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ABSTRACT 

 

The power-duration relationship, comprised of the parameters Critical power (CP) and 

work capacity (ϒ), has been used to model energy expenditure in cycling. For modeling 

recovery, the W'bal model has been used but lacks validation. Additionally, existing 

literature has not focused on quantifying or estimating the inherent trial-to-trial variability 

at the subject level, called the intra-individual variability (IIV), of CP and ϒ, posing 

challenges in modeling and optimization of performance. Thus, the objectives of this 

research are (i) to establish a method to quantify the IIV of CP and ϒ as determined from 

the 3-minute all-out test (3MT), (ii) to develop a testing protocol to understand expenditure 

and recovery of power and ϒ, (iii) to establish ϒ recovery profiles in terms of recovery 

power (Prec) and recovery duration (trec), and (iv) to present a case of cycling performance 

optimization using the energy management system based on athlete-specific models. 

Competitive amateur cyclists participated in two cycle ergometer studies: (i) repeatability 

of 3MTs to quantify IIV and (ii) intermittent cycling, in the laboratory to establish ϒ 

recovery profiles. The studies included an incremental ramp test to determine gas exchange 

threshold (GET), two or four 3MTs to determine CP and ϒ, and nine intermittent cycling 

tests to understand recovery of ϒ. From the repeated 3MT study, a new method was 

proposed to compare any two pairs of the 3MT at the individual level and estimate the IIVs 

associated with CP and ϒ. In the second study, a statistically significant two-way 

interaction effect between Prec and trec on ϒ recovery was observed followed by simple 

main effects seen only with respect to Prec at each trec. This indicates that Prec has a greater 
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influence on the recovery of ϒ in a recovery interval lasting 2-15 minutes that follows a 

semi-exhaustive exertion interval above CP. The overestimation of the actual ϒ-balance at 

the end of the recovery interval by the W'bal models highlights the need for athlete-specific 

recovery parameters or models. Finally, the optimization tests conducted with one subject 

provide encouraging signs for the use of individualized recovery models in real-time in-

situ performance optimization. 
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NOMENCLATURE 

3MT 3-minute all-out test. 

A3 Amount of ϒ expended in the 3-minute all-out interval of the intermittent 
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CNS Central Nervous System. 
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CPft CP determined from the 3min all out interval of the intermittent test 

(Watts). 

CV Coefficient of Variation (%). 

CWR Constant Work Rate test. 

DCP Difference between CP and recovery power (Watt). 

GET Gas Exchange Threshold: a non-invasive surrogate of Maximal Lactate 

Steady State (MLSS) given by the point at which CO2 expiration 

increases relative to O2 consumption (Liter/minute). 

I0 Instantaneous maximum inclination (%). 

I∞ Inclination corresponding to infinite time (%). 

ICC Intraclass correlation coefficient. 
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IIV Intra-individual variability. 

It Inclination at time t (%). 

MLSS Maximal Lactate Steady State: the highest blood lactate concentration 

that can be maintained without further accumulation. 

P Power (Watt). 

Paer, R Maximum aerobic power (Watt). 

PGET Power at GET (Watt). 

Pmax Maximum available anaerobic power/ Instantaneous maximum power 

(Watt). 

Pmech max Maximum power for a 3 second effort (Watt). 

Pmx Maximum power observed during the incremental ramp test (Watt). 

Pp Peak power observed during the 3MT (Watt). 

Pr Power output of interval below CP (Watt). 

Prec Power held during the recovery interval of the intermittent test (Watt). 

Pw Power output of interval above CP (Watt). 

TE Typical error of measurement. 

tLIM Time to exhaustion (second). 

TPp Time taken to reach the peak power Pp in a 3MT (second). 

tr Duration of interval below CP (Watt). 

trec Duration of the recovery interval of the intermittent test (second). 

TW Total work done during the 3MT (Joule). 

tw Duration of interval above CP (Watt). 
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V̇O2 Volume of oxygen uptake (Liter/minute). 

V̇O2max Maximum oxygen uptake (Liter/minute). 

V̇O2peak Peak oxygen uptake (Liter/minute). 

W'exp Amount of ϒ expended (Joule). 

δ Ratio of the absolute difference between two trials and the average of the 

two trials (%) 

λ, kcycle Model constants (1/second) 

τ, τW', k Time constants (second). 

ϒ, W', W'0 Work Capacity, curvature constant of the power and time relationship 

(Joule). 

ϒSK2, ϒBAR, W'bal Model predicted amount of ϒ remaining; SK2: Skiba 2 model and BAR: 

Bartram model (Joule). 
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CHAPTER ONE: INTRODUCTION 

 

1.1.  Background 

The study of human fatigue, energy expenditure, and to a lesser degree recovery, has been 

a focal area of research since the early 1900s. Seminal works in the fields of exercise 

physiology and performance modeling by Hill [1], Monod and Scherrer [2], and Ward-

Smith [3] have laid the groundwork for modeling energy expenditure during prolonged 

exertion. Recently, researchers have developed formal mathematical models that aid in 

better management of performance and push limits of human endurance. Most available 

models have originated from cycle ergometer tests [4] due to the ease of measuring power 

in cycling and then applied to other forms of exercise like running [5], swimming [6], and 

rowing [7]. Additionally, most of these models focus on energy exertion with only a few 

publications that focus on energy recovery, which could give us valuable insight into the 

physiological underpinnings of fatigue, recovery, and ultimately optimizing performance. 

Furthermore, developing models of human performance and fatigue lead to applications 

such as mission planning of soldiers, and investigating the influence of physical activity of 

cardio-vascular and overall health of a human being. 

The purpose of this chapter is: 

• To explain the motivation behind the work presented in this 

dissertation. 

• To give an overview of fatigue in relation to power and introduce 

the critical power concept. 

• To state the research objectives and approaches to accomplish the 

same. 
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1.2.  Understanding fatigue 

From an overall human body perspective, the occurrence of fatigue is governed by both 

the central nervous system (CNS) and the muscular system (peripheral system) [8], [9]. 

The CNS mobilizes muscles by stimulating the motor units which results in contraction of 

the muscles producing force or power. Central fatigue occurs due to the failure of the CNS 

to drive and maintain muscle activity [10]–[14].  Whereas, changes within the muscular 

and metabolic system results in peripheral fatigue [11], [15], [16]. It is shown that in 

healthy individuals, central fatigue contributes about 15%-22% towards fatigue during 

muscle contraction [15], [17], [18]. Thus, it is practical to consider fatigue as a result of 

concurrent occurrence of central and peripheral mechanisms [17], [19], [20]. 

There are several definitions of fatigue across researchers that limit the ability to measure 

and develop mathematical models [21], [22]. Fatigue is defined as the progressive loss of 

the ability of the muscular system to sustain this power (energy exertion) over a desired 

duration of time [15]. Fatigue is also defined as an impairment in performance due to 

increase in perceived effort coupled with the inability to produce the desired force [23]. 

For the purpose of this manuscript, fatigue is defined as an exercise induced progressive 

loss of the ability to sustain maximum power (energy exertion) over a desired duration of 

time [12], [15], [21], [22], [24]. Thus, fatigue is a dynamic process that leads to a drop in 

the required exercise intensity, which eventually leads to termination of exercise due to 

exhaustion [16], [25]–[28]. 

Exercise intensity is generally categorized as severe, heavy, or moderate [29], [30] based 

on blood lactate levels [31], maximum oxygen uptake (V̇O2max) [32], [33], or power output 



3 

 

[33]. Maximal Lactate Steady State (MLSS) is often used to categorize exercise intensity. 

MLSS is the highest blood lactate concentration that can be maintained without further 

accumulation during sub-maximal work [34], [35]. The exercise intensity associated with 

MLSS indicates the highest intensity that can be supported by aerobic mechanisms [34], 

[36] and thus, differentiates the aerobic and anaerobic domains. There are many methods 

developed to determine MLSS, however, all of them involve taking blood samples to 

measure the lactate concentration. 

Critical power can also be used to determine exercise intensity [33], [37]. Critical power 

(CP) represents a power output beyond which muscle metabolic homeostasis cannot be 

attained [38]–[40]. CP is shown to be in close vicinity to the power at which MLSS occurs 

[41]–[43]. Therefore, CP provides a convenient and non-invasive way of determining 

exercise intensity. The V̇O2 and blood lactate levels attain a steady state during exercise 

below CP and hence can be classified as either moderate (below lactate threshold) or heavy 

(from lactate threshold to CP) intensities [33], [37]. However, exercise above CP is 

categorized as severe intensity as V̇O2 and blood lactate levels cannot attain a steady state 

[33]. Thus, CP represents the boundary between heavy and severe intensity exercises [39]. 

Exertion below CP can last for a long time as the fuel capacity is large. Whereas, exertion 

above CP is limited in capacity and relatively lasts for a shorter duration. This limited 

capacity above CP is referred to as work capacity (ϒ), which is a finite energy reservoir 

for exercise intensities above CP. 
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1.3.  Critical Power (CP) and Work Capacity (ϒ) in brief 

Critical Power (CP) and work capacity (ϒ) are the power asymptote and the curvature 

constant respectively of the hyperbolic relationship between power and time-to-exhaustion. 

CP represents the highest power output above which muscle metabolic steady state cannot 

be attained [38]–[40] and ϒ represents a finite amount of work that can be done at 

intensities above CP [44], [45].The hyperbolic relationship was proposed by Monod and 

Scherrer [2] by conducting a series of constant load dynamic exercises pertaining to 

specific muscle groups. Moritani and colleagues [4] extended the CP concept to cycling 

using a series of constant work-rate (CWR) tests to exhaustion (See Figure 1-1). 

 

Figure 1-1. The hyperbolic relationship between power (P) and time-to-exhaustion tLim 

The CP concept has a potential application in modeling an energy management system for 

the human body for a physical task. The physical task is chosen to be cycling in this 

research due to the relative ease with which power can be measured. The rate of discharge 

and recharge of ϒ can be used to develop a combined expenditure-recovery model for a 
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cyclist, which would be representative of an energy management system. The amount of 

ϒ remaining would represent the state of fatigue of the cyclist leading to better informed 

strategies to improve and optimize performance. The cyclist will be able to pace themselves 

better, thereby, meeting their training/race goals and improving their performance. 

1.4.  Research goals 

The goals of this research are to (i) understand the recovery of ϒ in relation to different 

recovery powers and recovery durations, (ii) investigate the possibility of a combined 

expenditure-recovery model of ϒ to develop an energy management system and optimize 

cycling performance. These goals are accomplished in the following chapters whose 

organization is described in the next section. 

1.5.  Outline of the dissertation 

This dissertation is presented in five chapters. The current chapter describes the motivation 

behind the project, introduces the critical power concept, and defines the scope of the work. 

Chapter 2 surveys the literature for power-based fatigue models to identify research 

opportunities and formulate objectives specific to achieving the research goals. Chapter 3 

describes the method proposed to estimate the individual variability of CP and ϒ. Chapter 

4 describes the hypothesized behavior of recovery of ϒ with respect to recovery power and 

duration and describes the experimental protocol with results. Conclusions, future work, 

and research contributions are discussed in Chapter 5. 
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CHAPTER TWO: LITERATURE REVIEW1 

 

2.1.  Critical power concept 

The critical power concept was introduced by Monod and Scherrer [2] using a linear 

relationship between total work done and time-to-exhaustion. Monod and Scherrer’s work 

was based on Hill’s [1] observations pertaining to athletic records in different sports. 

Monod and Scherrer coined the terms Critical Power (CP) and limit work (WLim). They 

defined CP as the power output that an athlete can generate indefinitely and WLim as the 

total work done until exhaustion at a constant work-rate above CP related by a linear 

relationship given by, 

Lim LimW a b t= +   
(1) 

where, ‘a’ is an energy reserve in the units of work (Joules) and the constant ‘b’ is the 

critical power in Watts, and tLim is time-to-exhaustion in seconds. Monod and Scherrer 

derived a hyperbolic form for tLim by substituting WLim as, 

 

1 The work presented in this chapter stems from the following paper: 

Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. “A survey of mathematical models of human 

performance using power and energy”. Accepted (December 2019), Sports Medicine – Open. 

The purpose of this chapter is: 

• To conduct a review of power-based fatigue and recovery models 

available in literature. 

• To identify research opportunities and define the scope of this 

research.  
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Lim LimW P t=   
(2) 

Using Equation 2 and transforming Equation 1 as: 

Lim

a
t

P b
=

−
 

(3) 

where, P is power in Watts. Moritani and colleagues [4] extended the critical power concept 

to cycling using a series of cycle ergometry tests and called the term ‘a’ as anaerobic 

reserve deriving the linear relationship between P and 1/tLim from Equation 3 given by, 

Lim

a
P b

t
= +  (4) 

Whipp and colleagues [46] then fit a hyperbolic curve between P and tLim with a time 

asymptote at a power level that is equal to CP and denoted the anaerobic reserve term as 

W'. The anaerobic reserve term, W' has since been referred to as anaerobic work capacity 

(AWC) and these two terms have been used interchangeably. However, it has been shown 

that W' is not equal to AWC and the two terms should not be used interchangeably [28], 

[47]. Additionally, it should be noted that W' (pronounced W prime) may lead to confusion 

in mathematical modeling as it is common notation to use “prime” to represent the first 

derivative with respect to time. Hence, W' is referred to as ϒ hereafter. Rewriting Equation 

4 by replacing ‘a’ with ϒ and ‘b’ with CP yields the following relationship, 

Lim

P CP
t


= +  (5) 

Equation 5, widely regarded as the 2-parameter model, has been transformed to its linear 

form, first seen in [4] and later in [2], [48]–[50], by plotting power versus 1/tLim with CP 

and ϒ representing the y-intercept and slope respectively as shown in Figure 2-1. The CP 
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concept has been applied to running [5], swimming [6], and rowing [7] with analogous 

parameters such as Critical Velocity (CV) and distance capacity (D') instead of CP and ϒ 

respectively. 

 
(a) 

 
(b) 

Figure 2-1. The 2-parameter model, (a) the hyperbolic form and (b) the linear transformation with Critical 

Power (CP) as the y-intercept and curvature constant (ϒ) as the slope. 

A limitation of the CP concept described by Equation 5 is that as tLim approaches 0, P tends 

to infinity (See Figure 2-2). This is not realistic as there is a limit to the instantaneous 



9 

 

maximum power that a human can produce [51], [52]. Moreover, Josephson [53] states that 

the maximum power output for a muscle occurs at 30% of its maximum shortening velocity 

(Vmax). It takes a short duration of time for the muscle to reach 0.3 Vmax starting from rest. 

Therefore, it may beneficial to define the instantaneous maximum power as the average 

power-output for one crank rotation [54]. Additionally, some publications have reported 

that the average duration for which the CP can be maintained is less than an hour [55]–

[58], while others have reported that it can be maintained for approximately over an hour 

[59], [60]. D. W. Hill [49] suggests that the end point of the tests proposed to the subjects 

in these studies, i.e., 24-30 minutes in [61], [62] and 60-90 minutes in [55], [59] may have 

influenced the outcome. Several researchers have attempted to address the limitations of 

the 2-paramter model. These models are shown in Table 2-1. 

 

Figure 2-2. The 2-parameter model and its limitations. As tLim tends to 0, P tends to ∞, and Critical Power 

(CP) is the power asymptote at tLim = ∞.
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Table 2-1. Models that address the limitations of the 2-parameter model. 

Researchers Model Model terms 

Ward-Smith [3] 

(1985) 

Running 

( )

max( ) ( ) e tP t P R R− = −  + # 

Pmax: Maximum available 

anaerobic power, R: 

Maximum aerobic power, and  

λ: A constant. 

Hopkins and 

colleagues [63] 

(1989) 

Treadmill 

running 

( / )

0( ) e t

tI I I I −

 = + −   

It: Inclination at time t, I∞: 

Inclination pertaining to 

infinite t, I0: Instantaneous 

maximum inclination, and  

τ: A time constant. 

Morton [64] 

(1996), 

Cycling 

max

,
AWC AWC

t k k
P CP CP P

= + =
− −

 
Pmax: Instantaneous maximum 

power. 

Weyand and 

colleagues [65] 

(2003), 

Cycling 

( )

aer mech max aer( ) ( ) e cyclek t
P t P P P

− 
= + −   

Paer: Maximum aerobic power, 

Pmech max: Maximum power for 

a 3s effort, and kcycle: A 

constant. 

Morton [66] 

(2009), 

Running/Cycling 

( / )

max( ) ( ) e t kP t CP P CP= + −   

Pmax: Instantaneous maximum 

power producible and k: A 

constant. 
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#The model shown is a simplified form. The complete model can be found in the original 

article by Ward-Smith [3]. 

 

Models from Ward-Smith [3], Hopkins and colleagues [63], Weyand and colleagues [65], 

and Morton (2009) [66] are all fundamentally the same with  

(i) R, I∞, and Paer analogous to CP 

(ii) Pmax, I0, Pmech max representing the instantaneous maximum power that can be 

produced, and 

(iii) λ, τ, kcycle, and k representing constants whose values and signs are dependent 

on the regression fit. 

