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Abstract: Dibenzoylhydrazines Xa-(C6H5)a-CO-N-(t-Bu)-NH-CO-(C6H5)b-Yb are efficient insect growth 
regulators with high activity and selectivity toward lepidopteran and coleopteran pests. For 123 congeneric 
molecules, a quantitative structure activity relationship model was built in the framework of the QSARINS 
package using 2D, Topology-based, PaDEL descriptors. Variable selection by GA-MLR allows building an 
efficient multilinear regression linking pEC50 values to nine structural variables. Robustness and quality of the 
model were carefully examined at various levels: data-fitting (recall), leave-one (or some) - out, internal and 
external validation (including random splitting), points not in depth investigated in previous works. Various 
Machine Learning approaches (Partial Least Squares Regression, Projection Pursuit Regression, Linear Support 
Vector Machine or Three Layer Perceptron Artificial Neural Network) confirm the validity of the analysis, giving 
highly consistent results of comparable quality, with only a slight advantage for the three-layer perceptron. 
Keywords: Dibenzoylhydrazines; Insect growth regulators; QSAR models; Topological descriptors. 

 
 

1. Introduction 
 
Insect growth regulators (IGR) stopping larvae development and inducing lethal processes during moulting are 

efficient tools in insect control for crop protection. As stressed by Nakagawa et al. [1] since their introduction in 
the mid 1980’s, diacyhydrazines (DAH) , and among them dibenzoylhydrazines, of general formula Xa-(C6H5)a-
CO-N(t-Bu)-NH-CO-(C6H5)b-Yb, received an increasing interest as larvicides, owing to their easy synthesis at 
affordable cost, high efficiency and specificity against lepidopteran and coleopteran pests. These molecules act as 
moulting accelerating compounds, activating the ecdysone receptor, part of the steroidal 20-hydroxyecdysone 
moulting hormone receptor. This hormone regulates moulting and metamorphosis. An external high dose of 
moulting hormone agonists maintains a premature abnormal moulting process, rapidly leading larvae to death [1-
3]. Additionally this hormone receptor is not present in mammals, making the ecdysone receptor an interesting 
target for larvicide development. 

For limited homogeneous series of chemicals (with a fixed substitution pattern on one of the phenyl rings), 
several QSAR models, linking the larvicidal activity of acylhydrazines to structural characteristics, have been 
proposed from Hansch-Fujita [1,4,5] multilinear models or in the framework of Free Energy Relationships, 
involving “classical” electronic and steric substituent constants (Hammett’s sigma and Verloop’s constants) [5]. 
However, strong interactions in di- or tri-substituted phenyl ring A bearing an ortho group, required the presence 
of “ad hoc” indicator variables. On the other hand, Partial Least Squares analyses of electronic and steric field 
contributions on grid points surrounding the substrates (CoMFA treatment) were also carried out on diverse species 
of insects [1, 3, 6]. 

In this framework, extended analysis was carried out by Wheelock et al. [3] for a large population of 172 
compounds where both phenyl rings may be simultaneously substituted, and the central moiety (CO)-N-(t-Bu)-
NH-(CO) differently substituted. The used CoMFA analysis led to satisfactory performance in data fitting (recall), 
and gave some clues about the more important intervening interactions with the corresponding receptor. But the 
determination coefficient Q2 in leave-one-out cross validation was poor (Q2 = 0.447 on 158 compounds), and the 
approach involved a huge number of variables before reduction by Partial Least Squares. External validation of 
the results (prediction tests) was not considered. Furthermore calculated values for compounds experimentally 
observed as “inactive” were much higher than the activity threshold retained. In a more recent publication [2] 
Crisan et al. also examined a limited population of 33 compounds, in the framework of the MLR models from 
QSARINS [7], and pharmacophore search. 

We present here various 2D topology-based QSAR models linking the pEC50 values (co-logarithm 
concentration of half maximum response) to molecular structure. Topology-based models have been widely used 
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with satisfactory performances in developing SAR and QSAR models, and appeared very efficient for prediction 
of new or unknown chemicals [8-12]. Although physical interpretation of the selected 2D structural parameters is 
often more difficult than for quantum-derived descriptors, this approach gets rid of energy minimisation processes, 
structure alignment and (often heavy) MO calculations, and requires only swift evaluation of structure-invariant 
descriptors, available from the knowledge of only the structural formulae [12]. It may be hoped that working on 
few, easily evaluated descriptors rather than on a huge number of field values on nodes surrounding the aligned 
molecules, would lead to flexible models, more easily applicable to the study of new potentially active chemicals.  

 
2. Materials and methods 

 
2.1 Data set 

In the present work, experimental data, for a population of 126 dibenzoylhydrazines of general formula 
 
Xa-(C6H5)a-CO-N-(t-Bu)-NH-CO-(C6H5)b-Xb, 

 
were retrieved from the previous CoMFA study carried out by Wheelock et al. [3]. pEC50 values, correspond to 
the co-logarithm of the minimal concentration for obtaining an effect on 50% of the cells), determined in a Bombyx 
mori cell-based, high-throughput screening via a reporter gene assay. These pEC50 values (expressed in M) cover 
a range 8.91-4.33. 

