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Abstract

Computer science (CS) is a popular but often challenging major for undergraduates. As

the importance of computing in the US and world economies continues to grow, the demand for

successful CS majors grows accordingly. However, retention rates are low, particularly for under-

represented groups such as women and racial minorities. Computing education researchers have

begun to investigate causes and explore interventions to improve the success of CS students, from

K-12 through higher education. In the undergraduate CS context, for example; student difficulties

with pointers, functions, loops, and control flow have been observed. We and others have utilized

student responses to multiple choice questions aimed at determining misconceptions, engaged in

retroactive examination of code samples and design artifacts, and conducted interviews in an at-

tempt to understand the nature of these problems. Interventions to address these problems often

apply evidenced-based active learning techniques in CS classrooms as a way to engage students and

improve learning.

In this work, I employ a human-centered approach, one in which the focus of data collection

is on the student thought processes as evidenced in their speech and writing. I seek to determine

what students are thinking not only through what can be surmised in retrospect from the artifacts

they create, but also to gain insight into their thoughts as they engage in the design, implementation,

and analysis of those artifacts and as they reflect on those processes and artifacts shortly after. For

my dissertation work, I have conducted four studies:

1. a conceptual assessment survey asking students to “Please explain your reasoning” after each

answer to code tracing/execution questions followed by task-based interviews with a smaller,

different group of students

2. a “coding in the wild” think aloud study that recorded the screen and audio of students as
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they implemented a simple program and explained their thought process

3. interview analyses of student design diagrams/documentation in a software engineering course,

tasking students to explain their designs and comparing what they believed they had designed

with what is actually shown from their submitted documentation

These first three studies were formative, leading to some key insights including the benefits students

can gain from feedback, students’ tendencies to avoid complexity when programming or encountering

concepts they do not fully grasp, the nature of student struggles with the planning stages of problem

solving, and insight into the fragile understanding of some key CS concepts that students form. I

leverage the benefits of feedback with guided prompts using the misconceptions uncovered in my

formative studies to conduct a final, evaluative study. This study seeks to evaluate the benefits

that can be gained from a guided feedback intervention for learning introductory programming

concepts and compare those benefits and the effort and resource costs associated with each variation,

comparing the costs and benefits associated with two forms of feedback. The first is an active learning

technique I developed and deem misconception-based feedback (MBF), which has peers working in

pairs use prompts based on misconceptions to guide their discussion of a recently completed coding

assignment. The second is a human autograder (HAG) group acting as a control. HAG simulates

typical autograders, supplying test cases and correct solutions, but utilizes a human stand-in for

a computer. In both conditions, one student uses provided prompts to guide the discussion. The

other student responds/interacts with their code based on the prompts. I captured screen and

audio recordings of these discussions. Participants completed conceptual pre-tests and post-tests

that asked them to explain their reasoning. I hypothesized that the MBF intervention will offer a

valuable way to increase learning, address misconceptions, and get students more engaged that will

be feasible in CS courses of any size and have benefits over the HAG intervention. Results show

that for questions involving parameter passing with regards to pass by reference versus pass by value

semantics, particularly with pointers, there were significant improvements in learning outcomes for

the MBF group but not the HAG group.
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Dedication

This dedication is written in two parts. Family: Present and Future.

Present

To my current family, I love you all and literally could never have been in the position to

obtain this degree without you. Starting with my parents, who provided me the genes (nature) and

environment (nurture) to become the person I am today, I thank you both for being there for me.

I’ve always (or since I could really form beliefs) believed that everything happens for a reason. I

have been extremely fortunate in my life and a lot of that stems (no pun intended) from my parents.

To Ayanna, my 18-month older twin. I love you, sis. I have been and will always be extremely proud

of everything that you accomplish. I appreciate so much that we have a great dynamic and even

though we’re close in age and in similar fields, have never felt like we were competing against each

other. Our achievements and successes can be shared with each other knowing that we’ll always

love, support, and protect our sibling. My grandparents, who are not with us anymore, but gave

wise advice and provided many happy moments for me, not to mention shaping the people who

shaped me (my parents). Also the cousins, aunts, uncles, and every other family member who is

pivotal in my life. Finally, in the present section I would like to dedicate this to my chosen family.

Anyone who knows me knows that I consider my best friends my chosen family. You guys have been

with me anywhere from 7-23 years, and I know I can always count on you to tell me what I need

to hear, whether or not that’s what I want to hear. I love you guys and cherish the bonds we’ve built.

Future

This part is a little bit more difficult, because I don’t know exactly who I’m writing to. What

I do know is that for the last half a decade or so, most of the positive things I’ve done in my life to

achieve success, gain money, etc., have been because I know that sometime (hopefully soon), I will
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have a family of my own and they will become my world. To my future wife, I hope you’re enjoying

life to the fullest, as much as you can during these quarantimes (intentional misspelling). I want

you to know that all of my life experiences and opportunities have been leading me to and preparing

me for you. I enjoy being semi-dramatic, so I will probably let you read this sometime before the

wedding, or maybe even put it in my vows, but just know that through any fight, disagreement, or

simply unpleasant times, I chose you for a reason and I will continue to choose you. There was a

reason I waited so long to get married and was unwilling to settle. I needed to find you, and am so

glad I have. Now, the important part (love you dear :))....Our future children. Hey! I bet you would

not have imagined your dad thinking about you so far ahead of your birth/s. I won’t say your names

because it would be awkward if they don’t end up being true. These almost 300 pages of reading are

what I’m dedicating to you (super cool, right?). I have no expectations of you reading them all, but

when thinking about important people in my life, I just could not include you in this section. The

thought of us growing together as a family, having lame traditions that you might pretend to dislike

but know you’ll love...It’s something that has motivated and continues to motivate me everyday. I

imagine I might tear up reading this years from now, as I’m currently on the verge of it just thinking

about the great times there are to come. Just be your best, which I know already has the potential

to be better than me. Your mom and I won’t be perfect parents, as no one is, but love, support,

honesty, and trust are things I can guarantee we will provide you through this process. If you ever

need some encouraging words, maybe these will help. I know you’ve probably heard the phrase

“You can do anything!!” Well that’s untrue and not realistic. Some things are just physically or

practically impossible to do. BUT, what you can do in the time you have on Earth is incredible and

please make sure that the things you do make you and the people you love happy. If you live life

like that, it will be as full as I’ve seen it.

With love,

-Dr. Dad

P.S. All parents have a favorite. We love you equally, but depending on the time, we might like one

of you a little more :)
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Chapter 1

Introduction

To address the impact of rising enrollment of the computer science (CS) major on the ability

to provide high quality education with limited resources, schools have adopted many approaches.

One of these approaches is using autograders to provide feedback in a more efficient manner that

saves instructors time and resources. However, the use of such automated feedback may fail to pro-

vide the pedagogical benefits of the quality feedback that is possible with lower enrollments[10, 72].

While quality feedback seeks to guide students to knowledge of related concepts and address mis-

conceptions, autograder feedback generally merely compares executed code to test cases provided

by an instructor[57], limiting it to providing confirmation feedback[120]. In this dissertation, I de-

scribe several studies that I have conducted to uncover student misconceptions and a peer feedback

intervention that I developed and evaluated that employs active learning and involves a structured

dialogue between students. I first conducted two studies to identify misconceptions students have

about key computer science concepts and gain insight into the cause of those misconceptions. Those

studies showed a key element of the value of feedback, so I developed an active learning technique

based on misconceptions and using peer feedback through structured dialogue to evaluate the results

of the formative studies. The prompts that guide the dialogue are developed based on these miscon-

ceptions and related work on learning, particularly how novices learn. I then compare the outcomes

associated with that technique with a protocol simulating automatic graders that would be classified

as active learning, but not allowing students the benefits of constructing their own knowledge or

working together to interactively construct knowledge[31]. This human autograder approach was

used to control for the delivery element of the feedback, as the misconception-based feedback was
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provided by a human peer. In my work, I present an active learning technique that I developed,

named misconception-based peer feedback (MBF), to offer a low resource method to improve student

learning outcomes and that can be used even as computer science course size continues to increase.

Computer science (CS) is a challenging major for undergraduates[58, 142]. Retention rates

are low, despite the ever-growing demand for employees in the field. In 2012, a presidential report

discussed this problem, and particularly noted the lack of underrepresented groups (URGs) such

as women and racial minorities[142]. Integrated Postsecondary Education Data System (IPEDS)

data reports representation of under 10% for Black and Lantinx students earning bachelor’s degrees

at both doctoral and non-doctoral-granting institutions[3]. The same report shows under 20% for

women earning computing bachelor’s degrees. Since 2013, the National Science Foundation has

developed a “CS 4 All” initiative to attempt to address this issue[70], offering millions of dollars

for projects geared towards involving all K-12 students in CS education. Retention rates are also

found to be lower with URGs, with Black and Lantinx students having lower retention rates as well

as women compared to men transfer students[3]. An important part of the process of increasing

retention rates and students successfully learning CS is understanding the obstacles students face

while trying to learn the subject.

These efforts to increase diversity in computing coincide with rising CS enrollment numbers.

From 2012-2015, CS enrollment more than doubled while Black or African American students only

increased 0.5%[138]. This same report discusses methods to address rising enrollments such as en-

rollment caps or tightening admission requirements, which can have negative impacts on increasing

diversity within the field[138]. Tightening admission requirements presents issues such as institu-

tions over-relying on past measures of success (SAT or ACT). Performance on these exams has been

found to correlate with socioeconomic factors[76] and URGs have reported lower scores, possibly due

to disparities in opportunities available to different populations[138]. Multiple pedagogical sugges-

tions for improving diversity have been proposed, including alternative learning environments[180],

collaborative problem solving and interdisciplinary projects[154, 164], and service learning and real

world context in the curriculum[16, 46].

Many of the issues involved with addressing enrollment deal with institutional resources and

constraints. The National Academies Press (NAP)[138] calls faculty and professional staff the “most

significant resource constraint in CS departments.” The authors mention how efforts for routine class

management increase with enrollment, and some of these efforts do not easily scale. One increasingly
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popular approach to address rapid increase in enrollment rates is automated grading of homework,

assignments, and tests, providing instant validation of correctness and reducing the amount of time

and effort grading and feedback can require of instructors. Research suggests that such instant and

automated feedback might be insufficient to address student needs, because introductory students

may produce correct output without fully understanding the concepts they are implementing[57,

213]. When students receive positive feedback on implementations that rely on misconceptions, this

can lead to a hardening of those misconceptions[105], which can do more harm than good in the

formation of appropriate mental models. Further, such automated approaches remove the human

element and do not promote the discussion and reflection that are seen in instructor-student or

student-student interaction. In my work with misconception-based feedback, I seek to address this

issue by providing an intervention that allows students to give quality feedback to each other through

structured prompts promoting discussion of and reflection upon common CS misconceptions.

My work is motivated by my personal experience of attending a Historically Black Col-

lege/University (HBCU) as a CS major for my undergraduate degree. I have seen firsthand the

under-representation in CS and the problems that exist in presenting curriculum in a way that is

digestible to students while still covering all of the necessary content. This motivation led me to

work in the computing education research (CER) field, with particular interest in active learning, as

it has been shown to benefit all students, but especially to benefit students from underrepresented

groups[142, 82, 126, 73]. Research has shown that stereotype threat[190] and false beliefs around CS

identity[11] can have negative impact on academic performance[189, 190]. Despite these false beliefs

such as “Computer science is for nerds” or “Computer science is for math whizzes[11],” evidence

shows that URGs can achieve and excel as well as the majority[151, 121]. With respect to retention,

work has found that lack of motivation and time due to underestimating the difficult course content

of CS are major causes of students not staying in the major[107]. A presidential report on STEM

education[142] found that students have higher retention rates in STEM if they can successfully

navigate the introductory years, and research has shown that many problems in those first years of

CS center around misconceptions[148, 201, 132]. I seek to address misconceptions for all students

with the hopes of allowing more students to matriculate through the CS degree and help close the

achievement gap that URGs still face.

The research questions that guide my overall research are:

RQ1: What insights can human-centered approaches examining code comprehension and code im-
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plementation provide into student conceptions and misconceptions about key undergraduate com-

puter science topics?

RQ2: What explanation for these misconceptions can these approaches bring?

RQ3: What can be done to address these misconceptions?

Three formative studies were conducted to address the first two RQs and an evaluative

study of an active learning technique I developed was used to answer RQ3.

Prior work in difficult concepts in CS has shown that undergraduate students have diffi-

culties with pointers[43, 78], functions[104, 78], scope[104, 78], loops[43, 78], and control flow[78].

My work looks to use students’ expressed thoughts and observed actions to pinpoint the concepts

students find difficult, explore the causes of the difficulties, and suggest pedagogical approaches to

address these difficulties. I have used various artifacts to qualitatively analyze what students are

thinking, drawing from related work to guide which concepts/topics to focus on such as Goldman’s

Important & Difficult Topics[78]. This related work provides justification for my selection of topics

within the CS curriculum, and support for the potential benefits that may result. The three forma-

tive studies and the artifacts they collected include: 1) conceptual assessment surveys followed by

task-based interviews in which students analyze code and attempt to predict code behavior while

explaining their thought processes which collected students’ explanations of their reasoning and the

audio of task-based interviews as data; 2) “coding in the wild” tasks in which students interact via

the edit-save-compile-run cycle of programming to recreate a solution to a simple problem while

thinking aloud, which collected screen capture data and the audio files of the think aloud protocol;

3) interview analyses of student design diagrams/documentation in a software engineering course,

tasking students to explain their designs and comparing what they believed they had designed with

what is actually shown from the documentation, which collected team interviews and the actual

design documentation the teams created.

My three formative studies have led to some key insights, including:

1. Students value and improve their work with feedback, whether it is from an instructor, com-

piler, or interaction and trial-and-error in a development environment.

2. Students attempt to avoid complexity when programming or encountering concepts they do

not fully grasp.

3. Students struggle with the planning stages of problem solving.
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4. Students develop fragile understanding (having some notion of a concept but not enough

to completely solve a problem using it) of some key concepts, and the understandings are

reinforced when they have to explain how or why a concept is being used.

Based on the results of these formative studies, I sought to explore what instructors can

do to help students overcome these obstacles and to improve student retention of knowledge and

retention in the CS major. While gaining a solid understanding of how students are thinking, what

misconceptions they hold, and where they struggle, I have managed to identify some problematic

concepts and shed light on some of the reasoning students have with respect to those concepts, and

leverage this to develop an intervention to improve CS pedagogy.

The idea of feedback and its importance arose in all of the studies and support for the

importance of feedback is found in the literature. Higgins[87] found that students would like to

receive feedback and even feel that it is owed to them as consumers of knowledge, but also feel

that much of the feedback provided is too generic, impersonal, and vague. Tseng[207] looked at the

effect of peer feedback on performance and found significant improvements on students’ assignments

when the students received peer feedback and that students learn from both the process of making

improvements to their assignments using peer feedback and also learning from giving feedback on

other students’ assignments. The MBF intervention that I design employs such feedback and does

so in a structured way, based on misconceptions and related work on how novices learn how to

program. It employs techniques used in my formative studies, such as the coding in the wild in[105]

and the explain your reasoning conceptual assessment surveys in[104]. The technique also draws on

related work on active learning techniques such as self explanation, as seen in Chi’s work [30]. The

technique uses peer feedback, in which one partner (Partner A) is provided with prompts that were

developed based on misconceptions and difficulties found in prior work and in related work on how

students, particularly novice students, learn to program. The prompts are discussed with Partner

B, who is viewing and optionally editing her code.

My final study seeks to evaluate the value of MBF versus human autograder feedback in a

quasi-experimental study of students engaged in a CS assignment. With the CS field facing both

increasing enrollment in the face of limited resources, and limited representation of minorities, my

work seeks to find a strategy to help address both of these realities. I leverage this prior work,

introducing and evaluating a pedagogical intervention meant to address misconceptions found in
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introductory CS courses. MBF is compared against a human simulated version of autograders,

which are becoming a common strategy for addressing the rising enrollment of CS majors[138].

For this study, I evaluated the intervention with 76 students in a second level CS course at a

large, public, engineering-focused university in the United States. I use a large, public, engineering

focused university to ensure that MBF is feasible at scale, and with the knowledge that active

learning techniques have been shown to benefit all, but particularly benefit URGs[82, 73, 126]. Due

to population demographics of the university, this study was not able to evaluate the effects of URGs

and this would be a goal of my future work. The MBF study consisted of: a conceptual assessment

pre-test; attempting to code a short program; an intervention in which peers work in pairs using

prompts; and a conceptual assessment post-test. The evaluative MBF study sought to answer the

following questions:

RQ1: Can a structured debriefing process based on misconceptions (misconception based feedback)

improve student learning outcomes related to a programming assignment?

RQ2: What misconceptions can be reduced using misconception based peer feedback?

RQ3: How do the roles of the students in the structured process (feedback provider/receiver) affect

their learning outcomes?

The rest of this document is sectioned as followed:

-Chapter 2 provides the background and related work surrounding my MBF study.

-Chapter 3 provides an overview of the formative studies and their results.

-Chapters 4, 5, and 6 give a detailed description of the formative studies, how they were used, and

the results gained from them, using text from either my published or written academic papers.

The order of the studies will be as follows:

Ch. 4: ”Explain Your Reasoning” Assessments + Task-Based Interviews

Ch. 5: Coding in the Wild

Ch. 6: Software Engineering Design Documentation Interviews with preliminary analysis

Ch. 7: Misconception-Based Feedback Invervention and Study Design

Ch. 8: Evaluation of Misconception-Based Feedback and Conclusions
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Chapter 2

Background and Related Work

The results of my formative studies described in detail in chapters 4-6 and related work

suggest: the existence and prevalence of certain misconceptions in undergraduate CS; success in

CS requires that misconceptions be addressed; feedback can help address misconceptions; active

learning techniques have been shown to help underrepresented groups (URGs) as well as all students.

Based on these insights and the related literature, I designed and evaluated an active learning

technique, framed in the social constructivist theory and employing structured feedback based on

known misconceptions, with the hypothesis that such an intervention could be an effective to address

misconceptions as students learn CS topics. In the following subsections, I present related work that

informs my approach, motivation, and helps to explain my results.

2.1 Broadening Participation and Rising Enrollments

The CS field currently lacks diversity. Despite initiatives like the National Science Founda-

tion’s (NSF) CS4All program[70], data still suggest that underrepresented groups are not pursuing

or completing degrees in CS at representative rates[3]. “According to the Integrated Postsecondary

Education Data System (IPEDS) data from the National Center for Education Statistics (NCES)

(using only codes 11.0101 and 11.0701 in defining CS) for all bachelor’s degrees granted in CS in

2015 8.4% were Latinx students at doctoral-granting institutions; 8.5% were Latinx students at

non-doctoral-granting institutions; 4.3% were Black students at doctoral-granting institutions; and

8.6% were Black students at non-doctoral-granting institutions[3, 71].” This is compared to the
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2012-2015 enrollment rates in college, which were 14.2% for Black students and 16.9% for Hispanic

students[175]. The same NCES report stated that women comprise only 17.9% of bachelor’s degrees

in computing sciences, despite earning 57.3% of bachelor’s degrees overall[3]. Another report by the

NSF showed that computer, mathematical, and physical sciences had the lowest retention rate (43%)

of all science and engineering disciplines when tracking students who enrolled in 4-year institutions

in 2003/4 based on 6 year graduation rates[71]. Data from UC Irvine shows computing degree re-

tention rates from 2009 to 2013 as 40% for Black students and 38% Lantinx students compared to

65.8% for White students and 65.8% for Asian students[3]. This report also showed that the Col-

orado School of Mines had 66.4% retention rates for men and 62.6% for women first-year computing

students from 2009-2014, but transfer students retention rates were 78.3% men compared to 54.7%

women for this same time frame. These statistics all point toward two issues: that enrollment of

URGs in CS is low, even when compared to the overall enrollment rates of the groups in college;

that retention rates in CS are low, and this issue is more pronounced for URGs than in the majority

population.

The National Academies of Science, Engineering, Medicine, and others[138] found that

from the 2012-2013 academic year to the 2014-2015 academic year, CS enrollment more than dou-

bled based on responses from 121 CS-PhD granting institutions (43,391 to 90,604). However, in

this same time frame, the number of Black or African American students enrolled in CS only rose

0.5% (4.9% to 5.4%). This is coupled with retention rates being lower for Black students in the CS

major as seen in[3]. The National Academies of Science, Engineering, Medicine, and others’ report

discusses how institutions are considering actions to address enrollment such as placing enrollment

caps on the CS major and tightening admission requirements for entry to the major, both of which

strategies to address increased enrollment may exacerbate enrollment issues and can have negative

impacts on increasing diversity within the field[138]. Tightening admission requirements presents

issues such as institutions over-relying on past measures of success (SAT or ACT). Performance on

these exams has been found to correlate with socioeconomic factors[76], and underrepresented mi-

norities have reported lower scores, possibly due to disparities in opportunities available to different

populations[138]. Placing enrollment caps on the major has been shown to deter underrepresented

groups from pursuing the CS major. Many institutions are not considering diversity while trying

to address the issue of rising enrollments. Only 46.5% of doctoral institutions who responded to

reports considered potential impacts on diversity to address rising enrollments and 79.8% reported
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not monitoring for diversity effects while transitioning to having higher CS enrollments[138]. This

issue begins as early as the K-12 level, with some consideration on enrollment caps looking for stu-

dents with previous computer science experience. Although this appears to be a reasonable criteria

to select students to major in the field, it can have a negative impact on diversity[138]. Universities

sometimes test for previous CS knowledge or whether or not students have taken courses such as

Advanced Placement Computer Science (AP CS) in high school, which is a course that underrep-

resented groups do not take as often, with women only representing 22% of AP test takers in 2015

and underrepresented minorities comprising only 13% of AP test takers. There were no Black or

African American students who took the AP CS exam in nine states in 2015[85].

To equitably address these needs and issues, researchers have looked into various pedagog-

ical approaches to handle larger enrollments as opposed to policies that have been found to limit

enrollment and exacerbate diversity issues. Approaches for addressing rising enrollment and reten-

tion include helpful collaboration, giving students a better understanding of CS, meeting

students at their various backgrounds, and increasing sense of student belonging through

positive student-student interactions[3]. Other work to address these problems, discussed later

in this chapter, consists of autograders, active learning techniques, problem solving in CS, and the

use of feedback to improve learning are discussed in section 2.4 and all stem from well-known learning

theories, discussed in the section 2.2. My approach is a low-resource scaleable pedagogical technique

that addresses rising CS enrollments but makes it less necessary to tighten admission requirements

and enact policies that have been shown to negatively impact URGs who are trying to enroll. I com-

pare this technique against a version of an autograder, which does also offer benefits to scaling CS

courses, but provides more generic feedback that is relatively unable to address misconceptions. My

MBF technique focuses on bringing conceptual understanding, helpful collaboration, giving students

a better understanding of CS, and increasing sense of student belonging through positive student-

student interactions, and increasing success in the introductory CS courses, so that retention rates

of students will increase. To provide the conceptual understanding, it is necessary to talk about the

theories of learning that support my technique. The next section gives the related work on these

theories.
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2.2 Theories of Learning and Cognition

The major theories of learning inform the pedagogical approach developed to improve learn-

ing outcomes and the literature on cognition and cognitive tools informs my evaluation of the impact

of the approach. These are discussed in subsections 2.2.1 and 2.2.2, respectively.