Figure 2-3 shows three models (2-parameter, 3-parameter, and exponential) plotted against 

experimental data presented by Gaesser and colleagues [48]. The values of CP, ϒ, and Pmax 

were taken from [48] and data points were extracted using the open source software Plot 

Digitizer. Table 2-2 summarizes the estimates from each method. 
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Figure 2-3. The 2-parameter model (solid line), the 3-parameter model (dashed line), and the exponential 

model (dotted line) fitted to the same experimental data (solid circles) presented by Gaesser and colleagues 

[48]. Data extracted from Figure 2 in [34] (p. 1434) and redrawn with permission using the values reported 

in the original article. 

Table 2-2. Summary of estimates from all models fit to the data presented by Gaesser and colleagues [48]. 

Model CP (W) ϒ (J) Pmax (W) 

Additional model parameters 

(λ, τ, kcycle, or k) (s) 

2-parameter 176 29100 NA NA 

3-parameter 165 47900 491 − 146.93 

Exponential 205 NA 452 0.0044 or − 225.2867* 

*Morton’s [66] k = – 225.2867, Hopkins’ [63] τ = 225.2867, which are same as Weyand’s [65] – 

1/kcycle and Ward-Smith’s [3]  – 1/ λ. 

 

There are other models available in literature that predict performance with higher accuracy 

(For example: Peronnet and Thibault [67] for race performance and Morton [68] for 

endurance at incremental and constant power exercises). However, these models, like 

Ward-Smith’s complete model [3] are complex and need determination of several 

parameters, which involves a greater investment of time and resources. Furthermore, 
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algebraic manipulations of the 2-parameter model shown in Equation 5 have been 

presented in literature. However, these models yield different estimates of CP and ϒ at the 

individual level for the same data as seen in [48], [69], [70]. These differences in estimates 

could originate from the rounding off approximations of reciprocals such as 1/tLim. CP 

estimates from different models are reported to be in close agreement with each other in 

[48], [69], [70]. However, as illustrated in Table 2-2, the estimation of ϒ remains elusive 

as the same data can yield different estimates depending on the model used even though 

CP estimates are comparable [48], [52], [69]–[75]. The 2-parameter model, though having 

limitations (P = ∞ at t = 0 and CP lasting indefinitely), owing to its simplicity, can 

potentially be used to optimize performance as well as determining strategies by estimating 

time-to-exhaustion [27], [28], [76]. 

2.2.  Methods and protocols to estimate CP and ϒ 

The first experimental protocol to estimate CP and ϒ was derived from Monod and 

Scherrer’s [2] work. Subjects completed at least three constant work-rate (CWR) to 

exhaustion tests. From these tests, the experimental results are fit to the 2-parameter model 

resulting in CP and ϒ estimates. Hill [49] suggests the use of the linear model (P versus 

1/tLim) with at least 4-5 CWR tests to arrive at CP and ϒ estimates.  

While less prevalent in literature, Morton [72] demonstrated another method to determine 

estimates of CP and ϒ from ramp exercises to exhaustion by deriving an equation between 

time-to-exhaustion and ramp slope given by, 
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2CP
T

S S

 
= +  

(6) 

where, T is the time-to-exhaustion in seconds and S is the ramp slope in Watts/second. 

Morton suggested that subjects complete 4-5 ramp tests to exhaustion at different slopes. 

The time-to-exhaustion from these tests are then plotted against the slopes and Equation 6 

would be fitted to the data to determine CP and ϒ. Morton claims that the estimates from 

this protocol appear to be lower than those from the CWR protocol thus, addressing the 

overestimation of CP reported in a few publications cited earlier. The ramp protocol was 

compared to the CWR protocol by Morton and colleagues [77] showing an underestimation 

of ϒ and no statistical difference for CP. However, a closer inspection shows 

underestimation of ϒ by approximately 10kJ, 4kJ, 3kJ, and 9kJ for subjects 1, 2, 3, and 6 

respectively and an overestimation of ϒ by approximately 8kJ, 6kJ, and 3kJ for subjects 4, 

9, and 10 respectively (see Table 1 in [77]). 

Vanhatalo and colleagues [78] more recently proposed the 3 min all-out test (3MT) to 

determine CP and ϒ in fewer laboratory visits. This test involves pedaling at all-out 

intensity for 3 minutes with CP estimated by the average power from the last 30 seconds 

and ϒ given by the area under the curve above CP [71], [78]. Figure 2-4 shows the 

schematic representation of a notional 3MT. Parallels can be drawn between the 3MT and 

the Wingate anaerobic test [79], which is essentially a 30s all-out test. Studies that compare 

ϒ to the anaerobic capacity from the Wingate test report a correlation coefficient of ~0.7 

[80], [81]. Therefore, the anaerobic capacity from the Wingate test and ϒ cannot be used 

interchangeably. 
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Figure 2-4. Schematic representation of a 3-min all-out test to determine Critical Power (CP) and the 

curvature constant (ϒ). The average power of the last 30s yields CP and the area below the curve and above 

CP yields ϒ. 

The estimates from the 3MT have been compared to those from the CWR tests in [43], 

[74], [82] and thereby, validating the 3MT. Burnley and colleagues [83] saw (in 7 out of 

11 subjects) a steady state blood lactate and oxygen uptake profile in 30 minutes of exercise 

at 15 W below CP determined from the 3MT. The same subjects pedaled at 15 W above 

CP which resulted in an average time-to-exhaustion of 13 ± 7 minutes. Black and 

colleagues [76] used the CP determined from the 3MT to successfully estimate a 16.1 km 

time trial performance. However, studies have reported that the time-to-exhaustion at CP 

derived from the 3MT to be 14.79 ± 8.38 minutes and 12.5 ± 6.5 minutes in [84] and [85] 

respectively. These are similar to 13 ± 7 minutes for exercise at 15 W above CP reported 

by Burnley and colleagues [83]. Moreover, ϒ from 3MT has also been reported to be 

overestimated in comparison to CWR protocol (11.37 ± 3.84 kJ vs 9.55 ± 4 kJ) in [86]. 

However, as discussed in [87] the errors observed in the estimates could be attributed to 

not using the same equipment, or not adhering to the test procedure laid out in [78]. 
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Additionally, the inherent day-to-day or trial-to-trial variability within subjects, referred to 

as the intra-individual variability (IIV), may have contributed to the shorter time-to-

exhaustion observed at CP [28], [52]. Hence, exercise outside a subject’s 95% confidence 

interval of CP, i.e. outside the bounds of the IIV associated with CP (similar to 15 W above 

and below CP in [83]), will yield better insights into reliability of the 3MT. 

2.2.1.  Limitations of the protocols used to determine CP and ϒ 

The CWR protocol is considered as the “gold-standard” to estimate CP and ϒ as it was the 

first method to be proposed. However, the CWR protocol is not devoid of shortcomings. 

Using the CWR protocol, Bishop and colleagues [88] and Jenkins and colleagues [89] 

illustrated that the duration of the predicting trials influences the estimates with both CP 

and ϒ computed from three shortest duration trials being significantly greater than those 

from the three longest trials. Furthermore, CP estimates from the CWR protocol at 60rpm 

have been found to be significantly greater than those at 100rpm [90]. Considering these 

limitations, Muniz-Pumares and colleagues [75] suggest the use of the 2 parameter 

hyperbolic model with at least three CWR trials of durations > 2 minutes and < 15 minutes 

and freely chosen cadence to arrive at reliable estimates.  

The 3MT avoids the need to do multiple tests to arrive at CP and ϒ. However, there are 

reports of overestimation of CP from the 3MT [84], [85], [91], which are comparable to 

other reports of overestimation of CP from the CWR tests in [55]–[58]. The 3MT appears 

to reliably predict a 16.1 km time trial performance [76], which is in accordance with other 

studies that report the validity of CP to be 40 minutes to over 1 hour [49], [59], [60]. These 
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contradictory results can be attributed to equipment, test method, validation methods, and 

the day to day variability of the participants [28], [52], [87].  

It has been shown that the day-to-day (or trial-to-trial) variability within a person, i.e. IIV, 

affects performance during physical activities in [92]. The CWR tests, depending on the fit 

and the model used, yield standard errors of estimation (SEEs) for CP and ϒ. These SEEs 

give a measure of goodness of fit and not the IIV. To capture and quantify IIV using the 

CWR protocol, exercise to exhaustion at each work-rate must be repeated multiple times. 

CP and ϒ estimates for each set of tests could be determined, which can then be averaged 

to arrive at a grand mean for CP and ϒ (See Figure 2-5). On similar lines, Triska and 

colleagues [93] conducted maximal effort time trials spanning 3, 7, and 12 minutes with 

each trial repeated thrice (One familiarization and two repeats), and computed CP and ϒ 

for each data set using the 2-parameter hyperbolic model. They found higher reliability 

between the post familiarization trials with intra-class correlation coefficient of 0.95 and 

0.94 and a coefficient of variation of 2.6% and 8.2% for CP and ϒ respectively. However, 

an average CP and ϒ for all three sets of data (or post familiarization trials) could be 

computed to yield grand means for CP and ϒ for each subject with their IIVs as shown in 

Figure 2-5. Although costly in terms of time, this method leads to a more complete 

understanding of ϒ, which has been shown to be ambiguous and significantly dependent 

on the mathematical model used [48], [69]–[71], [73]–[75].  
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Figure 2-5. Repeated constant work-rate (CWR) tests to capture intra-individual variability (IIV) associated 

with Critical Power (CP) and curvature constant (ϒ) estimates. The dotted, dashed, and dot-dashed lines 

show the fits to the different sets of data and their respective asymptotes. The grand means for CP and ϒ are 

obtained by averaging the respective parameters estimates from each curve fitting. 

Though the 3MT has been shown to be repeatable in [83], a closer investigation of the 

Bland-Altman plots presented in the first paper on 3MT [83] (p.1998, Figure 1, panel D) 

shows the bias and 95% limits of agreement of –1 ± 15 W resulting from the variability 

associated with each subject’s CP estimate across two trials. A 15 W change in CP between 

two 3MTs contributes to a difference of 2700 J of ϒ across the 3 minutes of the test. This 

IIV needs to be accounted for before prescribing training schedules and interventions based 

on the 3MT. The estimates from the CWR protocol have associated SEEs for CP and ϒ, 

whereas it is not possible to get a standard error for ϒ from a 3MT. A possible way to arrive 

at SEEs for CP and ϒ from the 3MT is by fitting a curve to the data. Morton [66] used a 

bi-exponential extension to his exponential model [66] (last row in Table 2-1) to be 

applicable to all-out efforts given by, 
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/ / '

max IN( ) ( ) t k t kP t CP P CP e P e−= + −  +   (7) 

where, P is the power at any time t, CP is the critical power, Pmax is the instantaneous 

maximum power, PIN is the power required to overcome the initial inertial resistance of the 

ergometer flywheel, and k and k' are constants. The PIN term accounts for 0-5s of the all-

out test. The model in Equation 7 is shown to fit the all-out test data with R2 = 0.985  in 

[66]. However, it has a few limitations that are discussed below. 

At t = 0, P(0) = Pmax + PIN, which is not possible as the instantaneous maximum power that 

can be generated is Pmax. Instead, at t = 0, P(0) = Pmax − PIN is a more realistic power output. 

The Pmax – PIN correction is a mathematical quirk and may appear to lack physiological 

basis. However, Pmax could be assumed to be equal to either the average power output of 

one crank-rotation [54] or the power output of 3s trial [65] which accounts for the 

physiological constraints of producing an instantaneous Pmax. Furthermore, if the all-out 

interval starts from rest, then at t=0, P(0) = 0, is a more valid initial condition as power is 

defined as energy-expended/time and no energy is expended before starting the exercise.  

Morton fit the model to Burnley’s data in [83] which resulted in the CP = 336.3 ± 1.2 W, 

Pmax = 959.3 ± 7.9 W, PIN = 512.1 ± 13.8 W, k = −29.9 ± 0.5 s, k' = 3.14 ± 0.16 s. Using 

these values in Equation 7 and plotting against time (from 0 to 180s) does not result in the 

desired shape of the 3MT as shown in Figure 2-4 (See Figure 2-6). If PIN were to be 

negative, the resulting shape would be similar to that of Figure 2-4. However, a negative 

resistance for the flywheel is unrealistic. 
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Figure 2-6. model [66] plots showing positive inertial resistance of ergometer flywheel, PIN (solid line) and 

negative PIN (dashed line). The positive PIN term does not yield the shape shown in Figure 2-4. 

The power required to overcome the inertial resistance of the flywheel can be computed 

using the Newton’s second law for rotational motion as shown in [94]. The PIN term is a 

function of torque and acceleration. Thus, there is no reason to assume an exponential 

decay as shown in Equation 7. A piecewise model could be developed for a 3MT with the 

first piece to account for the power needed to overcome the flywheel’s inertia and the 

second to account for the decline from peak power to CP. Furthermore, the time taken by 

the muscle to reach Pmax needs to be accounted for in the first piece where the muscles are 

overcoming the flywheel resistance while reaching their maximal power output. 

The SEEs from curve fitting, as mentioned earlier, do not quantify the IIV associated with 

CP and ϒ for an individual. Conducting multiple tests and computing grand means for CP 

and ϒ from each set of tests significantly increases the time investment. There is a need for 

better methods to capture the IIV from a 3MT, minimize the number of testing days, and 
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statistically compare two 3MTs to arrive at reliable estimates of CP and ϒ for an individual. 

Furthermore, most studies report the average of their participant groups. While this is 

convenient in terms of comparing them with estimates from other methods and protocols, 

they give little information pertaining to the repeatability and variability at the individual 

level. It is, therefore, practical to consider individuals rather than groups and arrive at 

athlete-specific models. This is important in terms of modeling recovery of ϒ which could 

be appended to the 2-parameter CP model, thereby aiding in performance optimization. 

2.3.  Adding recovery to the 2-parameter model 

The CP concept has been discussed using a hydraulic vessel analogy by Morton [52]. 

Morton [52] discusses that the aerobic and anaerobic domains are analogous to energy 

vessels connected by a tube of fixed diameter, with the anaerobic vessel being limited in 

capacity and the aerobic being unlimited (See Figure 2-7). Morton suggests that when 

functioning above CP, energy is derived from the anaerobic vessel, whereas when 

exercising below CP, energy is supplied by the aerobic vessel. Morton’s hydraulic analogy 

considers CP to be the boundary between aerobic and anaerobic domains, and AWC to be 

equal to ϒ as it was published around the same time as the Dekerle and colleagues’ study 

[47] that showed that AWC and ϒ cannot be used interchangeably. 
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Figure 2-7. Critical power (CP) concept using Morton’s hydraulic vessel analogy [52]: Energy domains show 

sub-CP and supra-CP vessels connected by a tube of fixed diameter. Morton’s aerobic and anaerobic vessels 

are replaced by <CP and >CP respectively as the curvature constant (ϒ) and Anaerobic Work Capacity 

(AWC) cannot be used interchangeably. 

Ignoring the assumption of AWC and ϒ being equal, Morton’s analogy suggests that while 

below CP, the curvature constant ϒ (limited capacity tank in Figure 2-7) is refilled or 

recovered. This suggestion presents the possibility of modeling the recovery of ϒ while 

exercising below CP and thereby, together with the 2-parameter model, optimizing 

performance. While there are models to estimate the depletion of ϒ, there are only a few 

models that attempt to estimate its recharge/recovery while below CP. 

The first model considering recovery of ϒ was proposed by Morton and Billat [95]. Morton 

and Billat [95], based on the 2-parameter model, derived an equation for time-to-

exhaustion for intermittent exercise by assuming that the rates of recharge and expenditure 

of ϒ were equal given by, 

( )( ) ( )

( )

w r w w r r

w

n t t n P CP t CP P t
t

P CP

 + +  −  −  − −   =
−

 (8) 
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where, t is the total duration of the intermittent exercise, n is the number of intervals, tw 

and tr are respective durations of intervals above and below CP, and Pw and Pr are respective 

power outputs of intervals above and below CP. Ferguson and colleagues [96] were first to 

quantify recovery of ϒ by proposing that it is “curvilinear” and not proportional to its 

depletion as assumed by Morton and Billat [95]. Acknowledging this curvilinear nature of 

recovery of ϒ, Skiba and colleagues [97]–[100] proposed a model which assumed the 

behavior to be exponential given by,  

'

( )

0

' ' ' W

t ut

bal expW W W e du


 −
− 
 = −   (9) 

where, W'bal is the ϒ-balance at any time during exercise, W'exp is the amount of ϒ 

expended, (t − u) is the duration of the recovery interval, and τW' is the time constant of 

reconstitution of ϒ in seconds given by, 

( 0.01 )

' 546 316CPD

W e −
=  +  (10) 

where, DCP is the difference between CP and average power output during all intervals 

below CP. Equation 10 is a non-linear regression obtained by plotting τW' values (calculated 

by setting W'bal =0 in Equation 9 at the termination of exercise) against respective DCPs. 