From the initial population of 133 compounds, 7 chemicals from this original study were discarded, owing to 
observed inactivity (pEC50 < 4.00). However (vide infra) they may give some clues about the quality of the models 
we built (by comparison with the calculated activity values in a somewhat “rough test set”). 

In the present work, the 126 compounds with precise activity values (8.91-4.33) were first ordered by decreasing 
activity (regardless of structural similarity) and identified by an ID number (1…126). Original Wheelock “names” 
W… were also indicated for easier retrieval. Structural formulae and activities (pEC50) are gathered in Table 1. 
 
Table 1. Activity of the studied dibenzoylhydrazines (pEC50 M): Xa-(C6H5)a-CO-N (t-Bu)-NH-CO-(C6H5)b-Xb 
NAME          ID          Act-Exp PHI-A PHI-B NAME ID Act-Exp   PHI-A PHI-B 
W001 75 6.37 H H W068 93 6.02 2-Cl 3-CN 
W002 68 6.51 2-F H W069 82 6.22 2-Cl 3-Me 
W003 39 7.12 2-Cl H W070 31 7.28 2-Cl 3-OMe 
W004 55 6.77 2-Br H W071 73 6.41 2-Cl 4-F 
W005 45 6.98 2-I H W072 48 6.94 2-Cl 4-Cl 
W006 85 6.20 2-CF3 H W073 25 7.47 2-Cl 4-Br 
W007 62 6.65 2-NO2 H W074 9 8.12 2-Cl  4-I 
W008 63 6.65 2-Me H W075 14 8.00 2-Cl 4-CF3 
W009 81 6.23 2-Et H W076 107 5.46 2-Cl 4-NO2 
W010 127 < 4.00 2-Phi H W077 83 6.22 2-Cl 4-CN 
W011 79 6.28 2-OMe H W078 18 7.73 2-Cl 4-Me 
W012 128 < 4.00 2-O-s-Bu H W079 7 8.24 2-Cl  4-Et 
W013 129 < 4.00 2-OCH2Ph H W080 10 8.04 2-Cl 4-n-Pr 
W014 91 6.07 2-SMe H W081 22 7.61 2-Cl 4-i-Pr 
W015 60 6.68 3-F H W082 132 < 4.00 2-Cl 4-Ph 
W016 47 6.94 3-Cl H W083 29 7.29 2-Cl 4-OMe 
W017 78 6.29 3-Br H W084 97 5.89 2-Cl 4-SO2Me 
W018 88 6.15 3-I H W085 46 6.98 2-Cl 4-COMe 
W019 102 5.74 3-CF3 H W086 12 8.03 2-Cl 2,3-Cl2 
W020 114 5.13 3-NO2 H W087 20 7.70 2-Cl  2,3-Me2 
W021 99 5.82 3-CN H W088 17 7.81 2-Cl          2-Me,3-OMe 
W022 41 7.07 3-Me H W089 65 6.65 2-Cl   2,4-Cl2 
W023 64 6.65 4-F H W090 53 6.79 2-Cl 2,4-Me2 
W024 54 6.78 4-Cl H W091 104 5.69 2-Cl    2,5-Cl2 
W025 90 6.10 4-Br H W092 100 5.79 2-Cl 2,5-Me2 
W026 117 4.88 4-I H W093 24 7.53 2-Cl  2,6-F2 
W027 118 4.83 4-CF3 H W094 56 6.77 2-Cl  2-F,6-Cl 
W028 120 4.69 4-NO2 H W095 113 5.17 2-Cl 2,6-Cl2 
W029 121 4.67 4-CN H W096 76 6.34 2-Cl 3,4-Cl2 
W030 108 5.45 4-Me H W097 42 7.06 2-Cl 3,4-Me2 
W031 130 < 4.00 4-t-Bu H W098 72 6.42 2-Cl 3,5-Cl2 
W032 131 < 4.00 4-Phi H W099 115 5.07 2-Cl 3,5-Me2 
W033 119 4.72 4-OMe H W100 133 < 4.00 2-Cl        3,5-(O-n-Bu)2 
W034 124 4.36 4-O-(CH2)3-Ph H W101 44 6.99 3,5-Me2                2-Me 
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W035 116 5.04 2,3-Cl2 H W102 23 7.55 3,5-Me2                3-Me 
W036 98 5.84 2-Me,3-Cl H W103 71 6.47 3,5-Me2               3-OH 
W037 95 5.89 2,3-Me2 H W104 34 7.18 3,5-Me2             3-OMe 
W038 49 6.93 2,4-Cl2 H W105 77 6.32 3,5-Me2              3-OEt 
W039 80 6.24 2,4-Me2 H W106 15 7.92 3,5-Me2                4-Me 
W040 106 5.48 2,5-Me2 H W107 1 8.91 3,5-Me2                 4-Et 
W041 94 6.00 2-OMe,5-n-Pr H W108 16 7.88 3,5-Me2              4-n-Pr 
W042 110 5.36 2,6-F2 H W109 2 8.87 3,5-Me2               4-i-Pr 
W043 105 5.59 2-F,6-Cl H W110 57 6.75 3,5-Me2             4-n-Bu 
W044 89 6.14 3,4-Me2 H W111 4 8.61 3,5-Me2              4-t-Bu 
W045 126 4.33 3,4-OMe2 H W112 30 7.29 3,5-Me2       4-n-Pentyl 
W046 122 4.64 2,3,4-Cl3 H W113 19 7.72 3,5-Me2  4-Cl 
W047 35 7.16 3,5-Me2 H W114 5 8.43 3,5-Me2  4-CF3 
W048 109 5.40 2,5-Cl2,3-CF3 H W115 3 8.62 3,5-Me2           2,3-Me2 
W049 111 5.34 2-OMe,3,5-Me2 H W116 50 6.89 3,5-Me2 2-Me,3-OH 
W050 61 6.67 2,3,4,5,-F4 H W117 8 8.22 3,5-Me2   2-Me,3-OMe 
W051 125 4.34 2,3,4,5,6,-F5 H W118 32 7.28 3,5-Me2     2-Me,3-OEt 
W052 28 7.29 2-Cl 2-F W119 33 7.26 3,5-Me2 2,3,4-F3 
W053 70 6.48 2-Cl 2-Cl W120 27 7.31 3,5-Me2 2,4,5-F3 
W054 69 6.50 2-Cl 2-Br W121 13 8.01 3,5-Cl2 4-Me 
W055 96 5.89 2-Cl 2-I W122 37 7.16 3,5-Cl2 4-C l 
W056 101 5.76 2-Cl 2-CF3 W123 51 6.88 3,5-Br2  2-Me 
W057 84 6.21 2-Cl 2-NO2 W124 21 7.68 3,5-Br2 4-Me 
W058 38 7.14 2-Cl 2-Me W125 11 8.04 3,5-Br2 4-Et 
W059 123 4.58 2-Cl 2-Phi W126 59 6.72 3,5-Br2 4-NO2 
W060 112 5.21 2-Cl 2-OMe W127 67 6.55 2-Me 2-Me 
W061 87 6.17 2-Cl 2-SMe W128 74 6.39 4-Cl 4-Cl 
W062 36 7.16 2-Cl 3-F W129 26 7.38 4-Cl   4-Me 
W063 52 6.81 2-Cl 3-Cl W130 66 6.64 4-Et 4-Et 
W064 58 6.72 2-Cl 3-Br W131 40 7.08 2,6-F2 4-Cl 
W065 86 6.20 2-Cl 3-I W132 6 8.31 H 4-Et 
W066 92 6.03 2-Cl 3-CF3 W133 43 7.06 H 4-Cl 
W067 103 5.70 2-Cl 3-NO2      