2.2.1 Theories of Learning

Three basic theories of learning have been developed by educational theorists: behaviorism[182],

cognitive constructivism[159], and social constructivism[209]. My work relates most to social con-

structivism, however this section provides background on behaviorism and cognitive constructivism,

as they are the predecessors to social constructivism. Behavorism is a view of knowledge as a

repertoire of behavioral responses to environmental stimuli[182]. Actions are seen as reflexive re-

sponses to environmental stimuli or the result of an individual’s prior experience with reinforcement

or punishment related to such stimuli. Teaching methods based on behaviorism use “skill and drill”

exercises to ingrain knowledge and motivate students with positive and negative reinforcement, such

as verbal praise or good grades for correct answers and poor grades or bad feedback for incorrect

answers. Behavorism was first studied in the late 19th century with researchers dissatisfied with the

current research on the human consciousness[206]. Behavior was seen as a more reliable metric to

study because it was observable, and the original behaviorists viewed phenomena irrelevant if they

had no basis in human or animal behavior. These behaviorists believed that theories needed to be

defined entirely with respect to observable data.

Cognitive constructivism views knowledge as actively constructed by learners using men-

tal representations derived from past learning experiences[159]. In this view, learners interpret in-

formation differently depending on individual attributes such as their existing knowledge, stage of

cognitive development, cultural background, and personal experiences. Cognitive constructivists

believe that learning should be thought of as a process of active discovery and that instructors

should act as facilitators, providing the necessary resources and guiding learners as they attempt

to integrate new knowledge with old and modify the old to accommodate the new. In a cognitive

constructive model, students are motivated by intrinsic factors such as major personal investment

in the process of learning. Learners are challenged to face the limits of their existing knowledge and

accept the need to modify or abandon existing beliefs. Although instructors following the cognitive
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constructivist view do use some behaviorist “skill and drill” exercises to help students memorize

facts, formulae, and lists, they place greater importance on strategies to aid students in actively

taking in new material.

Social constructivism takes cognitive constructivism a step further by emphasizing the

role of language and culture in cognitive development[209]. Vygotsky believed that because language

is a social phenomenon, human cognitive structures are also socially constructed. He agreed with

cognitivists that learners respond to the interpretation of their external stimuli, but argued that

learning is also a collaborative process. Social constructivists see the motivation of students as

both extrinsic (based on responses to external rewards) and intrinsic (based on factors internal to

the individual). With learning considered a social phenomenon, learners are in part motivated by

rewards provided by the community they learn within. However, the learner must still have an

internal desire to understand and promote the learning process, since she still actively constructs

the knowledge. From a teaching perspective, social constructivists promote teamwork skills through

collaborative learning methods. The social constructivist approach applies to my MBF intervention,

as its basis is allowing students to construct their own knowledge through language and discussion

with each other using structured prompts as a guide.

2.2.2 Basic Theories of Cognition

Three main theories of cognition inform my work: Piaget’s Theory of Cognitive Development[210],

the Information Processing Theory[210], and Vygotsky’s Sociocultural Theory[209]. The Theory of

Cognitive Development asserts that humans are born with reflexes, which then develop into con-

structed schemes based on learning and adapting to our environment[94]. Assimilation and accom-

modation are the two processes humans use to adapt. Assimilation is making our environment fit

within our current cognitive structures whereas accommodation is changing our cognitive structures

to match our environment. This idea of environment playing a role in the construction of knowledge

and cognitive structures helped provide the foundation of constructivism.

The Information Processing Theory examines the interaction between an information-processing

system, task environment, and problem space when humans attempt to solve a problem[179]. The

information-processing system focuses on serial processing, one input and output at a time, with

only 4-7 familiar “chunks” of information being able exist in short term memory at a time. The

framework for problem-solving behavior based on the Information Processing Theory is as follows:
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1. “A few, and only a few, gross characteristics, of the human information-processing

system are invariant over task and problem solver. The information-processing

system is an adaptive system, capable of molding its behavior, within wide limits,

to the requirements of the task and capable of modifying its behavior substantially

over time by learning. Therefore, the basic psychological characteristics of the

human information-processing system set broad bounds on possible behavior but

do not determine the behavior in detail.

2. These invariant characteristics of the information-processing system are sufficient,

however, to determine that it will represent the task environment as a problem

space and that the problem solving will take place in a problem space.

3. The structure of the task environment determines the possible structures of the

problem space.

4. The structure of the problem space determines the possible programs (strategics)

that can be used for problem solving[179].”

The Atkinson-Shiffrin model of the information processing theory asserts that human mem-

ory has three components: a sensory register; a short-term store; and a long-term store[4]. The

sensory register deals with aspects that directly relate to senses, such as having visual or verbal cues

to help remember things. The short-term store retains information from the sensory register, but

only lasts for 18-20 seconds after being heard. This short-term store holds chunks of information,

usually 7 +/- 2[4]. This short-term, or working memory, can be overloaded if too much information

is placed into it. Pieces of information that are transferred from the short-term store end up in

the long-term store, which retains the information permanently. These elements of the Information

Processing Theory apply to related concepts such as working memory and cognitive load, discussed

in more detail in section 2.2.3.

Sociocultural Theory states that a distinctively human characteristic for learning is our

voluntary control over our natural biology by using higher-level cultural tools(i.e. language, logic,

etc.)[117]. These cultural interactions and processes that we learn and experience throughout life

offer us a better way to problem solve novel situations than responding inherently the way we might

when we are infants. Through these theories, cognitive tools and other theories have been developed,

some of which are useful in explaining observed phenomena. The next section discusses the theories
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and tools related to cognition that I have used and have aided in explaining the results in my

dissertation work.

2.2.3 Theories and Tools Related to Cognition

To explain and evaluate the results from my formative studies and guide the design of the

MBF intervention, I look to several cognitive tools. These tools were chosen for their relevance to

the related work on learning that is present in my formative studies, seen in Chapters 4-6. The tools

give a framework to explain how we as humans process and interpret information, a key element in

understanding what students are thinking and how to address difficulties students have in learning

certain CS concepts. I present and discuss cognitive load theory[195], Kahneman’s System 1 and

System 2[101], abductive reasoning[122], and fragile knowledge[158].

Cognitive load theory (CLT) informs instruction[195] and is based on the idea that there

is a limited working memory[6], memory that you can actively use at a given moment, and that work-

ing memory is connected to an unlimited long-term memory[109]. The memory elements of CLT

relate to the Information Processing Theory[4], discussed above. If a person attempts to utilize too

many pieces of information at once, cognitive overload may occur. When it comes to instructional

design, the intrinsic, or inherent cognitive load of a concept cannot be changed. What instructors

can change are the germane (relevant), or extraneous (unnecessary) cognitive loads. These two deal

with how information is presented, with germane load being relevant information for learning and

extraneous load being extra information that may not be necessary to learn. Sweller suggests in

general that instructors want to increase germane cognitive load and decrease extraneous cognitive

load[194]. Worked examples, or problems that provide a step-by-step demonstration of a problem

and how it would be solved, have been used to accomplish this in mathematics[196, 41] and computer

science[130]. Worked examples for novices are beneficial as they provide organizational structures

to store new information and they reduce working memory load and focus student attention directly

on relating the necessary elements to solve problems[130, 110]. Kalyuga found that worked exam-

ples may be become redundant once learners have some experience with a concept, causing more

extraneous cognitive load and not being as effective as attempting to solve problems[102].

When students are presented with and attend to information, it enters their working mem-

ory. Many times, the information is presented through consistent lecturing, particularly in some

STEM and CS courses where content coverage is a concern. Multiple representations are commonly
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used, with graphical and textual representations being difficult to coordinate for novices, as they

increase the extraneous cognitive load[40]. Other work has found that mixing auditory and visual

presentation modes as opposed to presenting multiple representations individually in a unitary mode

can result in a reduction of cognitive load[137]. Hu[92] looked at how humor can have a positive or

negative effect on STEM education, depending on whether it is integrated into the intrinsic cognitive

load versus added to the extraneous cognitive load of concepts considered already more difficult to

comprehend compared to concepts outside of the STEM field. This stream of information coupled

with the limited capacity of working memory can lead to issues processing and storing the informa-

tion being presented. Understanding the implications of CLT on instructional design is important

for pedagogical advancements. CLT informs some of the results found in all three of my formative

studies in Chapter’s 4-6. I next describe a cognitive tool humans use for interpreting information.

Kahneman’s Systems 1 and 2 (S1 and S2) are a cognitive tool used to explain how we

interpret information [101]. System 1 (S1) is responsible for immediate, automatic thinking that

solves very familiar problems whereas System 2 (S2) handles problems that require more analysis

and calculations. In general, S1 is triggered first and uses heuristics or familiarity to attempt to

solve a problem. An example would be most adults being asked the result of 2 + 2. The correct

answer of 4 would come to mind automatically and without any real calculations involved (S1).

This same question, however, posed to a child who is just beginning to learn about counting and

mathematics could be an S2 process. You might notice the child counting on her fingers to get to the

accurate answer. Hadar used this tool in CS as a method for analyzing the disconnect between how

object oriented (OO) programming works and how the mind thinks it works[83]. He found that even

software development professionals with vast experience in OO design and implementation end up

exhibiting misconceptions that can be explained by the fast acting and heuristic nature of S1. This

cognitive tool aids in explaining some of the results seen in my formative studies, particularly the

study described in Chapter 6 such as students using the deep thinking S2 and used strategies such

as complexity avoidance to work around the lack of an apparent and intuitive simple solution while

designing software engineering diagrams and also offers an interesting lens to look at misconceptions

for future work.

Another cognitive phenomenon I have observed students utilize in attempting to reason

through programming concepts is abductive reasoning. Letovsky describes abductive reasoning

in the context of program comprehension as “a plausible inference technique that involves explaining
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phenomena by using deductive rules backward to generate possible explanations”[122]. Kovacs and

Spens[113] cite researchers defining abductive reasoning as developing new knowledge in a creative

and intuitive fashion[2, 108, 199]. One of the famous popular fiction examples of abductive reasoning

is what is observed in the work done by Sherlock Holmes[25]. This form of reason also is a common

misconception people have, believing that Sherlock Holmes uses deductive reasoning, but in fact,

Holmes always generates possibilities that might explain observable phenomena before doing any type

of deducing. This creative nature of this reasoning was noted in multiple instances from introductory

programming students in my first formative study[104] such as when students seemed to see the name

of a function and assume that function did what it was named. For example, assuming a function

named “swap” would swap the values of variables without actually fully reading the code to ensure

it does swap them.

A common concept that guides the design of my research and helps explain some of the

results of my work is students having fragile knowledge of the various CS concepts they have

learned. Perkins defines fragile knowledge as “the person sort of knows, has some fragments, can

make some moves, has a notion, without being able to marshall enough knowledge with sufficient

precision to carry a problem through to a clean solution[158].” In terms of computing, Perkins et

al. “attribute students’ fragile knowledge of programming in considerable part to a lack of a mental

model of the computer...”[157]. This fragile knowledge can persist after significant instruction, as

Sleeman et al. found when stating “even after a full semester of Pascal, students’ knowledge of the

conceptual machine underlying Pascal can be very fuzzy[183].”

In 1986, Perkins conducted clinical interviews with students after taking their first year of

programming using the BASIC language[158]. In this work, Perkins states his belief that under-

standing the ways students’ knowledge can be fragile in programming can help researchers determine

the nature of student difficulties and design improved pedagogy to address these difficulties. This

belief guides the work of this dissertation.

In the study, Perkins had students attempt to implement up to 8 short programs of in-

creasing difficulty, all centered around the idea of printing stars “*” using loops. As they worked,

an experimenter was there to attempt to help should they run into difficulties. The experimenter

would give one of many high-level prompts along the lines of “What does this do?” when students

first encountered difficulties. If prompts were not sufficient to guide the students down the right

path, the experimenter would then give a hint as to where the student should look. The final type
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of assistance was termed a “provide,” in which the experimenter would tell the student what code

to put at a certain line in order to move the study forward, and would explain why the code was

needed.

For this study, Perkins decomposed fragile knowledge into four types: missing, inert, mis-

placed, and conglomerate[158]. Missing knowledge was considered knowledge that students either

did not remember or had never learned. Inert knowledge was knowledge that students could not

remember or retrieve during the interview but they did have the knowledge (had learned it), as

revealed by clinical probing. Perkins found inert knowledge to occur when learners fail to perform

strategic actions that would cause them to link to the necessary knowledge. Misplaced knowledge

was when students used coding structures that would be appropriate in some context at a place

where it did not belong. Perkins found that misplaced knowledge may occur in situations where a

learner has difficulty coming to a reasonable solution, out of a form of desperation. Conglomerate

knowledge is seen when students jam together separate, disparate elements of code in an attempt

to give the computer all of the information it needed.

Perkins proposed that better cognitive skills should be taught, suggesting the use of ele-

mentary problem-solving strategies to improve programming performance and address the issue of

fragile knowledge. The results suggested that this self-prompting and simple asking of things such as

“What does this do?” can in a number of cases activate the inert fragile knowledge learners have and

cause them to correctly implement a solution and helped set the foundation for the development of

the misconception-based prompts for my misconception-based feedback study, described in Chapter

7.

This study and its resulting basis for fragile knowledge in the computing field has been

cited in multiple other studies looking at misconceptions and difficulties in learning CS concepts:

Lister found that novice programmers have a fragile grasp of skills that are pre-requisite for problem-

solving[123]; Porter found that using peer instruction, students could understand a question but their

understanding was fragile so that they could not apply it to a second question[162]; I found stu-

dents exhibiting a fragile understanding of pass-by-value semantics[104] and difficult differentiating

between pass-by-value and pass-by-reference semantics[105]; and Thompson found students failing

to comprehend the complexity and subtleties of cybersecurity solutions[205]. With the knowledge of

how students theoretically learn and the cognitive tools used to aid them in understanding concepts

(or detract from this understanding and cause misunderstanding) concepts, I now present research
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on misconceptions and difficulties students encounter in comprehending certain CS concepts.

2.3 Misconceptions and CS Difficulties

URGs can have false beliefs about the field of CS when first entering the major that can

have a negative impact on their success[11]. These negative views can relate to identity and who

can/cannot be a computer scientist, and have even been shown to have a negative impact on academic

performance[190, 189]. Considering that Kinnunen[107] found motivation and time (persistence) to

be the two major categories explaining why students drop out of the CS major, the negative academic

impact that CS identity can have is relevant to the retention rates of URGs. In the Kinnunen work,

lack of time broke down into several sub-categories: Student prefers to do something else; Student

does not plan enough time for the course; Student underestimates difficulty of parts of the

course. This last sub-category in particular relates to struggling with understanding the content

in CS course. The lack of motivation was further divided into sub-categories: No general study

motivation; Rewards of studying are not worth what is put into it; Student underestimates

difficulty of course and loses motivation. URGs having to deal with issues such as stereotype

threat[190] and the overly masculine culture of the CS major and courses[29] can lead to retention

rates lowering. Despite these identity false beliefs and difficulties URGs students face, research has

found that CS grades are not bimodal[151], as in it is not a skill that you either inherently have or

don’t. Other STEM research found the value in not framing achievement from a deficit mentality,

generating examples and providing supporting evidence of Black children excelling in mathematics,

despite the issues they may face being underrepresented[121].

With respect to retention rates, research has found that students tend to have higher reten-

tion rates if they can get past the introductory years/topics of a STEM field[142, 58]. This has led

to a plethora of research on CS misconceptions in the computing education research community, as

those misconceptions are the building blocks that lead to students not understanding enough of the

course content to persevere through the major[166]. The misconceptions cause the CS content to be

more difficult than expected, a major reason for students dropping out of the CS major[107]. A key

component of my work centers around misconceptions and using constructivism to address them.

Students have been found to form schemas based on common features in their experiences[53]. As

no student arrives to class completely devoid of experience, these schemas are founded on students’
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existing mental models. Personal experiences shape these mental models, so experts cannot simply

replace individual’s incorrect models with their own. These misconceptions can be seen on a contin-

uum of novice and expert knowledge systems[185]. As they are rooted from an individual’s personal

experiences, misconceptions can often persist and resist a “correct approach[185].” Educators are

tasked with discovering these misconceptions and creating environments that provide students with

feedback that promotes new schema construction and reinforcement[178]. Researchers hypothe-

size that teachers knowing the common misconceptions their students have as crucial to effective

teaching[5]. Sadler particularly found from observing over 9,500 students in 181 STEM classrooms,

that teachers who could identify common misconceptions students would have larger classroom gains

and increased academic performance by those students[172]. Since research has found value in un-

derstanding and being able to address misconceptions, researchers have developed and evaluated

various ways to accomplish these goals.

STEM researchers have looked into misconceptions and how they can affect learning in sub-

jects such as biology [112, 84], mathematics[42], computer science[81], and STEM in general[89, 26].

Confrey [38] states that even before formal study, people have “firmly held, descriptive, and explana-

tory systems” that are different than what’s in the curriculum and “are resistant to change through

traditional instruction[111, 147].” Tew and Guzdial posit that this may be less true for computer

science, and that misconceptions in this domain may be more related to aspects of instruction rather

than due to beliefs that students bring with them[201]. Confrey found that within programming,

misconceptions stem from systematic errors. Researchers have explored misconceptions on topics

including propositional logic[86], memory models and assignment upon declaration[100], algorithms

and data structures[152], looping strategies[187], BASIC programming statements [8], language-

independent conceptual “bugs” in novice programming[153], and misconceptions and attitudes that

interfere with learning to program[33].

A concept inventory (CI) is a criterion-referenced test, designed to help determine a

student’s knowledge of a specific set of concepts, and to expose misconceptions. Taylor et al. have

since described the development of CIs for computer science as being “in its infancy[198].” Tew and

Guzdial developed the FCS1[201], a validated instrument for CS1, which uses pseudocode in an effort

to be applicable across a variety of pedagogies and programming languages. Parker et al. replicated

this in an “isomorphic” form as the SCS1 to enable broader distribution and avoid saturation[148].

Decker designed an assessment for CS1 and CS2 in Java[48], which was developed and tested at
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her home institution as part of her thesis work. Caceffo describes his process for the development

of a concept inventory for introductory programming using the C programming language[23]. The

creation of concept inventories relies on the selection of appropriate topics for inclusion. These

appropriate topics are generally determined based on common misconceptions students have in

CS. Concept inventories serve as a foundation for the “explain your reasoning” (EYR) conceptual

assessments I developed in my first formative study, discussed in detail in Chapter 4, and also used

as a learning outcomes assessment tool for my MBF evaluative study, seen in Chapter 8.

With a similar goal of comprehending student reasoning when learning to program, Mc-

Cracken et. al broke down the learning objectives for first year CS students into 1) Abstract

the problem from its description; 2) Generate sub-problems; 3) Transform sub-problems into sub-

solutions; 4) Re-compose the sub-solutions into a working problem; and 5) Evaluate and iterate.

These researchers found that the performance of first year students was significantly worse than ex-

pected [132]. McCracken’s work gives insight into how students problem solve while programming,

which was used for analysis in my second formative study which observed students coding in the

wild while providing think aloud data, study seen in Chapter 5.

Other CS education researchers have examined what topics are difficult or error-prone for

students, with [43] looking at difficulties with pointers in the C language, [28] using a large dataset

of CS1 students solving programming problems to identify challenging concepts, and [91] providing

a detailed list of common syntax and logic errors observed in an introductory Java programming

class. Cherenkova [28] did this by gathering over 250,000 student responses to weekly code-writing

problems with the goal of identifying concepts that students found challenging. Her work showed

that students have significant difficulties with conditionals and loops, which persist throughout the

duration of a course.

Craig’s work looked specifically at the concept of pointers[43]. The data collected and

analyzed were a mix of responses to multiple-choice questions and submissions of coding exercises

based on pointers. Over 300 students submitted artifacts and results showed that students “confuse

an address with a pointer,” have trouble understanding the relationship between pointers and arrays,

do not have a robust mental model of assignment statements even in their second year, and may

apply operators blindly in an attempt to make the types consistent in their code.

When learning to program, students experience other difficulties that are not specifically

misconceptions. In comprehending a new program, it is documented that novices and experts behave

19



differently, with Winslow saying that novices need to learn the facts first before progressing to more

complex topics[216, 77]; Detienne stating that novice categories depend on suface structures[49];

and Robins stating that novices are limited to surface and superficially organized knowledge[169].

Some of the issues with novices relate back to the “troublesome language” that is either syntac-

tically or sometimes contextually (the words used are unclear) difficult for students to grasp, as

discussed by Meyer[134] and Perkins[156]. Robins et al.[169] suggest that motivation and getting

students to gain knowledge related to programming first would be beneficial to make “more effective

novices.” They also suggest explicitly focusing on programming strategies in introductory program-

ming courses, rather than focusing on the syntax and semantics of programming language features

and teaching students how to properly design basic programs to give them the ability to tackle

problems regardless of the specific features of the language used. These suggestions are consistent

with the observations of Soloway that the major stumbling block for novices learning to program

is in “putting the pieces together, composing and coordinating components of a program” rather

than in language constructs[186]. Soloway states that planning code implementation and breaking

down the mechanisms necessary to enact that plan are essential for novice programmers to learn.

Understanding why students struggle and how the misconceptions form when learning CS then lends

itself to the important question: What should we do about it?

2.4 Pedagogical Approaches to Address Misconceptions

2.4.1 Autograders

When considering the rising enrollments and how to scale CS courses, the National Academies

Press (NAP)[138] calls faculty and professional staff the “most significant resource constraint in CS

departments.” The authors mention how efforts for routine class management increase with enroll-

ment, and some of these efforts do not easily scale. One suggestion mentioned to address rapid

increase in enrollment rates is automated grading of homework, assignments, and tests, providing

instant validation of correctness and saving instructors from the amount of time and effort grad-

ing can require. Wilcox explored the role of autograding in CS at his institution in Colorado in

response to rising enrollments[213]. In his study, a particular benefit was found in the resources

that can be saved through automated grading. His analysis found that approximately 288 hours

per semester could be saved by automating the grading of assignments and quizzes as compared

20



to grading them by hand. Based on exit surveys and student evaluations, he even found benefits

for academic performance and student interest in the major. Wilcox does mention drawbacks to

autograding, such as difficulty replicating code reviews and also how automated grading can have

an unforgiving nature. Another key drawback was his result that some students merely worked

on assignments until they would pass the preliminary tests, so they were working to

get the scores they wanted as opposed to actually making sure they understood the

concepts they were meant to learn. This issue of failing to focus on a full understanding of

concepts in CS is a key issue I wish to address with my work and an important trade-off to observe

for the benefits and costs of the resources required for various types of feedback.

Edwards also looked at automatic grading for programs and found benefits[57]. He states

that although approaches vary, the general idea behind an automatic grader is that code submissions

are compiled and executed against some form of test data provided by an instructor. He cites Curator

as a system that had been in use at his institution for some time, and mentions several setbacks:

1. Students focus on output correctness first and foremost; all other considerations are a

distant second at best (design, commenting, appropriate use of abstraction, testing one’s own

code, etc.). This is due to the fact that the most immediate feedback students receive is on

output correctness, and also that the Curator will assign a score of zero for submissions that

do not compile, do not produce output, or do not terminate.

