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Abstract 

Malicious logic, specifically worms cost network users an enormous amount of 

time and money.  Worms, like Slammer and Code Red, infect thousands of systems and 

denied whole networks access to the Internet.  This research examines the ability of the 

original Slammer worm, a Slammer based routing worm, and a new Single Slash Eight 

(SSE) routing worm to infect vulnerable systems within a given address space.   The 

ability of Slammer to generate a uniform random IP addresses in a given address space is 

established.  Finally, a comparison of the speed increase from a worm on a computing 

system in 2003 to those available today is performed.   

Both the Slammer based routing worm and the SSE routing worm spread faster 

than the original Slammer.  The random number generator of the original Slammer worm 

generates a statistically uniform distribution of addresses within the range under test.  

Furthermore, despite the previous research into the speed of worm propagation, there is 

still a need to test worms on the current systems.  The speed of the computing systems 

that the worms operated on in the past were more than three times slower than today’s 

systems.  As the speed of computer systems continue to grow, the speed of worm 

propagation should increase with it as their scan rates directly relate to their infection 

rate.  As such, any inherent immunity of an IPv6 network from scanning worms should 

be reexamined. 
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1 

ANALYSIS OF ROUTING WORM INFECTION RATES ON AN IPV4 

NETWORK 

I.  Introduction 

1.1 Motivation 

 The dream of one world, one community has all but become a reality as a 

network of computers now connects the world both virtually and physically via the 

Internet.  Though originally implemented as a way to share information between 

universities, the Internet has grown to encompass every nation.  This has allowed for an 

amazing sharing of information and resources across the globe.  However, with this great 

good also comes the bad.  The global community’s interconnectedness and reliance on 

the Internet has led to many using the Internet for nefarious purposes.  There are people 

using the Internet to perform corporate espionage, steal identities, and in general, create 

havoc.  To that end, one of the most costly sources of this havoc for businesses and users 

alike on the Internet is malicious logic.  Of all the forms of malicious logic, computer 

worms have shown themselves to be one of the most costly for the Internet community. 

Worms can infect thousands of systems in just minutes. These fast infection rates 

reduce or eliminate the access of large corporations to the average person to Internet 

services.  Slammer, also known as Sapphire and SQL Slammer, was one of the fastest 

worms ever released onto the Internet.  As shown in Figure 1, Slammer spread 

throughout the world in just minutes.  This figure identifies the areas of the world 

infected by Slammer in less than 30 minutes [MPW03].  The blue infection circles do not 

accurately represent the number of systems infected per area, but identifies the areas 
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covered in order to limit the overlap with adjacent zones [MPW03].  This coverage is 

consistent with every major technological center and city across the globe and illustrates 

how interconnected the world was in 2003.  Since then, the global community has grown 

larger and even more interconnected. 

 

Figure 1. Slammer Global Infection 

Mi2g, a London based market intelligence firm, calculated that the Slammer 

worm caused “between $950 Million and $1.2 Billion in lost productivity in its first five 

days” of operation worldwide [Lem03].  Even so, Slammer was just another in a line of 

costly malicious actors–the estimated costs of Code Red, the LoveLetter virus, and the 

Klaz virus were $2.6 Billion, $8.8 Billion, and $9.0 Billion, respectively.  These costs 

include damage directly caused by the malicious code and the administrative costs to 

correct the infected systems, including the initial cleansing and repair of the systems.  

Companies must now maintain a constant vigil against malicious actors by keeping staff 

updated and equipment protected against future attacks.  However, the largest financial 

impact is the loss of the ability to conduct business [Lem03]. 
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The large financial impact of these various malicious logics show organizations 

need to analyze their operation and capabilities to detect and even prevent future attacks.  

Researchers and the computing community must understand the operation of malicious 

logic to provide an effective detection, prevention, and response to future attacks. 

 1.2 Overview and Goals 

This research determines through the use of mathematical simulation and live 

analysis of malicious code on an infected system, whether the Slammer based routing 

worm proposed by Zou is faster than the previously observed Slammer worm [ZTG05].  

This research also determines through those same simulations and analyses whether the 

Single Slash Eight (SSE) routing worm proposed in this research is faster than the 

Slammer based routing worm proposed by Zou [ZTG05].  A third goal of this research is 

to analyze the statistical randomness of the IP addresses generated by the Slammer worm 

to establish a basis for the use of random number generators in the mathematical models 

used to generate infection rates.  As part of the validation effort, the Matlab mathematical 

model simulation is compared to previously observed Slammer data.  The final goal of 

this research is to compare the various 2003 scanning worm infection, the year Slammer 

was originally released, to the speed that could be possible on computing systems of 

today. 

1.3 Thesis Overview 

Chapter 1 provides a brief synopsis of the motivation for this research, an 

overview of the experiment, the goals of the research, and an overview of the thesis 

structure.  Chapter 2 covers the basics of malicious logic operation with particular 
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emphasis on worms and delves into the previous research conducted in the area of 

worms.  Modeling of the Internet, Internet protocol addressing, and the concept of the 

continual increase of computing system speed are also addressed.  

A detailed explanation of the experimental design is provided in Chapter 3 

including the problem definition with the goals and hypothesis, the experimental 

approach, and the assumptions and limitations for this research.  Chapter 3 also discusses 

the system boundaries and services, the workload for the system, and performance 

metrics used in this research.  The parameters and factors that form the basis of this 

research are also discussed.  Finally, the evaluation technique, experiment design and 

configuration, and a discussion of the analysis and interpretation for this research are 

discussed.   

The results and analysis of the data collected are presented in Chapter 4.  The first 

section determines the packet generation capabilities of the original Slammer worm.  The 

second section analyzes the randomness of the Slammer worm IP address generation.  

The third section determines the infection rates of the original Slammer worm and the 

Slammer routing worm proposed by Zou [ZTG05].  Chapter 4 demonstrates the speed 

difference between the worms on systems available today compared to that in use during 

the original Slammer worm outbreak.  Chapter 4 ends with the coverage of the Single 

Slash Eight routing worm developed herein.   

Chapter 5 is a short summary of the research problem and conclusions.  The 

contributions and significance to the computing community and recommendations for 

future research are also contained in Chapter 5.  
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Throughout this thesis to improve the readability and flow, the research cited 

directly in the thesis text is referred to by the last name of the first author credited in that 

research.  As such, the research performed and data created by Zou et al [ZTG05] in their 

research of routing worms will be referred to simply as Zou.  The Slammer worm 

research completed by Wei et al  [WMS05] is referred to as Wei and so on.  There are 

two Slammer analyses cited in this research that were completed by Moore et al [MPS03] 

[MPW03] where the same authors wrote both documents.  Both of these are referred 

within the text by simply Moore however, the end citation specifically names which 

research the information came from.   

1.4 Summary 

This chapter provides a brief synopsis of the motivation for this research with an 

introduction to the significant impact caused by malicious logic.  The goals, with an 

overview, of the experiment for this thesis was provided in Section 1.2.  Finally, an 

overview of the structure of this document was presented in Section 1.3. 
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II. Literature Review 

2.1 Introduction 

This chapter presents the fundamentals of worm propagation and recent research 

into worm propagation and modeling.  Section 2.2 discusses the basics of computer 

worms and their operation when released onto a network, as well as a more detailed 

analysis of the routing worms being assessed in the experiment.  Section 2.3 investigates 

the difficult process of accurately simulating the Internet.  The discussion of the division 

of Internet addresses is given in Section 2.4.  Within Section 2.5, the concept of Moore’s 

law as it relates to the increasing speed of computing systems is examined.  Section 2.6 

discusses previous worm propagation modeling, results, and limitations.  Finally, Section 

2.7 summarizes all of the previous sections. 

2.2 Worms 

This research considers the operation of random address scanning computer 

worms across an IPv4 network.  One of the major reasons computer worms work so well 

is that Microsoft Windows, the operating system used throughout the world, has a market 

share of 94% [Fes04].  This homogeneity, or genetically similar software makeup, has 

both negative consequences and provides the consumer great benefits.  The benefits 

include lower cost products, easier portability and increased services.  The consequences 

associated with this homogeneity are the ease with which a malicious logic program can 

move from system to system. 

The cost of malicious logic to consumers, companies, and the government is the 

motivation for this research.  It is estimated that computer virus attacks caused $55 
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billion in damages in 2003 and that sum was on the rise in 2004 [Mar04].  With the costs 

from the damages skyrocketing and money to prevent and protect against malicious logic 

becoming a mandatory expenditure, one can easily see that malicious logic is and has 

been a serious threat to home computer users, businesses, and the Internet community in 

general. 

Dr. Fred Cohen coined the term “computer virus” in 1984 due to the similarity to 

their biological counterparts plaguing the human race [Sla95].  His research formed the 

basis for the epidemiological models.  If system A can infect system B, and system B can 

infect system C then system A can infect system C [KeW91].  Since that initial 

comparison, a virus has been defined as “a set of instructions which, when executed, 

spreads itself to other, previously unaffected, programs or files” [Hof90].   However, this 

does not fully define malicious code, as some malicious code requires a user to open an 

attachment or possibly an email.  In these cases the user is not “directly” acting upon the 

code; they are activating the “trigger” (e.g., the opening of an attachment).  A more 

complete definition of malicious logic is a program that “modifies or destroys data, steals 

data, allows unauthorized access, exploits or damages a system” [Hei04] and in general 

“does something that the user did not intend” [Hei04]. 

Although, computer viruses are not  “living” entities with the ability to build up 

“immunities,” the programmers of malicious logic are becoming better at creating and 

writing malicious code.  This, in effect, makes the viruses more resilient to correction, 

detection and prevention, and more tenacious in their ability to infect new systems.  This 

problem of evolution makes defending against and defeating malicious code more 

difficult with every new generation and makes computer viruses similar in that sense to 
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their biological counterparts [ZTG05].  Given that expectation, each worm’s infection 

rate should be faster than the last; the SSE routing worm should be faster than the 

Slammer based routing worm which should be faster than the original Slammer worm. 

Worms are often confused with viruses.  This confusion is due to the merging of 

malicious code techniques and the blurring of the lines between application operations.  

Worms, unlike viruses, have tended in the past to not directly harm the system they are 

on.  Worms replicated in the background and most computers continued to operate.  The 

Witty worm was an exception to this.  It contained code that randomly deleted portions of 

a hard drive attached to the system it was residing on [ShM04].  Even so, all worms are 

malicious actors.  First, worms perform actions not intended by the owner of the system.  

Worms often increase in size filling up a hard drive, perform data mining, and can bring 

Internet communication to a standstill through the flooding of the Internet with 

overwhelming amounts of infected packets. 

A proper definition of a worm is a form of malicious code, either standalone or 

file infecting, that acts with or without human intervention and spreads across a network 

[KiE03].  This simple definition combines all the aspects of a worm while separating it 

from a virus or a Trojan horse.  A Trojan Horse is a set of malicious code that is hidden 

within another program, much like the mythical Trojan Horse of the Greeks.  Viruses 

differ from worms in that, a worm does not attach directly to another object or program; 

worms are standalone code.  Worms, unlike Trojan horses, replicate for further infections 

[KiE03]. 

Worms can be classified into three groups based on how they operate: E-mail (or 

client application) worms, Windows file sharing worms, and traditional worms [KiE03].  
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E-mail worms, as the name suggests, exploit weaknesses in an e-mail system or in 

application software to propagate (e.g., Melissa [KiE03] used e-mail, and Bilbrog 

[KiE03] used Internet Relay Chat).  This style of worm usually requires some form of 

user action, such as opening an e-mail attachment.  Windows file sharing worms exploit 

the various file sharing capabilities (i.e., Server Message Block and Common Internet 

File System) of Windows that allow small groups to work on the same files (e.g., Nimda 

and Gaobot worms [KiE03]).  Traditional worms attack using standard Internet protocols 

(e.g., TCP/IP, UDP) and operate autonomously once activated [KiE03].  Within this class 

of traditional worms are the scanning worms.  Code Red, Slammer, Witty, and the 

Slammer based routing worm proposed by Zou are all types of scanning worms [ZTG05].  

They all probe the available IP address space to find and infect vulnerable systems 

[ZTG05]. 

2.2.1 Pseudo Random Number Generation in Worms 

All scanning worms use some form of Pseudo Random Number Generation 

(PRNG).  As the name implies, a PRNG generates pseudo random numbers for use in 

various applications.  The problem with PRNG is that it is not a truly random process but 

rather an algorithm that generates a sequence of numbers with little or no discernable 

pattern present in the sequence [Bla06].  This means that no matter how random the 

numbers generated appear to be, they are predictable.  Thus, if a person knows the 

number that “seeded” the PRNG they will be able to predict the series of numbers 

generated by the algorithm [Haa99].  However, for the purpose of generating a varied 

distribution of numbers to be used as target addresses, the PRNG works well as has been 

shown by the speed at which the worms studied in this research propagate. 
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2.2.2 Code Red 

Code Red was released on the Internet at 1000 hrs UTC on 13 July 2001 and 

exploited a vulnerability in the Windows Internet Information Services (IIS) that was 

discovered almost a month earlier by eEye [MSB02].  Windows IIS is a web server 

architecture for managing website and application availability.  The vulnerability was an 

error in the Window IIS Indexing Services that allowed a remote intruder to run arbitrary 

code on the victim system [CER02].  Code Red had an error in its random number 

generator that limited its ability to scan for IP addresses and so its propagation speed was 

inadvertently restricted.   Code Red version II (hereafter called Code Red as the two 

versions operated identically other than the random number generator), released six days 

after Code Red, corrected this coding error in the random number generator and infected 

systems at an exponential rate.  Code Red generated 100 scanning threads; each thread 

randomly selected an IP address and tried to set up a connection on port 80. Code Red 

was programmed to scan the IP address space uniformly [MSB02].   

An unusual characteristic of the scanning threads was that the 100th thread would 

try to deface the currently infected system’s web site if it was an English Windows 2000 

system.  If the target of the 100th thread was not an English Windows 2000 system, the 

thread would be used to infect other systems rather than trying to deface the web site.  

Once infected, the system would become a platform for launching new attacks.  If the 

target system was not a web server or it could not be infected, the thread would generate 

a new random IP address and try again [MSB02]. 

The Code Red worm could only infect a Windows system with IIS installed.  At 

the time, Microsoft estimated there were six million Windows IIS servers on the Internet.  
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However, Code Red was programmed with a stop time and did not have the opportunity 

to infect the entire population.  It stopped its propagation at 0000 hrs UTC on 19 July 

2001 after infecting an estimated 359,000 computers in less than 14 hours.  The cost of 

this worm was estimated to be in excess of $2.6 billion [MSB02].   

