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Abstract 

 

Information and Networked Communications play a vital role in the everyday 

operations of the United States Armed Forces.  This research establishes a comparative 

analysis of the unique network characteristics and requirements introduced by the 

Topology Control Problem (also known as the Network Design Problem).  Previous 

research has focused on the development of Mixed-Integer Linear Program (MILP) 

formulations, simple heuristics, and Genetic Algorithm (GA) strategies for solving this 

problem.  Principal concerns with these techniques include runtime and solution quality.  

To reduce runtime, new strategies have been developed based on the concept of flow 

networks using the novel combination of three well-known algorithms; knapsack, greedy 

commodity filtering, and maximum flow.  The performance of this approach and variants 

are compared with previous research using several network metrics including 

computation time, cost, network diameter, dropped commodities, and average number of 

hops per commodity.  The results conclude that maximum flow algorithms alone are not 

quite as effective as previous findings, but are at least comparable and show potential for 

larger networks.
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HEURISTICALLY DRIVEN SEARCH METHODS FOR TOPOLOGY 

CONTROL IN DIRECTIONAL WIRELESS HYBRID NETWORKS 

 
 

I.  Introduction 

Background 

On the 64th anniversary of the attack on Pearl Harbor (7 December 2005), the 

Secretary of the Air Force, Michael W. Wynne and Air Force Chief of Staff, General T. 

Michael Moseley announced an important change in the Air Force mission statement[1, 

2].  The new statement read “The mission of the United States Air Force is to deliver 

sovereign options for the defense of the United States of America and its global interests-

-to fly and fight in Air, Space, and Cyberspace.”  One of the major changes was the 

incorporation of a new battlefield domain: Cyberspace.  Steps to “operationalize” a new 

Cyber Command have already begun[3].  This change is directly in line with the greater 

goals outlined in the Department of Defense’s (DoD) Joint Vision (JV) 2020[4], which 

highlights the importance of not only achieving, but maintaining information superiority 

across the full spectrum of joint military operations as depicted in Figure 1. 
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Figure 1.  Implication of Information Superiority as reflected in JV 2020[4]. 

 

The leaders of our Armed Forces have voiced the significance of taking proactive 

steps necessary in achieving a dominant role in Cyberspace.  Thus, the research and 

educational community must spearhead efforts to develop the means to realize this goal.  

A major catalyst in these regards is the proliferation of wireless communications 

technology and wireless networks.  

While general research for commercial wireless applications is quite mature, 

focus on the new domain of cyberspace as it pertains to the military is in its infancy.  This 

is due in part to dissimilar requirements from the non-military community.    

The research described in this document takes a Net-Centric Warfare approach to 

solving a small part of a much larger research endeavor: Hybrid Communications 

Network Control and Management.  The fundamental goal of this group is the creation of 

a basis for “a realistic infrastructure to support Net-Centric Warfare in directional 

wireless networks with a hybrid (i.e., heterogeneous) mixture of directional free space 
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optimal and radio frequency (RF) devices[5].” Given a suitable control structure, a 

combination of directional and omnidirectional interfaces in hybrid networks promise 

greater bandwidth, more flexibility, and lower latency than today’s homogeneous 

omnidirectional networks. These ideas are explained in more detail throughout the 

document. 

Problem Statement 

A key area of research in Hybrid Communications is the Topology Control 

Problem (also known as the Network Design Problem).   This domain is briefly defined 

as determining a feasible network topology.  A network is defined as a set of nodes and a 

set of links.  Some examples of network nodes are servers and routers.  Fiber optic wires, 

the radio frequency (RF) medium, and Free Space Optical (FSO) links are examples of 

links (also referred to as edges or arcs).  Given a network and a set of traffic requirements 

(i.e., data packets traversing the network), the objective is to determine the desired 

physical connectivity of the network such that an optimum subset of traffic requirements 

can be met according to a pre-defined set of criteria (e.g., minimal cost and maximum 

throughput).  In this definition, feasibility can have multiple meanings.  For example, 

given the potentially extreme consequences of a compromised military network, 

administrators may place more importance on network characteristics such as low 

probability of detection/low probability of interception (LPD/LPI).  On the other hand, a 

network relying on time-sensitive data communications would likely be more interested 

in a network topology with the shortest average delay.  Each of these characteristics, 

discussed in subsequent chapters, contribute to the problem difficulty.   
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Nonetheless, the primary goal of obtaining a feasible topology is constrained by 

the number nodes in the network, the available links and link properties, and the demand 

of traffic requirements (also referred to as commodities).  Solution elegance lies in 

properly balancing these constraints with the requirements of the user. 

Research Approach 

Calculating efficient and effective topologies for wireless networks is a difficult 

problem.  A number of research articles have appeared as of late looking at how to create 

topologies in wireless networks consisting of omnidirectional RF transmitters[6], but 

topology control algorithms for directional links, such as directional RF or laser links, 

have received much less attention.  While current wireless technology is largely 

omnidirectional, particularly in consumer products, omnidirectional nodes have poor 

range and known scalability problems[7].  To circumvent these issues, future large-scale 

military networks are likely to use a mixture of directional and omnidirectional links. 

Topology control using directional links is an NP-hard problem[8].  Thus, 

research looking at directional topology control centers on the development of heuristics, 

which provide suboptimal, but timely solutions, and on integer linear programming 

methods, which provide an exact solution if the problem size is kept to a relatively small 

size.  Other methods discussed are based on searching the solution space for feasible 

answers using techniques such as evolutionary computation[9] and other informed search 

strategies[10, 11].   

Within this domain, the quality of the topology T is able to be evaluated according to 

several criteria including connectivity, energy-efficiency, throughput, and robustness to 

T
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mobility, etc[12].  For the purposes of this research, two primary criterions are used.  The 

first is the solution’s run time.  21  century military networks must be able to adapt their 

communication topologies according to unexpected changes in network demand, unit 

positions or device locations, and link interference patterns.  Therefore, topology control 

algorithms must provide near real time solutions   

st

The secondary criterion is the quality of the solutions generated by the algorithms.  

Solution quality helps determine effectiveness of the algorithm itself.  Quality in this 

research is measured primarily via cost.  Applications require a sound infrastructure to 

maintain operational networks supporting military operations.  If solutions are generated 

within acceptable time constraints, yet suffer from poor quality—such as a partitioning of 

the network—then feasibility has not been achieved. 

Research Objectives/Questions/Hypotheses 

The objective of this research is to create and analyze the efficiency and 

effectiveness of search methods that have a relatively low, i.e. polynomial, computational 

complexity while delivering an acceptable quality of service (QoS).  To do this, our 

model is based on flow networks and maximum flow algorithms.  This genre of networks 

embodies certain positive characteristics that help achieve the objectives outlined above.  

These characteristics empower the communications networks employed by the military to 

demonstrate a high degree of flexibility that is demanded by the information-driven 

community. 
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Figure 2.  Routing and Topology Illustrated[5]. 
 

Preview 

This chapter provides a general introduction to the topology control problem, 

briefly outlines the importance of the research and its objectives, and provides a short 

preview of the remaining topics covered in this document.  Chapter Two (II) introduces 

the reader to the general area of flow networks and presents an overview of other 

research efforts that are of significant relevance to the problem statement.  Chapter Three 

(III) details the methodology and approach used during this endeavor including a 

complete problem definition and explanation of the techniques employed.  Chapter Four 

(IV) explicates the experimental design results and discusses the challenges with creating 
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and executing them.  Finally, Chapter Five (V) captures the essence of this research effort 

by summarizing the key points, discussing the observations and conclusions made, and 

outlining ideas for subsequent research. 
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II. Literature Review 

Chapter Overview 

This chapter introduces the relevant research and literature focused on topology 

control and wireless network communications.  First, a background on topology control is 

provided.  Second, a brief review of network flows is presented as it is the basis for the 

methodology discussed in Chapter III.  Lastly, previous research is examined.  Of 

particular interest is the research of [13].  This research was the original motivation 

behind the studies described in this document and helps illustrate the problem in more 

detail.   

Background 

In laymen's terms, the topology control problem translates to making a decision 

about how to connect the network to maximize performance.  As the technology matures, 

it will soon become common practice for networked devices to have multiple connection 

interfaces and/or the ability to connect to one of several potential destination nodes.  

Networks are normally not scheduled at 100% of their capacity in order to promote 

stability and fault tolerance. In some instances it may even be practical to save links if 

they are not required.  This is especially important when dealing with wireless sensor 

networks as power consumption is a primary concern[14].  The choice of topology, given 

the vast possibilities, can greatly affect the performance of the network.    

According to [15], “topology control is one of the most important techniques used 

in wireless networks.”  Performance in this sense can be thought of as traffic 
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throughput—maximizing the amount of traffic that can be traversing the network at any 

given time within the bounds imposed by the hardware infrastructure.   

Routing traffic in a network is related to topology control, but is a simpler 

problem. Even so, effectively routing traffic can be a difficult problem when attempting 

to manage multiple datastreams, each with its own QoS considerations. With simple 

networks (i.e., single source and/or single destination) this problem can be solved 

relatively easily using a variety of maximum flow algorithms, described later.  However, 

the problem becomes significantly more complicated when considering multiple traffic 

sources and destinations, especially when a node exhibits characteristics of both.   

As an example, consider a small group of unmanned aerial vehicles (UAVs) 

hovering over the battlefield.  One principal topic in research dealing with these aircraft 

is swarming (clustering of UAVs in such a manner that mimics the behavior occurring in 

nature of, for example, colonies of bees or ants, or schools of fish[16]).  To effectively 

imitate a swarm, these aircraft must communicate amongst one another.  If, for example, 

a particular UAV is unable to communicate directly with another UAV, the flow of 

information must be routed via the swarm, much like a typical communications network.  

With the aircraft constantly moving, there is a high probability that links will fail.  

However, as the aircraft change position, new links will become available. 

With infrastructure-based networks (or static networks) topology control is much 

less complex over the life of the network than is the case in mobile situations.  Once a 

solution is found and implemented in fixed networks, no other work is required.  

However, with mobile networks, many solutions may be needed over time.  Therefore, 
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the network must continually adapt its topology to accommodate for state and 

topographical changes in order to maintain efficiency.  

Topology control can be thought of as an autonomous reconfiguration 

process[17].  Over the life of the network, this process is continually repeated.  There are 

five states in this process:  

1) Link state examination, 

2) Collection of link state information, 

3) Solution computation, 

4) Solution distribution, and  

5) Reconfiguration   

During the first step, the network state is examined to determine if a change has 

occurred.  Here, each node must track local topological data and collect traffic statistics 

such as adjacent node location changes, additions and deletions of nodes, increased traffic 

load, etc.  This information is then forwarded to a controller, which analyzes the data of 

the entire network.  If the data collected reveals that a topology change is required, 

control moves to step three.  At this stage, the controller computes a new solution.  

