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Abstract

With limited data beyond the grid exit point (GXP) or substation
level, how can Transpower determine the effect of the aggregated
behaviour of solar photovoltaic power generation and battery energy
storage systems on GXP load in order to maintain an accurate load
forecast? In this initial study it is assumed that the GXP services a
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residential region. An algorithm based on non-linear programming,
which minimises the financial cost to the consumer, is developed to
model consumer behaviour. Input data comprises forecast energy
requirements (load), solar irradiance, and pricing. Output includes
both the load drawn from the grid and power returned to the grid.
The algorithm presented is at the household level. The next step
would be to combine the load drawn from the grid and the power
returned to the grid from all the households serviced by a GXP, enabling
Transpower to make load predictions. Various means of load forecasting
are considered including the Holt–Winters methods which perform well
for out-of-sample forecasts. Linear regression, which takes into account
comparable days, solar radiation, and air temperature, yields even
better performance.
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1 Introduction

Transpower is the operator of New Zealand’s national electricity transmission
grid. At present, about 0.24% of the power generated in New Zealand is
photovoltaic (pv).1 Solar panels for pv power generation have traditionally
been expensive, but are becoming cheaper and more commonly fitted in both
new and old houses. Battery storage systems are also becoming cheaper
and are likely to alter consumer load requirements in the future. With
limited data beyond the grid exit point (gxp) (or substation) level, how
can Transpower determine the effect of the aggregated behaviour of solar pv
power generation and battery energy storage systems on gxp load in order to
maintain an accurate load forecast? This was the challenge brought to minz
by Transpower in 2018.

Currently, the gxp load comprises residential, commercial and small industrial
components taking power, plus small embedded generation delivering power.
Transpower anticipate that solar pv power generation and battery storage
systems will have a significant uptake and are expected to cause a noticeable
effect on the grid. Based on this observation, the residential, commercial and
small industrial components may be partitioned into those without solar pv
panels, those with solar pv panels and no battery storage, and those with
both solar pv panels and battery storage. Consumers will have different
behaviours, depending on pricing structure, on the availablilty of solar pv
panels, and the capacity for storage. As the proportions of both those with
solar pv generation and no battery storage, and those with both solar pv
generation and battery storage rise, how will this affect the gxp load?

The injection of solar pv power into the grid during sunny days from many
households simultaneously may be difficult for the operator of the grid to
manage. One solution is to limit the pv power fed into the grid (Weniger,
Bergner, and Quaschning 2014). This approach requires a means of wasting

1https://www.eeca.govt.nz/energy-use-in-new-zealand/
renewable-energy-resources/solar

https://www.eeca.govt.nz/energy-use-in-new-zealand/renewable-energy-resources/solar
https://www.eeca.govt.nz/energy-use-in-new-zealand/renewable-energy-resources/solar
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excess energy or limiting production. Another solution is to charge consumers
to feed power into the grid.

It was decided at minz to focus on a gxp servicing a residential region. This
meant industrial and commercial power use could be ignored. Reasonable
assumptions for a residential home concerning roof area for solar panels and
battery capacity were made. An algorithm based on non-linear programming
was developed to model the behaviour of a typical consumer (Section 5). This
algorithm could be incorporated into a home energy management system
(hems) and minimises the financial cost to the consumer. Input data comprises
forecast energy requirements, solar irradiance and pricing. Output includes
both the load drawn from the grid and power returned to the grid. Combining
the output from all the residential homes serviced by a gxp output would
enable Transpower to make load predictions.

The electricity load forecasting was investigated since Transpower expected
that more accurate energy requirement forecasts would provide better predic-
tion with respect to power drawn from and returned to the grid for households
with solar power generation and batteries. In the first approach, load data
from an Auckland node were used in an experiment to assess various fore-
casting methods (Section 3). The forecasting results from a preliminary
assessment revealed that the multiple seasonalities that exist in the time
series create a stream of fluctuations. This makes the forecasting task more
challenging and led to further investigation. Holt–Winters methods, time
series linear regression, an autoregressive integrated moving average (arima)
model and an arima model with regressors/explanatory variables (arimax)
were investigated.

