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Abstract 

 

 Concrete spalls on airfield pavements generate foreign object debris (FOD) that is 

damaging to aircraft engines, and may damage landing gear by roughening the pavement 

surface.  Repairing spalled concrete on aging and deteriorating airfields is essential for its 

safe operational use.  Picking the best repair material from many products on the 

commercial market is difficult.  There is wide variation on material properties, and good 

performance on certain criteria is critical to constructing long lasting repairs. 

 Since there is currently no procedure for Air Force decision-makers to select the 

best rigid-pavement repair material, a model was created using Value-Focused Thinking 

(VFT) to evaluate repair material alternatives.  Fourteen products were compared against 

each other.  Each was scored using fourteen evaluation measures that were identified as 

important to the repair material selection process.  Pavemend EX-H was found to be the 

best choice for repairs conducted during conventional, steady-state operations.  

Pavemend VR was found to be the best option for repairs that must be ready for traffic 

within hours after placement, such as during contingency operations.  VFT was shown to 

be an effective methodology for objectively ranking repair products, while providing a 

systematic process that can be tailored for future circumstances.
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A VALUE-FOCUSED THINKING MODEL FOR THE SELECTION OF THE BEST RIGID 
PAVEMENT, PARTIAL-DEPTH SPALL REPAIR MATERIAL 

 
 
 

I.  Introduction 
 

 
1.1 Overview  

Portland Cement Concrete (PCC) is the most common pavement surface used in airfield 

runways, taxiways and parking aprons.  When properly designed, constructed, and maintained, it 

provides a smooth surface capable of supporting the loads and tire pressures of all types of 

aircraft.  However, PCC pavements that have outlived their useful lives or that have not been 

maintained may develop cracks and spalls that are damaging to the pavement surface.  A spall is 

a pavement distress in the form of a crack, often along pavement joints and edges.  Figure 1 

shows typical spalls in concrete pavement.  Spalls are commonly partial depth, but may be full 

depth, in which case the structural capacity of the slab is weakened.  Repairing spalls as they 

occur is important for maintaining the health of airfield pavements, and is essential to the safety 

of aircraft as they take off, land, and taxi.  Engineers from all branches of service perform these 

repairs, to include Air Force Civil Engineers, Navy Seabees, and Army Combat Engineers.  
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        Figure 1. Concrete Pavement Spalls 

 

Military engineers need a decision tool to identify which repair materials are ideal candidates 

for spall repairs of airfield pavements.  Their decision could depend on local factors and 

conditions for a particular airfield. The biggest threat spalls pose is in the form of Foreign Object 

Debris (FOD).  Loose concrete chips and aggregates from a concrete spall have the potential to 

be sucked into jet engines, or damage propellers and rotors of million dollar aircraft. Spalls also 

increase the roughness of the pavement, possibly to the point that the pavement becomes 

damaging to the landing gear of fighter aircraft.  Sharp edges from spalling concrete also have 

the potential to cut aircraft tires. 
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1.2 Background 

If conducted under the constraint of time, expediently repaired spalls are a form of Rapid 

Runway Repair (RRR). Air Force Civil Engineers have trained on and performed RRR since the 

days of World War II.  During this time, engineers constructed wooden plank runways in the 

Pacific as a quick means of establishing airfields. This method was soon replaced with a newer 

innovation known as Pierced Steel Planking (PSP).  PSP consists of an interlocking steel matt 

made lighter by its pierced holes.  PSP, along with other materials such as Hessian Matting and 

Square Mesh Track (SMT) were also used in World War II.  An interlocking aluminum mat 

known as AM-2 matting was used extensively in both the Korean and Vietnam Wars. AM-2 

matting is heavy, labor intensive and not feasible for some of the aircraft in our current Air Force 

inventory.   

The Cold War highlighted the need for advances in RRR.  If the enemy were to spall or 

crater airfield pavements with bombs, our ability to launch aircraft sorties would be crippled.   In 

the 1990’s, a lightweight alternative to AM-2 known as Folded Fiberglass Matt (FFM) was 

introduced.  Unlike AM-2 however, FFM is merely a FOD cover. Since it is not a structural 

material, it requires an underlying structural repair before it is installed.  A repair alternative is 

needed that can be made quickly with little effort, and meet the requirements of modern aircraft 

and manpower constraints. 

 

1.3 Problem Identification 

There are many different products on the market today that are advertised as suitable for PCC 

spall repair.  Each of these is characterized by many different engineering properties.  With so 

many properties that will determine its success in producing a long lasting repair, the decision of 
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which one to use becomes difficult.  Although one material may excel in certain respects, it may 

be lacking in others. Finding the clear winner is difficult, and will ultimately depend on the 

performance characteristics that produce the best results for the decision maker.  For example, in 

cases where the repair does not need to be ready for traffic immediately after placement, the 

decision maker would place little importance on the material’s early strength.  Therefore, a 

decision tool is needed that can be tailored to each decision maker’s unique situation.  This tool 

would rank order repair-material alternatives based on the importance that the decision maker 

places on the objectives of runway repair and pavement repair materials.   The military decision 

maker would then have a tool to allow him or her to choose the best repair material for the 

airfield at his or her installation. 

Another advantage to this tool will be the identification of new materials that are suitable for 

testing.  Prior to fielding spall repair materials for wartime use, materials often undergo testing 

by research agencies within the DOD.  These agencies include the Air Force Civil Engineer 

Support Agency (AFCESA), the Air Force Research Lab (AFRL), and the US Army Corps of 

Engineers Waterways Experiment Station Engineering Research and Development Center 

(USACE WES ERDC).  However, field testing can be expensive, time consuming, and requires 

special equipment.  Because there is an abundance of concrete repair products on the commercial 

market, a decision tool is needed to determine which products are worthy of testing and which 

are not. 

 

 

1.4 Research Questions 

4 



In order to create an effective decision-making tool, the following research questions will be 

addressed by this study: 

1. What are the characteristics that engineers look for in an ideal repair material? 

2. What characteristics and properties are uniquely important to military engineers in the 

repair of airfield pavements?  

3. What is the appropriate methodology for choosing the best pavement repair material?  

4. What are the available materials suitable for concrete spall repair? 

5. Which material(s) should military engineers select for concrete pavement spall repair? 

 

1.5 Research Approach 

Evaluating different repair materials may be difficult because each has different strengths and 

weaknesses.  In order to compare these materials on the same scale, this research will create a 

decision tool that allows the decision maker to assign his or her own values, risk preferences, and 

objectives to determine which repair alternative is best in his or her situation.  The methodology 

that does this best is Value Focused Thinking (VFT).  VFT is a strategic, quantitative approach 

to decision making that uses specified objectives, evaluation measures, and value hierarchies 

(Kirkwood, 1997).  VFT follows a process of five steps when faced with decision problems:  

recognize a decision problem, specify values, create alternatives, evaluate alternatives, and select 

an alternative.  VFT is different from traditional approaches because traditional methods look for 

alternatives before considering values.  Once values are specified, evaluation measures are 

determined to effectively score the alternatives.  A single-dimensional value function is then 

created to compare the scores of each alternative on the same scale.  The alternative with the 

highest score will be selected as the best alternative. 
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1.6 Scope  

Alternatives will be chosen for this model that best fulfill the decision maker’s objectives in 

the value hierarchy.  However, because testing is limited on some repair material properties, the 

alternatives chosen may be limited to those with complete data on the value hierarchy measures.  

In addition, repair materials for asphalt pavements are not considered; this research is restricted 

to the selection of repair materials intended for PCC pavements only.  Furthermore, only partial-

depth (occurring in the top one third of pavement thickness) spall repairs will be considered. 

Another limitation to this model is that the weights are assigned subjectively, and may differ 

from the weights of the end user.   

 

1.7 Significance 

By employing this tool to select the best repair material for airfield pavements, military 

decision makers will be able to make quality repairs that best suit their situation.  This model will 

predict the best material to use when faced with many repair products available on the market.  

The model will also serve as a tool to assist engineers in choosing which of these materials 

should undergo the cost of additional field testing. 

In today’s Global War on Terrorism, US forces are encountering airfield pavements on 

foreign airbases in less-than-ideal shape.  Civil Engineer crews are conducting spall repairs on a 

daily basis, during times when runways are shut down specifically for this purpose.  Currently, 

Pavemend© is the predominant spall repair material in use by Civil Engineer crews on foreign 

airfields.  The question of whether this material is best is still not clear-- crews have experienced 

early failures with this material. Figure 2 shows a pavement repair that has failed. The reason for 
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this failure could be caused by conditions not favorable for its use.  This decision tool will pick 

the best repair material given the conditions engineer crews will face.    

   

   Figure 2.  Example of a Failed Concrete Pavement Repair 

1.8 Summary 

This research will provide a systematic, objective way for military engineers to choose the 

best concrete repair material for use on airfield pavements.  The model will address the unique 

needs of military engineers faced with this decision by applying a value-focused thinking 

methodology.   Maintenance of runways on foreign airbases involves daily spall repair to 

maintain an acceptable surface for US aircraft. This thesis will determine the best material(s) for 

producing long-lasting, trouble free repairs.   
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II: Literature Review 

 

2.1 Overview 

 Many techniques have been used in the past to solve construction maintenance and repair 

decisions.  This chapter will first examine past methodologies that have been used to solve 

pavement maintenance and other construction related decisions. Next, traditional methods for 

testing and comparing concrete repair materials will be investigated, along with a look at the 

qualities and properties that are needed for repair materials to produce a long lasting repair.  

Finally, this chapter will introduce the multiple objective decision making method known as 

Value-Focused Thinking. 

 

2.2 Decision Analysis Approaches 

2.2.1 Analytical Hierarchy Process (AHP) 

The Analytical Hierarchy Process was developed by Thomas Saaty (1990:1-39) as a way 

to decompose a complex problem into a series of one on one comparisons.  This method is first 

approached by decomposing the problem into a hierarchy of criteria and alternatives. Next, 

pairwise comparisons are made to determine the importance of one criterion over another.  These 

comparisons are then arranged into a matrix.  By calculating an eigenvector from this matrix, one 

can determine the rankings of priorities. This gives the weights of the values in the hierarchy.  

Next, pairwise comparisons are made against the alternatives for each respective value.  This 
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information is then placed into a matrix, and the eigenvector calculated.  The eigenvector gives 

the rankings for the alternatives for a particular value.  The summation of the alternative’s value 

ranking times the respective weights for each value gives the final score for each alternative.  

The alternative with the greatest score is the best alternative (Saaty 1990). 

Miroslaw Skibniewski and Li-Chung Chao (1992) demonstrated the Analytical Hierarchy 

Process’s usefulness to the construction industry by showing how it can quantify the intangible 

benefits of new or advanced construction technologies along with the risks of implementation.  

With this process, the attributes of a new and existing construction technology are compared 

pairwise according to the decision maker’s knowledge and experience.  Likewise, the relative 

importance of each criterion is determined by the decision maker’s judgment and perception 

(Skibniewski, 1992:580).  In Skinbiewski’s example, a semiautomated tower-crane is compared 

against a traditional tower-crane.  In their example, the semiautomated crane achieved a slightly 

higher score against the traditional crane.  However, if a different decision maker were to go 

through this process, the outcome may change. 

2.2.2 Life Cycle Cost Analysis (LCCA) 

 The American Institute of Architects (AIA) defines a life cycle cost analysis (LCCA) as 

“The calculation of expected future operating, maintenance, and replacement costs of designs 

and features to assist owners in developing a realistic design and budget estimate” (AIA, 2006).  

