The first worm, Slammer, provides a

basis for validation on the IPv4 network. The Slammer routing worm is compared to the

results generated by Slammer to determine whether it is faster and to [ZTG05] for

validation. Lastly, the SSE routing worm is compared against both Slammer and the

Slammer routing worm to determine how much faster it is.

3.6 Performance Metrics

The primary metric used in this experiment is the number of systems infected per

second. From the Matlab model of infection rate, the infection doubling rate can be

calculated. This rate is compared to the observed data validate the statistical model. The

known infection rate of Slammer on the Internet also provides a method to determine

whether the Slammer routing worm and SSE routing worm spread faster than Slammer.

The scanning rate is measured by the packets generated per second by an infected system

for a given time period. This metric is also used to compare scan rates between the

systems available for infection during the original Slammer release and those in use

today.

3.7 Parameters

3.7.1 System Parameters

- Number of Nodes: The number of nodes in this experiment is limited by a

constant generation of a multicast address in the first octet that could not

be resolved during this research effort. Therefore, only one vulnerable

node is available for use in the analysis of each worm.

32

- Link Data Rate: As the congestion on a link increases due to network

traffic, the data rate of that link and how much traffic it can carry impacts

the spread of the worms. The link data rate varies from link to link and

cannot be adequately simulated in this research with the resources

available. Therefore, the variation in link capability is not a variable for

consideration in this experiment and each link is a direct connection

through a switch using Category 5e ethernet cable.

- Operating System: Worms normally target one particular operating

system. If the nodes of the network are not running the target operating

system, the worm will not spread. Consideration of how non-vulnerable

nodes affect propagation is not considered. The target host is always

loaded with the vulnerable software component of Microsoft Server 2000,

which the Slammer worm exploits.

- IP Version: IPv4 is used throughout this research. This facilitates the

baseline comparison of the worms under test against the known

propagation characteristics of Slammer.

- Year of the Computing System: There are two time frames considered in

this experiment; the year Slammer was originally released (2003) and year

that this experiment takes place (2007). These two time frames provide a

comparison of the difference in speed of worms released onto systems

used in 2003 to those in use today. The use of the average Slammer worm

scan rate observed in 2003 and the operation of the Slammer worm on a

33

computing system available today provides the baseline for this

comparison.

3.7.2 Workload Parameters

- Worms: The worms represent a malicious packet workload for the

network to transport. Each worm, the original Slammer, the Slammer

routing worm, and the SSE routing worm, are all workload parameters in

this experiment.

3.8 Factors

The factors is the workload and the year of the computing system. There are three

main worms considered in this experiment – the original Slammer worm, the Slammer

routing worm, and the SSE routing worm. The original Slammer worm is used as a

baseline for comparison and validation of the other worms and mathematical simulation

using the archived data and experimental data from other experiments. How the

capabilities of the Slammer routing worm and the SSE routing worms compare to the

original Slammer worm is the focus of this experiment.

The second set of factors is the difference in packet generation rate between the

years 2003 and 2007. The average Slammer worm packet generation rate from 2003 is

used to establish the baseline for comparison to the data observed on a computing system

of today. To evaluate how a fast the Slammer worm, the Slammer routing worm and the

SSE routing worm could propagate on a computing system of today, the actual

observations of the scan rate of the Slammer code on the test network is used.

34

3.9 Evaluation Technique

This experiment directly measures the generation of infection packets on a

network. This data and the originally observed Slammer scan rate is provided as the

input variable of the packets generated per second to a mathematical model to provide

infection rate data.

Two laptops connected by a switch, both described in Appendix A, are used to

simulate an attacking system and a vulnerable host. The attacking system sends the

infectious worm packet to the vulnerable host via UDP packet to infect that system.

Once the vulnerable host receives the infection packet, that host becomes infected and

begins to autonomously propagate the worm to randomly generated IP addresses.

The validation of the worm operation and infection rate is accomplished by

comparing previously collected Slammer data and experiments from [MPS03],

[WMS05], and [ZTG05]. The randomness of the IP addresses is validated through the

use of regression analysis and comparison to a statistically generated uniform distribution

of the available address space.

3.10 Experimental Design

3.10.1 Network Configuration and System Infection Procedure

The network configuration of the hardware for each run of the experiment uses

the same components. Each run consists of two laptops connected to a switch as shown

in Figure 8 connected by category 5e ethernet cable. The specifications for each

component are provided in Appendix A.

35

Figure 8. Network Configuration

A detailed description of the Slammer code used for infecting the victim machine

is provided in Appendix B with analysis of the assembly code and a diagram of stack

operation. The Slammer worm code is sent via a UDP packet to the victim machine

using the Netcat tool. Netcat wraps the Slammer binary code in a UDP packet and sends

the completed packet to the destination address and port specified. This is accomplished

by invoking the Netcat software through the use of the command line as shown in Figure

9.

Figure 9. Netcat Infection Command

Each new infection is initiated using this same command line interface. The

breakdown of the command is shown in Table 2.

Table 2. Netcat Infection Command Description

nc -w2 129.249.92.11 -u -1434 < Slammer

Calls Netcat

Program

Wait two seconds

to close

connection

Target IP Address

Open a UDP

connection to port

1434

Send the

"Slammer" file to

the Target

3.10.2 Experimental Exploration of Slammer Randomness

To establish a baseline for comparison, the Slammer packets are collected and

used to build a statistical graph of the infection rate for comparison to the real world

36

observed operation of Slammer. The first step in this process is to establish that the IP

addresses generated by Slammer are statistically random. The problem with the random

number generator in Slammer is well documented in [MPS03] and [MPW03]. This flaw

affects the first octet and is therefore not part of the experimental consideration in the

generation of random IP addresses. Only the last three octets are analyzed and used for

the examination of randomness.

The uniform distribution of the random addresses generated by Slammer is

verified by analyzing the infection packets generated by Slammer as an entire IP address

space of three octets and individually as to the randomness of the octets themselves. To

verify the statistical uniformity of the random numbers generated by Slammer, the total

address space under consideration is divided into an evenly distributed groupings based

on the number of samples taken. The grouping is established by first taking the upper

value range minus one to account for the value of zero to establish the upper range of the

data set under evaluation. This upper range is then divided by the number of samples

taken which provides the statistical interval for each sample point. The statistical interval

is then multiplied by the sample event number to generated the statistical average for that

sample point. The sample event number and the statistical average are plotted on an

“XY” scatter plot to generate a regression line for analysis of the data collected.

For example, if the experiment called for a statistical spread of a single

hexadecimal number with 20 samples the calculations would be as shown in Table 3. To

find the upper limit, the total possible values of single hexadecimal number, 16, is

reduced by one to account for the value of zero. This upper limit of 15 is divided by the

number of samples taken of 20, which calculates the statistical interval of 0.75. The

37

statistical interval of 0.75 is then multiplied by each sample event number including zero

to generate the statistical average for the data set.

Table 3. Statistical Model Example

Samples

Taken 20
Statistical

Interval 0.75

Event No. 0 1 2 3 4 5 6 7 8 9 10

Statistical

Average 0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5
Event No. 11 12 13 14 15 16 17 18 19 20
Statistical

Average 8.25 9 9.75 10.5 11.25 12 12.75 13.5 14.25 15

This data is then input into an “XY” scatter plot to show the relationship between

the samples collected and values expected as shown in Figure 10. The linearity of the

data collected is compared to the statistical model to establish whether the data exhibits a

similar linearity.

Statistical Average

0

5

10

15

0 5 10 15 20

Samples Taken

H
e
x
a
d

e
c
im

a
l
V

a
lu

e

Figure 10. Statistical Model Graph Example

38

The statistical similarity of the model to the data collected will prove whether the

data collected is uniformly distributed and therefore statistically random across the

available address space. Table 4 provides sample points of the statistical model used for

the single octet and combined octet experiments.

Table 4. Experiment Statistical Model

16 128 192 1024 4096 16384 65535

Single

Octets 256 65535 0.00389105 0.062 0.498 0.747 3.9844 15.9377 63.751 255

Three

Octets 16777216 65535 256.003891 4096 32768 49153 262148 1048592 4194368 16777215

Example Event ValueAddress

Space

Range of

Samples

Samples

Taken

Statistical

Interval

3.10.3 Matlab Model of Infection Rate

The Matlab model used in this research produces a worm infection rate based on

several variables. An overview of the operation of the Matlab model code is provided

here and in more detail in Appendix C. The number of initially infected systems, the

number of vulnerable systems and the number of possible addresses available for

scanning are all entered into the model. The number of vulnerable systems is a range that

always starts at 1 and ends at the total number of vulnerable systems. The Matlab model

uses a pseudo random number generator to generate a number that represents an infection

packet for an IP address of a system for each iteration of the code. The Matlab model

generates one of these numbers for each system infected prior to that iteration. These IP

address numbers are compared against the total number of remaining vulnerable systems.

If the IP address numbers fall within the range of the vulnerable systems then the

iteration number is documented and the available vulnerable systems is reduced by one.

If the IP address is not within the range of the vulnerable systems then the Matlab model

39

continues to the next iteration. This continues until the vulnerable systems are reduced to

zero, which indicates that all of the vulnerable systems have been infected. The Matlab

model then generates the file containing the iteration numbers of when each system was

infected, those numbers are entered into an Excel spreadsheet and multiplied by the

packet per second rate the worm generates.

For example, if the total number of vulnerable systems is 10, the number of

possible addresses is 100, and the initially infected systems equals 1, then the Matlab

code would generate one random number for the first iteration. If the random number

generated falls within the range of 1-10 then the iteration number is noted by the code

and the number of vulnerable systems is reduced to 9. On the next iteration, the Matlab

code generates one random number for each of the two infected systems and compares

those numbers to the remaining vulnerable systems. An example of 5 iterations of the

Matlab model code, including the first two iterations detailed above, are demonstrated in

Table 5 for a worm packet per second rate of 1 second.

 Table 5. Matlab Model Infection Rate Example

Iteration

Number of

Infected

Systems

Number of

Vulnerable

Systems

Number of

Addresses

Available

Number of Pseudo

Random Number

Generated

Numbers

Generated

Time of

Infection

in

Seconds
1 1 10 100 1 7 1

2 2 9 100 2 83 & 59 2

3 2 9 100 2 3 & 60 -

4 3 8 100 3 12, 33, 72 4

5 3 8 100 3 45, 51, 90 -

 From this information a graph of the infection rate curve can be generated as

shown in Figure 11 where the data in Table 5 is extended exponentially.

40

5004003002001000

10

8

6

4

2

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Matlab Model Infection Rate Example

Figure 11. Matlab Model Infection Rate Example

3.10.4 Experimental Validation of Matlab Model Infection Rate Simulation

Once the uniform distribution of the random packets generated by a Slammer-

infected system is verified, the Matlab model of worm infection rates is validated. The

verification of the mathematically generated infection rate is accomplished by comparing

the curve generated by the Matlab model code (Section 3.10.3 and Appendix C) against

the curves generated by previous research and the original observations of the Slammer

worm from 2003. The Matlab model is first compared against the Code Red worm, the

Code Red “/8” routing worm, and the Code Red BGP routing worm experiments

[ZTG05]. A more detailed comparison is performed against the Slammer worm’s

original infection rate and the results found in the research of the Slammer worm

completed by Wei and Zou [WMS05] [ZTG05]. Finally, the proposed SSE routing worm

is compared against the Matlab models of the Slammer worms of 2003/2007 and the

Slammer routing worms of 2003/2007.