A second approach to load forecasting was investigated, based on linear
regression (Section 4). Given a stable residential location, household loads
(energy requirements) may be predicted by considering historic use at the
same time of year. This takes into account public holidays, school holidays,
the working week, and weekends. A more dynamic approach for a changing
population uses historic data from, for example, the previous week or the
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previous day, but this means care must be taken to avoid comparing working
days to holidays, et cetera. More accurate forecasting takes into account the
forecast weather and its likely effect on energy consumption. Household loads
may be satisfied by various means, including the grid, solar pv generation,
and batteries. Solar radiation has considerable effects on electricity demand
even without taking photovoltaic generation into account.

There has been a considerable interest in hems which incorporate domestic
solar pv generation and related challenges such as load forecasting over the
past few years. Reviews of this literature have been published (Beaudin
and Zareipour 2015; Zhou et al. 2016). To give a few examples: Niimura
et al. (2012) described a simple residential pv output profiling based on a
weekly weather forecast for a hems in Tokyo. A simulation-based solution
was presented at the Australian Mathematics in Industry Study Group 2016
to address the problem of estimating the value of various combinations of
pv generation, storage and tariffs (Boland et al. 2016). Shakeri et al. (2017)
described an intelligent system architecture in a hems for efficient demand
response in smart grid, incorporating real-time information. Artificial neural
networks have been applied to load forecasting (Collotta and Pau 2017).
Kikusato et al. (2019) described the problem of charging an electric vehicle
efficiently using solar pv generation.

2 Data

2.1 Weather, pricing and load

Transpower provided an hourly updated weather forecast obtained from
the National Institute of Water and Atmospheric Research (niwa) for the
Auckland residential ros0221 gxp region, for 2016 and 2017. This includes
solar irradiance, temperature, wind speed and direction, rainfall, relative
humidity, apparent temperature, and cloud cover forecasts. Grid exit point
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data is provided by the New Zealand Electricity Authority under the product
code ros0221.2

Solar irradiance is measured in kW/m2. Assuming 25m2 of pv panels, a
yield of 15%, a production rate of 75% and transmission losses of 16%, a solar
power generation time series for one household with a time step of one hour
was calculated.

Transpower provided June 2016 and December 2017 consumer buying prices,
per half hour trading period. It was assumed that December prices in 2016
and 2017 were similar. Initially, the selling price was fixed negative (at
−100 cents/kWh) to discourage feeding power back into the grid. As there is
no way of wasting excess solar generated power in our model, it is fed back
into the grid, at a small cost to the producer.

Transpower provided an hourly updated forecast of the ros0221 gxp load in
megawatts (MW), for 2016 and 2017.

The data provided by Transpower for 1–2 June 2016 were combined to produce
winter input, for a single typical household, including load, pv generated power,
and buying price, at hourly intervals, from midnight to midnight. Similarly,
the data for 1–2 December 2016 were combined to produce summer input.

Hydro-electric storage and supply and demand are the most critical factors
in New Zealand power pricing.

2.2 GXP load forecasting: Holt–Winters methods and
ARIMAX

As the subject of interest, the out-of-sample forecasts were made with the
hourly electricity load in March 2016 as the training set and March 2017 as
the test set. By doing this, the seasonality caused by the monthly fluctuations
can be controlled in this experiment.

2https://www.emi.ea.govt.nz/Wholesale/Datasets/Metered_data/Grid_export

https://www.emi.ea.govt.nz/Wholesale/Datasets/Metered_data/Grid_export
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Table 1: Summary of data used in forecasting

Variable Unit
Electricity Load megawatt (MW)
Temperature degrees Celsius
Wind Direction degree
Wind Speed knot
Rainfall millimetre
Relative Humidity percent
Apparent Temperature degrees Celsius
Solar Radiation kJ/m2

The other predictors included in the analysis are wind direction, wind speed,
rainfall, relative humidity, apparent temperature, and solar radiation. Table 1
summarises the data used in the analysis.