As Code Red was, at the time, one of the most aggressive worms observed, there 

have been many experiments and research projects analyzing its operation.  Code Red 

was one of the worms used by Zou as a basis for validating the speed of their proposed 

routing worms.  The Zou routing worm research is discussed in more detail in Section 

2.2.4 [ZTG05]. 

2.2.3 Slammer 

Slammer, also known as SQL Slammer and Sapphire, did not attack the end 

system computers (i.e., the personal home computer), but it wreaked havoc by virtually 

shutting down portions of the Internet as it spread itself among the core servers and 

throughout Internet [HyE03].  Core servers provide Internet access for multiple 

computers at a company or small network.  Of the 13 Internet root name servers, the 

servers that form the essence of the domain name system, five were shutdown by 

Slammer traffic and close to 20% of all data sent across the Internet was lost during the 

outbreak [HyE03].  Slammer was the fastest spreading worm ever observed [MPS03].  It 

doubled the number of infected systems every 7.5 – 9.5 seconds in the first minute and 

managed to infect over 90% of its potential 75,000 victims in about 10 minutes [MPS03]. 

Slammer operated by exploiting a “buffer overflow” vulnerability in the 

Microsoft SQL Server 2000 Operating System by gaining access to the computer 

memory stack and replicating itself.  Slammer sent massive amounts of data across the 



12 

Internet during its attempt to infect other systems; reaching over 55 million scans per 

second in just three minutes [MPS03].  The small size of Slammer added to its 

effectiveness by allowing it to be sent in a short time.  This small size provided an 

additional benefit of initially hiding its existence since the large file transfers prevalent on 

the Internet masked its presence.  Even with the small size of 404 bytes, the amount of 

data being sent across the Internet by Slammer during the three minute interval was over 

23,000 gigabytes every second. 

Also aiding Slammer’s effectiveness was its use of User Datagram Protocol 

(UDP) for communication [HyE03].  UDP allows transmission with no requirement to 

establish a return path acknowledgement.  This meant Slammer could scan the Internet 

without concern for establishing a connection to the targets, thereby further increasing its 

speed.  The consequences could have been much worse; Slammer had a small flaw in its 

program that limited the number of Internet system addresses it could scan for infection 

[MPS03].  However, this did not appear to impact the speed at which Slammer was able 

to spread.  This flaw did, however, limit the ability of researchers to calculate the IP 

address range vulnerable to the Slammer worm, as they had been able to do with previous 

worms [MPS03]. 

2.2.4 The Border Gateway Protocol (BGP) and /8 Routing Worms 

The Border Gateway Protocol (BGP) and “/8” routing worms are malicious code 

proposed by Zou [ZTG05].  These worms are an advanced form of malicious code using 

two techniques to increase their speed of infecting vulnerable systems and creating an 

overload of malicious packet traffic on the Internet backbone. 
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The BGP routing worm is, as the name implies, a scanning of the BGP routing 

tables for valid computer addresses to attack.  The BGP routing worm is named after the 

protocol used by Internet Service Providers (ISPs) of various tier sizes as their inter-

autonomous system routing protocol to exchange information between ISPs.  The BGP 

routers contain ISP IP addresses, and Zou proposed an autonomous worm that harvests 

valid IP address tables from the BGP routers.  Thus, this makes the BGP routing worm a 

more precise Internet scannerand should be at least three times faster than any previous 

worm [ZTG05].  The second capability of a BGP routing worm is the ability to attack, 

say, only a specific country, company, Internet service provider, due to the inherent 

geographical information in routing tables [ZTG05]. 

The “/8” routing worm implements similar techniques with one difference from 

the BGP routing worm.  Instead of a large block of code to query the BGP routers for 

their prefixes to hone the worm’s search, the “/8” routing worm is pre-coded with the 116 

IPv4 “/8” routable addresses.  This reduces the amount of code required and therefore the 

size compared to the BGP routing worm.  Inserting the 116 IPv4 “/8” routable address 

prefixes would only increase Slammer’s size by 116 bytes to 520 bytes [ZTG05].  The 

code to perform this modification was not available in published research.   

Due to the public availability of the BGP routing tables, developing an effective 

worm is comparatively easy because the tables provide a known good range of Internet 

protocol addresses to attack which make the worm spread more effectively by reducing 

the required scanning space without the risk of missing a target.  As of September 2003, 

over 28% of the IPv4 addresses were BGP routable, reducing the required scanning space 

by almost 70% [ZTG05].   
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In addition to spreading quicker and being able to target a specific region or range 

of IP addresses for attack, there are two other challenges that make the worms 

problematic for the Internet community.  First, the BGP and “/8” routing worm can cause 

even more congestion than Slammer because the IP addresses generated by the routing 

worms are inherently BGP routable.   Unlike the other traditional scanning worms 

including Slammer which use TCP/UDP that can be easily dropped if the generated 

address is invalid, the addresses generated by a BGP worm are always valid at the BGP 

router and therefore forwarded. Since Slammer and other worms scan the entire IPv4 

address space 70% of their IP addresses generated are non-routable and dropped 

[ZTG05].  Therefore, a majority of the traffic generated by Slammer, did not even appear 

on the Internet backbone and did not cause any congestion.  Despite this fact, Slammer 

caused severe congestion to several local area networks and the Internet as a whole.   

The second challenge presented by the BGP and “/8” routing worms is they are 

more difficult to detect compared to previously observed scanning worms (e.g. Code 

Red, Slammer, Witty).  One of the major identifiers used to track scanning worms is the 

large amount of traffic generated without response.  Because the BGP and “/8” routing 

worms generate packets that will be dropped by the routers and furthermore since the 

failed responses would be delayed due to the routability of the infection packets, 

detecting the worm based on an illegal traffic method would be slow [ZTG05]. 

2.2.5 The BGP Routing Worm Propagation 

The BGP and “/8” routing worms were based on a mathematical model that 

reflects the actual propagation parametrics observed in previous worms.  The infection 
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rate of the BGP and /8 routing worms were modeled using a uniform-scan worm model 

described as [ZTG05] 

( )tt
t INI

dt

dI
-

W
=

h
      (1) 

where It is the number of hosts infected at time t, N is the number of vulnerable systems, 

η is the scanning rate, and W is the address space requiring scanning.  Using Code Red as 

a basis, the BGP and /8 routing worm infect rates versus the observed Code Red rates are 

shown in Figure 2.   

 

Figure 2. Zou Code Red Worm Simulation 

The values used for the comparison were η = 358 scans per minute, N = 360,000, 

and It  = 10 systems infected.  The address space to scan, W, was set to 4,294,967,296 for 

the Code Red infection curve and 1.95 billion for the 116 Internet Assigned Numbers 

Authority (IANA) “/8” BGP routable addresses for the “/8” routing worm.  The BGP 

routing worm had all of the same variables except for the available address space.  For 
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the BGP routing worm W was set to 1,228,360,647 to reflect the further refinement of the 

scanned address space.  The outcome of this experiment showed that both the BGP and /8 

worms operated significantly faster; more than 3 times as fast as the Code Red worm 

[ZTG05].  Unlike the Zou Slammer-based worms (discussed below), there were no 

changes in the scan rate made in the Zou Code Red-based Worms due to the the increase 

of code size required to make the routing worms [ZTG05]. 

The model of Slammer as a “/8” routing worm was developed using the uniform-

scan worm model with η = 4000 scans per minute, N = 100,000, and It  = 10 systems 

infected [ZTG05].  The address space to scan, W, was set to 1,946,156,941 addresses.  

The Slammer “/8” routing worm, referred to as the “routing Slammer worm,” used the 

same values for N and It.   However, to reflect the reduced address space of a “/8“ routing 

worm and the increased code size of 520 bytes to incorporate the “/8” routing worm code 

into Slammer, W was set to 1.95 billion and η was set to 3108.  

A complete list of the variables used by Zou is provided in Table 1.  The data 

revealed that the new “routing Slammer worm” (hereafter called the Zou Slammer 

routing worm) was more than twice as fast as the original Slammer infection rate as 

shown in Figure 3 [ZTG05].  
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Figure 3. Zou Slammer Worm Simulation 

Table 1. Zou Worm Simulation Variables 
 

Number of IP 
addresses

Number of 
Vulnerable 
Systems 

Packet 
Generation 

Speed

Initial Number of 
Infected Systems

Code Red Worm 4,294,967,296 360,000
358 per 
Minute

Ten

Zou Code Red "/8" 

Routing Worm
1,946,156,941 360,000

358 per 

Minute
Ten

Zou Code Red BGP 

Worm
1,228,360,647 360,000

358 per 

Minute
Ten

Zou Slammer Worm 4,294,967,296 100,000
4,000  per 

Second
Ten

Zou Slammer 
Routing Worm

1,946,156,941 100,000
3,108 per 
Second

Ten
 

2.3 Internet Modeling 

Due to the Internet’s complexity, rapid growth, and constant change, any attempt 

at modeling it will be severely limited.  Mathematical models, software simulations, and 
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hardware simulations all suffer from a lack of size or ability to effectively mimic the 

operation of the Internet.  The biggest problem any model of the Internet is its inability to 

model the true vastness of the global Internet community [FlP01].  There were an 

estimated 16 million users in December of 1995 [Gro03], [IWS07].  The number of users 

has increased to 1,093 million by December of 2006 [IWS07].  Even the most advanced 

computer simulation software falls far short of being able to represent that many nodes on 

a network.   

Another problem with simulating the Internet is heterogeneity.  The Internet, 

while dominated by Microsoft products, is not a network of similar computers.  There are 

differences in platforms, link sizes, data rates, and network topologies that increase the 

difficulty in accurately simulating the Internet even further.  Also confusing the issue are 

the differences in protocols used by these varied systems and networks.  Each of these 

protocols has their own operating characteristics, formats, and traffic loads to consider to 

generate an accurate model [FlP01].    

A third area of concern is the difficulty in representing the amount of traffic load.  

The Internet has congestion control techniques and dynamic routing capability.  

Simulating this adds significant complexity to a model.  Further, Internet traffic is not 

constant.  The high traffic pattern for each network follow the same pattern as an average 

workday; the traffic tends to increase as the workday begins, tails off over the lunch 

period, starts to climb again after lunch until the end of the workday, and finally exhibits 

some increase in the evening hours after dinner that has been attributed to 

home/recreational computer use [FlP01].   Figure 4, shows a typical traffic pattern of 
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several states in the United States that exhibit this pattern for a rise as the workday begins 

and a falloff of traffic as nightfall occurs [Whe02]. 

Weekday Traffic Patterns
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Figure 4. Pattern of Daily Network Traffic 

The final factor presented by Floyd and Paxson is that a model of the Internet will 

likely not be useful tomorrow.  The Internet changes everyday in its operation, size, and 

use.  Some of the areas that make the future Internet difficult to predict are pricing 

structures, the explosive growth of wireless, and the currently undeveloped new “killer 

application” [FlP01]. 

2.4 Internet Protocol Addressing 

IPv4 is the predominant protocol used for Internet communication today, but on 

the horizon is the IPv6.  IPv4 has an address space of 232 yielding 4,294,967,296 IP 

addresses.  However, due to the reserved IP ranges and limitations on the range usable by 
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Internet community, there are just over 3.5 billion useable IP addresses [WaC02].  Sixty-

five percent of the IPv4 address space is assigned to the United States and the growth of 

the Internet in Europe and Asia is causing problems with a lack of available address 

space [Huf03].  

Internet Assigned Numbers Authority (IANA) assigns and manages the available 

Internet address for the world.  From the IANA the Regional Internet Registries (RIRs) 

receive large groups of IP addresses.  These RIRs manage their assigned smaller 

addresses and distribute an even smaller range to the large Internet Service Providers 

(ISPs) for their area of responsibility.  In turn, the large ISPs provide Internet connection 

service to the smaller local ISPs and end users.   

Classless Inter-Domain Routing (CIDR) is a prefix based standard for the 

interpretation of IP address groupings to allow easier use and discussion.  The slash 

number designation, such as “/8,” denotes the prefix aggregation of the IP address from 

the full 32 bit IPv4 address.  Thus, a “/8” takes the 32 bit IPv4 address from 

approximately 4.3 billion possible addresses and reduces the address to the last 24 bits as 

the first 8 bits are masked.  This reduces the IPv4 address space under consideration to 

16,777,216.  This “/8” grouping is the typical CIDR size provided to the RIRs for 

dispersal to the ISPs. 

The “/8” routing worm reduces the overall IPv4 address space by instituting a 

CIDR “/8” allocation table as part of its functionality [ZTG05].  Therefore, out of the 

possible 256 “/8” address groups, only 116 are IANA IP routable addresses.  Based on 

these restrictions and reserved addresses dedicated under the authority of IANA, the 

scanning required by a “/8” routing worm is reduced to 45.3% of the IPv4 address space 
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[ZTG05].  This means that instead of scanning the entire 4.3 billion IPv4 address space as 

Slammer did, a CIDR “/8” based routing worm would only have to scan 1.95 billion 

addresses. 

2.5 Increasing Speed of Technology 

The speed of both the Internet and computers is increasing each year.  According 

to the often-quoted Moore’s Law, the speed of computer processing power roughly 

doubles every 18 months.  Thus, if one uses Moore’s Law to compute the difference in a 

computer attached to the Internet between 2003 and 2006, the system in 2006 should be 

about 4 times faster.  Moore’s Law has been used to predict everything from disk storage 

capacity to digital camera resolution.   Others have estimated the increase of network 

capacity used Moore’s Law. 

In fact, the growth of the Internet has more than matched the estimates of Moore’s 

Law.  During 1996-2002, the traffic on the Internet backbones in the United States 

doubled every year and the infrastructure kept pace with this exponential growth [Odl03].  

As previously mentioned, the number of users increased 68 times in just eleven years 

from 16 million in 1995 to 1,093 million in 2006.  This does not follow the Moore’s Law 

rate of expansion.   

2.6 Related Research 

The primary focus of this research is to analyze the performance of the original 

Slammer worm, the Slammer routing wom as proposed by Zou, and the SSE routing 

proposed in this research on an IPv4 network [ZTG05].  The Slammer worm has been 

used in many worm studies where a mathematical model was developed to simulate its 
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effects [WMS05] [PeS04] [YuW04].  The BGP and “/8” routing worms are worms 

proposed by Zou and modeled mathematically to compare against the observations of 

Slammer and Code Red [ZTG05]. 