2. Students are not encouraged or rewarded for performing testing on their own.

3. In practice, students do less testing on their own.

Clemson is currently assessing and considering two autograding tools: GradeScope and

Mimir. GradeScope offers the ability to create rubrics quickly while grading paper assignments and

has a documented setup for assignment templates and rubrics. GradeScope also provides a series of

videos that can be found on their website to help instructors get started with the tool. Mimir is not

able to assist with paper assignments, but can be used for grading online quizzes or programming

project assignments. There is no additional coding required to set up Mimir to grade students’ code

submissions.

These autograders have been shown to save on resources and provide some form of feedback

that allows students to have performance gains, but even with test cases developed by instructors,

autograders generally leave students to wonder why the test cases fail or succeed, not providing
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them the tools to address problematic concepts. Particularly for underrepresented groups, these

autograders do not allow the benefits of alternative learning environments in classroom[180] or

collaborative problem solving and interdisciplinary projects[154, 164], which have been shown to

improve diversity[138]. Autograders address a problem, but do not currently focus on shifting

pedagogy, instead offering a convenient and quick way to reduce workload on instructors, leaving

it still in their hands to choose to improve pedagogy in a way that benefits all students. The

autograders are more focused on scale, and although they can provide mass feedback, as Wilcox

noted, they cannot replicate code reviews, which have been shown to be useful[213] and they run

into the issue of students attempting to code until they get the scores they desires as opposed

to working to learn and understand the concepts[213]. These graders also provide mass feedback,

leading to feedback that is more generic, an issue that Higgins noticed students wanted to avoid

when receiving feedback[87].

I look specifically at this feedback element of autograders, as although it does offer benefits

to scaling CS courses, the more generic nature of the feedback and the relative inability to address

misconceptions can negatively impact diversity. Without addressing these misconceptions, students,

particularly underrepresented groups, can struggle with course content, which often leads to the

students not staying in the major, retention issues discussed in the report to the President to increase

STEM degrees[142]. My work seeks to offer a method that will allow CS courses to continue to scale

and be less resource-intensive than with all grading and feedback being performed by hand but also

provide feedback to students with significant benefit to the learning of concepts and to addressing

misconceptions.

Some autograders do attempt to provide more than confirmation feedback, as seen in Cao

et al.[24]. This study looked at a version of autograder (GradeScope) that provided feedback based

on a rubric, which students preferred to exams graded by tests. GradeScope offered instructors

the opportunity to provide a defined rubric that gave students more detailed feedback on CS exam

questions that were not multiple-choice, and the rubric could be adjusted as instructors graded

exams. The software also allowed students to submit grade resubmission requests online, which

many students took advantage of because of its convenience. However, the study found no significant

time difference between online and paper grading when both prep and grading time were taken

into consideration. The result suggests that in their current form, autograders that can provide

more substantive feedback do not save resources as well as those that simply provide confirmation
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feedback. It is important to note that the generation of a rubric and selection of appropriate feedback

for a particular response is supported and streamlined by this tool, but does not constitute a fully

automated system.

Quality feedback may have one of the most significant impacts on student learning[10, 72].

Boud defined feedback as “the process whereby learners obtain information about their work in

order to appreciate the similarities and differences between the appropriate standards for any given

work, and the qualities of the work itself in order to generate improved work”[13]. Most automatic

grading tools found in a review done by [106] would not provide useful feedback as defined by Boud.

The work that is the focus of this dissertation takes these elements of feedback (described

further in 2.4.4) and self-explanation (described further in 2.4.2) and applies them to an intervention

meant to improve the understanding of CS students through the use of guided feedback. The

following subsections dig deeper into the related work that connects my research, with a particular

focus on my misconception-based feedback study, described in Chapter 7.

I take a constructivist stance, asserting that people try to make sense of the environments

that they engage with while learning novel content. This process continuously happens and knowl-

edge frameworks are refined as new environments arise[53]. This view places teachers not as the

keepers of knowledge and the only way to gain it, but instead, as guides and facilitators providing stu-

dents the tools, instruction, and assistance to learn through their own active discovery of knowledge.

To this end, active learning offers a valuable pedagogical approach to addressing misconceptions.

2.4.2 Active Learning

From the two constructivist theories (cognitive and social), researchers in education have

developed a pedagogical approach called active learning[19], which involves students in their

own learning process, as opposed to having them merely listen to traditional lectures. Compared

to approaches that derive from behaviorist theories, active learning techniques attempt to build

on the previous knowledge that the learner possesses, employ discovery learning[19], identify and

remedy misconceptions, and often employ collaborative paired or group work supported by social

constructivism[7, 209].

Research has shown that active learning techniques are beneficial in various fields. When

looking at STEM in particular, Freeman performed a meta-analysis of the literature that found

6% increases in exam scores, learning improvements in the form of conceptual gains, and lower
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failure rates in courses using active learning (21.8% versus 33.8%)[73]. For underrepresented groups

(URGs) in STEM, active learning has been shown to help bridge the gap between these groups and

the general population. For example, Haak et al. conducted a study looking at the performance of

over 100,000 students who took University of Washington biology courses from 2003 to 2008[82]. The

study compared the grades of regular students with students in the school’s Educational Opportunity

Program (EOP). These students had been shown to historically perform worse at the university and

come from educationally and economically disadvantaged backgrounds. Of the EOP students in this

study, 76.5% were also considered an underrepresented minority based on race. The results of this

study showed that when the course was taught using a highly structured, lecture-free format that

incorporated active learning techniques such as pre-class reading quizzes, extensive informal group

work, peer instruction[44], and weekly practice exams, not only did all students significantly improve

their grades, but students from the EOP group had a disproportionate benefit to students not from

the URG[82]. This benefit was statistically significant, even when controlling for instructor by

comparing sections taught by the same instructor but in different ways (lecture-based vs. structured

and lecture-free active learning).

In a different study, Lorenzo et al. found benefits for active learning in reducing the gender

achievement gap for students in a Physics course[126]. This study collected data from 6 years of a

physics course taught at Harvard that had an average enrollment of 202 and with a 1.7 to 1 male to

female ratio. The study compared traditional lecturing instruction style with peer instruction (PI)

style[44] and found that when using the active learning technique of PI, female students improved

significantly in the interactive engagement courses[126].

Even though we know that student attention is necessary for learning, research shows that

student attention falls off after about 10 minutes in a standard lecture[12, 193]. Having intermittent

active learning activities that offer breaks from the standard lecture offer a solution to the attention

problem and have been shown to increase attention at the time of the activities[135].

Research shows that such retrieval practice[103], also known as test-enhanced learning [165],

is associated with improved retention and transferability. These benefits are very useful in content-

heavy fields, allowing students to fully understand concepts as opposed to having fragile knowledge

(having some notion of a concept but not enough to completely solve a problem using it) associ-

ated with the concepts they are learning. Other key factors to improving the benefits of active

learning techniques are ensuring the techniques are challenging enough to evoke more critical think-
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ing, spreading them out over time to allow the information time to be digested, and providing

quick feedback to students so they can understand what they are doing and where they can make

improvements[17, 170].

A number of factors support the benefits observed with active learning, including reduced ex-

traneous cognitive load on working memory by engaging students[194], increasing students’ retrieval

practice (strategy to bring information to mind and meant to enhance learning)[103], and increased

attention[135]. A benefit of active learning is that it allows students to practice the new information

that they are obtaining, relate it to knowledge and experiences they already have (constructivism),

and gives their memory a chance to rehearse the concepts, reducing cognitive load. This can lead

to the knowledge being encoded in long-term memory as opposed to working memory[63].

Within CS, researchers have studied multiple active learning technique that instructors have

employed. One of the more common techniques is pair programming, is defined as “a practice in

which two programmers work collaboratively at one computer on the same design, algorithm, code,

or test”[214]. Pair programming, which engages students to co-construct knowledge, collaboratively

searching for regularities and testing their code and aiding in forming schemas[20, 45], has shown

that both driver and navigator contribute information[20]. Williams also found that the pressure

from having another person observing and helping you work, “pair pressure,” helps keep students

focused[214]. Other benefits to this technique are that it has been shown to produce greater enjoy-

ment and faster completion times of assignments[36]. Although pair programming has been used

in many contexts and offers learning benefits, the context and nature of the discussion occurring

during this technique is important.

Clark found that discussion needs to be grounded in points of mutual understanding to

operate productively in a joint problem space[34]. To coordinate and facilitate student thought

processes, task-specific support structures can be used or scaffolding that helps students model their

domain knowledge[45]. My work also leverages the common practice of rubber ducky debugging,

which involves talking out loud to an object, such as a rubber duck (or person) that does not under-

stand the program[96]. This process requires a programmer to slow down and make more deliberate

and planned decisions while attempting to code[32]. Research has shown this attention to design

and doing code reviews effectively streamline the development process, but students and profes-

sional developers strongly avoid them. Active learning activities such as pair programming engage

both the driver and navigator in a continuous design and review process, ideally in an encouraging
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environment[215]. This helps to mitigate common concerns relating to instructor feedback, such as

it being both time consuming to produce and students finding it too generic or impersonal[87].

Self explaining study

A study not conducted in the CS field but that relates to and forms the basis of rubber ducky

debugging is Chi’s self explanation study. Chi looked at the benefits and effects of self explaining,

which is an active learning technique requiring students to attempt to explain to themselves what

they are trying to learn[30]. The study attempted to show that a learning technique can be applied

and show benefits independent of a particular domain, so it used two courses, biology and physics.

The biology intervention looked at declarative knowledge whereas the physics intervention looked

at procedural knowledge. The biology intervention used 8th graders as participants whereas physics

used college students. It was shown that a statistically significant correlation exists between the

number of self explanations and self explanation inferences (parts of the self explanation students

are inferring and are not directly stated in the information that they are learning) and post-test

scores, with the students all starting from approximately a similar point in terms of prior knowledge

coming into the study.

This MBF intervention uses an augmented version of self explanation, employing a peer

dialogue with a structured guide of prompts to encourage learners to address misconceptions in a

manner that promotes learning. Theories such as constructivism, allowing the students to construct

their own knowledge based on their own experiences and environments, help support the benefits

of self explanation. Social constructivism is particularly relevant, as the technique requires peers

to engage in a dialogue with each other. By incorporating aspects of Chi’s self explanation, pair

programming, and rubber ducky debugging through structured review prompts based on miscon-

ceptions, I provide an environment that promotes “higher order thinking that involves active control

over the cognitive processes engaged in learning,” or metacognition[125] and productive quality feed-

back loops for students to collaborate and build knowledge. Metacognition is an important factor

in planning and problem solving, allowing us to not just decide how to approach a learning task,

but also keep track of our comprehension and evaluate progress towards successfully completing

this task. McCracken’s framework[132] of problem solving in CS, discussed in the following section,

centers around these metacognitive principles.
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2.4.3 CS Problem Solving

Trial and Error Trial and error is a programming technique that focuses on testing and editing

code until correct output is finally produced[58]. It emphasizes the applying and creating phases of

Bloom’s cognitive taxonomy[1], described in more detail in Chapter 7, which are commonly focused

on when teaching undergraduate CS courses[21, 22]. Although the approach can be useful for begin-

ners learning to program, it can also cause conceptual problems as students are less equipped to use

the analyzing and comprehending phases of Bloom’s cognitive taxonomy, instead focusing on the

creating phase[21, 21, 58]. To address this problem solving strategy, Buck and Stucki discuss an “in-

side/out” methodology when learning to program[21, 22], focusing on designing code writing tasks

that are more constrained and target the comprehension and analysis levels of Bloom’s taxonomy

that the trial and error approach usually fail to capture. The design of the structured prompts, seen

in Chapter 7, use this related work to assist students in comprehending, analyzing, and evaluating

their programming and problem solving skills, and applying this knowledge to create working code.

Osborn’s Creative Problem Solving

Alex Osborn developed a process for solving creative process[146]. The original version of this

process consisted of seven stages:[98]

1. Orientation: Pointing up the problem.

2. Preparation: Gathering pertinent data.

3. Analysis: Breaking down the relevant material.

4. Hypothesis: Piling up alternatives by way of ideas.

5. Letting up to invite illumination.

6. Synthesis: Putting the pieces together.

7. Judging the resultant ideas.

This model was eventually revised to become the Osborn-Parnes creative problem solving process,

which consisted of the following five stages: Clarify, Idea, Develop, and Implement. During

clarify, programmers analyze information, goals, and challenges. They then use divergent thinking

(exploring many possible solutions) in Idea and convergent thinking (narrowing solutions down)
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in Develop. Finally, Implement is when those solutions are applied and tested. This structured

process has been used to teach programming in computer science education[158, 131]. For my MBF

intervention, the structured prompts are designed to have students focus on the Idea phase and then

evaluating those ideas through discussion, which falls more in line with McCracken’s[132] work.

McCracken Framework

McCracken et al. worked on a multi-national, multi-institutional study of 216 students to assess

programming skills of first year students[132]. Using the Association for Computing Machinery’s

2001 Computing Curriculum[202] and the computing education expertise of the research team,

McCracken et al. developed a framework for learning objectives of first year programming students.

This framework is derived from the universal expectation of CS instructors that students learn to

solve problems in order to create code that compiles, executes, is correct, and is in the appropriate

form. McCracken’s framework consists of the following five steps:

1. Abstract the problem from its description: This first step involves students taken a

problem or program specification and determining the relevant pieces. Once those pieces are

determined, they should then be modeled abstractly in the appropriate manner (i.e. pseu-

docode, models/chart, etc.).

2. Generate sub-problems: This step involves breaking down the problem into smaller prob-

lems. It can consist of looking at the various functions or classes associated with the program-

ming problem, variables and types necessary, or other elements such as control flow.

3. Transform sub-problems into sub-solutions: This step is when students choose the im-

plementation strategies for the sub-problems determined in the previous step. This step can

and should also include testing these strategies.

4. Re-compose the sub-solutions into a working program: This step involves taking the

sub-solutions and combining them to generate a full solution to the original problem.

5. Evaluate and iterate: This final step is determining whether the student has solved the

problem and if not, making the appropriate changes. This process is iteratively done until a

proper solution exists.

McCracken’s framework was designed by CS experts and educators to focus on problem solving from

the perspective of programming and has had widespread usage in the computing education research
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community. It is specific to the CS context and relevant to my work on learning how to program. For

my MBF intervention, this framework was relevant in the development of the structured prompts,

as described in Chapter 7.

Soloway

Another well-established method of problem solving in the context of programming and CS was

found by Soloway. Soloway researched how to revise CS curriculum to teach problem solving skills

in the context of learning how to program[186]. He states that “the focus on instruction of the

syntax and semantics of programming language constructs leads to an emphasis on the program as

the output of the programming process.” Soloway broke down programs into two audiences: the

computer, which is a mechanism that takes instructions from a program that tell it how a problem

can be solved, and the human reader, who needs to be able to explain why the program is solved.

This view then claimed that learning to program is not just about constructing the mechanisms,

but also constructing explanations on why the mechanisms work. This approach to problem solving

is modeled in the design of structured prompts for the MBF technique, as students do not simply

have to describe the mechanisms used in their program, but also reflect on and discuss/explain why

those mechanisms work.

2.4.4 Feedback

Higgins [87] performed a longitudinal study looking at the role feedback has in assignments.

This was in business and social science units, but there seemed to be a consensus that students

preferred and even felt as if they, as paying consumers, deserved feedback, and the feedback that

they wanted was not strictly grade-focused. Many of the students genuinely wanted to learn and felt

that some of the feedback they received was not particularly helpful with that process. Some feedback

was found to be too generic, sometimes it was just hard to read (this study examined handwritten

feedback), and other times the advice was vague with no guidance as to how to actually solve the

problems identified in the feedback. Their survey found that most students do read feedback, but

that the majority spend less than 15 minutes in doing so. Researchers posit that some instructors

do not write involved feedback because they do not believe their students are reading it, which leads

to a continued problem of communication between student and instructor. Another preference of

many students was that feedback be more personal and not as generic[87]. A goal of my work is to

ensure that faculty time is being effectively utilized given rising CS enrollments, as some instructors
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feel the need to provide detailed and personalized feedback for all assignments, but this may become

less feasible as more students enroll in a course.

Tseng conducted a study examining online peer feedback in a high school course learning

about computers[207]. The study had 10 peers anonymously give both qualitative feedback and

quantitative scores to an assignment three times over the course of six weeks. The assignment

required the students to use search engines to develop an itinerary for some activity. The students

then made adjustments and improvements to the assignments based on this feedback. A statistically

significant increase in the scores was found between the first submission and the second and between

the second submission and the third. Two experts also gave scores for the assignments at three

feedback points, but students never saw the experts scores to ensure they were not just making

improvements based on trusting the authority of the expert instructors. Of note, a significant

increase was also seen in the experts’ scores of the assignments, even though the experts did not

have access to the feedback the peers were giving the students. The scores of the peer evaluations

were significantly highly correlated with those of the experts, suggesting that peer assessment can

be used as a valid assessment measure for assignments. Tseng states that “the learning in the peer

assessment process comes from both students’ adaptation of peers’ feedback and their assessment

of peers’ projects.” That is, students are learning from both the process of making improvements

to their assignments using peer feedback and from giving feedback on other students’ assignments.

This dual nature of learning by analyzing as well as responding and adapting to feedback help guide

the design of my final study. It ties back to the social elements that are an integral part of the social

constructivist theory of learning. Tseng also claims to “believe in the importance of peer feedback

for the peer assessment and assert that in the process of peer assessment, the students continuously

gain formative feedback from peers; therefore, we could observe that the students in the present

study improved their projects,” tying back to Higgins’ [87] results and conclusions about the value

of formative feedback.

Le’s work classifies adaptive feedback in educational systems for programming[120]. He

identifies five types of feedback supported by programming: Yes/No feedback, syntax feedback,

semantic feedback, layout feedback, and quality feedback. Yes/No feedback, or confirmation, merely

gives a response as to if something is done correctly. This would apply for automatic graders that are

testing code execution against provided test cases. Syntax feedback is based on what the compiler

provides the user. This would be standard error or warning messages that compilers issue when
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attempting to compile code. Semantic feedback focuses on errors in code that stop the program

from fulfilling a required task. This feedback can be broken down into two types: Intention-based,

which gives feedback based on what the programmer meant to do; and code-based, which merely

provides feedback about code that is not semantically correct. Layout feedback relates to the style

of code and provides information about how it should be arranged and formatted. Quality feedback

focuses on how efficient the code is with respect to time and memory use. It also provides the

confirmation feedback of if the code works. Of these, syntax, layout, and quality are specific to the

domain of programming.

My focus is on intention-based semantic feedback and allowing students to address, explain,

and justify their intentions to remedy misconceptions. Gusukuma[80] attempted to develop a system

to provide syntax feedback that is based on misconceptions as opposed to the standard compiler

feedback. My MBF study builds on this idea of using misconceptions as a framework to provide

feedback, designing prompts based on observed misconceptions from my formative studies, these

prompts requiring students to engage in self-explaining and peer dialogue to justify how they decided

on their design and implementation.

Conceptual engagement

A successful pedagogical approach requires that conceptual change occurs, and learners are

not merely regurgitating what they were instructed on. In science education, Posner identified four

conditions necessary for the conceptual change process [163]. When knowledge structures are firmly

entrenched, they are highly resistant to radical change and so the first requirement is that the learner

must be dissatisfied with the original knowledge structure. The second is that new knowledge struc-

tures must be intelligible and make sense. The third is that the new knowledge structures must seem

plausible to the scientist or student attempting change. The fourth is that new conceptions must be

“open to areas of inquiry,” or be able to lead to new insights and hypotheses. Dole re-conceptualized

this model and looked at elements such as: the learner’s strength, coherence, and commitment to the

existing concept; motivation (dissatisfaction, personal relevance, social context) towards an existing

concept; whether the message is comprehensible, plausible, coherent, and rhetorically compelling;

and how engaged the learner is with a new concept as to if conceptual change will occur [52].

Forman et al.[69] mentions teacher-student authority and how Tabak and Baumgartner [197]

describe three roles: monitor, mentor, and partner. The monitor merely observes what the student

is doing. The mentor places the teacher as the highest intellectual authority and generally has the
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teacher doing most of the speaking with the students listening. Shifting to partner allows for more

discourse, and this model helps to frame my hypothesis that the gains will be significant even when

using a peer as the person providing feedback and giving each other a chance to reflect of their

decisions. My final study emphasizes this partner role and removes the element of authority, having

the partner serve as a peer.

Immediate Feedback Assessment Technique

Another technique that incorporates feedback is Epstein et al.’s work on the Immediate

Feedback Assessment Technique (IF AT)[59]. The IF AT was designed in a way that the correct

choice would have a star underneath it and would be seen as students scratched off that choice. If the

incorrect answer was chosen, a blank space would be seen underneath the letter choice. Students were

instructed to answer questions normally, but if the answer was incorrect, to rethink their strategies

and attempt to answer again. The IF AT allowed students to answer as many times as necessary until

they answered correctly. Epstein et al. conducted multiple studies to compare standard Scantron

multiple-choice assessments to their Immediate Feedback Assessment Technique (IF AT) version of

multiple-choice assessments[59]. These studies found that students had significantly more retention

of material when receiving immediate feedback as compared to the no feedback provided by standard

multiple-choice assessments. In fact, it was stated that a multiple-choice examination that “does not

employ feedback may promote misconceptions”[59]. The implication of these results suggest that

feedback is a necessary element of students learning and not gaining more misconceptions.

Although feedback is positive, it is important to provide students with quality feedback.

Nicol et al. defined seven principles of good feedback practice[140]:

1. helps clarify what good performance is (goals, criteria, expected standards);

2. facilitates the development of self-assessment (reflection) in learning;

3. delivers high quality information to students about their learning;

4. encourages teacher and peer dialogue around learning;

5. encourages positive motivational beliefs and self-esteem;

6. provides opportunities to close the gap between current and desired performance;

7. provides information to teachers that can be used to help shape teaching.
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The bolded items are addressed with my misconception-based feedback technique. To ensure

that students were clear on what good performance was, I provided both written instructions for

the coding task and also an exemplar, which are found to complement and help strengthen the

clarity of written instructions[145]. The facilitation of self-assessment occurs through reflection,

which is a key activity in which the MBF prompts require learners to participate in. Students

were tasked to assess code they had already written based on prompts provided. With respect to

encouraging peer dialogue around learning, the technique is designed explicitly to encourage and

facilitate peer dialogue around learning. In order to provide opportunities to close the gap between

current and desired performance, the technique allows students to edit their code while going through

the misconception-based feedback technique.

My MBF intervention, described in Chapter 7, takes these elements of feedback and con-

ceptual change, and applies them to an intervention meant to improve the understanding of CS

students through the use of guided feedback and then Chapter 8 describes the study that I used to

evaluate this intervention. The feedback prompts were developed based on the difficulties I found

students had in CS topics as seen in my formative studies and related work on how novices learn

to program. The prompts allow students the opportunity to learn through explaining their thought

processes and having to discuss them either with a peer while observing code that had previously

been written.

Overall, this work is motivated by the desire to help address low retention rates in CS, a

major where enrollments continue to rise. Research has shown and I have personally observed how

URGs can be affected more than majority students by these low retention rates due to issues such

as false beliefs about CS identity and stereotype threat, which lead to academic underperforming.