Skiba’s model was validated in [98] where an average ϒ-balance  at exhaustion of 0.5 ± 

1.3 kJ was reported. However, the model cannot be used to determine ϒ-balance  in real 

time [87] (p.78) as the τW' term needs W'bal to be zero which is not known until the 

termination of each test. Moreover, three forms of the W'bal model have been published by 

Skiba and colleagues [97]–[100]. The first [97] contains only the integrand and not the 

differential variable. The second [98], [99] contains the differential “du” as shown in 
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Equation 9, whereas the third [100] has “dt” as its differential variable. Changing the 

differential variable from “du” to “dt” yields different results upon integration. 

Additionally, inspecting Equation 9 reveals that the integral term on the right-hand side has 

units of Joules-second causing an inequality as the units of the left-hand side is Joules. The 

detailed derivation of the mathematical solutions for both “du” and “dt” as the differential 

term of the W'bal model illustrating the difference in results as well as the imbalance of 

units is available in Appendix A. Furthermore, the standard errors associated with the 

estimation of CP and ϒ may cause a negative balance of ϒ-balance  (can be seen in [98], 

Figure 2, p.903). Skiba and colleagues [99] proposed a biconditional W'bal model which 

resolves the inequality of units (can be seen in Appendix 1 of [99]) given by,  

 0

0 exp

, ' ' ( )

, ' ' '

t

bal

bal

If P CP W W P CP t

If P CP W W W e


− 
 
 

 = − − 

 = − 

 (11) 

where, W'0 is ϒ at time t = 0 and τ = W'0/DCP. Bartram and colleagues [101] illustrated that 

Equation 11 (referred to as SK2 in Chapter 4) underestimates the recovery of 𝑊′ in elite 

athletes and proposed that τ be modified as, 

0.6882287.2 CPD −=   (12) 

They also suggested deriving group/athlete-specific time constants to be able to accurately 

estimate ϒ recovery. The model using the τ from Equation 12 will henceforth be referred 

to as BAR in chapter 4. Bickford and colleagues [102] developed a model of recovery of 

ϒ which was derived from limited data and thus needs refinement. 

Apart from the models presented above, at the time of submission, there are no models 

available in literature that attempt to model the recovery of ϒ. These models need to be 
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improved for accurately modeling the recovery of ϒ and combining them with the models 

of exertion that are well established in the literature. There is potential in extending the 2-

parameter model to include the recovery of ϒ. A combined exertion-recovery/discharge-

recharge model of ϒ will be worthwhile in estimating the time-to-exhaustion of endurance 

efforts and optimizing performance. The potential of optimizing performance to 

accomplish a 2-hour marathon has been illustrated by Nike’s Breaking2 project [103] 

which has inspired modeling studies by Hoogkamer and colleagues [104]–[106] based on 

the 2-parameter CP model with exponential recovery similar to Equation 11, 

biomechanical improvements, shoe design improvements, and drafting strategy. 

Furthermore, the successful completion of a sub 2-hour marathon by Eliud Kipchoge as a 

part of the INEOS 1:59 challenge in Vienna in October 2019 provides encouraging signs 

for investigative studies focusing on optimization of performance in other endurance 

sports.  

2.3.1.  Applications of a combined expenditure-recovery model of ϒ 

In the literature reviewed thus far, studies modeling recovery of ϒ are not common. A 

limited number of studies attempt to address the need for a combined expenditure-recovery 

model. Skiba’s first model [97] is similar to the mono-exponential ventilatory gas exchange 

model for moderate intensity cycling proposed by Whipp and colleagues [107] and 

Vandewalle and colleagues’ aerobic power model [81]. The exponential assumption of 

recovery seems logical as sub-CP exercise is considered to be supported by aerobic 

mechanisms [52]. The τW' relation in Equation 10 is representative of the 7 recreational 
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athletes from whose data it was derived. Though the model was validated using data from 

8 triathletes in [98], it may not be able to predict the recovery of ϒ for athletes of higher or 

lower caliber. This is illustrated by Caen and colleagues [108] where faster recovery of ϒ 

was observed. Skiba’s second model (also mono-exponential) [99], derived from first 

principles with valid assumptions, addresses some limitations of the earlier version. 

However, it has not been validated, and like its predecessor, has been shown to have slower 

recovery kinetics for elite athletes by Bartram and colleagues [101].  

De Jong and colleagues [109] used the 2-parameter model to simulate the optimization of 

a 5km time-trial performance. However, a recovery model in combination with the 2-

parameter model will aid in optimizing performance over longer durations and distances. 

There have been other attempts at combining the 2-parameter model with a recovery model 

[102], but the limited data results in the need for refinement. The advantage of an exertion-

recovery model is the ability to accurately predict the time-to-exhaustion during endurance 

exercises. Furthermore, modeling fatigue, exhaustion, and recovery has applications not 

only in the field of athletic training and performance but also in the fields of medicine and 

health monitoring [15], [27], [28].  

With an exertion-recovery model based on the CP concept, an energy management system 

can be designed that will regulate the expenditure and recovery of ϒ.  The optimization 

objectives would be minimizing time and maximizing distance by maximizing power 

output with the help of an exertion-recovery model. For example, in cycling races, 3-4 

cyclists form pelotons to reduce drag. It has been shown that the cyclists in the middle of 

a peloton experience up to 40% less drag [110]. A potentially successful race strategy for 
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the peloton group can be derived from the exertion-recovery model using CPs and ϒs of 

the individual riders. A similar drafting strategy was employed by Eliud Kipchoge in the 

INEOS 1:59 challenge where he completed a full marathon in 1 hour 59 minutes and 40.2 

seconds. Another application is an energy management system for foot missions of 

soldiers. Time to exhaustion in long foot missions, where soldiers carry all the load from 

ammunition, food, and water can be accurately estimated with an exertion-recovery model. 

Additionally, in team sports like football, rowing, lacrosse, and soccer, CP and ϒ could be 

used in team selection, determining team strategies, planning individual training needs, and 

training interventions [111]. Furthermore, the combined model can be used to link ϒ-

balance to performance quality, and to estimate injury-risk. Together with wearable 

sensors, the model could potentially be used to determine team strategies in terms of player 

substitutions and avoiding fatigue-related injuries, and for real-time performance 

optimization. The rise in popularity of wearable sensors has resulted in their use in health 

monitoring [112] and physical activity tracking [112], [113] and provides opportunities to 

mitigate dependence on laboratory equipment. Therefore, models of human performance 

can be tested and validated outside the laboratory. 

2.4.  Research opportunities in modeling human performance 

The research opportunities identified in this chapter are cross-functional encompassing the 

areas of human performance, exercise physiology, health, and engineering. Though the 

themes belong to different backgrounds, they are not independent of each other. Table 2-3 

summarizes the theme-wise research opportunities and applications that have been 

identified in this chapter. 



28 

 

Developing mathematical models of fatigue will not only aid athletes, but also defense 

personnel in mission planning and healthcare professionals who study the effect of physical 

exertion on overall health. The ability to quantify the day-to-day variability aids the 

measurement of training effectiveness and training prescription. Furthermore, the theory 

of expenditure of ϒ is explained well by the 2-parameter model. However, a robust model 

for recovery of ϒ is yet to be proposed. 

Table 2-3. Research opportunities and applications of human performance modeling. 

Themes Research opportunities and applications 

Groups versus 

individuals 

Models derived from the data pertaining to a group of 

individuals may not accurately model performance of athletes 

outside the group, thus, suggesting a need for individual 

specific models [101]. 

Influence of 

mathematical 

modeling on ϒ 

Understanding of ϒ is still ambiguous as it is model 

dependednt [48], [69]–[71], [73]–[75]. Quantifying the 

natural day-to-day/trial-to-trial variability within subjects, i.e. 

IIV, may yield a better understanding of ϒ. 

Natural variability 

within an 

individual 

Methods need to be developed to quantify the IIV associated 

with physiological parameters, which will be useful in 

measuring training effectiveness, developing higher fidelity 

models, and optimizing performance. 
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Table 2-3 (continued). Research opportunities and applications of human performance modeling. 

Themes Research opportunities and applications 

Recovery of ϒ Current models described in [97]–[102] need improvement. 

The ϒ-balance can potentially be correlated to fatigue related 

injuries and the risk of injury could be estimated. 

Performance 

optimization 

The recovery model in conjunction with the 2-parameter 

model enables optimization of time-trial performance as 

illustrated in [105], [106], [109], [114]. 

Wearable sensor 

integration 

Wearable sensors provide opportunities in real-time 

performance tracking, optimization, and mitigate the reliance 

on laboratory equipment. Similar to studies in [115], [116], 

commercially available sensors could be validated against 

laboratory equipment and used in-situ for developing higher 

fidelity models. 

Individual and 

team performance  

Athlete-specific models could be used in determining team 

strategies, training interventions, planning training needs, and 

team selection as illustrated in [105], [111]. 

Physical exertion 

and health 

Models of human performance could be used to gain insight 

into the effect of physical exertion on overall health and well-

being as discussed in [27], [28]. 
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2.5.  Key conclusions and research objectives 

The 2-parameter CP concept reliably estimates fatigue due to severe intensity exercise in 

the range of 2 minutes to 1 hour and is also suitable to model sprint performances of 

appropriate durations. Alternate models predict the power and time relationship in the 

severe intensity domain with better accuracy, but these models require the determination 

of more parameters, thereby, increasing complexity. CP and ϒ can be estimated using 

multiple models and protocols with the 3MT being the least time-consuming method. The 

3MT, despite its advantages, has a limitation of not capturing the IIV associated with CP 

and ϒ estimates. Standard errors associated with the estimates from the power-time 

regression of CWR tests could help in better quantifying this variability. However, they 

only give a measure of goodness of fit and do not capture the IIV. None of the models 

available accommodate the IIV associated with the parameter estimates, regardless of the 

method of estimation used. Thus, the following are the key areas identified in this chapter: 

• Mathematical models of human energy expenditure and recovery present opportunities 

in quantifying, evaluating, and optimizing performance. 

• Established models are focused on energy expenditure and the available models that 

focus on recovery need refinement to be used in real-time performance optimization. 

• Existing models derived from group data neglect the intra-individual variability (IIV) 

which is critical in evaluating improvements and optimizing performance at the 

individual level. 

Until methods to capture IIV are proposed and validated, subject-specific training 

prescription and subsequent performance optimization will be limited in precision and 
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accuracy. Additionally, models derived from group data do not represent the population as 

several factors and variables have a bearing on human performance. Individualized athlete-

specific models need to be derived to potentially improve performance through training 

prescriptions. The CP concept, owing to its simplicity, is promising and robust in terms of 

modeling fatigue in the severe intensity domain.  However, it is incomplete due to the lack 

of proper understanding of the recovery behavior of ϒ in the moderate and heavy intensity 

domains. Attempts have been made to address this gap, but with limited success. The 

models available provide a good starting point to develop higher accuracy models with 

fewer assumed parameters. A combined exertion-recovery model will lead to optimized 

performance realized through an energy management control system. The combined model 

could lead to a straightforward way of assessing fatigue, risk of injury, and have 

implications with respect to the influence of exercise on overall health. Thus, the following 

research objectives were formulated to address the key gaps identified from the literature 

review with the overall goal of developing an energy management system to help in 

optimizing cycling performance. 

Research objective 1: Establish a method to quantify the individual variability of CP 

and ϒ as determined by the 3MT. 

Research objective 2: Develop a testing protocol to understand expenditure and 

recovery of power and ϒ. 

Research objective 3: Establish recovery profiles in terms of recovery power and 

recovery duration. 
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Research objective 4: Combine recovery with established expenditure for energy 

management. 

The next chapter describes the method proposed to quantify the individual variability of 

CP and ϒ as determined from the 3MT. 
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CHAPTER THREE: REPEATABILITY AND VARIABILITY OF THE 3MT AT THE 

SUBJECT LEVEL2 

 

3.1.  Background 

Performance in any endurance activity depends on the ability to sustain the highest possible 

work-intensity for extended time periods [117]. The critical power concept presents 

opportunities in planning training prescriptions aimed at performance improvement [118] 

as certain training interventions have shown to increase CP [119] and ϒ [117], [120]. 

However, the natural variability of CP and ϒ for an athlete will have a bearing on the 

effectiveness of such training prescriptions and has received little attention in literature. 

None of the existing studies pay attention to subject level analysis and are focused on group 

level analysis. 

CP and ϒ are shown to be variable between trials at the subject level by Triska and 

colleagues [93] (can be seen in the supplementary document available with [93]). Hickey 

 

2 The work presented in this chapter stems from the following paper that is under review: 

Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. “Repeatability and variability of the 3-minute all-

out test at the subject level”. Under review in SSEJ (submitted in March 2020). 

The purpose of this chapter is: 

• To investigate the repeatability of the 3MT at the subject level. 

• To propose a new method to compare a pair of 3MTs at the subject 

level. 

• To propose a minimum number of 3MTs to arrive at the intra-

individual variability (IIV) of CP and ϒ. 
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and colleagues [121] and Kuiper and colleagues [92] have illustrated the variability 

associated with time-to-exhaustion in CWR tests, which in turn results in a variability for 

CP and ϒ. It is not possible to determine the intra-individual variability (IIV), of CP and ϒ 

with one test at each work-rate (See Figure 2-5). If this variability is not accounted for, 

then training prescriptions designed at eliciting improvements in CP and ϒ may result in 

false positives or negatives.  

Instead of repeating the CWR tests multiple times at each power level, the 3-minute all-out 

test (3MT) [78] can be repeated a few times as it has been shown to reliably estimate CP 

and ϒ in one test. The repeatability of the 3MT has been assessed using Intraclass 

Correlation Coefficient (ICC), Typical Error (TE), and Coefficient of Variation (CV) using 

data from two trials [74], [83]. Hickey and colleagues [121] report average subject level 

CVs for repeated trials of isokinetic cycling. These average subject level CVs give an idea 

of the IIV, but they are generally not reported for CP and ϒ. Furthermore, the 3MT has not 

been repeated more than two times and similar to the CWR studies, the subject level CVs 

are not reported either. 

While the repeatability metrics (ICC, TE, and CV) indicate whether a test is repeatable at 

the group level, they do not estimate the repeatability or the trial-to-trial variability at the 

subject level. Estimating IIV and establishing a 95% confidence interval (CI) is critical in 

modeling performance, planning training interventions aimed at improving CP and ϒ, and 

subsequent performance optimization. Furthermore, these CIs will aid in measuring the 

effectiveness of training prescriptions at the subject level. 
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The standard deviation of CP (SDCP) can be determined using the power data of the last 30 

seconds of the 3MT (i.e. the standard deviation of the power output of the last 30 seconds 

of the test). Subsequently, using SDCP, an SD and a CI can be determined for ϒ by applying 

SDCP across the power output of the entire 3MT. However, this CI may not be a valid 

estimation of the variation in an individual’s ϒ. Weir [122] suggests the construction of 

95% CIs for measured parameters and minimal detectable differences using ICC and TE. 

However, this approach is catered to estimate the variability associated with the 

measurement errors and is not helpful determining the IIV. Thus, there exists an 

opportunity to develop methods to estimate the repeatability of the 3MT at the subject 

levels and arrive at an IIV for CP and ϒ. Therefore, the goal of this study is to investigate 

the repeatability of the 3MT (both at group and subject levels) and arrive at an IIV for each 

subject’s CP and ϒ. At the group level, it is hypothesized that the CP and ϒ as determined 

from the 3MT are consistent across all trials. To assess the repeatability of the 3MT at the 

subject level, we propose a new method to compare two tests using the peak power (Pp), 

the time to Pp (TPp), and the total work done (TW) during the test. Pp and TW are used as 

they demonstrate that the subject is performing maximally in the early phases of the test 

and the subject’s willingness to maintain the maximal effort throughout the test. Once the 

repeatability is determined, the IIV is computed as the 95%CI using the standard error from 

the repeated trials. 

3.2.  Estimating the repeatability and IIV 

In repeatability studies, ideally, the test must be repeated several times with the same 

subject, equipment, and operator, but in practice several subjects repeat the test a few times 
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[123]. The repeatability is assessed by computing ICC, TE, and CV. These metrics, while 

useful in validating the repeatability of a method, fail in comparing two 3MTs at the subject 

level or computing the IIV as the data are averaged for all subjects. To address this 

limitation, we propose to compare two 3MTs by computing the absolute difference, δ 

(expressed in %) as,  

100
( ) / 2

i j

i j

Prm Prm

Prm Prm


−
= 

+
 

(13) 

where, Prmi and Prmj are parameters (CP, ϒ, Pp, and TW) from trials i and j respectively 

with i, j = 1, 2, 3, 4. The denominator of Equation 13 is the average of the parameters from 

trials i and j. The absolute difference as computed from Equation 13 is similar to the bias 

computed in the Bland-Altmann analysis. However, any two trials at the subject level can 

be compared using δ. 

The following procedure can be used to compare two 3MTs and arriving at an IIV for CP 

and ϒ. 

Step 1: Check if TPp in both the tests has occurred within the first 10 seconds [78], 

[86]. 

Step 2: Compute δ for Peak Power (Pp) and Total work (TW) to ensure repeatability 

of the trials. 

Step 3: Compute CP and ϒ for both, average them and arrive at mean ± SE and 

establish 95% CI for CP and ϒ as, 

0.025, ( 1)95% n

S
CI Prm t

n
−=    

(14) 
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where, Prm̅̅ ̅̅ ̅̅  is the average of the parameter from all the trials, t is the t-distribution value 

from t-tables, S is the standard deviation of the parameter, and n is the number of trials. 