Al-Mansour and Sinha (1994) used the LCCA technique to make pavement maintenance 

decisions on deteriorating asphalt pavements.  They considered four options for rehabilitating a 

pavement: do nothing, perform Basic Routine Maintenance (BRM), perform BRM and chip 

sealing, or perform BRM and sand sealing. 
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 By performing a present worth analysis for all alternatives, the most economical 

maintenance alternative was determined.  Additionally, the authors used available data to 

develop a set of pavement condition prediction models to determine the effectiveness of 

maintenance activities.  Data was also used to determine the relationship between a pavement 

serviceability index (PSI) and age.  Using statistical regression, the authors found that: 

     PSI = a + b*Age    (1)   
Where  
PSI = pavement serviceability index 
Age= pavement age (in years) since construction or last resurfacing 
a,b = estimated regression parameters 
 

Using the same method, the authors found that the gain in PSI due to seal coating follows the 

below relationship: 

     ΔPSI = a*(PSI – b)    (2)   
Where 
ΔPSI = gain in pavement serviceability due to seal coating 
PSI = PSI at time of seal coating 
a, b = estimated regression parameters 
 

 By using a computer program to perform the LCCA, the authors were able to experiment 

with the cost variations caused by varying the PSI at which resurfacing was performed.  They 

concluded that the optimal timing to perform sealing from a cost standpoint occurs when the PSI 

reaches a value of 3.25.   They recommend that BRM should be performed along with seal 

coating, but seal coating should not be postponed beyond a PSI value of 3.0.  They did not find 

any major cost difference in comparing chip sealing vs. sand sealing. (Al-Mansour, 1994) 

 

2.2.3 Expert Systems 
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 An expert system is an interactive, problem-solving software program that emulates the 

knowledge of a human expert in a specific area.  Ritchie et al., (1986) developed an expert 

system named SCEPTRE 1.1 to make flexible pavement rehabilitation strategies for state-

maintained highways.  To begin the program, the user selects one of six forms of pavement 

distresses: 1. Corrugation, waves, sags, and humps, 2. alligator cracking, 3. raveling or flushing, 

4. longitudinal cracking, 5. transverse cracking, 6. patching.  Once the particular type of 

pavement distress is chosen, the program asks the user to answer a set of categorical questions 

about the condition of the pavement.  For example, if alligator cracking is selected as the type of 

pavement distress, the program requests the following inputs, summarized in Figure 3:  

                              

Figure 3. Variable Inputs on SCEPTRE 1.1 Program 
(Ritchie, 1986:100) 
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Once these questions are answered, the program generates a set of Rehabilitation and 

Maintenance Strategies (RAMs).  Expected service life and the associated probability the 

pavement will exceed this life are shown in the output (see Figure 4) 

   

  

Figure 4. SCEPTRE 1.1 Expected Pavement Service Life Output  
(Ritchie, 1986:102) 

 

Expert systems are ideal to use for problems that meet the following criteria: 

 -Algorithmic solutions are impractical because of complex physical, social, political, or 
judgmental components 
 -Experts exist in the field 
 -An expert is not physically available 
 -Tasks are largely cognitive 
 (Ritchie, 1986:97) 
 
Expert systems differ from conventional computer programs in that an explicit problem-solving 

algorithm is not needed since every knowledge element is already stored and outputted 

depending on the user responses to the initial questions.  To state this another way, human 

experts have programmed the software to output a particular RAM depending on the 

combination of pavement condition inputs by the user. This makes the software useful as a 

learning tool, and to pass on acquired wisdom of senior transportation engineers to others in the 

Department of Transportation (DOT). 
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 An Expert System was later developed in 1994 by Khan et al. (1994:1-16) to gather data 

from California Department of Transportation engineers, and determine design features and 

project scope for resurfacing, restoration, and rehabilitation (RRR) pavement projects.  The 

Expert System was designed to prevent underestimation of project-costs, which was frequently 

occurring on projects expanded to include RRR safety enhancements.  The program allowed 

Caltrans (California DOT) engineers to input data from both office records and field assessments 

into the software.  The software can then recommend design features and an appropriate project 

scope by accessing data from past projects.  Use of this tool helps Caltrans engineers develop 

more accurate project cost estimates. 

  

 

2.3 Property testing and field performance of repair materials 

 Research on concrete repair materials has not revealed any exact methodologies to follow 

for choosing the best repair material for a particular application.  Instead, it has focused on the 

performance properties of the material, and attempts have been made to correlate these properties 

with durability and crack resistance of repairs.  According to P.H. Emmons et al., leading 

researchers in the concrete repair field, there are two difficulties with selecting repair materials; 

the lack of industry-wide reliable testing standards, and the lack of generally accepted 

performance criteria (2000:38).  This section will review the current state of research on the 

performance and selection criteria of concrete repair materials. 

Although this section describes the properties that are considered important for the 

selection of a good repair material, it should be emphasized that these properties should be 

looked at as a whole—any one single property will not determine the success and durability of a 
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repair. It should also be noted that the selection of a repair material is only one of many 

interrelated steps needed to produce a quality repair.  Equally important are the method of 

application, surface preparation, construction practices, and follow on inspection (Emmons 

1994:43).  The influence diagram in Figure 5 shows the interrelationship of factors that affect the 

durability of a concrete repair system. 

 

  Figure 5. Factors Affecting Durability of a Concrete Repair System   
  (Emmons, 1994:43) 

 

Spalling, cracking, scaling and loss of strength are all symptoms of durability problems 

within a concrete repair system. Depending on the structure to be repaired and the type of 

damage, the reason for the repair may vary. However, Edward Rizzo and Martin Sobelman 

(1989:46) identified three basic requirements that a repair material should fulfill: 1. The repair 

must arrest the deterioration of the structure.  2. The repair must restore the structural integrity, 
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and have strength properties similar to those of the substrate. 3. The repair must provide an 

esthetically acceptable finish. In the case of pavement repair, esthetics, mentioned in the third 

requirement, should be of little importance.  The first and second requirements however, agree 

with the nature of pavement repairs. One could also argue there is an additional requirement of 

restoring smoothness to the pavement. 

 

2.3.1 Material Properties 

2.3.1.1 Compatibility 

Compatibility is regarded as one of the most important factors in producing durable 

repairs.  As shown in Figure 6, compatibility is the balance of physical, chemical, permeability 

and electrochemical properties and dimensions between the repair material and existing 

substrate. 

   

  Figure 6. Properties that Affect Compatibility between Repair Material and  
  Substrate (Emmons, 1994:44) 
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 Dimensional compatibility refers to the volume changes of the repair material and 

substrate.  It is the focus of most research done on the properties of repair materials.  This is 

because dimensional incompatibility between the repair material and substrate is believed to 

cause the majority of problems in concrete repairs.  This incompatibility adversely affects the 

durability of the repair and the load carrying capacity of structural repairs. (Emmons 1994:43)  

Most of the property tests of dimensional compatibility are standardized under the American 

Society for Testing and Materials (ASTM). 

 There are four factors that makeup a material’s dimensional compatibility: drying 

shrinkage, thermal expansion, creep, and modulus of elasticity.  Drying shrinkage is the 

contraction of a material as moisture is removed by evaporation to the outside. This contraction 

causes strain-induced loading, and may lead to cracking. Cracking occurs when the induced 

tensile stress exceeds the tensile capacity of the material (Emmons, 1994:44). Drying shrinkage 

can be categorized as either restrained or unrestrained.  Restrained shrinkage causes more strain 

externally and internally compared to a material in free shrinkage.  For this reason, most 

shrinkage tests are of the restrained variety, since this causes the worst case induced strains on a 

material.  In practice, materials are seldom subjected to a free shrinkage scenario.  The bond to 

the existing substrate restrains the repair material as it is contracting.  This is yet another reason 

why the restrained shrinkage test is used. 

 The “ring test” is a common method for determining whether cracks will form in the 

material as it dries.  Although it is a non-standard test, Poston, et al (2001:140) conducted the 

ring test in this manner:  The material was cast around a ten inch diameter, one inch thick steel 

pipe.  The material ring was four inches high, and one and one quarter inch thick.  The mold was 

removed after twenty-four hours; thereafter, it was monitored daily for evidence of cracks.  The 
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day that cracking was first observed was recorded.  This test has now been standardized as 

ASTM C1581-04. 

 Repair materials, like most any material, will expand and contract with changes in 

temperature.  If the coefficients of thermal expansion of a repair patch and substrate are too 

dissimilar, high stress will develop at the bond interface.  This may ultimately result in bond 

failure and the ejection of the repair patch from the spall.  Ideally, the coefficient of thermal 

expansion should match that of the existing substrate.  (ACI Committee 546, 2006:6)  

Coefficient of thermal expansion testing is done in accordance with the ASTM C 531 procedure. 

 Creep is defined as the time-dependent inelastic deformation occurring with prolonged 

application of stress (Emmons, 2000:38).  A repair material may experience tensile creep caused 

by drying shrinkage, or it may experience compressive strength from structural loads. Although 

it is generally accepted that higher creep aids in the relaxation of stresses and strains caused by 

restrained shrinkage, a study by McDonald et al (2002:42) found the opposite to be true.  In their 

study, there was improved field performance in materials with decreased creep.  They attributed 

this in part to the higher drying shrinkage of materials with high creep characteristics 

(McDonald, 2002:42).  Regardless, in an airfield pavement-repair scenario, one would not expect 

to have a prolonged application of stress, except in the case where an aircraft tire might park on 

top of a repair.  A pavement repair would be more likely to see cyclic stresses from moving 

aircraft.  However, as Emmons points out, “very few tests, if any, to date, have incorporated 

stress or cyclic stress on the specimen concurrent with exposure to the environment” (Emmons, 

2000:42). 

 Modulus of elasticity, also known as Young’s modulus, is defined as the slope of the 

curve that represents stress divided by strain.  In non-structural applications, it is generally 
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agreed that decreases in modulus of elasticity reduces the potential for cracking of cement-based 

repair materials.  This is attributed to creep and stress relaxation of lower modulus materials 

reducing the magnitude of stresses induced by drying shrinkage (McDonald, 2002:40).  

However, in structural applications where the repair material will see a point load, as in 

pavements, differences in Young’s modulus between the substrate and repair patch may lead to 

stress concentrations (Emmons, 1994:44).  In this case, the bond region is the weak link and 

cracks will tend to form there.  It is best to select a repair material that will best match the 

modulus of the existing substrate.  This will help ensure a uniform load transfer across the 

section (Rizzo, 1989:48). 

 Chemical compatibility generally refers to the alkali content, content (tricalcium 

aluminate), and chloride content of the repair material.  As an example, if a concrete being 

repaired included potentially reactive aggregates, a repair material with low alkalinity must be 

specified.  The reactivity of the material to reinforcing steel must also be considered; a material 

with a low pH may damage reinforcement by corrosion.   Electrochemical compatibility may be 

a problem in the case where a potentially anodic metal area is overlaid.  Increasing the 

cathode/anode area ratio could accelerate the corrosion process.  In this case, methods for 

restricting excess water and oxygen in the cathodic area should be considered. (Emmons, 

1993:41) 

AC3

 

2.3.2 Other Properties of Concern 

 When choosing a repair material, there are other important properties beyond 

compatibility with the substrate.  These other properties include freeze/thaw resistance, 

compressive strength, early compressive strength, and bond strength. 
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 Concrete and other cementitious materials are susceptible to damage in environments that 

experience freeze/thaw cycles.  Problems with freeze/thaw cycles can manifest in three ways:  

random cracking, surface scaling, and joint deterioration from durability cracking (d-cracking). 