41

As discussed in Section 3.10.3, the Matlab model generates an infection rate

curve based on the variables of the initially infected systems, the number of vulnerable

systems, and the size of the address space being scanned by the worm. The Matlab

model variables used to generate the infection rate curves for each of the worms tested in

this research are described below and in Appendix C.

3.10.4.1 Matlab Model Variables for the Code Red Worm Comparisons

The Code Red worm simulations have a vulnerable population of 360,000 and an

initial number of infected systems of 10. The scan rate for the Code Red test is based on

the observed rate of 358 scans per minute. These values and the 4.3 billion possible

addresses are provided to the Matlab model simulation as the input variables. For ease of

reference, Table 6 provides all of the variables used in the Matlab model for the three

Code Red simulations.

The Zou Code Red “/8” routing worm simulations consist of a vulnerable

population of 360,000 and an initial number of infected systems of 10. The scan rate for

the Zou Code Red “/8” routing worm test remains at the observed Code Red rate of 358

scans per minute. However, to mimic the operation of the “/8” routing worm’s ability to

reduce the address space required to scan the possible addresses are reduced to

1,946,156,941.

 The Zou Code Red BGP routing worm simulations have of a vulnerable

population of 360,000 and an initial number of infected systems of 10. The scan rate for

the Zou Code Red BGP routing worm test remains at the observed Code Red rate of 358

scans per minute. However, because the Zou Code Red BGP routing worm further

42

refines the address space required for scanning the possible addresses are reduced to a

total of 1,228,360,647.

Table 6. Matlab Model Variables for Code Red Worms

Number of IP
addresses

Number of
Vulnerable
Systems

Number of
Iterations

Number
of Trials

Initial
Number of

Infected
Systems

Code Red
Worm

4,294,967,296 360,000 10,000,000 1 Ten

Zou Code Red
"/8" Routing

Worm
1,946,156,941 360,000 500,000 1 Ten

Zou Code Red
BGP Worm

1,228,360,647 360,000 500,000 1 Ten

Due to the number of vulnerable systems, and the results of the trial tests, this

experiment is run only once as an evaluation of the Matlab model infection rate. The

remaining worm tests are examined more thoroughly to establish the validity of the

Matlab model.

3.10.4.2 Matlab Model Variables for the Zou Slammer Worm Comparisons

At the time of Slammers release in January of 2003 the vulnerable population was

estimated at 75,000 with 74,856 unique IP addresses observed [MPW03]. Unfortunately,

the numbers used by Zou was arbitrarily set to100,000 for the number of vulnerable

systems and 10 for number of initially infected systems [ZTG05]. The scan rate used for

the Zou Slammer worm is 4,000 packets per second, which simulates the observed

average of Slammer worm during its original run. Table 7 provides the Matlab model

variables used in the Zou Slammer worm simulations.

43

Table 7. Matlab Model Variables for Zou Slammer Worms

Number of IP
addresses

Number of
Vulnerable
Systems

Number of
Iterations

Number
of Trials

Initial Number
of Infected
Systems

Zou Slammer Worm 4,294,967,296 100,000 10,000,000 20 Ten

Zou Slammer Routing
Worm

1,946,156,941 100,000 500,000 20 Ten

The Zou Slammer routing worm is run in the Matlab model with the same 10

initially infected systems as the Zou Slammer worm. However, the number of IP

addresses and scanning rate are changed to reflect the capabilities of the Zou Slammer

worm. The number of IP addresses available for scanning by the Zou Slammer routing

worm is reduced to 1,946,156,941 to reflect the worm’s ability to reduce the required

scanning space and the scan rate is decreased to 3,108 pps to reflect the larger packet size

of 520 bytes.

The Slammer worm simulations are run in the Matlab model 20 times and used to

generate a mean infection rate curve with confidence level of 95%.

3.10.4.3 Matlab Model Variables for the Slammer Worm Comparisons

To more accurately represent the actual operation of the original Slammer worm,

number of vulnerable systems is set to the 74,856 unique IP addresses observed in 2003

is used for the Slammer worm 2003 model. Additionally, the number of initially infected

systems is set to one since there was no evidence to support there was originally more

than one initially infected system. The scan rate used for the Slammer worm 2003 is set

at the originally observed 4,000 packets per second. Table 8 provides the Matlab model

variables used in the Slammer worm 2003 and 2007 simulations.

44

The Slammer worm 2007 is run using the Matlab model with the same number of

initially infected systems and vulnerable systems as the Slammer worm 2003. However,

the scanning rate is changed to 14,398 pps to reflect the observed capabilities of

computing systems today.

The Slammer worm simulations are run in the Matlab model 20 times and used to

generate a mean infection rate curve with confidence level of 95%.

Table 8. Matlab Model Variables for the Slammer Worms

Number of IP
addresses

Number of
Vulnerable

Systems

Number of
Iterations

Number
of Trials

Initial Number
of Infected

Systems

Slammer Worm 2003 4,294,967,296 74,856 10,000,000 20 One

Slammer Worm 2007 4,294,967,296 74,856 10,000,000 20 One

3.10.4.3 Matlab Model Variables for the Slammer Routing Worm Comparisons

Due to the use of an arbitrary number of 100,000 vulnerable systems and 10

initially infected systems by Zou, the infection rate curve they generated does not

accurately represent how a Slammer routing worm would have behaved in 2003. To

correct this problem, the Matlab model is used to generate a Slammer routing worm using

the original 2003 Slammer worm numbers. Thus, the number of vulnerable systems is set

to the 74,856 unique IP addresses and the number of initially infected systems is set at

one. The scan rate used for the Slammer routing worm 2003 is set at the originally

observed 3,108 packets per second as calculated by Zou because of the increase of the

infection packet size to 520 bytes [ZTG05]. Table 9 provides the Matlab model variables

used in the Slammer routing worm 2003 and 2007 simulations.

45

The Slammer routing worm 2007 is run using the Matlab model with the same

number of initially infected systems and vulnerable systems as the Slammer routing

worm 2003. However, the scanning rate is changed to 11,187 pps to reflect the increased

packet generation capabilities of computing systems today.

The Slammer routing worm simulations are run in the Matlab model 20 times and

used to generate a mean infection rate curve with confidence level of 95%.

Table 9. Matlab Model Variables for the Slammer Routing Worms

Number of IP
addresses

Number of
Vulnerable
Systems

Number of
Iterations

Number
of Trials

Initial Number
of Infected
Systems

Slammer Routing
Worm 2003

1,946,156,941 74,856 500,000 20 One

Slammer Routing
Worm 2007

1,946,156,941 74,856 500,000 20 One

3.10.4.4 Matlab Model Variables for the SSE Routing Worm Comparisons

For the analysis of the SSE routing worms proposed in this research, the number

of vulnerable systems is reduced to the size of one “/8” grouping of IP addresses. The

total 74,856 vulnerable systems are divided by the 116 “/8” routable addresses. This

makes the total vulnerable population within each “/8” set scanned by the SSE routing

worm 645 systems. The number of IP addresses scanned by the SSE routing worm is also

reduced to 16.7 million. This represents the total of the 1.95 billion available for normal

Slammer routing worm divided into the 116 “/8” ranges. Due to the size of the SSE

routing worm only increasing the original Slammer worm code by eight bytes, the

packets per second rate is set at 3,922. Table 10 provides the Matlab model variables

used in the SSE routing worm 2003 and 2007 simulations.

46

The SSE routing worm 2007 is run in the Matlab model with the same number of

initially infected systems and vulnerable systems as the SSE routing worm 2003.

However, the scanning rate is changed to 14,118 pps to reflect the increased packet

generation capabilities of computing systems today.

 The SSE routing worm simulation is run in the Matlab model 50 times using the

previously identified 16.7 million addresses and 645 vulnerable systems. This curve is

compared to the previous worm simulations for analysis of similarity.

Table 10. Matlab Model Variables for the SSE Routing Worms

Number of IP

addresses

Number of

Vulnerable
Systems

Number of

Iterations

Number

of Trials

Initial Number

of Infected
Systems

SSE Routing Worm
2003

16,777,216 645 500,000 50 One

SSE Routing Worm
2007

16,777,216 645 500,000 50 One

3.10.5 Experimental Examination of the Slammer Scanning Rate

Packet generation rate by original Slammer worm is collected from the testbed

network to provide another point of comparison with the real world observations. The

packets are collected after the initial infection is complete and the infected system is

automatically generating infection packets. The mean difference in inter-arrival time

between each packet is measured for the collection period. Twenty separate collections

of infection packets are used to generate the packet per second rate.

From the packet generation analysis, the speed of an average 2007 computing

system is estimated and used to generate a comparison between the worm speeds of today

versus those possible in 2003. For these tests, the original Slammer worms, the Slammer

47

routing worms, and the SSE routing worms are set to their respective available address

scanning spaces and vulnerable systems as shown in Table 11.

Table 11. Worm Variables for Year Simulations

Number of IP
addresses

Number of

Vulnerable
Systems

Number of
Iterations

Number
of Trials

Initial Number

of Infected
Systems

Slammer Worm
2003

4,294,967,296 74,856 10,000,000 20 One

Slammer Worm
2007

4,294,967,296 74,856 10,000,000 20 One

Slammer Routing

Worm 2003
1,946,156,941 74,856 500,000 20 One

Slammer Routing

Worm 2007
1,946,156,941 74,856 500,000 20 One

SSE Routing

Worm 2003
16,777,216 645 500,000 50 One

SSE Routing

Worm 2007
16,777,216 645 500,000 50 One

3.10.6 Examination of the Slammer Infection Doubling Rate

From the Matlab model simulations of the Slammer worm 2003 variable numbers

an infection doubling rate is developed for comparison to the 8.5 (+/-1) second estimated

by Moore [MPW03]. This estimated global infection doubling rate is calculated for

65,536 systems, which is the largest number of vulnerable systems attainable prior to the

limit of 74,856 possible systems. The Moore research noted, the original Slammer worm

doubling rate was only estimated for the first minute [MPW03]. Therefore, in addition to

the complete doubling rate curve, a more detailed analysis of the first 60 seconds is

provided. Then Matlab model of the Slammer worm 2003 doubling rate is compared

original Slammer worm infection doubling rate curve for evaluation of their similarity.

48

3.11 Analysis and Interpretation of Results

There are many aspects of the Slammer worm investigated in this research, the

first of which is the packet per second generation speed. The packets generated per

second by the Slammer worm infected system on the testbed network are analyzed and

compared to the observed number of packets per second generated by Slammer in

January 2003. This provides a basis for the calculating the time for each potential victim

to be infected on the current Internet, which allows the speed of infection to be

determined that could be expected if the worms were released on a network today.

This research investigates the Slammer worm’s ability to generate a uniform

random IP addresses in a given address space through the use of statistical comparison.

Based on the comparison of the destination IP addresses of infection packets collected to

the statistically generated regression line the uniform distribution of the Slammer worm’s

IP address generation is established. The similarity between these is evaluated to

establish the uniformity of distribution. Further, to determine if the Slammer worm is

generating the random IP addresses in a non-random pattern, lag plots of the data are

created to analyze for existence of an observable pattern. The presence of a pattern

demonstrates the numbers are in fact correlated. The combination of the analysis of the

uniform distribution and lag plots provide this research to determine the statistical

randomness of the Slammer worm’s generation of IP addresses.