As both lack of motivation and time due to difficulty of content have been shown to be key reasons

for CS students not staying in the major, I have worked to address the difficulties students have

with CS content. The MBF intervention was developed to address difficulties and misconceptions in

introductory CS courses, because these courses have been shown to be pivotal in helping to retain

students in the major. Research in active learning supports its benefits for all students, but has

shown that it can be particularly useful for URGs. Since feedback has proven valuable in addressing

misconceptions in related work and my own formative studies, the MBF intervention focuses on

quality feedback to improve conceptual understanding for important and difficult topics in CS. In

this dissertation, I pilot this technique at an institution with resources to focus on using the technique
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at scale, and hope to in the future to test the effectiveness of it with URGs in the context of minority

serving institutions. The next chapter gives an overview of the formative studies I conducted and

their results that led to the development and evaluation of the MBF intervention.
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Chapter 3

Overview of Formative Studies

Before designing and evaluating the MBF intervention described in this dissertation, I en-

gaged in a series of formative assessments designed to identify topics in the undergraduate computer

science (CS) curriculum that students find difficult and to characterize the nature of these diffi-

culties. Two of these studies have been published in well-established, peer-reviewed conferences in

computing education research and a third has been conducted and preliminary analysis helped to

form the development of my final evaluative study. Chapters 4 and 5 contain the published papers

associated with the first two studies, and Chapter 6 provides a detailed description of the third study

and the outcomes of the preliminary analysis. This chapter contains an overview of these studies

and their findings.

3.1 Explain Your Reasoning Surveys + Task-Based Inter-

views

My first formative study involved development of a survey meant to gauge how students

think about selected introductory programming concepts. I pulled from Goldman’s related work on

important and difficult topics in CS[78] and intersected topics found there with local context of what

Clemson teaches in our introductory programming course. This local context was used as Clemson

was the location for the study, so I needed to ensure that the topics I explored would actually be

covered in the course I was using for the study. Of the topics identified, the focus was on the five
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defined below:

1. Parameters/Arguments (PAI/II/III):

(a) Call by Reference v. Call by Value: Understanding the difference between “Call by

Reference” and “Call by Value” semantics

(b) Formal v. Actual Parameters: Understanding the difference between “Formal Parame-

ters” and “Actual Parameters”

(c) Parameter scope, and use in design: Understanding the scope of parameters, cor-

rectly using parameters in procedure design

2. Procedures/Functions/Methods (PROC): (e.g., designing and declaring procedures, choos-

ing parameters and return values, properly invoking procedures)

3. Scope (SCO): (e.g., understanding the difference between local and global variables and

knowing when to choose which type, knowing declaration must occur before usage, masking,

implicit targets)

4. Assignment Statements (AS): (e.g., assigning values from the right hand side of the operator

to the left hand side of the operator, understanding the difference between assignment and a

mathematical statement of equality)

5. Control Flow (CF): Correctly tracing code through a given model of execution

From these topics, 21 questions were developed, each designed to focus on a single CS con-

cept. Each question asked about the behavior of a “snippet” of code. Some questions were multiple

choice, with only one “distracter,” (incorrect answer meant to reveal a common misconception), and

some questions asked students to provide the output of the code snippet. In all of the questions,

students were asked to “Explain your reasoning,” (EYR) and given substantial space to write the

thought process behind their answers. This was administered to 106 students in a CS2 (2nd-level

CS course) at the beginning of the semester. The surveys were collected, transcribed, and then

analyzed as described in Chapter 4. Following this process, follow-up task-based interviews (TBIs)

were given to 10 students who had also completed CS1 but had not taken the EYR surveys. These

were conducted one-on-one and lasted 60 minutes, with students answering 8 questions of interest

that were a subset of the original 21. Students were recorded and tasked with explaining the code
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snippets and I was able to probe deeper into explanations that did not seem clear. The four ques-

tions of interest that emerged based on the extent to which students struggled and that provided

the most information about misconceptions were Pass by value vs. Pass by reference (Q11, Q14,

Q17), Scope (Q14, Q17, Q18), return values (Q14 + Q17).

Q11, found in section 4.1, includes a void function swap that swaps two values. The swap

function exchanges the parameters x and y via a local temp variable. The function contains a return

statement but is void and no value is returned. The main function initializes two variables, cat

and dog to the values 5 and 8, respectively, and then invokes the swap function, passing in the

values of cat and dog as parameters. However, since the parameters are passed by value, the value

of cat never actually changes. Students are asked what the value of the variable cat will be after the

function returns. They are given two choices: 5 (correct), in which the value of cat does not change

and 8 (incorrect), which would result if pass by reference semantics were in effect rather than pass

by value semantics.

Q14 found in section 4.2, involves a void function, findArea, which defines a local variable

area and then assigns to area the product of the length and width parameters. In the main function,

a separate variable area is defined and initialized to 0 and variables x and y are defined and initialized

to 4 and 8, respectively. findArea is then called, passing x and y as parameters. As in question 11,

the function is void and no value is returned. In main, a print statement utilizes the area variable.

Students are asked what the result of the execution will be. The correct answer is that “The area

of the shape is 0” should display.

Q17, found in section 4.3, is nearly identical to Question 14 and provides a consistency

check across questions. The function subtract accepts two integers as parameters, computes the

difference and assigns the result to local variable answer. The main function also declares a variable

answer and initializes it to the value 7. A print statement is called using the answer variable within

the scope of main. The correct answer is b, since the answer variable that exists within subtract

is a different variable than the answer variable in main.

Q18, found in section 4.4, introduces a global variable, answer, initialized to the value 7

in line 1. The function subtract takes in two integers and returns an integer. Function subtract

initializes a local variable answer, sets it equal to the difference between parameters x and y and

returns the local answer to the main function, where it is assigned to the local variable solution.
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Line 14 has a print statement that prints answer, with the intended answer being the global

variable, as the answer variable from the subtract function is out of scope. The answer choices

provided allow students to either choose the result of subtract (5-8), or the value of the global

variable answer, which is 7.

Below are some key findings based on four questions of interest of the 21 questions of the

survey.

3.1.1 Pass By Value

In the EYR study when students’ responses indicated misconceptions related to the idea

that invocations of functions using pass by value pass a copy of each argument and the function

modifies only this copy and not the original value in the calling code. Evidence of this misconception

was seen in Q11, where students gave responses such as “swap function simply swaps 2 values using

a temp variable to hold one value in memory while it is replaced by the other” or “I saw that it was

a swap function at the top, so I assumed it did what its name was. After that, I solved the main,

checking to see if y’all might have tried to trick us by reading the swap function. Then I looked

at cat, and picked the number it wasn’t equal to.” This finding confirms prior work by others that

introductory programming students struggling with pass by value semantics Goldman et al.[78], and

others[33, 129, 65, 27, 100].

One explanation for this misconception in the context of the EYR study is that students

engage in abductive reasoning, working backwards from seeing the name of the function “swap”

and making sense of the code by trusting or assuming that the function will perform the action its

name suggests. Another explanation is fragile knowledge, with many students having only recently

learned about using a “temp” variable to swap values and so their attention is focused towards this

newly acquired knowledge but they are not able to also attend to the fact that the function is pass

by value because they are trying to process too much information (i.e. cognitive overload). Fleury’s

work found that students constructed their own rules about how parameters are passed, which is

fine in some cases, but can lead to incorrect mental models as their rules are not the actual way the

concept works[65].

This misconception seems to persist and has been observed in multiple studies and contexts,

so my work would suggest that instructors consider alternative ways to present the pass by value

concept, such as beginning with a plan-like approach to build understanding with visual, concrete
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examples. This approach can be supplemented with “puzzler” questions similar to those in the the

EYR survey to allow students the opportunity to form a detailed understanding of the semantics

of language features such as parameter passing. Another suggestion to address Fluery’s results

of students constructing their own rules would be to have students engage in activities such as

think-pair-share[63] and self-explain[30] to prompt students to directly address how they are con-

ceptualizing parameter passing. Then, if students exhibit incorrect mental models, they can be dealt

with earlier on in the learning process.

3.1.2 Overwrite “False-sharing”

The EYR study also revealed a misconception in which students believe that a variable with

the same name but in a different scope can be modified by a write to the local variable. This was

seen in Q14 of the EYR study, where students gave responses like “The area of the shape is 32.

The main function passes the values of x and y to the function findArea. findArea is called with

the input parameters of x and y, which = 4 and 8, respectively. Area = 4 * 8 because it is written

in the findArea function” and “32. The integer area is returned but I think the compiler won’t like

that area is being defined at 2 separate times during execution (not sure how that will impact the

program).” This misconception has also been seen in related work. This idea of overwriting a local

variable is a more specific version of a scope misconception. Scope misconceptions were found in

Goldman’s work identifying important and difficult programming concepts[78] and memory model

misconceptions have been reported by Kaczmarcyk[100].

We saw that some students think that variables with the same name but different scopes are

actually the same variable. This, similar to pass by value, could be the result of students engaging

in abductive reasoning, foraging for a reasonable explanation of code that does not operate in an

expected manner and attempting to make the most sense out of it. It could also be that students do

not have a strong mental model of how the concept of variable names and memory locations work.

Knowing that students have this misconception, instructors would want to to start with

straightforward applications of plan-based instruction and then move on to “puzzler” examples such

as the one in Q14, requiring students to walk through and explain what is occurring in both situations

to ensure that they build correct mental models about memory and scope. Another suggestion would

be to have students engage in activities such as think-pair-share[63] and self-explain[30] to prompt

students to directly address how they are conceptualizing memory and variable scope so that if there
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are incorrect mental models, they can be dealt with earlier on in the learning process.

3.1.3 Global Access

The EYR study also showed that students had the misconception that global variables,

which are variables visible in all other functions and blocks unless a local variable of the same name

hides them, may not be accessed from the main function. For example, in Q18 in the EYR study,

students provided responses such as “Because answer = 7 isn’t in the main scope” and “Line 1 has

no affect on answer.” This finding is novel. This misconception has not been identified as a common

misconception that introductory programming students encounter and it was unexpected when we

uncovered it.

An explanation for the existence of this misconception is that the context in which global

variables have been taught is generally through the use of a global constant, and so students did

not have a full grasp of the concepts of how global variables operate. Student explanations on this

topic suggest that students learn in a plan-based versus syntax-based way. Instructors must ensure

that students experience a sufficient variety of use cases to fully demonstrate the desired concepts

or functionality.

3.1.4 Global Overwrite

In the EYR study, we observed students with the misconception that a global variable can

be modified by writing to a local variable of the same name. This is a more specific type of the

OW misconception. Evidence of this misconception was seen in Q18 of the EYR study, where

students provided responses like “because answer is a global variable, the subtract function will

change the value” and “Answer was not a const, so after 5-8, answer is returned as -3. Since the

global variable answer is not a constant, the value of it can be modified, and it is just before the print

statement.” In task-based interviews (TBIs), students provided further evidence with the response

“this gets reinitialized up at the top from 7 back to -3...Because that’s a global variable but it’s not

immutable. I mean, it can be changed.” This finding is not novel. As mentioned at the beginning of

this section, the GlOW misconception is a specific instance of the OW misconception, which itself

is a form of a scope misconception. Scope difficulties were found by Goldman in his work[78] and

memory model misconceptions have been reported by Kaczmarcyk[100].
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Lack of ability to transfer knowledge between domains as well as fragile knowledge help

explain this misconception, as students seemed to grasp what global variables are, but are not

familiar with using them outside of the realm of their use as constants, where they are not intended

to be modified. This misconception coupled with the OW misconception suggest that there is a

lack of understanding of variable shadowing (thinking that variables of the same name are the same

variable) and a lack of knowledge of how return values are passed back to calling code. Based on

Clemson’s introductory programming course structure, students’ exposure to variable shadowing is

limited and it seems they possess fragile knowledge about the construct.

To address this issue, instructors may wish to expose students to situations in which they

experience unexpected outputs when they attempt to associate uses of variables with definitions that

occur in different scopes. Being aware of this misconception offers instructors the opportunity to

design appropriate in-class examples or to incorporate associated elements into projects that would

help students have a more solid understanding of scope and challenging, uncommon situations such

as variable shadowing. Such active learning techniques, if conducted in pairs or small groups, could

leverage the benefits suggested by social constructivist theory and promote student formation of

appropriate mental models associated with scope and visibility of variables.

3.2 Coding in the Wild

My second study was designed to gain insight into what students are thinking by observing

what they are actually doing. I wrote a simple menu-based calculator program that asks a user

to select a function (addition, subtraction, or flipping the signs (changing positive to negative and

negative to positive). It then prompts for two integers and performs the selected operation on those

two integers. The program executes in a loop, so it can be repeated until the user enters the exit

code (any number other than “1”), and when it exits, the program prints out the total number of

calculations performed. Ten students were brought in on a one-on-one basis, each having 60 minutes

to complete this task. They were provided with an executable version of the program that they

could run as many times as they wanted during the study. There were two rules for them as they

attempted to reverse engineer (create the code to make the program work based on the executable)

the functionality of the executable: 1) The three operations (addition, subtraction, and flipping the

signs) must be implemented in separate functions. 2) The statements that print out the results of
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the operations must be in the main function. During the 60 minutes, the students were tasked to

think aloud while attempting to implement a solution to creating the calculator program. Both the

screens and the audio of the students were recorded and analyzed as described in Chapter 5. After

initial analysis using open coding techniques, we determined that we could analyze the data with a

coding scheme based on well-defined concepts from the literature. The final categories for which we

recorded data were: Time, Utterance, Action Code, Current Task, Problem Solving Phase,

CS Concept, and Proposed Certainty Level. These are described in more detail below:

Time: This column contained the elapsed time from the start of the session to the start of the

associated utterance or action. This allowed us to develop a timeline for when participants did

certain activities such as saving, compiling code, running the provided executable, etc. Reviewing

the videos for analysis, the time when a certain action started would be marked into this column on

a spreadsheet. Times were not recorded for every utterance, just when actions started.

Utterance: This column contained the transcribed audio broken down to text representing either

a full thought or partial thought.

Action Code: The potential actions were Compile, Save, Edit, Execute Own, Check Executable,

View, Review, Tools, or Comment. Check Executable indicates that the participant executed the

sample calculator program. Execute Own indicates that the participant executed their own compiled

code. Tools refers to when participants discuss one of the tools used for coding such as the editor

or a tool they have used in the past.

Current Task: The potential current tasks were Main (Menu), Main (Loop), Main (Counting

Operations), Addition function, Subtraction function, or Flipping Signs function. The Current Task

column was coded for whenever there was an utterance that focused on a specific CS concept or an

Edit action when a participant started coding after performing some other action.

Problem Solving Phase: Based on McCracken’s[132] framework for the learning objectives of

novice programmers, we used the phases Understanding the Problem, Breaking Into Subproblems,

Implementing Solution (Subproblem), and Implementing Solution (Combine). We separated the

implementing solution phase to differentiate between a focus on solving the problem versus a focus

on solving one the tasks identified in the Current Task codes.

CS Concept: The codes we used for this work were based on Goldman[78] and included Param-

eters/Arguments I/II/III (PA1/2/3), Procedures/Functions/Methods (PROC), Control Flow (CF),

Types (TYP), Boolean Logic (BL), Syntax vs. Semantics, Operator Precedence, Assignment State-
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ments (SVS), Scope (SCO), Abstraction / Pattern Recognition and Use (APR), Iterations/Loops

0/2 (IT0/2), Arrays I/II/III (AR1/2/3), Memory Model, References, or Pointers (MMR), Design

and Problem Solving I/II (DPS1/2), Debugging / Exception Handling (DEH), and Other (OTH).

This is not an exhaustive list of the concepts from that paper, but includes those that were captured

in the assigned task. The Iterations/Loops 0 category was created by the authors using the same

description as Iterations/Loop I, but replacing “nested loops” with “non-nested loops.”

Proposed Certainty Level: This column was used to categorize our view of participants’ confi-

dence in what they did/said. The codes for this column were No Knowledge, Uncertain, Muddled,

Certain (Correct), and Certain (Incorrect). These were used to categorize our view of participants’

confidence in what they did/said.

Below are a summary of some of the key findings of the study after coding the 10 participants

using the developed schema.

3.2.1 Pointer Issues

In the coding in the wild study, students exhibited issues related to the use and syntax

associated with pointers in the context of parameter passing while trying to implement the flip

signs function. For example, one of the participants in the study was able to eventually succeed at

implementing the flip signs function, but used a trial-and-error approach while trying to implement

pointers, going back and forth in his thinking trying to differentiate between the “&” and “*.”

This finding of issues with pointers is not novel. Lahtinen et al. and others found that pointers

are a common struggle for introductory programming students[116, 23, 33]. This blind application

of operators when dealing with pointers was also observed by Craig[43]. A likely reason for the

existence of this misconception is again fragile knowledge. Students have learned pointers by the

time they take CPSC 1020 (CS2), but have difficulty with the precise syntax.

3.2.2 Arrays

In the coding in the wild study, students exhibited difficulties with the use of arrays. In

particular, using arrays as a means of passing by reference, or changing the value of a variable

while in the scope of another function. We saw one student who, while implementing the flip signs

function, attempted to declare an array with a return type of integer and then return an array
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back to the main function. The eventual resolution of the compiler messages that he did not fully

grasp was to avoid the complexity and find a workaround to implement the flip signs function.

Such programming difficulties with arrays were previously seen by various computing education

researchers[78, 100, 123, 33].

As with pointer difficulties, fragile knowledge is the theoretical basis for this difficulty. This

can also be traced back to Fleury’s work[65] as we observed that students seem to be constructing

their own rules about how parameters are passed using arrays,and these rules were not accurate and

caused errors when trying to implement the solution.

A suggestion to address Fluery’s results of students constructing their own rules would be

to have students engage in activities such as think-pair-share[63] and self-explain[30] to prompt

students to directly address how they are conceptualizing parameter passing. In this way, incorrect

mental models can be exposed and addressed earlier in the learning process.

3.2.3 Return Values

Students struggled with understanding how to return values from one function and store

them in another function. For example, in the coding in the wild study, one student was never

able to resolve the issue of capturing return values from the separate functions back in the main

function, so he never successfully completed the task. This finding is not novel; return values are

one of the important and difficult topics found by Goldman in his work[78]. Fragile knowledge is a

likely explanation for the prevalence of this misconception.

3.2.4 Correct Output Without Full Understanding

The coding in the wild study revealed that some students were able to produce correct

output through a combination of interacting with compiler feedback, trial-and-error, and complexity

avoidance, but did so without fully understanding the concepts they were implementing or why the

output worked the way it did. This was evident with students working on the flip signs function

and seen whether it was implemented with pointers or arrays. For example, one student, while

attempting to implement pass by reference semantics, engaged in trial-and-error and he explicitly

said he was certain would be incorrect. He managed to achieve the correct output, even with

expressed uncertainty that his solution was not correct.
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This finding appears to be novel in the misconceptions literature. Although as described

later, work has been performed that looks into trial-and-error approaches, this result of students

not understanding the concepts that they are attempting to implement and still not having that

understanding after successfully implementing them is novel. Quotes from expert reviewers for the

Innovation and Technology in Computer Science Education (ITiCSE) conference at which this work

was accepted provide evidence for the usefulness of this result: “The insights around solutions that

“work” but are actually only working by accident and still based on incorrect understanding is par-

ticularly useful” and “the analysis takes into account distinction between mastering a programming

concept and creating a correct code which is very valuable.”

With respect to the approaches of students using trial-and-error to obtain the correct output,

Buck and Stucki[21, 22] suggest that this strategy stays with CS students because of how the

curriculum is implemented in most classes. Students generally are taught to focus on application

and synthesis skills (writing code) on Bloom’s taxonomy of learning[1]. Edwards claims that based

on Bloom’s taxonomy, comprehension and analysis must be mastered before students can effectively

write programs using the application and synthesis skills[58]. He claims that students are not

properly taught the skills to comprehend and analyze programs, which leads them to practice more

of writing/implementing the programs, where they employ techniques such as trial-and-error and

eventually manage to achieve the correct output but do not fully understand the concepts they work

on. Fragile knowledge also plays a role in this observation. Students have learned certain concepts

such as pass by reference semantics, but do not have a clear enough grasp on them to implement

them successfully without compiler feedback and have to continually guess and check different routes.

CS instructors may benefit from an emphasis on understanding student processes and what

they’re thinking as opposed to a singular focus on the production of code that passes certain test

cases. Krausel and other researchers have attempted to strengthen students’ comprehension and

analysis skills through code reading assignments and having students reason about and manipulate

non-code artifacts[115]. There is also the “inside out” way of teaching CS1 students to program,

which focuses on solving smaller problems first as opposed to immediately having students attempt

to work at skills higher up on Bloom’s taxonomy[21, 22]. These implications are particularly strong

when considering how grading/feedback is managed in the courses. Edwards suggests and looked at

using test-driven development as a way to offer immediate feedback and allow students to address

the analysis and comprehension of programs early in the learning process[58, 57].
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3.2.5 Planning/Problem Solving

Students in the coding in the wild study exhibited issues that resulted from how they planned

or did not plan to problem solve. In particular, the problematic approaches involved attempting

to implement the program in the order the executable was presented and tested, without stepping

back to plan. This led to some students running into errors such as not including necessary function

prototypes before the main method. The same was true of running into problems; students did not

often think to stop and decompose the problem before just attempting to fix or address it after

seeing a compiler error.

Similar to the above discussion on correct output without full understanding, this would

seem to be curricular-based, with introductory CS courses focusing on having students write pro-

grams and not engage in the lower levels (comprehension and analysis) of Bloom’s Taxonomy[1].

This result suggests that students should be given more opportunities to work on the plan-

ning phases that are useful and effective for programming. An implication for instructors would be

related to the “inside out” method of teaching Buck and Stucki proposed[21, 22], which combined

with active learning activities could allow students to analyze programs and work to figure out how

a plan would be written for a given program as opposed to simply having prompts where students

have to program without explicitly considering a plan. Edward’s work with test-driven develop-

ment would be another suggestion, as the development would have to be planned on the front-end

to ensure that the implementation is compliant with the tests[58, 57]. Thinking about planning

and determining a problem before attempting to solve it can allow for a deeper understanding of

concepts and fewer misconceptions. Simple interventions such as prompting students to have to

explicitly provide plans for how they would solve a programming problem either as standalone ac-

tivities or a precursor before they have to attempt to implement solutions would be pedagogically

beneficial to address this concern.

3.3 Software Engineering Design Documentation Interviews

(SEDDI)

The third study was conducted in the context of Clemson’s Software Engineering course.

The course was project-based, with students divided into groups of three, typically self-chosen.
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The project had two major assignments, broken down into a series of submissions. The objective

of Assignment one (A1) was to develop the requirements for an Autonomous Vehicle Manage-

ment System that supports both fleet administrators and end users in interacting with a fleet of

autonomous vehicles. The system should be designed to make recommendations about fleet compo-

sition and manage deployment, booking and payment functions. The system should accommodate

the needs of users who are visually impaired or hearing impaired. In A1, students had to go through

a requirements analysis process that included preparing 10-15 appropriate questions to ask various

stakeholders, interview the stakeholders and summarize answers to key questions, and provide mul-

tiple use case input/output scenarios to ensure they understood the functionality of the system. All

materials were then submitted as a single professional requirements document for a grade. Students

received detailed written feedback after each submission. For this study, submission A1 was not

explicitly used for analysis, but was necessary to complete the rest of the project and came up as a

source of difficulty for the students in the interviews.