Ideally, it would not only find an optimal solution in terms traffic requirements, but it 

would also satisfy the other constraints of the network, such as resolving heavily 

congested nodes, minimizing the overall usage of available resources (i.e., links, 

capacity, etc), and it would consider user preferences. Once a solution has been 

computed, two things must happen.  The solution must be redistributed among the 

community of nodes, and each node must implement the new topology.  This may 
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include the selection of new links or the redirection of communication devices, such as 

laser beams, using other mediums for certain traffic while the re-orientation of directional 

links is taking place. 

As you can imagine, with highly mobile networks, this process must be very 

efficient—on the order of a few seconds if not faster depending on the size and dynamics 

of the network.  Figure 3 illustrates the process of autonomously reconfiguring a network.  

The primary focus of this research is within phase three: computing the solution. 
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Figure 3.  Autonomous Reconfiguration Process[17]. 

 

Flow Networks and Network Flows 

Flow networks are a generalization of communications networks.  They are called 

such because the traffic that the network accommodates is a network flow.  A network 

flow is “an abstract entity that is generated at source nodes, transmitted across edges, and 
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absorbed by sink nodes[18].” This concept is synonymous with data packets on a 

network, also called commodities.  Throughout this document the terms network flow, 

traffic, and commodity are used interchangeably.  The following formulation is based on 

the flow networks definition.   

A flow network is defined as a graph G = (V, E) where V is the set of vertices (or 

nodes) and E is the set of edges (or links, arcs).  Each edge contained in the set E is both 

directional and capacitated.  Furthermore, set V contains two particular nodes, s and t, 

which represent the source and sink, respectively.  The source node is the origin of all 

traffic within the flow network.  It has a “flow reservoir” with unlimited capacity, which 

simulates a continuous flow.  The sink represents the opposite.  All flow exiting the 

source must eventually enter the sink, as it is the destination of all flow within the 

network.  All other nodes are simply intermediate, but are equally as important[18].   

To really understand the uniqueness of flow networks, we turn to the three 

necessary properties that must be satisfied at all times. They are:  

1) Skew Symmetry:  

  (1) ,   V: ( , ) ( , )u  v f u v f v u∀ ∈ = −

2) Capacity Constraint:  

  (2)   E: 0 ( ) ( )e f e∀ ∈ ≤ ≤ c e

e

3) Flow Conservation:  

 
 in to  out of 

  V - { , }: ( ) ( )
e v e v

v s t f e f∀ ∈ =∑ ∑  (3) 
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Skew symmetry implies that the flow on an edge must equal the negative flow of 

the edge in the opposite direction.  The capacity constraint simply requires that the flow 

on an edge must not exceed the capacity of the edge.  Finally, flow conservation states 

that the flow coming into a node must equal the flow exiting the node.  Figure 4 

illustrates a simple flow network without flow on its edges.   
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Figure 4.  An example of a flow network. 
 

Network flows are applied to a variety of problems such as the shortest path 

problem, assignment problem, transportation problem, and minimum cost flow problem 

to name a few.  However, this research assumes a capacitated network in which attempts 

are made to maximize commodities.  Therefore, it is appropriate to model the topology 

control problem after maximum flow problems.  The following provides a brief 

description of maximum flow problems and how to solve them. 
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Maximum Flows 

Maximum flows date back to the mid 1950s when Russian scientist A. N. Tolstoi 

investigated the soviet rail network in an effort to optimize the amount of cargo that 

could be shipped from within the Soviet Union to destinations located in westerly 

satellite counties[19].  By modeling the railroad network as a flow network, the Russians 

were able to calculate optimal routes and identify single points of failure.  

The basic premise of maximum flows is to answer the question “How much flow 

can be transferred from the source node to the sink node while satisfying the constraints 

imposed by the flow network?”  Although much literature exists explaining methods for 

solving maximum flows, generally speaking they fall into two categories of algorithms: 

augmenting path and pre-flow push[18, 20]. 

An augmenting path is defined as a set of ordered edges from source to sink 

where the capacities on each of the edges in the path are positive.  Algorithms that utilize 

this method include some greedy algorithms such as the Ford-Fulkerson method[18, 20, 

21] and the Edmonds-Karp algorithm[18, 20-22].   

Greedy algorithms use an elitist approach to order the augmenting paths found.  

At each step in the algorithm, the edge with the highest capacity is taken next.  As often 

seen with greedy algorithms for any problem, greedy maximum flow algorithms can get 

trapped in a local minimum.  That is to say that upon algorithm termination, the solution 

cannot be guaranteed to be optimal, and in fact, often times it is not.   Figure 5 and Figure 

6 illustrate this potential drawback. 
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Figure 5.  Greedy method for maximum flow finds max flow = 10. 
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Figure 6.  Non-greedy method for maximum flow finds the optimal max flow = 15. 

  

The Ford-Fulkerson method[18, 20] is another member of the augmenting path 

family of maximum flow algorithms.  This algorithm uses what is known as a residual 

network to keep track of flow that has already been pushed on the edges.  For example, as 

flow x is added to edge a  b in the original network, flow -x is added to edge b  a in 
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the residual network.  This creative technique allows flow to be redirected without 

disrupting previous flows that have already been solved.  In the general case, augmenting 

paths are arbitrarily chosen.  That is, the implementation of the data structures determine 

how subsequent paths are chosen (i.e., depth first, etc.).  Not only does this requires 

tedious bookkeeping, but if proper consideration for choosing augmenting paths is 

disregarded, the performance of the algorithm overall suffers (reference pp 352 - 353 of 

[18] for a specific example).  If we let f* be the maximum flow value calculated, then 

[20] states that the Ford-Fulkerson method exhibits an order complexity of O(E x f*).  In 

fact, it is for this very costly reason that we examine the next maximum flow algorithm. 

The Edmonds-Karp algorithm is a based on the Ford-Fulkerson method described 

above.  The primary difference is that during the process of choosing an augmenting path, 

rather than arbitrarily selecting the next hop node, it implements a breadth-first search.  

The resultant augmenting path is then provably the shortest path from source to the sink 

among the paths that have not been chosen (i.e., for every path p in P, p  < pi i+1).  This 

adjustment leads to a more desirable order complexity of O(V x E )2 [18, 20, 23].  A 

further explanation of this algorithm is provided in the next chapter. 

The maximum flow algorithms previously discussed are rather simplistic in their 

approach to solving the problem.  The second class of these algorithms is the Pre-flow 

Push[23].  These algorithms take a local approach to deriving the maximum flow using 

the notion of nodes within a hierarchy.  In addition, they do not utilize augmenting paths 

like the previous algorithms, which unfortunately make them difficult to comprehend.  

There are a number of variations such as the push-relabel algorithm and relabel to front 

16 



 

algorithm[18, 20, 24].  In general, these algorithms center around three basics concepts: 

the pre-flow, the push operation, and the pull operation. 

Kleinberg and Tardos[18] define a pre-flow as “a function f that maps each edge e 

to a nonnegative real number, f: E→R+” in which the flow conservation constraint is 

modified such that the flow into a particular node is greater than or equal to (“≥”) the 

flow out of that node (rather than equal to, i.e., “=”).  Upon completion of the algorithm, 

flow conservation condition is preserved, thus transforming the pre-flow into a flow.   

The push and pull operations focus on the concept of getting flow to the sink from 

a given node and receiving flow from the source.  In the general case, a node is selected 

and flow is recursively pushed to the sink along available “outgoing” edges as well as 

recursively pulled from the node’s neighbors via available “incoming” edges.  This 

concept is significantly different than finding an augmenting path from the source to the 

sink.   

Using these concepts, [23] concludes that an order complexity of O(V )3  can be 

obtained, which is provably better than the Edmonds-Karp algorithm.  This is especially I 

important when the network is very dense as run time experienced by the Edmonds-Karp 

algorithm is a factor of the number of edges.   

Note that neither of these algorithms incorporates potential edges, a unique 

approach in this research.  However, with a few modifications this can be easily resolved.   

In addition, these two algorithms are unique in their own sense.  When compared to Pre-

flow Push, the Edmonds-Karp algorithm is much easier to comprehend and implement.  

Thus, while in theory the Pre-flow Push algorithm has potential for better solutions both 
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it and the Edmonds-Karp algorithm are ideal candidates for application to the topology 

control problem.   

Multi-Commodity Flows 

One of the major drawbacks of maximum flow algorithms is that they were 

designed with single-source, single-sink networks in mind.  Thus, the source node has no 

incoming edges and the sink node has no outgoing edges.  This is typical of simple flow 

networks, however, as you introduce multiple traffic patterns, any node has the potential 

of being a source node, sink node, intermediate node, or any combination thereof with 

respect to different flows traveling across the network.  To circumvent this, consider the 

following example. 

One solution for transforming single-source, single-sink networks into multi-

commodity flow networks is to implement a super source and a super sink, described in 

[20].  The super source s is a special node that is directly connected to each source si via a 

directed edge e with infinite capacity—or at least the capacity of the source in which it is 

connected—from s to si (i.e., for each source si in V, edge s → si exists in E).  Similarly, 

the super sink t is a special node that is directly connected to each sink ti via a directed 

edge e with infinite capacity (or at least the capacity of the sink in which it is connected) 

from t to ti (i.e., for each sink ti in V, edge ti → t exists in E).  Figure 7 and Figure 8 

illustrate this concept. 

 

18 



 

s2

1

2

3

t2

15 515

20

155

s1

s3 t3

t1

10

10

10 10

s2

1

2

3

t2

15 515

20

155

s1

s3 t3

t1

10

10

10 10

 

Figure 7.  Multi-source, Multi-sink flow network. 
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Figure 8.  Super source, super sink transforms the network into a single-source, single 
sink flow network. 

 

This suffices for maximum flow calculation, but it doesn’t permit the 

determination of which commodities are satisfied because it transforms the problem from 

multi-commodity to single-commodity.  This is not desirable as real world commodities 

may very well require preemption or prioritization.  Also, in many cases, a demand must 

be satisfied completely to be useful.  For example, receiving only half of a zip file is not 

helpful as there will be no way to read it.  For this reason, we turn to the knapsack 
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formulation—a well known routine for determining the most valuable set of goods (i.e., 

commodities) given the constraint of a cost function.  This concept is further explained in 

the next chapter. 