 
2.2 Descriptor generation and model selection 

2D topological-type structural descriptors were generated from the software PaDEL [13] leading to an initial 
pool of about 1200 values for compound, to be introduced in the QSARINS software [7]. These descriptors 
encompass nature of the atoms, autocorrelation vectors and elements of adjacency or distance matrices, E-states, 
etc. Elimination of descriptors with (nearly) constant values and pruning pairs of highly inter-correlated values 
(correlation coefficient higher than 0.9) led to a reduced set of 168 (potentially significant) variables. Subsequent 
selection was carried out in QSARINS by using OLS-MLR coupled with a genetic algorithm (GA) based procedure 
[14]. 

This was carried out in an external validation step [15, 16]. For allowing, in parallel, complementary internal 
validations, five subsets (m = 0 to m = 4) where created with different compositions of training and prediction sets: 
In subset m, prediction set is composed of chemicals with (ID modulo 5) = m (that is rest of the division of ID by 
5 equals m). In other words, one every five compounds is placed in prediction. For example for subset 2 prediction 
will be carried out on compounds ID = 2, 7, 12…122, (Note that, in parallel, the full data set is accessible with m 
= 5).This procedure we previously used in several applications [17-19], allows for a rather regular splitting all 
along the reactivity range, irrespective of structural similarities for both training and prediction samples. 

From the 168 initially retained variables (structural descriptors), further selection was carried out on subset m 
= 1. This variable selection procedure was performed in a two steps process embedded in the software QSARINS. 
In a first step, all the possible triples of descriptors were explored using an exhaustive selection procedure (“All 
Subsets”). In a second step, the pool of the best 100 models generated by All Subsets was then extended via the 
GA to explore models with higher complexity, in order to find the model with the best Q2loo (and RMSE), and 
satisfying the QUICK Rule [16, 20]. 

Set up values for GA selection were: number of generations per size = 1000, population size = 100 models, 
mutation rate = 50%, and 100 models were saved for each model dimension (i. e. number of variables included). 
In addition, to avoid overfitting and inclusion of inefficient variables, uselessly complicating the models, or leading 
to insignificant supplementary benefit, we limited the increase of the model complexity up to 9 variables. This led 
to a ratio (nb compounds/nb descriptors) largely higher than the currently admitted threshold of five according to 
the OECD guidance [21]. 
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For subset m = 1, chosen for selection driving, the quality (and robustness) of the model was determined by the 
Q2loo coefficient on the training part, and its predictive ability, examined on the prediction part. This corresponds 
to true “external validation” since the predicted chemicals were never involved in the development of the GA-
based population of models. This allowed us to define a restricted pool of 9 descriptors (to be detailed below (&2.3) 
that will be the basis of the different proposed models (MLR and machine learning approaches). Beside the 
robustness and precision in data fitting, and preceding external validation process, quality of the MLR models built 
on these descriptors was also examined at several levels of internal validation:  

1) on the remaining subsets (m = 0,2,3,4) in recall, and in leave-one (or some)-out on the training part,  
2) in prediction on the corresponding part for each subset, 
3) on recall, loo and prediction on randomized samples. 
This was carried out first with OLS-MLR models and extended with the same descriptor set to various Machine 

Learning approaches (at least for the five created subsets). 
 