Equation 14 gives the uncertainty associated with CP or ϒ at the individual level, which is 

the IIV estimated using the data from repeated trials. Specific cut-off values for TPp, δPp, 

and δTW are presented in Sections 3.4 and 3.5. 

The following sections discuss the experimental study conducted to validate the method of 

estimating repeatability and variability of CP and ϒ at the subject level and its results. 

3.3.  Experimental Procedures and Analyses 

3.3.1.  Subjects 

Seven competitive amateur cyclists (4 males, 3 females, Age: 42 ± 10 years, Weight: 76 ± 

14 kg, Height: 1.78 ± 0.08 m) participated in the study. The subjects were recruited using 

a survey on their activity levels. All subjects trained 3-5 days a week and their training load 

was in the range of 100-200 km/week. The study was approved by the university’s 

institutional review board and signed consent forms were obtained from each subject. 

3.3.2.  Procedures 

The subjects were given instructions to bring their own bicycle as well as their clip-in shoes 

on each testing day. The bicycle was mounted onto Racermate CompuTrainer and secured 

using the rear axle. The trainer was calibrated per the manufacturer’s guidelines. The use 

of CompuTrainer to conduct the 3MT has been validated by Clark and colleagues [124]. 

During all tests, heart rate and muscle oxygenation data were collected using Garmin chest-
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strap heartrate monitor and MOXY monitor respectively. Subjects were not allowed to 

change gears during the tests. A gear inch range of 52-57 inches was chosen to account for 

different gear combinations on subjects’ bicycles. Perfpro-Studio software was used to 

program the protocols on the trainer. Only the cadence was shown to the subjects during 

the tests. The subjects visited the laboratory five times with at least 24 hours between each 

visit. On the first visit, an incremental ramp test was conducted using COSMED Quark 

CPET apparatus to determine the subject’s V̇O2peak and Gas exchange threshold (GET), 

and a 3min all-out familiarization test was conducted. On each subsequent visit, the 

subjects performed a 3MT at the same time of the day (±2 hours). The room temperature 

in the laboratory was 19-22°C. Subjects were instructed not to do any strenuous physical 

activity for at least 24 hours prior to each test. Additionally, the subjects were instructed to 

avoid alcohol consumption for at least 24 hours prior to the test, avoid consuming 

caffeinated drink for at least 3 hours before the test, and consume a carbohydrate rich meal 

at least 90 minutes before the test. 

3.3.3.  Incremental ramp test 

The warmup for the ramp test involved pedaling at 100W and 80rpm for 5 minutes, 

followed by a 5-minute passive interval, followed by 3 minutes of unloaded pedaling at 

80rpm. After the unloaded interval, the ramp interval started at 100W with an increase of 

0.5 W∙s-1 (30 W∙min-1). The subjects were instructed to maintain 80rpm until termination 

of the test, which was determined by a drop of 5rpm in the subject’s cadence for more than 

10 seconds [83]. Strong verbal encouragement was given to the subjects by repeatedly 
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instructing them to hold 80rpm. A schematic representation of the test is shown in Figure 

3-1. 

 

Figure 3-1. Schematic representation of the incremental ramp test protocol. 

Data from the ramp test were saved at 10-second intervals to determine V̇O2max and GET 

[78], [125]. GET is defined as the point at which CO2 expiration increases relative to O2 

consumption [126]. The GET was determined using the v-slope method [125] and V̇O2peak 

was calculated as the highest 30-second average V̇O2 during the ramp test [78]. The 

maximum power during the ramp test (Pmx) and the power at GET (PGET) were noted from 

the power data file. Pmx and PGET were used to determine a gradient for the 3MT on the 

CompuTrainer, thus resulting in end power halfway between Pmx and PGET at 

approximately 80rpm. 
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3.3.4.  3min all out test 

The 3MT was conducted as described by Vanhatalo and colleagues [78] on a 

CompuTrainer instead of a cycle ergometer. The warmup for the 3MT was identical to that 

of the ramp test. However, in the last 5 seconds of the unloaded interval, the subjects were 

instructed to increase their cadence to at least a 110rpm. The 3-minute all-out effort 

immediately followed the unloaded pedaling interval. The subjects were given strong 

verbal encouragement throughout the 3-minute all-out interval and were constantly 

instructed to keep their cadence as high as possible. The verbal encouragement was 

standardized. For each 3MT, CP was calculated as the average power of last 30 seconds 

and ϒ was calculated by numerical integration of power values above CP, and total work 

(TW) was calculated by numerical integration of power values over the entire duration of 

the test. A schematic representation of the test protocol is shown in Figure 3-2. 
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Figure 3-2. Schematic representation of the 3-minute all-out test protocol. 

 

3.3.5.  Statistical Analyses 

A one-way repeated-measures ANOVA was conducted to determine if CP, ϒ, TW, and Pp 

differed across the four trials. The repeatability of the test (all trials together) was evaluated 

using ICC, TE, and CV [123]. The TEs were calculated as the square-root of the mean 

square error term from the ANOVA table and their 95% confidence intervals (95% CI) 

were calculated using the inverse Chi-squared distribution tables [123]. The CVs and their 

95% CIs were calculated as TE/mean of all four trials [123]. ICCs, TEs, and CVs were also 

computed for consecutive pairs of trials (i.e. T2-T1, T3-T2, and T4-T3). Shapiro-Wilk and 

Mauchly’s tests were used to test the assumptions of the repeated-measures ANOVA 

(normality and sphericity) before analyzing the data. Greenhouse-Geisser correction was 

used to account for violation of the sphericity assumption. Bonferroni post-hoc test was 

conducted wherever appropriate. To check for learning/fatiguing effects across the four 
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trials, a one-way ANOVA was conducted on the biases of consecutive trials determined 

from Bland-Altman analysis. Standard error of measurement (SEM) and 95% limits of 

agreement (LOA) were also computed for the Bland-Altman analysis [123]. The data are 

represented as mean ± SD and a level of significance of 0.05 was chosen for statistical 

analysis. The analyses were conducted in SPSS Statistics 25 (IBM Corp., Armonk, NY). 

3.4.  Results 

A summary of V̇O2max, V̇O2peak, GET, Pmx, and PGET for all subjects are reported in Table 

3-1. At the group level, the average relative V̇O2max was 51.8 ± 6.49 mL∙kg-1∙min-1, the 

average relative GET was 34.83 ± 4.39 mL∙kg-1∙min-1, and the average relative V̇O2peak was 

50.37 ± 6.49 mL∙kg-1∙min-1. 

Table 3-1. Summary of parameters from the ramp test: VO2max, GET, and VO2peak for all subjects. 

Subject 

VO2max 

(L∙min-1) 

GET 

(L∙min-1) 

VO2peak 

(L∙min-1) 

Pmx (W) PGET (W) 

1 4.76 3.05 4.48 425 255 

2 2.87 2.01 2.85 270 190 

3 4.51 3.03 4.33 360 235 

4 4.01 2.84 3.90 316 224 

5 3.96 2.59 3.82 409 236 

6 2.88 2.05 2.86 275 156 

7 4.60 2.87 4.53 445 215 

Mean ± SD 3.94 ± 0.78 2.64 ± 0.44 3.82 ± 0.71 357 ± 72 216 ± 33 

 



43 

 

The parameters CP, ϒ, Pp, and TW for all subjects across all trials are reported in Table 

3-2. The average CP of the four trials was 0.99Δ (Δ = halfway between Pmx and PGET) with 

131% of PGET and 80% of Pmx. The peak power output, Pp, was seen within the first 7 

seconds of the test (3.82 ± 1.12s) for all subjects. 

Table 3-2. Summary of the parameters form the four trials of the 3MT for all subjects. 

Subject 
Paramete

r 
T1 T2 T3 T4 Mean ± SD 

1 

CP (W) 335 334 327 343 335 ± 7 

ϒ (kJ) 14.15 15.81 16.09 14.32 15.09 ± 1.00 

Pp (W) 978 1068 1059 1068 1043 ± 44 

TW (kJ) 74.14 75.68 74.64 75.91 75.09 ± 0.84 

2 

CP (W) 211 215 220 224 217 ± 6 

ϒ (kJ) 6.04 5.33 5.02 6.19 5.65 ± 0.56 

Pp (W) 449 440 416 448 438 ± 15 

TW (kJ) 43.25 42.99 43.77 45.76 43.94 ± 1.26 

3 

CP (W) 330 359 359 354 351 ± 14 

ϒ (kJ) 12.11 7.77 8.65 9.68 9.55 ± 1.87 

Pp (W) 786 730 803 869 797 ± 57 

TW (kJ) 71.27 71.61 72.88 72.92 72.17 ± 0.85 

4 

CP (W) 246 237 245 242 242 ± 4 

ϒ (kJ) 8.18 8.09 7.56 7.52 7.84 ± 0.34 

Pp (W) 555 508 569 562 549 ± 28 

TW (kJ) 51.92 50.40 51.07 50.62 51.00 ± 0.67 

5 

CP (W) 319 319 333 337 327 ± 9 

ϒ (kJ) 12.19 12.79 10.74 10.57 11.58 ± 1.09 

Pp (W) 718 809 815 802 786 ± 46 

TW (kJ) 69.29 69.99 70.11 70.73 70.03 ± 0.59 

6 

CP (W) 195 217 212 200 206 ± 10 

ϒ (kJ) 10.82 8.27 8.08 9.38 9.14 ± 1.26 

Pp (W) 405 396 457 426 421 ± 27 

TW (kJ) 45.80 47.30 46.06 45.28 46.11 ± 0.86 
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Table 3-2 (continued). Summary of the parameters form the four trials of the 3MT for all subjects. 

Subject 
Paramete

r 
T1 T2 T3 T4 Mean ± SD 

7 

CP (W) 295 305 319 327 311 ± 14 

ϒ (kJ) 12.75 14.41 11.88 11.58 12.65 ± 1.27 

Pp (W) 785 898 838 829 838 ± 47 

TW (kJ) 65.44 69.01 68.74 70.08 68.32 ± 2.00 

Group 

Mean ± 

SD 

CP (W) 
276 ± 

58 

284 ± 

60 

288 ± 

60 

290 ± 

65 
 

ϒ (kJ) 
10.89 

± 2.83 

10.35 ± 

3.95 

9.72 ± 

3.58 

9.89 ± 

2.66 
 

Pp (W) 
668 ± 

207 

693 ± 

253 

708 ± 

234 

715 ± 

241 
 

TW (kJ) 

60.16 

± 

12.85 

61 ± 

13.52 

61.04 ± 

13.47 

61.61 ± 

13.7 
  

 

The ICCs, TEs, and CVs for consecutive pairs of trials are shown in Table 3-3. The results 

from Bland-Altman plots for consecutive pairs for CP, ϒ, Pp, and TW are shown in Figure 

3-3. The biases, SEMs, and LOAs across the three combinations of trials (T2-T1, T3-T2, 

and T4-T3) are reported in Table 3-4. 
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Figure 3-3. Bland-Altman plots for consecutive trials. Panel A, B, C: Plots for CP, panels D, E, F: Plots for 

ϒ, panels G, H, I: Plots for Pp, and panels J, K, L: Plots for TW.
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Table 3-3. ICCs, TEs, CVs, and their 95%CIs for consecutive pairs of trials in parentheses. 

Parameter 

T2-T1 T3-T2 T4-T3 

ICC TE CV (%) ICC TE CV (%) ICC TE CV (%) 

CP 

0.969 

(0.834, 

0.995) 

10W 

(7, 14) 

3.41 

(2.57, 

5.04) 

0.989 

(0.943, 

0.998) 

6W 

(5, 9) 

2.11 

(1.59, 

3.12) 

0.99 

(0.948, 

0.998) 

7W 

(5, 10) 

2.26 

(1.71, 

3.34) 

ϒ 

0.804 

(0.244, 

0.963) 

1.574kJ 

(1.189, 

2.328) 

14.82 

(11.2, 

21.91) 

0.941 

(0.721, 

0.989) 

0.87kJ 

(0.657, 

1.286) 

8.66 

(6.55, 

12.81) 

0.948 

(0.736, 

0.991) 

0.767kJ 

(0.579, 

1.134) 

7.82 

(5.91, 

11.57) 

Pp 

0.954 

(0.782, 

0.992) 

50W 

(38, 74) 

7.40 

(5.59, 

10.94)  

0.979 

(0.898, 

0.996) 

36W 

(27, 53) 

5.11 

(3.86, 

7.56) 

0.991 

(0.954, 

0.999) 

23W 

(17, 34) 

3.25 

(2.11, 

4.80) 

TW 

0.992 

(0.956, 

0.999) 

1.134kJ 

(0.857, 

1.677) 

1.87 

(1.41, 

2.77) 

0.998 

(0.988, 1) 

0.668kJ 

(0.505, 

0.988) 

1.09 

(0.83, 

1.62) 

0.997 

(0.981, 

0.999) 

0.722kJ 

(0.546, 

1.068) 

1.18 

(0.89, 

1.74) 
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Table 3-4. Results from Bland-Altman analysis on all parameters from consecutive pairs of trials. 

Parameter 

T2-T1 T3-T2 T4-T3 

SEM Bias 95% LOA SEM Bias 95% LOA SEM Bias 95% LOA 

CP (W) 10 8 -19, 34 6 4 -13, 21 7 2 -16, 20 

ϒ (kJ) 1.574 -0.539 -4.903, 3.824 0.870 -0.634 -3.045, 1.776 0.767 0.169 -1.956, 2.294 

Pp (W) 50 25 -115, 164 36 15 -84, 115 23 7 -57, 71 

TW (kJ) 1.134 0.838 -2.306, 3.982 0.668 0.043 -1.808, 1.894 0.722 0.572 -1.429, 2.574 
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The one-way repeated-measures ANOVA showed that there was not a significant 

difference between ϒ, Pp, and TW across the four trials (see Table 3-5). The trial to trial 

differences in CP at group level is illustrated by the p-value (p = 0.03) of the one-way 

repeated measures ANOVA even though the ICCs showed strong agreement. However, the 

average CP across all trials did not show significant differences on the post-hoc Bonferroni 

test. The possibility of training effects was minimized by having the familiarization trial 

[121] and all the tests being completed within 10 days of the first visit. The normality 

assumption was verified using the Shapiro-Wilk test and the resulting p-values were ≥ 0.05 

(except for Trial 4 of TW where the p-value was 0.049). The ANOVA is generally robust 

to minor violations of the normality assumption, but may lead to false positives [127]. The 

normality violation did not result in a false positive as the p-value for TW was 0.125 

(>0.05). The ICCs, the TEs, the CVs, their 95% CI, and the average absolute difference 

between all trials for all subjects (δg) computed for the four trials are presented in Table 

3-5. The strongest agreement was seen in TW followed by CP, Pp, and ϒ, which was also 

seen in δg. Furthermore, in 5 out of 7 subjects, when the difference in TW between any two 

trials was less than 2.5%, CP and ϒ showed an inverse relationship with an increase in CP 

resulting in a decrease in ϒ and a decrease in CP resulting in an increase in ϒ. 
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Table 3-5. One-way repeated measures, ICCs, TEs, CVs, their 95%CI, and δg for CP, ϒ, Pp, and TW for the 

four trials. 

Parameter 

p-value 

and 

partial-

η2# 

ICC(A,1) TE CV δg 

CP 

0.030* 

(0.384) 

0.974 

(0.914, 0.995) 

8W 

(6, 12) 

2.94% 

(2.22, 4.35) 

4.06% 

ϒ 

0.253 

(0.208) 

0.879 

(0.685, 0.975) 

1.11kJ 

(0.838, 1.641) 

10.87% 

(8.21, 16.07) 

12.83% 

Pp 

0.155 

(0.271) 

0.971 

(0.912, 0.994) 

37W 

(28, 54) 

5.29% 

(4, 7.83) 

6.42% 

TW 

0.125 

(0.293) 

0.993 

(0.978, 0.999) 

1.004kJ 

(0.759, 1.485) 

1.65% 

(1.24, 2.44) 

2.09% 

#Values are from a one-way repeated measures ANOVA. *The post-hoc Bonferroni test 

did not show any significant differences between the trials with p-values of 0.31 and 0.15 

for trial1-trial 3 and trial1-trial4 combinations respectively. 

 

3.5.  Discussion 

This study determined the subject-level repeatability of the 3MT and computed the IIV of 

CP and ϒ from the four trials. Based on the results, thresholds for TPp (7 seconds), δPp 

(10%), and δTW (3%) are proposed to determine subject-level repeatability between any 

two 3MTs (reasons for these thresholds are discussed later). Subsequently, the IIV is 
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estimated using the 95%CI from repeated trials. Additionally, the similarity of ICC, TE, 

and CV of the consecutive trials suggest that the parameters become steady between trials 

T2 and T4. 