The Directed-Graph Epidemiological (DGE) model has been the basis for many 

worm models [KeW91].  It extended the standard epidemiological model to a directed-

graph model and uses in the analysis and simulation of viruses.   DGE applied the simple 

SIS (Susceptible -> Infected -> Susceptible) epidemiological model to various graphs to 

emulate the propagation of viruses [KeW91].  This was one of the first attempts at 

mathematically adapting virus propagation to the epidemiological model [KeW91] and 

became a reference for future mathematical malicious logic modeling [CGK03] [KRD04] 

[RSL04] [YuW04].   

Chen used a mathematical model of Code Red to study the propagation 

characteristics of worms [CGK03].  It was claimed that the model of Code Red closely 

matched the infection rate curve data collected from the original Internet introduction of 

Code Red, however no statistical basis for the claim was provided.  The model provided a 

formula for detecting, monitoring, and defending against further worm attacks and 

provided a way to understand worms and aid in the defense against them in the future 

[CGK03].  

Permulla and Sundaragopalan extended worm modeling to the packet- level.  

Their research developed a high-fidelity packet-level network simulation that emulated 

the operation of worms on the Internet and included some real operational subsystems.  

They included experiments with simulated live monitoring and defensive systems.  
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However, the monitoring and defense system was not included in the mathematical 

model of worm propagation [PeS04]. 

Wei Yu considered four classes of worms and characterized their operation 

through modeling and numerical analysis.  Yu analyzed pure random-based, peer-to-peer 

hit list-based, cooperation-based, and non-cooperation based strategies for worm 

operation.  The numerical analysis found the most effective worms used hit lists 

[YuW04].  This is similar to Zou when considering the “/8” routing worm as a form of 

“hit list” worm [ZTG05].  An epidemic model simulated the actions of worms on the 

Internet [YuW04]. 

The goal of the research performed by Joshua Hansen was to prove that a worm 

could be programmed to find exploits on a heterogeneous network and use those exploits 

to propagate without interaction with its creator.   Hansen defines a heterogeneous 

network environment as a network that has different operating systems; however, these 

systems have a common software program that could be exploited [Han03].  This is 

consistent with current Internet topology since, in 2004 Microsoft had the clear majority 

of operating systems on the Internet [Fes04].  Java was chosen as the basis for the Hansen 

exploit because of the wide use of Java across many operating systems including 

Microsoft and UNIX.   A six-node network using IPv4 with three real and three simulated 

nodes using a virtual machine was used for this simulation.  Of those nodes, the 

experiment included one real and one virtual node, which communicated wirelessly.  

Hansen did not use a live worm, but hard coded the exploit parameters into the modeling 

code and initially programmed an artificial vulnerability into each node [Han03].   
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Wei used Slammer data to validate a packet- level worm simulation on the Emulab 

test bed using a realistic background traffic model [WMS05].  Their initial research used 

the original Slammer data [MPW03], which consisted of 75,000 vulnerable systems and 

an average scan rate of 4,000 packets per second and mathematical models of worm 

propagation.  The worm propagation models were built using the variables of 

vulnerability ratio, scanning rate, infection delay, and scanning strategy.  The scanning 

strategy took into account how much of the address space the worm scanned and how the 

worm performed the scan.  It also modeled network congestion and network failures.  

The resulting infection rate curves, shown in Figure 5, include an estimate of how quickly 

a set of vulnerable system would be infected without network congestion [WMS05]. 

 

Figure 5. Wei Slammer Worm Simulation 

Figure 6 shows Slammer worm propagation with the constant and random 

background traffic values.  Wei observed that there was a negligible difference between 
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the infect rate of Slammer in the exponential and constant background traffic experiments 

and attributed this to Slammer using UDP packets that could easily overcome the model 

of the background traffic and congestion.  A worm based on TCP would likely exhibit a 

larger sensitivity to the background traffic values [WMS05].   

 

Figure 6. Wei Slammer Worm propagation with Network Congestion 

Wagner also used Slammer to validate models of network and bandwidth latency 

constraints.  The simulator was based on observed speed and connection data gathered 

from the peer-to-peer file sharing software Napster and Gnutella hosts.    During the 

Slammer portion of their research, Wagner created a 10-group network, set the initial 

number of infected systems at 100, and the vulnerable systems at 75,000 [WPD03].  The 

initial number of infected hosts appears to be arbitrarily assigned.  The research found the 

collected data matched the infection doubling rate observed during the original release of 

the Slammer worm and the overall scanning rate after three minutes [MPW03], but 
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deviated significantly from the observed propagation speed. This deviation was attributed 

to an increase in line speeds since Slammer was originally released [WMS05]. 

2.7 Summary 

This chapter provides an overview of related research.  Specifically, the operation 

of malicious logic with an emphasis on worms is provided.  More detailed coverage of 

the Code Red, Slammer and routing worms and their previously observed propagation 

characteristics is also provided.  Each of the worms is a version of a scanning worm that 

is programmed to randomly scan the available address space.   

There have been many mathematical simulations and models of both Slammer 

and other scanning worms on IPv4 networks.  Only Perumalla, Sundaragopalan and 

Hansen tried to include actual operational systems into their research; however they did 

not use the actual worms [PeS04] [Han03].  Wei performed some detailed simulation of 

worm propagation using mathematical models and a network of computers [WMS05].  

Zou proposed and mathematically evaluated a pair of routing worms that proved to be 

faster than both the Code Red worm and the Slammer worm [ZTG05].  None of the 

previous research has involved re-releasing the Slammer worm onto an actual network to 

observe its effects for analysis. Rather, they relied on matching the previously observed 

data to build and validate their models. 
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III.  Methodology 

3.1 Introduction 

This chapter describes the methodology used to create the experiment, the trials to 

test the hypotheses, and the data analysis.  Specifically, Section 3.2 present the problem 

definition including the goals and hypotheses, the approach and the experimental 

assumptions and limitations.  Sections 3.3 and 3.4 cover the system boundaries and 

system services.  The workload, consisting of the various worms tested in this research, is 

discussed in Section 3.5.  Section 3.6 covers the metrics collected.  The parameters and 

factors for this experiment are in Sections 3.7 and 3.8.  The techniques used for 

evaluating the data collected in this research are covered in Section 3.9.  The network 

configuration and the design of each worm tested is defined in Section 3.10.  Finally, 

Section 3.11 presents the analysis and interpretation of the results. 

3.2 Problem Definition 

3.2.1 Goals and Hypothesis 

The primary goal of this research is to characterize the ability of the original 

Slammer worm, the Slammer based routing worm proposed by Zou, and a new Single 

Slash Eight (SSE) routing worm proposed by this research to infect vulnerable systems 

within a given address space on an IPv4 network.  The infection rate of these routing 

worms across an IPv4 network are determined and their operation compared to the 

original Slammer worm.  This research also investigates the Slammer worm’s ability to 

generate a uniform random IP addresses in a given address space.  Finally, the 
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implications of the speed increase of computing systems available today versus those in 

use during the original Slammer release is discussed. 

Since the Slammer routing worm has only been studied through mathematical 

models [ZTG05], this research uses observed Slammer characteristics to mimic the 

expected operation of a Slammer routing worm by analyzing its ability to generate 

random IP addresses.  To evaluate the randomness of the Slammer IP address operation, 

each IP address generated will be evaluated as a whole and individually by octet.  The 

propagation speed of original Slammer worm, the Slammer routing worm, and the SSE 

routing worms are compared assuming a computing system from 2003 and a system in 

2007.  This is accomplished using data collected from a modern infected system for the 

2007 data and the use of the original Slammer characteristics for the 2003 data.  The 

experiment determines whether there is any significant difference between the 

propagation speeds in 2003 versus 2007. 

3.2.2 Approach 

The original Slammer worm code is sent to a vulnerable system, also called the 

victim, by a carrier workstation.  Once the infection packet is received at the victim, the 

worm code executes and the worm generates packets autonomously for further infections.  

These infection packets generated by the victim are collected and used to characterize the 

operation of the Slammer worm for simulation.  These measured propagation 

characteristics are combined with mathematical simulations and compared to the known 

statistics of the Slammer worm in the wild. 

The IP addresses of the Slammer infection packets are analyzed to determine the 

worm’s ability to generate uniform random addresses.  To ensure uniform distribution 
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within the IP addresses, each of the last three octets is evaluated individually to determine 

whether they are each uniformly random in distribution within their smaller address 

space.  Because the first octet is being simulated for the various routing worms, it can be 

represented by any valid octet value and is not germane to this experiment. 

Once the randomness has been determined, a mathematical simulation of 

infection rate is generated using the variables required for original Slammer, the Slammer 

routing worm, and the SSE routing worm.  Within the mathematical simulation, the size 

of the IP addresses available for scanning, the initial number of infected systems, and the 

number of vulnerable systems are controlled and modified based on the particular worm 

being evaluated. 

Finally, the propagation characteristics collected from the Slammer infected 

system are evaluated for their generation speed.  This data is compared to the original 

Slammer characteristics for the 2003 computing systems versus the current computing 

systems available in 2007. 

3.2.3 Assumptions and Limitations 

It is assumed that a future exploits allowing the propagation of a worm like 

Slammer will continue to occur.  The primary limitation of this experiment is the inability 

to accurately represent the Internet architecture as mentioned in Chapter 2.  Without the 

ability to represent the Internet or a large network, the true propagation characteristics of 

the worms is necessarily limited.    

3.3 System Boundaries 

The System Under Test (SUT) is an IP network known as the Network Under Attack.  As 

shown in Figure 7, the number of network nodes, protocol, topology, and links between 
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nodes are all components of the Network Under Attack.  The specific Component Under 

Test (CUT) is the Slammer worm, Slammer routing worm, and SSE routing worm.  

 

Figure 7. Network Under Attack 

3.4 System Services 

The service provided by this system is the transport of user data between nodes.  

The outcome of this service is success, failure, or degraded operation due to worm 

infection.  Failure could be due to worm infection preventing valid user data from 

crossing the network.   

An illegitimate but interesting use of the system service is the propagation of 

worms.  The outcome of this service is also success, failure, or degradation.  Success is 

defined as the transfer of a worm from one node to another.  Failure occurs when a worm 

cannot move from one node to another.  Degradation could be caused by the reduction of 

the worm’s capability to spread due to the large traffic load. 
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3.5 Workload 

The workload of the system is the worms.  The first worm, Slammer, provides a 

basis for validation on the IPv4 network.  The Slammer routing worm is compared to the 

results generated by Slammer to determine whether it is faster and to [ZTG05] for 

validation.  Lastly, the SSE routing worm is compared against both Slammer and the 

Slammer routing worm to determine how much faster it is. 

3.6 Performance Metrics 

The primary metric used in this experiment is the number of systems infected per 

second.  From the Matlab model of infection rate, the infection doubling rate can be 

calculated.  This rate is compared to the observed data validate the statistical model.  The 

known infection rate of Slammer on the Internet also provides a method to determine 

whether the Slammer routing worm and SSE routing worm spread faster than Slammer.  

The scanning rate is measured by the packets generated per second by an infected system 

for a given time period.  This metric is also used to compare scan rates between the 

systems available for infection during the original Slammer release and those in use 

today. 

3.7 Parameters 

3.7.1 System Parameters 

- Number of Nodes:  The number of nodes in this experiment is limited by a 

constant generation of a multicast address in the first octet that could not 

be resolved during this research effort.  Therefore, only one vulnerable 

node is available for use in the analysis of each worm. 
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- Link Data Rate:  As the congestion on a link increases due to network 

traffic, the data rate of that link and how much traffic it can carry impacts 

the spread of the worms.  The link data rate varies from link to link and 

cannot be adequately simulated in this research with the resources 

available.  Therefore, the variation in link capability is not a variable for 

consideration in this experiment and each link is a direct connection 

through a switch using Category 5e ethernet cable. 

- Operating System:  Worms normally target one particular operating 

system.  If the nodes of the network are not running the target operating 

system, the worm will not spread.  Consideration of how non-vulnerable 

nodes affect propagation is not considered.  The target host is always 

loaded with the vulnerable software component of Microsoft Server 2000, 

which the Slammer worm exploits. 

- IP Version:  IPv4 is used throughout this research.  This facilitates the 

baseline comparison of the worms under test against the known 

propagation characteristics of Slammer.   

- Year of the Computing System:  There are two time frames considered in 

this experiment; the year Slammer was originally released (2003) and year 

that this experiment takes place (2007).  These two time frames provide a 

comparison of the difference in speed of worms released onto systems 

used in 2003 to those in use today.  The use of the average Slammer worm 

scan rate observed in 2003 and the operation of the Slammer worm on a 
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computing system available today provides the baseline for this 

comparison. 

3.7.2 Workload Parameters 

- Worms:  The worms represent a malicious packet workload for the 

network to transport.  Each worm, the original Slammer, the Slammer 

routing worm, and the SSE routing worm, are all workload parameters in 

this experiment. 

3.8 Factors 

The factors is the workload and the year of the computing system.  There are three 

main worms considered in this experiment – the original Slammer worm, the Slammer 

routing worm, and the SSE routing worm.  The original Slammer worm is used as a 

baseline for comparison and validation of the other worms and mathematical simulation 

using the archived data and experimental data from other experiments.  How the 

capabilities of the Slammer routing worm and the SSE routing worms compare to the 

original Slammer worm is the focus of this experiment. 

The second set of factors is the difference in packet generation rate between the 

years 2003 and 2007.  The average Slammer worm packet generation rate from 2003 is 

used to establish the baseline for comparison to the data observed on a computing system 

of today.  To evaluate how a fast the Slammer worm, the Slammer routing worm and the 

SSE routing worm could propagate on a computing system of today, the actual 

observations of the scan rate of the Slammer code on the test network is used. 
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3.9 Evaluation Technique 

This experiment directly measures the generation of infection packets on a 

network.  This data and the originally observed Slammer scan rate is provided as the 

input variable of the packets generated per second to a mathematical model to provide 

infection rate data. 

Two laptops connected by a switch, both described in Appendix A, are used to 

simulate an attacking system and a vulnerable host.  The attacking system sends the 

infectious worm packet to the vulnerable host via UDP packet to infect that system.  

Once the vulnerable host receives the infection packet, that host becomes infected and 

begins to autonomously propagate the worm to randomly generated IP addresses. 

