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Abstract

The purpose of this work is to advance the current state of mathe-
matical knowledge regarding fixed point theorems of functions. Such
ideas have historically enjoyed many applications, for example, to the
qualitative and quantitative understanding of differential, difference
and integral equations. Herein, we extend an established result due to
Rus [Studia Univ. Babeş-Bolyai Math., 22, 1977, 40–42] that involves
two metrics to ensure wider classes of functions admit a unique fixed
point. In contrast to the literature, a key strategy herein involves
placing assumptions on the iterations of the function under consid-
eration, rather than on the function itself. In taking this approach
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we form new advances in fixed point theory under two metrics and
establish interesting connections between previously distinct theorems,
including those of Rus [Studia Univ. Babeş-Bolyai Math., 22, 1977,
40–42], Caccioppoli [Rend. Acad. Naz. Linzei. 11, 1930, 31–49] and
Bryant [Am. Math. Month. 75, 1968, 399–400]. Our results make
progress towards a fuller theory of fixed points of functions under two
metrics. Our work lays the foundations for others to potentially explore
applications of our new results to form existence and uniqueness of
solutions to boundary value problems, integral equations and initial
value problems.
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1 Introduction
In mathematics, a fixed point of a function is a point that remains unchanged
when the function acts on it; that is, we call x a fixed point of a function f
whenever f(x) = x . The field of fixed point theory aims to establish condi-
tions under which certain classes of functions will admit one, or more, fixed
points [18, 19].

Fixed point theory and its applications have a rich history that dates back at
least 100 years. A full review is beyond the scope of the this article, but the
work of Banach [3], Leray and Schauder [8], Schaefer [11] and Caccioppoli [6]
have been influential. More details on fixed point theory may be found in the
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books of Goebel and Kirk [7] and Zeidler [20].

One of the motivations for developing fixed point theory lies in its applica-
tions to various branches of pure and applied mathematics. For example,
an important challenge from applied analysis involves developing an under-
standing of the nature of solutions to certain classes of nonlinear boundary
value problems (bvps). These problems can be equivalently recast as an
integral equation and, by defining an appropriate operator between spaces,
the problems are reduced to the existence, uniqueness and approximation of
fixed points of the operator. Any such knowledge regarding fixed points then
delivers insight into the existence, uniqueness and approximation of solutions
of the original boundary value problem.

In the 1970s, Rus [10] formulated and developed the following fixed point
theorem involving two metrics that are of particular interest for the present
article.

Theorem 1 (Rus [10]). Let X be a nonempty set and let d and δ be two
metrics on X such that (X, d) forms a complete metric space. If the mapping
f : X→ X is continuous with respect to d on X and:

d(f(x), f(y)) 6 cδ(x, y) , for some c > 0 and all x, y ∈ X ; (1.1)
δ(f(x), f(y)) 6 αδ(x, y) , for some 0 < α < 1 and all x, y ∈ X ; (1.2)

then there is a unique z ∈ X such that f(z) = z . In addition, by recursively
defining a sequence xi via x0 ∈ X and xi+1 := f(xi) = fi(x0) = f(fi−1(x0)) ,
then we have

z = lim
i→∞ fi(x0) ,

with respect to d for any x0 ∈ X .

The two metrics d and δ in Theorem 1 may not necessarily be equivalent and
the set X therein is assumed to be complete with respect to the first of these
metrics d, but not necessarily complete with respect to the second metric δ.
An important example in the study of differential equations involves the set
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of continuous, real-valued functions on [0, 1] denoted by X = C([0, 1]) and
the metrics d(x, y) = maxt∈[0,1] |x(t) − y(t)| and

δ(x, y) =

(∫ 1
0

[x(s) − y(s)]2 ds

)1/2
.

It is well known [2] that in this case (X, d) is complete, whereas (X, δ) is not
complete.