Relevant Research 

This section provides a brief introduction to the current research within the 

Network Design Problem (NDP) domain.  While there are distinctive variants of the 

NDP, this research is mainly concerned with the multi-commodity capacitated NDP 

(MCNDP).  This variation is well-suited for real world simulations because of the 

characteristics it models.  As its name implies, the MCNDP constrains edge capacities 

and handles multiple commodities.  One particularly interesting formulation is that of 

[13], which is described below. 

Erwin uses a Mixed-Integer Linear Programming (MILP) approach to solving the 

NDP.  MILP techniques provide an optimal solution[24], but one which is very costly 

with respect to time.  Erwin’s research validated this concept with networks of size n ≥ 

15 nodes.  In fact, for a network of 15 nodes, the average time required to compute the 

solution via MILP methods was ~13 minutes[13].  It is reasonable to expect that future 

mobile real world networks will larger and will require a much faster response time.  

The primary objective of Erwin’s research was to minimize the link and flow cost 

of a network topology subject to a variety of constraints, such as bandwidth, interfaces, 

degree of arcs (i.e., links or edges).  His model provides an optimal solution of the 

topology control problem, however as we briefly stated above, there is one major 
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drawback—running time, albeit with excessive runtime.  As the number of nodes, edges, 

interfaces, and commodities increased, so does the complexity.   

The mathematical formulation is now presented including the variables of interest 

(Table 1), objective function, and problem constraints. 

 

Table 1.  LP Formulation - Variables of Interest[13]. 
 

Variable Definition ( representation ) 
N set of nodes 
K number of commodities 
F number of interface types 
(i,j,f) arc connecting node i to node j by interface type f.  
A node-incidence matrix where aijf = 1 if node i is incident to node j via interface type f, and 0 

otherwise.  
k
ijfx  fraction of the required flow of commodity k to be routed from the source (sk) to the destination 

(dk) that flows on arc (i,j,f) 

ijfy  binary variable indicating whether arc (i,j,f) is selected as part of the network topology 

k
ijfv  per unit cost for commodity k on arc (i,j,f) multiplied by the flow requirement for that 

commodity 

ijfc  fixed cost of including arc (i,j,f) in the network 

ifu  number of interfaces of type f at node i   

bk required bandwidth for commodity k 

ijfcap  the capacity of arc (i,j,f) 

 

The objective function identifies what is trying to be optimized.  In Erwin’s 

research, the specific objective was to minimize the total cost of the network.  Total cost 

is the sum of two cost variables.  The first, link cost, is the fixed cost to use a given link 

in the network.  The second, flow cost, equates to the cost to route a given commodity 

across a particular link.  Recalling the variables listed in Table 1, the objective function is 

formally stated as: 
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Minimize:    

  (4) 
{ ,( , , ): 1} {( , , ): 1}ijf ijf

k k
ijf ijf ijf ijf

k i j f a i j f a
v x c y

= =

+∑ ∑

The first summation totals the cost of per unit of flow for each commodity on 

each edge.  The second summation totals the cost of each edge included in the final 

topology.  Calculating the objective function seems rather simple at this point.  What has 

yet to be considered, however, are the constraints.   

Constraints provide limits on how a problem is solved. They are necessary to 

ensure certain criteria remain within acceptable parameters.  Calculating the objective 

while adhering to a plethora of constraints is what makes optimization problems difficult.  

Erwin’s objective function was subject to the following constraints: 

  (5) 
, : 1 , : 1

1 if
1 if , 1,...,
0 otherwiseijf jif

k

kk k
ijf jif

j f j fa a

i s
i d i N k Kx x

= =

⎧ =
⎪

− = − = ∀ ∈ =⎨
⎪
⎩

∑ ∑

Equation 5 constrains the amount of commodity k on link (i,j,f) such that it can 

not exceed 100 percent. 

  (6) ( , , ) , 1k k
ijf ijf ijf

k
r x cap i j f A a≤ ∀ ∈ ∋∑  =

F

Equation 6 ensures the sum of the flows for all commodities across link (i,j,f) is 

no greater than the capacity if the link itself. 

  (7) , 1,...,ijf if
j N

y u i N f
∈

≤ ∀ ∈ =∑

Equation 7 implies that the number of links from node i to node j is no larger than 

the number of interfaces at that node. 
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 ( , , )  1, 1,...,k
ijf ijf ijfx y i j f A a k≤ ∀ ∈ ∋ = = K

=

 (8) 

Equation 8 guarantees not only that the amount of commodity k on link (i,j,f) is at 

most one, but also ensures that if the link is not included in the topology, then no 

commodity can be routed across it. 

  (9) ( , , )  1jif ijf ijfy y i j f A a= ∀ ∈ ∋

Equation 9 assures that if there is a link (i,j,f) then there must be a link (j,i,f) in the 

other direction as well. 

 0 ( , , )  1, 1,...,k
ijf ijfx i j f A a k K≥ ∀ ∈ ∋ = =  (10) 

Equation 10 implies that the percentage of a commodity across a given link must 

be positive. 

 is binary ( , , )  1ijf ijfy i j f A a∀ ∈ ∋ =  (11) 

Lastly, equation 11 constrains the decision to use link (i,j,f) in the network to be 0 

or 1. 

Once the model has been formulated, it can be integrated into a linear solver.  

Erwin used Xpress-Optimizer, a component of the Xpress-MP suite and a well-known 

software optimizer for integer-linear programming problems, as his solver[25].  One 

benefit gained from this software is the built-in implementations of multiple popular 

algorithms.  Specifically, Erwin was able to run simulations using three different 

methods: Primal Simplex, Dual Simplex, and Newton Barrier[13, 26].  Erwin discovered 

that while these methods provide high quality solutions, they scale poorly relative to 
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network size.  To compensate, he proposed three additional methods to take advantage of 

the MILP optimality while circumventing its complexity weaknesses. 

These additional methods each have a common theme: the degree-constrained 

minimum spanning tree (dcMST). The dcMST provides a preliminary network that 

ensures connectedness.  From there, edges are added to form the resultant topology via 

one of three methods.  The first two approaches add edges to nodes in non-decreasing 

order or non-increasing order.  Erwin refers to these methods as heuristic 1 and heuristic 

2[13].  The third “edge-adding strategy” utilizes the MILP formulation described above.  

This method is referred to as the “combo” method because it uses a combination of the 

MILP formulation and the dcMST.  While these methods do not guarantee optimality, 

they exhibit significant reductions in runtime.  These results are examined further in 

Chapter IV.  

Kleeman, et al.[9] developed a multi-objective evolutionary algorithm (MOEA) to 

solve the same problem.  Motivation for implementing a stochastic algorithm comes from 

the exponential growth as the problem size increases.  They use the same formulation 

provided by Erwin described above.  Genetic algorithms in general are considered to be 

somewhat slow (due to the number of generations that must occur), thus, it is not 

surprising that their simulations took roughly three minutes per trial versus ~19 seconds 

for Erwin’s MILP trials.  However, it is interesting to note that their technique saw 

improved performance in total cost for each of 10 trial runs considering that the MILP 

method should provide the optimal solution, suggesting either a relaxation of constraints 

or improper formulation.  Figure 9 highlights their results. 
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Figure 9.  Comparison of Erwin’s MILP method[13] and Kleeman’s MOEA method[9] 
for a 10-node network. 

   

Desai and Milner[27] propose a number of “scalable congestion minimization 

heuristics” which they apply to ring topologies.  Their techniques are summarized here.  

The “single-hop” heuristic tries to maximize the flows of commodities where the source 

and destination are one-hop neighbors.  The “multihop” heuristic attempts to establish the 

least congested, multihop path for commodities in which the source and destination are 

not directly connected.  These two heuristics demonstrate an order complexity of O(V )3 .  

The “rollout” method works by sorting all K commodities in non-decreasing order.  It 

then creates K topologies using either of the heuristics described above such that the kth 

topology is more conducive to solving commodity k before any other commodities (i.e., 

topology k = 2 is created with the commodity order { 2, 0, 1, 3, 4, …, K - 1 }).  The 

fourth technique, “Branch Exchange,” creates approximately V  2 topologies by 
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enumerating possible combinations of exchanging two links currently in use with two 

links that are not in use.  The latter two methods are both bounded by O(V )5 .  Further 

research is expected for networks with more than two degrees of connectivity.  

Finally, Davis, et al.[6] take a clustering approach to creating a network topology 

for Free-Space Optical (FSO) wireless devices.  Initially, all the nodes are disconnected.  

One by one, nodes are grouped to form clusters based on link state table information.  

Once the number of clusters is equal to one, a topology has been found.  This process 

then runs continuously, continuously monitoring the state of the network and making 

repairs as links degrade or fail.  Order complexity is not explicitly provided in the 

documentation. 

Summary 

This chapter provided the background and literature review necessary to 

understand the key concepts used in this research.  First, a discussion on topology control 

was presented.  Next, flow networks were introduced followed by a brief review of 

maximum and multi-commodity flow, which serves as foundation for subsequent 

chapters.  Lastly, a look at current and relevant research was presented to ensure the 

reader’s comprehension of the problem. The following chapter describes the formal 

methodology. 
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III.  Methodology 

Chapter Overview 

The purpose of Chapter III is to detail the methodology used in this research.  The 

previous chapters have provided a brief introduction and background information for the 

material necessary to understand the methodology.  First, a pedagogical example is given 

to help illustrate the problem.  Next, the knapsack and greedy front-ends are explained.  

Lastly, a detailed description of the four different methods used to solve the problem 

examined.   

Problem Example 

Consider a network with n = 4 nodes.  Each node i has an arbitrary number 

interfaces of type f, uif.  In a fully connected network, there are  

 ( )1
2

n n
E

−⎛ ⎞
= ⎜
⎝ ⎠

⎟  (12) 

edges[28] where each node is connected to all other nodes.  In this example, assume f = 2 

interface types.  Hence, there can be at most n(n – 1) or n  – n2  edges (E x f).  As 

illustrated in Figure 10, the example network has 16 - 4 = 12 edges (assuming full 

duplex). 
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Figure 10.  4-node network with 2 unique interfaces at each node. 
 

As with many networks, each edge has a fixed capacity and an associated cost.  

These are labeled in Figure 10.  For the purpose of simplicity, this example assumes there 

is a commodity flow requirement for each source/destination pair (this follows Erwin’s 

model described in previous chapter).  Thus, with four nodes, there are exactly K = n  – n2  

= 12 commodities that must flow across the network.  For each of these, there is an 

associated bandwidth required to send across the network.  Additionally, a value attribute 

is randomly assigned.  This property helps determine the order in which commodities are 

solved (i.e., a priority).  Furthermore, an edge value vector is given to help identify 

priorities discussed later.  Table 2 lists the commodities for this example. 
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Table 2.  List of commodities for the example network. 
 