2.3 Selected descriptors 
The nine selected structural descriptors are respectively:  
1) GATS1c, GATS5e, GATS8s 
Geary autocorrelation terms (lag 1, 5, or 8) weighted by charge, Sanderson electronegativity or I-state. They 

are calculated on centered property values (wi), but weighted by the square of the centered property value on all 
atoms minus one (So, mean and standard deviations are accounted for [22]) 

 
                                                 Ck = (1/2Δk)∑i

A ∑j
A (wi-wj)2 δij /(1/A-1) ∑i

A (wi-ŵ)2. 
 
with A number of atoms, Δk number of atom pairs at (topological) distance k. δij =1 for a topological distance k 
between atoms i and j equal to the lag, zero otherwise. 

2) SM1-Dzm  
The Barysz distance matrix is defined as a weighted distance matrix (from the Hydrogen depleted graph) that 

simultaneously accounts the presence of multiple bonds and heteroatoms in the chemicals [23]. SM1-Dzm is the 
spectral moment of order 1 from Barysz matrix, weighted by mass.  

3) VE3_Dzp 
Logarithmic coefficient of Randic-like sum of the last eigenvector (absolute values) from Barysz matrix 

weighted by polarizabilities.  
4) SpMax2_Bhp 
Largest absolute eigenvalue of Burden modified matrix- n2, weighted by relative polarizabilities [24]. 
5) SHBint6 
Sum of E-State products of strength for potential internal hydrogen bonds of path length 6. Electro-topological 

state (E-State) belongs on Roy topological indices based on the valence electron mobile (VEM) count [25-27]. 
6) MPC8 
Molecular path count of order 8. 
7) TopoShape 
Petitjean topological shape index [28], relying on notion of generalized radius and diameter. 
The first trials on the full set (126 chemicals) with the selected 9 descriptors lead to a rather “acceptable” MLR 

model: for subset m = 1, R2 = 0.711, Q2 = 0.657 and Q2pred = 0.544, but strong residuals (about 1.1 to 2.1 log unit) 
were observed for compounds ID = 6, 12, 61. So, we decided to discard these compounds and work on 123 
chemicals. We checked that the selected 9 descriptors can be satisfactorily applied to this (slightly), reduced data 
set. 
 
3. Results and discussion 
 

Selected descriptors relevance will be first examined in a Multilinear Regression (by ordinary least squares) 
approach. They will be then applied to various Machine Learning methods using different representations of the 
descriptor space. 

 
3.1 OLS-MLR model 

Multilinear regression performance is now characterized at different levels: data fitting (“recall”), cross 
validation, prediction. Particular attention will be devoted to robustness and accuracy.  

In OLS-MLR model (ordinary least-squares multi-linear relationship), the relation between a (univariate) 
dependent variable y (activity here) and several independent variables xi (structural descriptors) is expressed as: 

 
y =X b +e 
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where X is the matrix of the independent variables xi, b and e being the column vectors of coefficients and residuals 
respectively. Minimizing the residuals by OLS method, it comes: 
 

b = (XTX)-1 XT y 
 
and the calculated response ŷ is: 
 

ŷ = X b 
 
3.1.1 Data fitting and external validation (Subset m = 1) 

For subset m = 1, after discarding deviating compounds 6, 12, 61, the selected 9 descriptors led to: 
 
pEC50  = - 169.8789 + 3.0705 GATS1c – 1.6719 GATS5e + 1.1188 GATS8s - 0.4646 SM1_Dzm  
 + 0.2347 VE3_Dzp + 46.9041 SpMax2_Bhp – 0.0742 SHBint6 - 0.0939 MPC8 
 + 2.3559 topoShape                          (1) 
 

with, in data fitting (recall on training set): N = 99, R2 = 0.749, RMSE = 0.51, MAE = 0.41 and s = 0.53. In leave-
one-out cross validation: R2 = 0.699, RMSE = 0.56, MAE = 0.45 and Q2 = 0.697. And, for the prediction set, R2 
= 0.736, RMSE = 0.59, MAE = 0.47 and Q2-F2 = 0.706. 

Graphs for recall and prediction (on subset 1) are reproduced in Figure 1. 
 

 
Figure 1. MLR correlations between observed and calculated (eq. 1) pEC50 values. * Circles correspond to test 
compounds (subset m = 1), disks to training compounds (“recall”, aka “data fitting”). 