The Bland-Altman plots (Figure 3-3) show a decreasing trend across the trials. However, 

the one-way ANOVA on its biases did not show any learning/fatiguing effects as the SEMs 

were greater than the biases (Table 3-4), indicating subject-level variability. Furthermore, 

as observed in Table 3-3, the similarity of ICC, TE, and CV for trial pairs T3-T2 and T4-

T3 (except Pp) shows the parameters stabilizing from T2 to T4 suggesting that three trials 

may be sufficient in obtaining consistent estimates from the 3MT. The advantage of 

repeating the 3MT thrice versus twice [74], [83] is the extra data point to compute the IIV. 

Establishing a 95%CI using t-tables for three trials outweighs the additional time 

investment to better estimate the IIV (t0.025,1 = 12.706 versus t0.025,2 = 4.303). 

The group-level reliability statistics for CP (ICC = 0.974, TE = 8W, and CV = 2.94%) were 

stronger than those reported by Johnson and colleagues [74] (ICC = 0.93, TE = 15W, and 

CV = 6.7%) and similar to Burnley and colleagues [83] (ICC = 0.99, TE = 7W, CV = 3%). 

With respect to ϒ, the ICC and TE (0.878, 1.11kJ) were similar to Johnson and colleagues 

[74] (0.87, 1.456kJ) while the CV was stronger (10.87% versus 20.7%). A stronger 

reliability was seen in CP as opposed to, which is echoed in other studies [71], [74]. 

Furthermore, stronger reliability statistics were observed in Pp (ICC = 0.971, TE = 37W, 

and CV = 5.29%) and TW (ICC = 0.993, TE = 1.004kJ, and CV = 1.65%) compared to ϒ. 

These metrics indicate that the 3MT produces consistent responses at group-level, but they 

are not useful to assess subject-level repeatability. This is illustrated in Subject 7’s data 
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where TW and from T2, T3, and T4 were 5.47%, 5.05%, and 7.09% more than T1 

respectively. Similarly, CP from T2, T3, and T4 were 3.58%, 8.26%, and 10.94% more 

than T1 respectively. Furthermore, the SD of any parameter across all trials and all subjects 

(i.e. Global Mean ± SD) is limited in estimating the individual variability. For example, 

the global mean and SD for CP across all trials is 284±58 W, while the mean and SD for 

Subject 1 is 335±7 W. The SD of CP for the individual subjects ranges from 7% to 25% of 

the global SD. This is also illustrated in Figure 3-4, where the PDF for Subject 3’s and 

Subject 6’s CP are overlaid on that of the group highlighting the overestimation of IIV by 

group SD. Additionally, the trial-to-trial differences in CP and ϒ at the subject level get 

distributed when they are averaged at group level resulting in similar means and SDs across 

the four trials. 

Hickey and colleagues [121] report the average subject-level CV for time-to-exhaustion in 

the range of 0.95% to 2.43% illustrating the IIV. However, they did not determine CP and 

ϒ from their data and consequently those CV are unavailable. The average subject-level 

CVs from this study is compared to those calculated from Triska and colleagues [93] in 

Table 3-6 This comparison is made as there are no other studies which report CVs for CP 

and ϒ or share their data. 
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Figure 3-4. Group and subject level probability density functions (PDF) of CP plotted with ±3SD. Subjects 

3 and 6 were shown as they had the highest and the lowest CP among the group respectively. Solid line shows 

the group PDF. Dash-dot line shows Subject 3’s PDF, and dotted line shows Subject 6’s PDF. The figure 

illustrates the overestimation of IIVs by the group level SDs. 

Table 3-6. Comparison of average CV at the subject level for CP and ϒ computed from Triska and colleagues 

[93]. 

Study 

No. of 

subjects 

Average CV at the subject level with its 

range in parentheses (%) 

CP ϒ 

Triska and colleagues [93] 10 1.7 (0 to 5.24) 4.83 (0.43 to 17.32) 

Current study 7 3.26 (1.76 to 4.97) 10.55 (4.40 to 19.63) 

 

The subject level CVs from both studies are comparable for CP, while those for ϒ are 

higher in the current study. This difference could be attributed to the difference in subject 

populations (well-trained male triathletes versus male and female competitive amateur 

cyclists), the number of trials (2 versus 4), and the differences between the ϒ estimates 
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from CWR and 3MT protocols observed in previous studies [43], [70]. The subject level 

CVs have not been previously reported for 3MT. Studies either report the group averages 

or the average value of the two repeated trials for individual subjects. Moreover, even if 

the subject level CVs were available, the values cannot be extrapolated to other subjects 

regardless of the similarities in their level of training and caliber [121]. 

Therefore, at the subject level, the absolute difference between two tests, δ (from Equation 

13), gives more information as it compares the parameter estimates between two trials. 

Additionally, the average absolute difference for all subjects across all trials, δg, for TW 

and Pp (2.09% and 6.43%) were less than the 12.83% of ϒ. This reiterates the larger 

variability observed in ϒ as compared to TW and Pp. Furthermore, in 5 subjects, δ for TW 

(δTW) across the four trials was less than 2.5%. Additionally, in all subjects, when δTW was 

small (~3%), there was an inverse relationship between CP and ϒ. An increase in CP 

resulted in a decrease in ϒ and vice-versa illustrating the IIV associated with these 

parameters. A similar inverse relationship has been observed previously by Black and 

colleagues [128] and Vanhatalo and colleagues [129]. Thus, at the subject level to quantify 

the IIV, the procedure described in the methods section is refined as follows: 

Step 1: Check if TPp has occurred within the first 7 seconds for both tests. 

Step 2: Compute δPp and δTW for both tests. If δPp ≤ 10% and δTW ≤ 3%, then it must 

be concluded that the two tests being compared agree with each other. 

Step 3: Compute the 95% CI for CP and ϒ using Equation 14, which gives the IIV. 

This procedure provides a comparison of two 3MTs at the subject level and computes the 

IIV for CP and ϒ. The average IIV observed was 15±6 W (range 7 to 23 W) for CP and 
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1.68±0.8 kJ (range 0.55 to 2.98 kJ) for ϒ. The choices for TPp, δPp, and δTW are based on 

the results from this study. The conservative choice of 10% for δPp is due to the larger 

variability seen in overcoming the inertia of the flywheel in first 5-10 seconds of the 3MT. 

Vanhatalo and colleagues [78] also highlight this and suggest that flywheel inertia to be 

the reason for the discrepancy between ϒ estimates from 3MT and CWR protocols. 

Furthermore, the average CP occurring at 0.8Pmax was higher than 0.7Pmax reported by 

Vanhatalo and colleagues [78]. The power of the repeated measures ANOVA of 34% (ϒ), 

47% (Pp), 52% (TW), and 71% (CP) could not be compared to studies by Burnley [83] and 

Johnson [74] as they do not report their power analysis and effect sizes. It is suggested that 

similar studies in the future should aim for a statistical power ≥80%. 

In this study, the estimates from the 3MTs were not compared to those from the CWR 

protocol, which is considered to result in reliable estimates of CP and ϒ [49]. The standard 

errors of estimation of CP and ϒ from the CWR tests measure the goodness of fit and do 

not actually capture the IIV. To capture the IIV associated with CP and ϒ, the CWR tests 

need to be repeated multiple times at each work-rate. This would yield an average ϒ for 

each work-rate and an average CP from all possible model fits (See Figure 2-5). The 

repeatability of the 3MT can then be verified by comparing the values of CP and ϒ 

averaged from multiple trials to the average of those estimated from the CWR tests 

repeated multiple times at each power level as shown in Figure 3-5. 



55 

 

 

Figure 3-5. Comparison of average CP and ϒ from CWR tests with multiple trials at each work-rate (total 

number of CWR tests ≥ 6 with at least two per work-rate) with those from multiple 3MT trials (total number 

of repeats ≥ 3). 

The investigative study shown in Figure 3-5 would address the concerns pertaining to the 

reliability of estimates the 3MT presented in several publications [84]–[86]. Additionally, 

the behavior of IIV with respect to the power level can also be investigated. Depending on 

the athlete, the variation of ϒ at different power levels above CP can be investigated. 

Moreover, developing a field version of the 3MT will be useful to determine a field-grade 

CP and ϒ similar to the maximal time-trials used to determine CP and ϒ [40]. Though the 

CP estimates from a 3MT have been shown to predict a 16.1 km time-trial performance 

[76], a 3-min all-out effort can potentially be carried out on an outdoor velodrome similar 

to the study by Karsten and colleagues [130], thereby testing its field-readiness and 

validity. It has been shown that a highly trained athlete’s variability of power within the 

3MT is less than that of a recreational athlete [74]. However, further investigation is 

required to verify if the same can be said about the IIV associated with CP and ϒ. 

Furthermore, understanding and quantifying IIV associated with CP and ϒ from either the 
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CWR test protocol or the 3MT may aid in gaining a better understanding of ϒ, which has 

been shown to be elusive in several publications [52], [71]–[73]. 

3.6.  Key findings 

The study presented in this chapter has illustrated a method to determine the subject-level 

repeatability of the 3MT and compute the IIV of CP and ϒ. This is the first study to 

compute the subject-level variability of CP and ϒ based on repeated trials. Multiple trials 

require additional time, but it is suggested that the 3MT be repeated at least three times to 

capture the IIV by establishing a 95% CI. Training plans should be designed to account for 

the natural variability of the induvial athlete. It is proposed that the cut-offs for TPp (7 

seconds), δPp (10%), and δTW (3%) be used as guidelines to determine subject-level 

repeatability before computing the IIV for CP and ϒ. Additionally, the investigative study 

involving the repeated CWR tests may help in understanding the underlying causes for the 

variability seen in ϒ. 

The next chapter describes the hypothesized behavior of the recovery of ϒ, the 

experimental study to model the same, and discusses the results from the experiments. 
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CHAPTER FOUR: MODELING THE RECOVERY OF ϒ3 

 

4.1.  Hypothesized behavior of recovery of ϒ 

An intermittent cycling session refers to a series of cycling bouts comprising of exertion 

and recovery intervals. Figure 4-1 shows one such session comprising of a recovery 

interval (below CP) sandwiched between two exertion intervals (above CP). The subject 

would exert above CP at a power for a known amount of time, which will discharge a 

portion of his/her ϒ. Then the subject would go below CP and recover at a known power 

 

3 The work presented in this chapter stems from the following four papers: 

 

1. Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. (2018). “An Experimental Protocol to Model 

Recovery of Anaerobic Work Capacity”. In: The Engineering of Sport (ISEA 2018), Brisbane, 

Australia, 26-29 March 2018. (Vol. 2, No. 6, p. 208). 

2. Ashtiani, F., Sreedhara, V. S. M., Vahidi, A., Hutchison, R., & Mocko, G. (2019, July). 

Experimental Modeling of Cyclists Fatigue and Recovery Dynamics Enabling Optimal Pacing in A 

Time Trial. In 2019 American Control Conference (ACC) (pp. 5083-5088). IEEE. 

3. Sreedhara, V. S. M., Ashtiani, F., Mocko, G. M., Vahidi, A., & Hutchison, R. E. Modeling the 

recovery of W' in the moderate to heavy exercise intensity domain. Under review in MSSE: 

Submitted in February 2020. 

4. Ashtiani, F., Sreedhara, V. S. M., Mocko, G. M., Vahidi, A., & Hutchison, R. E. Optimal Pacing of 

a Cyclist in a Time Trial Based on Experimentally Calibrated Models of Fatigue and Recovery. In 

preparation: To be submitted in April 2020. 

The purpose of this chapter is: 

• To introduce the hypothesized model of ϒ recovery. 

• To develop an exercise protocol to understand recovery of ϒ. 

• To investigate the behavior of ϒ with respect to recovery powers and 

recovery durations. 

• To present a case of performance optimization. 

• To discuss the results from the experimental testing. 
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level (Prec) for a known time duration (trec) and then go back above CP to exert at a constant 

power level till he/she is exhausted. 

 
Figure 4-1. Example of an intermittent cycling session; A1 and A2 are areas of the two exertion intervals. 

The recovery power is represented by the term β, which is given by 

recP

CP
 =  (15) 

where, Prec is the recovery power in Watts and CP is critical power in Watts. The areas A1 

and A2 represent the amount of ϒ expended in the two exertion intervals. Hence, the 

amount of ϒ recovered (Erec) during recovery is given by, 

1 2recE A A= + −   (16) 

Normalizing Erec with respect to ϒ yields %ϒrec given by, 

% rec
rec

E
 =


 (17) 
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The amount of ϒ recovered is a function of both Prec and trec. Figure 4-2 shows the 

hypothesized behavior of ϒ recovered with respect to recovery powers and recovery 

durations. Figure 4-2 illustrates that as β tends to 0 all of ϒ is recovered, while none is 

recovered when β is equal to CP. Figure 4-2(a) is similar to Skiba’s τW' versus DCP curve 

in [97], however, instead of τW', %ϒ recovered is plotted against recovery power. Figure 

4-2(b) shows a trend similar to that seen by Ferguson and colleagues in [96]. 

  

(a) (b) 

Figure 4-2. Hypothesized behavior of %ϒ recovered, (a) as a function of recovery power (β) and (b) as a 

function of recovery duration trec. 

The curves shown in Figure 4-2 need to be determined and it is hypothesized that the trends 

will be different for different individuals. Additionally, it is hypothesized that the recovery 

power β will have a greater influence on the amount of ϒ recovered. To determine the 

behavior of recovery ϒ in terms of recovery powers and durations, an experimental study 

was conducted which is discussed in the following sections. 
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4.2.  Experimental Procedures and Analyses 

4.2.1.  Subjects 

Seven recreational cyclists (4 males, 3 females, Age: 36 ± 11 years, Weight: 73 ± 14 kg, 

Height: 1.76 ± 0.08 m) volunteered to participate in the study and completed all the tests. 

The subjects were recruited using a survey on their activity levels. All subjects trained 3-5 

days a week and their training load was in the range of 100-200 km/week. Each subject 

signed an informed consent approved by university’s institutional review board. Each 

testing day was approximately 2 hours long. 

4.2.2.  Procedures 

The instructions given to subjects were the same as those described in Section 3.3.2. The 

total duration to complete all tests was 4-7 weeks per subject. Each subject visited the 

laboratory fourteen to sixteen times. The first day consisted of a ramp test, and a 3min all-

out familiarization test. In the next two or four visits (Subjects A and B were able to 

perform only two 3MTs, the rest performed four), subjects performed unfatigued 3MTs to 

determine their CP and ϒ. The next visit involved the familiarization trial of the 

intermittent cycling test. In the next two visits, subjects repeated their first intermittent test. 

In the next eight visits, the remaining intermittent tests were conducted. The order of the 

intermittent cycling tests was randomized. 
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4.2.3.  Incremental ramp test and the 3MTs 

The incremental ramp test and the 3MTs procedures were the same as those described in 

Sections 3.3.3 and 3.3.4 respectively. 

4.2.4.  Intermittent cycling tests 

The intermittent cycling test protocol shown in Figure 4-3 was developed based on the 

following assumptions: 

• The 3 min all-out test accurately estimates CP and ϒ [74], [78], [82]. 

• Exercise above CP results only in the expenditure of ϒ, not its recovery [99]. 

• Exercise below CP results in recovery of ϒ, thus increasing the ϒ-balance  [95]–

[97], [99]. 

• The recovery of ϒ is a function of the level of power below CP and the recovery 

duration [95]–[97].  

• The power held during recovery interval is constant. The behavior of power versus 

time below CP is unknown, and hence the power below needs to be constant to 

mathematically model the recovery of ϒ. 

The warmup for the intermittent test protocol was same as that of the ramp test. The 

intermittent test protocol comprised of (i) a 2-minute exertion interval at CP4, the power 

at which a subject would exhaust all of their ϒ in 4 minutes (calculated using Equation 5, 

Chapter 2), (ii) a recovery interval at three recovery powers, Prec [Low (L): 20 W, Medium 

(M): 0.9∙PGET, and High (H): PGET + 0.5∙(CP-PGET)] and three recovery durations, trec (2, 6, 

and 15 minutes) to result in a full factorial design of 9 tests, and (iii) a 3-min all-out interval. 
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The exertion interval was designed to expend ~50% of the subjects ϒ. For the recovery 

interval, the powers were chosen for comparison purposes to previously published studies 

by Skiba and colleagues [97] and Chidnok and colleagues [131], while the recovery 

durations were chosen from Ferguson and colleagues [96]. 

The subjects were instructed to maintain 80 rpm in the warmup, exertion, and recovery 

intervals. In the last 5 seconds of the recovery interval, the subjects were instructed to ramp 

up to at least 110 rpm. To ensure an all-out effort, the subjects were instructed to pedal as 

hard as possible in the 3-min all-out interval. Strong verbal encouragement was given 

throughout the test. A cool down at 20 W immediately followed the all-out interval. 

 

Figure 4-3. Schematic representation of the intermittent cycling test protocol. 