Comm (k) 
Traffic 
Source 

Traffic 
Sink 

 
Value 

Bandwidth 
Required 

1 a b 1 3 
2 a c 5 4 
3 a d 5 5 
4 b a 4 3 
5 b c 2 5 
6 b d 2 6 
7 c a 6 4 
8 c b 9 5 
9 c d 9 7 
10 d a 4 5 
11 d b 3 6 
12 d c 9 7 
   Total: 60 

 

Notice that this network must have enough capacity to handle at least 60 units of 

flow, else the problem is not solvable from the beginning.  The following table (Table 3) 

lists the network capacity broken out by edge. 

 

Table 3.  Edge list for the example network. 
 

Edge 
Source 

Edge 
Sink 

Interface 
Type 

Fixed 
Cost 

Edge 
Capacity 

a b satellite 3 15 
a b land line 2 12 
a c satellite 8 19 
a c land line 5 17 
a d satellite 5 16 
a d land line 5 13 
b c satellite 4 13 
b c land line 4 11 
b d satellite 5 15 
b d land line 4 14 
c d satellite 6 20 
c d land line 5 11 
  Total: 56 175 
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This example network can easily handle the traffic requirement presented above.  

For simplicity and space concerns, the cost per unit flow matrix is omitted.  This 

information is still required to solve the problem as it determines the cost a route a 

commodity over a particular path.   

Erwin’s input files were randomly generated in order to prevent a bias within the 

test sets.  Due to the amount of information required to solve the problem (i.e., costs, 

network information, etc), generating data sets modeling larger networks was memory 

intensive.  To alleviate this problem, a different input format is used, based on the input 

for HIPR, “an efficient implementation of a push-relabel algorithm for the maximum 

flow/minimum cut problems[29].”. This new format was adopted to provide a means to 

use unique cost metrics such as link characteristics and commodity preferences.   

Because this research is to be compared to Erwin’s, however, the exact same 

input files are still required to be acceptable input.  Thus, a conversion routine is 

implemented to accommodate this.  The program is therefore equipped for better 

comparison of the results of both experiments which is further explained in Chapter IV.  

Recall that commodities are determined by the size of the network.  Therefore, as 

the size of the network increases, so does the number of commodities (by a factor of n2).  

Consider a relatively small of network of n = 10 nodes, implying K = n  – n2  = 90 

commodities.  One of the problems with calculating the solution is determining the set of 

commodities to use.  This can be modeled after the power set, denoted by P(S), which is 

defined as the set of all subsets of set S.  The cardinality of P(S) is derived by the 

following formula:  P(S) = 2n[30].  By this fact, there are 290 (a very large number) 
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combinations possible.  Rather than enumerate each element in the power set using a 

linear programming model, the problem is mapped to a well-known set of maximum flow 

algorithms.   

As noted in Chapter II, maximum flow algorithms attempt to send as much flow 

as possible through a flow network from a source to a destination.  With topology 

control, the objective is to maximize throughput by determining a feasible configuration.  

Moreover, the order of complexity of these algorithms exhibited is a desirable 

characteristic.  Therefore, it is logical to explore the solution potential of this class of 

algorithms. 

The methodology is partitioned into two main phases:  selecting a combination of 

commodities and determining if the selected combination fits in the network.  Each phase 

is now discussed. 

Choosing the Combination  

Each commodity has a variety of fields to uniquely identify itself within the 

network.  Such fields include an identification (id) number, a source, a sink, a traffic 

demand, a value (i.e., worth), and a preference vector among others.  The preference 

vector is a list of desired edge characteristics which can be used to model costs in cases 

where a commodity flow cost is not specified.  Using this information, the subset of 

commodities that provide the greatest benefit to the network is determined.  To do this, 

two steps are taken. 

1) Sort the commodities 

2) Determine the combinations to try 
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To accomplish first step, a density function is defined as the ratio between a 

commodity’s value and its demand.  That is, the priority of commodity k = k  / kvalue demand.  

This gives preference to commodities that provide the best value for their cost as opposed 

to sorting only value or only by demand.   

Once the commodities are presorted, the next step is to determine the 

combinations to attempt to solve.   It makes sense that solution sets closer to the optimal 

solution would have increasingly more valuable commodities.  Thus, to determine an 

optimal set of commodities, two approaches are examined.   

Knapsack 

The first approach is a formulation of the well-known knapsack problem.  The 

knapsack problem arises when you want to maximize the value of a particular set of 

items while adhering to a strict cost (e.g., weight) constraint.  The knapsack problem is 

formulated as follows[31]: 

  (13) 

' '

let demand or cost constraint
let value goal
let set of commodities

,  find ' demand value
k K k K

W
V
K

k K K K k W k V
∈ ∈

=
=
=

∀ ∈ ⊆ ∋ ≤ ∧ ≥∑ ∑

 

Because the goal is to maximize value, the latter half of the equation above can be 

modified such that the sum of values for the solution set is optimal.  The implementation 

used in this research comes from the dynamic programming solution to the knapsack 

problem.  This is illustrated in Figure 11.  
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1 for each commodity k in K
2 begin
3 for each weight w in W
4 begin
5 if( kdemand > w ) then
6 A[ k ][ w ] = A[ k – 1 ][ w ]
7 else 
8 A[ k ][ w ] = max( A[ k - 1 ][ w ], kvalue + A[ k - 1 ][ w – kdemand ] )
9 end-if
10 end-loop
11 end-loop  

Figure 11.  Dynamic Knapsack Pseudocode[32]. 
 

This is the generic representation of the knapsack, shown for the purpose of 

illustrating the process; however, the following details its usage within this research.  Let 

A represent a 2-dimensional array of size K x W.  Cell A[k][w] of the knapsack represents 

a possible combination to try.  Each cell is also comprised of the value of the 

combination solved, the residual graph (i.e., the graph used by the net flow solver), and 

some Boolean variables flagging the success or failure of an attempted net flow, and a 

pointer to the previous successful cell.  During each step in the algorithm, a decision must 

be made whether to run the cell’s representative combination or not.   

Referencing Figure 11, lines 1 – 4 and 10 – 11 ensure each cell in the knapsack is 

visited.  For each cell, there are two possible cases.  Case 1 (lines 5 – 6) is invoked if the 

current commodity’s demand is larger than the capacity of the current cell.  Otherwise, 

case 2 (line 8) is invoked.  Case 2 is further divided into two sub-cases in which the new 

commodity k adds value or not.  If not, the cell is updated with the previous cell’s data 

and the algorithm proceeds to the next cell.  If the commodity adds value, then a net flow 

must be performed to determine if the new combination can be satisfied by the network.  
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Upon a successful completion, the residual graph is saved and may be used in subsequent 

net flow runs.  Recall that the knapsack’s dimensions are K x W, thus in the worst case, 

the net flow routine could be performed K x W times.  Additionally, the knapsack 

formulation used is recursive in its definition.  This is a crucial time-saving step because 

it minimizes the amount of flow the net flow routine has to solve.  Without it, every net 

flow run would have to try and solve the entire combination.  Once the knapsack runs to 

completion, cell A[K][W] of the knapsack array contains the final solution possible. 

Greedy Technique 

The second approach to choosing a combination is the greedy technique.  As the 

name implies, this technique always chooses the best option available at any given time 

and the choice made is irrevocable[33].   Recall from Chapter II that the greedy method 

for maximum flow algorithms suffer from getting “stuck” in a local optimum during the 

search process.   This is because no global information is used to make decisions.  On the 

other hand, greedy techniques are often acceptable substitutes for approximation 

algorithms as they exhibit much faster run times than other, more exhaustive search 

techniques. 

The greedy approach taken for this research starts with selecting the best 

commodity from the list of commodities that have yet to be explored.  Since this list is 

already sorted (mentioned above), making the greedy decision is simplified to checking 

the next commodity in the list.  Let K* be the list of sorted commodities.  For each k* in 

K*, if k* is solvable in the current residual flow network, it is added to the “solved” list 

and the resulting residual graph is saved for the next iteration.  If k* can not be solved, the 
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commodity and the residual graph are discarded.  Once all commodities have been 

explored, the solution is stored in the “solved” list. 

Solving the Combination 

The second phase is net flow computation.  This phase determines whether a 

particular flow/commodity or a set of commodities can be satisfied by the network.  

Briefly stated in Chapter II, there are a number of maximum flow algorithms available, 

however this research focuses on the Edmonds-Karp and Pre-flow Push algorithms.  

First, a brief discussion on the algorithms’ objectives in general are provided, followed 

by a more in-depth presentation explaining how they compute solutions.  

Each algorithm, which has been modified to operate both with fixed edges as well 

as a set of potential edges, requires the same information to solve a particular flow.  

Foremost is the graph (i.e., the network).  The graphical representation of the networks 

used in this research is not complex.  A network object is instantiated from the parent 

class.  Each network object contains a list of nodes and a list of commodities.  Each node 

then contains a list of regular edges and potential edges.  Additionally, the net flow 

algorithms require the list of commodities.  The final piece of information required is the 

heuristic which the algorithm should use.  The heuristic options are a breadth-first search 

(BFS) or a best-first search (BestFS).   The following subsections detail the algorithms 

and heuristics in more detail. 

Edmonds-Karp  

The Edmonds-Karp Maximum Flow algorithm (also known as the Labeling 

Algorithm[24]) is a variant of the Ford-Fulkerson Maximum Flow algorithm[21].  The 
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Ford-Fulkerson method is straightforward: find a path from the source to the sink (called 

augmenting paths), push flow along that path, update edge capacities and repeat until no 

further augmenting paths are available.  The primary difference of the Edmonds-Karp 

method from the Ford-Fulkerson method is how augmenting paths are found.  Ford-

Fulkerson uses depth-first search (DFS) approach to finding the sink node, whereas 

Edmonds-Karp utilizes a BFS.  The result is a faster runtime because augmenting paths 

are encountered in order of the number of hops from the source to the sink (i.e., shortest 

path first)[24].  Before introducing the implementation specifics, the pseudocode for the 

general Edmonds-Karp maximum flow algorithm is given (Figure 12). 