The Matlab model of worm infection rates is compared to previous research for

validation and analysis of the original Slammer worm, the Slammer routing worm, and

the SSE routing worm. The first Matlab Model comparison made is to the Code Red

worm research performed by Zou [ZTG05]. The Matlab model of the Code Red worm,

49

the Zou Code Red BGP routing worm, and the Zou Code Red “/8” Routing is analyzed

for similarity to the of the Zou infection rates of those worms [ZTG05]. The Matlab

model of the original Slammer worm infection rate is compared to the observed Slammer

characteristics from January 2003 and to the results of the Wei and Zou research

[WMS05], [MPS03], [MPW03], and [ZTG05]. As part of this comparison of the Matlab

model to the Slammer worm’s operational characteristics, the Matlab model rate of

infected systems doubling versus that observed by Moore is performed [MPW03]. If the

comparisons show a close relationship, then the Matlab model simulations can be

considered representative of how the original Slammer worm operates.

The Matlab model is used to generate the infection rate curves for comparison of

the original Slammer worm 2003 and how the Slammer worm operates on a system of

today. The Slammer routing worm is also generated by the Matlab model for the 2003

and 2007 computing system operation. These four worms, the Slammer worm 2003/2007

and the Slammer routing worm 2003/2007, are compared to determine the speed

differences between each other. These differences will determine how fast each worm is

in relation to each other and characterizes their infection rate.

Finally, the SSE routing worm is modeled by Matlab to characterize its infection

rate. Then the SSE routing worm 2003/2007 are calculated and compared to the

Slammer worm 2003/2007 and Slammer routing worm 2003/2007 for determination of

the speed difference between them. These final comparisons provide the ability to

determine which of these worms is the fastest at infecting a vulnerable population.

50

3.12 Summary

This chapter discusses the methods used to analyze the propagation of the original

Slammer worm, the Slammer Routing worm, and the SSE routing worm across an IPv4

network. This chapter defines under consideration for this research, the goals and

hypothesis, the approach taken to complete this experiment, and the assumptions and

limitations bounding this research. In this chapter, the system boundaries, the services

provided by the system, and the workload of the system is covered. The metrics used in

the measurement of performance, the description of the system and workload parameters,

and the factors are discussed in this chapter. The techniques used for evaluating the data

and a detailed explanation of the experiment design is provided. This chapter concludes

with coverage of the analysis and interpretation of the results generated by the

experiments in this research.

51

IV. Analysis and Results

This chapter presents the results and analysis of the data collected from the

experiment simulations of the worm infections. Section 4.1 covers the collection and

analysis of Slammer’s packet per second generation. Section 4.2 examines the

randomness of Slammer’s IP address and octet generation. In Section 4.3 the Matlab

worm models are presented for comparison to the original Slammer worm and the routing

worm models proposed by Zou. The comparison of worm speeds possible on computing

systems of today versus those available in 2003 is provided in Section 4.4. Section 4.5

examines the infection rate of the original Slammer worm versus the SSE routing worm.

4.1 Slammer Packet Generation

The test run to identify a mean packet generation time by an infected system

yielded interesting results. Twenty separate collections of packets generated by the

original Slammer worm code are collected and analyzed. As shown in Table 12, the

mean time between packet generation is 69.46 µsec with the laptop operating on A/C

power. This generation time is extremely stable, as seen by the small standard deviation

and confidence intervals. This equates to 14,398 packets per second (pps), which falls

into the upper half of the range observed during the Slammer worm’s original release of

an average 4,000 and maximum 26,000 scans per second per worm-infected machine

[MPS03].

52

Table 12. Slammer Packet Per Second on A/C Power

Average Inter-Arrival

Time of Infection

Packets

Standard

Deviation

Upper

Confidence

Interval @95%

Lower

Confidence

Interval @ 95%

Packets Per

Second or

Scans Per

Second
69.46 µsec 1.49 µsec 70.11 µsec 68.8 µsec 14398 pps

The testing of Slammer’s packet per second capability reveals an increase in the

time to generate packets when the system is operating on battery power. A short test and

analysis of this anomaly is performed to calculate the packets per second of Slammer on

battery power. As shown in Table 13, the infected system generates less than half of the

amount of packets on battery power as it does on A/C power. The mean time between

packet generation is 152.28 µsec with the laptop operating on battery power. The

standard deviation and confidence intervals are only slightly larger than those observed

while operating on A/C showing that the system is still fairly stable in the packet per

second generation while operating on battery power. This generation rate equates 6,567

pps on battery power. Although this is amount is less than half of the observed amount

when operating on A/C power, Slammer is still generating over the average 4,000 and

below the maximum 26,000 scans per second per worm-infected machine observed on

the Internet [MPS03].

Table 13. Slammer Packet Per Second on Battery Power

Average Inter-Arrival

Time of Infection

Packets

Standard

Deviation

Upper

Confidence

Interval @95%

Lower

Confidence

Interval @ 95%

Packets Per

Second or

Scans Per

Second
152.28 µsec 6.01 µsec 155.55 µsec 149.02 µsec 6,567 pps

This data confirms that the Slammer code being utilized is operating within the

previously observed characteristics and validates the use of the A/C power packets per

second for use in calculating the time it will take to infect a group of systems of similar

53

construction. The validation of the Matlab model infection rates will initially be

validated using 4,000 scans per second per worm [ZTG05], [WMS05], [MPW03].

Moore’s Law has been refined and changed over the years. Adjustments had to

be made due to observations where Moore’s Law fell short by 38% during a 1970’s

estimate and was over by 27% in 1975 of transistor capabilities. The original version of

the law developed in 1965, was that the doubling would occur every 12 months. Later,

there was some consideration given to increase the time span to 24 months. This

refinement led to the currently quoted estimation of 18 months.

Due to this ever-changing growth rate, this 18-month rule has been refined further

to try and match the observed growth curves. Dave Epstein of the Microprocessor

Report suggested a solution to the variation in Moore’s Law called “Epstein’s

amendment.” Epstein’s amendment modifies the growth calculations of Moore’s Law by

adding an additional six months to the doubling rate on an every ten years interval.

Where in the 1970s the growth rate was every twelve months, by 1980 the doubling rate

needed to be increased to every 18 months. Finally, by Epstein’s amendment, the growth

rate in 2000 was projected to double every 30 months [Hal06].

In consideration of Moore’s Law and Epstein’s modification, the operational

characteristics of systems currently connected to the Internet should approach the average

Slammer packet per second generation of 3.2 times that originally observed in January of

2003. Thus, a network of computers in January 2007 should produce an average of

12,800 pps when infected by Slammer. The observed packet per second rate for a

Slammer infected system during this research is 14,398 pps. The observed packet per

second generation is 12.48% greater than that of the Moore’s Law with the Epstein

54

modification estimate. However, the estimated 2007 upper limit of scan per second is

calculated at 83,200 using Moore’s Law with the Epstein amendment. This makes the

14,398 pps observed during this research fall within the estimated range from the average

of 12,800 to a maximum of 83,200 for a computing system of today. Thus, for final

speed analysis of a computing system in 2007 the average observed results for Slammer

packet generation on an A/C power source of 14,398 pps is used.

4.2 Slammer Randomness

The true randomness of the original Slammer worm’s pseudo random number

generator has previously been studied by Moore [MPS03]. In that analysis they observed

a small flaw that limited the ability of the original Slammer worm to generate random

numbers, the corrections of which are discussed in more detail in Appendix B [MPS03].

However, this flaw did not prevent Slammer from essentially taking over the Internet

during its run [HyE03]. In these next two subsections the analysis of Slammer’s

capability to uniformly generate random IP Addresses across the IP address range under

test is presented. First, Slammer’s ability to generate a uniform distribution of IP’s across

the entire address span under test is considered. Then Slammer’s ability to generate a

uniform random distribution across the individual last three IP address octets is

examined.

4.2.1 Slammer IP Address Randomness

The analysis provided here shows that despite its flaws, the original Slammer

worm generated IP addresses are well distributed throughout the address space.

However, as a whole there is a pattern in the form that the addresses are generated. This

could be indicative of the flaw noted by Moore [MPS03] [MPW03].

55

The lag plot in Figure 12 of the IP addresses generated by the Slammer worm is a

typical example of 100,000 data points obtained during testing. This lag plot of the

combined octets generated by Slammer shows a pattern in the IP address generation. The

addresses that are generated seem to develop a repeating diamond pattern formed by two

faintly intersecting lines. From this lag plot it is clear that there is an observable pattern

to the generation of random numbers by Slammer. Despite this anomaly, the worm

provides a fairly uniform distribution for the statistical coverage of the entire range of IP

addresses being considered in this experiment.

1600000014000000120000001000000080000006000000400000020000000

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

Combined Octets (i-1)

C
o

m
b

in
e

d
 O

c
te

ts

Lag Plot of Combined Octets

Figure 12. Lag Plot of Slammer-Generated IP Addresses

The regression equation of the Slammer IP addresses gathered from the infection

packets, as shown in Table 14, shows that the p-value for the comparison to the

56

statistically generated IP address line is zero. This means there is a high correlation

between the statistical and Slammer-generated IP addresses. Further, the R-squared

values, which represent the closeness of fit to a linear line, are both 100% indicating that

the Slammer-generated packets match the statistical line

Table 14. Slammer IP Address Generation Regression Analysis

Source DF SS MS F P

Regression 1 1.53721E+18 1.53721E+18 4.06328E+11 0.000

Error 65533 2.47923E+11 3.78318E+06

Total 65534 1.53721E+18

The regression equation is

Slammer Generated = -197.4 + 1.00 Statistically Generated

Analysis of Variance

S = 1945.04 R-Sq = 100% R-Sq(adj) = 100%

The residual plots, shown in Figure 13, further demonstrate the even distribution

of the Slammer-generated IP addresses. Although there is a large variation in the

calculated value of residuals, this can be explained by the size of the address space

compared to the number of samples. Because the address space under consideration is

4.3 billion possible addresses and the number of samples used in analysis limited by

software restrictions and memory limits, the residual analysis is based on 0.0015 percent

of the possible addresses available. This numerical limitation is causing the larger

variation in residuals shown. However, both visually and mathematically, the plots show

that the differences between the IP addresses generated by Slammer are uniform across

the range of the address space. The normal probability plot illustrates that the generated

packets match the statistical line with only a small deviation at the tails of less than one

percent. Both the fitted value and observation order of the residuals show that there is an

even distribution of differences across the IP address range. Finally, the histogram of the

57

residuals shows a well centered distribution with tails that fall away at a smooth rate.

The histogram strongly indicates the Slammer-generated IP addresses and the statistically

generated IP addresses are the same.

The fitted line plot in Figure 14 demonstrates both visually and mathematically

that the IP addresses generated by Slammer and the statistical model are identical. As

shown previously in the analysis of the residuals, this fitted line plot analysis calculates

the R-squared values to be a 100% match.