The validation of the worm operation and infection rate is accomplished by 

comparing previously collected Slammer data and experiments from [MPS03], 

[WMS05], and [ZTG05].  The randomness of the IP addresses is validated through the 

use of regression analysis and comparison to a statistically generated uniform distribution 

of the available address space. 

3.10 Experimental Design 

3.10.1 Network Configuration and System Infection Procedure 

The network configuration of the hardware for each run of the experiment uses 

the same components.  Each run consists of two laptops connected to a switch as shown 

in Figure 8 connected by category 5e ethernet cable. The specifications for each 

component are provided in Appendix A.  
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Figure 8. Network Configuration 

A detailed description of the Slammer code used for infecting the victim machine 

is provided in Appendix B with analysis of the assembly code and a diagram of stack 

operation.  The Slammer worm code is sent via a UDP packet to the victim machine 

using the Netcat tool.  Netcat wraps the Slammer binary code in a UDP packet and sends 

the completed packet to the destination address and port specified.  This is accomplished 

by invoking the Netcat software through the use of the command line as shown in Figure 

9.    

 

Figure 9. Netcat Infection Command 

Each new infection is initiated using this same command line interface.  The 

breakdown of the command is shown in Table 2.  

Table 2. Netcat Infection Command Description 
 

nc -w2 129.249.92.11 -u -1434 < Slammer

Calls Netcat 

Program

Wait two seconds 

to close 

connection

Target IP Address

Open a UDP 

connection to port 

1434

Send the 

"Slammer" file to 

the Target  

3.10.2 Experimental Exploration of Slammer Randomness 

To establish a baseline for comparison, the Slammer packets are collected and 

used to build a statistical graph of the infection rate for comparison to the real world 
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observed operation of Slammer.  The first step in this process is to establish that the IP 

addresses generated by Slammer are statistically random.  The problem with the random 

number generator in Slammer is well documented in [MPS03] and [MPW03].  This flaw 

affects the first octet and is therefore not part of the experimental consideration in the 

generation of random IP addresses.  Only the last three octets are analyzed and used for 

the examination of randomness. 

The uniform distribution of the random addresses generated by Slammer is 

verified by analyzing the infection packets generated by Slammer as an entire IP address 

space of three octets and individually as to the randomness of the octets themselves.  To 

verify the statistical uniformity of the random numbers generated by Slammer, the total 

address space under consideration is divided into an evenly distributed groupings based 

on the number of samples taken.  The grouping is established by first taking the upper 

value range minus one to account for the value of zero to establish the upper range of the 

data set under evaluation.  This upper range is then divided by the number of samples 

taken which provides the statistical interval for each sample point.  The statistical interval 

is then multiplied by the sample event number to generated the statistical average for that 

sample point.  The sample event number and the statistical average are plotted on an 

“XY” scatter plot to generate a regression line for analysis of the data collected. 

For example, if the experiment called for a statistical spread of a single 

hexadecimal number with 20 samples the calculations would be as shown in Table 3.  To 

find the upper limit, the total possible values of single hexadecimal number, 16, is 

reduced by one to account for the value of zero.  This upper limit of 15 is divided by the 

number of samples taken of 20, which calculates the statistical interval of 0.75.  The 
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statistical interval of 0.75 is then multiplied by each sample event number including zero 

to generate the statistical average for the data set.   

Table 3. Statistical Model Example 
 

Samples 

Taken 20
Statistical 

Interval 0.75

Event No. 0 1 2 3 4 5 6 7 8 9 10

Statistical 

Average 0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5
Event No. 11 12 13 14 15 16 17 18 19 20
Statistical 

Average 8.25 9 9.75 10.5 11.25 12 12.75 13.5 14.25 15  

This data is then input into an “XY” scatter plot to show the relationship between 

the samples collected and values expected as shown in Figure 10.  The linearity of the 

data collected is compared to the statistical model to establish whether the data exhibits a 

similar linearity. 
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Figure 10. Statistical Model Graph Example 
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The statistical similarity of the model to the data collected will prove whether the 

data collected is uniformly distributed and therefore statistically random across the 

available address space.  Table 4 provides sample points of the statistical model used for 

the single octet and combined octet experiments. 

Table 4. Experiment Statistical Model 
 

16 128 192 1024 4096 16384 65535

Single 

Octets 256 65535 0.00389105 0.062 0.498 0.747 3.9844 15.9377 63.751 255

Three 

Octets 16777216 65535 256.003891 4096 32768 49153 262148 1048592 4194368 16777215

Example Event ValueAddress 

Space

Range of 

Samples

Samples 

Taken

Statistical 

Interval

 

3.10.3 Matlab Model of Infection Rate 

The Matlab model used in this research produces a worm infection rate based on 

several variables.  An overview of the operation of the Matlab model code is provided 

here and in more detail in Appendix C.  The number of initially infected systems, the 

number of vulnerable systems and the number of possible addresses available for 

scanning are all entered into the model.  The number of vulnerable systems is a range that 

always starts at 1 and ends at the total number of vulnerable systems.  The Matlab model 

uses a pseudo random number generator to generate a number that represents an infection 

packet for an IP address of a system for each iteration of the code.  The Matlab model 

generates one of these numbers for each system infected prior to that iteration.  These IP 

address numbers are compared against the total number of remaining vulnerable systems.  

If the IP address numbers fall within the range of the vulnerable systems then the 

iteration number is documented and the available vulnerable systems is reduced by one.  

If the IP address is not within the range of the vulnerable systems then the Matlab model 
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continues to the next iteration.  This continues until the vulnerable systems are reduced to 

zero, which indicates that all of the vulnerable systems have been infected.  The Matlab 

model then generates the file containing the iteration numbers of when each system was 

infected, those numbers are entered into an Excel spreadsheet and multiplied by the 

packet per second rate the worm generates. 

For example, if the total number of vulnerable systems is 10, the number of 

possible addresses is 100, and the initially infected systems equals 1, then the Matlab 

code would generate one random number for the first iteration.  If the random number 

generated falls within the range of 1-10 then the iteration number is noted by the code 

and the number of vulnerable systems is reduced to 9.  On the next iteration, the Matlab 

code generates one random number for each of the two infected systems and compares 

those numbers to the remaining vulnerable systems.  An example of 5 iterations of the 

Matlab model code, including the first two iterations detailed above, are demonstrated in 

Table 5 for a worm packet per second rate of 1 second. 

 Table 5. Matlab Model Infection Rate Example 
 

Iteration

Number of 

Infected 

Systems

Number of 

Vulnerable 

Systems

Number of 

Addresses 

Available

Number of Pseudo 

Random Number 

Generated

Numbers 

Generated

Time of 

Infection 

in 

Seconds
1 1 10 100 1 7 1

2 2 9 100 2 83 & 59 2

3 2 9 100 2 3 & 60 -

4 3 8 100 3 12, 33, 72 4

5 3 8 100 3 45, 51, 90 -  

 From this information a graph of the infection rate curve can be generated as 

shown in Figure 11 where the data in Table 5 is extended exponentially. 
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Figure 11. Matlab Model Infection Rate Example 

3.10.4 Experimental Validation of Matlab Model Infection Rate Simulation 

Once the uniform distribution of the random packets generated by a Slammer-

infected system is verified, the Matlab model of worm infection rates is validated.  The 

verification of the mathematically generated infection rate is accomplished by comparing 

the curve generated by the Matlab model code (Section 3.10.3 and Appendix C) against 

the curves generated by previous research and the original observations of the Slammer 

worm from 2003.  The Matlab model is first compared against the Code Red worm, the 

Code Red “/8” routing worm, and the Code Red BGP routing worm experiments 

[ZTG05].  A more detailed comparison is performed against the Slammer worm’s 

original infection rate and the results found in the research of the Slammer worm 

completed by Wei and Zou [WMS05] [ZTG05].  Finally, the proposed SSE routing worm 

is compared against the Matlab models of the Slammer worms of 2003/2007 and the 

Slammer routing worms of 2003/2007. 
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As discussed in Section 3.10.3, the Matlab model generates an infection rate 

curve based on the variables of the initially infected systems, the number of vulnerable 

systems, and the size of the address space being scanned by the worm.  The Matlab 

model variables used to generate the infection rate curves for each of the worms tested in 

this research are described below and in Appendix C.  

3.10.4.1 Matlab Model Variables for the Code Red Worm Comparisons 

The Code Red worm simulations have a vulnerable population of 360,000 and an 

initial number of infected systems of 10.  The scan rate for the Code Red test is based on 

the observed rate of 358 scans per minute.  These values and the 4.3 billion possible 

addresses are provided to the Matlab model simulation as the input variables.  For ease of 

reference, Table 6 provides all of the variables used in the Matlab model for the three 

Code Red simulations. 

The Zou Code Red “/8” routing worm simulations consist of a vulnerable 

population of 360,000 and an initial number of infected systems of 10.  The scan rate for 

the Zou Code Red “/8” routing worm test remains at the observed Code Red rate of 358 

scans per minute.  However, to mimic the operation of the “/8” routing worm’s ability to 

reduce the address space required to scan the possible addresses are reduced to 

1,946,156,941. 

 The Zou Code Red BGP routing worm simulations have of a vulnerable 

population of 360,000 and an initial number of infected systems of 10.  The scan rate for 

the Zou Code Red BGP routing worm test remains at the observed Code Red rate of 358 

scans per minute.  However, because the Zou Code Red BGP routing worm further 
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refines the address space required for scanning the possible addresses are reduced to a 

total of 1,228,360,647.   

Table 6. Matlab Model Variables for Code Red Worms 
 

Number of IP 
addresses

Number of 
Vulnerable 
Systems 

Number of 
Iterations

Number 
of Trials

Initial 
Number of 

Infected 
Systems

Code Red 
Worm

4,294,967,296 360,000 10,000,000 1 Ten

Zou Code Red 
"/8" Routing 

Worm
1,946,156,941 360,000 500,000 1 Ten

Zou Code Red 
BGP Worm

1,228,360,647 360,000 500,000 1 Ten

 

Due to the number of vulnerable systems, and the results of the trial tests, this 

experiment is run only once as an evaluation of the Matlab model infection rate.  The 

remaining worm tests are examined more thoroughly to establish the validity of the 

Matlab model. 

3.10.4.2 Matlab Model Variables for the Zou Slammer Worm Comparisons 

At the time of Slammers release in January of 2003 the vulnerable population was 

estimated at 75,000 with 74,856 unique IP addresses observed [MPW03].  Unfortunately, 

the numbers used by Zou was arbitrarily set to100,000 for the number of vulnerable 

systems and 10 for number of initially infected systems [ZTG05].  The scan rate used for 

the Zou Slammer worm is 4,000 packets per second, which simulates the observed 

average of Slammer worm during its original run.  Table 7 provides the Matlab model 

variables used in the Zou Slammer worm simulations. 
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Table 7. Matlab Model Variables for Zou Slammer Worms 
 

Number of IP 
addresses

Number of 
Vulnerable 
Systems 

Number of 
Iterations

Number 
of Trials

Initial Number 
of Infected 
Systems

Zou Slammer Worm 4,294,967,296 100,000 10,000,000 20 Ten

Zou Slammer Routing 
Worm

1,946,156,941 100,000 500,000 20 Ten

 

The Zou Slammer routing worm is run in the Matlab model with the same 10 

initially infected systems as the Zou Slammer worm.  However, the number of IP 

addresses and scanning rate are changed to reflect the capabilities of the Zou Slammer 

worm.  The number of IP addresses available for scanning by the Zou Slammer routing 

worm is reduced to 1,946,156,941 to reflect the worm’s ability to reduce the required 

scanning space and the scan rate is decreased to 3,108 pps to reflect the larger packet size 

of 520 bytes. 

The Slammer worm simulations are run in the Matlab model 20 times and used to 

generate a mean infection rate curve with confidence level of 95%. 

3.10.4.3 Matlab Model Variables for the Slammer Worm Comparisons 

To more accurately represent the actual operation of the original Slammer worm, 

number of vulnerable systems is set to the 74,856 unique IP addresses observed in 2003 

is used for the Slammer worm 2003 model. Additionally, the number of initially infected 

systems is set to one since there was no evidence to support there was originally more 

than one initially infected system.  The scan rate used for the Slammer worm 2003 is set 

at the originally observed 4,000 packets per second.  Table 8 provides the Matlab model 

variables used in the Slammer worm 2003 and 2007 simulations. 
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The Slammer worm 2007 is run using the Matlab model with the same number of 

initially infected systems and vulnerable systems as the Slammer worm 2003.  However, 

the scanning rate is changed to 14,398 pps to reflect the observed capabilities of 

computing systems today.  

The Slammer worm simulations are run in the Matlab model 20 times and used to 

generate a mean infection rate curve with confidence level of 95%. 

Table 8. Matlab Model Variables for the Slammer Worms 
 

Number of IP 
addresses

Number of 
Vulnerable 

Systems 

Number of 
Iterations

Number 
of Trials

Initial Number 
of Infected 

Systems

Slammer Worm 2003 4,294,967,296 74,856 10,000,000 20 One

Slammer Worm 2007 4,294,967,296 74,856 10,000,000 20 One

 

3.10.4.3 Matlab Model Variables for the Slammer Routing Worm Comparisons 

Due to the use of an arbitrary number of 100,000 vulnerable systems and 10 

initially infected systems by Zou, the infection rate curve they generated does not 

accurately represent how a Slammer routing worm would have behaved in 2003.  To 

correct this problem, the Matlab model is used to generate a Slammer routing worm using 

the original 2003 Slammer worm numbers.  Thus, the number of vulnerable systems is set 

to the 74,856 unique IP addresses and the number of initially infected systems is set at 

one.  The scan rate used for the Slammer routing worm 2003 is set at the originally 

observed 3,108 packets per second as calculated by Zou because of the increase of the 

infection packet size to 520 bytes [ZTG05].  Table 9 provides the Matlab model variables 

used in the Slammer routing worm 2003 and 2007 simulations. 
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The Slammer routing worm 2007 is run using the Matlab model with the same 

number of initially infected systems and vulnerable systems as the Slammer routing 

worm 2003.  However, the scanning rate is changed to 11,187 pps to reflect the increased 

packet generation capabilities of computing systems today.  

The Slammer routing worm simulations are run in the Matlab model 20 times and 

used to generate a mean infection rate curve with confidence level of 95%. 