Inequality (1.2) is interpreted as the function f being contractive with respect
to the second metric. It is the above properties that have proven to be fruitful
in advancing recent results on existence and uniqueness of solutions to bvps [2,
e.g.,]. Recently, Almuthaybiri and Tisdell [1] have discussed applications of
fixed point theory with two metrics.

The recursively defined sequence xi in Theorem 1 provides a mechanism
for approximating (or theoretically calculating) the fixed point of f. The
sequence xi is generated by starting with a point x0 ∈ X and is expressed
in terms of iterations fi, which denotes the ith iterate of f; that is: f1 = f ,
f2 = f ◦ f , f3 = f ◦ f ◦ f and so on.

While Theorem 1 has enjoyed some extensions and variations, for example,
in what has been coined as a ‘continuation method for contractive maps’ by
O’Regan and Precup [9], we are unaware of any significant body of fixed
point theory that involves extensions of Theorem 1 via an exploration of the
iterations of the function f under two metrics, rather than the function f
itself.

As we show in Section 2, such a strategy of examining the iterations and
introducing appropriate conditions will generate new theorems that advance
the state of fixed point theory in novel directions. In addition, our approach
forms interesting connections between some of the previous work of Rus [10],
Bryant [5] and Caccioppoli [6] that has been seen as being separate. Fur-
thermore, Section 3 shows that our results open up potential applications to
differential, difference and integral equations regarding existence, uniqueness
and approximations of solutions.



2 Main results C19

2 Main results
In this section we state, prove and discuss our main results.

The following result forms an extension of Theorem 1 by placing certain
conditions on the iterations of f, as opposed to the function f itself. Our
theorem was motivated through a reading and analysis of Bryant’s paper [5]
where iterations were utilized within the context of Banach’s fixed point
theorem with a single metric. Our result connects the previously separate
work of Rus [10] and Bryant [5] in a new and interesting way, and for this
reason we name the theorem a ‘Rus–Bryant’ fixed point theorem.

Theorem 2 (Rus–Bryant). Let X be a non-empty set, let d and δ be two
metrics on X with the pair (X, d) forming a complete metric space. In addition,
let f : X→ X be a mapping. If there exist positive numbers c and α < 1 and
some integer n > 1 such that fn is continuous on X with respect to d and:

d(fn(x), fn(y)) 6 cδ(x, y) , for all x, y ∈ X ; (2.1)
δ(fn(x), fn(y)) 6 αδ(x, y) , for all x, y ∈ X ; (2.2)

then f has a unique fixed point z ∈ X . In addition, by recursively defining a
sequence xk via x0 ∈ X and xk+1 := fn(xk) = fkn(x0) , then we have

z = lim
k→∞ fkn(x0)

with respect to d for any x0 ∈ X .

Proof: We draw on Theorem 1 to prove Theorem 2.

We first show that fn satisfies the conditions of Theorem 1. Let f and fn satisfy
the conditions of Theorem 2 for some n > 1 . Our assumption f : X → X

ensures that for this (and every) value of n we have fn : X→ X . In addition,
fn is continuous with respect to d on X by assumption.

The inequalities (2.1) and (2.2) ensure that fn satisfies (1.1) and (1.2), re-
spectively.
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Thus the function fn satisfies all of the conditions of Theorem 1 and so fn
has a unique fixed point z ∈ X ; that is

fn(z) = z . (2.3)

Secondly, we show that f(z) is also a fixed point of the function fn. By
applying f to both sides of (2.3) we obtain

f(fn(z)) = f(z) ,

and so
fn(f(z)) = f(z) .

Thus f(z) ∈ X is also a fixed point of fn.

Thirdly, we show our two fixed points of fn are one and the same. Since The-
orem 1 ensures the existence of a unique fixed point to our fn, by uniqueness
of solutions it follows that z and f(z) must be identical; that is

z = f(z) .

Hence a fixed point z ∈ X of f does exist.