 
From the standardized coefficients, the decreasing sequence of descriptor relative importance is: SpMax2_Bhp, 

MPC8, GATS5e, VE3_Dzp, GATS1c, SM1_Dzm, GATS8s, SHBint6, TopoShape. 
An important aspect of MLR treatment is the “applicability domain” [7]. It characterizes “influential” objects: 

those that in training have a heavy importance in the definition of the model, and in prediction, points falling 
outside this AD, that must be considered with caution. In the leverage approach, the influence of each object on 
the regression result (its “leverage”) is given by the corresponding diagonal element h of the “Hat” matrix H: 

 
H = (XTX)-1 XT 

 
where X represents the matrix of the descriptors characterizing the samples.  

For a study involving n training samples and k variables, objects with h larger than the threshold value h* = 
3(k+1)/n are considered outside the AD. Williams’ plot (standardized residuals vs Hat diagonal values h) 
immediately highlights points outside the AD and outliers with residuals larger than 2.5 times the standard 
deviation (the common norm). Six points fall outside the Applicability Domain (See Williams’plot, Figure 2). 
Compounds ID #85 and 92 (h about 0.46) as compounds 109, 125 (h about 0.31) are well calculated, whereas ID 
#123 and 118 (h about 0.40) show deviations about 1.5 std residual. Note that all these points belong to the training 
set. 

To more firmly establish the robustness and quality of the proposed model (and the corresponding set of 
descriptors) several confirmations were examined. 
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Figure 2. Williams ‘ plot for subset m=1. * Circles correspond to test compounds (subset m=1), disks to training 
compounds (“recall”, aka “data fitting”) 
 
3.1.2 Pluri internal validation processes 

First, MLRs were built with the same structural descriptors for the other subsets previously defined (m = 0, 2, 
3, 4) and for the full set (corresponding to m = 5). Results, gathered in Table 2 (training tr, loo cross validation lo 
and test te, respectively) show that satisfactory correlations of comparable quality are obtained in these various 
trials. Remark that in these processes, when elaborating the corresponding MLRs (with the relevant descriptors 
selected on subset m = 1), the current training set (used to build the corresponding MLR) encompasses only 66% 
of the chemicals involved for the selection of the retained 9 descriptors ((in subset m = 1). For easier comparison, 
the results obtained for m = 1 are repeated in the table. 

On another hand, in these treatments, each compound is considered four times in training and once in prediction. 
To have a global estimate of the predictive ability, we also gathered, in a single file, the predicted values obtained 
in each subset (m = 0 - 4), and calculated the usual statistical parameters for the correlation of these grouped values 
with the experimental ones. Results are reported in the last line in Table 2. 

 
Table 2. Statistical elements for MLRs built on the 6 subsets m = 0-5 

m R2tr RMSEtr MAEtr R2lo  RMSElo MAElo Q2lo R2te    RMSEte MAEte Q2te 
0 0.765 0.50 0.41 0.707 0.56 0.46 0.703 0.646 0.62 0.52 0.621 
1 0.749 0.51 0.41 0.699 0.56 0.45 0.697 0.736 0.59 0.47 0.706 
2 0.767 0.50 0.40 0.712 0.56 0.45 0.708 0.645 0.62 0.52 0.610 
3 0.737 0.53 0.43 0.690 0.58 0.47 0.688 0.750 0.54 0.42 0.712 
4 0.736 0.53 0.43 0.666 0.60 0.48 0.658 0.760 0.55 0.47 0.716 
5 0.744       0.52 0.42                                  0.701 0.56   0.46      0.699   NA    NA      NA   NA 
                                                                                                                                        0.681 0.58    0.48 0.675 

 
3.1.3 Randomized leave-many-out cross validation 

To confirm the choice of the selected descriptors, we carried out 2000 runs of cross validation with 20% data 
left out. For a more homogeneous sampling, we randomly selected, in the ID-ordered list of 123 compounds, 13 
compounds in the more reactive half of the population and 13 in the less reactive part, to build the corresponding 
validation group. The histograms of R2 (fitting), R2 and Q2 (validation aka prediction) are given in Figure 3. The 
obtained values (0.749, 0.717 and 0.689 respectively) confirm the validity of the selected descriptor set. 

Similarly, we also verified that randomly shuffling activity values (2000 runs) led to very low correlation 
coefficients. (Q2 = 0.137 for the m = 1 subset, for example). Consistency of these results prompts us to consider 
that the nine selected structural variables led to satisfactory fitting and prediction for the various populations 
studied. Presumably, this choice would not always be the optimal one when looking independently at each splitting. 
But we consider it gives a unique set of structural variables, actually applicable to the various subsets and that can 
also be used for the other correlation methods we proposed.  

 
3.1.4 “Inactive compounds” 

In the initial data set, seven compounds were discarded since “inactive” (pEC50 < 4). It may be interesting to 
examine at what level our MLR model calculates their pEC50. Table 3 gathers the evaluations from CoMFA values 
(from Wheelock et al study [3]) and our model, eq. (1), established from subset m = 1, but nearly identical results 
would be obtained considering MLR from the whole set of 123 chemicals (m = 5). 
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Although these two series of values are not obtained in identical conditions (158 compounds in CoMFA, 123 
in our work) it is noteworthy than CoMFA predictions are largely overestimated, whereas our proposed values are 
more in agreement with the observed inactivity, at least for six compounds out of seven. Of course, external factors 
(other than the balance of structural influences taken into account by the selected descriptors): experimental 
uncertainty, activity cliff, or change in mechanism, may intervene in the experimentally observed activity. 
However, our results might be considered as a good “rough external validation” of our model. 