Table 9. Matlab Model Variables for the Slammer Routing Worms 
 

Number of IP 
addresses

Number of 
Vulnerable 
Systems 

Number of 
Iterations

Number 
of Trials

Initial Number 
of Infected 
Systems

Slammer Routing 
Worm 2003

1,946,156,941 74,856 500,000 20 One

Slammer Routing 
Worm 2007

1,946,156,941 74,856 500,000 20 One

 

3.10.4.4 Matlab Model Variables for the SSE Routing Worm Comparisons 

For the analysis of the SSE routing worms proposed in this research, the number 

of vulnerable systems is reduced to the size of one “/8” grouping of IP addresses.  The 

total 74,856 vulnerable systems are divided by the 116 “/8” routable addresses.  This 

makes the total vulnerable population within each “/8” set scanned by the SSE routing 

worm 645 systems. The number of IP addresses scanned by the SSE routing worm is also 

reduced to 16.7 million.  This represents the total of the 1.95 billion available for normal 

Slammer routing worm divided into the 116 “/8” ranges.  Due to the size of the SSE 

routing worm only increasing the original Slammer worm code by eight bytes, the 

packets per second rate is set at 3,922.   Table 10 provides the Matlab model variables 

used in the SSE routing worm 2003 and 2007 simulations. 
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The SSE routing worm 2007 is run in the Matlab model with the same number of 

initially infected systems and vulnerable systems as the SSE routing worm 2003.  

However, the scanning rate is changed to 14,118 pps to reflect the increased packet 

generation capabilities of computing systems today. 

 The SSE routing worm simulation is run in the Matlab model 50 times using the 

previously identified 16.7 million addresses and 645 vulnerable systems.  This curve is 

compared to the previous worm simulations for analysis of similarity.  

Table 10. Matlab Model Variables for the SSE Routing Worms 
 

Number of IP 

addresses

Number of 

Vulnerable 
Systems 

Number of 

Iterations

Number 

of Trials

Initial Number 

of Infected 
Systems

SSE Routing Worm 
2003

16,777,216 645 500,000 50 One

SSE Routing Worm 
2007

16,777,216 645 500,000 50 One
 

3.10.5 Experimental Examination of the Slammer Scanning Rate 

Packet generation rate by original Slammer worm is collected from the testbed 

network to provide another point of comparison with the real world observations.  The 

packets are collected after the initial infection is complete and the infected system is 

automatically generating infection packets.  The mean difference in inter-arrival time 

between each packet is measured for the collection period.  Twenty separate collections 

of infection packets are used to generate the packet per second rate. 

From the packet generation analysis, the speed of an average 2007 computing 

system is estimated and used to generate a comparison between the worm speeds of today 

versus those possible in 2003.  For these tests, the original Slammer worms, the Slammer 
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routing worms, and the SSE routing worms are set to their respective available address 

scanning spaces and vulnerable systems as shown in Table 11. 

Table 11. Worm Variables for Year Simulations 
 

Number of IP 
addresses

Number of 

Vulnerable 
Systems 

Number of 
Iterations

Number 
of Trials

Initial Number 

of Infected 
Systems

Slammer Worm 
2003

4,294,967,296 74,856 10,000,000 20 One

Slammer Worm 
2007

4,294,967,296 74,856 10,000,000 20 One

Slammer Routing 

Worm 2003
1,946,156,941 74,856 500,000 20 One

Slammer Routing 

Worm 2007
1,946,156,941 74,856 500,000 20 One

SSE Routing 

Worm 2003
16,777,216 645 500,000 50 One

SSE Routing 

Worm 2007
16,777,216 645 500,000 50 One

 

3.10.6 Examination of the Slammer Infection Doubling Rate 

From the Matlab model simulations of the Slammer worm 2003 variable numbers 

an infection doubling rate is developed for comparison to the 8.5 (+/-1) second estimated 

by Moore [MPW03].  This estimated global infection doubling rate is calculated for 

65,536 systems, which is the largest number of vulnerable systems attainable prior to the 

limit of 74,856 possible systems.  The Moore research noted, the original Slammer worm 

doubling rate was only estimated for the first minute [MPW03].  Therefore, in addition to 

the complete doubling rate curve, a more detailed analysis of the first 60 seconds is 

provided.  Then Matlab model of the Slammer worm 2003 doubling rate is compared 

original Slammer worm infection doubling rate curve for evaluation of their similarity. 
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3.11 Analysis and Interpretation of Results 

There are many aspects of the Slammer worm investigated in this research, the 

first of which is the packet per second generation speed.  The packets generated per 

second by the Slammer worm infected system on the testbed network are analyzed and 

compared to the observed number of packets per second generated by Slammer in 

January 2003.  This provides a basis for the calculating the time for each potential victim 

to be infected on the current Internet, which allows the speed of infection to be 

determined that could be expected if the worms were released on a network today. 

This research investigates the Slammer worm’s ability to generate a uniform 

random IP addresses in a given address space through the use of statistical comparison.  

Based on the comparison of the destination IP addresses of infection packets collected to 

the statistically generated regression line the uniform distribution of the Slammer worm’s 

IP address generation is established.  The similarity between these is evaluated to 

establish the uniformity of distribution. Further, to determine if the Slammer worm is 

generating the random IP addresses in a non-random pattern, lag plots of the data are 

created to analyze for existence of an observable pattern.  The presence of a pattern 

demonstrates the numbers are in fact correlated.  The combination of the analysis of the 

uniform distribution and lag plots provide this research to determine the statistical 

randomness of the Slammer worm’s generation of IP addresses. 

The Matlab model of worm infection rates is compared to previous research for 

validation and analysis of the original Slammer worm, the Slammer routing worm, and 

the SSE routing worm.  The first Matlab Model comparison made is to the Code Red 

worm research performed by Zou [ZTG05].  The Matlab model of the Code Red worm, 
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the Zou Code Red BGP routing worm, and the Zou Code Red “/8” Routing is analyzed 

for similarity to the of the Zou infection rates of those worms [ZTG05].  The Matlab 

model of the original Slammer worm infection rate is compared to the observed Slammer 

characteristics from January 2003 and to the results of the Wei and Zou research 

[WMS05], [MPS03], [MPW03], and [ZTG05].  As part of this comparison of the Matlab 

model to the Slammer worm’s operational characteristics, the Matlab model rate of 

infected systems doubling versus that observed by Moore is performed [MPW03].  If the 

comparisons show a close relationship, then the Matlab model simulations can be 

considered representative of how the original Slammer worm operates.   

The  Matlab model is used to generate the infection rate curves for comparison of 

the original Slammer worm 2003 and how the Slammer worm operates on a system of 

today.  The Slammer routing worm is also generated by the Matlab model for the 2003 

and 2007 computing system operation.  These four worms, the Slammer worm 2003/2007 

and the Slammer routing worm 2003/2007, are compared to determine the speed 

differences between each other.  These differences will determine how fast each worm is 

in relation to each other and characterizes their infection rate.   

Finally, the SSE routing worm is modeled by Matlab to characterize its infection 

rate.  Then the SSE routing worm 2003/2007 are calculated and compared to the 

Slammer worm 2003/2007 and Slammer routing worm 2003/2007 for determination of 

the speed difference between them.  These final comparisons provide the ability to 

determine which of these worms is the fastest at infecting a vulnerable population. 
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3.12 Summary 

This chapter discusses the methods used to analyze the propagation of the original 

Slammer worm, the Slammer Routing worm, and the SSE routing worm across an IPv4 

network.  This chapter defines under consideration for this research, the goals and 

hypothesis, the approach taken to complete this experiment, and the assumptions and 

limitations bounding this research.  In this chapter, the system boundaries, the services 

provided by the system, and the workload of the system is covered.  The metrics used in 

the measurement of performance, the description of the system and workload parameters, 

and the factors are discussed in this chapter.  The techniques used for evaluating the data 

and a detailed explanation of the experiment design is provided.  This chapter concludes 

with coverage of the analysis and interpretation of the results generated by the 

experiments in this research.  
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IV.  Analysis and Results 

This chapter presents the results and analysis of the data collected from the 

experiment simulations of the worm infections.  Section 4.1 covers the collection and 

analysis of Slammer’s packet per second generation.  Section 4.2 examines the 

randomness of Slammer’s IP address and octet generation.  In Section 4.3 the Matlab 

worm models are presented for comparison to the original Slammer worm and the routing 

worm models proposed by Zou.  The comparison of worm speeds possible on computing 

systems of today versus those available in 2003 is provided in Section 4.4.  Section 4.5 

examines the infection rate of the original Slammer worm versus the SSE routing worm. 

4.1 Slammer Packet Generation  

The test run to identify a mean packet generation time by an infected system 

yielded interesting results.  Twenty separate collections of packets generated by the 

original Slammer worm code are collected and analyzed.  As shown in Table 12, the 

mean time between packet generation is 69.46 µsec with the laptop operating on A/C 

power.  This generation time is extremely stable, as seen by the small standard deviation 

and confidence intervals.  This equates to 14,398 packets per second (pps), which falls 

into the upper half of the range observed during the Slammer worm’s original release of 

an average 4,000 and maximum 26,000 scans per second per worm-infected machine 

[MPS03].   
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Table 12. Slammer Packet Per Second on A/C Power 
 

Average Inter-Arrival 

Time of Infection 

Packets

Standard 

Deviation

Upper 

Confidence 

Interval @95%

Lower 

Confidence 

Interval @ 95%

Packets Per 

Second or 

Scans Per 

Second
69.46 µsec 1.49 µsec 70.11 µsec 68.8 µsec 14398 pps  

The testing of Slammer’s packet per second capability reveals an increase in the 

time to generate packets when the system is operating on battery power.  A short test and 

analysis of this anomaly is performed to calculate the packets per second of Slammer on 

battery power.  As shown in Table 13, the infected system generates less than half of the 

amount of packets on battery power as it does on A/C power.  The mean time between 

packet generation is 152.28 µsec with the laptop operating on battery power.  The 

standard deviation and confidence intervals are only slightly larger than those observed 

while operating on A/C showing that the system is still fairly stable in the packet per 

second generation while operating on battery power.  This generation rate equates 6,567 

pps on battery power.  Although this is amount is less than half of the observed amount 

when operating on A/C power, Slammer is still generating over the average 4,000 and 

below the maximum 26,000 scans per second per worm-infected machine observed on 

the Internet [MPS03].   

Table 13. Slammer Packet Per Second on Battery Power 
 

Average Inter-Arrival 

Time of Infection 

Packets

Standard 

Deviation

Upper 

Confidence 

Interval @95%

Lower 

Confidence 

Interval @ 95%

Packets Per 

Second or 

Scans Per 

Second
152.28 µsec 6.01 µsec 155.55 µsec 149.02 µsec 6,567 pps  

This data confirms that the Slammer code being utilized is operating within the 

previously observed characteristics and validates the use of the A/C power packets per 

second for use in calculating the time it will take to infect a group of systems of similar 
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construction.  The validation of the Matlab model infection rates will initially be 

validated using 4,000 scans per second per worm [ZTG05], [WMS05], [MPW03].  

Moore’s Law has been refined and changed over the years.  Adjustments had to 

be made due to observations where Moore’s Law fell short by 38% during a 1970’s 

estimate and was over by 27% in 1975 of transistor capabilities.  The original version of 

the law developed in 1965, was that the doubling would occur every 12 months.  Later, 

there was some consideration given to increase the time span to 24 months.  This 

refinement led to the currently quoted estimation of 18 months.   

Due to this ever-changing growth rate, this 18-month rule has been refined further 

to try and match the observed growth curves.  Dave Epstein of the Microprocessor 

Report suggested a solution to the variation in Moore’s Law called “Epstein’s 

amendment.”  Epstein’s amendment modifies the growth calculations of Moore’s Law by 

adding an additional six months to the doubling rate on an every ten years interval.  

Where in the 1970s the growth rate was every twelve months, by 1980 the doubling rate 

needed to be increased to every 18 months.  Finally, by Epstein’s amendment, the growth 

rate in 2000 was projected to double every 30 months [Hal06]. 

In consideration of Moore’s Law and Epstein’s modification, the operational 

characteristics of systems currently connected to the Internet should approach the average 

Slammer packet per second generation of 3.2 times that originally observed in January of 

2003.  Thus, a network of computers in January 2007 should produce an average of 

12,800 pps when infected by Slammer.  The observed packet per second rate for a 

Slammer infected system during this research is 14,398 pps.  The observed packet per 

second generation is 12.48% greater than that of the Moore’s Law with the Epstein 
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modification estimate.  However, the estimated 2007 upper limit of scan per second is 

calculated at 83,200 using Moore’s Law with the Epstein amendment.   This makes the 

14,398 pps observed during this research fall within the estimated range from the average 

of 12,800 to a maximum of 83,200 for a computing system of today.  Thus, for final 

speed analysis of a computing system in 2007 the average observed results for Slammer 

packet generation on an A/C power source of 14,398 pps is used.   

4.2 Slammer Randomness  

The true randomness of the original Slammer worm’s pseudo random number 

generator has previously been studied by Moore [MPS03].  In that analysis they observed 

a small flaw that limited the ability of the original Slammer worm to generate random 

numbers, the corrections of which are discussed in more detail in Appendix B [MPS03].  

However, this flaw did not prevent Slammer from essentially taking over the Internet 

during its run [HyE03].  In these next two subsections the analysis of Slammer’s 

capability to uniformly generate random IP Addresses across the IP address range under 

test is presented.  First, Slammer’s ability to generate a uniform distribution of IP’s across 

the entire address span under test is considered.  Then Slammer’s ability to generate a 

uniform random distribution across the individual last three IP address octets is 

examined.   

4.2.1 Slammer IP Address Randomness 

The analysis provided here shows that despite its flaws, the original Slammer 

worm generated IP addresses are well distributed throughout the address space.  