The amount of ϒ expended in the CP4 and the 3-min all-out intervals, A1 and A3, were 

calculated by numerical integration of power values above CP. The area of the recovery 

interval is larger than the amount of ϒ recovered. Hence, the amount of ϒ recovered in the 

recovery interval was expressed as a percentage of ϒ and was computed using the formula, 
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1 3% rec

A A+ − 
 =


 [18] 

4.2.5.  Optimization tests 

One subject participated in the optimization tests. Optimization tests involved two tests: (i) 

a self-strategy test, and (ii) an optimal strategy test. The subject chose a course 18 km long, 

which was then simulated on the CompuTrainer. The warmup for both tests that lasted ~15 

minutes (left to the discretion of the subject). On the first test, the subject was advised to 

employ their own strategy to complete the course as quickly as possible. The subject was 

shown the distance covered during the test. For the optimal strategy test, the entire distance 

of the course was discretized into 100-meter segments. Optimal power for each segment 

was determined using the subject’s individual fatigue and recovery model as illustrated in 

our previous work in [114]. The subject was shown both the target power and their real 

time power during the test and was instructed to try and match the target power. The 

distance covered was not shown to the subject during optimal strategy test. The subject 

could change gears during the tests and strong verbal encouragement was provided for both 

the tests.  

4.2.6.  Statistical analysis 

The repeatability was evaluated using Intraclass correlation coefficient (ICC), typical error 

(TE), and coefficient of variation (CV) [123], and their average values were used in 

analysis. CP, ϒ, Pp, and TW from the 3MTs, and TW and Pp during the 3-min all out 

interval of the two repeated trials of the intermittent test were compared for repeatability. 
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A two-way repeated measures ANOVA was conducted to investigate the effects of Prec and 

trec on %ϒrec. Subject 7 was not included in the repeated measures ANOVA as they 

recovered all the ϒ expended in each of the 9 intermittent tests (refer to the Results section 

for detailed explanation). Post-hoc tests were conducted using the Bonferroni correction. 

To investigate the influence of the intermittent test on CP, fresh CPs from the four 3MTs 

(CPfr) and fatigued CPs from the intermittent tests (CPft) were compared at both group and 

subject levels using independent sample t-tests as the sample sizes were not equal. Mann-

Whitney U tests were conducted in case of a violation of the normality assumption. 

Similarly, the actual ϒ-balance at the end of recovery interval (given by A3) was compared 

to ϒ-balance predicted from SK2 and BAR models. Effect sizes are reported as η2 and 

Cohen’s d wherever appropriate. The violations to assumptions of normality, sphericity, 

and homogeneity of variance were checked using Shapiro Wilk’s, Mauchly’s, Levene’s 

tests respectively. The data are represented as mean ± SD. All statistical analyses were 

conducted in SPSS Statistics 25 (IBM Corp., Armonk, NY) and the level of significance 

was 0.05.  

4.3.  Results 

A summary of V̇O2max, V̇O2peak, GET, Pmx, and PGET is reported in Table 4-1. The average 

relative V̇O2max was 53.38 ± 6.44 mL∙kg-1∙min-1, the average relative GET was 36.25 ± 

4.51 mL∙kg-1∙min-1, and the relative V̇O2peak was 51.91 ± 6.27 mL∙kg-1∙min-1. 
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Table 4-1. Summary of parameters from the ramp test: VO2max, GET, and VO2peak for all subjects. 

Subject 

VO2max 

(L/min) 

VO2peak 

(L/min) 

GET 

(L/min) 

Pmx (W) PGET (W) 

A 4.15 4.04 2.79 374 244 

B 3.72 3.56 2.62 320 180 

1 4.76 4.48 3.05 425 255 

2 2.87 2.85 2.01 270 190 

4 4.01 3.90 2.84 316 224 

6 2.88 2.86 2.05 275 156 

7 4.60 4.53 2.87 445 215 

Mean ± SD 3.86 ± 0.75 3.75 ± 0.69 2.60 ± 0.41 346 ± 70 209 ± 36 

 

The CP, ϒ, TW, and Pp from all the 3MTs were averaged and are reported in Table 4-2. 

The TPp during the 3MT occurred between 3.82 ± 1.23 seconds (range 3-7 seconds). The 

PGET and Pmx from the ramp test were 0.81CP and 1.33CP respectively. 
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Table 4-2. Summary of the parameters form the four trials of the 3MT for all subjects. Data presented as 

Mean ± SD.  

Subj. No. of 3MTs CP (W) ϒ (kJ) TW (kJ) Pp (W) 

A 2 269 ± 3 12.03 ± 0.58 60.08 ± 0.22 766 ± 6 

B 2 233 ± 2 10.10 ± 0.33 51.69 ± 0.63 714 ± 8 

1 4 335 ± 7 15.09 ± 1.00 75.09 ± 0.84 1043 ± 44 

2 4 217 ± 6 5.64 ± 0.56 43.94 ± 1.26 438 ± 15 

4 4 242 ± 4 7.84 ± 0.34 51.00 ± 0.67 549 ± 28 

6 4 206 ± 10 9.14 ± 1.26 46.11 ± 0.86 421 ± 27 

7 4 311 ± 14 12.65 ± 1.27 68.32 ± 2.00 838 ± 47 

 

4.3.1.  Repeatability of 3MTs and the intermittent test 

The reliability statistics for the repeated 3MTs and the repeated intermittent tests are 

reported in Table 4-3. The reliability metrics for the 3MTs and the intermittent cycling tests 

indicate excellent agreement between the trials. Subject 4 performed only one trial of their 

first intermittent test as the second trial was unsuccessful due to their shoes coming 

unclipped from the pedal, and the test was not repeated so as not to delay the schedule. 
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Table 4-3. Summary of the reliability metrics with their 95% CI for the repeated trials of the 3MT and the 

intermittent test. 

Parameter 

Reliability 

metric 

3MT Intermittent test 

CP 

ICC 0.994 (0.977, 0.999) 0.990 (0.937, 0.999) 

TE 9 W (6, 14) 9 W (5, 21) 

CV 3.26% (2.34, 5.38) 3.18% (1.99, 7.81) 

ϒ 

ICC 0.984 (0.938, 0.998) 

NA TE 0.998 kJ (0.716, 1.648) 

CV 9.91% (7.11, 16.36) 

Pp 

ICC 0.996 (0.985, 1) 0.990 (0.941, 0.999) 

TE 34 W (24, 56) 30 W (19, 73) 

CV 5.14% (3.68, 8.48) 4.39% (2.74, 10.76) 

TW 

ICC 0.998 (0.993, 1) 0.999 (0.994, 1) 

TE 1.197 kJ (0.858, 1.976) 0.547 kJ (0.341, 1.341) 

CV 2.10% (1.51, 3.47) 0.97% (0.61, 2.38) 

 

4.3.2.  Effect of recovery power (Prec) and recovery duration (trec) on ϒ recovery 

Each subject’s recovery profile is shown in Figure 4-4. Subject 7 was excluded from the 

analysis as their CP kept increasing from 3MT1 to 3MT4. Subject 7’s CPs across the four 

3MT trials were 295, 305, 319, and 327 Watts. This caused an inaccurate estimation of 
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CP4, which resulted in less ϒ being expended in the CP4 interval. This in-turn resulted in 

similar ϒrec for all intermittent tests as seen in Figure 4-4 (xiii) and (xiv). 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

Figure 4-4. Recovery profiles of all subjects. Subject A: (i) and (ii), Subject B: (iii) and (iv), Subject 1: (v) 

and (vi), Subject 2: (vii) and (viii), Subject 4: (ix) and (x), Subject 6: (xi) and (xii), and Subject 7: (xiii) 

and (xiv). 
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(v) 

 

(vi) 

 

(vii) 

 

(viii) 

Figure 4-4 (continued). Recovery profiles of all subjects. Subject A: (i) and (ii), Subject B: (iii) and (iv), 

Subject 1: (v) and (vi), Subject 2: (vii) and (viii), Subject 4: (ix) and (x), Subject 6: (xi) and (xii), and 

Subject 7: (xiii) and (xiv). 
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(ix) 

 

(x) 

 

(xi) 

 

(xii) 

Figure 4-4 (continued). Recovery profiles of all subjects. Subject A: (i) and (ii), Subject B: (iii) and (iv), 

Subject 1: (v) and (vi), Subject 2: (vii) and (viii), Subject 4: (ix) and (x), Subject 6: (xi) and (xii), and 

Subject 7: (xiii) and (xiv). 
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(xiii) 

 

(xiv) 

Figure 4-4 (continued). Recovery profiles of all subjects. Subject A: (i) and (ii), Subject B: (iii) and (iv), 

Subject 1: (v) and (vi), Subject 2: (vii) and (viii), Subject 4: (ix) and (x), Subject 6: (xi) and (xii), and 

Subject 7: (xiii) and (xiv). 
 

The hypothesized behavior of %ϒrec versus β and trec was not observed in most subjects. 

However, a statistically significant two way interaction effect was observed between Prec 

and trec on ϒrec across all subjects (p = 0.004, η2 = 0.52), which is also illustrated in Figure 

4-5A. Assumption of sphericity was not violated as indicated by Mauchly's met for the 

two-way interaction, χ2(9) = 5.547, p = 0.812. 
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(a) 

 
(b) 

Figure 4-5. Interaction plots. A: ϒrec vs Prec, and B: ϒrec vs trec. Simple main effects are present at all trec 

between mean ϒrec at the three Prec, there are no simple main effects at all Prec between mean ϒrec at the three 

trec.  

Simple main effects analyses were conducted due to the presence of interaction effects 

between Prec and trec. There was a statistically significant difference in mean ϒrec at trec = 
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2min (p = .001, η2 = 0.747), at trec = 6min (p = 0.006, η2 = 0.640), and at trec = 15 min (p < 

0.001, η2 = 0.914). Table 4-4shows the summary of the simple main effects analysis. 

 
Table 4-4. Mean ϒrec at different trec and Prec with summary of simple main effects of Prec at each trec 

trec 

(min) 

Mean ϒrec (%) 

Prec-L Prec-M Prec-H 

2 33.7% ± 10.1%#, † 18.95% ± 9.42% 3.31% ± 21.84% 

6 40.6% ± 12.3%†† 31.51% ± 13.97% 6.47% ± 24.56% 

15 39% ± 14.12%##, ‡ 19.20% ± 16.77%‡‡ −15.53% ± 23.58% 

#Statistically significantly different from Prec-M (mean difference = 14.75%, 95%CI [4.84, 24.66], p = 0.01). 
†Statistically significantly different from Prec-H (mean difference = 30.39%, 95%CI [8.06, 52.72], p = 0.015). 
††Statistically significantly different from Prec-H (mean difference = 34.15%, 95%CI [4.53, 63.77], p = 0.029). 
##Statistically significantly different from Prec-M (mean difference = 19.81%, 95%CI [2.63, 36.99], p = 0.029). 
‡Statistically significantly different from Prec-H (mean difference = 54.54%, 95%CI [34.05, 75.02], p = 

0.0007). 
‡‡Statistically significantly different from Prec-H (mean difference = 34.72%, 95%CI [15.87, 53.57], p = 

0.004). 
 

The negative mean ϒrec seen at Prec-H indicates that the subjects did not recover any 𝑊′but 

depleted it in the recovery interval suggesting that they were functioning above CP. This 

indicates a fluidity associated with CP either within or between exercise bouts.  

With regards to simple main effects of trec at the three Prec, there was no statistically 

significant difference in mean ϒrec at the different trec for Prec-L, p = 0.303 (η2 = 0.213). 

Similar results were observed at Prec-M, p = 0.094 (η2 = 0.376), and at Prec-H, p = 0.052 (η2 

= 0.536) (Greenhouse-Geisser correction was applied for Prec-H as epsilons for Greenhouse-
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Geisser and Huynh-Feldt corrections were 0.570 and 0.628 respectively). Please see 

Appendix B for data and the statistical analyses presented in this section. 

4.3.3.  Comparison of actual ϒ-balance (A3) and W'bal predicted by SK2 and BAR models 

Mann-Whitney U tests were conducted to determine if there were differences between 

actual balance (A3) and W'bal predicted by SK2 (ϒSK2) and BAR (ϒBAR) due to a violation 

of the normality assumption. Distributions of the A3 and ϒSK2, and A3 and ϒBAR were not 

similar, as assessed by visual inspection. Comparing A3 and ϒSK2, A3 was statistically 

significantly lower than ϒSK2, p = 0.035. Similarly, A3 was statistically significantly lower 

than ϒBAR, p = 0.015. Please see Appendix C for data and details pertaining to statistical 

analyses presented in this section. 

4.3.4.  Influence of intermittent test on CP 

The influence of the intermittent test on CP was analyzed by comparing CPfr and CPft at 

both group and subject levels (excluding Subject 7). Data from Subjects A and B were not 

analyzed at the subject level as there were only two data points for CPfr. At the group level, 

a Mann Whitney U test was conducted due to a violation of the normality assumption. The 

mean CPfr was not statistically different from that of CPft, p = 0.327. 

At the subject level, there were no violations of assumptions as assessed by Shapiro Wilk’s 

and Levene’s tests for each subject. Independent samples t-test indicated no statistically 

significant difference between the mean CPfr and mean CPft for Subject 2 (p = 0.166, d = 

0.89) and Subject 6 (p = 0.517, d = 0.40). Whereas, mean CPft was statistically significantly 

higher than mean CPfr for Subject 1 (p = 0.025, d = 1.56), Subject 4 (p = 0.032, d = 1.46). 
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The p-values along with the effect sizes for Subjects 1 and 4 indicate the within subject 

variability of CP. Please see Appendix D for data and details pertaining to statistical 

analyses presented in this section. 

4.3.5.  Optimization tests 

The goal of the optimization was to minimize time by managing the ϒ-balance. Subject 4 

volunteered to participate in the optimization tests and chose the 18 km course that was 

simulated on the CompuTrainer. The subject’s individual data was used to arrive at a 

recovery model and to determine the optimal power profile for the test (refer to our 

previous work in [114] for methodology). Table 4-5 summarizes the results from both tests 

and Figure 4-6 shows the power versus distance profiles for both self and optimal 

strategies, while Figure 4-6 (c) shows the ϒ-balance during the optimal test plotted against 

the distance. 
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Table 4-5. Comparison of results between self-strategy and optimal strategy tests. 

Parameter Self-strategy test Optimal strategy test 

Time (min:sec) 34:08 33:13 

Average Power (W) 212 219 

Max Power (W) 429 343 

Total Work (kJ) 435 456 

Average velocity (mph) 31.64 32.51 

Average heart rate (bpm) 148 146 
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(c) 

Figure 4-6. Results from the optimization tests: (a) Power vs distance profile for self-strategy, (b) Power vs 

distance profile for optimal strategy, and (c) ϒ-balance vs distance for the optimal strategy test. The course 

grade is shown below the power profiles and is plotted on the secondary axis. 

 

The optimal strategy tests show an improvement of 55 seconds from the self-strategy. In 

the self-strategy test, as seen Figure 4-6 (a), the subject began the test at higher powers and 

then settled below their CP for the last 2/3rds of the course. Whereas, in the optimal strategy 

test (Figure 4-6 (b)), the subject pedaled above and below CP giving them ample recovery 

to finish the test faster. The ϒ-balance plot in Figure 4-6 (c) has a 0 balance toward the end 

of the test (not exactly at the finish line). This can be attributed to (i) the variability of 

Subject 4’s ϒ and (ii) the constraint that the maximum power which can be generated at 

ϒ-balance = 0 is CP. Overcoming the uphill section at the end of the course at CP results 

in an increased race completion time. Hence, it is optimal to recover before the uphill 

section to go up the hill faster. 
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4.4.  Discussion 

The objectives of this study were to investigate (i) the effect of Prec and trec on ϒrec after a 

semi-exhaustive interval above CP, (ii) if ϒ recovery as calculated from SK2 and BAR 

models accurately predict the actual ϒ recovered, (iii) real-time performance optimization 

using the individual specific recovery data with one subject.. A significant result of this 

study was the two-way interaction effect between recovery parameters, Prec and trec, 

followed by the simple main effects of Prec on ϒrec. This illustrates that recovery power has 

a greater influence on the recovery of ϒ in comparison to recovery duration. Furthermore, 

the overestimation of ϒ-balance  at the end of the recovery interval by both SK2 and BAR 

models illustrates the need to establish athlete-specific models echoing the conclusions 

from Bartram and colleagues [101]. Moreover, the results from the optimization tests 

performed with one subject show the potential of athlete-specific models in performance 

optimization. 

The assumptions of this study were that the 3MT estimates CP and ϒ reliably and Equation 

5 accurately describes the expenditure of ϒ in the severe intensity domain. From the 3MTs, 

the PGET occurred at 0.81CP, which is higher than that reported by Vanhatalo and 

colleagues [78] of ~0.625CP. A limitation of the study was that the actual power output in 

20W recovery interval was 75-90 W for all subjects. It was not possible to generate a power 

output of 20W at 80 rpm due to the rolling resistance calibration recommendations. 

The repeatability statistics reported in Table 4-3 for CP (ICC = 0.994, TE = 9W, and CV 

= 3.26%) were stronger than those reported by Johnson and colleagues [74] (ICC = 0.93, 

TE = 15W, and CV = 6.7%), and similar to those by Burnley and colleagues [83] (ICC = 
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0.99, TE = 7W, CV = 3%). Similarly, reliability statistics for ϒ (ICC = 0.984, TE = 0.998kJ, 

and CV = 9.91%) were stronger than those by Johnson and colleagues [74] (ICC = 0.87, 

TE = 1.456kJ, and CV = 20.7%). Burnley and colleagues [83] did not compute repeatability 

statistics for ϒ and therefore a comparison with this study is not possible. The stronger 

repeatability along with the subject-level coefficient of variance for CP (range: 0.86% to 

4.85%) and ϒ (range: 3.27% to 13.79%), gives us reason to believe that the higher 

variability of ϒ (compared to CP) did not substantially influence the outcomes of the study. 