Our evaluation of the approach of the student teams to design, the obstacles they encoun-

tered and the misconceptions they exhibited is based on three sources of data:

Assignment 2, part 1 (A2.1), the purpose of which was to produce a design of the system

whose requirements they analyzed in A1. The goal of A2.1 was to identify a set of application-level

classes that would be needed to develop the system and to show the relationships among the classes

using one or more class diagrams. They were also asked to provide short, high-level descriptions

of the functionality of each class in their designs. A1 had also asked them to describe the system

inputs and outputs for important use cases. This typically meant an input of a rider requesting a

ride through the mobile app interface and an output of a car arriving to pick them up, deliver them

to their desired address and a payment occurring. Teams were also asked to provide preliminary

visuals of what a rider and fleet administrator might see, and provide a summary of how their system

design supports the interactions in the use cases and their visuals (screen mockups). Finally, they

were asked to provide five other Unified Modeling Language (UML) diagrams (some combination of

sequence, state or activity diagrams) to clarify aspects of the design corresponding to key risk areas

or features that seem hard to get right. Students submitted these documents for detailed feedback

but did not receive a grade. However, A2.1 is useful to examine in that misconceptions and design

difficulties may still manifest.

Assignment 2, part 2 (A2.2) asked the teams to refine and improve all their answers to
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part 1: to elaborate on the functionality of the classes in the class diagrams by describing public

interfaces, including attributes and operations, to revise and improve their visuals, descriptions of

inputs and outputs, and design verification (summary of how the system supports the use cases seen

in the visuals and represented in the provided example inputs and outputs). They were asked also

to provide descriptions of key operations in the form of informal requirements and guarantees. A2.2

was used as a final comparison to A2.1 to observe the changes that were made based on feedback

provided.

In addition to these documents, the groups were asked to participate in interviews that I

led to discuss their design decisions. The students were asked to do the following:

1. Explain their UML class diagrams.

2. Walk through a standard use case of their system.

3. Walk through a non-standard use case of their system (e.g. A visually or hearing-impaired

person using the system or a car needing maintenance).

4. Describe some of the challenges faced in the project throughout the semester.

Groups had their project documentation on the screens and could use it to help explain their

answers. The screens as well as the audio from the interviews were recorded. Preliminary analysis

was performed and the full analysis will be completed using open coding strategies to identify

emergent themes in the interviews. Key results based on preliminary analysis of the answers to the

questions and comparing them to the submitted documentation is shown below:

3.3.1 Incompleteness and Inconsistencies

In examining the SEDDI interview transcripts and comparing those to the design documents,

we found groups that had designs that did not fully capture the required system functionalities

(incomplete) or elements/functionalities that were described in user scenarios or interview transcripts

but were not supported by the design diagrams (inconsistent). An example of an inconsistency is

found in one group who mentioned in their interview that a “beep would come from the phone” like

a “metal detector” as a way to alert visually impaired users that their car had arrived. This feature

was not present in the design documentation in any way. An example of an inconsistent design is a
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group that had user interface designs showing a history of transactions but this was not present in

the class diagram or any other diagrams.

3.3.1.1 Theoretical explanations

This result seems to stem from students not properly communicating as a group. There

were groups who would divvy up the parts of an assignment and it was apparent that they did not

communicate to ensure that the parts were consistent or completely finished across the document.

The theory here relates back to social constructivism[209], and giving students a chance to create

their own knowledge not just individually, but interacting together as a team. In regards to the

inconsistencies exhibited during interviews, my theory goes to the work of Kahneman discussing

system 1 and system 2[101]. Students seem to have been intuitively replying to questions with

features they believed they had designed or they felt made sense.

To address this issue, instructors should emphasize the importance of being consistent in

planning and design. Allowing students to go through good and bad examples of system design

consistency and completeness and discuss and critique those designs would help ensure students did

not make the same mistakes. Also, encouraging the teams to communicate and review the design

decisions together, potentially requiring them to explicitly write up feedback for design decisions

would promote social construcvism of this knowledge.

3.3.2 Modeling Abstract Concepts

Many groups struggled with how to represent elements of the project that were not concrete

or did not have an obvious physical representation in the real world.

3.3.2.1 Evidence

The most common example of this was shown in attempting to create a “Ride” class. The

class diagrams generally had correct examples of a “Car” class, which is a physical object, but

either would have no representation of a ride in their system design or the representation would be

incomplete or inconsistent with what the groups explained in their interviews and wrote in their use

case scenarios.

Student difficulty with abstraction is not novel, and has been reported by Thomasson[204]

as a common OO misconception and was also discussed by Or-Bach and Lavy[144]. However, it was

49



interesting to observe this phenomena at the design stage before any programming occurs.

Detienne claims that an issue with abstraction is one of decomposition[50]. Novices have

trouble breaking down a larger unit into smaller, functional units which makes it hard to design

abstract concepts. Or-Bach and Lavy found that many students struggled with abstraction, and

claimed that the reason stems from the focus being the structure of object-oriented design as opposed

to the process[144].

When teaching elements of design or implementation, instructors may wish to to provide

multiple examples of functions, classes, and other concepts that represent abstract concepts. Or-

Bach and Lavy suggest “discussions in which students communicate, present and evaluate differ-

ent approaches to solving complex problems can develop their sense of criticism towards qual-

ity of solutions.”[144]. They agree with Machanick in showing students existing abstractions to

use as building blocks for their knowledge of the concept before having them design their own

abstractions[128]. Pennington et al. suggest explicitly showing the differences between novice and

expert behaviors when it comes to object oriented design[155]. There is a general logic that makes

sense for this result where it is easier to represent things that can be touched and broken down

into components or elements. Beginning with physical items would be a good way to introduce

students to the idea of representation, but the abstract elements need to also be explicitly discussed

and practiced, through ways that allow students to properly construct knowledge (active learning

techniques, employing social constructivism, etc.).

3.3.3 Importance of Feedback/Reflection

A key finding of the formative studies was that students valued feedback and the opportunity

to reflect on their work. Feedback for the EYR + TBIs studies came in the form of me being able to

ask students to walk through code line by line or explain something further during the TBIs. For the

coding in the wild study, feedback was mainly from syntax feedback by observing compiler errors

and warnings. Students also had feedback from themselves, as the think aloud protocol allowed them

to perform some self-explaining while working through their implementations that generally would

not occur if a student were coding in silence. For the software engineering interviews, feedback was

explicitly mentioned as being provided by the instructor between various submission points of the

project. This helped them better understand the concepts they were working on.

The EYR study showed that some students who answered a question incorrectly then answer
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a similar question correctly with correct reasoning later on in the same assessment. This shows

improvement after getting to examine a problem, write out and reflect on an answer, and then

address a similar problem soon after. The students being able to construct their own knowledge

allows them to learn and recognize an error that they previously did not.

Also, the TBI participants were generally able to realize misconceptions and correctly ex-

plain code snippets when asked to explain the code line by line. This is explainable by the social

constructivist framework, with language and having the ability to interact with a person (myself in

this case) through the use of feedback helping students to see and address mistakes in their thinking.

The coding in the wild study saw students using compiler feedback as a tool to correct and

fix errors. These were sometimes oversights, other times misconceptions that students were able

to address and discuss where they went wrong while being recorded for the think aloud protocol.

This interaction with the compiler combined with the think aloud protocol allows the students to

construct their own knowledge and talk through misconceptions.

Students in the software engineering interviews explicitly stated the value of feedback in the

project and its various phases. The value of reflection was seen as students looked at their design

documentation and used it while walking through use case scenarios or describing their UML class

diagrams.

The importance of feedback has been documented in the research. Gusukuma looked into

the idea of having a compiler that gives feedback based on common misconceptions[80]. Brown[17]

and Roediger[170] found additional benefits for active learning when students received feedback.

Autograders are also growing in use to allow more feedback to be provided as enrollments increase.

As mentioned in Chapter 2, Higgins found that students value feedback and feel as if they are owed

it as consumers of knowledge[87]. These effects can be explained by the theories of constructivism,

social constructivism, and documented benefits of active learning.

Provided in the right area, time, and guided towards the proper source of difficulties/misconceptions,

feedback and reflection can allow students to address their struggles early in the learning process. In-

corporating elements of constructvism and active learning techniques such as Chi’s self-explaining[30]

should also be beneficial. Feedback is the result that is focused on for my final evaluative study.

This element, combined with an appropriately designed active learning technique, potentially offered

benefits for learning outcomes and addressing misconceptions as it was a persistent result through

the three formative studies.
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3.3.4 Complexity Avoidance

An observed result throughout my formative studies was students encountering difficult

concepts or tasks and instead of addressing them, choosing to avoid them, sometimes in creative

ways through finding workarounds, other times through simply choosing to ignore the issue. In my

code in the wild study, students would start trying to apply pointer logic to the flip sign function

but then find workarounds to produce outputs that were correct but avoided pointers, or in some

case, mentioned how they could use pointers but preferred to avoid them and never even tried to

implement a solution with them. There was an instance of a student having the flip sign function

return a value and just calling it twice in the main function to flip both integers. There were also

times when students started attempting pointers but then decided to use arrays instead to solve the

problem.

Comparing the software engineering interviews with the design documentations, I observed

many groups attempting to avoid dealing with functionality that they considered too complex.

Sometimes, they would make use of a megaclass or database that had unexplained functionality and

use that as the explanation of the complex concepts that they had not figured out how to show.

The students use of a megaclass to avoid complexity relates to work on software design an-

tipatterns such as the “God class”[168] and the “blob”[18]. Smith claims that these antipatterns can

stem from attempting to design procedurally but masquerading it as object-oriented[184]. Lawson

also observed students avoid complexity while attempting to solve a concurrency problem[119].

Brown’s book on antipatterns[18] offers multiple explanations for a strategy such as the

“blob” or “God class.” Among them are not having an adequate understanding of object oriented

principles or appropriate abstraction skills (another observed difficulty), which would equate to frag-

ile knowledge for the software engineering class. Another explanation by Brown is the architecture

design not being enforced, sometimes stemming from not reviewing the architecture properly, which

he claims is “especially prevalent with development teams new to object orientation.” This expla-

nation would be very applicable to our software engineering course and would tie back to social

constructivism, or lack of social constructivism, as many groups struggled with communication,

which hindered them from ensuring their designs were adequately reviewed.

This phenomena also seems explainable by Kahneman’s S1 and S2[101]. When designing

the diagrams, students might have been using S1 and unintentionally avoiding complexity by over-
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simplifying the problem in their minds. An alternative theory is that students may have been using

the deep thinking S2 and used strategies such as complexity avoidance to work around the lack of

an apparent and intuitive simple solution.

This finding supports the idea that students need to have difficult concepts reinforced and

additional focus on the learning of CS concepts that students find complex or do not have a firm

grasp on. Active learning techniques such as Chi’s self-explain[30] to ensure that students understand

concepts that are complex and ensuring that students have the opportunity to receive feedback on

their conceptions about complex issues would be useful. Also, encouraging the teams to communicate

and review the design decisions together, potentially requiring them to explicitly write up feedback

at certain phases of the project would aid in addressing the issue of inadequate reviewing.

3.3.5 Trial-and-error Design Approach

In the coding in the wild study, students would often get to a place where a functionality

was not working in the intended way and they were not quite sure of the solution. The students

would have a few ideas and begin using trial-and-error until they were able to produce the correct

output. When attempting to implement the flip signs function using pointers, students would receive

compiler feedback about reference types and as the feedback was not fully understood, they would

go into their code and arbitrarily swap out “*” and “&” at various places they believed would fix the

problem. Software engineering design documentation compared with the interviews showed instances

of groups attempting to design their class diagrams through trial-and-error of either feedback they

would receive from their instructors or knowledge they would gain from class. This phenomenon

has been reported previously. Hundhausen[95] has reported on students using workarounds and

trial-and-error while programming.

As mentioned earlier, Buck and Stucki[21, 22] suggest that this strategy stays with CS

students because of how the curriculum is implemented in most classes. Students generally are

taught to focus on application and synthesis skills (writing code) on Bloom’s taxonomy of learning[1].

Edwards claims that based on Bloom’s taxonomy, comprehension and analysis must be mastered

before students can effectively write programs using the application and synthesis skills[58]. This

result also stems from students having fragile knowledge of the concepts they are trying to implement.

Edwards suggests moving away from trial-and-error approaches for teaching CS and con-

sidering a test-driven development approach[58]. This does not seem completely ideal as a lot of
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the actual programming process does occur from trial-and-error and it is not inherently bad as a

technique. As mentioned earlier, I believe addressing the conceptual issues and improving the lower

level Bloom’s taxonomy skills through means such as code reading assignments and having students

reason about and manipulate non-code artifacts as suggested by Krausel[115]. There is also the

“inside out” way of teaching CS1 students to program, which focuses on solving smaller problems

first as opposed to immediately having students attempt to work at skills higher up on Bloom’s

taxonomy[21, 22]. Instructors should be aware of the cons of the the trial-and-error approach and

show explicit examples of how this can lead to cases where the code output is correct but there are

errors in the implementation of the code or conceptual errors, allowing students the opportunity to

discuss these examples and errors with each other.
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Chapter 4

“Explain Your Reasoning” Survey

+ Task-Based Interviews

This paper was published at the 2018 Koli Calling International Conference on Computing

Education Research held in Koli, Finland under the title “What Are They Thinking?: Eliciting

Student Reasoning About Troublesome Concepts in Introductory Computer Science.” [104]

4.1 Introduction

Computer science pedagogical content knowledge (PCK) refers to the “blending of con-

tent and pedagogy into an understanding of how particular topics, problems, or issues are orga-

nized, represented, and adapted to the diverse interests and abilities of learners, and presented for

instruction[177].” Understanding student conceptions and identifying student misconceptions is an

important element of PCK and a precursor to the development of high quality pedagogical materials.

Such insights into student reasoning are also of use in fleshing out the related notions of fundamental

ideas[176], threshold concepts[134, 173, 55, 64], and liminal spaces[203].

We ask several questions: What topics do students in an introductory C-based computer

science course find troublesome? What misconceptions do students have and why? How do these

topics relate to prior work in misconceptions in CS education? What interventions might be used

to aid in addressing these troublesome concepts? It is worth noting that identifying the full set of
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troublesome concepts will require a series of studies. We report here on an initial study of student

reasoning and misconceptions about selected topics.

In selecting topics for study, we build on prior work addressing the identification of threshold

concepts[173, 55], fundamental ideas[176], “important and difficult”(I&D) topics[78], and trouble-

some concepts[156]. In constructing our survey we build on related work in concept inventories[23,

201, 148, 86], other assessments[132, 123] and guidelines for assessment[127]. In analyzing our results

and placing them in context, we rely on related work that explores student reasoning about these

topics[208, 169, 156] and student misconceptions[91, 43, 181].

We developed and administered a survey consisting of a demographic questionnaire and

21 content-based questions to 106 students at the start of a second semester course for CS majors

(i.e., CS2) at a large public U.S. university that focuses on engineering and science. Our survey

uses questions designed to probe student understanding of key concepts. We include closed-form

questions as in concept inventories (CI)s, but also draw from the formative stages of CI creation and

the intent of think-aloud interviews, probing further by asking students to provide explanations of

their reasoning about the questions. Student responses are evaluated as either correct or incorrect.

We then select the questions that appear to be most problematic for students and several closely

related questions and engage in open coding of the students’ explanatory text to expose the details

of student thinking and detect emergent themes.

By correlating student responses and explanations across multiple related questions, we gain

insight into whether students consistently hold and apply their expressed conceptions or whether

they are applying strategies related to information foraging[161, 118] or abduction[122], in which

their interpretations of the behavior of the program is based on contextual clues such as the names

of variables and functions, and the apparent purpose of the code snippet.

Some researchers have followed up with think-aloud interviews to capture student misconceptions[100,

136, 14, 75, 62]. We follow up with a related technique, task-based interviews (TBIs), to clarify and

correct the understanding of student conceptions formed through analysis of the surveys. Results of

the interviews point to several factors as causes of the apparent misconceptions, among them fragile

knowledge about parameter passing, lack of exposure to the use of global variables, and abductive

reasoning in the presence of misleading contextual clues.

In the following section we discuss the background that inspired this research. In Section

4.3 we describe the design and implementation of our study and in Section 4.4 we provide and
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attempt to explain the qualitative and quantitative results. Finally, we conclude with a discussion

of contributions, limitations and future work.

4.2 Background and Related Work

Pedagogical content knowledge (PCK) for computer science is important but currently

underdeveloped[93]. Instructor knowledge of what students get wrong, their misconceptions, learn-

ing difficulties, and symptoms of misunderstanding is a critical piece of PCK[172]. PCK for computer

science is based upon education research performed in the CS context and disseminated in the CS ed-

ucation community. Additionally, instructors may possess refinements of that PCK formed through

their individual experiences.

Researchers have looked into notions related to PCK, such as threshold concepts. Trou-

blesome knowledge, an important characteristic of threshold concepts, is knowledge that appears

“counter-intuitive, alien, or incoherent” in light of prior knowledge[134]. Troublesome knowledge

can take multiple forms (ritual knowledge, inert knowledge, conceptually difficult knowledge, alien

knowledge, tacit knowledge, and troublesome language) and derive from multiple sources [156]. This

related work in fundamental ideas in computer science [176], threshold concepts [134], and “impor-

tant and difficult” topics[78] are a good starting point for selecting concepts to explore. Related

work in troublesome knowledge may provide a basis for understanding why students possess certain

misconceptions[156].

A concept inventory (CI) is a criterion-referenced test, designed to help determine a student’s

knowledge of a specific set of concepts, and to expose misconceptions. Taylor et al. describe the

development of CIs for computer science as being “in its infancy”[198]. Tew and Guzdial developed

the FCS1[201], a validated instrument for CS1, that uses pseudocode in an effort to be applicable

across a variety of pedagogies and programming languages. Parker et al. replicated this in an

“isomorphic” form as the SCS1 to enable broader distribution and avoid saturation[148]. Decker

designed an assessment for CS1 and CS2 in Java[48], which was developed and tested at her home

institution as part of her thesis work. Caceffo describes his process for the development of a concept

inventory for introductory programming using the C programming language [23]. The creation of

concept inventories relies on the selection of appropriate topics for inclusion.

Work performed by Goldman et. al focused on the selection of topics that the authors term
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“important and difficult” (I&D)[78]. The authors use a process that involves having a group of

experts (people with years of experience teaching introductory CS courses and who have written

pedagogical articles or textbooks on these subjects) propose important topics in introductory CS.

They then rate these concepts on a 1-10 scale in terms of importance and difficulty. Next they

negotiate and re-rate the concepts, providing an explanation if they choose a rating outside the

initial ratings’ inner-quartile ranges. These justifications are then anonymously shown to the experts

and they are asked to do a final rating. This process produced 11 topics that the authors deemed

I&D. Other CS education researchers have examined what topics are difficult or error-prone for

students, with [43] looking at difficulties with pointers in the C language, [28] using a large dataset

of CS1 students solving programming problems to identify challenging concepts, and [91] providing

a detailed list of common syntax and logic errors observed in an introductory Java programming

class.

STEM Researchers have looked into misconceptions and how they can affect learning in

various subjects [112, 42, 81, 84, 89, 26]. Confrey [38] states that even before formal study, people

have “firmly held, descriptive, and explanatory systems” that are different than what’s in the cur-

riculum and “are resistant to change through traditional instruction”[111, 147]. Tew and Guzdial

posit that this may be less true for computer science, and that misconceptions in this domain may be

more related to aspects of instruction rather than due to beliefs that students bring with them[201].

Confrey found that within programming, misconceptions stem from systematic errors. Researchers

have explored misconceptions on topics including propositional logic[86], memory models and assign-

ment upon declaration[100], algorithms and data structures [152], looping strategies [187], BASIC

programming statements [8], language-independent conceptual “bugs” in novice programming [153],

and misconceptions and attitudes that interfere with learning to program [33].

Other assessments exist that attempt to uncover student conceptions but are not technically

“concept inventories.” Drachova et. al developed a comprehensive inventory of principles for reason-

ing about correctness of software[54], using the work of [100, 78] and others to develop a framework

to support teachers by providing a structured set of learning outcomes and a way to assess if students

have achieved these outcomes. McCracken et. al broke down the learning objectives for first year

CS students into 1) Abstract the problem from its description; 2) Generate sub-problems; 3) Trans-

form sub-problems into sub-solutions; 4) Re-compose the sub-solutions into a working problem; and

5) Evaluate and iterate. These researchers found that the performance of first year students was
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significantly worse than expected [132].

In comprehending a new program, it is documented that novices and experts behave differ-

ently [169]. Novices can struggle with things such as how complex algorithms are in certain languages

and how fragile their knowledge can be at first. Some of the issues with novices relate back to the

troublesome language discussed by Meyer [134] and Perkins[156]. Robins et al.[169] suggest that

motivation and getting students to gain knowledge related to programming first would be beneficial

to make “more effective novices.” They also suggest explicitly focusing on programming strategies

in introductory programming courses, rather than focusing on the syntax and semantics of program-

ming language features and teaching students how to properly design basic programs to give them

the ability to tackle problems regardless of the specific features of the language used. These sug-

gestions are consistent with the observations of Soloway that the major stumbling block for novices

learning to program is in “putting the pieces together, composing and coordinating components of

a program” rather than in language constructs[186].

In conducting this study with students in their first year of study of computer science, we

needed to select challenging and important topics, design and pilot a survey instrument, administer

the survey, and then analyze the results. The methodology employed in each of these processes is

described in the subsections below.

4.3 Experimental Design

4.3.1 Selecting the topics

To select topics for the study described in this paper, we began by asking what concepts

are included in introductory Computer Science (CS) courses. To answer this question, we first

examined resources that identify concepts generally covered in CS courses: the ACM curriculum

guidelines[99], and related work on concept inventories for computer science[148, 201, 198]. We then

looked for topics at or near the threshold for classification as “important and difficult” by Goldman,

et al.[78] and intersected all of these with considerations of local context: the topics taught in the

first semester computer science course for majors at the university at which the study was conducted,

and the outcomes of instructor interviews at that institution.

We examined the syllabus used in the institution’s CS1 course, which uses the C program-

ming language. This syllabus broke down the topics into two modules, each roughly corresponding to
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half a semester. Module one, which this paper focuses on, addresses the topics of: number systems,

variables, arithmetic operations, loops, user input, conditionals & Boolean variables, functions and

arrays.

We obtained old CS1 exams from professors who recently taught or currently teach the

course and identified concepts covered in the exams. We interviewed the faculty members, asking

“Reflecting on your most recent offerings of CS1, can you identify the topics that students found

most difficult? If so, what are they?” and “ Why do you think that topic was difficult for students?”

As we developed questions for inclusion in the survey, instructors were also asked if students would

find the particular question difficult and why.

Based on this review of the literature and comparison to the course syllabus, we selected

five main I&D topics, listed below. We include in the listing the corresponding codes from [78] and

their ratings for importance (I) and difficulty (D). These ratings (shown below) are from 1-10 and

were determined using the Delphi process described in Section 4.2.