However, as a whole there is a pattern in the form that the addresses are generated.  This 

could be indicative of the flaw noted by Moore [MPS03] [MPW03].   
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The lag plot in Figure 12 of the IP addresses generated by the Slammer worm is a 

typical example of 100,000 data points obtained during testing.  This lag plot of the 

combined octets generated by Slammer shows a pattern in the IP address generation.  The 

addresses that are generated seem to develop a repeating diamond pattern formed by two 

faintly intersecting lines.  From this lag plot it is clear that there is an observable pattern 

to the generation of random numbers by Slammer.  Despite this anomaly, the worm 

provides a fairly uniform distribution for the statistical coverage of the entire range of IP 

addresses being considered in this experiment. 
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Figure 12. Lag Plot of Slammer-Generated IP Addresses 

The regression equation of the Slammer IP addresses gathered from the infection 

packets, as shown in Table 14, shows that the p-value for the comparison to the 
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statistically generated IP address line is zero.  This means there is a high correlation 

between the statistical and Slammer-generated IP addresses.  Further, the R-squared 

values, which represent the closeness of fit to a linear line, are both 100% indicating that 

the Slammer-generated packets match the statistical line 

Table 14. Slammer IP Address Generation Regression Analysis 
 

Source DF SS MS F P

Regression 1 1.53721E+18 1.53721E+18 4.06328E+11 0.000

Error 65533 2.47923E+11 3.78318E+06

Total 65534 1.53721E+18

The regression equation is

Slammer Generated = -197.4 + 1.00 Statistically Generated

Analysis of Variance

S = 1945.04 R-Sq = 100% R-Sq(adj) = 100%

 

 
The residual plots, shown in Figure 13, further demonstrate the even distribution 

of the Slammer-generated IP addresses.  Although there is a large variation in the 

calculated value of residuals, this can be explained by the size of the address space 

compared to the number of samples.  Because the address space under consideration is 

4.3 billion possible addresses and the number of samples used in analysis limited by 

software restrictions and memory limits, the residual analysis is based on 0.0015 percent 

of the possible addresses available.   This numerical limitation is causing the larger 

variation in residuals shown.  However, both visually and mathematically, the plots show 

that the differences between the IP addresses generated by Slammer are uniform across 

the range of the address space.  The normal probability plot illustrates that the generated 

packets match the statistical line with only a small deviation at the tails of less than one 

percent.  Both the fitted value and observation order of the residuals show that there is an 

even distribution of differences across the IP address range.  Finally, the histogram of the 
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residuals shows a well centered distribution with tails that fall away at a smooth rate.  

The histogram strongly indicates the Slammer-generated IP addresses and the statistically 

generated IP addresses are the same. 

The fitted line plot in Figure 14 demonstrates both visually and mathematically 

that the IP addresses generated by Slammer and the statistical model are identical.  As 

shown previously in the analysis of the residuals, this fitted line plot analysis calculates 

the R-squared values to be a 100% match. 
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Figure 13. Residual Plots of Slammer IP Address Generation 
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Figure 14. Fitted Line Plot of Slammer versus Statistical Model 

Thus, despite the Slammer-generated IP address pattern observed in Figure 12, 

the IP addresses generated are shown to be uniformly distributed across the IP range 

being considered.  This uniform distribution ensures the experiment will accurately 

represent the simulation of a randomly scanning worm across the IP address space. 

4.2.2 Slammer Octet Randomness 

In this subsection each individual octet generated by Slammer is examined to 

determine the uniformity of distribution throughout the octet range.  This uniform 

distribution demonstrates a statistical coverage, in that the entire range is of addresses is 

chosen with equal probability, over the entire range of octets being considered in this 

experiment.  The detail provided in this section further validates the ability of a Slammer-

based worm to randomly generate any octet value for a given IP range.  Each octet is 

individually examined to provide fine granularity for emphasis on the uniform 



59 

distribution within the set of randomly generated octets.  Each individual lag plot is a 

typical example of a collection of 2,560 data points.  This provides the clearest visual 

indication of whether a trend in the data is present.  However, the regression equations 

and residual plots are attained through the use of the same typical 65,534 data point 

captures.   

4.2.2.1 Slammer Second Octet Randomness 

Shown  in Figure 15, the lag plot of the second octet demonstrates some of the 

previously observed anomalies that were found during the evaluation of the combined 

octet generation lag plot.  Here the lines are harder to discern, but the lines are still 

visually observable illustrating that there is some pattern to the generation of the octets.  
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Figure 15. Lag Plot of Slammer-Generated Second Octet 
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However, once again the regression equation of the Slammer generation of the 

second octet, as shown in Table 15, shows a value of zero for the p-value for the 

comparison to the statistically generated octet series.  This means there is a high 

correlation between the statistical and Slammer-generated random octet series.  Further, 

the R-squared values, which represent the closeness of fit to a linear line, are both 100% 

indicating that the Slammer-generated packets match the statistical line. 

Table 15. Slammer-Generated Second Octet Regression Analysis 
 

Source DF SS MS F P

Regression 1 357748656 357748656 3.95816E+09 0.000

Error 65533 5923 0

Total 65534 357754579

The regression equation is

Slammer Generated = -0.5422 + 0.9998 Statistically Generated

Analysis of Variance

S = 0.300637 R-Sq = 100% R-Sq(adj) = 100%

 

The residual plots, shown in Figure 16, further demonstrate the even distribution 

of the Slammer-generated IP addresses.  The 4-way plot shows that the differences 

between the octets generated by Slammer and the statistical model are uniform across the 

range of the address space.  The normal probability plot illustrates that the generated 

packets match the statistical line with some small deviation at the tails of less than five 

percent.  Both the fitted value and observation order of the residuals show that there is an 

even distribution of differences across the octet range, but visually there appears to be 

some possible sinusoidal pattern to the octets generated.  This sinusoidal modulation is 

small with a +/- 0.25 difference in the residuals.  The histogram of the residuals illustrates 

a visually unusual pattern with the distribution of the histogram being normally 

distributed with a flattened top.  This flattened top is not due to graphical clipping, but 

indicates that the differences in the residuals are evenly spread across the octet address 
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span.  Despite these unusual visual patterns, the statistical analysis of the regression 

equation denotes the data is statistically uniformly distributed across the address space. 

In the fitted line plot in Figure 17, it is shown that both visually and 

mathematically that the second octet generated by Slammer and the statistical model are 

identical.  As shown previously in the analysis of the residual equation and plots, the 

fitted line plot analysis shows the R-squared values to be a 100% match. 
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Figure 16. Residual Plot for Slammer-Generated Second Octet 
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Figure 17. Fitted Line Plot for Slammer-Generated Second Octet 

4.2.2.2 Slammer Third and Fourth Octet Randomness 

The analysis for the third and fourth octets generated by Slammer reveals results 

that are almost identical.  Unlike the combined octet and second octet lag plots, the lag 

plots for the third and fourth octets shown in Figures 18 and 19 do not exhibit any 

discernable address generation pattern.  This provides further evidence that the pattern 

observed in the combined and second octet lag plot analyses are related and not 

necessarily pervasive throughout the original Slammer worm random address generation 

code.  This also indicates that the diamond pattern observed is related to the errors 

denoted in the Slammer worm analysis performed by Moore [MPS03].  Further detailed 

analysis to pinpoint this anomaly in the random number generation algorithm anomaly is 

not part of this research; however this may need to be investigated prior to extending the 

experiment presented here. 
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Another indication in the similarity between the third and fourth octets is the 

extremely small difference in their regression equations as shown in Tables 16 and 17.  

Due to this similarity, their analysis is combined for brevity.  The regression equations 

for the Slammer generation of these last two octets each have a zero for their p-value.  

This proves there is a high correlation between the statistical and Slammer-generated 

random octets.  The R-squared values for each of the last two octets equal 100%.  This 

analysis shows, once again, that the random octets generated by Slammer match the 

statistical line. 
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Figure 18. Lag Plot of Slammer-Generated Third Octet 
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Figure 19. Lag Plot of Slammer-Generated Fourth Octet 

Table 16. Slammer-Generated Third Octet Regression Analysis 
 

Source DF SS MS F P

Regression 1 3576561334 3576561334 3.44431E+09 0.000

Error 65533 6805 0

Total 65534 357662938

The regression equation is

Slammer Generated = -0.5076 + 0.9996 Statistically Generated

Analysis of Variance

S = 0.322242 R-Sq = 100% R-Sq(adj) = 100%

 

Table 17. Slammer-Generated Fourth Octet Regression Analysis 
 

Source DF SS MS F P

Regression 1 357164896 357164896 3.23815E+09 0.000

Error 65533 7228 0

Total 65534 357172124

The regression equation is

Slammer Generated = -0.517399 + 0.999 Statistically Generated

Analysis of Variance

S = 0.332113 R-Sq = 100% R-Sq(adj) = 100%

 



65 

The residual plots for the third and fourth octets, shown in Figures 20 and 21, 

continue to illustrate the even uniform distribution of Slammer infection packets.  The 4-

way residual plots display that the differences between the octets generated by Slammer 

and the statistical model are uniform across the range of the octet address space.  The 

normal probability plot illustrates that the generated packets match the statistical line with 

some small deviation at the tails approaching one percent.  Both the fitted value and 

observation order of the residuals show that there is an even distribution of differences 

across the octet range, but as observed in the analysis of the second octet, visually there 

appears to be some sinusoidal pattern to the octets generated.  This sinusoidal modulation 

is double the characteristics observed with the second octet with a  +/- 0.50 difference in 

the residuals.  However, unlike the histogram of the second octet, the histogram of the 

residuals for the third and fourth octets illustrate a more normally distributed pattern with 

only a small indication of a flattened top.   Although there appears to be a more 

pronounced sinusoidal pattern in the fitted and observed residuals, the statistical analysis 

of the regression data indicates that the data is statistically uniformly distributed. 

The fitted line plots shown in Figures 22 and 23 demonstrate both visually and 

mathematically that the last two octets generated by Slammer and the statistical model 

are virtually identical.  As shown previously in the analysis of the residual equation and 

plots, the fitted line plot analysis shows the R-squared values to be a 100% match. 
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Figure 20. Residual Plot for Slammer-Generated Third Octet 
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Figure 21. Residual Plot for Slammer-Generated Fourth Octet 
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Figure 22. Fitted Line Plot for Slammer-Generated Third Octet 
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Figure 23. Fitted Line Plot for Slammer-Generated Fourth Octet 
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From the data presented above, it is shown that the Slammer-generated third and 

fourth octets are uniformly distributed across the octet range.  The statistically generated 

model and the Slammer-generated packets match to a point of virtual identicalness.  This 

proves that within the total range of IP and octet addresses, Slammer generates a 

uniformly distributed set of random numbers for packet infection despite the pattern 

anomaly observed in the lag plots.  

4.3 Matlab Model Simulation of Slammer Routing Worm Operation 

This first section compares the results of the Matlab model-generated infection 

rates compared to the results presented by Zou to validate the Matlab model simulation.  

It also compares the estimated infection doubling rate during the original Slammer worm 

release versus the Matlab model infection doubling rate.  Finally, this section compares 

the Matlab model infection rate data from this experiment against the infection rate data 

generated in the Wei research.  

4.3.1 Validation of Matlab Model Infection Rate Simulation 

A short visual comparison of the infection rates of the Code Red and routing 

worms generated by Zou versus the Matlab model infection rates of those worms is 

provided.  A more detailed statistical comparison of the infection rates of original 

Slammer worm and the “/8” routing worm is compared against the infection rate 

generated by the Matlab model. 

4.3.1.1 Code Red versus Routing Worms 

Figure 24, the Code Red and Zou Code Red routing worm infection rates 

generated by the Zou research and the infection rates generated by the Matlab model.  

These infection rate models set the vulnerable systems at 360,000 and scan rate of 358 
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packets per minute for each worm simulated [ZTG05].  Due to the size of the simulation 

and the detailed analysis provided of the Slammer infection curves, these graphs are 

presented as a visual example of the accuracy of the Matlab model of the infection rate.  

The two charts show a similarity that indicates a strong correlation between the two 

simulation models.  These visual and numerical similarities based on the visual 

comparisons of the two graphs validate the Matlab model of infection rate.  This research 

was limited to visual comparisons due the unavailability of the raw research data 

generated by Zou.   

 

Figure 24. Zou Code Red versus Matlab Model Code Red Infection Rates 
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4.3.1.2 Original Slammer versus “/8” Routing Worm 

The infection rate data for the original Slammer worm is based on an average 

packet per second rate of 4,000 with 100,000 vulnerable systems [ZTG05].  The number 

of vulnerable systems, 100,000, appears to be an arbitrary number chosen by Zou for 

their research as it does not match the observed number of 74,856 systems infected 

[MPS03].  According to their research, the Slammer routing worm was based on 3,108 

pps with the same 100,000 vulnerable systems.  The infection rate characteristics found 

in their research are shown in Figure 25 [ZTG05]. 

 

Figure 25. Zou Slammer Worm versus Zou Slammer Routing Worm 

The infection rate generated by the Matlab model for comparison to the Zou 

research is run 20 times and a 95% confidence interval is provided.  Each of these 

infection rate curves uses the same factors of 100,000 vulnerable systems and an initial 

number of infected systems of 10 hosts used by Zou [ZTG05].  The Matlab model 
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generation of the Slammer routing worm infection curve is generated using the 3,108 pps 

to account for the increased size of the infection packet [ZTG05].  For the Matlab model 

generation of the original Slammer worm infection rate, the average of 4,000 pps 

observed during its original release is used.  The two infection rate curves are presented 

in Figures 26 and 27.  Additionally, a third Matlab model-generated infection rate curve 

for the Slammer routing worm is presented in Figure 28 with a 95% confidence interval 

over 20 runs with the packets per second set at 4,000.  The average infection rate curves 

from the data shown in Figures 26, 27 and 28 are combined into one graph presented in 

Figure 29 to show the speed differences between the Matlab models.   
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Figure 26. Matlab Model of Zou Slammer Routing Worm @ 3,108 pps 
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Figure 27. Matlab Model of Original Slammer Worm @ 4,000 pps 
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Figure 28. Matlab Model of Zou Slammer Routing Worm @ 4,000 pps 
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Figure 29. Matlab Model Composite of Slammer Infection Rates 

As shown in Figure 30, the infection rate curve of the Slammer routing worm 

presented by Zou and the Matlab model with the 3,108 pps do not match.  However, the 

Zou Slammer routing worm infection rate curve and the Matlab model with 4,000 pps 

show a strong similarity.  Based on this experiment, the simulation of the 3,108 pps 

Slammer routing worm has a slower infection rate than the curve generated by the Zou 

research.  Therefore, the simulations shown in the graph by Zou were either completed at 

the 4,000 pps, the description accompanying the graph is in error, or the infection rate 

data generated was in error. 

Using the validation from the Code Red and routing worm simulation graph 

comparison and the similarities shown in the original Slammer worm infect rates, the 

Matlab model-generated infection rate is validated.  Furthermore, the observation that the 
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Slammer routing worm infection rate presented by Zou was performed at the 4,000 pps 

level provides one additional point of validation of the Matlab model simulations while 

showing the graph in the Zou paper is in error. 