D-Cracking often occurs along pavement joints.  When water (usually from precipitation or 

contact with moist subgrade) penetrates concrete and freezes, it expands and causes high 

pressures. When this pressure exceeds the tensile strength of concrete, the concrete will crack (in 

the form of d-cracking) or scale.  The most common way to prevent this cracking is through the 

use of air entrainment.  Air entraining admixtures create a matrix of tiny (<0.01 inches) bubbles 

within the cement paste.  These bubbles take on water during the freezing cycle to relieve 

pressure buildup (NRMCA, 2004).  Selecting aggregates that perform better under freeze/thaw 

conditions, or reducing the aggregate size will help prevent D-cracking under these conditions 

(PCA, 2006). 

 Early strength may be of concern if a concrete pavement repair must be completed and 

ready for traffic in a short time period.  At a minimum, the material would need a compressive 

strength equal to or greater than the tire pressure of the traffic it sees, to prevent the material 

from failing in compression.  However, other properties such as shear strength, flexural strength, 

and tensile strength are correlated with compressive strength. Therefore, the compressive 

strength would need to be higher when subjected to actual traffic loads; engineers at the Air 

Force Civil Engineer Support Agency (AFCESA) use a weighted load cart to test repair materials 

by simulating traffic loads.  Early strength is measured in compressive strength in accordance 

with ASTM C 39 procedures.  There is no standard time at which early strength is recorded, but 

manufacturers often list it in the 3-4 hour range.  Standard compressive strength is usually 

specified by engineers at the 28-day mark.  This reference point was chosen because concrete 
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will have gained roughly 90% of its strength by this time. 28-day strength is also tested using 

ASTM C 39.  The units for both are in pounds per square inch (psi) or megapascals (MPa). 

 Bond strength is important for ensuring a repair patch does not debond or delaminate 

from the substrate.  Bond strength is tested in accordance with ASTM C 882, also known as the 

slant shear test. The test is conducted by forming a three inch diameter, by six inch high 

cylindrical mold. Within the mold is the repair material, bonded to ordinary portland cement.  

The bond line is thirty degrees from vertical, forming an elliptical area where the two meet.  This 

specimen is then tested in compression.  The stress is calculated as the maximum force applied, 

divided by the bond area where the two materials meet (ETL, 2006). 

 

2.4 Decision Analysis 

 According to Clemen and Reilly (2001:2-3), there are four sources of difficulty that make 

solving problems hard.  The first is complexity.  A decision may have many alternatives, many 

courses of outcome, different economic impacts, and different values held by key players in the 

decision.  Keeping all of these issues in mind may be nearly impossible.  By using decision 

analysis, a complex problem can be arranged into a structure that can be analyzed. (Clemen & 

Reilly, 2001:2) 

 The second cause of difficulty in decision making is due to the inherent uncertainty of 

certain situations.  Imagine a decision that involves choosing between two concrete repair 

materials—one that has good resistance to freeze/thaw conditions, and another that does not.  

Depending on the climate, there may be uncertainty as to how many freeze/thaw cycles the repair 

will experience. Decision Analysis can aid in identifying sources of uncertainty, and representing 

it in a systematic and meaningful way (Clemen & Reilly, 2001:3).   
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 Another difficulty in decision making arises when there are multiple objectives in a 

decision.  In this case, progress in one objective, may impede progress in another.  This would 

force the decision maker to tradeoff benefits in one area to benefit another.  Decision analysis 

provides a framework and tools for dealing with problems that have multiple objectives (Clemen 

& Reilly, 2001:3). 

 The last source of difficulty according to Clemen & Reilly (2001:3) is when different 

perspectives lead to different conclusions.  This source of difficulty is pertinent when more than 

one person is involved in the decision making process.  Different individuals may look at the 

problem from different viewpoints and disagree on the uncertainty of values of the outcomes.  

Decision analysis can help resolve these differences whether the decision maker is an individual 

or group (Clemen & Reilly, 2001:3). 

 Keeney (1993:5-6) describes decision analysis as a five step process: preanalysis, 

structural analysis, uncertainty analysis, utility or value analysis, and optimization analysis.  

Preanalysis occurs when the decision maker identifies a problem, the alternatives are given, and 

the course of action is unknown.  The decision maker structures the qualitative anatomy in the 

structural analysis step.  In the uncertainty analysis step, the decision maker assigns probabilities 

to the components of a problem with uncertainty.  In the utility or value analysis step, the 

decision maker’s unique risk attitude and mindset towards costs and benefits are quantified.  In 

the final step, optimization analysis, the decision maker calculates the optimal decision strategy 

(Keeney, 1993:5-7). 

2.4.1 Value-Focused Thinking (VFT) 
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 The purpose of this section is to introduce one particular decision analysis tool known as 

Value-Focused Thinking (VFT).  Shoviak (2001:63) distilled the concepts of VFT into a ten-step 

process, as shown in Figure 7below. 

    

   Figure 7. VFT Ten-Step Process (Shoviak, 2001:63) 

 In step one, the problem to be solved must be identified.  Stated another way, a decision 

with alternatives must exist, and of the alternatives, only one can be selected.  As Kirkwood 

(1997:2) points out, “If you don’t have alternatives, then you may have a problem, but it isn’t a 

decision problem.” 

 The next step is to create a value hierarchy.  A value hierarchy presents a visual way to 

structure the considerations that the decision maker feels are important to the decision.  

Kirkwood (1997:12) describes it as “tree-like,” with its roots on the top, and branches on the 

bottom. Figure 8 shows a sample value hierarchy.  A value hierarchy contains evaluation 

considerations, objectives, and evaluation measures. An evaluation consideration is any matter 
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that is significant enough to be taken into account in the evaluation of alternatives (Kirkwood, 

1997:11).  For example, evaluation considerations for someone purchasing a house may include 

proximity to work, size, and age.  The tiers of a value hierarchy show the relative importance of 

the evaluation considerations; the considerations of highest importance are at the top of the 

hierarchy. 

 

           

   Figure 8. Hierarchy Tiers (Kirkwood, 1997) 

 The next step is to develop evaluation measures.  Evaluations measures are “A measuring 

scale for the degree of attainment of an objective (Kirkwood, 1997:12).”  Square footage may be 

an evaluation measure for a home buyer’s objective of size.  In the next step, single dimensional 

value functions (SDVF) are created for each measure.  SDVFs account for measures in which 

there are increasing or decreasing “returns to scale” as a score on a measure moves in a 

preferable direction (Kirkwood, 1997:60).  In the example of purchasing a home, a home buyer 

may assign a higher jump in value as the age of a home decreases from 10-5 years, than he 

would as age decreases from 5-0 years.  SDVFs take into account cases like this where 

increasing scores moving in a preferable direction do not give a linear increase in value to the 
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decision maker.  According to Kirkwood (1997:62-65), there are two types of SDVFs: piecewise 

linear and exponential.  Figure 9 shows an example piecewise linear function.  A piecewise 

linear function should be used when there are a small number of scoring levels (Kirkwood, 

1997:61).  When scoring levels can take on an infinite number, an exponential SDVF should be 

used (Kirkwood, 1997:64).  Figure 10 shows example exponential SDVFs. 

   

   Figure 9. Example Piecewise Linear Function 

   

    Figure 10. Example Exponential SDVFs 

 In the next step, the decision maker determines the weights of the values in the hierarchy.  

There are two ways to approach this.  The first method is to weight all values in the hierarchy so 
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they sum to one.  In this case, each value’s weight would be considered a global weight, and 

would determine how each value impacts the overall decision.  Another way to apply weights is 

by weighting the values on the same tier of the hierarchy, known as local weights.  All local 

weights on the same tier must add to one.  As the decision maker moves to lower tiers on the 

hierarchy, the local weights should sum to the weight placed on their respective value at the 

higher tier. 

 The next two steps in the VFT process are alternative generation and alternative scoring.   

One of the advantages of the VFT process is that it helps to bring forth previously unconsidered 

alternatives.  The hierarchy process helps a decision maker structure what is important in his/her 

mind, and this may reveal new alternatives. Once the alternatives are known, they are scored 

according to the following equation: 

                                                                  (3) ∑ =

n

i iii xvw
1

)(=Score
Where: the value of the score on the measure =)( ii xv thi
 and = the weight of the measure iw thi
 and n = the total number of measures 
 

 In step 8, deterministic analysis is conducted by ranking the scores of all alternatives.  

Alternatives with higher scores are preferred.  Sensitivity analysis is performed in step 9.  

Sensitivity analysis can determine the impact on the ranking of alternatives when changes to the 

model are made (Kirkwood, 1997:82).  A sensitivity analysis on weights is often of interest.  

This particular analysis would show the how the ranking of alternatives might change if the 

weights were varied.  In the final step, conclusions and recommendations are made to the 

decision maker regarding the findings of the model. 
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III. Methodology 

 

3.1 Overview 

 Finding the best spall repair material for the job is often difficult, given the many choices 

in available products, and wide variability in performance on criteria that engineers consider 

important to the decision.  This chapter will present the process of creating a VFT model to aid 

decision makers in ranking available spall repair products for use in airfield pavements.  The 

decision makers in this process were pavement engineers from various organizations in the 

Department of Defense.  These organizations include the Air Force Civil Engineer Support 

Agency (AFCESA), the Air Force Research Laboratory (AFRL), and the US Army Corps of 

Engineers (USACE) Engineer Research and Development Center (ERDC).  Because this thesis 

used more than one decision maker, creation of the hierarchy, weight assignment, and 

construction of value functions required that a consensus was reached on each.  In the case where 

requirements may change in the future for spall repair scenarios, this process can be adapted and 

repeated to meet changing missions. 

 

3.2 Problem Identification 

 The first step in the VFT process is to identify the problem to be solved.  Military 

engineers conducting spall repairs at overseas airbases are seeing varied success in the longevity 

of repairs.  In many cases, early failures are seen in these repairs.  These failures may be due to 

the use of inferior spall repair products, not suitable for the unique requirements of military 
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engineers maintaining airfield pavements.  A decision tool is needed to identify spall repair 

products suitable for this application.  Although this tool is not meant to replace actual field 

testing of products, it will be helpful in narrowing down from a wide list of products, those that 

are suitable to be tested in the field.  Because field testing is costly and time consuming, this tool 

is needed to aid in identifying products that are good candidates to be tested in this manner, and 

eliminate those that are not. 

 

3.3 Constructing the Value Hierarchy 

 A value hierarchy serves as a graphical representation for what is important to decision 

makers in a particular decision.  Keeney (1992:24) identifies many benefits for using value-

focused thinking, as shown in Figure 11. 

               

Thinking 
About 
Values 

 creating 
alternatives 

guiding 
strategic 
thinking 

   inter- 
connecting 
decisions 

  guiding 
information 
 collection 

 facilitating 
involvement  
 

identifying 
  decision 
opportunities

evaluating 
alternatives 

   improving 
communication 

uncovering 
  hidden 
objectives 

 Figure 11. Advantages to using VFT (Keeney, 1992:24) 

 

According to Kirkwood (1997:16-18), a hierarchy should be complete.  A complete 

hierarchy is one that takes into account all concerns necessary to evaluate the overall objective of 

27 



the decision.  A hierarchy should also be non-redundant, meaning it should not have any two 

evaluation considerations in the same tier that overlap. A good hierarchy is one that is 

decomposable and independent.  In any situation where the value attached to variations in the 

level of one evaluation measure depends on the level of another measure, the measures are not 

decomposable and independent.  This can cause problems when attempting to develop a 

procedure to combine evaluation measures to determine the overall preference of alternatives 

(1997:18).  A hierarchy that is operable is one that is easily understood by the persons who use it.  