1. Parameters/Arguments:

(a) Call by Reference v. Call by Value: Understanding the difference between “Call by

Reference” and “Call by Value” semantics (PA1: I = 7.0; D = 7.4)

(b) Formal v. Actual Parameters: Understanding the difference between “Formal Parame-

ters” and “Actual Parameters” (PA2: I = 8.6; D = 5.7)

(c) Parameter scope, use in design: Understanding the scope of parameters, correctly

using parameters in procedure design (PA3: I = 9.1; D = 7.5)

2. Procedures/Functions/Methods: (e.g., designing and declaring procedures, choosing pa-

rameters and return values, properly invoking procedures) (PROC: I = 9.8; D = 9.1)

3. Scope: (e.g., understanding the difference between local and global variables and knowing

when to choose which type, knowing declaration must occur before usage, masking, implicit

targets (SCO: I = 9.4; D = 8.0)

4. Assignment Statements: (e.g., interpreting the assignment operator not as the comparison

operator, assigning values from the right hand side of the operator to the left hand side of the

operator, understanding the difference between assignment and a mathematical statement of

equality) (AS: I = 9.5; D = 4.4)
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5. Control Flow: Correctly tracing code through a given model of execution (CF: I = 9.8; D =

7.0)

These five topics are all covered in the CS1 course under study. The first three (PA1/2/3,

PROC, and SCO) are all covered within the “functions” section of module one. Those labeled in bold

(PA3, PROC, and SCO) met the threshold to be considered important and difficult by Goldman

and the experts who participated in the Delphi process. The final two, Assignment Statements and

Control Flow were both rated highly important in the [78] study, but were not rated significantly

high in terms of difficulty. We added these based on instructor reports and interviews and related

work. Specifically, work by [123] indicates that students have difficulty with control flow and that it

is important and work by [39] suggests the same is true of assignment statements. Instructor reports

indicated that some students still struggle with these topics in introductory courses, particularly with

interactions between assignment and control flow.

4.3.2 Designing the Survey Instrument

To study these concepts of interest, we developed a survey intended to gauge how well intro-

ductory CS students understand them. We drew on work from concept inventories for fundamental

CS concepts[201, 148, 198], as well as other attempts at standardized tests of CS concepts[100, 132].

Our final survey has questions that contain code snippets and ask students to freely respond with

the output or to select between two choices (one correct and one distracter). The distracter answer

(based on misconceptions suggested by the literature or interviews), was determined by using code

snippets that did not offer many alternatives for a correct numerical answer. For example, a ques-

tion with a subtract function had arguments passed in a certain order (subtract(y, x)). The correct

answer choice would be the value of y - x, whereas the distracter would be the value of x - y. For

both types of questions (multiple choice and free response) students are then asked to explain the

reasoning behind their answer. The goal of collecting this qualitative data is to help us understand

students’ thought processes and to expose misconceptions.

Our original survey consisted of a vocabulary matching assessment and a set of 33 questions

in the format described above. We ran a pilot of this survey in a 3rd year undergraduate CS course

and observed that most students could not finish in the allotted time. We decided to eliminate the

vocabulary assessment completely and to reduce the number of questions in the survey.
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The information obtained from the previous exams and faculty interviews allowed us to

shorten the survey down to its final version of 21 questions. Elimination of questions was based

on a number of factors, including removing questions that focused more on syntax as opposed to

an actual conceptual problem, removing questions that did not seem to fall in line with previous

exams, and removing questions that professors did not feel would be difficult or important. Listed

below are the concepts that are the focus of each of the 21 survey questions. Those listed in bold

are discussed further in the paper.

1. Modulus Operator

2. Difference Between Pre and Post-Incrementer

3. Array Manipulation (Array index can be an expression)

4. Assignment is not the same as checking for equivalence

5. Order of evaluation of operators

6. Multiple conditions in if statement

7. Properly tracing through code linearly

8. Properly tracing through code with loops

9. Understanding parts of function prototype (Return type)

10. Understanding parts of function prototype (Parameter type)

11. Scope of variables in function (function only affects local variable); Pass-by-value

12. Order of parameters/arguments in functions matters

13. 1to1 mapping of parameters passed to parameters used in function

14. Function with a void type doesn’t return a value; scope of variables

15. Functions can be invoked with primitive values

16. Latest variable assignment

17. Function with a void type doesn’t return a value; scope of variables
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18. Global variables are visible whenever there isn’t a local variable of the same name

19. Array parameters in functions (Arrays are passed by arrayName)

20. If return value of function is not stored, it will be lost

21. A variable’s scope, lifetime, and visibility within a program; Multiple declarations of a variable

with the same name in different functions

Below we present and discuss the four questions of interest for this paper. For each question, we

included line numbers so that students could easily reference specific lines when writing out their

reasoning. Although the space below the “Explain your reasoning:” instruction appears limited in

the diagram, students had half a page of blank space to provide a response during the study.

Question 11 includes a void function swap that swaps two values. The swap function

exchanges the parameters x and y via a local temp variable. The function contains a return state-

ment but is void and no value is returned. The main function initializes two variables, cat and dog

to the values 5 and 8, respectively, and then invokes the swap function, passing in the values of cat

and dog as parameters. However, since the parameters are passed by value, the value of cat never

actually changes. Students are asked what the value of the variable cat will be after the function

returns. They are given two choices: 5 (correct), in which the value of cat does not change and

8 (incorrect), which would result if pass by reference semantics were in effect rather than pass by

value semantics.

Question 14 involves a void function, findArea, which defines a local variable area and

then assigns to area the product of the length and width parameters. In the main function, a

separate variable area is defined and initialized to 0 and variables x and y are defined and initialized

to 4 and 8, respectively. findArea is then called, passing x and y as parameters. As in question 11,

the function is void and no value is returned. In main, a print statement utilizes the area variable.

Students are asked what result of the execution will be. The correct answer is that “The area of the

shape is 0” should display.

Question 17, nearly identical to Question 14, provides a consistency check across questions.

The function subtract accepts two integers as parameters, computes the difference and assigns the
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Figure 4.1: EYR Question 11

Q11: Consider the following code segment:

01. void swap(int x, int y) {
02. int temp;
03. temp = x;
04. x = y;
05. y = temp;
06. return;
07. }
08.
09. int main( ) {
10. int cat, dog;
11. cat=5;
12. dog =8;
13. swap(cat, dog);
14. return 0;
15. }

What is the value of variable cat after the swap function returns?
a. 5
b. 8

Explain your reasoning below:

result to local variable answer. The main function also declares a variable answer and initializes

it to the value 7. A print statement is called using the answer variable within the scope of main.

The correct answer is b, since the answer variable that exists within subtract is a different variable

than the answer variable in main.

Question 18 introduces a global variable, answer, initialized to the value 7 in line 1. The

function subtract takes in two integers and returns an integer. Function subtract initializes a local

variable answer, sets it equal to the difference between parameters x and y and returns the local

answer to the main function, where it is assigned to the local variable solution.

Line 14 has a print statement that prints answer, with the intended answer being the global

variable, as the answer variable from the subtract function is out of scope. The answer choices

provided allow students to either choose the result of subtract (5-8), or the value of the global

variable answer, which is 7.
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Figure 4.2: EYR Question 14

Q14: Considering the following code snippet below:

01. void findArea(int length, int width) {
02. int area;
03. area = length * width;
04. return;
05. }
06.
07. int main () {
08. int x, y, area;
09. x = 4;
10. y = 8;
11. area = 0;
12. findArea(x, y);
13. printf(“The area of the shape is %d”, area);
14. return 0;
15. }

What is the result of the execution of this code?

Explain your reasoning below:

4.3.3 Administering the survey

The survey was administered to students who had completed CS1 or an equivalent intro-

ductory course and were currently enrolled in one of two CS2 sections, both taught by the same

instructor. The instructor was not involved in this research project. The survey was administered

by one of the authors during class time on a day the instructor was absent from the class. Students

had the option of participating in the survey or an alternative assignment of equivalent effort worth

one point of extra credit. The extra credit point was given regardless of how the students performed

on the survey, as it was not graded. All students decided to take the survey, so an alternative

assignment was never administered. The students ranged from freshman to senior, with a majority

being freshmen or sophomores. Students ranged in age from 18 to 27; 83 were male, 21 were female,

and 2 preferred not to report. Reported majors included BS/CS(55), BA/CS(15), BS/CIS(13) and

Other (23; 19 of whom majored in a STEM field).

University IRB approval was obtained for the study and relevant consent processes were

conducted. Students were given 50 minutes to complete both a short demographic questionnaire

and the 21 questions. An example question at the beginning of the survey included a sample re-
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Figure 4.3: EYR Question 17

Q17: Consider the following code segment below:

01. void subtract(int x, int y) {
02. int answer;
03. answer = x -y;
04. return;
05. }
06.
07. int main( ) {
08. int answer;
09. answer = 7;
10. subtract (8, 5);
11. printf (“Answer is %d”, answer);
12. return 0;
13. }

What is the result of the execution of this code?
a. Answer is 3
b. Answer is 7

Explain your reasoning below:

sponse for the “Please explain your reasoning” portion of the question, meant to provide students a

guide to the desired level of detail in their responses.

4.3.4 Task-Based Interviews

After administering and analyzing the survey, we developed a protocol for task-based inter-

views (TBIs). These interviews were conducted on a subset of students in a 2nd year undergraduate

CS course. Students were compensated for their participation in the interviews. Before the inter-

views were conducted, students signed a consent form and were informed that the purpose was for

them to think aloud while walking through various code snippets. Each interview was conducted

one-on-one and video recorded for purposes of analysis. For each task, students were asked “What

happens in this code snippet?” Depending on how students responded, the interviewer asked follow-

up questions to probe at what students were really thinking. All four of the questions described in

this paper were used for the TBIs, along with four other tasks. For this reason, no student who

had participated in the survey was allowed to participate in the TBI process. The interviews were
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Figure 4.4: EYR Question 18

Q18: Consider the following code segment below:

01. int answer = 7;
02.
03. int subtract(int x, int y) {
04. int answer;
05. answer = x -y;
06. return answer;
07. }
08.
09. int main( ) {
10. int cat, dog, solution;
11. cat = 5;
12. dog = 8;
13. solution = subtract (cat, dog);
14. printf (“Answer is %d”, answer);
15. return 0;
16. }

What is the result of the execution of this code?

a. Answer is -3
b. Answer is 7

Explain your reasoning below:

transcribed, and then the available text, video, and audio data was analyzed to gain insight into

student reasoning.

4.3.5 Responses

Student responses and explanations were transcribed into electronic form. An initial analysis

was performed to discover which problems students found most challenging. Questions 11 and

18 were determined to be problematic for students, with only 56 percent and 70 percent correct,

respectively. As seen in the list in section 4.3.2, these questions addressed topics covered under

“functions” in module one of the CS1 course: pass by value semantics and visibility of variables. We

compared these two questions to the others in the survey and determined that Q14 and Q17 covered

concepts related to those in Q11 and Q18: functions with void return types and scope of variables.

In this paper we focus on the responses to these four questions.
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4.3.5.1 Organizing the responses

We created a grid for each group of students with the same set of correct/incorrect answers.

These grids included the unique identifier for each student, student explanations for their responses,

and our notes about their explanations. We worked through the student explanations line-by-line

and applied open coding, marking key phrases and concepts and identifying emergent themes. This

work was performed iteratively, each author independently coding, then comparing notes, and then

circling back to re-code as we uncovered new concepts, some of which were misconceptions that

contributed to incorrect responses. Through the grid of responses with markings and notes we

were able to cross-reference incorrect and correct responses with the goal of determining if students

were systematically applying particular conceptions or misconceptions, if they were learning in the

course of completing the survey, or if they were merely guessing. We also looked for “information

foraging” behaviors[118] or evidence of abductive reasoning, which Letovsky describes in the context

of program comprehension as “a plausible inference technique that involves explaining phenomena

by using deductive rules backward to generate possible explanations”[122]. That is, we tried to

determine if students were relying on their knowledge of the semantics of programming language

constructs, or if they were using contextual clues such as the name of a method (“swap”) to generate

incorrect explanations about the semantics of parameter passing.

We organized the student responses into batches, based on the questions for which students

had incorrect responses. Table 8.9 presents an overview of the results. Of the 106 students, 68

answered at least one of these four questions incorrectly. The “x” within a cell represents that

question being answered incorrectly; the “Num Students” column gives the number of students who

answered that particular grouping of questions incorrectly; the “Concept Codes” are abbreviations

for the various misconceptions found. These codes are explained in more detail in the next section.

The final row of the grid shows the total number of students who answered the individual questions

incorrectly.

4.3.5.2 Concept Codes

After identifying misconceptions that students held for the questions of interest, we saw that

they could be grouped into categories. We developed concept codes to more conveniently organize

this information. The concept codes used in the table are defined as follows:
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• PBV: Pass by value. Parameter passing using pass by value semantics passes a copy of each

argument (actual parameter). The value of that copy is assigned to the local variable named

in the function header (formal parameter). Functions with pass-by-value parameter passing

cannot change the original value in the calling code. The PBV code indicates that students

had misconceptions about the semantics of pass by value.

• GlX: Global Variable. A global variable is a variable declared outside of all functions. It is

visible in all other functions and blocks unless that function or block has a local variable of the

same name. The GlX code indicates that students had the misconception that global variables

may not be accessed from the main function.

• OW: Overwrite (False-sharing). This is a specific type of misconception about scope in which

students believed that a variable with the same name but in a different scope could be over-

written by a write to the local variable.

• GlOW: Global Overwrite (Variable shadowing). This is a more specific type of OW misconcep-

tion, in which students had the belief that a global variable could be overwritten by modifying

a local variable of the same name (i.e., in the presence of variable shadowing).

• N/A: Not Applicable. This means that there was no misconception that we could identify

based on the reasoning students provided.

Table 4.1: Incorrect Answers on Questions of Interest
Row Q11 Q14 Q17 Q18 Num Concept Codes

Students
1 x x x x 5 PBV, GlX, OW
2 x x x 2 PBV, OW
3 x x x 9 PBV, OW, GlX, GlOW
4 x x x 1 PBV, OW
5 x x 4 PBV
6 x x 2 PBV, GlX
7 x x 1 GlOW
8 x 25 PBV
9 x 2 N/A
10 x 2 N/A
11 x 15 Gl, GlOW
Tot 47 24 10 33 68
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4.4 Analysis

In the following section, we examine the results of the surveys and task-based interviews

(TBIs) grouped by the observed misconceptions. For each misconception, we first explain the code,

then provide student responses from the survey and our interpretation of those responses. Where

data is available, we provide responses from TBIs for additional insight. We conclude each section

with a subsection discussing explanations for these observed aspects of student reasoning.

4.4.1 Pass by value (PBV)

Again, parameter passing using pass by value semantics passes a copy of each argument

(actual parameter) and the function is not able to modify the original value in the calling code. In

Question 11 we observed student responses that indicated that students had misconceptions about

the semantics of pass by value.

Student Response: “swap function simply swaps 2 values using a temp variable to hold

one value in memory while it is replaced by the other” and Interpretation: Student believes that

the use of a temporary variable in the swap function allows the effects of the swap function to

propagate, even though the function is PBV.

Student Response: “swap will take the two inputs and reassign them so cat will become

dog and dog will become cat” and Interpretation: Student believes reassignment of the inputs is

happening in this PBV function.

Student Response: “I saw that it was a swap function at the top, so I assumed it did

what its name was. After that, I solved the main, checking to see if y’all might have tried to trick us

by reading the swap function. Then I looked at cat, and picked the number it wasn’t equal to” and

Interpretation: This student seemed to originally trust the name of the function and assumed it

did what the name said. The student then checked to see if there was a trick in the main function,

but managed to miss that the swap function was PBV.

A student had a similar response in the context of a task-based interview: Student Re-

sponse: “this just swaps the two numbers, which . . . hopefully is what it does because that’s what

it says it does” and Interpretation: Student trusts the name of the function “swap” and after

briefly looking over the code, assumes that it does what it says it does.

Discussion: In analyzing the results, we see that many students do not have a firm grasp

70



on pass by value semantics. Several explanations exist for the observed student responses. Students

appear to have relied on the function name and engaged in abductive reasoning – working backward

from the name of the method to construct an explanation of the behavior of programming language

constructs.

Another explanation for some of the responses is that students have recently learned about

the use of a third, temporary variable in swapping the values of two variables of interest and that

this example of recently acquired knowledge attracted their attention to the detriment of attention

paid to parameter passing (i.e., cognitive load). Their knowledge is fragile – students answer some

questions about pass by value correctly, but then fail to do so on other questions. Perhaps it is

the presence of distractions that causes them to lose their grasp of that understanding. These

distractions include function names that indicate pass by reference semantics (swap, subtract, etc.)

or complex or recently learned features such as the swap behavior.

Students appeared to be attempting to make sense of code that did not actually perform a

useful function in that it did not return a value nor did it alter the variables in the main method

corresponding to the parameters. Testing student knowledge under such conditions (intentionally

misleading names and non-useful functionality) differs markedly from the conditions under which

they learned about programming, which likely used a plan-like approach[188] versus a syntactic

approach[139].

Although these theories may explain some cases, the reasoning students gave indicates that

a number of students do not fully grasp the concept of PBV functions, even in a fragile sense. Given

these misconceptions and fragile knowledge, instructors may wish to further explore alternative ways

to present the concept of pass by value, beginning with a plan-like approach to build understanding

in a realistic context and with the use of visual, concrete examples. In addition, they may wish

to supplement that approach with “puzzler” questions such as those used in the survey to expand

students’ detailed understanding of the semantics of language features such as parameter passing

and to provide students with opportunities to push the boundaries of their thinking around this

topic.

In studying student conceptions and misconceptions about parameter passing, we plan to

engage in “live coding” interviews, in which students are given a short problem description and asked

to construct a solution while thinking aloud. This context should allow us to tease apart whether

misconceptions about pass by value semantics already exist in students’ minds or if these apparent
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misconceptions are introduced via abductive reasoning during the survey.

4.4.2 Global Variable (GlX)

A global variable is a variable declared outside of all functions. It is visible in all other

functions and blocks unless a local variable of the same name hides the global variable. (i.e. “variable

shadowing”). The GlX code indicates that students had the misconception that global variables

cannot not be accessed from the main function. These misconceptions appeared in Q18.

Student Response: “Because answer = 7 isn’t in the main scope” and Interpretation:

Student thinks that the global variable is not in scope in main, which leads them to believe main

cannot access it.

Student Response: “Line 1 is outside of either function” and Interpretation: Student

mentions line 1 being outside of either function. This would imply that the global variable is not in

scope in either function.

Student Response: “Line 1 has no affect on answer” and Interpretation: Student

directly mentions the global variable not having an effect on the final answer.

Discussion: There were multiple cases of students not realizing or believing that global

variables can be accessed from within the main function. This misunderstanding of how global

variables operate was surprisingly common, but was not an anticipated misconception. However,

that several students mentioned the lack of a const modifier is a clue to the origin of this line

of reasoning. One explanation is that students have only seen global variables used in practice

as a global constant, and would not have seen an example of such variables being modified. The

student responses show a lack of understanding of the functionality of global variables, but their

comments support the notion that students are learning in a plan-based versus syntax-based way.

We are conducting further task-based interviews that we hope will shed additional light on student

reasoning on this topic and on interventions that can be taken to expand student reasoning about

access to global variables.

4.4.3 Overwrite “False-sharing” (OW)

This is a specific type of misconception about scope in which students believe that a variable

with the same name but in a different scope can be modified by a write to the local variable. These
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surfaced in the context of Q14.

Student Response: “The area of the shape is 32. The main function passes the values of

x and y to the function findArea. findArea is called with the input parameters of x and y, which = 4

and 8, respectively. Area = 4 * 8 because it is written in the findArea function” and Interpretation:

The student believes that when the findArea function assigns a value to the local variable area, that

the area variable in main is also updated.

Student Response: “32. The integer area is returned but I think the compiler won’t

like that area is being defined at 2 separate times during execution (not sure how that will impact

the program)” and Interpretation: Mentions that the integer area is returned even though the

findArea function is void and returns nothing. The student also is aware that area is being defined

two separate times, but based their answer on the local definition to the findArea function.

Student Response: “The area of the shape is 32. The main function passes the values of

x and y to the function findArea. findArea then gives “area” the value of length and width (x * y or

4 * 8)” and Interpretation: This student only mentions an area variable once. This could mean

that they did not notice the local area defined in main or that they believe that both areas are the

same and the findArea one will overwrite the one in main during execution.

Discussion: Misconceptions about false sharing occurred in questions where same-named

variables were declared both in main in another function. Similarly to Global Overwrite, this

misconception suggests a lack of understanding of scoping rules and confusion about the existence

of two separate memory locations, despite the same names. We believe that students are thinking

that variables with the same name but different scopes are in fact the same variable. It is not clear

whether students have a strong mental model that supports this belief, or if they are merely foraging

for a reasonable explanation of some code that does not operate as expected from the naming scheme

and structure seen (i.e., engaging in abductive reasoning). Ongoing task-based interviews may help

us to clarify what is happening. Instructors may want to develop interventions that begin with

straightforward applications of plan-based instruction and then move on to “puzzler” examples such

as this one, exploration of which will allow students to construct more elaborate knowledge structures

about memory models and scope.
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4.4.4 Global Overwrite “Variable Shadowing” (GlOW)

This is a more specific type of OW misconception, in which students had the belief that a

global variable could be modified by writing to a local variable of the same name. These misconcep-

tions were expressed in the context of Q18.

Student Response: “Answer is now a global variable that all functions can access. There-

fore, the result of subtract() can be passed back” and Interpretation: Student appears to believe

that since answer is a global variable, the result of a local function would be returned into the global

answer variable as opposed to being passed back to main as a return value.

Student Response: “because answer is a global variable, the subtract function will change

the value” and Interpretation: Student believes that the subtract function will be able to alter

the value of the global variable answer.

Student Response: “Answer was not a const, so after 5 - 8, answer is returned as -3.

Since the global variable answer is not a constant, the value of it can be modified, and it is just

before the print statement.” and Interpretation: Student believes that global variables must be

declared as constant in order for them to not be overwritten by a local variable of the same name.

Task-based interviews were conducted for Q18, with the following responses: Student

Response: “I think you would get a warning on that because it doesn’t like it when you have a

global and a local variable of the same name” and Interpretation: Student, after going through

the code line by line, has difficulty knowing how the idea of variable shadowing, having a global and

local variable of the same name, would be handled.

Student Response: “this gets reinitialized up at the top from 7 back to -3 . . . Because

that’s a global variable but it’s not immutable. I mean, it can be changed.” and Interpretation:

Student correctly believes that a global variable’s value can be changed. However, they believe that

a local variable of the same name can modify the global variable.

Discussion: This misconception was seen when students thought that global variables were

modified by writing to a variable of the same name. Some students thought the global declaration

needed to be type const to avoid this while others just thought the variable could be modified in

this way. Students in this course have typically seen global variables used as constants and except

for a few examples of local versus global variables in a class exercise, have not made use of global

variables in their programs except as read-only, global constants. The underlying issues here seem
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to be both a lack of understanding of variable shadowing (thinking that variables of the same name

are the same variable) and lack of knowledge of how return values are passed back to calling code.

The structure of this course shows students the idea of defining a variable and then using

that variable in multiple statements, all of which refer to that same original variable. Students have

also seen examples of variable shadowing in the use of same-named variables in the main function

and in other functions. Again, however, their grasp of this concept is fragile and they appear to

construct explanations that fit a surface interpretation of the code’s purpose.

To build robust knowledge about scoping, students would have to be exposed to situations

in which they experience unexpected outputs when they attempt to associate uses of variables with

definitions that occur in different scopes. Instructor knowledge of this gap in understanding would

allow instructors to design appropriate in-class examples or to incorporate associated elements into

projects that would help students to solidify their understanding of this concept. Again, we plan to

explore student thinking around this topic more thoroughly via task-based interviews, using both

paper-and-pencil examples and live-coding.