 
Figure 3. Histogram of R2 and Q2 results for 2000 random runs on the full set (123 comp.) 

 
Table 3. Predictions (pEC50) for “inactive” compounds by CoMFA [3] and our MLR model (this work)  

COMPOUNDS  CoMFA MLR 
W10 ID127 5.12 3.30 
W12 ID128 6.16 4.23 
W13 ID129 6.62 2.56 
W31                 ID130 5.25 6.62 
W32 ID131 5.23 3.63 
W82 ID132 7.24 4.72 
W100 ID133 6.04 3.19 

 
3.2 Machine Learning approaches 

Although MLR is the most widely used approach in QSAR/QSPR studies, due to its efficient and 
straightforward implementation, Machine Learning methods [10] are increasingly used in the field, particularly 
with recent application to property modelling of nanoparticles [17-19, 29-40]. The approaches here used: Support 
Vector Machine (SVM), Projection Pursuit Regression (PPR), Partial least Squares (PLS), Three-Layer perceptron 
(TLP-ANN), a Back Propagation Artificial Neural Network , have been previously largely presented in various 
publications.[29-40] More details . can be found in specific literature [10, 41-45]. Such approaches usually do not 
propose any explicit, directly usable, formula for property prediction. However they offer easy settings, rapid 
training and generally guarantee to find the global minimum on the error surface. Furthermore the introduction of 
non-linear methods may give more flexibility to adjust the model to experimental observations. 

On the other hand, some of the methods here employed, work on projections of data into structural spaces of 
varied dimensionality: enlarged with SVM, or reduced with PPR, or on transformed data (PLS). So it may be 
interesting to see whether these transformations may affect the encoding of structural information embedded in 
the descriptors and emphasize or deaden some of their specific characteristics. It will be also interesting to examine 
whether they could be used as alternatives, equivalent to MLR, or overwhelm it. In several publications indeed, 
machine learning approaches have proved their ability to cope with nonlinear responses, and proposed improved 
results as compared to MLR correlation models [10, 29, 31, 32]. Suffices it here to recall some basic elements of 
these approaches. 
 
3.2.1 Basics on used Machine Learning approaches 

1) Partial Least Squares 
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PLS [43] operates not on original variables but on components (latent variables) built from them, so as to 
represent (at best) simultaneously the variability of both the structural descriptors and the response (pEC50). This 
is an important difference with Principal Component Regression where the principal components optimize only 
the variable matrix. One advantage of PLS (not important here, however) is that it can be used when variables are 
numerous, highly collinear and even more numerous than samples (as for example in CoMFA analyses). 

2) Projection Pursuit Regression 
Developed by Friedman and Stueltzle [44] this non-parametric method relies on an (empirically determined) 

sum of nonlinear local smooth (univariate) ridge functions introduced iteratively. Schematically, given a trial 
direction vector a, the descriptor matrix X (k variables*n samples) is projected as: 

 
Z= aT X 
 
The model operates on these Z projections (linear combinations of the initial variables) and approximates the 

regression function (linking the property y to associated predictors X) by a finite sum (empirically determined) of 
smooth ridge functions of the new predictor variables Z. As there are infinitely many possible projections from 
higher dimension to lower dimension spaces, it is important to have an optimization technique to pursue a sequence 
of projections that can reveal the most interesting structure in the data set. Once the smoothing function selected, 
the (tuneable) number of projections is automatically determined by optimizing cross-validation results (Q2loo). 

3) Support Vector Machine 
First proposed by Vapnik [41] for classifications, SVM was soon extended to correlations, and is now largely 

used in QSAR studies, including recent applications to nanoparticles [10, 30-39, 42] SVM is rooted to two key 
ideas. First, robustness of the model is privileged over good performance in data fitting (“recall”). Second, (using 
a kernel function) the data are projected in a higher dimensionality space where it may be hoped that a simpler, 
linear representation is possible. Parameters to be set are: 

a) Regularisation constant C; that controls the balance between precision and complexity of the model (too 
small a value gives limited importance to data fitting. A too large value complicates the model and may cause 
overfitting). 

b) Epsilon insensitive loss, that defines the diameter of the “error tube along the regression line” where 
deviations between observed and calculated values are ignored when building the model. 

c) Parameters of the kernel function (if necessary). As to the two most largely used kernel function, the linear 
one (here used) k = xx’ (where x,x’ are independent variables) does not require any parameter, whereas the 
Gaussian kernel (k = exp(-(x-x’)/σ2) depends on the “width” σ. 

4) Three Layer Perceptron (Back Propagation Artificial Neural Network) 
The first layer is fed with the structural descriptors of the investigated pattern. This information (scaled by the 

weights of the connexions input-hidden layers) is send to the units of the “hidden layer”. On each of these units, 
these inputs are summed up, and transmitted, thanks to a transfer function (for example, a logistic one) to the 
output unit where their summation delivers the calculated property value. Connection weights (between units of 
the successive layers) are iteratively optimised from a training set using a “back-propagation algorithm”, operating 
from the output layer to the input layer [45]. In the present application, only one hidden unit was introduced. 