 

1 Edmonds-Karp()
2 label sink
3 while( sink is labeled )
4 un-label all nodes
5 initialize predecessor for each node to 0
6 label the source and add source to a List
7 while( the List is not empty )
8 i = remove a node from front of List
9 for each existing edge i to j
10 if node j is unlabeled
11 label j and set predecessor( j ) = i
12 add j to List
13 end-if
14 end-loop
15 end-loop
16 if sink is labeled
17 P = augmenting path via predecessor labels 
18 b = minimum capacity of edges in P
18 add b units of flow to each edge
20 update residual graph
21 end-if
22 end-loop
23 End

 

Figure 12.  General Edmonds-Karp Maximum Flow Algorithm[24]. 
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In the algorithm, labeling a node implies that node has been visited.  Line 2 is an 

initialization step required to enter the subsequent loop.  The while loop on lines 3 – 22 

executes until no further augmenting paths exist.  Once the loop is entered, lines 4 – 6 are 

executed as a precursor to the inner while loop on lines 7 – 15.  This loop attempts to 

find an augmenting path.  During this process, predecessor information is preserved in 

order to identify the path (List only contains the nodes to be explored).  The next step is 

to increase flow along the augmenting path.  Obviously, this step (Lines 16 – 21) is only 

executed if an augmenting path is found.   

To accommodate the use of potential edges, a Boolean flag is maintained.  The 

first attempt to solve a commodity always tries to use any fixed edges that are already in 

place.  Ideally, if traffic requirements can be fulfilled with links in which the cost is 

already sunk (i.e., fixed edges), the algorithm should try to do so.  Only when this fails 

are potential edges considered.  This requires minimal modification to the algorithm in 

Figure 12.  It is accomplished by changing line 9 to read “for each existing edge or 

potential edge from i to j.”  Note that this may result in less optimal results, in terms of 

the match between the desired links characteristics and a commodity’s preference vector, 

but it should help to maximize the number of admitted commodities in the network. 

Another requirement is to modify the algorithm for multiple commodities rather 

than the maximum flow.  This requires only a few modifications as well.  By nesting 

lines 2 – 22 within a for loop, the algorithm can be applied for as many commodities as 

necessary (i.e., for each commodity k in K).  However, rather than the maximum flow, 
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only the demand of the commodity needs solving.  Therefore, safeguards are added to 

assure the proper amount of flow is augmented on the edges. 

Essentially, the implementation above describes the first Edmonds-Karp method 

that is used.  The second method involves a slight modification on how the edges are 

chosen for augmenting paths.  Rather than using a BFS when searching for an 

augmenting path, a BestFS is implemented.  This heuristic sorts the choice of edges 

according to the variable cost of routing the particular commodity over the edge.  To 

implement this, a priority edge queue is utilized.  This transforms the search from 

breadth-first into a best-first search which analyzes the next best edge at each step. 

The implementation modifications to Figure 12 are reflected in an updated 

version of the pseudo-code in Figure 13. 
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1 Edmonds-Karp()
2 for each commodity k in K
3 label sink( k )
4 while( sink( k ) is labeled and demand-left( k ) != 0 )
5 un-label all nodes
6 initialize predecessor for each node to 0
7 label the source( k ) and add to a List
8 while( the List is not empty )
9 i = remove a node from front of List
10 for each existing edge i to j
11 if node j is unlabeled
12 label j and set predecessor( j ) = i
13 add j to List
14 end-if
15 end-loop
16 end-loop
17 if sink( k ) is labeled
18 P = augmenting path via predecessor labels 
19 b = min( minimum capacity of edges in P, demand-left( k ) )
20 add b units of flow to each edge
21 update residual graph
22 end-if
23 end-loop
24 end-loop
25 End  

Figure 13.  Updated Edmonds-Karp Algorithm. 
 

Pre-flow Push 

There are a number of variations for the Pre-flow Push algorithm as noted in 

Chapter II.  The maximum flow algorithm described here, however, is defined by Lewis 

and Deneberg[23].  Before introducing the implementation specifics, the pseudocode for 

the general algorithm is given (Figure 14). 
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1 Pre-Flow Push()
2 initialize all flows to 0
3 initialize value to 0
4 while( true ) 
5 A = BuildAugmentingNetwork( G )
6 ComputeLayers( A )
7 if( sink was not layered )
8 return value
9 else
10 PruneAugmentingNetwork( A )
11 CalculateVertexCapacities( A )
12 while( sink has unsaturated incoming edges in A )
13 v = FindLeastCapacityVertex( A )
14 value += Capacity( v )
15 PushAndPullFlow( A, v )
16 end-loop
17 end-if
18 end-loop
19 End

 

Figure 14.  General Pre-flow Push Max Flow Algorithm[23]. 
 

Lines 2 – 3 are initialization steps. The outer while loop (lines 4 – 18) is 

instantiated as an infinite loop.  It provides a similar check to the outer while loop in the 

Edmonds-Karp algorithm in that each iteration is an attempt to find a path from the 

source to the sink.   

Line 5 builds what the authors call an augmenting (or scratch) network.  The 

resultant network (A) is a copy of the original network (G) such that any edges that have 

been saturated (i.e., have no residual or excess capacity available due to previous 

iterations) have been removed.  It is not a required step, but does offer some optimization 

that saves time when exploring nodes further in the algorithm.   

Next, each node’s layer is computed (line 6).  A node’s layer is defined as the 

distance from that node to the sink.  This technique proves useful and essential in 
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determining if the sink is reachable and it also identifies which nodes are on a direct path 

from the source to the sink.  For example, the nodes on a direct (shortest) path would 

have layers that are one plus its predecessor.  If the sink does not get layered on a 

particular iteration, then the algorithm terminates because no source-sink paths exists.  

Otherwise, it continues on to line 10.   

Once node layers are computed, the augmenting network is “pruned” (line 10).  

This process removes nodes and constituent edges that are not part of a source-sink path 

of shortest length (identified by the layer of the sink), hence pruning.  This step reduces 

the work required further on as did building the augmenting network. 

Rather than augmenting flow from the source to the sink like the Edmonds-Karp 

algorithm discussed previously, the Pre-Flow Push algorithm uses a combination of push 

and pull techniques.  First, each node’s capacity is calculated (line 11) by taking the 

minimum of the sum of the incoming edge capacities and the sum of the outgoing edge 

capacities—a node can only receive as much flow as its edges can handle.  This step 

makes finding the node with the smallest capacity very easy.  Next, a node v with the 

lowest capacity, denoted by c, is selected as the starting point (line13).  A series of push 

and pull operations are then recursively called until the sink has received c units of flow 

and the source has pushed c units of flow.  In other words, node v pushes c units of flow 

out on its outgoing edges and pulls c units of flow in from its incoming edges.  This 

saturates node v.  Next, any node that had flow pushed to or pulled from must perform 

the same push/pull technique until c units of flow is pulled from the source and pushed to 

the sink.  Finally, the augmenting network is updated by removing the nodes and edges 
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that are saturated.  This process (inner while loop, lines 13 – 15) continues until all 

incoming edges of the sink are saturated.  At this time, all source-sink paths of the 

shortest length have been fully utilized, and the algorithm can begin looking at paths of 

the next shortest length. 

It is important to note that by selecting the vertex with the least capacity as a 

starting point to augment flow through the network, the algorithm ensures that any other 

node on the augmenting path will be able to allocate enough capacity among its edges to 

successfully push/pull at least c units of flow[23]. 

The Pre-flow Push algorithms must also be modified to accommodate potential 

edges and multiple commodities.  These changes are nearly synonymous with Edmonds-

Karp, thus a detailed explication is omitted.  The two variants are now discussed. 

The first approach is based on the Pre-Flow Push algorithm outlined above.  First, 

the maximum flow between the source and the sink is attempted.  If the demand cannot 

be met given the preliminary network, potential edges are activated (i.e., permitted to be 

explored).  Potential Edge choices are made separately as opposed to “on the fly” like the 

Edmonds-Karp algorithms.  The heuristic uses BFS starting at the node with the highest 

priority and has potential edges available for consideration.  If an edge is deemed useful, 

it is locked in place, becoming part of the original network.  After making the potential 

edge choices, the new topology is analyzed again to determine if more flow can be 

allocated to solve the commodity in question. 

The second approach uses a slightly different method for finding paths.  Utilizing 

the same techniques as the previous approach, this heuristic determines if a demand can 
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be met without potential edges.  Potential edges are activated in an effort to add 

additional capacity to the network.  When making decisions about which potential edges 

to explore, the algorithm will sort the edges based off the variable cost to route a 

particular commodity over the edge in question. 

The implementation modifications to Figure 14 are reflected in an updated 

version of the pseudo-code in Figure 15. 
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1 Pre-Flow Push()
2 for each commodity k in K
3 initialize all flows to 0
4 initialize value to 0
5 while( true ) 
6 A = BuildAugmentingNetwork( G )
7 ComputeLayers( A )
8 if( sink( k ) was not layered )
9 if( potential edges have not been activated )
10 activate potential edges
11 else
12 return failure
13 end-if
14 else
15 PruneAugmentingNetwork( A )
16 CalculateVertexCapacities( A )
17 while( sink( k ) has unsaturated incoming edges in A )
18 v = FindLeastCapacityVertex( A )
19 value += min( Capacity( v ), demand-left( k ) )
20 PushAndPullFlow( A, v )
21 demand-left( k ) -= value
22 if( demand-left( k ) == 0 )
23 go to next commodity
24 end-if 
25 end-loop
26 end-if
27 end-loop
28 end-loop
29 End

 

Figure 15.  Updated Pre-flow Push Algorithm. 
 

Potential Edges 

By definition, a potential edge could possibly connect to multiple end points.  

However, only one connection is permitted at a time.  To represent a single potential 

edge, each possible connection is split into a separate pseudo-edge.  Each pseudo-edge (it 

is not an actual edge unless it is used) is then assigned a group id number.  Only one 

pseudo-edge per group is permitted to be in use.  Consider the following example.  

44 



 

Figure 16 depicts a simple flow network in which node 2 has one potential edge 

(two pseudo-edges).  The potential edge can either point to node 3 or node 4, but not 

both.  The choice in this example is quite simple.  If pseudo-edge 2 → 4 is utilized, the 

sink will be unable to receive flow, thus the obvious choice is 2 → 3. 
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Figure 16.  Potential edge illustration. 
 

Summary 

This chapter started by providing a necessary example to illustrate the problem at 

hand.  Then, the knapsack and greedy front-end methods used to determine the 

commodity combination was explained.  Lastly and the core of the research, the 

Edmonds-Karp and Pre-flow Push maximum flow algorithms were detailed as the basis 

for determining if a given commodity combination could be satisfied by the network.  

Furthermore, modifications for accommodating potential edges and multiple 

commodities were examined.  Given the two front-end methods, which can each utilize 

one of four maximum flow methods, there are a total of eight unique approaches to 

solving the topology control problem (See Figure 17). 
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Figure 17.  Methods for solving the problem. 
 