1000050000-5000-10000

99.9999

99.99

99

90

50

10

1

0.01

0.0001

Residual

P
e

r
ce

n
t

1600000012000000800000040000000

5000

2500

0

-2500

-5000

Fitted Value

R
e

s
id

u
a

l

4800320016000-1600-3200-4800

1600

1200

800

400

0

Residual

F
re

q
u

e
n

cy

65
00

0

60
00

0

55
00

0

50
00

0

45
00

0

40
00

0

35
00

0

30
00

0

25
00

0

20
00

0

15
00

0

10
00

0
50

001

5000

2500

0

-2500

-5000

Observation Order

R
e

si
d

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Slammer Worm Versus Statistically Generated IP Addresses

Figure 13. Residual Plots of Slammer IP Address Generation

58

18
00

00
00

16
00

00
00

14
00

00
00

12
00

00
00

10
00

00
00

80
00

00
0

60
00

00
0

40
00

00
0

20
00

00
00

18000000

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

0

Statisitically Generated

S
la

m
m

e
r

G
e

n
e

ra
te

d
S 1945.04

R-Sq 100.0%

R-Sq(adj) 100.0%

Fitted Line Plot for Slammer Generated IP Addresses vs. Statistical Model
Slammer Generated = - 197.5 + 1.000 Statisitically Generated

Figure 14. Fitted Line Plot of Slammer versus Statistical Model

Thus, despite the Slammer-generated IP address pattern observed in Figure 12,

the IP addresses generated are shown to be uniformly distributed across the IP range

being considered. This uniform distribution ensures the experiment will accurately

represent the simulation of a randomly scanning worm across the IP address space.

4.2.2 Slammer Octet Randomness

In this subsection each individual octet generated by Slammer is examined to

determine the uniformity of distribution throughout the octet range. This uniform

distribution demonstrates a statistical coverage, in that the entire range is of addresses is

chosen with equal probability, over the entire range of octets being considered in this

experiment. The detail provided in this section further validates the ability of a Slammer-

based worm to randomly generate any octet value for a given IP range. Each octet is

individually examined to provide fine granularity for emphasis on the uniform

59

distribution within the set of randomly generated octets. Each individual lag plot is a

typical example of a collection of 2,560 data points. This provides the clearest visual

indication of whether a trend in the data is present. However, the regression equations

and residual plots are attained through the use of the same typical 65,534 data point

captures.

4.2.2.1 Slammer Second Octet Randomness

Shown in Figure 15, the lag plot of the second octet demonstrates some of the

previously observed anomalies that were found during the evaluation of the combined

octet generation lag plot. Here the lines are harder to discern, but the lines are still

visually observable illustrating that there is some pattern to the generation of the octets.

250200150100500

250

200

150

100

50

0

Second Octet (i-1)

S
e

c
o

n
d

 O
c
te

t

Lag Plot of Second Octet

Figure 15. Lag Plot of Slammer-Generated Second Octet

60

However, once again the regression equation of the Slammer generation of the

second octet, as shown in Table 15, shows a value of zero for the p-value for the

comparison to the statistically generated octet series. This means there is a high

correlation between the statistical and Slammer-generated random octet series. Further,

the R-squared values, which represent the closeness of fit to a linear line, are both 100%

indicating that the Slammer-generated packets match the statistical line.

Table 15. Slammer-Generated Second Octet Regression Analysis

Source DF SS MS F P

Regression 1 357748656 357748656 3.95816E+09 0.000

Error 65533 5923 0

Total 65534 357754579

The regression equation is

Slammer Generated = -0.5422 + 0.9998 Statistically Generated

Analysis of Variance

S = 0.300637 R-Sq = 100% R-Sq(adj) = 100%

The residual plots, shown in Figure 16, further demonstrate the even distribution

of the Slammer-generated IP addresses. The 4-way plot shows that the differences

between the octets generated by Slammer and the statistical model are uniform across the

range of the address space. The normal probability plot illustrates that the generated

packets match the statistical line with some small deviation at the tails of less than five

percent. Both the fitted value and observation order of the residuals show that there is an

even distribution of differences across the octet range, but visually there appears to be

some possible sinusoidal pattern to the octets generated. This sinusoidal modulation is

small with a +/- 0.25 difference in the residuals. The histogram of the residuals illustrates

a visually unusual pattern with the distribution of the histogram being normally

distributed with a flattened top. This flattened top is not due to graphical clipping, but

indicates that the differences in the residuals are evenly spread across the octet address

61

span. Despite these unusual visual patterns, the statistical analysis of the regression

equation denotes the data is statistically uniformly distributed across the address space.

In the fitted line plot in Figure 17, it is shown that both visually and

mathematically that the second octet generated by Slammer and the statistical model are

identical. As shown previously in the analysis of the residual equation and plots, the

fitted line plot analysis shows the R-squared values to be a 100% match.

10-1

99.9999

99.99

99

90

50

10

1

0.01

0.0001

Residual

P
e

r
ce

n
t

240180120600

0.50

0.25

0.00

-0.25

-0.50

Fitted Value

R
e

si
d

u
a

l

0.510.340.170.00-0.17-0.34-0.51

600

450

300

150

0

Residual

F
re

q
u

e
n

cy

65
00

0

60
00

0

55
00

0

50
00

0

45
00

0

40
00

0

35
00

0

30
00

0

25
00

0

20
00

0

15
00

0

10
00

0
50

001

0.50

0.25

0.00

-0.25

-0.50

Observation Order

R
e

si
d

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Slammer Generated Second Octet

Figure 16. Residual Plot for Slammer-Generated Second Octet

62

250200150100500

250

200

150

100

50

0

Statistically Generated

S
la

m
m

e
r

G
e

n
e

ra
te

d
 S

e
c
o

n
d

 O
c
te

t
S 0.300637

R-Sq 100.0%

R-Sq(adj) 100.0%

Fitted Line Plot
Slammer Generated Second Octet = - 0.5422 + 0.9998 Statistically Generated

Figure 17. Fitted Line Plot for Slammer-Generated Second Octet

4.2.2.2 Slammer Third and Fourth Octet Randomness

The analysis for the third and fourth octets generated by Slammer reveals results

that are almost identical. Unlike the combined octet and second octet lag plots, the lag

plots for the third and fourth octets shown in Figures 18 and 19 do not exhibit any

discernable address generation pattern. This provides further evidence that the pattern

observed in the combined and second octet lag plot analyses are related and not

necessarily pervasive throughout the original Slammer worm random address generation

code. This also indicates that the diamond pattern observed is related to the errors

denoted in the Slammer worm analysis performed by Moore [MPS03]. Further detailed

analysis to pinpoint this anomaly in the random number generation algorithm anomaly is

not part of this research; however this may need to be investigated prior to extending the

experiment presented here.

63

Another indication in the similarity between the third and fourth octets is the

extremely small difference in their regression equations as shown in Tables 16 and 17.

Due to this similarity, their analysis is combined for brevity. The regression equations

for the Slammer generation of these last two octets each have a zero for their p-value.

This proves there is a high correlation between the statistical and Slammer-generated

random octets. The R-squared values for each of the last two octets equal 100%. This

analysis shows, once again, that the random octets generated by Slammer match the

statistical line.

250200150100500

250

200

150

100

50

0

Third Octet (i-1)

T
h

ir
d

 O
c
te

t

Lag Plot of Third Octet

Figure 18. Lag Plot of Slammer-Generated Third Octet

64

250200150100500

250

200

150

100

50

0

Fourth Octet (i-1)

Fo
u

th
 O

c
te

t

Lag Plot Fourth Octet

Figure 19. Lag Plot of Slammer-Generated Fourth Octet

Table 16. Slammer-Generated Third Octet Regression Analysis

Source DF SS MS F P

Regression 1 3576561334 3576561334 3.44431E+09 0.000

Error 65533 6805 0

Total 65534 357662938

The regression equation is

Slammer Generated = -0.5076 + 0.9996 Statistically Generated

Analysis of Variance

S = 0.322242 R-Sq = 100% R-Sq(adj) = 100%

Table 17. Slammer-Generated Fourth Octet Regression Analysis

Source DF SS MS F P

Regression 1 357164896 357164896 3.23815E+09 0.000

Error 65533 7228 0

Total 65534 357172124

The regression equation is

Slammer Generated = -0.517399 + 0.999 Statistically Generated

Analysis of Variance

S = 0.332113 R-Sq = 100% R-Sq(adj) = 100%

65

The residual plots for the third and fourth octets, shown in Figures 20 and 21,

continue to illustrate the even uniform distribution of Slammer infection packets. The 4-

way residual plots display that the differences between the octets generated by Slammer

and the statistical model are uniform across the range of the octet address space. The

normal probability plot illustrates that the generated packets match the statistical line with

some small deviation at the tails approaching one percent. Both the fitted value and

observation order of the residuals show that there is an even distribution of differences

across the octet range, but as observed in the analysis of the second octet, visually there

appears to be some sinusoidal pattern to the octets generated. This sinusoidal modulation

is double the characteristics observed with the second octet with a +/- 0.50 difference in

the residuals. However, unlike the histogram of the second octet, the histogram of the

residuals for the third and fourth octets illustrate a more normally distributed pattern with

only a small indication of a flattened top. Although there appears to be a more

pronounced sinusoidal pattern in the fitted and observed residuals, the statistical analysis

of the regression data indicates that the data is statistically uniformly distributed.

The fitted line plots shown in Figures 22 and 23 demonstrate both visually and

mathematically that the last two octets generated by Slammer and the statistical model

are virtually identical. As shown previously in the analysis of the residual equation and

plots, the fitted line plot analysis shows the R-squared values to be a 100% match.

66

10-1

99.9999

99.99

99

90

50

10

1

0.01

0.0001

Residual

P
e

rc
e

n
t

240180120600

1.0

0.5

0.0

-0.5

-1.0

Fitted Value

R
e

s
id

u
a

l
0.720.480.240.00-0.24-0.48-0.72

1500

1000

500

0

Residual

F
re

q
u

e
n

cy

65
00

0

60
00

0

55
00

0

50
00

0

45
00

0

40
00

0

35
00

0

30
00

0

25
00

0

20
00

0

15
00

0

10
00

0
50

001

1.0

0.5

0.0

-0.5

-1.0

Observation Order

R
e

si
d

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Third Octet

Figure 20. Residual Plot for Slammer-Generated Third Octet

210-1-2

99.9999

99.99

99

90

50

10

1

0.01

0.0001

Residual

P
e

r
ce

n
t

240180120600

1.0

0.5

0.0

-0.5

-1.0

Fitted Value

R
e

si
d

u
a

l

0.720.480.240.00-0.24-0.48-0.72

1500

1000

500

0

Residual

F
re

q
u

e
n

cy

65
00

0

60
00

0

55
00

0

50
00

0

45
00

0

40
00

0

35
00

0

30
00

0

25
00

0

20
00

0

15
00

0

10
00

0
50

001

1.0

0.5

0.0

-0.5

-1.0

Observation Order

R
e

si
d

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Fourth Octet

Figure 21. Residual Plot for Slammer-Generated Fourth Octet

67

250200150100500

250

200

150

100

50

0

Statistically Generated

S
la

m
m

e
r

G
e

n
e

ra
te

d
 T

h
ir

d
 O

c
te

t
S 0.322242

R-Sq 100.0%

R-Sq(adj) 100.0%

Fitted Line Plot
Slammer Generated Third Octet = - 0.5076 + 0.9996 Statistically Generated

Figure 22. Fitted Line Plot for Slammer-Generated Third Octet

250200150100500

250

200

150

100

50

0

Statistically Generated

S
la

m
m

e
r

G
e

n
e

ra
te

d
 F

o
u

rt
h

 O
c
te

t

S 0.332113

R-Sq 100.0%

R-Sq(adj) 100.0%

Fitted Line Plot
Slammer Generated Fourth Octet = - 0.5174 + 0.9990 Statistically Generated

Figure 23. Fitted Line Plot for Slammer-Generated Fourth Octet

68

From the data presented above, it is shown that the Slammer-generated third and

fourth octets are uniformly distributed across the octet range. The statistically generated

model and the Slammer-generated packets match to a point of virtual identicalness. This

proves that within the total range of IP and octet addresses, Slammer generates a

uniformly distributed set of random numbers for packet infection despite the pattern

anomaly observed in the lag plots.