Dummy variables were included to control the effects of the weekdays and the
time of the day: 6–11am, 11am–5pm, 5–9pm, and 9pm–12am, with 12–6am
as the base dummy variable (due to its lowest electricity consumption period
in a day).

2.3 GXP load forecasting: focus on solar radiation

The dataset used is again the one for the Roskill 22 kV gxp (ros0221), a
largely residential load. Five years of data were used, covering June 2013
through to May 2018, a period during which there was little penetration
of embedded photovoltaics in the area. There was no meteorological data
available specific to this part of Auckland, so the temperature data used are
an average of measurements at four meteorological stations in the Auckland
region (Airport, Mangere, Henderson North, and Albany). The radiation
data are averaged across three stations (Airport, Mangere, and Albany).
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Figure 1: Hourly electricity load: an Auckland node, March 2016

60

80

100

120

0 10 20 30

Day (March 2016)

M
W

3 Load forecasting: Holt–Winters methods
and ARIMAX

Figure 1 plots time series for the hourly electricity load in March 2016. The
plot exhibits two levels of seasonality. One completes in a day and the other
completes in a week. In a day, the highest consumption usually occurs at 8 pm
while the lowest consumption occurs around 3 am or 4 am. Mondays to
Thursdays usually have the higher consumption levels while people consume
less during the weekends and public holidays. Friday is the only workday
that has lower consumption than the others, particularly in the evening.
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Figure 2: Forecasts from the Holt–Winters additive method: test data plotted
in black, forecasts plotted in purple
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Figures 2 to 4 show the results from various Holt–Winters methods including
additive, multiplicative, and the multiplicative with exponential trend. The
forecasts from these three methods seem to capture the weekly and daily
seasonalities where the multiplicative with exponential trend appears to reach
the peaks and troughs better than the other two methods.

The forecasts were evaluated using the root mean square error (rmse) and the
mean absolute percentage error (mape). The three methods return similar
results in terms of both rmse and mape (Table 2).

These metrics are internationally recognised standards for forecasting models.
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Figure 3: Forecasts from the Holt–Winters multiplicative method: test data
plotted in black, forecasts plotted in purple
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They treat every hour or half-hour trading period as equally important.
Pricing in New Zealand depends on many factors. Peak periods within a day
may have higher prices, but this is not always the case. It is important for
Transpower as the system operator to forecast the load for any time of day,
depending on system conditions at the time.

A linear regression model was fitted to the data. This approach allowed a set
of explanatory variables to be included in the analysis. Forecasts were made.
Figure 5 shows the forecasts from the time series regression model where the
extremes and seasonalities are not well captured. This might be caused by
the inability to analyse the complex characters of the load by the regression
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Figure 4: Forecasts from the Holt–Winters multiplicative with exponential
trend method: test data plotted in black, forecasts plotted in purple

60

80

100

120

0 10 20 30

Day (Mar 2017)

M
W

Table 2: Forecast error measures from various models and methods

Method/Model rmse mape
Holt–Winters Additive 8.0 6.4
Holt–Winters Multiplicative 8.2 6.7
Holt–Winters Multiplicative
with exponential trend

7.7 6.7

Time-series Linear Regression 9.7 8.9
arimax 8.2 6.6
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Figure 5: Forecasts from the time series linear regression model: test data
plotted in black, forecasts plotted in red
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model. The rmse and mape in Table 2 confirm the inferior performance of
the forecasts from the time series regression model.

The load was analysed using an arima model using only the training set to
preliminarily assess the performance of the model (Figure 6). Similar to the
Holt–Winters method and due to its specification, the arima model seems to
capture the seasonalities well with promising error measures (not shown here).