Finally, we show that the fixed point z ∈ X of f is unique. Suppose, on the
contrary, that two fixed points to f exist in X and denote them by x and y
with x 6= y . Thus

f(x) = x and f(y) = y . (2.4)

On repeatedly applying f to both equations in (2.4) we obtain

fn(x) = x and fn(y) = y . (2.5)

However, we know from the first three parts of the proof that each of the
equations in (2.5) have a unique solution. Thus x = y , which contradicts our
assumption that x 6= y . Hence there cannot be two fixed points of f, and
thus there must be only one. ♠

Let us now provide some additional insight into Theorem 2.
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Remark 3. On comparing the conditions of Theorem 2 with those of Theorem 1,
we see that Theorem 1 forms a special case of Theorem 2 when n = 1 .
This provides one aspect of the generality of Theorem 2 and illustrates the
advancement when n > 2 .

The contraction condition (2.2) on fn for the case when n > 2 in Theorem 2
is non-trivial as the following example illustrates.

Example 4. Consider the function f(x) := cos x with X = (−∞,∞) and
d(x, y) := |x − y| = δ(x, y) . It is well-known that there is no α < 1 such
that the contraction condition (1.2) will hold for our f on X. However, if
we consider the iteration f2(x) = cos(cos x) then (2.2) will hold on X for the
choice α = 1/2 . Thus, the conditions of Theorem 2 hold in this case, but
Theorem 1 does not hold.

Example 5. If n > 2 , then the contractivity assumption (2.2) of fn on X
with respect to δ does not imply that f is continuous with respect to d or δ
on X. To illustrate this, we construct the following example based on Bryant’s
discussion [5] with X = (−∞,∞) and d(x, y) := |x− y| = δ(x, y) . Let a > 0
be a constant and consider the function f : (−∞,∞)→ (−∞,∞) defined by

f(x) :=

{
0, if x 6 a ,

a, if x > a .

Note that f is not continuous on (−∞,∞) . However, we calculate f2(x) ≡ 0
on (−∞,∞) and thus we see that for n = 2 our fn is continuous and (trivially)
contractive on the whole of (−∞,∞) .

Remark 6. If d = δ in Theorem 2, then we obtain the result of Bryant [5] as
a special case.

Remark 7. In Theorem 2 our approximative sequence xk is defined via

xk+1 = f
n(xk) = f

kn(x0) , k = 0, 1, 2, . . . , x0 ∈ X .
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Let us briefly mention some aspects of convergence through the following a
priori estimate on the error between z, the fixed point of f (and also a fixed
point of fn), and our xk. We have

d(xk+1, z) 6 c
αk

1− α
δ(x1, x0) , for k = 0, 1, 2, . . . . (2.6)

In addition, we have the a posteriori estimate

d(xk+1, z) 6
c

1− α
δ(xk, xk−1) , for k = 1, 2, . . . . (2.7)

Both the inequalities (2.6) and (2.7) follow from the results of Rus [10] and
so their proofs are omitted for brevity.

As we have seen in the above discussions, the condition (2.2) in Theorem 2 is
not always satisfied for iterations fn with 0 < α < 1 . However, the following
result forms one way of potentially navigating this restriction by replacing the
constraint 0 < α < 1 with conditions on the infinite sum involving a sequence
of constants. Our following theorem was motivated through a reading and
analysis of Caccioppoli’s result [6] on fixed points of functions which was
developed separately to Banach’s fixed point result [3]. Our result brings
together the previously disconnected work of Rus [10] and Caccioppoli [6]
in a new and interesting way, and for this reason we name the theorem as a
‘Rus–Caccioppoli’ fixed point theorem.

Theorem 8 (Rus–Caccioppoli). Let X be a non-empty set, let d and δ be
two metrics on X with the pair (X, d) forming a complete metric space. In
addition, let f : X → X be a continuous mapping on X with respect to d. If
there is a constant c > 0 and a sequence of positive terms αm such that

d(fm(x), fm(y)) 6 cδ(x, y) , for all x, y ∈ X and m = 1, 2, . . . ; (2.8)
δ(fm(x), fm(y)) 6 αmδ(x, y) , for all x, y ∈ X and m = 1, 2, . . . ;(2.9)∞∑

m=1

αm < ∞ ; (2.10)
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then f has a unique fixed point z ∈ X that satisfies

z = lim
k→∞ fkn(x0)) ,

for any x0 ∈ X where the limit is taken with respect to the d metric and n is
sufficiently large.