This is important for repeatability of the process—the hierarchy must be easily understood by 

future stakeholders in order to repeat the process.   Finally, all other things being equal, a 

hierarchy should be small in size.  This makes it easier to communicate, and requires fewer 

resources to estimate the performance of alternatives with respect to the evaluation measures 

(1997:18). 

To begin the hierarchy, each of the decision maker’s viewpoints on what was important 

to this decision had to be gathered. The decision makers were asked to provide values (issues of 

importance) from an engineer’s perspective on necessary criteria to produce quality repairs. 

Additionally, decision makers were asked to consider what would be important from an end-

user’s perspective—in this case, that of the workers in the field performing the repair.  By 

contacting the decision makers by telephone, each gave his thoughts on the matter.  Construction 

of the hierarchy was an iterative process; as decision makers provided input on values and 

measures that belonged in the hierarchy, it was sent for review to the other decision makers until 

all were in agreement.  

All agreed that the five most important values are low cost, desirable engineering 

properties, long shelf life, minimal site preparation required, and good workability.  These values 
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are arranged on the first tier of the hierarchy, as shown in Figure 12.  Table 1 defines each of the 

values on the first tier.  The term “goal” as used in the hierarchy is synonymous with value. 
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Figure 12. First Tier Hierarchy Values 
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Table 1. Definitions of First Tier Values 

Desirable Engineering Properties The physical and mechanical properties of repair materials 
necessary to produce quality, long-lasting repairs 

Good Workability The relative ease in which materials are prepared and placed 

Long Shelf Life The length of time a material can be stored without loss in 
performance 

Low Cost The total monetary cost of a material 

Minimal Site Preparation 
Required 

The amount of preparation required on the worksite prior to 
material placement 

     

 

In the process of creating a value hierarchy, values should be subdivided into lower tiers 

until the lowest measurable objective is reached.  Most of the first tier values can be subdivided 

further.  The next sections provide details on the values and measures below the first tier of the 

hierarchy. 

 

3.3.1 Cost 

 The decision makers brainstormed two values to define the first tier value of cost: direct 

cost and requirement for specialized aggregates.  The direct cost is simply the cost of a repair 

product for a given yield of material.  Requirement for specialized aggregate was chosen to 

capture the additional cost required when a repair product requires a special aggregate to be 

mixed with the product. Figure 13 shows the hierarchy branch for cost. 
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    Figure 13. Cost Branch 

 

3.3.2 Desirable Material Properties 

The decision makers agreed that the Desirable Material Properties value will be further 

divided into seven values on the second tier of the hierarchy. Each of these values cannot be 

further subdivided, and will therefore terminate with a measure. Figure 14 shows the values and 

measures for the Desirable Material Properties branch.  Table 2 defines the values and explains 

why the decision makers believe these are important to the decision.   
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    Figure 14. Desirable Material Properties Branch 
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Table 2. Desired Material Properties Values 

Value Why Important 
Bond to existing 
substrate 

A material should bond well to the existing pavement to prevent 
delaminating and patch removal 

Compressive 
Strength 

Compressive Strength must be greater than the tire pressure of aircraft to 
prevent failure.  In addition, other properties such as tensile and flexural 
strength are correlated with compressive strength.  In the case where the 
modulii of elasticity are dissimilar for the two materials, these other 
properties become important to prevent failure 

Durability 
Durability refers to a materials resistance to weathering action, chemical 
attack, abrasion, and other degradation processes 

Early Strength 

Same as compressive strength above, but refers to a materials strength 
shortly after placement.  This may become important in contingency 
scenarios where a material must be ready for traffic in a short time period 

Modulus of 
Elasticity 

This refers to the slope of a material's stress/strain plot, or in other words, 
its stiffness.  An ideal material should match the modulus of the existing 
substrate, to ensure uniform load transfer 

Restrained Drying 
Shrinkage 

An ideal material should have zero shrinkage while drying under 
restrained conditions, as in a repair patch.  Shrinkage can cause early 
cracking due to induced tensile stresses 

Thermal Expansion 

An ideal material should match the coefficient of thermal expansion of the 
existing substrate.  Any differential in thermal expansion can cause 
stresses that lead to cracking 

    

3.3.3 Shelf Life 

 Shelf life is located on the first tier of the hierarchy, since it cannot be classified under 

any other value. The decision makers believe shelf life is important because it determines how 

long a material can be warehoused before use.  In a contingency scenario, it may be a long time 

before new materials can be delivered.  Therefore, materials may need to be stockpiled to avoid 

shortages due to problems in delivery.  Materials with long shelf lives can be stored and less 

effort will be needed to rotate stocks. See Figure 15 for the shelf life branch of the hierarchy. 
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    Figure 15. Shelf Life Branch 

3.3.4 Site Preparation Required 

 The decision makers felt that an ideal material would require as little worksite 

preparation as possible.  Increased site preparation adds more work and time to complete the job.  

The decision makers identified two variables in site preparation seen when placing spall repairs.  

The first is whether or not a repair material requires a bonding agent.  Preparing and placing a 

bonding agent coat to the existing substrate adds a step to the repair process, and is not preferred 

if avoidable.  The second variable found when using spall repair products is whether or not the 

product is hydrophobic.  A hydrophobic material must be placed on a dry substrate.  Drying the 

substrate can potentially add a considerable amount of work and time to the repair.  The substrate 

could be damp at times from weather conditions or wet saw cutting.  Figure 16 shows the branch 

for Site Preparation Required. 

 

 

    Figure 16. Site Preparation Required Branch 

 

3.3.5 Workability 
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 The last branch of the hierarchy captures the importance of material workability.  

Workability represents the relative ease in which a material can be mixed and placed.  The 

decision makers included two values on the hierarchy to define a material’s workability.  The 

first value considers whether or not a material requires aggregates or must be placed in lifts.  

Some materials generate excess heat due to an exothermic chemical reaction once mixed.  This 

heat can cause accelerated shrinkage and drying.  To avoid this, some manufacturers require a 

material to be extended with aggregates, or placed in lifts for repairs that are deeper than a given 

depth.  This is not desirable, since it requires a source of aggregates or an increase in time to 

place multiple lifts.  The second value that subdivides workability is working time.  Working 

time is the amount of time a work crew has before a material becomes stiff, and therefore unable 

to place or trowel for a smooth finish.  Figure 17 shows the hierarchy branch for workability. 

   

    Figure 17. Workability Branch 

 

3.3.6 Complete Hierarchy 

 The complete hierarchy is shown in Figure 18.  The decision makers were satisfied that 

the hierarchy is complete since it adequately covers all concerns necessary to evaluate the 

decision.  The decision makers also felt there were no obvious signs of redundancy.  Since the 
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hierarchy is complete and non-redundant, it can be said that the values in the hierarchy for this 

decision are “collectively exhaustive and mutually exclusive (Kirkwood 1997:17).” 

 The hierarchy does show limitations in decomposability.  Looking at the cost values, a 

decision maker may be willing to pay more for a material that does not require specialized 

aggregates.  Since the value attached to “direct cost” may vary with the level of “specialized 

aggregates required,” an independence problem arises.  This same situation occurs with “early 

strength” and “working time.”  Materials with high early strengths are likely to have shorter 

working time.  Therefore, a decision maker may vary the value attached to working time 

depending on the level of early strength. 
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Figure 18. Complete Hierarchy 

 

 

3.4 Develop Evaluation Measures 

Each of the values has an associated measure, shown in the ovals to the right of the 

rectangular value boxes.  The measures are used to quantify and score the alternatives 

performance on each of their respective values.  According to Kirkwood (1997:24), measures are 

classified as natural or constructed, and as direct or proxy.  Natural scales are those in general 
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use and commonly understood by everyone.  The slump test, measured in inches concrete has 

“slumped” after having been removed from a cone, is a natural scale for evaluating the 

workability of concrete.  Constructed scales are those that are uniquely developed for a particular 

decision problem, such as classifying concrete shrinkage as low, medium, or high.  If a measure 

is a direct scale, it directly measures the level of attainment of an objective, as in measuring the 

shelf life of a repair product in months.  A proxy measure on the other hand, reflects the degree 

of attainment of an associated objective.  Cement type is a proxy measure for the shrinkage of a 

cementitious repair material.  It should be noted that the determinations of natural versus 

constructed and direct versus proxy are not absolute.  In reality, they represent the extremes on a 

wide range of possibilities (Kirkwood, 1997:24).   

 

3.4.1 Cost 

 Direct cost will simply be measured by the cost per weight of material.  Since the yield in 

volume of repair material will vary with water/cement ratio, aggregate extension etc, a simpler 

measure of cost per weight of material will be used instead.  For example, if a fifty pound sack of 

material costs $100, the direct cost is $2/lb. Cost per weight of material is a natural, proxy 

measure.  Requirement for specialized aggregates is a categorical, binary measure of yes or no. 

This measure is natural and direct. 

 

3.4.2 Desired Material Properties 

 Table 3 lists the values and their associated measures.  The units of the evaluation 

measures and type of scale are also shown in the table. 
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   Table 3. Desired Material Properties Measures 
 

Value Measure Units Scale 
Bond to 
existing 
substrate 

ASTM C 882, Standard Test Method for Bond 
Strength of Epoxy-Resin Systems Used With 
Concrete By Slant Shear PSI Natural/Direct 

Compressive 
Strength 

ASTM C 39, Compressive Strength of 
Cylindrical Concrete Specimens PSI Natural/Direct 

Durability 

ASTM C 666, Standard Test Method for 
Resistance of Concrete to Rapid Freezing and 
Thawing 

% of 
modulus of 
elasticity 
retained 
after freeze/ 
thaw cycles Constructed/Proxy

Early 
Strength ASTM C 39, recorded at 3 hours PSI Natural/Direct 

Modulus of 
Elasticity 

ASTM C 469, Standard Test Method for Static 
Modulus of Elasticity and Poisson's Ratio of 
Concrete in Compression PSI Natural/Direct 

Restrained 
Drying 
Shrinkage 

The predominant mineral of the material's 
cement composition will be used as a proxy 
measure for restrained shrinkage 

Categorical 
(Low, 
Medium, 
High) Constructed/Proxy

Thermal 
Expansion 

ASTM C 531, Standard Test Method for Linear 
Shrinkage and Coefficient of Thermal 
Expansion of Chemical-Resistant Mortars, 
Grouts, Monolithic Surfacings, and Polymer 
Concretes in/in°C Natural/Direct 

 
    
 
3.4.3 Shelf Life 
 

Shelf life is simply measured by the manufacturer’s specified shelf life in months. It is a 

natural and direct measure. 

 

3.4.4 Site Prep Required 

 The measures for “bonding agent required” and “hydrophobic” are both binary, 

categorical measures with responses of yes and no.  They are both natural and direct measures. 
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3.4.5 Workability 

 The measure for “aggregate/lift requirement” is a natural, binary measure with responses 

of yes or no.   “Working time” is measured by a material’s initial set time.  The initial set time is 

determined by the Vicat needle method.  The test procedure for this method is as follows:  A 

weighted, 1mm needle is lowered into cement paste.  The time it takes until the needle penetrates 

25mm into cement paste is recorded as the initial set time.  This measure is direct and proxy for 

working time. 

 

3.5 Weighting the Hierarchy 

 Weights can be applied to the value hierarchy in a global or local manner.  If local 

weighting is chosen, the decision maker assigns weights to a particular tier in a branch so that the 

weights sum to one.  These are also known as relative weights, since the weights only hold true 

relative to the other values in the same tier and branch.  Another approach is to assign weights 

globally.  With this method, the decision maker directly assigns weights to all values in the 

hierarchy, so that all weights on the lowest level values add to one.  The decision makers for this 

thesis decided to assign global weights directly to the values in the hierarchy.  