Analysis and forecasting of the load data continued using arima with the
set of explanatory variables or regressors through the arimax model. Using
the lag orders from the arima but with a set of regressors, more reasonable
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Figure 6: Forecasts from the arima(5, 0, 1)(0, 1, 1)24 model; autoregressor
order 5, moving average order 1, seasonal differencing order 1, seasonal moving
average order 1, seasonal lag 24: test data plotted in black, forecasts plotted
in blue
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results were obtained from the arimax than those of the time series regression
model (Figure 7). Although the forecast errors from the arimax model are
slightly worse than those of the Holt–Winters methods (Table 2), arimax
results seem to provide more room for future research.
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Figure 7: Forecasts from the arimax(3, 0, 2)(0, 0, 2)24 model; this refers to
the arima model with regressors and autoregressive order 3, moving average
order 2, seasonal moving average order 2, seasonal lag 24: test data plotted
in black, forecasts plotted in red
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4 Load forecasting: focus on solar radiation

In this section, a one day-ahead load forecasting model is constructed in
which solar radiation has a starring role. The intent here is not to model
embedded solar photovoltaic generation, but rather to establish a baseline
load model to which other forecasts of solar generation could be added.

The model has three main predictors:

• previously-measured load at the same time on a recent comparable day,

• air temperature (daily maximum or minimum only, this choice is dis-
cussed later in Section 4), and

• solar radiation (daily total only).

We assumed that the temperature and radiation values are known on a one day-
ahead basis, from sufficiently accurate weather forecasts. Previous-load and
temperature predictors are known to be adequate for a basic load forecasting
model. Adding solar radiation improves the model’s performance a little
further (Figure 9). But the question of real interest here is to characterise the
way in which solar radiation affects the model’s predictions. That is, what is
the average difference in load between a cloudy day and a sunny day, given
that the two days have the same air temperature and the same recent history
(as represented by the previous day to which both are being compared)?

‘Comparable’ days are defined in the following way. First, all days are classified
into work days and holidays (Saturdays, Sundays, and other public holidays).
Then, a time t on a date d1 is comparable to the same time t on another
date d2 if, and only if,

• d1 and d2 have the same work-day/holiday classification;

• if t is before noon, then d1 − 1 and d2 − 1 have the same work-day/
holiday classification; and
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• if t is after noon, then d1+1 and d2+1 have the same work-day/holiday
classification.

This means, for example, that for times on a typical Monday morning, the
most recent comparable day is the previous Monday (allowing for a beginning-
of-the-week effect), while on the same Monday, for times in the afternoon,
the most recent comparable day is the previous Thursday (allowing for an
end-of-week effect that gives Friday evenings a different behaviour).

The model is a linear regression. In this context, the recent comparable day’s
load is included as a single regressor: its contribution to the forecast is simply
itself, multiplied by a regression coefficient (which is presumably close to one).
But when it comes to the temperature and radiation effects, some thought
should be given to feature engineering to extract the best predictive value.
A forecast should consider not only the temperature for the forecast day,
but also the temperature for the previous comparable day, as this affects the
load on that day. A reasonable way to incorporate this is to consider the
difference in temperature between the two days. Similarly for solar radiation:
the difference in radiation total between the forecast and comparable days is
likely to be a better predictor than the forecast day’s radiation alone.

However, even this is not sufficient. The effect of temperature on load is non-
linear, being greatest (most positive) for the lowest and highest temperatures,
and least (most negative) for clement intermediate conditions. We therefore
allow for a temperature effect of the form

(Tf − Tc)g(Tf), (1)

where Tf and Tc are the temperatures on the forecast and comparable days,
and g is a fitted non-linear function. To model a temperature effect that is
positive for the lowest forecast temperatures (when Tf − Tc < 0) and highest
forecast temperatures (when Tf − Tc > 0), g was chosen so that g(T) < 0
for the lowest values of T , and g(T) > 0 for the highest values. In order to
remain fairly flexible as to the form of g, a cubic spline was chosen, and the
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function expressed as the following linear combination

g(T) =

n∑
i=1

γibi(T)

where the bi are a set of spline basis functions. The temperature-related
regressors are thus of the form (Tf − Tc)bi(Tf) for i = 1, . . . , n.