 

Figure 30. Matlab Model Slammer Worms versus Zou Slammer Worms 
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4.3.2 Matlab Model of Doubling Rate versus Observed Slammer Rate 

The next step in validation of the Matlab model is to compare the Matlab model 

simulation of the full Internet model with the actual numbers of Slammer vulnerable 

systems against the observed rate estimated during Slammer’s original release.  For 

comparison to the “real world” observations, this experiment uses the standard 74,856 

vulnerable systems with an average of 4,000 pps [MPW03].  Moore observed that a 

single worm had the potential to infect 7 (+/- 1) vulnerable systems per second 

[MPW03].  This translated to a global doubling rate of 8.5 (+/- 1) seconds which is used 

to generate a doubling rate curve with upper and lower bounds set at 9.5 and 7.5 seconds 

respectively [MPW03].  Within the Moore initial report, there is mention that this 

doubling rate was calculated for the first minute [MPW03].  Each of the doubling rate 

graphs presented below show the extension of that doubling rate to 216, or 65,536 systems 

infected, which is the largest doubling factor prior to exceeding the total number of 

vulnerable systems.  For clarity, a one minute reference line is provided on each of the 

infection doubling rate graphs to illustrate the cut-off of the one minute estimate by 

Moore [MPW03].   

The Matlab model-generated doubling rate is presented in Figure 31 using, as 

mentioned above, the original Slammer worm average of 4,000 packets per second as 

observed in 2003.  The confidence intervals are set at 95% for the Matlab model-

generated Slammer infection doubling rate.  The average doubling rate generated by the 

Matlab model at a 95% confidence interval is 9.348 (+/0.763) seconds for the first 

minute.  This is a difference of 0.848 (+/-0.237) seconds from the estimate of the original 

Slammer worm doubling rate.  The estimate of the original Slammer worm infection 
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doubling rate with the upper and lower bounds is presented in Figure 32 providing a 

curve representing the estimated infection rate.  Then finally for ease of comparison, the 

estimated doubling rate of the original Slammer worm and the Matlab model-generated 

doubling rate of the Slammer worm are plotted onto the same graph in Figure 33. 
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Figure 31. Matlab Model-Generated Doubling Rate 
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Figure 32. Slammer Doubling Rate 

As the combined data shows in Figure 33, the estimated doubling rate of the 

original Slammer and the Matlab model-generated doubling rate overlap for just over 140 

seconds.  This extension of the doubling rates beyond the one minute limitation shows 

that when continued to their infection limits, the two rates eventually separate and shows 

the original Slammer doubling rate completes the infection of the remaining systems 

faster than the Matlab model-generated doubling rate.  This indicates that the if the 

original Slammer doubling rate remained within the bounds set by the original estimate 

through the infection of the 65,536th system, the Slammer worm was faster than . 
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Figure 33. Matlab Model versus Observed Slammer Doubling Rate 

The closer view isolating the one minute limitation, shown in Figure 34, shows 

that there is some significant overlap of the two doubling rates.  The upper limit of the 

original Slammer doubling rate average is contained within the lower confidence interval 

of the Matlab model-generated doubling rate.  The containment of the observed Slammer 

doubling rate within the Matlab model until the 60-second point provides a further 

indication that the Matlab model is valid.  Further, the average of the original Slammer 

worm doubling rate was faster than the average that could be expected if the original 

Slammer worm was released more than once.   
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Figure 34. Matlab Model versus Slammer Doubling Rate Detailed 

Based on this experimental data, it is apparent that original Slammer worm 

operated faster than the expected average case determined by the validated Matlab model, 

to a point that it was always faster than the Matlab average and only contained inside the 

upper  (i.e., fastest) confidence interval at 95%.  Thus, the research shows that the 

original Slammer worm doubling rate, when originally released, operated faster than 

could be expected with multiple instances of its release. 

From the validation of this Matlab model by the estimated infection doubling rate 

and based on the previous validation of the Matlab model by the comparisons to the Zou 

research this model is validated using two methods.  Therefore, the full Internet infection 

rate of the Slammer Worm as calculated by the Matlab model simulations, and shown in 
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Figure 35, can be considered a valid model of how the Slammer worm would operate on 

a computing system in 2003. 
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Figure 35. Matlab Model-Generated Slammer Worm 2003 

This infection rate for Figure 35 is calculated using 74,856 vulnerable systems 

with the original Slammer worm average of 4,000 pps at a 95% confidence interval over 

20 runs.  The data shows that over 70,000 vulnerable systems would be infected between 

198.825 and 210.078 seconds with a 95% probability.  This is over 93% of the potential 

victims and it is well under the ten minute estimated during the original observation of 

the Slammer worm infection.  This estimate was calculated by using the number of scans 

observed at the three minute point of Slammer’s original release and extrapolating the 

expected time to scan 90% of the address space [MPW03].  Thus, this ten minute 

estimate was not an actual measurement of systems infected at the ten-minute point. 
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The conclusion that can be reached from this data is that while the Slammer 

infection doubling rates are not exactly the same, the first minute doubling rates do show 

significant overlap.  The doubling rates are both exponential and only differ in their 

estimation of the rate of infection.   

The differences between the estimated time to infect 90% of the systems and the 

Matlab model simulation in expected time for reaching the 90% level of infected systems 

is larger than expected.   However, there are several reasons that can be given as to why 

this variation in the two data sets occurred.  These include the admission by Moore in 

their research that not all of the data sets they analyzed were sufficiently precise over that 

initial short collection duration, which may have affected their analysis of how fast the 

doubling rate occurred [MPW03].  The difficulties of collecting accurate data during the 

original Slammer worm release were further exacerbated by an unexplained transient 

failure at the 2 minute and 40 second point after Slammer’s release [MPW03].  The 

ability to repeat the Matlab model simulation of the Slammer worm infection rate 

provides a database from which to draw a more comprehensive statistical model than 

does a single observation of the Slammer worm in the wild.  This means that the data 

estimates used by Moore to generate their results are but a single instance of how 

Slammer acted.  Slammer’s behavior would almost certainly have been different given 

other releases. 

4.3.3 Matlab Model versus Wei Slammer Infection Rate 

The Slammer experiments run by Wei, covered how the Slammer worm would 

react with differing traffic loads and network failures.  Their research included a simple 

baseline test with the 75,000 vulnerable hosts and 4,000 scans per second observed in 
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2003.  The baseline curve was presented with several other curves that showed the 

Slammer worm operation with varying traffic loads and network failures as shown in 

Figure 36 [WMS05].   

 

Figure 36. Wei Slammer Worm Simulation 

The Slammer infection rate generated by the Wei research closely matches the 

curve generated of the Slammer worm infection rate by the Matlab model in this research 

as shown in Figure 37.   The Wei experiment follows the Matlab model’s lower 

confidence interval through 50,000 systems infected.  The lower confidence interval of 

the Matlab model continues to closely match the Wei data until just past 65,000 systems 

infected where Wei’s data makes an uncharacteristic deviation from a smooth curve.  

Despite this top end deviation, the Wei data further supports the Matlab model of the 

Slammer worm infection rate as an accurate representation of how the Slammer worm 

behaves in the wild. 
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Figure 37. Matlab Model Slammer Worm versus Wei Slammer Worm 

4.4 Scanning Worms in a Computing Architecture of Today  

Zou’s research used an arbitrary number of Slammer vulnerable systems set at 

100,000 [ZTG05].  The actual number of potential victims is 74,856 [MPS03].  This 

section takes the Zou  experiment a few steps further by using the correct number of 

vulnerable systems and analyzes the operation of the scanning worms in a 2003 and 2007 

computing environment.  Thus the number of vulnerable systems is set at 74,856 and 

each of them are run with a 95% confidence interval and displayed separately.   

Note however, that although the speed increase of the network alone is considered 

here in this experiment, the increase in the number of vulnerable systems is not.  For ease 

of comparison, the vulnerable systems were left the same as any increase in the number 

of potential victim systems reduces the non-vulnerable systems by an equal number.  
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Thus, for every vulnerable system added above the 74,856 threshold the worm will 

spread faster.  For example, if the original Slammer worm using the 100,000 vulnerable 

systems as used by Zou  is compared to the infection rate using 74,856 vulnerable 

systems where both are set at the average 4,000 pps as observed during the original 

Slammer worm release [MPW03], the Zou  infection rate is faster as shown in Figure 38.  

Finally, because there is no basis of comparison in this research for the possible number 

of vulnerable systems as there is for the speed of the scanning packets generated by the 

Slammer code, the increase in vulnerable systems today is not be considered. 
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Figure 38. Zou Slammer Worm versus Matlab Model Slammer Worm 2003  

To provide a baseline for comparison, a Matlab model of the Slammer worm 

infection rate average with an upper and lower confidence interval at 95% as it would act 

in 2003 is provided in Figure 39.  This Matlab model uses 4.3 billion available addresses 



85 

in the scanning space, 74,856 vulnerable systems, and the average 4,000 pps for infection 

rate curve generation.  Hereafter, this worm is called the Slammer worm 2003.   

The Matlab model of the average infection rate curve with an upper and lower 

confidence interval at 95% of the Slammer worm as though the worm were released on a 

system today is provided in Figure 40.  Using the 4.3 billion available addresses, the 

74,856 vulnerable systems, and an average of 14,398 pps found in this research the 

Matlab model of the infection rate curve is generated.  Hereafter, this worm is referred to 

as the Slammer worm 2007. 

The Matlab model average of the Slammer routing worm as it would have acted 

in 2003 (Hereafter, the Slammer routing worm 2003) is presented in Figure 41 with an 

upper and lower confidence interval at 95%.  The Matlab model that generates this 

infection rate curve uses 1.95 billion available addresses, the number of vulnerable 

systems set at 74,856, and 3,108 pps as noted in the Zou research for the larger infection 

packet size [ZTG05]. 

In Figure 42, the Matlab model used to generate the average with an upper and 

lower confidence interval at 95% of the 2007 version of the Slammer routing worm uses 

a rate of 11,187 pps to reflect the increase for operation of the worm on a computing 

system of today.  The number of vulnerable systems is set at the same 74,856 and 1.95 

billion addresses available for scanning as the Slammer routing worm 2003.  Hereafter, 

this worm is referred to as the Slammer routing worm 2007. 

Finally, the average infection rate of the Slammer worm 2003, Slammer worm 

2007, Slammer routing worm 2003, and Slammer routing worm 2007 are plotted onto 

one graph for ease of speed comparison in Figure 43.  This graph shows that the infection 
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rates of worms on a system of today are faster than their 2003 counterparts.  Table 18 

shows the variable settings for all of the 2003 and 2007 worms. 

Table 18. Matlab Model Variables for 2003 versus 2007 Worm Comparison 
 

Number of IP 

addresses

Number of 
Vulnerable 

Systems 

Number of 

Iterations

Number 

of Trials

Initial Number 
of Infected 

Systems

Slammer Worm 2003 4,294,067,296 74,856 10,000,000 20 One

Slammer Worm 2007 4,294,067,296 74,856 10,000,000 20 One

Slammer Routing 
Worm 2003

1,946,156,941 74,856 500,000 20
One

Slammer Routing 

Worm 2007
1,946,156,941 74,856 500,000 20

One
 

350300250200150100500

80000

70000

60000

50000

40000

30000

20000

10000

0

Time in Seconds

S
y

s
te

m
s
 I

n
fe

c
te

d

Lower Confidence Interval @ 95%

Average

Upper Confidence Interval @ 95%

Matlab Generated SlammerWorm 2003

 

Figure 39. Matlab Model-Generated Slammer Worm 2003 
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Figure 40. Matlab Model-Generated Slammer Worm 2007 
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Figure 41. Matlab Model-Generated Slammer Routing Worm 2003 
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Figure 42. Matlab Model-Generated Slammer Routing Worm 2007 
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Figure 43. Matlab Model-Generated Slammer Worms and Slammer Routing Worms 



89 

This experimental data shows that a Slammer-based worm released onto the 

Internet of today is much faster than its 2003 counterparts.  As shown in Table 19, the 

increase in the infection of 90% of the potential victims for the two chronologically 

separated worms are almost identical at 3.599 fold increase.  This increase demonstrates 

the quicker infection rate due to the faster infection packet generation rate. 

Table 19. Matlab Model of 2003 versus 2007 Infection Rates 
 

Worm Name

Upper CI Average Lower CI

203.34 197.69 192.04

Upper CI Average Lower CI

56.49 54.92 53.35

Upper CI Average Lower CI

127.15 121.45 115.76

Upper CI Average Lower CI

35.32 33.74 32.16

Infection Rate in Seconds Infection 

Rate 

Increase

Slammer 

Routing Worm 

2007

Slammer 

Worm 2003

Slammer 

Routing Worm 

2003

Slammer 

Worm 2007
3.5995

3.5994

Infection 

Rate 

Increase

 

4.5 Single Slash Eight (SSE) Routing Worm 

This section covers the Single Slash Eight (SSE) routing worm and the modeling 

of its infection rate curve.  The final portion of this section provides a comparison of the 

SSE routing worm against the Slammer worm 2003, Slammer worm 2007, Slammer 

routing worm 2003, and Slammer routing worm 2007. 

4.5.1 SSE Routing Worm Creation 

 Taking the division of the Slammer routing worm one step further, the original 

Slammer worm code is modified to become an SSE routing worm which scans only one 

of the 116 “/8” IANA address spaces.  The SSE routing worm is creation details are 

available upon request 
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4.5.2 Matlab Model of the SSE Routing Worm  

The small changes to the original Slammer worm code discussed in Section 4.5.1 

increase the size of the SSE routing worm from 404 bytes to only 412 bytes.  Thus, a 

2003 version of the Slammer worm with an average of 4,000 pps is changed to a rate of 

3,922 pps for the 2003 version of the SSE routing worm.  The 2007 SSE routing worm 

packets per second is barely affected by the addition of only eight bytes and would slow 

the generation of infection packet on an infected system from 14,398 pps to 14,118 pps. 

An IP address space of 16,777,216 possible addresses is used to simulate the 

address space an SSE routing worm is required to scan with the single CIDR “/8.”  

Because the total address space is reduced, the total number of vulnerable systems is 

reduced by equally dividing the 74,856 by the 116 available address spaces.  This equates 

to 645 vulnerable systems in each SSE routing worm range.  Table 20 shows the 

variables used in the generation of the infection rate curves by the Matlab model for the 

2003 and 2007 SSE routing worms. 