Because the decision for this thesis is choosing the best spall repair material for military 

applications, the decision makers felt the weights in the hierarchy were dependent on the repair 

scenario. They asserted that the weights would change depending on whether the repair was 

performed in a conventional, steady state operational environment, or if the repair was conducted 

in a contingency environment.  The decision makers defined a conventional repair scenario as 

one made without the constraint of time.  Specifically, they assumed that the repair will not be 
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subjected to traffic within six hours after placement.  A contingency repair scenario was assumed 

to be one that was required to be ready for traffic in under six hours after placement. Given a 

contingency environment, some values were more important, and some less.  Therefore, the 

hierarchy was weighted two ways to be pertinent to both scenarios.   Table 4 shows the 

weighting for a conventional work environment, and Table 5 shows the weighting for a 

contingency scenario. 

   

  Table 4. Weight Assignments for Conventional Spall Repair 

Conventional       
Tier 1  Tier 2   
Value Weight   Weight 
Cost 0.15 Direct Cost 0.100 

    
Specialized Aggregates 
Required 0.050 

Material 
Properties 0.45 Bond to Existing Substrate 0.050 
    Compressive Strength 0.050 
    Durability 0.050 
    Early Strength 0.000 
    Modulus of Elasticity 0.050 
    Restrained Drying Shrinkage 0.200 
    Thermal Expansion 0.050 
Shelf Life 0.05   
Site Prep 
Required 0.10 Bonding Agent Required 0.050 
    Hydrophobic 0.050 
Workability 0.25 Aggregate/Lift Requirement 0.050 
    Working Time 0.200 
Total 1.00    
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  Table 5. Weight Assignments for Contingency Spall Repair 

  Contingency       
Tier 1  Tier 2   
Value Weight   Weight 
Cost 0.05 Direct Cost 0.000 

    
Specialized Aggregates 
Required 0.050 

Material 
Properties 0.50 Bond to Existing Substrate 0.050 
    Compressive Strength 0.050 
    Durability 0.050 
    Early Strength 0.050 
    Modulus of Elasticity 0.050 
    Restrained Drying Shrinkage 0.200 
    Thermal Expansion 0.050 
Shelf Life 0.05  0.050 
Site Prep 
Required 0.15 Bonding Agent Required 0.075 
    Hydrophobic 0.075 
Workability 0.25 Aggregate/Lift Requirement 0.050 
    Working Time 0.200 
Total 1.00    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
3.6 Creating Value Functions 

 In order to rank repair material alternatives using the VFT process, a Single Dimension 

Value Function (SDVF) must be created for each evaluation measure.  An SDVF determines the 

value or “goodness” that a decision maker assigns for a particular level of an evaluation measure 

(Kirkwood, 1997:55).  The SDVF assigns the worst possible level of an evaluation measure a 
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score of zero, and the best possible level for an evaluation measure a score of one.  By 

“normalizing” the levels of evaluation measures to a unitless scale from zero to one, the overall 

score of an alternative can be found using Equation 1, the additive value function (described in 

Chapter 2):  

 

           (3)   ∑ =
= xwScore )(n

i iiiv1

The additive value function sums the product of each measure’s SDVF score and its respective 

weight.  The overall score for an alternative will fall between zero and one; an alternative with a 

maximum score on each evaluation measure would receive an overall score of one, and an 

alternative with a minimum score on each evaluation measure would receive an overall score of 

zero.  The alternative with the highest overall score is chosen as the best alternative. 

 The SDVFs for each measure must be monotonically increasing or decreasing.  A 

monotonically increasing value function is one in which higher values on a measure are preferred 

by the decision maker.  Similarly, monotonically decreasing functions are those for which lower 

values on evaluation measures are preferred.  In the case of continuous functions, increasing 

functions have positive slopes, and decreasing functions have negative slopes. 

The SDVFs used in this model are discrete or continuous.  The discrete SDVFs are 

categorical, meaning they have a finite number of levels (categories), while the continuous 

SDVFs have an infinite number of possible levels.  The decision makers chose a discrete or 

continuous scale for each evaluation measure.  For those measures that were evaluated on a 

discrete scale, categories were determined and given an associated value.  If a measure was 

determined to be continuous, the decision makers were asked to provide an upper and lower 

bound representing the best and worst possible scores. The decision makers chose to use linear, 
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rather than exponential functions for all continuous functions; they reasoned that research 

correlating material properties with field performance is still in its early stages, and not enough is 

known to predict anything more sophisticated than a linear relationship.  The decision makers 

based the reference points and categories for the value functions on their personal knowledge and 

experience testing and working with repair materials. The decision makers held the value 

functions constant for both conventional and contingency weighting. The next sections will show 

and describe the SDVFs for each measure in the hierarchy.  All SDVFs were created using the 

software program Logical Decisions for Windows. 

 

3.6.1 Cost Value Functions 

 The first cost measure, cost per yield, is a measure of the cost of a material for a given 

yield.  The units chosen for this measure are US dollars per cubic foot of material. This function 

is continuous because cost can take on an infinite number of values.  It is monotonically 

decreasing since high cost is not preferable.  The decision makers chose a lower bound of $1 per 

cubic foot, and an upper bound of $200 per cubic foot of material.   Figure 19 shows the Cost per 

Yield SDVF. 

     

Value 

     Figure 19.  Cost per Yield SDVF 
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 The second measure specifies whether a repair material requires a specialized aggregate.  

This SDVF is categorical since the range of possibilities is binary.  A repair material that does 

not require specialized aggregates receives the full score of one on this measure.  Figure 20 

shows the categorical SDVF. 

 

 

   Figure 20. Requires Specialized Aggregates SDVF  

 

3.6.2 Desirable Material Properties Value Functions 

 The ASTM C 882 slant shear bond test measures a repair materials ability to resist sliding 

between a material and the concrete substrate.  The units for this measure are pounds per square 

inch (PSI).  The decision makers chose a continuous, linear function with an upper bound of 

3000 PSI and lower bound of 1500 PSI.  The function is increasing since higher bond strengths 

are preferred.  Figure 21 shows the ASTM C 882 SDVF. 
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Value 

    Figure 21. ASTM C 882 SDVF 

  

 ASTM C 39 measures the compressive strength of a material specimen.  This test 

represents the strength of a material after 28 days of curing.  The units for this measure are PSI.  

The decision makers chose a linear, continuous function with an upper bound of 10000 PSI and a 

lower bound of 2500 PSI.  The function is increasing since higher compressive strengths are 

preferred.  Figure 22 shows the ASTM C 39 SDVF. 

        

    Figure 22. ASTM C 39 SDVF 

Value 
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 ASTM C 666 is a standard test to determine the durability of a material when subjected to 

freeze/thaw cycles.  To begin the test, a material’s dynamic modulus of elasticity is first 

measured.  Next, the material is subjected to 300 freezing and thawing cycles.  After the test, the 

change in the materials dynamic modulus of elasticity is recorded.  The unit for this measure is 

the percentage of dynamic modulus retained after the test.  This test uses a continuous function 

since there is an infinite range of values for percent dynamic modulus retained.  The function is 

increasing since higher percentages of dynamic modulus retained represent more durable 

materials.  The decision makers chose an upper bound of 80% and a lower bound of 0%. Figure 

23 shows the ASTM C 666 SDVF. 

    

Value 

    Figure 23. ASTM C 666 SDVF 

 

 Early strength is measured by the same test as compressive strength (ASTM C 39); To 

measure early strength however, this test is performed after three hours of curing instead of 28 

days. The units for this test are PSI, and the function is continuous since the range of possible 

values is infinite.  The function is increasing since high early strength is preferred.   The decision 
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makers chose an upper bound of 4000 PSI, and a lower bound of 1500 PSI.  Figure 24 shows the 

SDVF for early strength. 

    

Value 

   SDVF for Early Strength (ASTM C 39 after 3 hours of curing) 

  

 Modulus of elasticity is measured by ASTM C 469.  This test measures the slope of a 

material’s stress/strain curve when deformed, or in simpler terms, the stiffness of a material.  The 

units for this test are PSI.  The decision makers felt that an ideal material would have a modulus 

of elasticity equal to that of the concrete substrate.  The levels of modulus of elasticity for 

alternatives will therefore be inputted in this model as the deviation, or delta from an assumed 

value of concrete pavement.  The decision makers chose 4.5 million PSI as a typical value for 

concrete pavement.  The value function for this measure will scale the modulus differential that 

deviates from 4.5 million PSI.  The function is continuous since there is an infinite range of 

possible deviation values.  The decision makers chose an upper bound of 4.5 million PSI, and a 

lower bound of 0 PSI (no differential from substrate).  The function is decreasing because a high 

modulus differential from the existing substrate is not preferred.  Figure 25 shows the SDVF for 

modulus of elasticity differential. 
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Value 

  Figure 25. Modulus of Elasticity Differential from Substrate SDVF 

 

 Restrained drying shrinkage is a measure of the shrinkage a material will undergo while 

under restrained (confined) conditions.  High shrinkage materials are avoided because of the 

potential for cracking while in the curing phase.  A material’s cement type was chosen as a proxy 

measure for this value.  In general, materials that include calcium aluminate (C3A) or silica fume 

(SiO2) as mineral components experience high shrinkage (Holt, 2001:175).  Materials with 

magnesium phosphate as their primary cement component have low shrinkage.  Materials with 

Portland cement as their primary cement component will be classified as medium shrinkage.  

The value function for this measure is categorical, with possible value of low, medium, and high.  

The function is decreasing since high shrinkage is not preferred.  Figure 26 shows the categorical 

SDVF for restrained shrinkage. 
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    Figure 26. Restrained Shrinkage SDVF 

 

 ASTM C 531 measures a material’s coefficient of thermal expansion.  The coefficient of 

thermal expansion is the rate at which a material expands or contracts to changes in temperature.  

The units for this test are microstrains per degree Fahrenheit. A microstrain is the length in 

millionths of an inch that a material will shrink or swell per each inch of length. The decision 

makers felt that an ideal material would have a coefficient of thermal expansion similar to that of 

the concrete substrate.  Any differential between the two can cause movement fluctuations, and 

negatively affect the performance of the repair (ACI, 2006:6).  The typical range of values for 

thermal coefficients of portland cement concrete is typically 2 to 8 microstrains/° F (ACI, 

2006:7).  The decision makers chose 5 microstrains/°F as an assumed value for concrete 

pavements.  Therefore, the deviations from this value will be scaled using a continuous SDVF. 

The decision makers chose an upper bound of 5 microstrains/°F and a lower bound of 0 

microstrains/°F (no differential).  The function is decreasing since high thermal coefficient 

deviations are not preferred.  Figure 27 shows the SDVF for thermal coefficient deviation. 
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Value 

 Figure 27. Thermal Coefficient SDVF (deviation from 5 microstrains/°F) 

 

3.6.3 Shelf Life 

 The shelf life of a material is the length of time a manufacturer recommends a product 

can be stored unopened before the performance of a material is degraded.  The unit for this 

measure is months. This function is continuous since the range of possible values is infinite.  The 

function is increasing because materials with high shelf lives are preferred.  The decision makers 

chose an upper bound of 60 months and a lower bound of 12 months.  Figure 28 shows the 

SDVF for shelf life. 