For solar radiation, a similar approach is taken. However, the difference in
radiation Rf − Rc between the forecast and comparable days should not be
modulated by a function of Rf (which can take most of its possible values at
any time of year, even though the effects in summer and winter are expected
to be rather different). Rather, we posited a seasonal modulation through an
effect of the form

(Rf − Rc)h(t), (2)

where t is time, and h a fitted non-linear function. The function h should
be periodic with a period of one year, and is modelled by a trigonometric
polynomial:

h(t) = η0 +

m∑
j=1

[
ηsj sin(jωt) + η

c
j cos(jωt)

]
,

whereω = 2π year−1, and η0, ηsj , and ηcj are fitted coefficients. The radiation-
related regressors are thus of the form (Rf−Rc) sin(jωt) and (Rf−Rc) cos(jωt)
for j = 0, . . . ,m.

A separate model was fitted for each of the 48 half-hours of the day. After
some experimentation, the authors decided that there was little advantage to
be gained by including two sets of temperature-related regressors, using both
the minimum and maximum temperature of the day. A fit almost as good can
be obtained by including only one set of temperature-related regressors, if they
are based on the day’s minimum temperature for predictions of half-hours
before 10 am, and on the day’s maximum temperature thereafter.
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Figure 8: The temperature-modulation function g in two trading periods,
tp 18 (left) and tp 31 (right)
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The dataset used is again the one for the Roskill 22 kV gxp, a largely
residential load (Section 2.3).

To verify the forecasting performance of the model, a cross-validation was
performed in which the data were partitioned into five time-contiguous subsets
of one year each, and an out-of-sample forecast made for each subset by a
model fitted to the data contained in the other four subsets. The results are
quite satisfactory for a model of this complexity: the rmse is 3.18MW and
the mape is 4.1%.

The roles played by temperature and radiation in the model are discovered
by inspecting the fitted functions g and h described in (1) and (2). Figure 8
shows the function g, that is, the coefficient of (Tf − Tc), for two typical
half-hours: tp 18 (8:30–9:00 am) and tp 31 (3:00–3:30 pm). As might have
been expected, this coefficient takes mostly negative values (that is, reducing
the temperature on the forecast day will increase load), with the strength of
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the effect increasing at low temperature. At high temperature, the sign of
the coefficient changes (increasing the temperature on the forecast day will
increase load), although this is a much weaker effect. This is presumably
reflective of electric heating and (to a lesser extent) cooling loads, which are
both common in Auckland.

Of more interest here are the radiation effects. Figure 9 shows the function h
(i.e., the coefficient of Rf − Rc) for four half-hours. Considering first tp 16
(7:30–8:00 am), the strongest apparent effect is at first surprising: sunshine
in winter increases load. This becomes explicable when it is considered that
at this time of day, the sun has barely risen. But the prospect of a sunny
day is associated with clear-sky conditions, and this is apparently enough
to drive the morning-peak load upwards—even though the overnight-low air
temperature is separately accounted for in this model.

Turning to tp 32 (3:30–4:00 pm), a more expected result is encountered:
late-afternoon sunshine reduces load, though the effect is largely confined to
winter. It is a large effect: the predicted difference between a sunny and a
cloudy day can be as much as 25MW (at a gxp where the overall average
load is 52MW), not including the effect of sunshine in raising air temperature,
which is separately accounted for in this model.

In the evening peak (tp 37, 6:00–6:30 pm), there is other behaviour to observe.
In general, sunshine reduces load, with the strongest effect occurring in spring
(when conditions may still be cold, but the sun has not yet set at this time
of day). There is almost no effect in mid-winter, when this time period falls
after sunset.