 
3.2.2 Results from Machine Learning approaches 

In the present study, we used for machine learning approaches, the nine descriptors selected by MLR. Diverse 
other selection routines have been proposed, particularly in the framework of the caret package [46], but they often 
relied on classification problem and operate by backward selection. Clearly, using here the descriptors selected by 
MLR and in view of their good results, a drastic improvement of performance would not be expected. However, 
it was interesting to verify whether the changes in the structural space, induced by machine learning approaches, 
may be beneficial.  

Calculations were carried out in the framework of the Cran-R project, using the caret package [46, 47] or home-
made combinations of available R routines. Parameter adjustments involve the number of latent variables (PLS), 
number of projections (PPR), number of hidden units (TLP-ANN), regularisation parameter and noise (epsilon) in 
SVM. In this case, although some programs have been proposed for this setting [48, 49] we prefer using a grid-
type method: for 7 possible values of epsilon (0.10-default to 0.50), several values of the regularisation parameter 
C (1,2,4… 32) are examined and our program automatically determines the best choice. For PPR one projection 
was selected for all subsets. Similarly for ANN the hidden layer encompasses only one neuron (corresponding to 
a 9-1-1 architecture of the network) and 100 iterations were carried out. For PLS, a high number of latent variables 
was necessary (7 to 9), in agreement with the observation that the selected variables are not deeply correlated, and 
(not surprisingly) results are nearly identical to those obtained in MLR. 

For the diverse approaches here used, results are presented in Table 4.for the different subsets, in training, tr, 
loo cross validation lo and prediction te. Line m = 5 corresponds to the results obtained in training and loo for the 
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full population. The last line indicates the correlation observed between experimental pEC50 and the prediction 
gathered in the five subsets m = 0- to m = 4. Results for MLR (Table 2) are repeated for easier comparison. 

 
Table 4. Machine learning approaches. 

m R2tr  RMSEtr MAEtr R2lo RMSElo MAElo Q2lo R2te    RMSEte  MAEte  Q2te 
MLR 
0 0.765 0.5 0.41 0.707 0.56 0.46 0.703 0.646 0.62 0.52 0.621 
1 0.749 0.51 0.41 0.699 0.56 0.45 0.697 0.736 0.59 0.47 0.706 
2 0.767 0.5 0.4 0.712 0.56 0.45 0.708 0.645 0.62 0.52 0.61 
3 0.737 0.53 0.43 0.69 0.58 0.47 0.688 0.75 0.54 0.42 0.712 
4 0.736 0.53 0.43 0.666 0.6 0.48 0.658 0.76 0.55 0.47 0.716 
5 0.744 0.52 0.42 0.701 0.56 0.46 0.699 NA NA NA NA 
        0.681 0.58 0.48 0.675 
PLS 
0 0.765 0.5 0.41 0.693 0.57 0.47 0.688 0.646 0.62 0.52 0.622 
1 0.749 0.51 0.41 0.698 0.56 0.45 0.695 0.737 0.58 0.47 0.706 
2 0.767 0.5 0.4 0.71 0.56 0.45 0.705 0.645 0.62 0.52 0.610 
3 0.737 0.53 0.43 0.689 0.58 0.47 0.688 0.751 0.54 0.42 0.714 
4 0.736 0.53 0.43 0.661 0.61 0.49 0.652 0.761 0.55 0.47 0.717 
5 0.744 0.52 0.42 0.701 0.56 0.46 0.699 NA NA NA NA 
        0.682 0.58 0.48 0.670 
PPR 
0 0.802 0.46 0.37 0.719 0.55 0.46 0.715 0.661 0.61 0.5 0.639 
1 0.763 0.49 0.39 0.705 0.55 0.45 0.703 0.764 0.56 0.45 0.733 
2 0.805 0.46 0.35 0.71 0.56 0.45 0.705 0.643 0.61 0.5 0.632 
3 0.841 0.41 0.33 0.732 0.54 0.43 0.73 0.648 0.63 0.53 0.604 
4 0.827 0.43 0.34 0.673 0.59 0.48 0.671 0.649 0.65 0.53 0.600 
5 0.789 0.49 0.4 0.7 0.56 0.46 0.697 NA NA NA NA 
        0.652 0.61 0.5 0.644 
SVM-LIN 
0 0.76 0.51 0.43 0.704 0.56 0.47 0.702 0.653 0.6 0.49 0.65 
1 0.744 0.51 0.42 0.697 0.56 0.46 0.696 0.728 0.59 0.49 0.698 
2 0.762 0.5 0.41 0.709 0.56 0.45 0.706 0.607 0.65 0.54 0.572 
3 0.732 0.54 0.44 0.696 0.57 0.46 0.693 0.753 0.54 0.42 0.715 
4 0.726 0.54 0.45 0.648 0.61 0.5 0.645 0.743 0.54 0.47 0.720 
5 0.739 0.53 0.44 0.709 0.55 0.46 0.708 NA NA NA NA 
        0.675 0.58 0.48 0.673 
TLP-ANN 
0 0.789 0.47 0.38 0.741 0.52 0.42 0.74 0.639 0.62 0.51 0.625 
1 0.765 0.49 0.39 0.716 0.54 0.43 0.716 0.766 0.56 0.46 0.731 
2 0.79 0.47 0.37 0.724 0.54 0.43 0.722 0.619 0.62 0.5 0.611 
3 0.751 0.51 0.41 0.699 0.57 0.45 0.699 0.797 0.45 0.36 0.795 
4 0.761 0.5 0.4 0.705 0.56 0.45 0.704 0.787 0.54 0.42 0.727 
5 0.764 0.5 0.4 0.725 0.54 0.43 0.724 NA NA NA NA 
        0.703 0.56 0.45 0.700 