Proof: Perhaps the most straightforward approach to the proof is to illus-
trate that the conditions of Theorem 2 are satisfied for some integer n > 1 .

Since our series of positive terms in (2.10) converges, we know by the mth
term test that

lim
m→∞αm = 0 .

Thus, there must exist some positive integer n such that αn < 1 .

For the value of n for which αn < 1 , our assumptions ensure that the
mapping fn satisfies the conditions of Theorem 2. The continuity of fn on X
is ensured by the assumption that f is continuous on X. Thus, by Theorem 2,
f has a unique fixed point z ∈ X such that d(xk, z) → 0 as k → ∞ , where
the sequence {xk}

∞
k=0 is given by xk = fn(xk−1) for k = 1, 2, . . . and x0 is any

arbitrary point in X. ♠

Remark 9. In Theorem 8 it is not necessary for inequalities (2.8) and (2.9)
to hold for each m = 1, 2, . . . for the proof to work. For example, if there is
some i > 1 such that inequalities (2.8) and (2.9) hold for all m > i , then we
can always choose an n > i sufficiently large such that αn < 1 with the proof
running along the same lines as above.

Remark 10. If d = δ in Theorem 8, then the theorem reduces to the classical
result of Caccioppoli [20, Ch. 1].

For a given f : Y → Y it is sometimes the case that f is not contractive on the
whole of the set Y. Instead it may be possible that f is contractive only on
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a subset of Y. With this in mind, the following theorem forms a version of
Theorem 2 for balls.

In what follows, we use the notation for a closed ball in X with radius R > 0
and centre x0 ∈ X :

BR(x0) := {x ∈ X : d(x, x0) 6 R} .

Theorem 11 (Rus–Bryant Ball Theorem). Let Y be a non-empty set, let
d and δ be two metrics on Y with the pair (Y, d) forming a complete metric
space. In addition, let f : BR(x0)→ Y be a mapping. If there exists a positive
constant α < 1 and a positive integer n such that fn is continuous on BR(x0)
with respect to d and:

δ(x, x0) 6 R , for all x ∈ BR(x0) ; (2.11)
δ(fn(x), fn(y)) 6 αδ(x, y) , for all x, y ∈ BR(x0) ; (2.12)
d(fn(x0), x0) 6 (1− α)R ; (2.13)

d(fn(x), fn(y)) 6 αδ(x, y) , for all x, y ∈ BR(x0) ; (2.14)

then f has a unique fixed point in BR(x0) .

Proof: We show that the conditions of our Theorem 2 hold for X = BR(x0)
and c = α .

We first prove that fn maps BR(x0) to itself. For any x ∈ BR(x0) consider

d(fn(x), x0) 6 d(f
n(x), fn(x0)) + d(f

n(x0), x0)

6 αδ(x, x0) + (1− α)R

6 αR+ (1− α)R

= R .

Since (BR(x0), d) is a closed subset of a complete metric space (Y, d), the pair
(BR(x0), d) is also complete and thus all of the conditions of Theorem 2 hold
with X = BR(x0) and fn. Our result now follows from Theorem 2. ♠
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Remark 12. The conclusion of Theorem 11 remains true if the conditions
(2.11), (2.13), and (2.14) are respectively replaced by:

δ(x, x0) 6 c1d(x, x0) , for all x ∈ BR(x0) ; (2.15)
d(fn(x0), x0) 6 (1− cc1)R ; (2.16)

d(fn(x), fn(y)) 6 cδ(x, y) , for all x, y ∈ BR(x0) ; (2.17)

where the positive constants c1 and c satisfy c1c < 1 . To see this, for any
x ∈ BR(x0) consider

d(fn(x), x0) 6 d(fn(x), fn(x0)) + d(f
n(x0), x0)

6 cδ(x, x0) + (1− cc1)R

6 cc1d(x, x0) + (1− cc1)R

6 cc1R+ (1− cc1)R

= R .