4.3 Matlab Model Simulation of Slammer Routing Worm Operation

This first section compares the results of the Matlab model-generated infection

rates compared to the results presented by Zou to validate the Matlab model simulation.

It also compares the estimated infection doubling rate during the original Slammer worm

release versus the Matlab model infection doubling rate. Finally, this section compares

the Matlab model infection rate data from this experiment against the infection rate data

generated in the Wei research.

4.3.1 Validation of Matlab Model Infection Rate Simulation

A short visual comparison of the infection rates of the Code Red and routing

worms generated by Zou versus the Matlab model infection rates of those worms is

provided. A more detailed statistical comparison of the infection rates of original

Slammer worm and the “/8” routing worm is compared against the infection rate

generated by the Matlab model.

4.3.1.1 Code Red versus Routing Worms

Figure 24, the Code Red and Zou Code Red routing worm infection rates

generated by the Zou research and the infection rates generated by the Matlab model.

These infection rate models set the vulnerable systems at 360,000 and scan rate of 358

69

packets per minute for each worm simulated [ZTG05]. Due to the size of the simulation

and the detailed analysis provided of the Slammer infection curves, these graphs are

presented as a visual example of the accuracy of the Matlab model of the infection rate.

The two charts show a similarity that indicates a strong correlation between the two

simulation models. These visual and numerical similarities based on the visual

comparisons of the two graphs validate the Matlab model of infection rate. This research

was limited to visual comparisons due the unavailability of the raw research data

generated by Zou.

Figure 24. Zou Code Red versus Matlab Model Code Red Infection Rates

70

4.3.1.2 Original Slammer versus “/8” Routing Worm

The infection rate data for the original Slammer worm is based on an average

packet per second rate of 4,000 with 100,000 vulnerable systems [ZTG05]. The number

of vulnerable systems, 100,000, appears to be an arbitrary number chosen by Zou for

their research as it does not match the observed number of 74,856 systems infected

[MPS03]. According to their research, the Slammer routing worm was based on 3,108

pps with the same 100,000 vulnerable systems. The infection rate characteristics found

in their research are shown in Figure 25 [ZTG05].

Figure 25. Zou Slammer Worm versus Zou Slammer Routing Worm

The infection rate generated by the Matlab model for comparison to the Zou

research is run 20 times and a 95% confidence interval is provided. Each of these

infection rate curves uses the same factors of 100,000 vulnerable systems and an initial

number of infected systems of 10 hosts used by Zou [ZTG05]. The Matlab model

71

generation of the Slammer routing worm infection curve is generated using the 3,108 pps

to account for the increased size of the infection packet [ZTG05]. For the Matlab model

generation of the original Slammer worm infection rate, the average of 4,000 pps

observed during its original release is used. The two infection rate curves are presented

in Figures 26 and 27. Additionally, a third Matlab model-generated infection rate curve

for the Slammer routing worm is presented in Figure 28 with a 95% confidence interval

over 20 runs with the packets per second set at 4,000. The average infection rate curves

from the data shown in Figures 26, 27 and 28 are combined into one graph presented in

Figure 29 to show the speed differences between the Matlab models.

120100806040200

100000

80000

60000

40000

20000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Average

Lower Confidence Interval

Upper Confidence Interval

Matlab Simulation of Zou Slammer Routing Worm @ 3,108 PPS with 95% CI

Figure 26. Matlab Model of Zou Slammer Routing Worm @ 3,108 pps

72

200150100500

100000

80000

60000

40000

20000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Average

Lower Confidence Interval

Upper Confidence Interval

Matlab Simulation of Original Slammer Worm @ 4,000 PPS with 95% CI

Figure 27. Matlab Model of Original Slammer Worm @ 4,000 pps

100806040200

100000

80000

60000

40000

20000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Average

Lower Confidence Interval

Upper Confidence Interval

Matlab Simulation of Zou Slammer Routing Worm @ 4,000 PPS with 95% CI

Figure 28. Matlab Model of Zou Slammer Routing Worm @ 4,000 pps

73

20015010050

100000

80000

60000

40000

20000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Zou Slammer Routing Worm @ 4,000 pps

Zou Slammer Routing Worm @ 3,108 pps

Zou Slammer Worm @ 4,000 pps

Matlab Model of Zou Slammer Worm Versus Zou Routing Worm

Figure 29. Matlab Model Composite of Slammer Infection Rates

As shown in Figure 30, the infection rate curve of the Slammer routing worm

presented by Zou and the Matlab model with the 3,108 pps do not match. However, the

Zou Slammer routing worm infection rate curve and the Matlab model with 4,000 pps

show a strong similarity. Based on this experiment, the simulation of the 3,108 pps

Slammer routing worm has a slower infection rate than the curve generated by the Zou

research. Therefore, the simulations shown in the graph by Zou were either completed at

the 4,000 pps, the description accompanying the graph is in error, or the infection rate

data generated was in error.

Using the validation from the Code Red and routing worm simulation graph

comparison and the similarities shown in the original Slammer worm infect rates, the

Matlab model-generated infection rate is validated. Furthermore, the observation that the

74

Slammer routing worm infection rate presented by Zou was performed at the 4,000 pps

level provides one additional point of validation of the Matlab model simulations while

showing the graph in the Zou paper is in error.

Figure 30. Matlab Model Slammer Worms versus Zou Slammer Worms

75

4.3.2 Matlab Model of Doubling Rate versus Observed Slammer Rate

The next step in validation of the Matlab model is to compare the Matlab model

simulation of the full Internet model with the actual numbers of Slammer vulnerable

systems against the observed rate estimated during Slammer’s original release. For

comparison to the “real world” observations, this experiment uses the standard 74,856

vulnerable systems with an average of 4,000 pps [MPW03]. Moore observed that a

single worm had the potential to infect 7 (+/- 1) vulnerable systems per second

[MPW03]. This translated to a global doubling rate of 8.5 (+/- 1) seconds which is used

to generate a doubling rate curve with upper and lower bounds set at 9.5 and 7.5 seconds

respectively [MPW03]. Within the Moore initial report, there is mention that this

doubling rate was calculated for the first minute [MPW03]. Each of the doubling rate

graphs presented below show the extension of that doubling rate to 216, or 65,536 systems

infected, which is the largest doubling factor prior to exceeding the total number of

vulnerable systems. For clarity, a one minute reference line is provided on each of the

infection doubling rate graphs to illustrate the cut-off of the one minute estimate by

Moore [MPW03].

The Matlab model-generated doubling rate is presented in Figure 31 using, as

mentioned above, the original Slammer worm average of 4,000 packets per second as

observed in 2003. The confidence intervals are set at 95% for the Matlab model-

generated Slammer infection doubling rate. The average doubling rate generated by the

Matlab model at a 95% confidence interval is 9.348 (+/0.763) seconds for the first

minute. This is a difference of 0.848 (+/-0.237) seconds from the estimate of the original

Slammer worm doubling rate. The estimate of the original Slammer worm infection

76

doubling rate with the upper and lower bounds is presented in Figure 32 providing a

curve representing the estimated infection rate. Then finally for ease of comparison, the

estimated doubling rate of the original Slammer worm and the Matlab model-generated

doubling rate of the Slammer worm are plotted onto the same graph in Figure 33.

180160140120100806040200

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval

Average

Upper Confidence Interval

Matlab Generated Doubling Rate @ 95% Confidence Interval

Figure 31. Matlab Model-Generated Doubling Rate

77

160140120100806040200

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d
7.5 seconds

8.5 Seconds

9.5 Seconds

Observed Slammer Doubling Rate

Figure 32. Slammer Doubling Rate

As the combined data shows in Figure 33, the estimated doubling rate of the

original Slammer and the Matlab model-generated doubling rate overlap for just over 140

seconds. This extension of the doubling rates beyond the one minute limitation shows

that when continued to their infection limits, the two rates eventually separate and shows

the original Slammer doubling rate completes the infection of the remaining systems

faster than the Matlab model-generated doubling rate. This indicates that the if the

original Slammer doubling rate remained within the bounds set by the original estimate

through the infection of the 65,536th system, the Slammer worm was faster than .

78

180160140120100806040200

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d
Slammer @ 7.5 seconds

Slammer @ 8.5 Seconds

Slammer @ 9.5 Seconds

Lower Matlab Rate @ 95% Confidence Interval

Matlab Rate Average

Upper Matlab Rate @ 95% Confidence Interval

Observed Slammer Doubling Rate vs Matlab Generated Doubling Rate

Figure 33. Matlab Model versus Observed Slammer Doubling Rate

The closer view isolating the one minute limitation, shown in Figure 34, shows

that there is some significant overlap of the two doubling rates. The upper limit of the

original Slammer doubling rate average is contained within the lower confidence interval

of the Matlab model-generated doubling rate. The containment of the observed Slammer

doubling rate within the Matlab model until the 60-second point provides a further

indication that the Matlab model is valid. Further, the average of the original Slammer

worm doubling rate was faster than the average that could be expected if the original

Slammer worm was released more than once.

79

6050403020100

250

200

150

100

50

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d
Slammer @ 7.5 seconds

Slammer @ 8.5 Seconds

Slammer @ 9.5 Seconds

Lower Matlab Rate @ 95% Confidence Interval

Matlab Rate Average

Upper Matlab Rate @ 95% Confidence Interval

Observed Slammer Doubling Rate vs Matlab Generated Doubling Rate

Figure 34. Matlab Model versus Slammer Doubling Rate Detailed

Based on this experimental data, it is apparent that original Slammer worm

operated faster than the expected average case determined by the validated Matlab model,

to a point that it was always faster than the Matlab average and only contained inside the

upper (i.e., fastest) confidence interval at 95%. Thus, the research shows that the

original Slammer worm doubling rate, when originally released, operated faster than

could be expected with multiple instances of its release.

From the validation of this Matlab model by the estimated infection doubling rate

and based on the previous validation of the Matlab model by the comparisons to the Zou

research this model is validated using two methods. Therefore, the full Internet infection

rate of the Slammer Worm as calculated by the Matlab model simulations, and shown in

80

Figure 35, can be considered a valid model of how the Slammer worm would operate on

a computing system in 2003.

350300250200150100500

80000

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated SlammerWorm 2003

Figure 35. Matlab Model-Generated Slammer Worm 2003

This infection rate for Figure 35 is calculated using 74,856 vulnerable systems

with the original Slammer worm average of 4,000 pps at a 95% confidence interval over

20 runs. The data shows that over 70,000 vulnerable systems would be infected between

198.825 and 210.078 seconds with a 95% probability. This is over 93% of the potential

victims and it is well under the ten minute estimated during the original observation of

the Slammer worm infection. This estimate was calculated by using the number of scans

observed at the three minute point of Slammer’s original release and extrapolating the

expected time to scan 90% of the address space [MPW03]. Thus, this ten minute

estimate was not an actual measurement of systems infected at the ten-minute point.

81

The conclusion that can be reached from this data is that while the Slammer

infection doubling rates are not exactly the same, the first minute doubling rates do show

significant overlap. The doubling rates are both exponential and only differ in their

estimation of the rate of infection.