        

    Figure 28. Shelf Life SDVF 

Value 
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3.6.4 Site Preparation Required 

 The first measure in the Site Preparation Required branch is the determination of whether 

a material requires a bonding agent or not.  A bonding agent is not preferred because it adds a 

step to the repair process.  The value function for this measure is binary and categorical. There 

are only two possible values for this function: yes or no.  If the material requires a bonding agent, 

it receives a score of zero—otherwise, it receives a score of one.  Figure 29 shows the SDVF for 

Bonding Agent Requirement. 

 

  

   Figure 29.  SDVF for Bonding Agent Requirement 

 

 The second measure in this branch is the determination of whether a material is 

hydrophobic or not.  Hydrophobic materials cannot be applied to damp or wet surfaces.  

Hydrophobic materials are not preferred because they cannot be placed in wet weather 

conditions, and require extra time and effort to dry a wet surface.  The value function for this 

measure is binary and categorical. There are only two possible values for this function: yes or no.  

If a material is hydrophobic, it receives a score of zero—otherwise, it receives a score of one.  

Figure 30 shows the categorical SDVF for Hydrophobic. 
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   Figure 30. SDVF for Material Hydrophobicity 

 

3.6.5 Workability 

 The first measure for the Workability branch is the determination of whether a material 

requires that it be extended with aggregates or placed in lifts.  Some materials require this when 

placed beyond a certain depth.  The value function for this measure is binary and categorical.  

Only materials that require lifts or aggregates for depths under six inches will be considered to 

fail this requirement, since most partial depth spall repairs are less than six inches deep.  If a 

material requires lifts or aggregates for depths less than six inches, it will receive a score of 

zero—otherwise, it will receive a score of one.  Figure 31 shows the SDVF for Aggregate/Lift 

Requirement. 

  

   Figure 31. SDVF for Aggregate/Lift Requirement 

 

 The second measure in the Workability branch is initial set time.  Initial set time is a 

measure of the working time engineers will have to place a material before it becomes hardened 

and unworkable.  The decision makers felt an ideal initial set time is 45 minutes.  Any deviation 

from 45 minutes will be scaled using the SDVF in Figure 32 below.  The function is decreasing 
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since high deviation from the ideal set time is not preferred.  The function is continuous because 

there is an infinite range of possible set times for a given material.  The decision makers chose an 

upper bound of 45 minutes and a lower bound of 0 minutes (no differential). 

 

    

  Figure 32. SDVF for Initial Set Time (deviation from 45 minutes) 

Value 

 

3.7 Alternative Generation 

 Repair material alternatives were chosen by the decision makers from the many available 

repair products on the commercial market.  The decision makers chose materials that were 

thought to best meet the important values that the decision makers conceptualized in the value 

hierarchy.  Table 6 shows the repair materials that were chosen for this model. The repair 

material alternatives and their associated scores are presented in Chapter 4. 
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   Table 6. Repair Materials Scored in Model 

Product Name Manufacturer 
BASF Building 
Solutions Set 45 HW 
BASF Building 
Solutions Set 45 

FiveStar Highway Patch Five Star Products 

Five Star Structural Concrete Five Star Products 
Pavemend SL CeraTech 
Pavemend TR CeraTech 
Pavemend VR CeraTech 
Pavemend SLQ CeraTech 
Pavemend 15 CeraTech 
Pavemend 5.0 CeraTech 
Pavemend EX CeraTech 
Pavemend EX-H CeraTech 
ThoRoc 10-61C Rapid 
Cement 

BASF Building 
Solutions 

ThoRoc 10-60C Rapid 
cement 

BASF Building 
Solutions 
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IV. Results and Analysis 

 

4.1 Overview 

 This chapter will present and analyze the rankings of spall repair products using steps 

seven, eight and nine of Shoviaks’s 10-step VFT process.  In step seven, alternatives will be 

scored on each measure in the hierarchy.  In step eight, deterministic analysis will reveal the 

rankings of repair products as calculated by the Logical Decisions software program. In step 

nine, sensitivity analysis will be performed to determine what impact changes in weights will 

have in the ranking of alternatives. 

 Since hierarchy weighting is different for conventional and contingency repair scenarios, 

deterministic analysis will be performed separately for each.  However, because most repairs will 

be conducted in a conventional, steady state repair scenario, sensitivity analysis will be discussed 

for this weighting only. 

 

4.2 Alternative Scoring 

 The primary source of data for evaluation measures in this hierarchy was collected from 

product manufacturer’s websites.  It should be noted that many engineers caution against relying 

on data supplied by manufacturers.  In many cases, independent lab tests do not back up 

manufacturer’s claims on the results of material properties.  For this reason, any data that was 

available from independent testing was used in place of manufacturer data.  As more data 

becomes available through independent lab testing, this model should be updated to maximize 

the integrity of the model.  Table 7 is a summary of data collected on each of the evaluation 
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measures for the fourteen repair alternatives.  All data except those in the shaded cells were 

collected from manufacturer specifications. 

Table 7. Summary Matrix of Alternative Scores 

251487.54132.54127.532.53415203231

Initial Set 
time 
Differential 
from 45 min 
(minutes)

20 min
193 
min37.5min70 min4 min12.5 min4 min17.5 min12.5 min11 min30 min25 min13 min76 min

Initial Set 
Time

NoNoYesYesNoNoYesNoNoYesYesNoYesYes

Lifts or 
Aggregate 
required?

NoNoNoNoNoNoNoNoNoNoNoNoNoNo
Hydrophobi
c?

NoNoNoNoNoNoNoNoNoNoNoNoNoNo

Requires 
Bonding 
Agent?

12 
months

12 
months

12 
months

12 
months

36 
months

36 
months

36 
months

36 
months

36 
months

36 
months

24 
months

12 
months

12 
months

12 
monthsShelf Life

21.81.130.92.052.182.052.482.482.4503.32.152.15

Thermal 
Coefficient 
Differential 
from 5 
Microstrain
s (*10^-6)

7.0 *10^-
6

6.8*10^
-6

6.13 X 
10^-6

5.9* 
10^-6

2.95*10^
-6

2.82 X 
10^-6

2.95X10
^-6

2.52X10
^-6

2.52X10
^-6

2.55 
*10^-6

5*10^-
6

8.3* 10 -̂
6

7.15 
*10^-6 

7.15 
*10^-6 

Coefficient 
ofThermal 
Expansion 
(ASTM C 
531)

6893 psi
8293 
psi6535 psi5870 psi6100 psi6300 psi7483 psi6580 psi7114 psi4257 psi

8000 
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Compressiv
e Strength 
(28 Day)

0.10.10.061.781.11.22.82.231.732.290.710.320.4
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from 4.5 * 
10^6 (10^6 
psi) 
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4.6*10^
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2.72* 
10^6 psi
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10^6 * 
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4.90*10^
6 psi 
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469)

100%100%>80%>80%>80%>80%>80%>80%>80%>80%>90%96%80%80%

Freeze/Tha
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psi2500 psi2450 psi2780 psi2000 psi2866 psi2400 psi1930 psi1665 psi
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psi2000 psi2250 psi2190 psi
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Strength 
(ASTM C 
882 Slant 
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days

NNYesYesNNoYesNoNoYesNoNoYesYes

Special 
Aggregates 
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HighHighLowLowLowLowLowLowLowLowLowHighLowLowShrinkage
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d 15
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nd SLQ
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nd VR

Paveme
nd TR

Paveme
nd SL

Five 
Star 
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Concre
te

FiveStar 
Highway 
PatchSet 45

Set 45 
HW

Material 
Name

251487.54132.54127.532.53415203231

Initial Set 
time 
Differential 
from 45 min 
(minutes)

20 min
193 
min37.5min70 min4 min12.5 min4 min17.5 min12.5 min11 min30 min25 min13 min76 min

Initial Set 
Time

NoNoYesYesNoNoYesNoNoYesYesNoYesYes

Lifts or 
Aggregate 
required?

NoNoNoNoNoNoNoNoNoNoNoNoNoNo
Hydrophobi
c?

NoNoNoNoNoNoNoNoNoNoNoNoNoNo

Requires 
Bonding 
Agent?

12 
months

12 
months

12 
months

12 
months
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months

36 
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36 
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24 
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12 
monthsShelf Life

21.81.130.92.052.182.052.482.482.4503.32.152.15

Thermal 
Coefficient 
Differential 
from 5 
Microstrain
s (*10^-6)

7.0 *10^-
6

6.8*10^
-6

6.13 X 
10^-6

5.9* 
10^-6
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2.82 X 
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^-6
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^-6
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5*10^-
6

8.3* 10 -̂
6

7.15 
*10^-6 

7.15 
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Expansion 
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psi) 
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2.27* 
10^6 psi
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469)

100%100%>80%>80%>80%>80%>80%>80%>80%>80%>90%96%80%80%

Freeze/Tha
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Resistance 
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psi3395 psi2875 psi3830 psi3870 psi3966 psi4300 psi3000 psi3643 psi

2500 
psi3500 psi5000 psi3227 psi

Early 
Strength 
(ASTM C 39 
@ 3 hours)

2160 psi
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psi2500 psi2450 psi2780 psi2000 psi2866 psi2400 psi1930 psi1665 psi

2500 
psi2000 psi2250 psi2190 psi

Bond 
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(ASTM C 
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Shear) @ 7 
days

NNYesYesNNoYesNoNoYesNoNoYesYes

Special 
Aggregates 
required?

$13.49$13.49$116.30$122.00$116.30$116.30$116.30$116.30$116.30$116.30$70.00$50.00$50.00$50.00$/cf

HighHighLowLowLowLowLowLowLowLowLowHighLowLowShrinkage

alumina 
cement, 
portland 
cement, 
anhydrit
e, fly ash

alumin
a 
cement
, 
portlan
d 
cement
, 
anhydri
te, fly 
ash

Silica 
(crystallin
e quartz), 
fly ash, 
magnesiu
m oxide, 
calcium 
carbonat
e

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide, 
calcium 
carbonat
e

Magnesi
um 
oxide, 
Phospha
te 
(calcium/
potassiu
m/sodiu
m), silica 
(crystalli
ne 
quartz)

Magnesiu
m oxide, 
Phosphat
e 
(calcium/
potassiu
m/sodium
), silica 
(crystallin
e quartz)

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide, 
calcium 
carbonat
e

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide, 
calcium 
carbonat
e

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide, 
calcium 
carbonat
e

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide, 
calcium 
carbonat
e

Silicon 
Dioxid
e, 
Crystal
line 
Silica, 
Silica 
Sand 
SiO

Silicon 
Dioxide, 
Crystalli
ne 
Silica, 
Silica 
Sand 
SiO2,

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um 
oxide

Silica 
(crystalli
ne 
quartz), 
fly ash, 
magnesi
um oxide

Cement 
Compositio
n (in order 
of 
prominence
)

BASF 
Building 
Solution
s

BASF 
Buildin
g 
Solutio
nsCeraTech

CeraTec
h

CeraTec
hCeraTech

CeraTec
h

CeraTec
h

CeraTec
h

CeraTec
h

Five 
Star 
Produc
ts

Five Star 
Products

BASF 
Building 
Solution
s

BASF 
Building 
Solutions

Manufactur
er

ThoRoc 
10-60C 
rapid 
cement

ThoRo
c 10-
61C 
Rapid 
Cemen
t

Pavemen
d EX-H

Paveme
nd EX

Paveme
nd 5.0

Pavemen
d 15

Paveme
nd SLQ

Paveme
nd VR

Paveme
nd TR

Paveme
nd SL

Five 
Star 
Structu
ral 
Concre
te

FiveStar 
Highway 
PatchSet 45

Set 45 
HW

Material 
Name

 

 

Key: 
Data collected from WES Repair, Evaluation, Maintenance, and Rehabilitation (REMR) reports 
Data obtained from the Wisconsin Department of Transportation 
Data obtained from WES ERDC lab testing 
Data obtained from engineers at AFCESA 
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4.3 Deterministic Analysis (Conventional Weighting) 
 In Chapter 3, SDVFs were created for each evaluation measure to convert the scores in 

Table 7 into unitless, normalized values from zero (least preferred) to one (most preferred).  