Finally, the later evening (tp 40, 7:30–8:00 pm) shows how the lingering
after-effects of a sunny day may either increase or decrease load, depending
on the time of year.
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Figure 9: The radiation-modulation function h in four trading periods, tp 16
(left upper), tp 32 (right upper), tp 37 (left lower) and tp 40 (right lower)
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5 Modelling power drawn from and solar
power returned to the grid

5.1 The non-linear programming model: household
level

A typical household load in 2016 was forecast by dividing the total forecast load
at the residential gxp (provided by Transpower) by the number of residences
serviced. This assumes there was negligible solar pv power generation in 2016.
How would the amount of power drawn from the grid change for a household
with solar pv power generation and battery storage?

Let P(t), L(t), G(t), A1(t), A2(t), A3(t) and B(t) denote elements of time
series in pv generated power, load, power drawn from the grid, pv generated
power supplied to the load, pv generated power supplied to the battery, pv
generated power supplied to the grid and battery discharge, respectively, as
shown in Figure 10. All quantities are powers, measured in kW. The time
step is 1/n hour, where n = 1 corresponds to no interpolation and integer
n > 1 corresponds to linear interpolation between data points. Let soc(t)
denote battery state of charge, a fraction between zero and one. Let C(t)
denote the battery capacity and Cmax denote the maximum battery capacity
(in kWh). Then, at any time step, Cmax soc(t) = C(t).

Let d be the number of days considered. For each t ∈ {1, 2, . . . , 24nd+1}, the
following financial cost function (grid expense minus pv income) is minimised

F(t) = (G(t) ·Gcost(t) −A3(t) ·A3,cost(t))∆t ,

where Gcost(t) is the buying price (the cost to the consumer of power supplied
by the grid in cents/kWh), A3,cost(t) is the selling price and ∆t = 1/n hours,
subject to the following constraints:

A1(t) +A2(t) +A3(t) = P(t),
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A1(t) + B(t) +G(t) = L(t),

0 6 A1(t) 6 L(t),

0 6 G(t) 6 L(t) − P(t) if L(t) > P(t),
0 6 A3(t) 6 P(t) − L(t) if P(t) > L(t),
0 6 B(t) 6 nC(t− 1),

0 6 A2(t) 6 n[Cmax − C(t− 1)],

where C(t) = Cmax

(
soc0 +

1

Cmax

t−1∑
s=1

(A2(s) − B(s))∆t

)
,

and battery charge and discharge cannot happen simultaneously, modelled by
0 = A2(t)B(t).

The constraints on B(t) and A2(t) mean that the battery cannot discharge
or charge in less than one time step. This ensures 0 6 soc(t) 6 1 at every
time step. These constraints also model batteries which discharge slowly
when nearly empty, and charge slowly when nearly full. Since ∆t = 1/n is
measured in hours, n has units per hour.

For one household with solar pv panels and one battery with a capacity
of Cmax kWh; energy consumption, energy production, and the battery state
of charge are modelled as time series. Power for the load could be drawn from
the grid, from pv panels, or from the battery (if charged). The battery may
be charged by pv generation or discharged to the load. pv power generated
may feed into the load, the battery, or the grid. See Figure 10, which is based
on a similar figure published by Weniger, Bergner, and Quaschning (2014).

The model is implemented in matlab, using the non-linear optimisation
function fmincon, minimising a financial cost function (grid expense minus
pv income). The input data comprises the hourly forecast load, estimated
pv power generation and buying prices. The simulation results plotted in
Section 5.2 were obtained using data corresponding to the first 48 hours in
June 2016 and the first 48 hours in December 2016, taking into account winter
and summer patterns in Auckland, New Zealand.



5 Modelling power drawn from and solar power returned to the grid M23

Figure 10: Path of energy in a solar pv system with battery storage but
no means of dumping excess pv generated power (Weniger, Bergner, and
Quaschning 2014). All time dependent quantities P(t), L(t), G(t), A1(t),
A2(t), A3(t) and B(t) are powers. The battery state of charge (soc) is a
fraction of the maximum capacity.