The differences between the estimated time to infect 90% of the systems and the

Matlab model simulation in expected time for reaching the 90% level of infected systems

is larger than expected. However, there are several reasons that can be given as to why

this variation in the two data sets occurred. These include the admission by Moore in

their research that not all of the data sets they analyzed were sufficiently precise over that

initial short collection duration, which may have affected their analysis of how fast the

doubling rate occurred [MPW03]. The difficulties of collecting accurate data during the

original Slammer worm release were further exacerbated by an unexplained transient

failure at the 2 minute and 40 second point after Slammer’s release [MPW03]. The

ability to repeat the Matlab model simulation of the Slammer worm infection rate

provides a database from which to draw a more comprehensive statistical model than

does a single observation of the Slammer worm in the wild. This means that the data

estimates used by Moore to generate their results are but a single instance of how

Slammer acted. Slammer’s behavior would almost certainly have been different given

other releases.

4.3.3 Matlab Model versus Wei Slammer Infection Rate

The Slammer experiments run by Wei, covered how the Slammer worm would

react with differing traffic loads and network failures. Their research included a simple

baseline test with the 75,000 vulnerable hosts and 4,000 scans per second observed in

82

2003. The baseline curve was presented with several other curves that showed the

Slammer worm operation with varying traffic loads and network failures as shown in

Figure 36 [WMS05].

Figure 36. Wei Slammer Worm Simulation

The Slammer infection rate generated by the Wei research closely matches the

curve generated of the Slammer worm infection rate by the Matlab model in this research

as shown in Figure 37. The Wei experiment follows the Matlab model’s lower

confidence interval through 50,000 systems infected. The lower confidence interval of

the Matlab model continues to closely match the Wei data until just past 65,000 systems

infected where Wei’s data makes an uncharacteristic deviation from a smooth curve.

Despite this top end deviation, the Wei data further supports the Matlab model of the

Slammer worm infection rate as an accurate representation of how the Slammer worm

behaves in the wild.

83

Figure 37. Matlab Model Slammer Worm versus Wei Slammer Worm

4.4 Scanning Worms in a Computing Architecture of Today

Zou’s research used an arbitrary number of Slammer vulnerable systems set at

100,000 [ZTG05]. The actual number of potential victims is 74,856 [MPS03]. This

section takes the Zou experiment a few steps further by using the correct number of

vulnerable systems and analyzes the operation of the scanning worms in a 2003 and 2007

computing environment. Thus the number of vulnerable systems is set at 74,856 and

each of them are run with a 95% confidence interval and displayed separately.

Note however, that although the speed increase of the network alone is considered

here in this experiment, the increase in the number of vulnerable systems is not. For ease

of comparison, the vulnerable systems were left the same as any increase in the number

of potential victim systems reduces the non-vulnerable systems by an equal number.

84

Thus, for every vulnerable system added above the 74,856 threshold the worm will

spread faster. For example, if the original Slammer worm using the 100,000 vulnerable

systems as used by Zou is compared to the infection rate using 74,856 vulnerable

systems where both are set at the average 4,000 pps as observed during the original

Slammer worm release [MPW03], the Zou infection rate is faster as shown in Figure 38.

Finally, because there is no basis of comparison in this research for the possible number

of vulnerable systems as there is for the speed of the scanning packets generated by the

Slammer code, the increase in vulnerable systems today is not be considered.

300250200150100500

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Matlab Model "Original" Slammer

Zou Slammer Worm

Zou Slammer Worm Versus Matlab Model Slammer Worm 2003

Figure 38. Zou Slammer Worm versus Matlab Model Slammer Worm 2003

To provide a baseline for comparison, a Matlab model of the Slammer worm

infection rate average with an upper and lower confidence interval at 95% as it would act

in 2003 is provided in Figure 39. This Matlab model uses 4.3 billion available addresses

85

in the scanning space, 74,856 vulnerable systems, and the average 4,000 pps for infection

rate curve generation. Hereafter, this worm is called the Slammer worm 2003.

The Matlab model of the average infection rate curve with an upper and lower

confidence interval at 95% of the Slammer worm as though the worm were released on a

system today is provided in Figure 40. Using the 4.3 billion available addresses, the

74,856 vulnerable systems, and an average of 14,398 pps found in this research the

Matlab model of the infection rate curve is generated. Hereafter, this worm is referred to

as the Slammer worm 2007.

The Matlab model average of the Slammer routing worm as it would have acted

in 2003 (Hereafter, the Slammer routing worm 2003) is presented in Figure 41 with an

upper and lower confidence interval at 95%. The Matlab model that generates this

infection rate curve uses 1.95 billion available addresses, the number of vulnerable

systems set at 74,856, and 3,108 pps as noted in the Zou research for the larger infection

packet size [ZTG05].

In Figure 42, the Matlab model used to generate the average with an upper and

lower confidence interval at 95% of the 2007 version of the Slammer routing worm uses

a rate of 11,187 pps to reflect the increase for operation of the worm on a computing

system of today. The number of vulnerable systems is set at the same 74,856 and 1.95

billion addresses available for scanning as the Slammer routing worm 2003. Hereafter,

this worm is referred to as the Slammer routing worm 2007.

Finally, the average infection rate of the Slammer worm 2003, Slammer worm

2007, Slammer routing worm 2003, and Slammer routing worm 2007 are plotted onto

one graph for ease of speed comparison in Figure 43. This graph shows that the infection

86

rates of worms on a system of today are faster than their 2003 counterparts. Table 18

shows the variable settings for all of the 2003 and 2007 worms.

Table 18. Matlab Model Variables for 2003 versus 2007 Worm Comparison

Number of IP

addresses

Number of
Vulnerable

Systems

Number of

Iterations

Number

of Trials

Initial Number
of Infected

Systems

Slammer Worm 2003 4,294,067,296 74,856 10,000,000 20 One

Slammer Worm 2007 4,294,067,296 74,856 10,000,000 20 One

Slammer Routing
Worm 2003

1,946,156,941 74,856 500,000 20
One

Slammer Routing

Worm 2007
1,946,156,941 74,856 500,000 20

One

350300250200150100500

80000

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated SlammerWorm 2003

Figure 39. Matlab Model-Generated Slammer Worm 2003

87

9080706050403020100

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated Slammer Worm 2007

Figure 40. Matlab Model-Generated Slammer Worm 2007

200150100500

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated Slammer Routing Worm 2003

Figure 41. Matlab Model-Generated Slammer Routing Worm 2003

88

6050403020100

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated Slammer Routing Worm 2007

Figure 42. Matlab Model-Generated Slammer Routing Worm 2007

300250200150100500

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Slammer Routing Worm 2003

Slammer Routing Worm 2007

Original Slammer Worm 2003

Original Slammer Worm 2007

Matlab Generated Slammer and Slammer Routing Worm Infect Rates

Figure 43. Matlab Model-Generated Slammer Worms and Slammer Routing Worms

89

This experimental data shows that a Slammer-based worm released onto the

Internet of today is much faster than its 2003 counterparts. As shown in Table 19, the

increase in the infection of 90% of the potential victims for the two chronologically

separated worms are almost identical at 3.599 fold increase. This increase demonstrates

the quicker infection rate due to the faster infection packet generation rate.

Table 19. Matlab Model of 2003 versus 2007 Infection Rates

Worm Name

Upper CI Average Lower CI

203.34 197.69 192.04

Upper CI Average Lower CI

56.49 54.92 53.35

Upper CI Average Lower CI

127.15 121.45 115.76

Upper CI Average Lower CI

35.32 33.74 32.16

Infection Rate in Seconds Infection

Rate

Increase

Slammer

Routing Worm

2007

Slammer

Worm 2003

Slammer

Routing Worm

2003

Slammer

Worm 2007
3.5995

3.5994

Infection

Rate

Increase

4.5 Single Slash Eight (SSE) Routing Worm

This section covers the Single Slash Eight (SSE) routing worm and the modeling

of its infection rate curve. The final portion of this section provides a comparison of the

SSE routing worm against the Slammer worm 2003, Slammer worm 2007, Slammer

routing worm 2003, and Slammer routing worm 2007.

4.5.1 SSE Routing Worm Creation

 Taking the division of the Slammer routing worm one step further, the original

Slammer worm code is modified to become an SSE routing worm which scans only one

of the 116 “/8” IANA address spaces. The SSE routing worm is creation details are

available upon request

90

4.5.2 Matlab Model of the SSE Routing Worm

The small changes to the original Slammer worm code discussed in Section 4.5.1

increase the size of the SSE routing worm from 404 bytes to only 412 bytes. Thus, a

2003 version of the Slammer worm with an average of 4,000 pps is changed to a rate of

3,922 pps for the 2003 version of the SSE routing worm. The 2007 SSE routing worm

packets per second is barely affected by the addition of only eight bytes and would slow

the generation of infection packet on an infected system from 14,398 pps to 14,118 pps.

An IP address space of 16,777,216 possible addresses is used to simulate the

address space an SSE routing worm is required to scan with the single CIDR “/8.”

Because the total address space is reduced, the total number of vulnerable systems is

reduced by equally dividing the 74,856 by the 116 available address spaces. This equates

to 645 vulnerable systems in each SSE routing worm range. Table 20 shows the

variables used in the generation of the infection rate curves by the Matlab model for the

2003 and 2007 SSE routing worms.

Table 20. Matlab Model Variables for SSE Routing Worm

Number of
IP

addresses

Number of
Vulnerable
Systems

Number
of

Iterations

Number
of Trials

Initial Number
of Infected
Systems

SSE
Routing
Worm

16,777,216 645 500,000 50 One

4.5.3 SSE Routing Worm Infection Rate Comparison

Figures 45 and 46 show the 2003 and 2007 SSE routing worm infection rate

curves with the accompanying 95% confidence intervals. The 2003 SSE routing worm

91

infects over 90% of the vulnerable systems in under one minute. However, the 2007 SSE

routing worm infects over 90% of the vulnerable systems in under 17 seconds.

The speed increase of these two worms over their 2003/2007 Slammer worm and

2003/2007 Slammer routing worm counterparts is substantial as shown in Figure 47. The

SSE routing worm infect rates are aggregated across the entire population to provide a

proportional comparison in Figure 47.

9080706050403020100

600

500

400

300

200

100

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Model of SSE Routing Worm 2003

Figure 44. Matlab Model-Generated SSE Routing Worm 2003

92

2520151050

600

500

400

300

200

100

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d
Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Model of SSE Routing Worm 2007

Figure 45. Matlab Model-Generated SSE Routing Worm 2007

Figure 46. Matlab Model SSE Routing Worms versus Slammer Worms

93

Table 21 contains the speeds at which these six worms infect over 90% of their

vulnerable systems.

Table 21. SSE Routing Worm Speed Comparison

Worm Name

Upper CI Average Lower CI

203.34 197.69 192.04

Upper CI Average Lower CI

127.15 121.45 115.76

Upper CI Average Lower CI

61.83 59.92 58.01

Upper CI Average Lower CI

56.49 54.92 53.35

Upper CI Average Lower CI

35.32 33.74 32.16

Upper CI Average Lower CI

17.18 16.65 16.11

Infection Rate in Seconds

Slammer

Routing Worm

2007

SSE Routing

Worm 2007

Slammer

worm 2003

Slammer

Routing Worm

2003

SSE Routing

Worm 2003

Slammer

Worm 2007

Overall, the data collected shows that the SSE routing worm was 3.299 times

faster than both the 2003 and 2007 Slammer worms. Additionally, the SSE routing worm

is also 2.027 faster than the 2003 and 2007 Slammer routing worms. Finally, the increase

in infection rate for the SSE routing worm from 2003 to 2007 is 3.6 times due to the

increase in infection packet generation rate.