Table 20. Matlab Model Variables for SSE Routing Worm 
 

Number of 
IP 

addresses

Number of 
Vulnerable 
Systems 

Number 
of 

Iterations

Number 
of Trials

Initial Number 
of Infected 
Systems

SSE 
Routing 
Worm

16,777,216 645 500,000 50 One

 

4.5.3 SSE Routing Worm Infection Rate Comparison 

Figures 45 and 46 show the 2003 and 2007 SSE routing worm infection rate 

curves with the accompanying 95% confidence intervals.  The 2003 SSE routing worm 
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infects over 90% of the vulnerable systems in under one minute.  However, the 2007 SSE 

routing worm infects over 90% of the vulnerable systems in under 17 seconds. 

The speed increase of these two worms over their 2003/2007 Slammer worm and 

2003/2007 Slammer routing worm counterparts is substantial as shown in Figure 47.  The 

SSE routing worm infect rates are aggregated across the entire population to provide a 

proportional comparison in Figure 47. 
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Figure 44. Matlab Model-Generated SSE Routing Worm 2003 
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Figure 45. Matlab Model-Generated SSE Routing Worm 2007 

 

Figure 46. Matlab Model SSE Routing Worms versus Slammer Worms 
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Table 21 contains the speeds at which these six worms infect over 90% of their 

vulnerable systems. 

Table 21. SSE Routing Worm Speed Comparison 
 

Worm Name

Upper CI Average Lower CI

203.34 197.69 192.04

Upper CI Average Lower CI

127.15 121.45 115.76

Upper CI Average Lower CI

61.83 59.92 58.01

Upper CI Average Lower CI

56.49 54.92 53.35

Upper CI Average Lower CI

35.32 33.74 32.16

Upper CI Average Lower CI

17.18 16.65 16.11

Infection Rate in Seconds

Slammer 

Routing Worm 

2007

SSE Routing 

Worm 2007

Slammer 

worm 2003

Slammer 

Routing Worm 

2003

SSE Routing 

Worm 2003

Slammer 

Worm 2007

 

Overall, the data collected shows that the SSE routing worm was 3.299 times 

faster than both the 2003 and 2007 Slammer worms.  Additionally, the SSE routing worm 

is also 2.027 faster than the 2003 and 2007 Slammer routing worms.  Finally, the increase 

in infection rate for the SSE routing worm from 2003 to 2007 is 3.6 times due to the 

increase in infection packet generation rate. 

4.6 Summary 

The first section of this chapter covered the network configuration for all of the 

experiments performed in this research and briefly covered the Slammer worm code used 

as a basis for this experiment.  The second section then delved into the results and 

analysis discovered through this research. 
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This chapter presents the results and analysis of the data collected from the 

experiment simulations of the worm infections.  Section 4.1 covers the collection and 

analysis of Slammer’s packet per second generation.  Section 4.2 examines the 

randomness of Slammer’s IP address and octet generation.  In Section 4.3, the Matlab 

worm models are presented for comparison to the original Slammer worm and the routing 

worm models proposed by Zou.  The comparison of worm speeds possible on computing 

systems of today versus those available in 2003 is provided in Section 4.4.  Section 4.5 

examines the infection rate of the original Slammer worm versus the SSE routing worm. 

 



95 

V.  Conclusions and Recommendations 

5.1 Restatement of the Problem and Conclusions 

The primary focus of this experiment was to show that the variety of scanning 

worms tested were faster than the original Slammer worm.  Further, the experiment set 

out to prove that the SSE routing worm was the fastest worm of its kind.  Lastly, this 

research examined whether the computing systems architecture of today would facilitate 

a much more aggressive worm than has been observed in previous outbreaks.  

This research found that despite an observable pattern of generation, IP addresses 

produced by Slammer are in a uniform distribution across the address space.  The 

detailed examination of the IP address generation data set proved again, despite the 

presence of an observable generation pattern, that the second IP octet generated by the 

Slammer code for this experiment was also uniformly distributed across the address 

space.  Finally, the third and fourth octets were shown to have no observable random 

number generation pattern, and they were uniformly distributed across their address 

space.   

After establishing randomness, the Matlab model simulations were compared to 

and validated by the previously created infection rate models used by Zou for the Code 

Red, BGP routing worm, “/8” routing worm, the original Slammer worm, and the 

Slammer routing worm [ZTG05].  The infection doubling rate observed by Moore during 

the original Slammer worm release and the research of the original Slammer worm 

infection rate performed by Wei provided further validation of the Matlab model and 

Slammer worm infection rate [MPW03] [WMS05].  During the validation of the Matlab 
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model simulations, one of the experiment graphs provided by Zou was either an error or 

notated incorrectly.   The Zou Slammer routing worm infection rate curve was 

significantly faster than what is expected for a worm operating with its characteristics. 

However, the analysis of the Slammer routing worm as hypothesized by Zou proved to be 

faster using the Matlab model simulations than the original Slammer worm.   

The extension of this research to include the current speed of the computing 

systems shows worms would be significantly faster on a computing network of today 

than they were in 2003.  The research showed that the worm infection rate for a worm in 

2003 was increased by a factor of 3.6 times for a worm operating on a computing system 

of 2007 due to the increased packet generation rate.  This research has given strong 

evidence that any scanning worm released on the architecture of today would cause even 

greater harm to the Internet infrastructure through its speed of infection and network 

congestion. 

Finally, the new SSE routing worm is faster than any of the worms evaluated.  

The SSE routing worm was more than three times faster than the original Slammer worm 

and more than two times faster than the Slammer routing worm proposed by Zou.  An 

SSE routing worm released today would have an infection rate 3.6 times faster than if it 

had been released in 2003 due to the faster infection packet generation. 

5.2 Contributions and Significance of Research 

This research has furthered the understanding of the operation characteristics of 

scanning worms on an IPv4 network and laid the groundwork for future experiments into 

live worm research.  The routing worms proposed by Zou have been validated and 

extended to an even faster version of routing worm illustrating that these worms pose a 
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great threat to the computing community and deserve further research.  The expansion of 

this research into the speed of the current computing systems architecture exposes the 

fact that Slammer will most likely not remain the fastest worm and that there is a large 

void in the analysis of worms on current architectures.  Through the use of the actual 

Slammer worm, a live host and a validated mathematical model, this experiment has 

furthered the research proposed by others. 

5.3 Recommendations for Future Research 

There is a large void in the research of live worms on a network.  Due to the 

problems incurred during the research of these worms several opportunities for future 

research based on this preliminary research are available.  The largest area for 

continuation of research is to solve the issue of the auto-generated multicast address for 

UDP packets generated by Slammer, which afflicted every IP address generated.  Also, 

the problem of modifying the Slammer assembly code to accept the changes required to 

set the IP address field with the “hit list” values needs to be investigated.  These two 

problems may be related.  Once these problems are solved many more research avenues 

open up.     

The observation and testing of live worms on a network is an area that could 

validate many mathematical models currently in use by researchers worldwide.  With the 

speed of computing systems continually increasing, these models need current data 

harvested from a live network to validate and ensure they incorporate the capabilities of 

today’s systems.  As shown in this experiment, the current architecture is significantly 

faster than what was in place in 2003, which is the timeframe of when the majority of the 

worm research is based. 
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Finally, modifying the worms to operate on an IPv6 network and analyzing their 

ability to propagate in that environment would be groundbreaking research.  

Incorporating the increase in speed of computing systems, the capabilities of the routing 

worms examined in this research and calculating the increase of vulnerable systems for a 

given software vulnerability would provide a significant leap forward in the research of 

self-propagating worms on an IPv6 network.  While other researchers have made claims 

that the conversion to IPv6 would all but eliminate the capability of a scanning worm to 

propagate, the proof on an existing system with live worms and the characteristics of the 

computing systems of today has yet to be completed.   

5.4 Summary 

This research has expanded the knowledge of the operation of scanning worms on 

an IPv4 network and proved that the Slammer routing worm and SSE routing worm is 

faster than any previously observed worm.  The groundwork laid by this research 

provides a solid foundation for future research into the area of live worms on a network. 
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Appendix A 

This appendix covers the hardware and software used during the research to 

complete the experiment. 

A.1 Experiment Hardware 

The computers used to facilitate the experiment are Dell Latitude Laptops and 

their specifications are shown in the Table 22.  The specifications for the switch 

connecting the laptops together are provided in Table 23. 

Table 22. Experiment Computer Specifications 
 

Victim Machine Attacking Machine

Dell Latitude D620 Dell Latitude D600

2 GB 533 MHz DDR2 RAM 512 MB 

Intel Core Duo T2400 1.83Ghz Intel Pentium M 1600 Mhz

80 GB 5400 RPM HD 30 GB 4200 RPM HD

Broadcom NetXtreme BCM5752 Gigabit 

Ethernet

Broadcom 570x Gigabit Integrated 

Controller  
 

Table 23. Port Switch Specifications 
 

Linksys SD205 10/100 Switch (5-port)

10/100 Mbps

Category 5 Ethernet

5 x RJ45 ports  
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A.2 Experiment Software 

The software used in this experiment is detailed in the Table 24 including the 

operating system version numbers. 

Table 24. Experiment Software Versions 
 

Microsoft Windows 2000 5.00.2195 Victim Machine
Microsoft SQL Server 8.00194 Victim Machine

Wireshark Network Analyzer 00.99.3 Both Machines
Netcat 1.11 Attacking Machine

Matlab 7.3.0 (R2006b) Attacking Machine
Frhed 1.1.0 Attacking Machine  
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Appendix B 

This appendix covers in detail the code and operation of Slammer.  The information 

contained in this section is available upon request.  
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Appendix C 

This appendix describes the generation of the infection rate simulation by the 

Matlab model used in this research.  

C.1 Matlab Model Infection Rate Simulation Code 

The code below was used to generate all of the worm infect curves for 

comparison to the available data and previously described mathematical models.  As 

defined in the comments of the code “N” is set to be the total number of available address 

for the scale of the test.  The number of vulnerable systems was denoted by “n.”  The 

maximum number of iterations, which is converted to seconds for final analysis, is 

represented by “M.”  The value for “M” in these experiments is arbitrary as this 

experiment considers the entire vulnerable system space and it is set to a number beyond 

the expected infect iteration found by preliminary testing.  Further, the code is set to 

“break” out of the current trial when the number of potential victims reaches zero.  Note 

that there is an equal chance of any number being generated by the pseudo random 

number generator (PRNG), thus the number of vulnerable systems is reduced by one 

without regard to which number in the vulnerable range was guessed by the PRNG.  “K” 

represents the number of trials.  The number of trials is an arbitrary value set high enough 

to allow for the complete infection of all vulnerable systems.  The Matlab code was set to 

exit the current trial after the last vulnerable system was infected to decrease the time 

between trails.  The initial number of infected systems is represented by “I” and is 

highlighted in the code provided below.  Table 39 shows the values used for the 

variations of the Matlab simulations. 
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Table 25. Matlab Model Experiment Variable Values 
 

N - # of IP 
addresses

n - # of 
Vulnerable 
Systems 

M - # of 
Iterations

K - # 
of 

Trials

I - Initial # 
of Infected 
Systems

Code Red Worm 4,294,967,296 360,000 10,000,000 1 Ten

Zou Code Red "/8" 
Routing Worm

1,946,156,941 360,000 500,000 1 Ten

Zou Code Red BGP 
Worm

1,228,360,647 360,000 500,000 1 Ten

Zou Slammer Worm 4,294,967,296 100,000 10,000,000 20 Ten

Zou Slammer 
Routing Worm

1,946,156,941 100,000 500,000 20 Ten

Slammer Worm 
2003

4,294,967,296 74,856 10,000,000 20 One

Slammer Worm 
2007

4,294,967,296 74,856 10,000,000 20 One

Slammer Routing 
Worm 2003

1,946,156,941 74,856 500,000 20 One

Slammer Routing 
Worm 2007

1,946,156,941 74,856 500,000 20 One

SSE Routing Worm 
2003

16,777,216 645 500,000 50 One

SSE Routing Worm 
2007

16,777,216 645 500,000 50 One
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*********************************************************************** 

% N is the total # of IP adresses 

% n is the total # of potential victims 

% M is the maximum # of iterations 

% K is the number of trials 

% I (highlighted) is the initial number of infected systems – this value needs to manually changed in the  

%  code 

function [TargetInfectTime,VictimInfectTime] = IPsim(N,n,M,K) %Designates the function for Matlab 

TargetInfectTime=M*ones(1,K);  %Creates M arrays of ones the size of K for storage of TargetInfectTime 

infected=zeros(1,K);  %Creates an array of zeros the size of K for storage of infected 

VictimInfectTime=zeros(K,n); % Creates an array of zeros K by n for storage of VictimInfectTime 

for j=1:K     

    n1=n; % Sets the upper limit of the vulnerable systems range equal to total number of potential victims 

        for i=1:M  

 IP = ceil(N*rand(1,(infected(j)+ I ))); % generates a random number in the range of N for each  

         %infected system and turns it into an integer 

if sum(IP<=(n1+1))>=1 %if IP address is less than or equal to the upper value of the  

            % vulnerable systems enter loop 

VictimInfectTime(j,infected(j)+1:infected(j)+sum(IP<=(n1+1))) = 

i*ones(1,sum(IP<=(n1+1))); %Sets the time of infection for each IP address  

       %within the vulnerable system range, this check is  

       %performed multiple times if more than one is hit 

             infected(j)=infected(j)+sum(IP<=(n1+1)); %Increases the number of infected systems 

             n1=n1-sum(IP<=(n1+1)); %Reduces the number of vulnerable systems by number hit 

            end 

if n1 == 0 %When number of Vulnerable systems reaches zero break 

      break  

     end 

   end   

    results=fopen('results.txt','w');   % Opens “results.txt” for writing of data 

    fprintf(results,'Number of Machines Infected %10.0f\n',infected); % Prints # Infected to file 

    fprintf(results,'Victim Infected %10.0f\n', VictimInfectTime'); % Prints Infect Time to file 

    fclose(results) % Closes “results.txt”  

end     

end 

*********************************************************************** 
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Appendix D 

This appendix contains a detailed breakout of a typical UDP header from a 

Slammer packet.  This information is available upon request. 
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Appendix E 

This appendix contains the detailed information for the creation of the SSE 

routing worm as previously discussed in Section 4.5.  The information in this appendix is 

available upon request.  
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