Solar pv system
generates power

P(t)

Grid

L(t):
Load

Battery with maximum
capacity Cmax kW and
0 6 soc 6 1

A1(t):
pv power to load

A2(t):
pv power charges battery

G(t):
grid use

B(t)

battery use

A3(t):
pv power to grid
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5.2 Results and discussion

Time series are plotted for variables, namely P(t), L(t), G(t), A1(t), A2(t),
A3(t), B(t) and soc(t). Winter and summer patterns are considered. In the
simulations a time step of 20 minutes was used, that is n = 3, over the first
48 hours in both June and December 2016, from midnight to midnight. The
selling price A3,cost(t) was set to −100 cents/kWh to discourage selling pv
generated power to the grid, Cmax = 13.5 kWh, and the area of pv panels per
household roof was set to 25m2.

Winter and summer weather patterns differ markedly. Hence, winter and
summer power use is predicted to differ markedly too. Winter and summer
examples are compared below.

• The predicted peak winter solar pv power generated is lower, about
half that predicted for summer (Figure 11(a) and Figure 15(a)).

• The model predicts that, in winter, less solar energy would be generated
than in summer. Compare the area under the curves in Figure 11(a)
and Figure 15(a).

• The model predicts that the peak winter load is higher than the peak
summer load (Figure 11(b) and Figure 15(b)).

• Higher energy requirements are expected in winter. Compare the area
under the curves in Figure 11(b) and Figure 15(b).

• Grid use is predicted to be high in winter, accounting for most of the
load (Figure 12(a)).

• Grid use is predicted to be negligible on sunny days in summer (Fig-
ure 16(a)).

• The model predicts that, in winter, almost all solar pv power is used
by the load. Very little is left to charge the battery and the amount
fed to the grid would be negligible (Figure 12(b), Figure 13(a) and
Figure 13(b)).
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Figure 11: Winter time series over 48 h, 1–2 June 2016, midnight to midnight,
ros0221 gxp, per household

(a) P(t): solar pv power generated
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(b) L(t): household load
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Figure 12: Winter time series over 48 h, 1–2 June 2016, midnight to midnight,
ros0221 gxp, per household

(a) G(t): grid use
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(b) A1(t): solar pv power to load
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Figure 13: Winter time series over 48 h, 1–2 June 2016, midnight to midnight,
ros0221 gxp, per household

(a) A2(t): solar pv power to battery
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(b) A3(t): solar pv power to grid
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Figure 14: Winter time series over 48 h, 1–2 June 2016, midnight to midnight,
ros0221 gxp, per household

(a) B(t): battery discharge rate
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(b) soc(t): state of charge of battery
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Figure 15: Summer time series over 48 h, 1–2 December 2016, midnight to
midnight, ros0221 gxp, per household

(a) P(t): solar pv power generated
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(b) L(t): household load
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Figure 16: Summer time series over 48 h, 1–2 December 2016, midnight to
midnight, ros0221 gxp, per household

(a) G(t): grid use
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(b) A1(t): solar pv power to load
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Figure 17: Summer time series over 48 h, 1–2 December 2016, midnight to
midnight, ros0221 gxp, per household

(a) A2(t): solar pv power to battery
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(b) A3(t): solar pv power to grid
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Figure 18: Summer time series over 48 h, 1–2 December 2016, midnight to
midnight, ros0221 gxp, per household

(a) B(t): battery discharge rate
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(b) soc(t): state of charge of battery

0 18 36 54 72 90 108 126 144

Time in 20 minute intervals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

te
 o

f 
c
h

a
rg

e
 o

f 
b

a
tt

e
ry

 S
O

C
(t

)



5 Modelling power drawn from and solar power returned to the grid M33

• The model predicts that, in summer, solar pv would charge the battery
in the middle of the day, attaining maximum capacity (more or less).
The slightly higher pv generation predicted on the first day, compared
to the second day (Figure 15(a)), corresponds to slightly higher solar pv
supplied to the battery (Figure 17(a)), full battery charge by evening
(Figure 18(b)) and a slight excess of solar pv power fed into the grid
(Figure 17(b)). This would happen at a cost to the consumer, as there
is no way to waste power in the model. In the simulations, the battery
is at half maximum capacity at the start (midnight) of the 48 hours
(Figure 18(b)).