4.6 Summary

The first section of this chapter covered the network configuration for all of the

experiments performed in this research and briefly covered the Slammer worm code used

as a basis for this experiment. The second section then delved into the results and

analysis discovered through this research.

94

This chapter presents the results and analysis of the data collected from the

experiment simulations of the worm infections. Section 4.1 covers the collection and

analysis of Slammer’s packet per second generation. Section 4.2 examines the

randomness of Slammer’s IP address and octet generation. In Section 4.3, the Matlab

worm models are presented for comparison to the original Slammer worm and the routing

worm models proposed by Zou. The comparison of worm speeds possible on computing

systems of today versus those available in 2003 is provided in Section 4.4. Section 4.5

examines the infection rate of the original Slammer worm versus the SSE routing worm.

95

V. Conclusions and Recommendations

5.1 Restatement of the Problem and Conclusions

The primary focus of this experiment was to show that the variety of scanning

worms tested were faster than the original Slammer worm. Further, the experiment set

out to prove that the SSE routing worm was the fastest worm of its kind. Lastly, this

research examined whether the computing systems architecture of today would facilitate

a much more aggressive worm than has been observed in previous outbreaks.

This research found that despite an observable pattern of generation, IP addresses

produced by Slammer are in a uniform distribution across the address space. The

detailed examination of the IP address generation data set proved again, despite the

presence of an observable generation pattern, that the second IP octet generated by the

Slammer code for this experiment was also uniformly distributed across the address

space. Finally, the third and fourth octets were shown to have no observable random

number generation pattern, and they were uniformly distributed across their address

space.

After establishing randomness, the Matlab model simulations were compared to

and validated by the previously created infection rate models used by Zou for the Code

Red, BGP routing worm, “/8” routing worm, the original Slammer worm, and the

Slammer routing worm [ZTG05]. The infection doubling rate observed by Moore during

the original Slammer worm release and the research of the original Slammer worm

infection rate performed by Wei provided further validation of the Matlab model and

Slammer worm infection rate [MPW03] [WMS05]. During the validation of the Matlab

96

model simulations, one of the experiment graphs provided by Zou was either an error or

notated incorrectly. The Zou Slammer routing worm infection rate curve was

significantly faster than what is expected for a worm operating with its characteristics.

However, the analysis of the Slammer routing worm as hypothesized by Zou proved to be

faster using the Matlab model simulations than the original Slammer worm.

The extension of this research to include the current speed of the computing

systems shows worms would be significantly faster on a computing network of today

than they were in 2003. The research showed that the worm infection rate for a worm in

2003 was increased by a factor of 3.6 times for a worm operating on a computing system

of 2007 due to the increased packet generation rate. This research has given strong

evidence that any scanning worm released on the architecture of today would cause even

greater harm to the Internet infrastructure through its speed of infection and network

congestion.

Finally, the new SSE routing worm is faster than any of the worms evaluated.

The SSE routing worm was more than three times faster than the original Slammer worm

and more than two times faster than the Slammer routing worm proposed by Zou. An

SSE routing worm released today would have an infection rate 3.6 times faster than if it

had been released in 2003 due to the faster infection packet generation.

5.2 Contributions and Significance of Research

This research has furthered the understanding of the operation characteristics of

scanning worms on an IPv4 network and laid the groundwork for future experiments into

live worm research. The routing worms proposed by Zou have been validated and

extended to an even faster version of routing worm illustrating that these worms pose a

97

great threat to the computing community and deserve further research. The expansion of

this research into the speed of the current computing systems architecture exposes the

fact that Slammer will most likely not remain the fastest worm and that there is a large

void in the analysis of worms on current architectures. Through the use of the actual

Slammer worm, a live host and a validated mathematical model, this experiment has

furthered the research proposed by others.

5.3 Recommendations for Future Research

There is a large void in the research of live worms on a network. Due to the

problems incurred during the research of these worms several opportunities for future

research based on this preliminary research are available. The largest area for

continuation of research is to solve the issue of the auto-generated multicast address for

UDP packets generated by Slammer, which afflicted every IP address generated. Also,

the problem of modifying the Slammer assembly code to accept the changes required to

set the IP address field with the “hit list” values needs to be investigated. These two

problems may be related. Once these problems are solved many more research avenues

open up.

The observation and testing of live worms on a network is an area that could

validate many mathematical models currently in use by researchers worldwide. With the

speed of computing systems continually increasing, these models need current data

harvested from a live network to validate and ensure they incorporate the capabilities of

today’s systems. As shown in this experiment, the current architecture is significantly

faster than what was in place in 2003, which is the timeframe of when the majority of the

worm research is based.

98

Finally, modifying the worms to operate on an IPv6 network and analyzing their

ability to propagate in that environment would be groundbreaking research.

Incorporating the increase in speed of computing systems, the capabilities of the routing

worms examined in this research and calculating the increase of vulnerable systems for a

given software vulnerability would provide a significant leap forward in the research of

self-propagating worms on an IPv6 network. While other researchers have made claims

that the conversion to IPv6 would all but eliminate the capability of a scanning worm to

propagate, the proof on an existing system with live worms and the characteristics of the

computing systems of today has yet to be completed.

5.4 Summary

This research has expanded the knowledge of the operation of scanning worms on

an IPv4 network and proved that the Slammer routing worm and SSE routing worm is

faster than any previously observed worm. The groundwork laid by this research

provides a solid foundation for future research into the area of live worms on a network.

99

Appendix A

This appendix covers the hardware and software used during the research to

complete the experiment.

A.1 Experiment Hardware

The computers used to facilitate the experiment are Dell Latitude Laptops and

their specifications are shown in the Table 22. The specifications for the switch

connecting the laptops together are provided in Table 23.

Table 22. Experiment Computer Specifications

Victim Machine Attacking Machine

Dell Latitude D620 Dell Latitude D600

2 GB 533 MHz DDR2 RAM 512 MB

Intel Core Duo T2400 1.83Ghz Intel Pentium M 1600 Mhz

80 GB 5400 RPM HD 30 GB 4200 RPM HD

Broadcom NetXtreme BCM5752 Gigabit

Ethernet

Broadcom 570x Gigabit Integrated

Controller

Table 23. Port Switch Specifications

Linksys SD205 10/100 Switch (5-port)

10/100 Mbps

Category 5 Ethernet

5 x RJ45 ports

100

A.2 Experiment Software

The software used in this experiment is detailed in the Table 24 including the

operating system version numbers.

Table 24. Experiment Software Versions

Microsoft Windows 2000 5.00.2195 Victim Machine
Microsoft SQL Server 8.00194 Victim Machine

Wireshark Network Analyzer 00.99.3 Both Machines
Netcat 1.11 Attacking Machine

Matlab 7.3.0 (R2006b) Attacking Machine
Frhed 1.1.0 Attacking Machine

101

Appendix B

This appendix covers in detail the code and operation of Slammer. The information

contained in this section is available upon request.

102

Appendix C

This appendix describes the generation of the infection rate simulation by the

Matlab model used in this research.

C.1 Matlab Model Infection Rate Simulation Code

The code below was used to generate all of the worm infect curves for

comparison to the available data and previously described mathematical models. As

defined in the comments of the code “N” is set to be the total number of available address

for the scale of the test. The number of vulnerable systems was denoted by “n.” The

maximum number of iterations, which is converted to seconds for final analysis, is

represented by “M.” The value for “M” in these experiments is arbitrary as this

experiment considers the entire vulnerable system space and it is set to a number beyond

the expected infect iteration found by preliminary testing. Further, the code is set to

“break” out of the current trial when the number of potential victims reaches zero. Note

that there is an equal chance of any number being generated by the pseudo random

number generator (PRNG), thus the number of vulnerable systems is reduced by one

without regard to which number in the vulnerable range was guessed by the PRNG. “K”

represents the number of trials. The number of trials is an arbitrary value set high enough

to allow for the complete infection of all vulnerable systems. The Matlab code was set to

exit the current trial after the last vulnerable system was infected to decrease the time

between trails. The initial number of infected systems is represented by “I” and is

highlighted in the code provided below. Table 39 shows the values used for the

variations of the Matlab simulations.

103

Table 25. Matlab Model Experiment Variable Values

N - # of IP
addresses

n - # of
Vulnerable
Systems

M - # of
Iterations

K - #
of

Trials

I - Initial #
of Infected
Systems

Code Red Worm 4,294,967,296 360,000 10,000,000 1 Ten

Zou Code Red "/8"
Routing Worm

1,946,156,941 360,000 500,000 1 Ten

Zou Code Red BGP
Worm

1,228,360,647 360,000 500,000 1 Ten

Zou Slammer Worm 4,294,967,296 100,000 10,000,000 20 Ten

Zou Slammer
Routing Worm

1,946,156,941 100,000 500,000 20 Ten

Slammer Worm
2003

4,294,967,296 74,856 10,000,000 20 One

Slammer Worm
2007

4,294,967,296 74,856 10,000,000 20 One

Slammer Routing
Worm 2003

1,946,156,941 74,856 500,000 20 One

Slammer Routing
Worm 2007

1,946,156,941 74,856 500,000 20 One

SSE Routing Worm
2003

16,777,216 645 500,000 50 One

SSE Routing Worm
2007

16,777,216 645 500,000 50 One

104

% N is the total # of IP adresses

% n is the total # of potential victims

% M is the maximum # of iterations

% K is the number of trials

% I (highlighted) is the initial number of infected systems – this value needs to manually changed in the

% code

function [TargetInfectTime,VictimInfectTime] = IPsim(N,n,M,K) %Designates the function for Matlab

TargetInfectTime=M*ones(1,K); %Creates M arrays of ones the size of K for storage of TargetInfectTime

infected=zeros(1,K); %Creates an array of zeros the size of K for storage of infected

VictimInfectTime=zeros(K,n); % Creates an array of zeros K by n for storage of VictimInfectTime

for j=1:K

 n1=n; % Sets the upper limit of the vulnerable systems range equal to total number of potential victims

 for i=1:M

 IP = ceil(N*rand(1,(infected(j)+ I))); % generates a random number in the range of N for each

 %infected system and turns it into an integer

if sum(IP<=(n1+1))>=1 %if IP address is less than or equal to the upper value of the

 % vulnerable systems enter loop

VictimInfectTime(j,infected(j)+1:infected(j)+sum(IP<=(n1+1))) =

i*ones(1,sum(IP<=(n1+1))); %Sets the time of infection for each IP address

 %within the vulnerable system range, this check is

 %performed multiple times if more than one is hit

 infected(j)=infected(j)+sum(IP<=(n1+1)); %Increases the number of infected systems

 n1=n1-sum(IP<=(n1+1)); %Reduces the number of vulnerable systems by number hit

 end

if n1 == 0 %When number of Vulnerable systems reaches zero break

 break

 end

 end

 results=fopen('results.txt','w'); % Opens “results.txt” for writing of data

 fprintf(results,'Number of Machines Infected %10.0f\n',infected); % Prints # Infected to file

 fprintf(results,'Victim Infected %10.0f\n', VictimInfectTime'); % Prints Infect Time to file

 fclose(results) % Closes “results.txt”

end

end

105

Appendix D

This appendix contains a detailed breakout of a typical UDP header from a

Slammer packet. This information is available upon request.

106

Appendix E

This appendix contains the detailed information for the creation of the SSE

routing worm as previously discussed in Section 4.5. The information in this appendix is

available upon request.