Similar results of lower variability of CP compared to ϒ have been reported in other studies 

[71], [74]. 

The statistical powers observed for the two-way interaction and the simple main effects of 

Prec were >0.9 illustrate that these analyses were appropriately powered. However, the low 

statistical power observed on simple main effects of trec could be due to the low sample 

size used in the study. The two-way interaction effect between Prec and trec on ϒrec was not 

observed by Caen and colleagues [108]. The simple main effects of lower Prec resulting in 

greater ϒ recovery has also been illustrated by Bickford and colleagues [102] with Prec 

having a greater influence on ϒ recovered than trec. Furthermore, the lack of simple main 

effects with respect to trec contrasts the results from Caen and colleagues [108]. They 

reported main effects with respect to recovery duration with more energy recovered at 6 

min (59.4% ± 4.1%) when compared to 2 min (46% ± 2.1%). Similar results to Caen and 

colleagues [108] were observed by Ferguson and colleagues [96] with greater ϒ recovery 

as recovery duration increased. This difference in results could be attributed to the CP4 

exertion interval where ~50% of ϒ (linear depletion as per Skiba and colleagues [99]) was 
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expended while all of ϒ was expended prior to the recovery interval in the aforementioned 

studies. The rate of ϒ recovery could be different for recovery intervals that follow 

exhaustive intervals versus semi-exhaustive intervals, like this study. 

Another significant result from this study was that SK2 and BAR models overestimated 

the actual ϒ-balance at the end of the recovery interval. This finding is in contrast to the 

results found by Bartram and colleagues [101] where SK2 underestimated ϒ-balance . The 

reason for this could be that the athletes who participated in this study were competitive 

amateur cyclists as compared to elite cyclists in Bartram and colleagues’ study [101]. 

Additionally, SK1, SK2, and BAR assume the recovery of ϒ to be exponential with respect 

to time. The results from this study did not find any such trends (see Figure 4-5). There 

was an increase in ϒ recovered between 2 minutes and 6 minutes while a negative trend 

was seen in one case for two subjects, which could be attributed to the intra-individual 

variability of the subjects. This was the reason for comparing TW and Pp to establish 

repeatability of the intermittent testing protocol which showed less variability as indicated 

by the ICC, TE, and CV (Table 4-3). 

None of the existing literature accounts for the variability of CP and ϒ at the subject level 

as it opposes the assumptions of these parameters being discrete and constant throughout 

the experiments. In the present study, in some cases, depletion of ϒ was observed at the 

highest recovery power Prec-H, indicated by the negative ϒrec. This can be attributed to the 

variability of V̇O2 data around GET [125], which resulted in PGET being in the range of 

~0.9CP. This could be the reason for not observing the hypothesized behavior as depicted 

in Figure 4-2. Regardless, the subjects were pedaling above CP (i.e. their actual CP on that 
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day or during that exercise bout) even though it was meant to be a recovery interval. This 

suggests that there is a variability associated with CP at the individual level, which is 

illustrated by the increase in CP seen in 2 out of 4 subjects (excluding Subject 7) who 

repeated the fresh 3MT four times. Similar results were reported by Miura and colleagues 

[132], where prior exercise in the heavy intensity domain resulting in increased CP 

estimates. Furthermore, prior heavy intensity exercise has also shown to increase ϒ [133], 

[134]. However, these studies used the constant work-rate protocol to determine CP and ϒ 

as opposed to the 3MT used in this study. The heavy intensity exercise at Prec-M and Prec-H 

may have acted as an additional warmup [133], [134]. These results indicate that CP and 

ϒ have an associated variability which could be a trial-to-trial phenomenon or an intra-trial 

phenomenon, thus pointing towards individualized time constants or models as suggested 

in several studies [100], [101], [108]. 

Another contribution of this study is the real-time performance optimization performed 

with one subject. However, there are a few limitations to the optimal power profile 

calculation. First, the recovery of ϒ was assumed to depend only on recovery power for 

the purpose of dynamic programming. Second, the subject would hover above and below 

the suggested optimal power and was unable to match it exactly at each instant within the 

100 m interval. Third, the effects of drag were ignored while determining the optimal 

strategy as both tests were conducted in the laboratory. Fourth, the trainer was unable to 

simulate the effect of coasting in the downhill sections of the course. Fifth, there was more 

than a 4 weeks gap between the completion of the intermittent tests and the optimization 

tests that could have resulted in changes in the subject’s CP, ϒ, and recovery mechanisms. 
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Sixth, the same study with elite cyclists instead of one competitive amateur, may yield a 

better comparison between the self and optimal strategy tests. Finally, the improved 

performance may be due to other factors such as the subject’s psychological aspects and 

the novelty of the test. Hence, similar studies in the future should conduct the optimization 

test at least two times and determine its repeatability. 

Considering all these limitations, the improvement of 55 seconds provides encouraging 

signs for future studies investigating ϒ recovery to be used in real-time in-situ performance 

optimization. The recovery of ϒ may not be exponential as suggested by the results of this 

study in the range of 2 to 15 minutes when a semi-exhaustive exertion interval precedes 

the recovery interval. The semi-exhaustive exertion interval is a more realistic 

representation of a race/interval training scenario. The optimal power profile suggested by 

our method, changes the target power every 100 m, which at a speed of 15 mph is covered 

in ~15 seconds. This approach is similar to the micro-interval training , which as suggested 

by Skiba and colleagues [100], is a common coaching practice. 

4.5.  Key findings 

The experimental study presented in this chapter illustrated the interaction effect between 

recovery characteristics (i.e. recovery power and duration) on recovery of ϒ. The study 

showed that recovery power has a greater influence on the recovery of ϒ in comparison to 

recovery duration as indicated by the simple main effects. Moreover, in some cases, 

depletion of ϒ was observed when the recovery power was in the vicinity of 0.9CP 

indicating the variability of CP. Additionally, the present study showed that the SK2 and 

BAR models overestimated ϒ-balance  at the end of the recovery intervals suggesting that 
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recovery of ϒ may not be exponential in nature for all cyclists, thus, highlighting the need 

for athlete-specific recovery models. Furthermore, the results of the optimal strategy test 

show promising signs for in-situ real-time performance optimization using the CP concept. 

The next chapter summarizes key findings from each chapter, lists research contributions, 

and discusses potential future research opportunities. 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

 

5.1.  Conclusions 

By surveying the literature for power-based models of exertion and recovery, it was found 

that the critical power concept, owing to its simplicity, offers the prospect of a combined 

exertion-recovery model to optimize performance. Additionally, the lack of methods to 

quantify the within subject variability (i.e. the IIV) of CP and ϒ pose problems in modeling 

and optimizing performance. The literature review also revealed a scarcity of high-fidelity 

models for recovery of ϒ leading to the following research objectives: 

Research objective 1: Establish a method to quantify the individual variability of CP 

and ϒ as determined by the 3MT. 

Research objective 2: Develop a testing protocol to understand expenditure and 

recovery of power and ϒ. 

Research objective 3: Establish recovery profiles in terms of recovery power and 

recovery duration. 

Research objective 4: Combine recovery with established expenditure for energy 

management. 

•  
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Research objective 1 was addressed by repeating the 3MT four times with seven subjects 

and developing a method to compare any two trials of 3MT at the subject level. The 

developed method ensures repeatability at the subject level using TW and Pp and then the 

IIV is computed by calculating the 95% confidence interval using the standard deviation 

from the repeated trials. 

Research objective 2 was addressed by developing an intermittent testing protocol to 

understand the effect of the recovery powers and durations on ϒ recovery. The 

experimental comprised of a semi-exhaustive interval above CP followed by recovery 

interval where the recovery power and the recovery duration was manipulated. There was 

a total of nine different recovery interval manipulations. Seven recreationally active 

cyclists completed the experimental protocol, thus establishing their individual recovery 

profiles and addressing Research objective 3. A finding common across all subjects was 

that the recovery power Prec having a greater influence on ϒrec than trec in the recovery 

duration range of 2 – 15 minutes. 

Research Objective 4 was accomplished with one subject whose race time was reduced by 

55 seconds compared to their self-strategy by using the subject-specific models and 

dynamic programming to optimize performance4. Though having limitations, the results 

provide encouraging signs to use subject-specific modeling in performance optimization. 

The next steps of the research and are discussed in the following section.  

 

4 This was accomplished in collaboration with Faraz Ashtiani and the methodology can be found in the 

following paper: 

Ashtiani, F., Sreedhara, V. S. M., Vahidi, A., Hutchison, R., & Mocko, G. (2019, July). Experimental 

Modeling of Cyclists Fatigue and Recovery Dynamics Enabling Optimal Pacing in A Time Trial. In 2019 

American Control Conference (ACC) (pp. 5083-5088). IEEE. 
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5.2.  Future Work 

5.2.1.  Reducing the number of testing days 

The current experimental testing comprises of 14-16 testing days spread over 5 weeks 

(including rest days), which is a significant time commitment for cyclists. The results from 

Chapter 3 indicated that the 3MT could be repeated three times to estimate CP and ϒ along 

with their IIVs. Moreover, the possibility of conducting two 3MTs separated by 12 hours 

can be investigated. Two testing days can be saved if 12 hours rest results in similar 

estimates of CP and ϒ compared to 24 hours rest. 

The results from Chapter 4 has shown that there was an interaction effect between Prec and 

trec on recovery of ϒ. Furthermore, there were no trends seen at the subject level as 

hypothesized in Figure 4-2. However, trends were observed at Prec-L and Prec-H at trec of 2 

minutes and 6 minutes. Additionally, Prec-H resulted in negative ϒrec in 4 out of 7 subjects 

at Prec-H. Therefore, an exercise protocol with Prec in the range of 0.3CP – 0.8CP and trec in 

the range of 2 – 6minutes may result in trends as hypothesized in Figure 4-2. It is proposed 

that four Prec levels (0.35CP, 0.5CP, 0.65CP, and 0.8CP) and two trec levels (2min and 

4min) be used for the intermittent tests resulting in 8 manipulations instead of 9. Table 5-1 

shows an updated testing protocol where the number of testing days is reduced to 12 days. 
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Table 5-1. Proposed testing schedule to reduce the number of testing days. 

Testing Day Test/s 

Day-1 

Ramp test, 3MT familiarization, and 3MT1 (12 hours 

between familiarization and 3MT1#) 

Day-2 

3MT2, 3MT3 (12 hours rest), and Intermittent test 

familiarization  

Day-3 Intermittent test 1 

Day-4 Intermittent test 2 

Day-5 Intermittent test 3 

Day-6 Intermittent test 4 

Day-7 Intermittent test 5 

Day-8 Intermittent test 6 

Day-9 Intermittent test 7 

Day-10 Intermittent test 8 

Day-11 Self-strategy test 

Day-12 Optimal strategy test 

#This assumes that there is no difference in CP and ϒ determined from two 3MTs separated by 12 hours and 

24 hours rest. 

 

All tests, including the optimization tests, can be completed between 2 to 4 weeks 

depending on whether tests are conducted every day or every other day. The next section 

discusses the in-situ testing and validation. 
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5.2.2.  Surrogate models using muscle-oxygenation (MO2) and heart rate 

Surrogate models to recovery of ϒ could potentially be derived by investigating the 

relationship between ϒ behavior, muscle oxygenation, and heart rate. Bickford [135] 

showed that the MO2 and heart rate either decreased or remained constant in the recovery 

interval. Similar analyses can be conducted on the data from the study presented in Chapter 

4 and the existence of any relationships or correlations between ϒ recovery, MO2, and heart 

rate can be investigated. If such correlations exist, then MO2 and heart rate can be used as 

surrogates to the recovery models that are based on power and energy. 

5.2.3.  In-situ testing and validation using a multiple sensor network 

The studies presented in this dissertation were all conducted in the laboratory. The models 

and methods need to be validated and modified to be used in the field. The validation can 

be accomplished by using the latest trainers on the market that can simulate the effects of 

drag and downhill coasting. Alternatively, the tests could be conducted in a velodrome 

using commercially available bicycle power meters. The 3MT and the intermittent tests 

can be conducted in the velodrome to estimate and establish CP, ϒ, the IIVs, and ϒ 

recovery profiles. The self and optimal strategy tests can then be conducted on a known 

course using a multiple sensor network as shown in Figure 5-1. The network will comprise 

the following sensors: 

1. Power meter (pedal/crank/hub) 

2. GPS sensor (usually integrated with the bike computer/cellphone) 

3. Heart-rate monitor 
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4. Muscle oxygenation sensor 

5. Raspberry pi 

6. Bike computer/cellphone 

 

Figure 5-1. Multiple sensor network for real-time in-situ performance optimization.  

The known course would be discretized into 100-meter segments and the optimization 

algorithm would calculate the optimal power profile for all the segments and store it on the 

remote server/computer. The muscle oxygenation sensor, the heart-rate monitor, and the 

power meter send data to the raspberry pi mounted on the bike. The raspberry pi will send 

the acquired data to the computer/server via internet, which will process the data using 

MATLAB and LabVIEW. The computer/sever compares the average power held in the 

previous 100-meter segment to its optimal power and calculates an updated optimal power. 

The computer then sends the updated optimal power to be held in the next 100m segment 
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to the bike computer via the raspberry pi so that the cyclist can adapt and change their 

power output. This multiple sensor system can be realized by following the cyclist in a car 

which can host a Wi-Fi hotspot for the bike mounted raspberry pi to communicate with the 

either a remote server or a computer in the car. 

5.2.4.  Modeling performance of endurance sports 

There is existing work that applies the CP concept to running [5] and swimming [6] with 

analogous parameters. The possibility of modeling running and swimming performance in the same 

vein as presented in the previous chapters can be investigated. Furthermore, with the models for 

swimming and running, the effect of prior exercise on performance can be investigated. This will 

lead to modeling and potentially optimizing duathlon and triathlon performances. 

5.2.5.  Training and in-game strategies for team sports 

The CP concept can potentially be used to investigate fatigue related injuries in sports comprising 

of sprint work such as football, soccer, and lacrosse. Sprinters tend to have a large ϒ and recover 

faster in between their sprints. This faster ϒ recovery can be investigated and the learnings can be 

extended to develop specific training interventions based on different outfield positions. 

Furthermore, the possibility of linking risk of injury-occurrence to ϒ-balance can be investigated 

and the learnings could potentially be helpful in devising team strategies based on ever changing 

game situations. 

5.2.6.  Exercise and health 

The critical power concept has been applied to different forms of exercise in many studies 

[2], [6], [7] and provides a framework that can be useful in understanding the physiological 
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underpinnings of fatigue in relation to heart disease and muscle atrophy [28]. Mezzani and 

colleagues [136] conducted CWR tests on patients suffering from chronic heart failure to 

understand their limits of prolonged aerobic performance. Neder and colleagues [137] 

investigated the power-duration relationship in patients with chronic obstructive 

pulmonary disease to arrive at “sustainable” and “non-sustainable” exercise domains. 

Similarly, future studies can explore training prescriptions for patients suffering from other 

diseases like diabetes, and diseases that cause muscle atrophy to improve their overall 

health. Furthermore, the critical power concept has the potential to assess muscle health of 

astronauts who are prone to develop muscular atrophy during space missions [138]. 

5.3.  Research Contributions 

1. None of the work reviewed in this research attempts to model/address/quantify IIV 

associated with CP and ϒ. All studies attempt to develop global models without 

accounting for this IIV. The work presented here has laid the foundation for 

quantifying IIV to mitigate under/overestimation of performance. 

2. The available studies pertaining to ϒ recovery investigate the effect of either 

recovery duration [96] or recovery powers [97] on recovery of ϒ. There are only a 

few studies that investigate the effect of both recovery powers and durations on ϒ. 

This work investigated the effect of both on recovery of ϒ and the results suggest 

that ϒ recovery may not be exponential for all cyclists and highlights the need for 

athlete specific models. 

3. This research presented a case of performance optimization using an energy 

management system with subject-specific models derived from the experimental 
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data to successfully reduce the race time by approximately 2 minutes. This was one 

of the first attempts at real-time performance optimization. 

5.3.1.  Publications 

Journal articles 

1. Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. “A survey of mathematical 

models of human performance using power and energy”. Sports Medicine-Open, vol. 

5, no. 1, pp. 1-13, 2019. 

2. Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. “Repeatability and variability 

of the 3-minute all-out test at the subject level”. (submitted to SSEJ in March 2020). 

3. Sreedhara, V. S. M., Ashtiani, F., Mocko, G. M., Vahidi, A., & Hutchison, R. E. 

“Modeling the recovery of W’ in the moderate to heavy exercise intensity domain” 

(submitted to MSSE in February 2020). 

4. Malley, J. C., Sreedhara V. S. M., Mocko, G. M., Vahidi, A., & Hutchison, R. E. 

“Cycling fatigue modeling for intermittent exercise: A case study” (to be submitted in 

May 2020). 