Next, the scores from Table 7 were inputted into Logical Decisions and the software calculated 

the corresponding unitless value for each measure determined from the SDVFs created earlier. 

Logical Decisions then used the additive value function to sum the products of these values and 

their predetermined weights (see Tables 4 and 5) for each evaluation measure to compute a total 

score for each alternative.  The software then ranked each alternative based on its score, from 

high to low.   

 

4.3.1 Deterministic Analysis on a Conventionally Weighted Scenario 

 Figure 33 shows the rank ordered list of alternatives using the decision maker’s 

weighting (Table 4) for a conventional repair scenario.  Pavemend EX-H ranks the highest and 

earns the highest additive value function sum of 0.707.  

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

 

  Figure 33. Alternative Rankings under Conventional Weighting 
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 The value score next to each alternative specifies the distance (in a value sense) that each 

alternative is from the hypothetical best or worst score (Kirkwood, 1997:74).  However, 

Kirkwood (1997:74) explains that no specific meaning can be given to value numbers without 

knowing the ranges of the evaluation measures being used.  Therefore, the values next to each 

alternative should only be used to rank alternatives and not to infer a degree improvement from 

one alternative to another. 

 Figure 34 shows how well each alternative fulfilled the decision maker’s fundamental 

objectives by color-coding the bands to indicate how well each alternative scored on the Tier 1 

values.  The lengths of the color coded bands are in proportion to the scoring for each respective 

value. This makes it easy to see how each fundamental objective contributed to the overall score 

of each alternative. 

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Desirable Material Properties
Site-Prep Required

Workability
Shelf Life

Cost

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Desirable Material Properties
Site-Prep Required

Workability
Shelf Life

Cost

Figure 34. Alternative Rankings with Respect to Fundamental Objectives (Conventional 

Weighting) 
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The top choice, Pavemend EX-H, outscored all other materials on the Desirable Material 

Properties value. It also scored highly on the Workability and Cost values.  Although it has a 

score of zero on Shelf Life, it scores well enough on all other values to earn the top spot on the 

list.   Pavemend VR scored well on all fundamental objectives, but was edged out by Pavemend 

EX-H on Desirable Material Properties and Workability.  The worst alternative, Thoroc 10-61C 

Rapid Cement, ranked at the bottom due to poor scores on Desired Material Properties and 

Workability, and because it received a score of zero on Shelf Life. 

 Logical Decisions can also perform a stacked bar ranking by color-coding each individual 

measure.  Figure 35 shows the stakeholders how each measure hurt or helped the value score of 

each alternative. 

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time
ASTM C 469
ASTM C 531
Requires Special Aggregates- Yes/No
ASTM C 39 @ 3 hours

Cost per yield
ASTM C 666
Material is Hydrophobic- Yes/No
Lifts or Aggregates Required- Yes/No

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time

Alternative
Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value
0.707
0.702
0.679
0.674
0.669
0.623
0.610
0.603
0.573
0.563
0.562
0.541
0.533
0.463

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time
ASTM C 469
ASTM C 531
Requires Special Aggregates- Yes/No
ASTM C 39 @ 3 hours

Cost per yield
ASTM C 666
Material is Hydrophobic- Yes/No
Lifts or Aggregates Required- Yes/No

 
Figure 35. Alternative Rankings with Respect to Evaluation Measures (Conventional Weighting) 
 
 
At the top of the list, Pavemend EX-H scores well on all measures within the Desirable Material 

Properties value.  The next best alternative, Pavemend VR, is one of the few alternatives to score 

consistently well across all fourteen measures.  In fact, only Pavemend VR, Pavemend 15, 
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Pavmend 5, and Pavemend TR received non-zero scores across all measures.  Pavemend EX-H 

scores higher than the latter four due to its high score on Initial Set Time. The stacked bar 

ranking in Figure 35 does not show a score for early strength (ASTM C 39 @ 3 hours) for any 

alternatives since this value has a weight of zero under a conventional repair scenario weighting.   

 

4.3.2 Contingency Weighting Deterministic Analysis  

 Figure 36 shows the rank ordered list of alternatives using the decision maker’s 

weighting (Table 5) for a contingency repair scenario.  Using this weighting, Pavemend VR 

becomes the dominant alternative. Although the order has changed, the same materials remain 

the top five alternatives.  

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

 Figure 36. Ranking of Alternatives using Contingency Weighting 

 

 Further insight can be achieved by looking at a color-coded stacked bar ranking, detailing 

the scores on the decision maker’s fundamental objectives, as seen in Figure 37.  Thoroc 10-60C 

moves down to the second from last position.  Whereas it scored #10 out of 14 under 
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conventional weighting, it moves down three spots since it no longer receives as much value for 

cost, since direct cost under contingency weighting is zero. 

 

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Desirable Material Properties
Shelf Life

Workability
Cost

Site-Prep Required

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Desirable Material Properties
Shelf Life

Workability
Cost

Site-Prep Required

Figure 37. Alternative Ranking with Respect to Fundamental Objectives (Contingency 

Weighting) 

 

 Figure 38 shows the rankings with respect to individual evaluation measures using 

weights for a contingency repair scenario.  Assuming a contingency repair scenario, the decision 

makers placed greater importance and thus higher weights on Early Strength.  Pavemend VR 

surpasses Pavemend EX-H with a better score on compressive strength at three hours (ASTM C 

39).   
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Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time
ASTM C 469
ASTM C 531
Requires Special Aggregates- Yes/No
Cost per yield

ASTM C 39 @ 3 hours
ASTM C 666
Material is Hydrophobic- Yes/No
Lifts or Aggregates Required- Yes/No

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time

Alternative
Pavemend VR
Pavemend EX-H
Pavemend 15
Pavemend 5
Pavemend TR
Set 45
Pavemend EX
Pavemend SLQ
Set 45 HW
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

Value
0.760
0.741
0.732
0.720
0.692
0.648
0.619
0.619
0.604
0.577
0.548
0.546
0.533
0.465

Cement Type
ASTM C39
ASTM C 882
Requires Bonding Agent- Yes/No
Manufacturer Claimed Shelf Life

Initial Set Time
ASTM C 469
ASTM C 531
Requires Special Aggregates- Yes/No
Cost per yield

ASTM C 39 @ 3 hours
ASTM C 666
Material is Hydrophobic- Yes/No
Lifts or Aggregates Required- Yes/No

Figure 38. Alternative Ranking with Respect to Evaluation Measures (Contingency Weighting) 

 
 
4.4 Sensitivity Analysis 
 
 The purpose of sensitivity analysis is to determine how changes in the model assumptions 

impact the alternative rankings.  Since weights reflect the relative importance that is attached to 

changes in the evaluation measures, this can be a source of disagreement among various 

stakeholders for a particular decision (Kirkwood, 1997:82).  Sensitivity analysis was performed 

with the weights previously assigned by the decision makers to determine how the rankings may 

change if another decision maker assigns weights differently.  Sensitivity analysis also ensures 

that the hierarchy has been properly weighted and accurately depicts the decision maker’s 

preferences.  For the purpose of this model, sensitivity analysis was performed using the decision 

maker’s weights for a conventional repair scenario. 

 The Logical Decisions® software program was used to graph sensitivity plots for 

measures and values in the hierarchy.  Logical Decisions® shows sensitivity plots with the 
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assumption that as the weight for a goal or measure moves in the positive or negative direction, 

all other values lose or gain a percentage of their original weight.   For example, if the weight on 

the cost goal increased by x percent, Logical Decisions® assumed that the remaining goals each 

lost the same percentage y that keeps the sum of the weights equal to one. 

 

4.4.1 Sensitivity on Fundamental Objectives 

 Figure 39 shows the sensitivity analysis for variations in the weight on the Tier 1 value of 

cost.  The vertical line in the graph shows the user how alternatives ranked with the current 

weight assignment of 0.15.  Alternative rank changes are found by looking at the intersections of 

the lines on the plot. The user can determine where rank changes occur by visualizing right or 

left movement of the vertical line; the alternative that intersects the vertical line at the highest 

point is the best alternative for a given weight.  The points at which lines cross are the weights at 

which two alternatives scored exactly the same.   

 Looking at the plot in this manner, Pavemend EX-H remains the dominant alternative for 

all cost weights below 0.16.  Beyond this point, Pavemend VR becomes dominant until a weight 

of 0.39.   Thoroc 10-60C Rapid Cement becomes the dominant alternative for all weights above 

0.39.  This shows that the weight assigned to Cost is highly sensitive, as there are many 

intersections (rank changes) around the current weight of 0.15. 
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Value

Percent of Weight on Cost Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Cost Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 
   Figure 39.  Sensitivity Analysis on Cost Value 
 

 Figure 40 shows the sensitivity analysis for variation in weight on the Desirable Material 

Properties value. The current weight assignment for this value is 0.45. Pavemend EX-H remains 

the dominant alternative for all weights above 0.42.  The rank is very sensitive in the negative 

direction; Pavemend VR becomes the top alternative with a slight weight change to 0.42.  It 

remains dominant from 0.42 to 0.14.  Below 0.14, Five Star Higway Patch is the best alternative.     

 

Value

Percent of Weight on Desirable Material Properties Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Desirable Material Properties Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 
 Figure 40. Sensitivity Analysis on Desirable Material Properties Value 
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 Figure 41 shows the sensitivity analysis for variation in weight on the Shelf Life value. 

The current weight on Shelf Life is 0.05.  Because Pavemend EX-H has a zero score for shelf 

life, it quickly falls out of favor as the weight on shelf life increases.  Pavemend VR becomes the 

dominant alternative for a slight weight change to 0.06, and remains dominant for all weights 

greater than 0.06.   

Value

Percent of Weight on Shelf Life Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Shelf Life Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

  Figure 41.  Sensitivity Analysis on Shelf Life Value 

  

 Figure 42 shows the sensitivity analysis on Site Preparation Required.  The current 

weight for this value is 0.05.  Weight on this value is insensitive, since no lines cross in the 

graph.  The measures for the lower tier values that fall under Site-Prep Required are binary 

measures that specify if a material is hydrophobic or requires a bonding agent.  Since all 

alternatives scored in the model did not require a bonding agent or were hydrophobic, this value 

is insensitive to its weight. 
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Value

Percent of Weight on Site-Prep Required Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Site-Prep Required Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 
 Figure 42. Sensitivity Analysis on Site-Preparation Required Value 
 
 

 Figure 43 shows the sensitivity analysis on Workability.  The current global weight is 

0.25.  A small weight change in the negative direction to 0.23 causes Pavemend VR to be the top 

choice. Pavemend VR is the dominant alternative for weights ranging from 0.14 to 0.23. For 

weights below 0.14, Pavemend 5 is the best alternative.  This value is highly sensitive to weight, 

causing three alternatives to rank at the top for only a 0.09 swing in weight. 

Value

Percent of Weight on Workability Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Workability Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 
  Figure 43.  Senstivity Analysis on Workability Value 
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4.5 Summary of Results and Analysis 

 Although Pavemend EX-H is the best alternative under the current weighting, sensitivity 

analysis reveals that Pavemend VR becomes the best alternative with only slight changes in 

weights on four of the five fundamental objectives.  Clearly, the decision of which of these 

materials is best is highly dependent on the weights assigned by the decision maker.  For this 

reason, consideration should be given to both alternatives for purposes of field testing and 

operational use.  Pavemend VR is better suited to repairs in a contingency repair scenario 

because it doesn’t require addition of aggregates, and has a higher early strength.  This would 

make it faster to place, and its higher early strength is preferable when the repair must be ready 

for traffic within hours after placement. 