We report several types of misconceptions observed in students who have just completed a

C-based CS1 course at a large public university that specializes in science and engineering. These

misconceptions center largely on parameter passing and scope.

4.5 Conclusions

Though the existence of these or similar misconceptions has been reported by others, the

detailed explanations provided by students provide some insight into why they may think this way,

and can provide instructors with a basis for crafting high-quality instructional materials that stim-

ulate students to expand their knowledge structures to include more detailed views of the related

language features and structures. Other studies have determined common mistakes or misconcep-

tions through eliciting responses from teaching assistants, professors, or solely examining student

responses to exam questions [91, 23]. We have worked on a process that allows student thinking to

drive the results, and the various stages of the process provide a form of verification to help eliminate

speculation.

The work that we have done gives us a starting point to further examine these concepts.

The misconceptions described in this paper may be of interest for work in threshold concepts or
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fundamental ideas in imperative programming languages. More testing can be done to see how

these concepts fit into the categories of threshold concepts (transformative, irreversible, integrative,

etc.)[134]. It seems clear that these concepts are troublesome for students, but further detailed

comparison to related work will allow us to better classify them.

We explore several approaches to extracting details of student reasoning: the pencil-and-

paper “explain your reasoning” type questions in the survey, task-based interviews of students

engaged in answering such questions (ongoing) and task-based interviews of students engaged in

live coding. This live-coding will differ from work done by Craig[43] and Cherenkova[28] by having

the students supervised and in that it will focus more on the qualitative data that we can gain from

a think-aloud protocol.

A key limitation of this work is that it focused on one semester of one class at a single

university. Additionally, this university differs from many in that the CS1 course focuses on the C

language, and is thus not object-oriented. Further, the work we present here focuses on a subset of

four questions rather than a full analysis of all of the questions in the survey, which in turn are a

selected subset of the concepts taught in an introductory CS course.

Other potential limitations include the nature and the wording of the questions in the

survey. Asking students “What is the result of the execution of this code?” while having variables

such as answer and solution could have confused some students. With the questions themselves,

we want to ensure that we are uncovering genuine misconceptions and not prompting students to

form misconceptions with code snippets that appear to do one thing but do not behave as expected.

Some of the questions might trick students because the code snippets contain poor coding practices

that instructors do not teach. As mentioned above, the questions are “puzzlers” in that they are

designed to separate the actual behavior of the code from the apparent purpose and context. This is

not how students typically experience code, and so it is not clear if the expressed misconceptions are

firmly held or if they are the result of abductive reasoning or information foraging behavior, which

is typical of debugging behavior. We would like to focus in future work on more high-level concepts

and will remove some syntax-focused questions such as modulus operators, order of operations, the

difference between pre and post-incrementer, etc.

The goal of our work is to give a more concrete understanding of not only misconceptions

that students have in introductory computer science classes, but also why they are having them and

longer term, to develop and evaluate interventions to address these misconceptions. In this way,
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we hope to aid in the creation and evaluation of high quality pedagogical materials for computer

science.
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Chapter 5

Coding in the Wild

This paper was accepted and will appear at the 2019 Innovation and Technology in Computer

Science Education conference held in Aberdeen, Scotland under the title “Qualitative Observations

of Student Reasoning: Coding in the Wild.” [105]

5.1 Introduction

To obtain knowledge about what students are thinking and which concepts they find difficult,

some researchers have developed concept inventories [23, 201, 148, 86] or conceptual assessments

[132, 123, 104], and others have utilized task-based interviews to gain insight into student reasoning

about programming [104, 90, 79]. Concept inventories typically provide short code examples and

gauge student reasoning based on their answers to multiple choice questions. Other assessments

look at the outcomes of student efforts to create programs that solve particular problems, but do

not follow their thought processes as they engage in the problem-solving task.

In this work, we seek to answer the research question: How do intro CS students reason about

the design and implementation of simple programs in the wild? By “in the wild” we refer to coding

that occurs without any initial skeleton or detailed instruction on how to approach the programming

task. We seek to study how students reason as they are engaged in reverse engineering a solution

from scratch, which may differ from their reasoning processes under the conditions associated with

the administration of concept inventories. In the context of our study, students were not provided

with any “starter” code but rather with an executable and were asked to recreate the functionality
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of this executable from scratch. We did provide them with two simple constraints, described in

section 5.3, designed to force parameter passing. Thus, the coding sessions may be more precisely

described as “in the semi-wild.”

We conducted a think aloud study[141, 61] of introductory CS students in a course using the

C programming language at a large, public US institution. The student programming session was

captured on video, and their timestamped actions and utterances coded using thematic analysis, a

method for identifying, analyzing, and reporting patterns or themes in qualitative data[15].

We report on the students’ approach to implementation, the CS concepts they find trouble-

some, their uncertainties and resolutions (or lack thereof) to those uncertainties.

5.2 Background and Related Work

Prior work observed student reasoning by having students analyze code or attempted to

gauge misconceptions based on student responses to conceptual questions. This work includes con-

cept inventories, criterion-referenced tests designed to help determine a student’s knowledge of a

specific set of concepts and to expose misconceptions. For example, Tew and Guzdial[201] devel-

oped the FCS1, a validated concept inventory that uses pseudocode in its questions, and Parker et

al.[148] replicated the inventory as the SCS1 to enable broader distribution of the tool.

Other researchers developed assessments of programming ability and knowledge of CS con-

cepts [132, 54, 104]. McCracken et al. [132] identified learning objectives for novice programmers

and found that first year students perform significantly worse than expected when considering these

objectives. We consider these objectives in our thematic analysis. Drachova [54] developed an

inventory to measure principles for reasoning about correctness of software.

In a previous study, we developed a CS conceptual assessment that probed further than

concept inventories by asking students to “Please explain your reasoning” after each question[104].

This assessment was meant to gauge misconceptions on concepts that Goldman et al.[78] had iden-

tified as “important and difficult.” We categorized these misconceptions and found that students

struggled with pass-by-reference versus pass-by-value semantics, “false sharing” of variables with

the same name but in different scopes, and the semantics of access to global variables[104]. To fur-

ther support these claims, we followed up with one-on-one task-based interviews requiring students

to explain code snippets and allowing them to clarify their thoughts in a way not always possible
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through researchers retroactively reviewing responses to assessment questions.

In this work, we seek to analyze students’ thoughts and actions as they try to complete a

programming task. This method of obtaining student reasoning is similar to that of Craig [43] and

Cherenkova [28], who both analyzed student code samples to gauge student reasoning. Cherenkova

[28] did this by gathering over 250,000 student responses to weekly code-writing problems with the

goal of identifying concepts that students found challenging. Her work showed that students have

significant difficulties with conditionals and loops that persist throughout the duration of a course.

Craig’s work looked specifically at the concept of pointers[43]. The data collected and

analyzed were a mix of responses to multiple-choice questions and submissions of coding exercises

based on pointers. Over 300 students submitted artifacts and results showed that students “confuse

an address with a pointer,” have trouble understanding the relationship between pointers and arrays,

do not have a robust mental model of assignment statements even in their second year, and might

apply operators blindly in an attempt to make the types consistent in their code. Craig goes on to

say “while our analysis suggests that students misapply specific structures, a different type of study,

one featuring think-aloud solutions to problems, for example, will be required to determine what

mental models students are using in these situations.” This motivating quote is precisely what our

study aims to accomplish.

5.3 Experimental Design

We developed a simple calculator program designed to exercise selected concepts from CS1.

The output of one iteration of the program is seen in figure 5.1, and an abridged version of an

example correct implementation in figure 5.2. The process shown in figure 5.1 repeats until the

user enters an exit code at this prompt (number that is not 1), and the final output gives the total

number of operations performed.

5.3.1 Study

We solicited participants from CS1 classes near the end of the semester and from CS2

classes at the beginning of the semester. The researchers followed all policies and procedures of

the university’s Institutional Review Board and appropriate approvals were obtained for the study.

Participants were incentivized to participate with $10 Amazon gift cards. One researcher met indi-
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Figure 5.1: The example calculator program

Please select an operation to perform:
1 = addition
2 = subtraction
3 = flipping the signs
2

Please enter an integer:
7
Please enter another integer:
16

The difference between 7 and 16 is -9.

vidually with participants, briefly explained procedures and provided participants with an instruction

sheet containing two rules for successfully completing the task: 1) The three operations (addition,

subtraction, and flipping the signs) must be implemented in separate functions. 2) The statements

that print out the results of the operations must be in the main function. These rules were meant

to ensure that their solutions did not avoid the usage of key topics such as functions, return values,

and pass by value/reference semantics.

The participants completed a demographic survey online before beginning the coding task.

All of the participants were confident or very confident in their CS course materials (Agree or

Strongly Agree on Likert-Scale questions). We used the think-aloud method[141, 61] with the goal

of obtaining a deeper understanding of what students are thinking as they reason about problem

solving and software development in this context. The think-aloud method has been widely used in

Human Computer Interaction research [141]. As recommended, we periodically remind participants

to “Please keep talking.” [60]. We used a time period of 120 seconds before prompting. Participants

were given 60 minutes to complete the task.

5.3.2 Demographics

The ten participants ranged in age from 18 to 25; eight were male and two were female.

Although CS1/2 are introductory level courses for computing majors, they are also taken by non-

majors. Eight of the ten were working toward a BS/BA in Computer Science or a BS in Computer

Information Systems, one was working toward a CS minor and one was a Mathematical Sciences BS

student. Three classified themselves as freshmen, four as sophomores, two as juniors, and one as a
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Figure 5.2: An example solution, abridged

static int count = 0;
int add (int x, int y) { return x + y; }
int subtract (int x, int y) {return x - y;}
void flipsign (int num[2]) {
num[0] = num[0] * -1;
num[1] = num[1] * -1;
}

int main() {
int go, one, two, operation, answer, array[2];
go = 1;
.... display menu and obtain initial operation code

while (go == 1) {
... solicit and obtain input for each operand
if (operation == 1) { answer = add(one, two); ... and print result }
if (operation == 2) { answer = subtract(one, two); .. and print result }
if (operation == 3) {
array[0] = one; array[1] = two; ... display original values
flipsign(array); ... display updated values in array[0] and array[1]);
}
count++;

// ... get another operation code or stop code
if (go != 1) { // ... print number ops performed }
}
else { ... again display menu and get operation code }
}

senior.

5.3.3 Preparing the Data

The researchers reviewed the videos and transcribed the audio into timestamped, segmented

“utterances” in a spreadsheet. Interesting phenomena were noted and researchers compared their

notes across participants to develop an initial coding scheme that captured their observations.

After further discussion including a third researcher, it became apparent that the coding

scheme could usefully employ codes associated with well-defined concepts in the literature. The

authors both coded each of the remaining transcripts individually using this scheme, and came

together to discuss and come to consensus on the coding, with a few additional sub-codes emerging

from this process. A third researcher reviewed a subset of the videos, providing cross validation for

the work. The final categories for which we recorded data were: Time, Utterance, Action Code,
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Current Task, Problem Solving Phase, CS Concept, and Proposed Certainty Level. Those

with specialized codes are described below:

Action Code: The potential actions were Compile, Save, Edit, Execute Own, Check Executable,

View, Review, Tools, or Comment.

Current Task: The potential current tasks were Main (Menu), Main (Loop), Main (Counting

Operations), Addition function, Subtraction function, or Flipping Signs function.

Problem Solving Phase: Based on McCracken’s[132] framework for the learning objectives of

novice programmers, we used the phases Understanding the Problem, Breaking Into Subproblems,

Implementing Solution (Subproblem), and Implementing Solution (Combine).

CS Concept: The codes we used for this work were based on Goldman[78] and included Param-

eters/Arguments I/II/III (PA1/2/3), Procedures/Functions/Methods (PROC), Control Flow (CF),

Types (TYP), Boolean Logic (BL), Syntax vs. Semantics, Operator Precedence, Assignment State-

ments (SVS), Scope (SCO), Abstraction / Pattern Recognition and Use (APR), Iterations/Loops

0/2 (IT0/2), Arrays I/II/III (AR1/2/3), Memory Model, References, or Pointers (MMR), Design

and Problem Solving I/II (DPS1/2), Debugging / Exception Handling (DEH), and Other (OTH).

The Iterations/Loops 0 category was created by the authors using the same description as Itera-

tions/Loop I, but replacing “nested loops” with “non-nested loops.”

Proposed Certainty Level: The codes for this column were No Knowledge, Uncertain, Muddled,

Certain (Correct), and Certain (Incorrect). These were used to categorize our view of participants’

confidence in what they did/said.

5.4 Results

As described above, each of the authors individually reviewed all 10 videos and then engaged

in a discussion to reach consensus on any points of difference in their coding.

Evaluating Success. The overall results of the study with respect to success at recreating

the functionality are: Successful: Seven participants (4 CS1, 3 CS2) and Not Successful: Three

participants (1 CS1, 2 CS2). Our definition of success did not hinge on having exact wording or

spacing for the output prompts or results. Rather, we defined a successful implementation as one

that showed the menu, accepted a menu choice and two integers and printed the result, all in a loop

that continued until the user chose to exit, and then finally displayed the total number of calculations
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performed.

Qualitative Analysis. Our primary results are qualitative in nature. This section reports

on the observations we made about students’ solution approaches, issues and resolutions, and their

perceived self-efficacy. Solution approach captures the order in which the students worked, the

order of elements in the program, any observable guiding principles to their workflow, when and

how often they compiled and executed, whether they stopped to review and reflect on their code or

engage in any refactoring or code cleanup, as well as any indications of planning, avoidance or delay.

They typically implemented the elements of the program in the order in which they encountered

the functionality in the provided executable, beginning with the initial menu prompts in the main

method, and adding variables needed to store operation codes, operands and results.

The issues and resolution sections capture aspects of the program about which participants

were uncertain or exhibited misconceptions and describes if and how they were able to resolve the

issue. In terms of self-efficacy, most students exhibited some form of self-talk, often critical, which

we capture and provide evidence of in the following sections.

Due to space limitations, we report in detail on only five of the ten total participants of the

study, chosen because their results taken together provide coverage of the key insights gained from

the study. However, we included our summary of all 10 participants in the discussion section.

5.4.1 Participant 0049 (CS2)

Solution Approach

Participant 0049 followed the common solution approach described above and it was clear that his

development process was driven by the behavior of the provided executable. The factors guiding his

progress were feedback from the editor, from the compiler, and from the example executable and he

was ultimately successful.

Issues and Resolution

Participant 0049 encountered a variety of interesting issues, many of which he was able to resolve

and some that he remained uncertain about and decided to ignore.

Issue: Omissions and typographical errors; Resolution: Editor feedback, compiler mes-

sages and code review. This participant noted that changes in the color of text in the editor indicated

some syntax errors.

Issue: function parameters (PROC); Resolution: code review, recall. The participant
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implemented the addition function but was uncertain if he needed to actually name the formal

paramters or if could just use the types. He later reviewed his code and realized that he needed to

use names as well as types.

Issue: call-by-reference, parameters, return values (PROC); Resolution: compiler mes-

sages, testing, not completely resolved. In implementing the flipping method, his thinking was

muddled. He realized that something different was needed here, saying “when flipping a sign, you’re

going to need to return two values, so ... there are a few ways you could do it: declare a “regular

pointer” and then return that pointer ... returning an integer array that will hold 2 values.” His in-

teresting solution was to create a flipping function with three input parameters: an integer intended

to hold a copy of the first element of the array, an integer to hold a copy of the second element of the

array, and then the array itself. The function attempted to return the array, although the function

return type was simply an integer.

His series of edits were largely guided by compiler error messages: he was “99% certain”

that he should not have to place a ’*’ in front of the array name to return the array, but he did so

anyway based on compiler messages (he was returning an integer array but had declared a return

type of int). This version compiled and his output was correct because he assigned the flipped values

to the array elements before his return statement “return *newVals,” which actually returned a copy

of the value of the first element of the array. However, his simple tests passed and he was satisfied

with the final product, despite his unease with dereferencing the array name in the return statement.

Issue: function prototypes (TYP); Resolution: compiler errors. Compiler errors revealed

that his placement of the addition, subtraction, and flipping function after the main method meant

that he had to declare prototypes prior to the main method.

Self-efficacy

Participant 0049 was confident and appeared quite comfortable with the assigned task and exhibited

little to no self-critical talk. Rather, he exhibited curiosity, with statements such as “Let’s just see”

and “I’m pretty sure that ...”.

5.4.2 Participant 0048 (CS2)

Solution Approach

Participant 0048 took the standard approach of running the executable and then breaking the task

into parts, tackling them in the order in which they appeared in the menu of the provided executable.
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His programming decisions were driven by classroom experience, having learned from mistakes or

feedback received from previous classes. He worked through trial-and-error in multiple instances

to solve problems, and expressed that he was aware of the fact that this method helped with and

was part of the learning process. He compiled throughout the task and used the compiler errors to

resolve issues. He also showed signs of planning ahead when programming, speaking of “wondering

also how to flip these signs” while working on earlier parts of the program. These approaches allowed

him to successfully complete the task in the allotted time.

Issues and Resolutions

Participant 0048 was able to successfully interact with the compiler feedback to resolve many prob-

lems.

Issue: Function prototypes and return values (PROC); Resolution: Compiler messages,

recall. On one compiling instance, he notes “Oh, cause I don’t have function prototypes...And then

I need to make sure I return 0 because that did throw me a warning.” In instances where the

participant isn’t clear on the compiler error given, he has ideas of potential resolutions to problems.

A great example of this are the utterances “I’m just not incredibly sure what all of that means, but

I’ll figure it out.” “Should I use...is it like star or am I gonna have to do the &? I’ll find out in a

bit.” This particular grouping of utterances was dealing with pointer functionality (Pointers).

Issue: Pointers (MMR); Resolution: Compiler messages, trial-and-error. The concept

of pointers were where participant 0048 had the most issues. He implemented the flip signs func-

tion using them, but he spent time going between compiler errors and trying to fix the syntax of

the function. Although the participant had enough knowledge of how to implement pointers that

he was successful, he still exhibited muddled thinking regarding the semantics of referencing and

dereferencing pointers, such as when to use “&” versus “*.”

Something that stood out about this participant was his explicit mention of learning oc-

curring through working on problems and getting feedback. He says “That’s why I don’t do good

on exams because I like to test my programs. I guess a lot of how I do it is throwing things at it

and seeing if it works..just because it helps me learn what I should do and what I shouldn’t.” This

speaks to the use of written assessments in computer science, noting that students who may not

be able to give a correct exam answer about a concept may be able to demonstrate correct use of

that concept when asked to implement it. Another example of this learning-focused language occurs

when he says “So I’m actually going to see if that will even compile. Cause that’s where I fix a lot
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of my stuff.” These utterances show evidence of the benefits that can be gained in CS from working

at problem solving and constructing knowledge using a combination of classroom experiences and

information with hands-on practice.

Self-efficacy

Participant 0048 had multiple occurrences of using self-deprecating language in a light-hearted man-

ner, once stating “Oh...I’m dumb..almost didn’t catch myself” when referring to declaring a variable

without giving it a type (TYP) and once stating “So I’ve been wondering also how to flip these

signs and maybe that’s dumb that it took me this long but, if I just multiply the values by -1 then

they’ll flip...obviously.” The other example of self-efficacy directly speaks towards confidence, with

him saying “Great. I’m confident that I can” referring to being able to successfully complete the

task.

5.4.3 Participant 0043 (CS1)

Solution Approach

Participant 0043 followed the standard approach of running the executable and then working on

tasks in the order seen in the executable. He resolved problems through either reviewing his code

or deciphering compiler feedback to successfully complete the task. He did not compile many times

(5), but did check the executable many times to clarify formatting and functionality, allowing him

to successfully complete the task.

Issues and Resolutions

Issue: Array declaration (AR3 + TYP); Resolution: Compiler messages, code review.

Participant 0043 encountered an error with variable declaration. Alerted to the issue via a compiler

message, he commented “Conflicting types..Oh. Probably just because you can’t do the logic while

you’re declaring it,” but he soon realized, “Ah! I declared it twice” after going back to look at the

code. He was able to resolve those issues through compiler feedback.

Issue: call-by-reference, passing array as argument (PA1 + AR2); Resolution: avoidance.

While working with the flip signs function, he originally attempted to declare and return an array.

He received a compiler message, and said “Invalid initializer. Did I declare up here? Nope! That’ll

do it,” showing the ability to understand the compiler error message and remedy the mistake. He

remarks that “they told us how to do it but I can’t remember” with respect to returning two variables

in a function but then “maybe that’s not how they told us to do it” after running into compiler
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errors with implementation. The resolution eventually comes in a problem solving epiphany of just

calling the flip signs function twice, allowing it to just return one value. This workaround allows

him to “avoid the problem entirely.”

Self-efficacy

Participant 0043 used language that might imply low self-efficacy, but said it in a light-hearted

manner that made it apparent that he did not actually lack confidence. When catching a minor

syntax error, he remarks “Whoops. I’m stupid.” Also, when implementing addition function, he

says “So sum’s gonna equal num1 + num2. Easy!” showing confidence in working through the task.

5.4.4 Participant 0564 (CS2)

Solution Approach

Participant 0564 followed the common approach of running the executable and then working on tasks

in the order seen in the executable. He did not compile for the first time until about 44 minutes into

the study. This led to an overwhelming number of errors and issues to fix within the allotted time.

He eventually attempted to avoid the issues faced when too many errors arose. An interesting facet

of his solution approach is that he did check for extra input validation by the executable, stating

“Well I tested this to see if it would produce an error message if I used a number that wasn’t 1, 2,

or 3.” This participant was not successful at completing the task in the allotted time.

Issues and Resolutions

Issue: call-by-value vs. call-by-reference (PA1); Resolution: not resolved. This partici-

pant encountered difficulty with parameter passing. However, his decision to delay compiling until

quite late in the session prevented him from locating the error. He attempted to resolve multiple

errors from the feedback of the compiler one at a time, noting “End of non-void function...” “z

undeclared...Ok. e undeclared.” “Expected before..e and z...Line 56.”

Issue: Scope (SCO); Resolution: not resolved. This participant encountered scope (SCO)

issues in which he attempted to access a variable local to a function while in the main function. He

then decided to work on other parts after encountering some errors, such as when stating “Error

label at end of..Line 63..? Why am I getting this error?” referring to the switch statement he had

attempted to implement. Scope issues were prevalent. He spent 44 minutes editing his code and

running the provided executable before attempting to verify the logic of the three functions, and

mostly understood how to successfully do it. He used an interesting algorithm for flipping signs (x =
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x - 2x). However, not being able to resolve the issue of capturing the return value from the function,

he was never able to successfully compile or execute his code.

Self-efficacy

0564 used the word “tripping” multiple times to refer to making a mistake during the task. After

seeing a compiler error, he remarked “Dang. I’m tripping.” Another error led him to say “Why am

I getting this error? I’m tripping. What am I doing?” These utterances indicate uncertainty, but

the participant seems to feel the issues should not be occurring.

5.4.5 Participant 0044 (CS1)

Solution Approach

Participant 0044 followed the common approach described above of running the executable and then

working on sub-tasks in the order encountered when running the executable. She showed signs of

avoiding issues and moving to work on other parts if resolutions could not be found. She compiled

early and and frequently (16 times), but was unable to resolve her issues and ran out of time before

she was able to display the result of either of those functions and was ultimately unsuccessful.