 
From Table 4, it appears that, in the diverse investigated approaches, results for the different subsets (m = 

0,,…,4) and the full population (m = 5), with a same correlation method, are highly consistent and led to similar 
statistical criteria. For example, looking at recall results, R2 varied from 0.767 to 0.736 in MLR, and 0.751 to 0.790 
for TLP. In fact, this observation was not unexpected since a common set of descriptors was used, Comparing now 
the different approaches, although the descriptor space was differently treated, MLR, PLS and Linear SVM, in 
recall, leave-one-out cross validation or prediction, gave nearly identical statistical parameters, whereas PPR (in 
data fitting) and TLP (for fitting, loo and prediction) are slightly superior. As additional remarks, it may be seen 
that R2 and Q2-F2 in prediction values were close. This comes from the fact that, since the prediction compounds 
are regularly split along the reactivity scale, the mean values for training and prediction sets are close.  

In Figure 4 are illustrated some examples of these machine learning approaches at different levels: gathered 
predictions for TLP, LOO for SVM, recall for PPR, compared to MLR recall results, here repeated for easier 
comparisons. 
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Figure 4. Correlations of observed pEC50 vs. calculated values by MLR and various machine learning approaches. 

 
3.3 Structural information from selected descriptors 

Importance of the various descriptors on the variations of calculated pEC50 values are exemplified in Figure 5 
where are indicated their contributions ((coefficients of MLR equation (1) times the descriptor value), according 
to ID ordering. Owing to the relatively large number of descriptors (9) intervening in the correlation models, and 
their topological character, it’s difficult to individually associate them to definite influences. Schematically, three 
variables are directly related to the “shape and volume”:  

1) TopoShape: something like a generalized diameter /radius ratio 
2) MPC8: count of atomic paths 
3) SM1_Dzm: involving mass weighting 

 
Figure 5. Individual contributions of the selected structural descriptor to pEC50 

 
But topological distance factors are also present in autocorrelation indices with lag 5 and 8, and in the 

constitution of Barysz and Burden matrices (SM1_Dzm, VE3_Dzp and SpMax2_Bhp). At last electronic 
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characteristics (charge, electronegativity, polarizability, and E-states) also affect GATS1c, 5e and 8s, VE3_Dzp, 
SpMax2_Bhp and SHBint6. Note that the role of H-bond (at least between the carbonyls and NH group with the 
receptor) was cited by Nakagawa et al. [1] whereas consideration of logP did not improve the CoMFA model, as 
noted by Wheelock et al. [3]. Presumably the hydrophobicity influence of phenyl ring substituents (noted in 
previous publications) is more or less included (and borrowed) in unfavourable steric contributions. 

An immediate remark is that for most of them, the variation ranges are of comparable extent, with a weight on 
the global pEC50 values about 1.5 to 4 log units, so that their introduction in the MLR model is mandatory. Only 
few variables are largely nearly invariant for most of compounds and take different values only for few isolated 
chemicals (SHBint6, and to a lesser degree GATS8s). At last TopoShape intervenes for only 0.4 log unit. However 
eliminating these (less efficient) variables is detrimental for the quality of the resulting model. So, for the whole 
set (123 compounds), eliminating one of these less important descriptors lowers R2 and Q2loo from 0.744, 0.699 
to values about 0.705, 0.660 (elimination of SHBint6, TopoShape or GATS8s). Similarly elimination of two 
variables out of these three, led to values of R2 and Q2loo about 0.680 and 0.664. 

 
4. Conclusion 

 
In this paper, the activity of 123 dibenzoylhydrazines, acting as growth regulators was investigated through 2D, 

topology-based, QSAR models. In the framework of open source softwares R and PaDEL and the free application 
QSARINS, the approach relies on topology-based 2D characteristics. These descriptors, easily calculable, and 
structurally invariant, avoid the choice of an active conformation, subsequent energy minimization and (often 
heavy) quantum calculations, and are attainable with only the knowledge of the molecular graph.  

After descriptor selection by MLR-Genetic Algorithm of QSARINS, MultiLinear Regression and several 
machine learning approaches (PLS, PPR, SVM, TLP-ANN) were investigated. They gave satisfactory results, 
highly consistent and robust, of comparable performance. Quality of the models was duly tested not only in data 
fitting, but also in cross validation, varied internal prediction steps or random splitting (two aspects not in depth 
investigated in a previous extended CoMFA study [3]).  
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