5. Ashtiani, F., Sreedhara, V. S. M., Mocko, G. M., Vahidi, A., & Hutchison, R. E. 

“Optimal Pacing of a Cyclist in a Time Trial Based on Experimentally Calibrated 

Models of Fatigue and Recovery” (to be submitted in May 2020). 
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Conference proceedings 

1. Ashtiani, F., Sreedhara, V. S. M., Vahidi, A., Hutchison, R., & Mocko, G. (2019, July). 

“Experimental Modeling of Cyclists Fatigue and Recovery Dynamics Enabling 

Optimal Pacing in A Time Trial”. In 2019 American Control Conference (ACC) (pp. 

5083-5088). IEEE. 

2. Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. “An Experimental Protocol to 

Model Recovery of AnaerobicWork Capacity”. In: The Engineering of Sport (ISEA 

2018), Brisbane, Australia, 26-29 March 2018. (Vol. 2, No. 6, p. 208). 

3. Bickford, P., Sreedhara, V. S. M., Mocko, G. M., Vahidi, A., & Hutchison, R. E. 

(2018, February). “Modeling the Expenditure and Recovery of Anaerobic Work 

Capacity in Cycling”. In International Sports Engineering Association Conference 

Proceedings, 2018, Brisbane, Australia (Vol. 2, No. 6, p. 219). 
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Appendix A 

Derivation of the W'bal models demonstrating the imbalance of units 

This appendix shows the derivation of mathematical solutions for the different W'bal models 

presented by Skiba and colleagues [97]–[100] 

W'bal model with only the integrand [97]: 

'

( )

0

' ' ' W

t ut

bal expW W W e


 −
−  
 = −   (A1) 

W'bal model with “du” as the differential variable [98], [99]: 

'

( )

0

' ' ' W

t ut

bal expW W W e du


 −
−  
 = −   (A2) 

W'bal model with “dt” as the differential variable [100]: 

'

( )

0

' ' ' W

t ut

bal expW W W e dt


 −
−  
 = −   (A3) 

In all the forms, W'bal is the ϒ balance at any time during exercise, W'exp is the amount of 

ϒ expended, (t − u) is the duration of the recovery interval, and τW' is the time constant of 

reconstitution of ϒ in seconds given by, 

( 0.01 )

' 546 316CPD

W e −
=  +  (A4) 

where, DCP is the difference between CP and average power output during all intervals 

below CP (recovery power). Equation A4 is a non-linear regression obtained by plotting 

τW' values (calculated by setting the W'bal = 0 in Equation A2 at the termination of exercise) 

against respective DCPs.  

Biconditional W'bal model proposed by Skiba and colleagues [99]: 
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, ' ' ( )
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D tCP
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bal exp

If P CP W W P CP t

If P CP W W W e

 − 
  
 

 = − − 

 = − 

 (A5) 

where, W'0 is ϒ at time t=0. The P > CP condition is same as the 2-parameter model for 

expenditure of ϒ. The P < CP condition models the recovery of ϒ. 

Equation A1 cannot be integrated due to the absence of the differential term. Hence, in the 

following section, Equations A2 and A3 will be integrated to show the difference in the 

obtained solution, and dimensional analyses will be conducted for both solutions to show 

the imbalance of units. Additionally, a detailed derivation of the P < CP condition of 

Equation A5 will be presented.  

Note: The constant of integration does not appear in the solutions as the limits of 

integration are known for all the integrals (i.e. they are definite integrals). 

Integration of Equations A2 and A3 

Integration of Equation A2 

Rewriting Equation A2, 

'

( )

0

' ' ' W

t ut

bal expW W W e du


 −
−  
 = −   

Treating W'exp as a constant, 

'

( )

0

' ' ' W

t ut

bal expW W W e du


 −
−  
 = −    

Integrating the exponential term with respect to “u” between limits u = 0 and u = t, 
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Therefore, 

'

'' ' ' 1 W

t

bal exp WW W W e


− 
= −  − 

 
 

 

Dimensional analysis of the integration of Equation A2 

The result of the integration of Equation A2 is  

'

exp '' ' ' 1 W

t

bal WW W W e


− 
= −  − 

 
 

 (A6) 

Units of the terms on the left-hand-side (LHS): W'bal is in Joules (J) 

Units of the terms on the right-hand-side (RHS): W' is in J, W'exp is in J, τW' is in seconds 

(s). The exponential term is dimensionless as the unit of measurement for both t and τW' is 

seconds.  

Therefore, the units will look like: 

s

sJ J J s 1 e
 

= −   − 
 

 

J J J s= −   

 

 

(A7) 

The RHS cannot be computed due to the imbalance of the units. 

Integration of Equation A3 

Rewrtiting Equation A3, 
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Treating τW' W'exp as a constant, 
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Integrating the exponential term with respect to “t” between limits t = 0 and t = t, 
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Therefore, 
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u t

bal exp WW W W e e
 

− 
= −   − 

 
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Dimensional analysis of the solution to Equation A3 

The result of the integration of Equation A3 is 

' '

'' ' ' 1W W

u t

bal exp WW W W e e
 

− 
= −   − 

 
 

 (A8) 

Units of the terms on LHS: W'bal is in J 

Units of the terms RHS: W' is in J, W'exp is in J, τW' is in s. The exponential terms are 

dimensionless as the unit of measurement for u, t, and τW' is seconds.  

Therefore, the units will look like: 
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s s

s sJ J J s 1e e
 

= −    − 
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J J J s= −   

 

 

(A9) 

The RHS cannot be computed due to the imbalance of the units, which is the same as the 

results of the dimensional analysis of Equation A2 in Equation A7. 

Derivation of the recovery portion of Equation A5 

The derivation below follows that presented by Skiba and colleagues [99] (Refer to 

Appendix 1 of [99]). It is to be noted that ϒ will be referred to as W' in this section. 

Case: P < CP 

Assumption: Rate of change of W' depends on the amount of W' remaining and the power 

output relative to CP. Additionally, the power below CP is assumed to be constant. 

Therefore, the rate of change of W' is given by, 

0

' '( )
1 ( )
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dW W t
CP P

dt W
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= −  − 
 

 

Separating dW' and dt and substituting DCP = CP – P, 

0
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D dt

W t
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The limits of integration on both sides will be for a recovery interval starting at time “u” 

and ending at time “t”. Therefore, the limits for dW' = W' (u) to W' (t).  

Applying the integral, 
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Integrating by treating (1/W'0) as a constant,  
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==
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Multiplying both sides by (1/W'0) and applying the limits on the RHS, 
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Applying the limits on the LHS, 
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Using the laws of logarithms, 
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Taking exponential on both sides, 
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Multiplying by W'0 – W' (u) on both sides and rearranging,  

0
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Replacing W' (t) with W'bal, (W'0 – W' (u)) with W'exp, and (t-u) with t gives, 

0'

0 exp' ' '

CPD t

W

balW W W e

− 

= −   (A10) 

Equation A10 is identical to the expression representing the recovery portion in Equation 

A5. 
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Appendix B 

Data and analyses details for the intermittent cycling tests 

Table A-1. Erec (%) during each intermittent cycling test for all subjects. 

Subject T1 T2 T3 T4 T5 T6 T7 T8 T9 

A 29.02 44.06 38.20 5.76 6.67 7.93 -8.87 -6.80 -10.76 

B 48.82 63.90 51.64 32.76 46.05 34.05 26.80 39.81 -8.64 

1 43.68 37.11 53.57 22.75 25.05 34.31 14.61 20.44 8.61 

2 23.21 35.57 29.80 14.57 35.17 -6.18 -34.44 -32.50 -49.30 

4 29.18 31.77 16.41 23.70 36.34 13.45 13.84 7.62 -38.72 

6 28.31 31.32 44.42 14.16 39.79 31.61 7.92 10.26 5.65 

Mean 33.70 40.62 39.01 18.95 31.51 19.20 3.31 6.47 -15.53 

SD 10.10 12.30 14.12 9.42 13.97 16.77 21.84 24.56 23.58 

*Subject 7 excluded due to reasons discussed in Chapter 4. 

Results of the repeated measures ANOVA: 

Table A-2. Results of the repeated measures ANOVA. 

Effect F 

Degrees of 

freedom, 

Effect, Error 

p-value Partial η2 

Observed 

power 

Prec 25.603 2, 10 <0.001 0.837 1 

trec
# 3.29 1.212, 6.062 0.117 0.397 0.355 

Prec × trec 5.395 4, 20 0.004 0.519 0.929 

#Greenhouse-Geisser correction used as both epsilons from Mauchly’s test were <0.7. 
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Table A-3. Results of the simple main-effects analysis at each trec
*. 

trec 

(minutes) 

F 

Degrees of 

freedom, 

Effect, Error 

p-value Partial η2 

Observed 

power 

2 14.745 2, 10 0.001 0.747 0.989 

6 8.905 2, 10 0.006 0.640 0.906 

15 53.353 2, 10 <0.001 0.914 1 

*Pairwise comparisons are reported in Table 2 of the manuscript. 

Table A-4. Results of the simple main-effects analysis at each Prec. 

Prec F 

Degrees of 

freedom, 

Effect, Error 

p-value Partial η2 

Observed 

power 

L 1.25 2, 10 0.303 0.213 0.227 

M 3.017 2, 10 0.094 0.376 0.456 

H# 5.786 1.141, 5.705 0.053 0.536 0.537 

#Greenhouse-Geisser correction used as both epsilons from Mauchly’s test were <0.7. 
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Appendix C 

Data and analysis details of A3 versus ϒSK2 and ϒBAR  

Table A-5. ϒbal actual (A3) vs. ϒSK2 and ϒBAR for all subjects* 

Subject Prec 
trec, 

minutes 

ϒbal actual 

(A3), kJ 
ϒSK2, kJ ϒBAR, kJ 

A 

L 2 10.063 11.135 11.186 

L 6 11.999 12.010 12.012 

L 15 11.375 12.028 12.028 

M 2 7.327 8.619 9.419 

M 6 7.540 10.742 11.459 

M 15 7.724 11.886 12.009 

H 2 5.453 7.007 7.699 

H 6 5.886 8.251 9.731 

H 15 5.248 9.783 11.398 

B 

L 2 10.169 9.175 9.079 

L 6 11.842 10.076 10.065 

L 15 10.407 10.102 10.102 

M 2 8.631 7.938 8.232 

M 6 9.563 9.671 9.820 

M 15 8.550 10.093 10.099 

H 2 8.040 6.512 7.099 

H 6 8.884 7.969 8.868 

H 15 4.363 9.569 9.967 

1 

L 2 14.676 13.985 14.325 

L 6 13.674 15.068 15.084 

L 15 17.772 15.092 15.092 

M 2 11.455 11.937 13.071 

M 6 11.844 14.503 14.940 

M 15 13.161 15.078 15.092 

H 2 10.208 9.899 11.385 

H 6 11.081 12.356 14.115 

H 15 9.380 14.462 15.045 
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Table A-5 (continued). ϒbal actual (A3) vs. ϒSK2 and ϒBAR for all subjects*. 

Subject Prec 
trec, 

minutes 

ϒbal actual 

(A3), kJ 
ϒSK2, kJ ϒBAR, kJ 

2 

L 2 4.481 5.485 5.080 

L 6 5.161 5.645 5.618 

L 15 4.633 5.646 5.646 

M 2 3.802 4.654 4.363 

M 6 4.956 5.507 5.350 

M 15 2.629 5.644 5.635 

H 2 1.164 3.808 3.835 

H 6 1.145 4.550 4.626 

H 15 0.072 5.481 5.509 

4 

L 2 6.618 7.459 7.134 

L 6 6.644 7.838 7.819 

L 15 5.674 7.841 7.841 

M 2 6.184 5.944 6.027 

M 6 7.072 7.270 7.349 

M 15 5.697 7.811 7.820 

H 2 5.463 5.016 5.296 

H 6 5.204 5.945 6.456 

H 15 1.574 7.078 7.498 

6 

L 2 7.475 8.172 8.027 

L 6 7.539 9.095 9.070 

L 15 8.704 9.137 9.137 

M 2 5.971 7.189 7.324 

M 6 8.416 8.804 8.867 

M 15 7.575 9.130 9.133 

H 2 5.429 5.883 6.328 

H 6 5.553 7.381 8.019 

H 15 5.086 8.741 9.010 
  Mean 7.523 8.835 9.115 
  SD 3.549 2.971 3.104 

*Subject 7 excluded due to reasons discussed in Chapter 4. 
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Table A-6. Mann-Whitney U test results for A3 vs. ϒSK2. 

ϒbal Mean ± SD n 

Shapiro-

Wilk p-

value 

Mann-Whitney U test results 

Mean 

rank 
U 

Standardized 

test-stat, z 
p-value 

A3 7.523 ± 3.549 54 0.540 48.13 
1802 2.114 0.035 

ϒSK2 8.835 ± 2.971 54 0.022 60.87 

 

A3   SK2 

 

Figure A-1. Dissimilar frequency distributions of A3 and ϒSK2. 

 

Table A-7. Mann-Whitney U test results for A3 vs. ϒBAR. 

ϒbal Mean ± SD n 

Shapiro-

Wilk p-

value 

Mann-Whitney U test results 

Mean 

rank 
U 

Standardized 

test-stat, z 
p-value 

A3 7.523 ± 3.549 54 0.540 47.18 
1853.5 2.430 0.015 

ϒBAR 9.115 ± 3.104 54 0.027 61.82 
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A3   BAR 

 
 

Figure A-2. Dissimilar frequency distributions of A3 and ϒBAR. 
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Appendix D 

Data and analysis details of CPfr versus CPft for all subjects 

Table A-8. CPfr and CPft for all subjects. 

Subject CPfr (W) CPft (W) 

1 

271 274 

267 278 
 284 

 277 

 274 

 278 

 285 

 273 

 285 

2 

231 282 

234 259 

 260 

 246 

 
247 

 263 

 261 

 257 

 238 
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Table A-8 (continued). CPfr and CPft for all subjects.  

Subject CPfr (W) CPft (W) 

3 

335 361 

334 349 

327 360 

343 332 

 348 

 352 

 348 

 352 

 340 

4 

211 200 

215 218 

220 227 

224 211 

 218 

 201 

 207 

 203 

 191 

5 

246 251 

237 259 

245 244 

242 253 

 258 

 254 

 254 

 263 

 237 
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Table A-8 (continued). CPfr and CPft for all subjects. 

Subject CPfr (W) CPft (W) 

6 

195 203 

217 207 

212 215 

200 194 

 215 

 216 

 210 

 213 

 210 

 

Details of statistical analyses: 

Group level: Mann-Whitney U test conducted due to a violation of normality assumption. 

Table A-9. Mann-Whitney U test results excluding Subject 7* 

CP Mean ± SD n 

Shapiro-

Wilk 

p-value 

Mann-Whitney U test results 

Mean 

rank 
U 

Standardized 

test-stat, z 
p-value 

CPfr 250 ± 47 20 0.0035 33.48 
620.50 0.980 0.327 

CPft 259 ± 49 54 0.0005 38.99 

*Subject 7 excluded due to reasons discussed in Chapter 4. 

 



130 

 

 

Figure A-3. Dissimilar frequency distributions of CPfr and CPft. 

Subject level: Independent sample t-tests were conducted due to unequal sample sizes. CP 

data from subjects 1 and 2 were not analyzed at subject level as they did only two fresh 

3MTs. Data from Subject 7 were excluded due to reasons discussed in Chapter 4. 

Table A-10. Independent t-test results for Subject 1 

CP Mean ± SD n 

Shapiro-

Wilk 

p-value 

Levene's 

test 

p-value 

Mean 

diff., 

95%CI 

t 
p-

value 

Cohen's 

d 

CPfr 335 ± 7 4 0.836 
0.476 

-13 

(-25, -2) 
-2.602 0.025 1.56 

CPft 348 ± 9 9 0.765 

 

Table A-11. Independent t-test results for Subject 2 

CP Mean ± SD n 

Shapiro-

Wilk 

p-value 

Levene's 

test 

p-value 

Mean 

diff., 

95%CI 

t 
p-

value 

Cohen's 

d 

CPfr 217 ± 6 4 0.914 
0.201 

9 

(-4, 22) 
1.485 0.166 0.89 

CPft 208 ± 11 9 0.937 
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Table A-12. Independent t-test results for Subject 4 

CP Mean ± SD n 

Shapiro-

Wilk 

p-value 

Levene's 

test 

p-value 

Mean 

diff., 

95%CI 

t 
p-

value 

Cohen's 

d 

CPfr 242 ± 4 4 0.632 
0.396 

-10 

(-20, -1) 
-2.460 0.032 1.48 

CPft 253 ± 8 9 0.529 

 

Table A-13. Independent t-test results for Subject 6 

CP Mean ± SD n 

Shapiro-

Wilk 

p-value 

Levene's 

test 

p-value 

Mean 

diff., 

95%CI 

t 
p-

value 

Cohen's 

d 

CPfr 206 ± 10 4 0.707 
0.210 

-3 

(-14, 7) 
-0.670 0.512 0.40 

CPft 209 ± 7 9 0.078 
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