 Table 8 is a summary of weight sensitivity for all values and measures.  The Sensitive 

Weight Range column lists the weight ranges that cause a new alternative (shown in parentheses) 

to become dominant.  The Insensitive Weight Range column lists the weight ranges for which 

the best alternative, Pavemend EX-H, remains dominant. 
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   Table 8. Summary of Weight Sensitivity on Values 

Value Sensitivity Graph Current Global Weight Sensitive Weight Range 
Insensitive 
Weight Range 

Cost 

 

0.15 
0.16-0.39 (Pavemend VR), 
0.39-1.0 (Thoroc 10-60c) 0-0.16 

Desirable 
Material 
Properties 

 

0.45 

0.15-0.42 (Pavemend VR), 0-
0.15 (Five Star Highway 

Patch)   0.42-1.00 

Shelf Life 

 

0.05 .06-1.00 (Pavemend VR) 0-.06 

Site-Prep 
Required 

 

0.1 N/A 0.00-1.00 
 

Workability 0.25 
0.12-0.22 (Pavemend VR), 0-

0.12 (Pavemend 5) .22-1.00 

Direct Cost 

 

0.1 
0.26-0.32 (Set 45), 0.32-1.0 

(Thoroc 10-60c) 0-0.26 

Specialized 
Aggregate 
Required 

 

0.05 .06-1.0 (Pavemend VR) 0-.06 

Bond to 
Existing 
Substrate 

 

0.05 
0.23-0.65 (Pavemend 5), 

0.23-1.0 (Pavemend SLQ) 0-0.23 
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     Table 8 (Continued) 

Value Sensitivity Graph Current Global Weight Sensitive Weight Range 
Insensitive 
Weight Range 

Compressive 
Strength 

 

0.05 0.27-1.0 (Set 45) 0-0.27 

Durability 

 

0.05 N/A 0-1.0 

Early 
Strength 

 

0 N/A 0-1.0 

Modulus of 
Elasticity 

 

0.05 0-0.04 (Pavemend VR) 0.04-1.0 
 

0.2 
0-.07 (Five Star Structural 

Concrete) 0.07-1.0 

Restrained 
Drying 
Shrinkage 

 

0.05 

0-0.03 (Pavemend VR), 0.40-
1.0 (Five Star Structural 

Concrete) 0.03-0.40 
Thermal 
Expansion 

 

0.05 N/A 0-1.0 

Bonding 
Agent 
Required? 

 

Hydrophobic? 0.05 N/A 0.1.0 
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    Table 8 (Continued) 

Insensitive 
Weight Range Value Sensitivity Graph Current Global Weight Sensitive Weight Range 

 

Aggregate/Lift 
Requirement 0.05 0.06-1.0 (Pavemend VR) 0-0.06 

 

Working Time 0.2 
0-0.09 (Pavemend 5), 0.09-

0.19 (Pavemend VR) 0.19-1.0 
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V. Summary and Conclusions 

 

5.1 Overview 

 The purpose of this research was to provide a tool for military engineers to best select a 

repair material for partial depth repairs of concrete airfield pavements.  As new materials are 

developed by the private sector, this research will also assist civil engineers with ranking the new 

alternatives.  Materials that favor well in this model can be chosen for additional laboratory and 

field testing, and those that do not are easily eliminated from consideration. The approach chosen 

was a multi-criteria decision making tool known as value-focused thinking.  The final step in 

Shoviak’s 10 step VFT process is to make conclusions and recommendations.  This section 

summarizes the research questions presented in Chapter 1, discusses the benefits and limitations 

of the value model, describes possibilities for future research, and makes final conclusions. 

 

5.2 Research Summary 

 In Chapter 1, several research questions were identified regarding the selection of airfield 

rigid pavement repair materials.  These questions are summarized in Table 9 below. 

     

Table 9. Summary of Research Questions 

Research Questions   
1 What are the characteristics that engineers look for in an ideal repair material? 

What characteristics and properties are uniquely important to military engineers 
in the repair of airfield pavements? 2 
What is the appropriate methodology for choosing the best pavement repair 
material?  3 

4 What are the available materials suitable for concrete spall repair? 

5 Which material(s) should engineers select for concrete pavement spall repair? 
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What are the characteristics that engineers look for in an ideal repair material?  

 Engineers look for a material with favorable physical properties needed to produce a long 

lasting repair.  The material should have low drying shrinkage, high bond strength, and high 

compressive strength.  It should be durable and able to withstand weather conditions such as 

freeze/thaw cycles. It should also be dimensionally compatible with the underlying substrate.  

This means that it should have a similar modulus of elasticity and coefficient of thermal 

expansion to the existing pavement.  If a material meets the above criteria, it has a high chance of 

providing a long service life without early failure.  

 

What characteristics and properties are uniquely important to military engineers in the 

repair of airfield pavements?   

  Military engineers look for a material that is low in cost, has favorable physical 

properties, with a long shelf life and that is easy to prepare and place.  The material should be 

low in cost so that it does not strain financial resources, and unnecessarily waste taxpayer 

dollars, when a cheaper alternative may perform equally well.  Military engineers need a material 

that will withstand heavy aircraft traffic; the material should have adequate physical properties to 

withstand these loads and avoid additional maintenance due to early failure.  In order to avoid 

improperly placed repairs, a material is needed that is easy to prepare and place.  The material 

should have high workability and require minimal repair site preparation.  

 

What is the appropriate methodology for choosing the best pavement repair material? 

 Value-Focused Thinking was determined to be the best methodology to select pavement 

repair materials.  VFT is an appropriate methodology to use when there are competing objectives 
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in a decision.  It is an objective tool that can balance all values a decision maker faces when 

selecting and ideal pavement repair material.  The VFT process has the added benefit in that it 

sometimes leads the decision maker to think of possible alternatives that were previously 

unconsidered. 

 

What are the available materials suitable for concrete spall repair?  

 The materials that were found to be suitable for concrete spall repair include products on 

the commercial market advertised for structural concrete repair applications. There are too many 

products on the market to list, however, so the decision makers chose materials for this model 

with good industry reputation, and properties that were favorable for good results. 

 

Which material(s) should engineers select for concrete pavement spall repair?   

 This model found Pavemend VR, made by Ceratech Inc., to be the best candidate for 

partial depth spall repair.  The material scored well on all measures in the hierarchy, and 

warrants field testing and possible use on operational airfields.  In addition, four other Ceratech 

products scored high in this model and should also be considered: Pavemend EX-H, Pavemend 

15, Pavemend 5, and Pavemend TR. 

 

5.3 Model Strengths 

 The value model provides a systematic, objective, and defendable method to rank repair 

product alternatives.  The model is developed in a systematic series of steps that can be easily 

repeated or tailored to the needs of other stakeholders.  By developing and weighting a value 

hierarchy before considering alternatives, the model is objective and free of bias that could 
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unduly influence the selection of alternatives.  By numerically scoring repair material 

alternatives with this model, the decision of which material to select can be defended with 

quantifiable confidence. 

 

5.4 Model Limitations 

 This model requires extensive data and lab testing of repair materials in order for 

materials to be scored in the model.  This testing is expensive and few manufacturers perform all 

the tests.  For this reason, many alternatives with the potential to perform well in this decision 

had to be omitted for lack of data.  In addition, many engineers find manufacturer-reported data 

to be suspect and often inflated.  Due to the preponderance of manufacturer data used in this 

model, the results assume that manufacturers are properly performing and reporting results of 

material property tests.  As materials undergo further lab testing, manufacturer data in this model 

should be replaced with data from independent lab testing to ensure the integrity of data in this 

model. 

 

5.5 Future Research 

 As stated earlier, much effort is needed to perform independent testing of concrete repair 

materials.  Although this may be expensive, it is well worth the cost to ensure that expensive 

materials are not fielded in operational use, and found to fail early and require successive repairs.  

Additionally, more research is needed to correlate material properties with field performance.  

Although generalizations can be made regarding properties that are favorable to produce long 

lasting repairs, minimum acceptable standards have not been established and agreed on by 

researchers. 
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5.6 Conclusions 

 This research shows that value-focused thinking is an appropriate methodology for 

selecting the best material to use for partial-depth rigid pavement spall repair.  This research is 

unique since it is the first decision tool developed that will select the best repair material in this 

specific context.  Many engineers still regard concrete repair material selection as “more of an art 

than a science.”  This research provides the much needed science and objectivity to the material 

selection process.  

 The model indicates that Pavemend EX-H is the best alternative to use for conventional 

repair scenarios, and Pavemend VR is the best alternative for military engineers to use in 

contingency repair scenarios.  This model shows that poor product candidates for pavement 

repair can be eliminated from consideration, avoiding the expense of testing and fielding inferior 

products.  By implementing the decision strategy presented in this thesis, airfield pavement 

repairs will last longer and require less maintenance. 
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Appendix A: Sensitivity on Measures (Conventional Weighting) 

        

Value

Percent of Weight on Aggregate/Lift Requirement Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Aggregate/Lift Requirement Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

Value

Percent of Weight on Bond to Existing Substrate Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Bond to Existing Substrate Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Bonding Agent Required? Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Bonding Agent Required? Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

Value

Percent of Weight on Compressive Strength Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Compressive Strength Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Direct Cost Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Direct Cost Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

Value

Percent of Weight on Durability Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Durability Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Early Strength Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Early Strength Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

Value

Percent of Weight on Hydrophobic? Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Hydrophobic? Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Modulus of Elasticity Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Modulus of Elasticity Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

 

Value

Percent of Weight on Restrained Drying Shrinkage Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Restrained Drying Shrinkage Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Specialized Aggregate Required Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Preference Set = NEW PREF. SET

Value

Percent of Weight on Specialized Aggregate Required Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Preference Set = NEW PREF. SET  

Value

Percent of Weight on Thermal Expansion Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Thermal Expansion Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Value

Percent of Weight on Working Time Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement

Value

Percent of Weight on Working Time Goal

Best

Worst

0 100

Pavemend EX-H
Pavemend VR
Pavemend 15
Pavemend TR
Pavemend 5
Set 45
Set 45 HW
Pavemend EX
Five Star Structural Concrete
Thoroc 10-60C Rapid Cement
Pavemend SLQ
Five Star Highway Patch
Pavemend SL
Thoroc 10-61C Rapid Cement
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Appendix B: Sensitivity on Measures (Contingency Weighted) 

 

Value 

Percent of Weight on Direct Cost Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

Value 

Percent of Weight on Specialized Aggregate Required Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Bond to Existing Substrate Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

 

Value 

Percent of Weight on Bonding Agent Required? Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Compressive Strength Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

 

Value 

Percent of Weight on Durability Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Early Strength Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

Value 

Percent of Weight on Modulus of Elasticity Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
 
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Restrained Drying Shrinkage Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

 

Value 

Percent of Weight on Thermal Expansion Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Hydrophobic? Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement

 

 

Value 

Percent of Weight on Aggregate/Lift Requirement Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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Value 

Percent of Weight on Working Time Goal

Best

Worst 

0 100

Pavemend VR 
Pavemend EX-H 
Pavemend 15
Pavemend 5
Pavemend TR 
Set 45
Pavemend EX 
Set 45 HW 
Pavemend SLQ 
Pavemend SL
Five Star Structural Concrete
Five Star Highway Patch
Thoroc 10-60C Rapid Cement
Thoroc 10-61C Rapid Cement
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