Remark 13. If n = 1 in Theorem 11 , then we obtain the standard version of
Theorem 1 in balls.

Remark 14. When δ 6 d on BR(x0)× BR(x0) , then the conditions of Theo-
rem 11 imply that fn is also a contraction on BR(x0) with respect to d. To
see this, consider (2.12) and (2.14) which lead to

δ(fn(x), fn(y)) 6 d(fn(x), fn(y))

6 αδ(x, y)

6 αd(x, y) ,

and thus fn is a contraction on BR(x0) with respect to d.

Remark 15. If we compare the conditions of Theorem 11 with those of
Theorem 2, then we see an interesting trade-off occurring. The contraction
condition is assumed to only hold on a ball (rather than, say, on an unbounded
set), but this is counterbalanced with the introduction of the additional
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conditions (2.11), (2.13) and (2.14). In particular, (2.13) is interpreted as a
condition on the iteration fn not to move the centre x0 of the ball too much.
Essentially, this is to ensure the invariance of fn; that is, fn : BR(x0)→ BR(x0) .

Sometimes fixed point problems of interest involve a parameter p that comes
from a ‘parametric space’ P. In what follows, the function f is replaced by a
‘family’ of mappings that depends on both P and X.

Theorem 16 (Rus–Bryant with parameter). Let X and P be non-empty sets,
let d be a metric on X with the pair (X, d) forming a complete metric space,
and let δ be a metric on X. In addition, let fp : P × X → X be a family of
mappings. If, for each fixed p ∈ P , there exists some positive constants c and
α < 1 (α is assumed to be independent of p) and a positive integer n such
that fnp is continuous on X with respect to d and:

d(fnp(x), f
n
p(y)) 6 cδ(x, y) , for all x, y ∈ X ;

δ(fnp(x), f
n
p(y)) 6 αδ(x, y) , for all x, y ∈ X ;

then, for each p ∈ P , our fp has a unique fixed point xp. In addition, if for
the above value of n and some fixed q ∈ P we have

lim
p→q fnp(x) = fnq(x) , with respect to δ for all x ∈ X (2.18)

then,
lim
p→q xp = xq

with respect to δ.

Proof: For each fixed p ∈ P , our assumptions ensure that the conditions
of Theorem 2 are satisfied. Thus, for every p ∈ P there exists a unique fixed
point of xp of fp (and fnp).

Now, if xp and xq represent fixed points of our fnp for two values p and q from
our parameter space P, then

δ(xp, xq) = δ(fnp(xp), f
n
q(xq))
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6 δ(fnp(xp), f
n
p(xq)) + δ(f

n
p(xq), f

n
q(xq))

6 αδ(xp, xq) + δ(f
n
p(xq), f

n
q(xq)) .

We therefore have

δ(xp, xq) 6
δ(fnp(xq), f

n
q(xq))

1− α
. (2.19)

From (2.18), the right side of (2.19) tends to zero as p→ q , thus completing
our proof. ♠

3 Concluding remarks
In this work we have made a contribution to fixed point theory through the
use of iterations and two metrics. In doing so we have formed new connections
between the classical results of Rus [10], Bryant [5] and Caccioppoli [6]. There
are a number of variations of our fixed point approaches that currently remain
open, including: a Rus–Caccioppoli result in balls; a Rus–Caccioppoli result
with a parameter.

At the time of writing, the question of applications of our new fixed point
theorems with iterations and two metrics remains open. There are oppor-
tunities for interested readers to explore how these results might be applied
to differential, difference and integral equations, including boundary value
problems and initial value problems. For related problems, we refer the reader
to the works of Tisdell et al. [12, 13, 14, 15, 16, 17].
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