The next chapter details the experimental design and analytical results gathered 

through tests on this methodology. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter provides a detailed description of the experiments used to test the 

methodology described in Chapter III.  There are two primary modes of experiments 

employed: the comparison of the results of Erwin’s tests[13] with that of this research, 

and sole evaluation of the unique methods themselves with respect to one another.  This 

chapter details the setup and design of such experiments.  The results are then presented, 

analyzed, and critiqued.  Ultimately, conclusions are drawn upon and hypotheses are 

readdressed to highlight the salient features of the research.   

Design of Experiments 

The motivation from which this research is derived stems from the baseline 

results provided by Erwin[13].  His approach was aimed at minimizing the cost of the 

network.  This research abstracts the cost of edges and routed flow away such that the 

goal is more geared toward optimizing commodities within the network.  That is, the 

characteristics of the traffic in the network are more important than the final cost.  In 

order to ensure proper comparison and some guarantee that the data is meaningful, a 

post-processing phase was implemented to capture the same metrics presented by Erwin.  

The time required to collect this data was not counted toward the overall computation 

time of the methods. 

The metrics recorded and used to compare and contrast against Erwin’s results are 

presented in Table 4:  
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Table 4.  Metrics used for comparison with Erwin’s results. 
 

Metric Description 

Link Cost The cost per use a particular link in the network (without regard 
to the traffic flowing over the link) 

Flow Cost The cost to route a given flow across a particular link 
Total Cost The sum of the Link Cost and the Flow Cost 

Number of Hops The average number of hops the commodities within the 
network exhibit from their respective source and sink nodes 

Diameter The largest realized distance between any two nodes of the 
network 

Dropped 
Commodities The number of dropped commodities the network experienced 

Run time The total time required to solve the problem 
 

To calculate the link, flow and total cost of the solution network, the cost matrices 

provided in Erwin’s input files were read into memory and utilized in the post-processing 

phase.  While the remaining metrics were also calculated after the solution was found, no 

additional information was required apart from the solution network itself.   

Initial experiments were modeled directly after Erwin’s.  That is, input files were 

created with random characteristics for networks of size 10, 15, 20, 25, 30, 35, and 39 

nodes.  Due to memory insufficiencies and the input file format, networks of 39 nodes or 

more were not examined.  To remain consistent, however, the exact same input files were 

used.  Each input file contained the number of nodes, a list of commodities, a node 

incidence matrix, and various cost matrices for determining goodness.  Recall that there 

are eight total methods used to solve the problem.  For each input file, 10 trials were run 

per method (i.e., 80 trials per input file).  Results in the form of the metrics previously 

described were output to individual text files.  Data collected from the files were inserted 

into a spreadsheet where the averages could be extracted, ensuring the data is normalized 

to account for instances that strayed from the standard deviation.   
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Test Computer Specifications 

All experiments were completed on a Gateway desktop personal computer 

running Fedora Core release 4 from Red Hat Enterprises.  The machine boasts an Intel 

Pentium 4 processor running at 3.40 GHz with 2 MB cache.  It also has 4 GB of virtual 

memory, 3.6 GB of which is available to the user.  All code was written in C/C++ and 

compiled and tested using the GNU Compiler Collection, aka GCC, version 4.0.0. 

Order Complexity  

Using the knapsack method to determine which combinations of commodities to 

run in a net flow, the order complexity can be computed as O([net flow] x K x W).  For 

the remainder of this document, let O (X)EK  denote the order complexity of the Edmonds-

Karp algorithm and O (X)PFP  denote the order complexity of the Pre-flow Push algorithm.  

Recall that that the Edmonds-Karp and Pre-flow Push maximum flow algorithms exhibit 

an order complexity of O (V x E )EK
2  and O (V )PFP

3 , respectively.  Thus, in the (best) case 

where only a single net flow is run, the knapsack method complexity is O  (V x E )EK
2  or 

O  (V )PFP
3 .  On the other hand, the worst case is illustrated by running a net flow in each 

of the K x W cells of the knapsack.  Recall that K is the number of commodities and W is 

the maximum weight of the knapsack.  Since K = n  – n 2 =V  – V ~ O(V )2 2 , the order 

complexity can be further simplified from O  (V x E  x K x W) EK
2 to O  (V  x E  x W) EK

3 2 and 

from O  (V  x K x W) toPFP
3  O  (V x W)PFP

5 .  Neither the set of edges, E, nor  the maximum 

weight, W, are necessarily dependent on the number of nodes, however, they can both be  

sufficiently larger—especially for dense networks where a fully-connected graph has 

O(V2) edges and networks with large capacity edges which increases the size of the 
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knapsack.  Thus, it is difficult to establish an order complexity completely in terms of n 

or V.  Even if the graph is very sparse, such as a spanning tree, the complexity is still 

suitably poor at O (V  x W)PFP
5  at best.  The results discussed momentarily the poor 

execution time performance expected given its complexity analysis. 

Using the greedy method for choosing commodities, the outlook on complexity is 

not quite as unenthusiastic.  Recall that the greedy method tries to solve each commodity 

one-by-one by passing the net flow routine the previous commodity’s residual graph.  

Therefore, for each of the K commodities, a net flow routine is called only once.  

Depending on which method is chosen the order complexity can be as low as O  (V  x 

K)

PFP
3

 for Pre-flow Push and as high as O  (V x E  x K)EK
2  for Edmonds-Karp.  By simplifying 

the V and K variables into one term, the order complexity can be roughly equated to 

O (V )PFP
5  and O  (V  x E )EK

3 2 .  For very dense graphs, aka a fully-connected graph, the 

upper bound for the Edmonds-Karp heuristics could be as high as V  x E  =V  x V  x V  = 

V  = O  (V )

3 2 3 2 2

7
EK

7 . 

Limitations 

Just by examining the run time complexity, it is easy to see that Erwin’s 

assumption (from Ajuha, et al.[24]) of having a commodity for every source/destination 

pair possible in the network severely hinders the overall performance of the algorithm.  It 

could be argued that this is not particularly illustrative of the real world.  Perhaps a more 

realistic approach would be to model the number of commodities randomly or as a factor 

of exactly n, rather then n2.  This would reduce the complexity by a factor of n without 
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taking value away from the problem.  Figure 18 illustrates the difference a single factor 

of n can make. 
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Figure 18.  The difference between n and n2 commodities. 
 

Another significant limitation is the availability of random-access memory 

(RAM).  This is especially apparent for tests using the knapsack method.  Recall that in 

the worst case, a net flow can be performed in each of the K x W cells in the knapsack.  

Thus, in order to minimize the amount of computation for each net flow, residual 

networks from subsequent net flow attempts are saved.  Whenever a new net flow 

attempt is necessary, the residual graph is passed in to the net flow solver.  Thus, rather 

than solving for the entire combination, each net flow attempt is only required to solve a 

single commodity on the residual network. This optimization, however, proves costly 

because the data structures used to identify a network and its constituents is memory 
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intensive.  To compromise, a limit is set on the number of graphs that can be saved.  

Whenever new graphs are created, older graphs are removed to make space.  For small 

problem sizes, this is acceptable and only minor impact is noticeable.  However, as the 

knapsack churns through the K x W array, the number of references to previous cells 

increases significantly.  This is problematic as older graphs are replaced by newer graphs 

(new graphs are more valuable due to the likelihood of getting reused in the near future).  

The next section highlights the implications of this obstacle. 

Results of Experiments 

This section provides the results of the experiments for both the knapsack and 

greedy approaches to include the four net flow heuristics as compared to Erwin’s MILP 

and heuristic methods.  To facilitate an easier means of comparing the data, results for all 

methods are presented in tandem for each of the input files tested ( i.e., 10 nodes, 15, 

nodes, 20 nodes, etc.).  This helps build on the comparison between the methods.  

Following the results by input file are the overall results for each method and input file.  

This provides insight on scalability and on how the methods perform over time. 

The actual input files are much too big to include in this document, however, they 

are provided electronically if desired.  Furthermore, the actual data points from which the 

charts below are generated are located in Table 5 – Table 10 in Appendix A. 

Metric 1: Run time  

The first metric analyzed is the run time performance.  Run time is one the most 

important metrics collected.  Real world implementations of a topological solver will 

have to be fast among all other traits as networks are becoming increasingly more mobile 
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and ad hoc.  The following figures (Figure 19 – Figure 23) show the run time 

performance of each method over the span of the tested networks.  Further analysis is 

provided afterward. 
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Figure 19.  Run time (s) for each method on a 10-node network. 
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Figure 20.  Run time (s) for each method on a 15-node network. 
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Figure 21.  Run time (s) for each method on a 20-node network (logarithmic scale). 
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Figure 22.  Run time (s) for each method on a 25-node network. 
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Figure 23.  Run time (s) for each method on a 30-node network. 
 

There are a couple of trends clearly evident among these charts.  First, while 

Erwin’s LP methods exhibit the highest run times in the experiment, it is also his 

heuristics that have the slight runtime advantage over the greedy and knapsack methods.  

However, with the 20-node network, the knapsack method explodes, forcing the use of 

the logarithmic scale in Figure 21 for comparison (recall the memory limitations 

previously described).  In fact, run time performance is so bad that tests on subsequent 

networks of larger size were not feasible.  This is similar in regards to the LP methods in 

which data was not provided for larger networks as well.    

Also note that the Edmonds-Karp heuristics generally outperform the Pre-Flow 

Push heuristics often by nearly a factor of two.  This is not expected because the 

theoretical order complexity described above suggests the opposite.  There are two 

possible explanations.  First, because the networks are relatively sparse, especially in the 

early stages of the process when edges just being added, fewer edges are expounded 
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throughout the search process, thus making the E2 variable in O (V x E )EK
2  much less of a 

factor.  Secondly, the Pre-flow Push algorithm did not easily lend itself to 

accommodating potential edges.  In fact, a separate routine is used to add potential edges 

when the existing edges in the network failed.  Arbitrarily adding potential edges does 

not provide an effective means solving flows.  Rather, edges must be picked that are 

useful.  Because there is not necessarily a notion of augmenting paths in the Pre-flow 

Push algorithm, each time potential edges are activated, a separate search is required to 

identify useful edges.  This adds additional time to the overall process.   

To get a better picture of the run time performance as whole, the above results are 

merged into a new chart, Figure 24, which helps illustrate a conglomeration of the results. 
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Figure 24.  Overall run time performance for all tested networks. 
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Metric 2: Number of hops  

The next metric collected is the average number of hops per commodity.  This 

metric is important as it is associated with delay, a common network metric used in 

routing problems.  To remain consistent, the same approach to introducing the results is 

used for each metric.  The following figures (Figure 25 – Figure 29) present the average 

number of hops per commodity for each method and for each of the tested networks. 
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Figure 25.  Average number of hops for each method on a 10-node network. 