• The battery soc is predicted to be very low in winter and hence so is
the battery discharge rate (Figure 14(a) and Figure 14(b)).

• The battery soc is predicted to reach capacity about 6 pm in summer.
By about 9 pm, the battery is predicted to have taken over from solar
pv power, satisfying the load. Battery capacity is predicted to fall to a
minimum of 20%–40% maximum capacity by about 8 am (Figure 18(a)
and Figure 18(b)).

• Scaling the input P(t) on a day in winter by a factor of 2.23 results
in recovering the initial 50% soc after 48 hours. Hence, on a very
sunny day in winter (during which the heating load would likely reduce),
battery use could be expected (Figure 19). In this example, the battery
is emptied by 10 pm.

• Figure 20 plots contributions to the load for winter and summer. The
model predicts that on a day in winter, most of the load is satisfied by
the grid; whereas on a day in summer, solar pv generated power during
the day and stored solar pv generated power from the battery during
the night satisfy the load.
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Figure 19: Time series for a very sunny day in winter over 48 h, 1–2 June
2016, midnight to midnight, ros0221 gxp. The original winter pv data was
multiplied by 2.23.

(a) P(t): solar pv power generated
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(b) soc(t): state of charge of battery
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Figure 20: Contributions A1(t) (blue, solar pv power to load), G(t) (red,
grid use), and B(t) (green, battery discharge rate) add to the load L(t) (solid
black line), winter and summer 2016
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6 Summary

The non-linear programming model of Section 5 predicts that grid use varies
greatly from season to season, even in one location. Sunny summer days could
result in negligible grid use by those with average needs, average solar power
generation capacity, and one battery of average capacity. However, this is not
the case on wet summer days, which are part of a New Zealand summer.

Grid use is predicted to satisfy most of the load in winter. The non-linear
programming model predicts that a battery could soon be discharged in
mid-winter, with little opportunity for charging, given that pv generated
power is used locally to satisfy the household load in preference to battery
charging or feeding into the grid. Only on very sunny days in winter could a
battery be expected to be charged and then discharged. However, even on
winter days, the availability of solar pv generated power decreases grid use
during the middle of the day.

Households in one residential gxp region could be partitioned into groups,
depending on characteristics such as area of solar panels and battery capacity.
For each group, the non-linear programming model could be used to predict
grid use and the solar pv generated power injected into the grid, as time series.
The results for these groups of households could be scaled and combined to
predict the power drawn from the grid and fed back to the grid, enabling
Transpower to predict grid use in a particular location at a particular time of
the year. This is work for the future.

Two approaches to electricity load forecasting were investigated, assuming
no solar pv generation. In the first approach (Section 3), load data from an
Auckland node were used in an experiment to assess and compare various
forecasting methods, namely Holt–Winters methods, time series linear regres-
sion, an autoregressive integrated moving average (arima) model and an
arima model with regressors/explanatory variables (arimax). Preliminary
forecasting results revealed that the multiple seasonalities that exist in the
time series create a stream of fluctuations. This makes the forecasting task



References M37

more challenging and led to further investigation. The advantage of using
Holt–Winters methods is that only the time series (the electricity load in
our case) is needed to make the forecasts. However, that limits the inclu-
sion of all other predictors into the analysis. With the time series linear
regression models, other predictors may be incorporated into the model but
the linear regression models can only capture the trend and well-specified
seasonalities in the time series, not any other erratic fluctuations. The best
candidate for the electricity load data might be the arima with regressors
or explanatory variables (arimax) as all the important features of the time
series can be identified and analysed, and all other predictors can also be
included. The Holt–Winters additive method and the arimax model return
the best forecasts for the electricity load consumption in March 2017.

The second approach to load forecasting (Section 4) is an alternative form
of linear regression, taking into account historic use on comparable days,
air temperature, and solar radiation. Five years of Transpower data was
combined with five years of data from four meteorological stations in Auck-
land. This performs even better than the first approach, yielding the lowest
rmse and mape.
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