107

Bibliography

[Bla06] Black, Paul E. “Pseudo-Random Number Generator,” in Dictionary of
Algorithms and Data Structures. [online]. 16 October 2006.
http://www.nist.gov/dads/HTML/pseudorandomNumberGen.html.

[CER02] CERT/CC. “CERT Advisory CA-2001-13 Buffer Overflow In IIS
Indexing Service DLL.” [online]. 17 January 2002.
http://www.cert.org/advisories/CA-2001-13.html

[CGK03] Chen, Zesheng, Lixin Gao, Kevin Kwiat. “Modeling the Spread of Active
Worms” in 2003 IEEE Conference on Open Architectures and Network
Programming. 2003. Pages 1890-1900.

[EEy03] eEye Digital Security. “Sapphire Worm Code Disassembled.” [online]. 27
January 2003. http://www.eeye.com/html/Research/Flash/sapphire.txt

[Fes04] Festa, Paul. “Microsoft: To secure IE, upgrade to XP.” [online]. 23
September 2004.
http://news.com.com/Microsoft+To+secure+IE%2C+upgrade+to+XP/210
0-1032_3-5378366.html

[FlP01] Floyd, Sally, Vern Paxson. “Difficulties in Simulating the Internet” in
IEEE/ACM Transaction on Networking. August 2001. Vol. 9, No. 4,
Pages 392-403.

[Gro02] Gromov, Gregory R. “History of Internet and WWW: The Roads and
Crossroads of Internet History.” [online]. 2002.
http://www.netvalley.com/intvalstat.htm.

[Haa99] Haahr, Mads. “Introduction to Randomness and Random Numbers.”
[online]. June 1999. http://www.random.org/essay.html.

[Han03] Hansen, Joshua C., “Worm Propagation in Heterogeneous Networks:
Weaknesses in the National Strategy for Cyberspace Protection.” Thesis
Naval Postgraduate School, Monterey CA. March 2003.

[Hal06] Halfhill, Tom R. “The Mythology of Moore’s Law.” [online]. September
2006.
http://www.ieee.org/portal/site/sscs/menuitem.f07ee9e3b2a01d06bb93057
65bac26c8/index.jsp?&pName=sscs_level1_article&TheCat=2165&path=
sscs/06Sept&file=Halfhill.xml

108

[Hei04] Heidari, Mohammad. “Malicious Codes in Depth.” [online]. 29 November

2004. http://www.securitydocs.com/library/2742

[Hof90] Hoffman, Lance J., editor, “Rogue Programs: Viruses, Worms, and Trojan
Horses”, Van Nostrand Reinhold, New York, New York. 1990. Page 7.

[Huf06] Huffaker, Bradley. “IPv4 BGP Geopolitical Analysis.” [online]. 2 March
2006. http://www.caida.org/analysis/geopolitical/bgp2country/index.xml.

[HyE03] Hypponen, Mikko, Erdelyi Gergely. “F-Secure Virus Descriptions:
Slammer.” [online]. 25 January 2003. http://www.f-secure.com/v-
descs/mssqlm.shtml

[IWS07] Internet World Stats. “Internet Growth Statistics.” [online]. 10 January
2007. http://www.internetworldstats.com/emarketing.htm.

[KeW91] Kephart, Jeffery O., Steve R. White. “Directed-Graph Epidemiological
Models of Computer Viruses” in Proceedings of the 1991 IEEE Computer
Society Symposium on Research in Security and Privacy. May 1991.
Pages 343-359.

[KiE03] Kienzle, Darrell M., Matthew C. Elder. “Recent Worms: A Survey and
Trends” in Proceedings of the ACM CCS Workshop on Rapid Malcode
(WORM’03). 27 Oct 2003. Pages 1-10.

[KRD04] Kim, Jonghyun, Sridhar Radhakrishnan, Sudarshan K. Dhall.
“Measurement and Analysis of Worm Propagation on Internet Network
Topology” in Consumer Communications and Networking Conference
(CCNC). 3 January 2004. Pages 495-500.

[Lem03] Lemos, Robert. “Counting the Cost of Slammer.” [online]. 31 January
2003. http://news,.com/Counting+the+cost+of+Slammer/2100-1001_3-
282955.htlml.

[Lit02] Litchfield, David. “Threat Profiling Microsoft SQL Server (A Guide to
Security Auditing).” [online]. 20 July 2002. www.ngssoftware.com.

[Mar04] Martin, Jeremy. “Information Systems Security Training Virus and
Worms.” [online]. 5 Oct 2004. http://www.securitydocs.com/library/2627

109

[MSB02] Moore, David, Colleen Shannon, Jeffery Brown. “Code-Red: a case study
on the spread and victims of an Internet worm.” [online]. 2002.
http://www.caida.org/publications/papers/2002/codered/codered.pdf

[MPS03] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and
Weaver, N. 2003. “Inside the Slammer Worm.” IEEE Security and
Privacy. July/August 2003. Pages 33-39.

[MPW03] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and
Weaver, N. “The Spread of the Sapphire/Slammer Worm.” [online]. 6
November 2006.
http://www.caida.org/publications/papers/2003/sapphire/sapphire.html.

[Mur03] Murphy, Matthew. “Analysis of Sapphire SQL Server Worm.” [online].
26 January 2003.
http://student.missouristate.edu/m/matthew007/research/virus/sqlworm.as
p.

[Odl03] Odlyzko, Andrew M. “Internet traffic growth: Sources and implications”
in Optical Transmission Systems and Equipment for WEM Networking II.
2003. http://www.dtc.umn.edu/~odlyzko/doc/itcom.internet.growth.pdf.
Pages 1-15.

[PeS04] Perumalla, Kaylan S., Srikanth Sundaragopalan. 2004. “High-Fidelity
Modeling of Computer Network Worms” in IEEE Proceedings of the 20th
Annual Computer Security Applications Conference (ACSAC’04). 6
December 2004. Pages 126-135.

[RSL04] George F. Riley, Monirul I. Sharif, Wenke Lee. “Simulating Internet
Worms” in IEEE Proceedings of The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems (MASCOTS’04). 1
October 2004. Pages 268-274.

[ShM04] Shannon, Colleen, David Moore. “The Spread of the Witty Worm” in
IEEE Security & Privacy. July/August 2004. Pages 46-50.

[Sla95] Slade, Robert, “Robert Slade’s Guide to Computer Viruses”, Springer-
Verlag, New York, New York, 2nd Ed., 1995. Page 52.

[Sto03] Stone, C. “Worm-Annotated.” [online]. January 2003.
http://www.boredom.org/~cstone/worm-annotated.txt.

110

[WaC02] Waddington, Daniel G., and Fangzhe Chang. “ Realizing the Transition to
IPv6.” IEEE Communications Magazine. June 2002. Pages 138-148.

[WDP03] Wagner, Arno, Thomas Dubendorfer, Bernhard Plattner, and Roman
Hiestand. “Experiences with Worm Propagation Simulations” in
Proceedings of the ACM CCS Workshop on Rapid Malcode (WORM’03).
27 OCT 2003. Pages 34-41.

[Whe02] Whelan, Micheal. “Mining Internet Traffic Records for Geographic
Information.” [online]. September 2002. http://www.e-
insights.com/general/Geostudy.doc.

[WMS05] Songjie Wei, Jelena Mirkovic, Martin Swany. “Distributed Worm
Simulation with a Realistic Internet Model” in IEEE Proceedings of the
Workshop on Principles of Advanced and Distributed Simulation
(PADS’05). 1-3 June 2005. Pages 71-79.

[YuW04] Yu, Wei. “Analyzing the Performance of Internet Worm Attack
Approaches” in Consumer Communications and Networking Conference
(CCNC). 3 January 2004. Pages 501-506.

[ZTG02] Zou, Cliff Changchun, Weibo Gong, Don Towsley. “Code Red Worm
Propagation Modeling and Analysis.” (CCS’02) 18-22 November 2002.
Pages 138-147.

[ZTG05] Zou, Cliff C., Don Towsley, Weibo Gong, Songlin Cai. “Routing Worm:
A Fast, Selective Attack Worm based on IP Address Information” in IEEE
Proceedings of the Workshop on Principles of Advanced and Distributed
Simulation (PADS’05). 1-3 June 2005. Pages 199-206.

111

Vita

James Gorsuch was born in Berea, Ohio, in 1969 and graduated from North

Ridgeville High School in 1987. He enlisted in the United States Air Force in 1987 and

served 15 years earning the rank of Technical Sergeant. During his enlisted service, he

worked as a Defensive Avionics, Communications, and Navigations System technician

on the B-1 and B-52 bombers before being selected for the B-2 program at Edwards

AFB. While working on the B-2, he became a fully qualified crew chief in addition to

his normal avionics systems responsibilities. Lt Gorsuch, then Staff Sergeant, moved to

Eglin AFB to work with the 53d Wing to test and develop the defensive avionics software

for the B-2.

In 2003, Lt Gorsuch was selected to attend Officer Training School at Maxwell

AFB where he earned his commission. Lt Gorsuch’s first assignment as an officer was to

lead the Intrusion Detection Team at Headquarters Air Force Materiel Command at

Wright-Patterson AFB where he also served as the Executive Officer to the A6. Lt

Gorsuch was selected to attend the Air Force Institute of Technology (AFIT) in August

2003. Lt Gorsuch will be assigned to Maxwell AFB, Alabama providing the Air Force

Wargaming Institute (AFWI) with leadership and focus for all joint campaign- level

combat simulation software.

112

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704- 0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
22-03-2007

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
March 2006 - March 2007

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ANALYSIS OF ROUTING WORM INFECTION RATES ON AN IPV4
NETWORK

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Gorsuch James, First Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765 DSN: 785-3636

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/07-04

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Malicious logic, specifically worms, has caused monetary expenditure problems to network users in the past. Worms, like Slammer
and Code Red, have infected thousands of systems and brought the Internet to a standstill. This research examines the ability of the original
Slammer worm, the Slammer based routing worm proposed by Zou et al, and a new Single Slash Eight (SSE) routing worm proposed by this
research to infect vulnerable systems within a given address space. This research investigates the Slammer worm’s ability to generate a
uniform random IP addresses in a given address space. Finally, a comparison of the speed increase from computing systems available today
versus those in use during the original Slammer release is performed.

This research finds that the both the Slammer based routing worm and the SSE routing worm are faster than the original Slammer. The
random number generator of the original Slammer worm does generate a statistically uniform distribution of addresses within the range
under test. Further, this research shows that despite the previous research into the speed of worm propagation, there is a large void in testing
worms on the systems available today that need to be investigated. The speed of the computing systems that the worms operated on in the
past were more than three times slower than today’s systems. As the speed of computer systems continue to grow, the speed of worm
propagation should increase with it as their scan rates directly relate to their infection rate. As such, the immunity of the future IPv6
network, from scanning worms may need to be reexamined.
15. SUBJECT TERMS
Malicious Logic, Worm, SQL Slammer, Sapphire, Slammer, Routing Worm, Propagation, Infection Rate, Pseudo Random Number Generator,
Border Gateway Protocol, Vulnerability, User Datagram Protocol, Classless Inter-Domain Routing, Epidemiological, Internet Protocol, IPv4,
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON

Barry E. Mullins, Ph.D. (ENG)
REPORT

U
ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 129 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 ext. 7979; email: Barry.Mullins@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Analysis of Routing Worm Infection Rates on an IPV4 Network
	Recommended Citation

	tmp.1589574189.pdf.JGvx3