 

57 



 

0

1

2

3

4

5

LP
 Barr

ier

LP
 D

ua
l

LP
 Prim

al

Com
bo

Heu
ris

tic
 1

Heu
ris

tic
 2

Kna
ps

ac
k -

 EK 1

Kna
ps

ac
k -

 EK 2

Kna
ps

ac
k -

 PFP 1

Kna
ps

ac
k -

 PFP 2

Gree
dy

 - E
K 1

Gree
dy

 - E
K 2

Gree
dy

 - P
FP

 1

Gree
dy

 - P
FP

 2

Method

Nu
m

be
r o

f H
op

s

 

Figure 26.  Average number of hops for each method on a 15-node network. 
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Figure 27.  Average number of hops for each method on a 20-node network. 
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Figure 28.  Average number of hops for each method on a 25-node network. 
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Figure 29.  Average number of hops for each method on a 30-node network. 
 

In general, Erwin’s LP methods and heuristics have very similar results, hovering 

around two and three hops per commodity.  Similarly, the greedy and knapsack methods 
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perform on par with one another.  However, at best, the results are approximately 50% 

poorer on average, as produced by the Pre-flow Push heuristics.  The Edmonds-Karp 

heuristics, on the other hand, exhibit somewhat less desirable results ranging from three 

and half to six average hops per commodity.   

On a positive note, the average number of hops appears to scale quite well overall.  

Referencing the figure below (Figure 30), as the number of nodes increase, the average 

number of hops seemingly follows a logarithmic curve, albeit because there is at least one 

instance in which the average number decreases (from 25 to 30-node network, using the 

Greedy - EK 1 approach), it cannot be completely logarithmic.  Nonetheless, its curve is 

rather appealing and desirable for scalable networks. 
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Figure 30.  Overall average number of hops for all tested networks. 
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Metric 3: Dropped commodities 

The third metric collected is the average number of dropped commodities.  The 

dropped commodities metric indicates how effective the network is.  Essentially, it is 

equivalent to network throughput—the amount of data that can be in flow at any one 

time.  The results for the number of dropped commodities are introduced in Figure 31 – 

Figure 35. 
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Figure 31.  Number of dropped commodities for each method on a 10-node network 
(total possible = 90). 
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Figure 32.  Number of dropped commodities for each method on a 15-node network 
(total possible = 210). 
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Figure 33.  Number of dropped commodities for each method on a 20-node network 
(total possible = 380). 
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Figure 34.  Number of dropped commodities for each method on a 25-node network 
(total possible = 600). 
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Figure 35.  Number of dropped commodities for each method on a 30-node network 
(total possible = 870). 

 

For smaller network sizes, both the greedy and knapsack methods provide stellar 

results, especially compared to Erwin’s heuristics.  In fact, the 15-node network, the 
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greedy and knapsack methods were able to outperform Erwin’s LP techniques.  These 

results suggest the LP model doesn’t provide the optimal solution.  However, recall that 

Erwin used cost as his primary objective.  Thus, it is possible that the least cost solution 

solves fewer commodities, primarily because additional commodities could conceivably 

add significant cost to the solution.  Unfortunately, the greedy and knapsack methods do 

not outperform Erwin’s techniques across the board as seen with the larger networks.   

Furthermore, supporting the assumption that the number of commodities is of a 

factor larger than n, then as the network increases in size, the number of dropped 

commodities is expected to increase significantly as well (recall the limitations of factors 

of commodities previously discussed). 

Figure 36 depicts the overall performance for each network.  At first glance, the 

rise in the number of dropped commodities appears to be relatively minimal.  However, 

larger increases are evident with 30-node networks.  With the addition of the 100% trend 

line, it is apparent that the number of dropped commodities for using greedy heuristics is 

increasing at nearly the proportion of n2. 
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Figure 36.  Overall average number of dropped commodities for all tested networks. 
 

Metric 4: Total Cost 

The next metric collected is the total cost for constructing the network.  As 

outlined in Table 4, the total cost is the sum of the cost of constructing the links in the 

network and the cost to route the solved commodities across those links.  This metric 

defines the objective function for Erwin’s MILP formulation.  Thus, since the MILP 

formulation provides a cost-optimal solution, neither the greedy nor the knapsack 

heuristics are expected to outperform the LP techniques.  Figure 37 – Figure 41 illustrate 

the total cost for each method and network size.  
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Figure 37.  Total cost broken out by link and fixed cost for each method on a 10-node 
network. 
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Figure 38.  Total cost broken out by link and fixed cost for each method on a 15-node 
network. 
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Figure 39.  Total cost broken out by link and fixed cost for each method on a 20-node 
network. 
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Figure 40.  Total cost broken out by link and fixed cost for each method on a 25-node 
network. 
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Figure 41.  Total cost broken out by link and fixed cost for each method on a 30-node 
network. 

 

Regardless of the method used or the size of the network, the link cost is generally 

comparable across the board.  What separates the optimal solution from others however is 

the flow cost.  Both the greedy and the knapsack method’s lackluster performance clearly 

illustrate the difference between the more efficient LP methods.  While the observed cost 

for the Pre-flow Push algorithms is tolerable (on average only 24% higher than optimal 

cost), the observed cost for the Edmonds-Karp algorithms is probably not (another 26% 

higher than Pre-flow Push’s average cost).  Another important factor is that as the size of 

the network increases—causing the number of commodities to increase—the flow cost is 

expected to rise.  Hence, it is not surprising that the flow cost is the driving factor behind 

the increase in total cost over larger networks.   
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Figure 42, the overall total cost across the board, initially suggests that the costs 

remain relatively consistent for 20-node networks and smaller.  However, the cost for 

larger networks is a bit more variable, perhaps due to the input file used. 
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Figure 42.  Overall total cost for all tested networks. 
 

Metric 5: Network diameter 

The final metric used to analyze the greedy and knapsack heuristics is network 

diameter.  Network diameter is related to the number of hops per commodity, however, it 

provides a more general indication of how efficient a network is.  As the number of nodes 

increases, the diameter is expected to remain relatively small as result of the randomness 

in picking edges.  The results are depicted in Figure 43 – Figure 47. 
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Figure 43.  Network diameter for each method on a 10-node network. 
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Figure 44.  Network diameter for each method on a 15-node network. 
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Figure 45.  Network diameter for each method on a 20-node network. 
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Figure 46.  Network diameter for each method on a 25-node network. 
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Figure 47.  Network diameter for each method on a 30-node network. 
 

A consistent theme among the results thus far has been that the Pre-flow Push 

algorithms generally outperform the Edmonds-Karp algorithms.  The same holds for the 

network diameter.  Additionally, there is only a small disparity between the methods 

suggesting the input file parameters (number of edges, nodes, etc) may dictate how big 

the network diameter more so than the algorithm itself.   In some cases, the greedy Pre-

flow Push heuristics outperform all of the others methods (15, 25, and 30 nodes).  In most 

other cases however, the LP methods portray the best results—tied for best among the 

20-node network was the LP Barrier method and the knapsack Pre-flow Push BFS 

heuristic.   

Figure 48 illustrates the diameter of the network across the board.  It is interesting 

to note the decrease in diameter from the 25-node network to the 30-node network.  

While there are only a few methods that are tested with this network, nearly all of them 
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exhibit the same behavior.  As mentioned previously, this problem is a result of the 

network parameters. 
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Figure 48.  Overall network diameter for all tested networks. 
 

Summary 

This chapter provided an in-depth analysis of the experiments designed to 

compare and contrast the greedy and knapsack methods detailed in Chapter III with the 

MILP methods and heuristics used by Erwin.  Furthermore, the results of each method 

were illustrated with various charts for the five key metrics: run time, number of hops, 

dropped commodities, total cost, and network diameter.  While some results may yield 

inconclusive results, the general outcome suggests that the greedy and knapsack methods 

can be comparable, but often show evidence of less desirable characteristics.  The final 
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chapter (V) provides some concluding remarks along with recommendations for future 

research.
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter provides a clear and concise summary of the research undertaken and 

described throughout the preceding chapters.  Additionally, conclusions are revisited to 

emphasize the implications with which they present for related research.  Lastly, a few 

recommendations for prospective research are offered.  

Brief Review  

Chapter I (Introduction) provided a general introduction to the topology control 

problem.  The topology control problem is an NP-Hard problem in which a feasible 

topology is calculated while adhering to a number of constraints and limitations.  

Furthermore, Chapter I outlined the importance of the research and established goals with 

which motivated the undertaking even more so.  Tomorrow’s military networks will be 

highly mobile and predominantly ad hoc.  Technology is already advancing in the areas 

of routing, fault tolerance, and connectivity.  Thus, research is needed to develop flexible 

networks that are capable of sustaining a high operations tempo with minimal 

degradation in service and to explore these new concepts.   

Chapter II (Literature Review) introduced the necessary background information 

required to comprehend the problem and the solution researched.  In this case, flow 

networks played a significant role in the solution process.  Maximum flow algorithms 

were also explored providing two candidates for the heuristic searches, Edmonds-Karp 

and Pre-flow Push, which set the stage for Chapter III.  The last section provided a 
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review of the significant headway achieved by others who have performed similar 

research.   

Chapter III (Methodology) described the inner details of the process used to 

generate solutions to the topology control problem.   In this chapter, a small, real-world 

example illustrated the particulars of the problem.  Then, a thorough account of the 

process for choosing commodities combinations using a greedy approach and the 

knapsack was explained, followed by the algorithmic specifications of the maximum flow 

algorithms.  Lastly, the idea of potential edges was introduced identifying the important 

role they played. 

Chapter IV (Analysis and Results) outlined the experimental design used to 

generate meaningful data which could then be compared and contrasted against previous 

research.  Once the design process was explained, the limiting factors for the research 

were briefly discussed followed by a comprehensive and comparative analysis of the 

results for the five metrics.  Recall that the primary methods examined afforded little 

performance gain as compared with the Erwin’s MILP techniques and his heuristics.   

Conclusions of Research 

This research began with the goal of obtaining a reasonable solution to the 

topology control problem with running times ideally no greater than the cube of the size 

of the network.  With proven order analyses of O (V x E ) EK
2 and O (V )PFP

3 , respectively, 

the Edmonds-Karp and Pre-flow Push algorithms appeared very suitable contenders for 

just this problem.  Implementing these algorithms proved to be a bit of a challenge as 

care had to be taken to accommodate for multiple commodities and potential edges.   A 
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significant limiting factor, however, was memory utilization.  The dynamic knapsack 

formulation used in this research provided a solution in pseudo-polynomial time, but due 

to the nature of the data structures used, a significant amount of memory was required to 

store the network state.  Thus, four of the eight methods explored (the knapsack 

heuristics) suffered severe set backs because adjustments had to be made to circumvent 

the memory problem.  It is very apparent that the trade-off for pseudo-polynomial time is 

memory.   

Luckily, the four greedy heuristics were not tied to the memory utilization 

problem because they did not store residual networks.  The trade-off was solution quality, 

and while greedy methods generally provide a good approximation, they are also subject 

to local minima traps.   

In general, the performance of the eight heuristics was at least comparable to 

Erwin’s methods.  In various test networks, desirable results were collected for some of 

the metrics.  However, by consolidating the data into a single chart that depicted the 

results for each network, the prevalent theme was that the greedy and knapsack heuristics 

were slightly outperformed in most cases either by the MILP methods or the Erwin’s 

heuristics.  Thus, some recommendations are provided such that follow-on research can 

explore other avenues that might lead to more desirable results. 

Recommendations for Future Research 

One of the main problems observed throughout this research was defining the 

problem in a way that models the real world with meaningful data.  For example, rather 

than assigning the number of commodities arbitrarily, consider taking statistics on real 
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world network to better understand the traffic demands that are present in 

communications networks.  Similarly, steps should be taken to appropriately define the 

characteristics of traffic requirements. 

Another idea for subsequent research is to build upon the greedy approach by 

trying to alleviate the problem of getting stuck in local optima.  One possible solution is 

to identify some threshold value that tracks the amount of lost benefit observed caused by 

the addition of any particular commodity.  If this issue can be circumvented, the greedy 

method would be a plausible solution. 

Sometimes, however, sticking to a single method is not always the best case.  As 

several different approaches are researched, advantages and disadvantages alike become 

evident for each.  Perhaps by utilizing a combination of multiple techniques, a better 

solution could be found.  One example is to use Erwin’s MILP for initial construction of 

a template network.  Then, the greedy heuristics described in this research to quickly 

approximate a solution from the template network.  Then, a GA approach such as the 

MOEA strategy described by Kleeman, et al. could be used to further refine a population 

of similarly approximated solutions.  In essence, it is comparable wrapping each method 

within the scope of the previous.  Such an approach would have to consist of an interface 

between the different methods such that information can be collectively shared.  Figure 

49 illustrates the proposal. 
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Figure 49.  Combination of multiple methods used together. 
 

While calculating solutions via simulations is useful, implementing these concepts 

in a real world testbed could provide enormous insight into the feasibility of the problem.  

A picture says a thousand words, and a real-life demonstration can go even further. 

Lastly, this research, as well much of the previous studies, have centered around 

centralized algorithms.  Such algorithms require complete (global) state information for 

each node in network.  Often times, this information may not be available or may be 

costly to retrieve on a recurring basis.  Therefore, it is recommended that a distributed 

implementation be explored.  Decentralized, or distributed, systems have the freedom of 

existing independently of a central authority.  Decisions are made with only the local data 

available to each constituent member of the system.  Due to the mobility and robustness 

of future military networks, distributed systems concepts will be essential for operating 

with fast, flexible, and effective communications.   
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Summary 

This chapter provided a brief summary of the work described in this document.  

After a review of the previous chapters, closing remarks were given drawing upon the 

conclusions found in Chapter IV.   The salient features and limiting factors were revisited 

to emphasize the importance of those conclusions.  Lastly, a variety of recommendations 

were imparted as a starting point for prospective research.



 

Appendix A 

 

Table 5.  Average performance statistics for each method on a 10-node network. 
 

Method link cost flow cost total cost
number 
of hops

network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier 161.30 662.94 824.24 2.07 5.60 0.00 20.89
LP Dual 161.30 662.94 824.24 2.07 5.60 0.00 17.97
LP Primal 161.30 662.94 824.24 2.07 5.60 0.00 19.31
Combo 139.60 721.42 861.02 2.12 5.50 1.30 1.72
Heuristic 1 144.50 742.83 887.33 2.20 6.00 1.20 0.48
Heuristic 2 143.90 725.10 869.00 2.22 5.60 3.00 0.54
Knapsack - EK 1 125.60 1067.10 1192.70 3.49 7.00 0.80 6.04
Knapsack - EK 2 133.90 1240.80 1374.70 3.85 7.50 0.30 7.21
Knapsack - PFP 1 168.40 918.30 1086.70 3.06 5.70 0.00 11.29
Knapsack - PFP 2 162.60 915.40 1078.00 3.08 6.00 0.20 12.69
Greedy - EK 1 127.10 1128.40 1255.50 3.56 7.00 0.50 1.76
Greedy - EK 2 144.80 1205.50 1350.30 3.86 7.80 0.80 2.24
Greedy - PFP 1 177.90 902.20 1080.10 3.06 5.80 0.10 3.48
Greedy - PFP 2 173.30 898.70 1072.00 3.05 5.70 0.30 4.80

10 Nodes - Averages

 

 

Table 6.  Average performance statistics for each method on a 15-node network. 
 

Method link cost flow cost total cost
number of 

hops
network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier 302.20 1579.01 1881.21 2.38 7.30 5.80 707.27
LP Dual 302.00 1616.31 1918.31 2.41 7.50 5.70 762.57
LP Primal 291.80 1638.60 1930.40 2.42 7.10 5.80 867.87
Combo 264.50 1602.55 1867.05 2.40 7.40 8.60 142.94
Heuristic 1 245.30 1703.92 1949.22 2.55 8.20 16.80 3.56
Heuristic 2 250.30 1640.68 1890.98 2.51 7.80 19.00 3.64
Knapsack - EK 1 259.90 2875.60 3135.50 4.02 9.30 1.90 63.41
Knapsack - EK 2 273.60 3312.20 3585.80 4.46 10.20 6.30 104.95
Knapsack - PFP 1 320.70 2289.80 2610.50 3.35 7.10 0.90 152.39
Knapsack - PFP 2 310.30 2274.70 2585.00 3.30 7.70 1.10 186.72
Greedy - EK 1 262.10 2819.30 3081.40 3.97 9.30 2.90 26.27
Greedy - EK 2 256.20 3275.20 3531.40 4.46 10.30 6.40 32.84
Greedy - PFP 1 323.50 2217.80 2541.30 3.29 6.70 1.40 50.02
Greedy - PFP 2 315.00 2234.40 2549.40 3.31 7.10 2.90 65.26

15 Nodes - Averages
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Table 7.  Average performance statistics for each method on a 20-node network. 
 

Method link cost flow cost total cost
number 
of hops

network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier 303.00 3448.25 3751.25 2.66 8.00 29.00 2008.75
LP Dual 326.00 3551.18 3877.18 2.81 9.00 25.00 2321.96
LP Primal
Combo 328.10 3227.03 3555.13 2.63 8.80 17.40 641.20
Heuristic 1 314.00 3177.69 3491.69 2.68 9.20 38.50 24.40
Heuristic 2 315.70 3168.16 3483.86 2.71 9.30 40.30 17.56
Knapsack - EK 1 331.78 5068.78 5400.56 4.19 10.78 47.11 6315.95
Knapsack - EK 2 327.67 5407.11 5734.78 4.77 12.67 75.89 33360.56
Knapsack - PFP 1 361.22 4118.56 4479.78 3.56 8.00 48.89 25955.00
Knapsack - PFP 2 343.25 4374.75 4718.00 3.65 8.88 34.75 14160.11
Greedy - EK 1 328.20 5059.30 5387.50 4.27 10.60 52.40 142.47
Greedy - EK 2 324.50 5202.20 5526.70 4.68 11.50 80.80 183.15
Greedy - PFP 1 370.10 4163.00 4533.10 3.59 9.00 41.30 379.51
Greedy - PFP 2 356.00 4096.90 4452.90 3.61 8.20 57.20 502.54

20 Nodes - Averages

no data provided

 

 

Table 8.  Average performance statistics for each method on a 25-node network. 
 

Method link cost flow cost total cost
number of 

hops
network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier
LP Dual
LP Primal
Combo
Heuristic 1 425.10 5151.47 5576.57 2.78 10.00 79.50 135.65
Heuristic 2 431.20 5072.25 5503.45 2.77 10.70 78.80 291.33
Knapsack - EK 1
Knapsack - EK 2
Knapsack - PFP 1
Knapsack - PFP 2
Greedy - EK 1 558.80 8117.20 8676.00 4.56 12.40 107.30 633.42
Greedy - EK 2 532.80 9020.20 9553.00 5.25 13.70 143.90 833.28
Greedy - PFP 1 607.80 6680.40 7288.20 3.68 9.70 74.70 1682.91
Greedy - PFP 2 585.70 6704.60 7290.30 3.75 9.50 83.80 2020.81

25 Nodes - Averages

no data provided

not enough data collected due to undesirable performance
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Table 9.  Average performance statistics for each method on a 30-node network. 
 

Method link cost flow cost total cost
number 
of hops

network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier
LP Dual
LP Primal
Combo
Heuristic 1 491.40 7277.95 7769.35 2.80 10.20 197.50 1101.31
Heuristic 2 503.80 7241.95 7745.75 2.84 10.20 181.30 864.49
Knapsack - EK 1
Knapsack - EK 2
Knapsack - PFP 1
Knapsack - PFP 2
Greedy - EK 1 564.70 9118.90 9683.60 4.54 11.80 316.20 1833.91
Greedy - EK 2 528.20 10327.60 10855.80 5.41 15.10 371.00 2441.80
Greedy - PFP 1 598.60 7097.00 7695.60 3.80 9.90 338.60 8558.60
Greedy - PFP 2 588.10 7282.30 7870.40 3.80 9.20 327.70 9202.70

30 Nodes - Averages

no data provided

not enough data collected due to undesirable performance

 

 

Table 10.  Average performance statistics for each method on a 35-node network. 
 

Method link cost flow cost total cost
number of 

hops
network 
diameter

dropped 
comm

run time 
(seconds)

LP Barrier
LP Dual
LP Primal
Combo
Heuristic 1
Heuristic 2
Knapsack - EK 1
Knapsack - EK 2
Knapsack - PFP 1
Knapsack - PFP 2
Greedy - EK 1 758.13 12157.63 12915.75 4.78 14.00 500.00 5519.13
Greedy - EK 2 689.14 13178.43 13867.57 5.66 17.14 587.14 7751.43
Greedy - PFP 1 783.29 9521.86 10305.14 3.79 10.14 475.71 28144.43
Greedy - PFP 2 774.14 9906.14 10680.29 3.93 10.86 473.29 29932.29

35 Nodes - Averages

no data provided

not enough data collected due to undesirable performance
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