Issues and Resolutions

This participant was able to resolve syntax issues through the help of compiler feedback. Comment-

ing things such as “Oh! I didn’t put the function header. Yeah. That would do it” or “Parameter

names..without types. Awww. I forgot that. Yeah. I would.” After implementing the addition

function below the main method with the function prototype in the main method, compiling and

receiving errors, she was able to resolve this issue.

Issue: Parameter passing (PROC) ; Participant 0044 encountered issues with function

prototypes returning values from a function and with receiving the result of function call in the

calling context (PROC). She attempted many variations of the code but was unable to resolve the

issue of the combined action of returning a value from the function and capturing that returned

value in order to print it (PROC).

Issue: Scope (SCO) ; Resolution: not resolved . She was confused about scoping

rules (SCO) and seemed to believe that having variables in the function with the same names as

in the main method would result in a transfer of the values. Her combined confusion about scope

and return values led to consternation on her part and prevented her from successfully completing

the assignment. She tried multiple ways, but continued to get values of 0 regardless of the integers
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input when executing the program. “So it’s still 0. Hmmm. Why is it?...I guess I should just try

it a different way.” Eventually, the participant moved on and attempted to work on other parts of

the task, uttering things such as “Wait. Work on something else and then come back to the..” and

“Ok. Let’s move on...Try something else.”

Self-Efficacy

This participant showed multiple instances of low self-efficacy, doubting her own skills and abilities.

One common theme was the feeling of “Ugh. I’m making this really complicated.,” She said this or

a slight variation of this seven times. Participant 0044 also felt that the struggle was unnecessary,

remarking “I feel like this is really easy and I’m overthinking it” and “Ugh. This should not be this

hard.”

5.5 Discussion

We observed student uncertainty about scope, pointers, arrays, function prototypes, pa-

rameters and parameter passing, and return values. These students exhibited fragile knowledge,

a result that was found in our previous work looking at conceptual assessments [104]. Students

were able to resolve their uncertainties in various ways: editor feedback, compiler error messages,

reflection/recall, code review, and testing, but these resolutions did not always equate to a full

understanding of the concepts. Although students relied on compiler error messages to resolve un-

certainties and to uncover issues, they had difficulty interpreting compiler error messages, a problem

Gusukuma [80] noticed and worked towards remedying through the use of misconception-driven

feedback.

We also observed that the ability to create a program with correct output did not equate

to full comprehension of the programming language concepts and features employed. For example,

we saw students who could not properly implement call-by-reference succeed in creating a “correct”

program output but only through trial-and-error and workarounds that they were certain were

incorrect. Such workarounds and trial-and-error were previously reported by Hundhausen [95] and

the goal of moving away from trial-and-error in student programming is discussed by Edwards [58].

We found pointer-related evidence to support the result of Craig’s [43] work claiming that

students apply operators blindly in an attempt to get their code working. From a design perspective,

we note trends of students’ decisions with respect to implementation order. Most participants
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attempted to implement the program in the order that the executable was presented, starting with

the main method (menu) and then working on the addition, subtraction, and flip sign functions in

that order, and lastly implementing the loop and counter functionalities. This caused some students

to run into errors as they did not originally include function prototypes before the main method.

Multiple students mentioned working on the flip signs function last because it seemed trickier. We

would be interested to explore the effect of changing the order of the functions in the executable,

placing the flip signs first, to see if students would follow the observed order or first tackle the easier

functions. Students showed signs of avoiding complexity, sometimes devising innovative solutions

to solve a problem. For the flipSign function, we saw solutions such as having the function return

one value but calling it twice in main (0045), attempting to “put a dash in front” of the number to

flip the sign (0045), and using number line thinking for the algorithm to flip the sign as opposed to

multiplying by -1 (0042, 0043, 0045, 0564, 0045).

This work allowed us to view unexplored features of student reasoning such as the self-

efficacy of the students, which gave insights into level of certainty, their problem solving approaches,

and how they resolve issues. Students show evolved reasoning about the semantics of programming

language constructs as they interacted with the edit-review-compile-test cycle. Practice such as this

helps students to learn. However, we saw that these feedback mechanisms alone may be insufficient to

uncover student misconceptions about such semantics, or worse yet to induce flawed mental models

of the actual semantics, which means that evaluating student knowledge based on correct output

alone may lead to the introduction and/or “hardening” of misconceptions (0049). In summary,

intro CS students while coding “in the wild” seem to follow a few trends: focus on the order of

the specification provided; avoid complexities through workarounds or innovative solutions that

sometimes work but may not address the intended concept instructors would like students to learn;

and use compiler feedback combined with the fragile knowledge of concepts to address problems

through trial-and-error.

This work suggests several pedagogical techniques: carefully crafting programming assign-

ments to force correct usage; evaluating code and not just correct output for programming assign-

ments as suggested by Edwards [58]; mining studies like this one and student submissions to find

dysfunctional code that “works” but embodies misconceptions and using these as instructional tools

in which students are asked what the code does or why it coincidentally works; and incorporating the

knowledge gained into CS pedagogical content knowledge, allowing instructors to create assignments
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and assessments that probe for these uncertainties and misconceptions in the local context.

We also observed problem-solving approaches that promoted student success, such as inter-

mittent code review and incremental development. When students encountered uncertainty, they

either delayed implementation of the problematic feature (0044), avoided it entirely (0564) or en-

gineered a solution through trial-and-error that worked, but that they did not understand (0565,

0049, 0048).

Limitations of the work may include generalizing from our context: our participants came

from a CS1 course at a large, public university in the United States. Some of the participants

had just finished CS1 in December. Others were just beginning CS2 but in August, so they had

a summer during which to “ripen,” though they had no additional formal instruction. Different

phenomena may be observed in students at other stages of their CS educations or with more or

less prior preparation. Reaching out to classrooms and offering incentives for participation is not

uncommon as a methodology, but it is dependent on students’ willingness to provide their time,

especially in a one-on-one research setting. Thus, the students in this study may be representative

of those who are willing to volunteer their time for outside of class CS work. Students also were

programming in an editor not of their choosing. To ensure consistency, we had all students use the

same editor for the study, though it turned out that this was not the preferred editor for any of the

students. In the future, we would like to study students at different levels of their CS education,

engaged in implementing programs that exercise a wider variety of CS concepts.
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Chapter 6

Software Engineering Design

Documentation Interviews

6.1 Introduction

Collecting and analyzing records of students’ actions, speech, and writing while they are

engaged in software analysis, design and implementation can provide important insights into how

students think about key concepts and practices in computer science. These insights have the

potential to influence the design of improved CS pedagogy. In this paper, we focus on student

thinking about software design and specification in an object-oriented (OO) context.

Some debate exists in the CS community as to whether the OO or procedural paradigm

between OO and procedural is more difficult to teach [124, 174]. To begin to tackle this problem,

research has examined misconceptions relating to OO programming [74, 88, 204, 56, 66, 167, 50].

We seek to understand the nature of how students inexperienced with design and specification think

about and engage with the process of design and specification of software artifacts in an upper-level,

software engineering course. We collected documentation from 8 teams at a large, engineering-

based public US university and interviewed the groups based on the documentation provided. The

students were enrolled in a course that is both project and team based, many for the first time.

The documentation consisted of UML diagrams, descriptions of use case scenarios, and prototypes

user interface designs. All of these artifacts are meant to be consistent with one another to ensure
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proper design. We take an exploratory approach, asking open-ended interview questions focused on

but comprehending the thought process that the students have with respect to OO design, following

a requirements analysis that they had performed. We compare their statements about their designs

with the actual artifacts they created, looking for emerging patterns and themes. In the following

sections, we provide a detailed look at the related work in computing education research surrounding

OO design and analysis, describe the methodology for our own study, present the results for each

student team, and discuss these results and the limitations.

6.2 Background and Related Work

Much prior research has focused on object-oriented (OO) programming and design.

Flores et al.[67] examined the principle of information hiding [150, 149] through a qualitative

study. This study had software design students in Europe read over an information hiding article by

Parnas [150], have a two hour discussion on it, and descriptively design a software application with

the information hiding principle in mind. The researchers then reviewed the assignments collected,

conducted open interviews with the students, and then tutored them. Data collected included audio

recordings and documents with diagrams and descriptions. The audio data was collected for the

analysis and discussion of the Parnas article and during the tutorials and open interview with the

students. The study found that none of the students had a clear grasp on the information hiding

principle and classified how students seem to view the principle into two main ideas: 1. Hiding

information consists of hiding what is inside modules, regardless of the form of division into modules,

and 2. The division produces information hiding. In this study, we follow a similar methodology

as [67], also analyzing documents and interviewing students. A key difference is in our exploratory

and open-ended approach to the interviews. Compared to Flores et al., who used questions geared

towards the understanding of a specific principle, our work looks to discover the conceptions that

students have related to their design of an OO system, comparing both the context of the document

with student verbal descriptions and comparing different representations.

Ragonis and Ben-Ari [167] found useful implications and suggestions to pedagogy through

a two-year study of novices’ comprehension of OOP concepts. They originally attempted to avoid

teaching the novices about the main method, choosing to focus on the actual OO process and

concepts such as classes and objects. They found, however, that indefinite postponement of teaching
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the main method interferes with understanding the dynamic aspects of programs. After one year

of their study, some of the conclusions were: Classes and objects should be introduced first using

diagrams; Examples using graphics should be avoided because novice students conflate the “object”

with its rendering on the screen; Problems relating to computer systems should be used when

teaching OO concepts, not just “real-life” problems involving employees and animals [167]. This is

a subset of the conclusions found from this first year of the study, chosen for their relevance to our

work. The first and second initially seem as though they would inherently contradict one another,

but the research seems to suggest that diagrams and graphics are different in the manner they can

be used to teach. Graphics are more high level, and give a direct metaphor link for students to learn

from (e.g., a picture of a safe to represent a “bank” class) whereas diagrams make the connection not

as explicit, but allow for a better understanding of classes and objects. The third result is of interest

because it goes against or at least offers an extension to some of the work conducted on metaphor

learning in CS [37]. This suggestion actually is supported by Dijkstra’s work calling for a ban on

anthropomorphic metaphors in CS[51] . This suggestion presents a middle ground, similar to the one

seemingly presented on visuals (diagrams vs. graphics), admitting to the usefulness of metaphors

with respect to OOP concepts, but limiting those metaphors to problems within a computer system

context and not leaving them as high level to make them everyday, real-life problems, as these

problems are not always realistic in a computer system and how it must be designed. Another

important quote from the Ragonis [167] study is when they say “We were not just cataloguing

misconceptions, but trying to understand what made for effective learning.” This was the authors

way of making it clear that their interest was in evidence that showed both misconceptions as well

as comprehension of the OO concepts. In this same vein, our work values the correct mental models

that exist as well as the flawed ones, considering both of these facets are necessary to obtain the full

learning picture, which will help guide improved teaching and effective learning.

Sanders and Thomas [174] generate a checklist for grading OO novice programs based on

conceptions and misconceptions they found in their work. [174] asserts that regardless of the truth

in the debate on whether procedural or OO programming is more difficult to teach [124], OO is in-

herently more difficult because instructors are not as familiar with the paradigm and the difficulties

students face. As time passes, this concern may become less relevant. Sanders’ literature review

found several OO misconceptions that are interest in this study, namely problems with abstrac-

tion [204] and problems with modelling [56, 204]. Sanders’ study [174] collects data through
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students’ programming artifacts, focused on OO programming concepts, and from these artifacts,

a number of considerations for grading novice students’ OO programs emerged. A general result

Sanders found evidence of is the importance of ensuring that grading of programs does not merely

focus on the superficial aspects of it compiling and passing test cases, but considering underlying

misconceptions that might exist.

Hadar [83] has looked at the OO learning issues faced by computer scientists through the

lens of a Nobel Prize-winning psychologist, Daniel Kahneman. Hadar used dual-process theory [101]

to posit that when it comes to OO design and analysis, there is an inherent disconnect between

how it works and how our mind perceives/would expect it to work. To come to this belief, Hadar

intentionally chose to conduct a study on software engineering professionals as opposed to students,

and managed to find similar misconceptions that researchers have found exist in novices. Their

study [83] uses a grounded theory methodology [192, 191] with a group of software developers who

practice OO analysis and design on a daily basis. Three instances of a workshop were selected

for analysis with each instance consisting of three 8-hour days. They selected participants who

practiced OO analysis/design daily, studied OO programming and design during their undergraduate

studies, and had only worked within the OO paradigm since graduation (to avoid the potential of

difficulties stemming from previous experience in procedural programming). The final batch of

participants consisted of 41 software developers from seven different companies. After collecting

data through written solutions from participants (mostly UML models) and observations of class

and pair discussions (audio transcriptions), interviews were conducted to attempt to understand the

participants’ thought processes. The researchers found through preliminary analysis that the dual-

process theory was appropriate for analyzing the data and continued qualitatively coding with codes

developed around this theory. A general trend of the results obtained showed that even professionals

immersed in OO design/analysis fall victim to misconceptions similar to those that novices do and

interestingly, seem to make non-normative decisions, decisions that contradict the knowledge they

have about the subject. A similar result was found with respect to introductory CS topics in [104].

The simplified explanation of the results deals with Kahneman’s [101] Systems 1 and 2. System 1 (S1)

is responsible for immediate, automatic thinking that solves very familiar problems whereas System

2 (S2) handles problems that require more analysis and calculations. In general, S1 is triggered first

and uses heuristics or familiarity to attempt to solve a problem. An example would be most adults

being asked the result of 2 + 2. The correct answer of 4 would come to mind automatically and
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without any real calculations involved (S1). This same question, however, posed to a child who is

just beginning to learn about counting and mathematics could be an S2 process. You might notice

the child counting on her fingers two and two to get to the accurate answer. This relates to the OO

design and analysis work because some of these processes for professionals seem to have become S1

so that based on the heuristics, previous experience and expertise held by them, they sometimes

solve them without having the more analytical and calculating S2 working to check their work. This

is not made easier when some conventions are counterintuitive in OO design/analysis, such as the

concept of inheritance. Inheritance outside of programming is usually seen as transferring things

such as money, and generally the person who has less inherits from the person who has more. In a

CS context however, this is not the case, as the class that inherits from another class can extend it

and have more functionality than the class it is inherited from.

Through using these sources of knowledge and prior research experiences, we have a solid

guide to frame our study’s methodology and results in the following sections.

6.3 Experimental Design

For this study, we collected student class project submissions from a software engineering

course at a large, public, engineering-based US university. Students formed teams of three students,

typically of their own choosing. The project had two major assignments, broken down into a series

of submissions. The objective of Assignment one (A1) was to develop the requirements for an

Autonomous Vehicle Management System that supports both fleet administrators and end users in

interacting with a fleet of autonomous vehicles. The system should be designed to make recom-

mendations about fleet composition and manage deployment, booking and payment functions. The

system should accommodate the needs of users who are visually impaired or hearing impaired. In the

first submission (A1.1) students were asked to prepare to name and describe the stakeholder groups

and to provide a set of 10-15 appropriate questions for each stakeholder. In the second submission

(A1.2) students were asked to interview the stakeholders and summarize answers to key questions.

The instructor took on the role of the person asking for the system to be built. For each of the other

type of stakeholders, members of the teams were instructed to take turns, with one member taking

the role of the stakeholder and the others conducting the interview. The report from this phase

included answers to the interview questions, explanation of risky features, a UML use case modeling
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diagram, and use case descriptions. In the third submission (A1.3) students were asked to provide

multiple use case input/output scenarios to show their understanding of the functionality of the

system, for different stakeholders and their use cases. All materials were then submitted as a single

professional requirements document for a grade. Students received detailed written feedback after

each submission. A1 is not explicitly utilized as a data source for this study, but was a necessary

guide to complete the other assignments and appeared during the interviews as a source of difficulty

for the students.

Our evaluation of the approach of the student teams to design, the obstacles they encoun-

tered and the misconceptions they exhibited is based on three sources of data:

Assignment 2, part 1 (A2.1), the purpose of which was to produce a design of the

system whose requirements they analyzed in assignment 1. The goal of A2.1 was to identify a set of

application-level classes that would be needed to develop the system and to show the relationships

among the classes using one or more class diagrams. They were also asked to provide short, high-

level descriptions of the functionality of each class in their designs. Assignment 1 had also asked

them to describe the system inputs and outputs for important use cases. This typically meant an

input of a rider requesting a ride through the mobile app interface and an output of a car arriving

to pick them up, deliver them to their desired address and a payment occurring. Teams were also

asked to provide preliminary visuals of what a rider and fleet administrator might see, and provide

a summary of how their system design supports the interactions in the use cases and their visuals

(screen mockups). Finally, they were asked to provide five other UML diagrams (some combination

of sequence, state or activity diagrams to clarify aspects of the design corresponding to key risk areas

or features that seem hard to get right. Students submitted these documents for detailed feedback

but did not receive a grade. However, A2.1 is useful to examine in that misconceptions and design

difficulties may still manifest.

Assignment 2, part 2 (A2.2) asked the teams to refine and improve all their answers to

part 1: to elaborate on the functionality of the classes in the class diagrams by describing public

interfaces, including attributes and operations, to revise and improve their visuals, descriptions of

inputs and outputs, and design verification (summary of how the system supports the use cases seen

in the visuals and represented in the provided example inputs and outputs). They were asked also

to provide descriptions of key operations in the form of informal requirements and guarantees.

The interview
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After students submitted A2.2, we conducted exit interviews about their design decisions.

Study protocol was approved as Exempt by the university’s Institutional Review Board. Students

read and signed consent forms so that the interviews could be recorded and the data could be used

for research. They were informed that participation in the interviews was not mandatory, and were

incentivized with a quiz grade for full completion of the interviews. The groups scheduled times to

participate in the interviews and met with one of the researchers. The students were asked to do

the following:

1. Explain their UML class diagrams.

2. Walk through a standard use case of their system.

3. Walk through a non-standard use case of their system (e.g. A visually or hearing-impaired

person using the system or a car needing maintenance).

4. Describe some of the challenges faced in the project throughout the semester.

The groups’ project documentation was provided on a computer and groups were informed

that they could use the documentation to help with the explanations and answers to the questions.

The group members took turns being the primary person providing the answers for the first three

questions, with other group members encouraged to add anything they deemed relevant. The final

question was presented as a free-for-all, with any and all members who had opinions encouraged to

share them. The audio for the interviews was recorded and also the computer screens were recorded.

Each interview took no more than 25 minutes, however, students were given as much time as they

felt necessary to examine their documentation while answering the questions. The audio files were

transcribed into interview scripts, with a different style of text; regular; underlined; and italics

representing when a different group member began speaking on a particular question.

Following the transcriptions, the authors went through the videos together with print outs of

the groups’ documentation and the transcripts. We took notes on instances where the explanations

given did not match the documentation, attempted initial categorization of common mistakes made

in how students were thinking, and also began looking for interesting language within the transcripts.

We also categorized direct statements for question 4, which probed at the challenges of this project-

based, upper-level CS course.
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6.4 Results

For the results of this work, we examine 8 groups of the 13 who were present in the course.

These 8 were chosen because they were all full teams (three students) and all of the group members

were able to attend the in-person interview. We present the findings qualitatively in a case study

format, reporting our notes on the audio from the interviews with emphasis on the evidence of

difficulties with design and specification and a brief discussion strengths of the submissions and

interesting aspects of their difficulties.

6.4.1 Group 1

Difficulties with design and specification: This team experienced difficulties with several as-

pects of the design and specification task. For example, they had difficulty representing abstract

concepts such as a ride to capture the temporary association between a car and a rider. They also

failed to depict or describe the phenomenon of multiple simultaneous instances of riders, though an

array of cars was indicated. Based on feedback they received on A2.1 they added class support for

the notion of a ride, but still failed to represent non-physical phenomena such as startup, shutdown

or a history of transactions.

The students described the difficulties they encountered with OO-design given the scale of

the project as compared to their previous experiences with software design and specification: “In

class we focus on employee relationships and an employee has a manager, and that’s simple enough.

Here we had several independent systems communicating with APIs as well as external databases

... and that was just the class diagram.” Choosing an appropriate level of detail was a challenge,

with one student stating “ and at that point you don’t know how much detail to go into for each

one. ... It’s just hard to distinguish the lines of where is ... like a good point.”

We observed some attempts to avoid complexity by creating what we term a megaclass

or megaDB, (a class or database with vague claims of performing many important functions or

structuring and storing data). For example, the team described that the database has “special

operations,” hidden within its infrastructure such as the ability to optimize the deployment of

vehicles to riders or to merely write that things were handled by “the system.” Reflecting on this

in the interview, team members stated, “...and then in requirements analysis we were focusing on

actors. So the system just did everything.”
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We observed issues with completeness and with consistency between different elements of

their specification. Although they described a UI interface, no class was presented that implemented

that interface. In some of the documentation and in the interview transcript they mentioned the

existence of a map interface to visualize where the car was and also the functionality to cancel a

ride should a user decide not to need the car. However, neither of these elements were present or

supported by the class diagrams or descriptions the group created. Interestingly, a member remarked

that the group “spent a lot of time talking about the user interface and how we needed to show that

on the UML,” suggesting that they were aware of the need for consistency, but did not execute this

when creating their final product.

Although the group indicated that they understood that they needed to represent the flow

of control via a main method or event loop, they exhibited confusion between interfaces and classes,

and stated that all of the UI logic was implemented in a Controller interface.

Discussion: This team was generally good at envisioning user interactions and provided reasonable

mockups of user interfaces and good textual descriptions of use cases and user interaction. They

were able to appropriately use activity and state diagrams to capture important features of system

behavior. To the extent that their underlying system supported each use case they were able to

document system behaviors associated with those actions, Their struggles with choosing appropriate

levels of abstraction and managing the scale of the project led them to express a desire for more

practice with medium-sized projects in the curriculum: “it almost felt like we skipped a step from

the prior class to this one.” They commented on the impact of diagram creation on their thinking

about the design, saying “And also when you actually go to make the diagrams and figure it out,

you realize you need so many more things.” When asked about challenges faced, one member stated

“I think it was too broad of a project,” implying that the group did not have specifications scoped

narrowly enough. This issue would be something to remedy while going through the requirements

analysis phase, as that is the phase where the project is scoped out.

The class diagrams submitted by this team revealed some misconceptions about interfaces

and how they are used. Their class diagram made use of three interfaces, a UI interface, an Account

interface and a Management interface. One issue is that the Account and Management interfaces

contained attributes, One explanation is that students were confused by the multiple meanings of

the term interface (user interface versus programmatic interface). Another explanation is that their
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lack of experience with implementing user interfaces left them “stumped” about how to represent

it and so they merely left it out. Their sequence diagrams revealed confusion about active versus

passive objects, or perhaps about their understanding of the meaning of activation bars in a sequence

diagram: the admin role actor, an adminUI instance and an adminAccount instance were all shown

with activation bars that ran the length of their timelines. However, none of the roles were annotated

to indicate that they were active objects (contained their own thread of control) nor does it make

sense from a design perspective that they would do so.

6.4.2 Group 2

Difficulties with design and specification: The class diagram produced by this group focused

on representing physical and human entities but failed to capture abstract concepts such as a

ride or collections of cars or users, although their diagram did specify multiplicities for each of these

classes. Instead, they attempted to avoid complexity by defining a megaclass labeled System

that would “facilitate communication between all other classes” and “have a data structure for the

riders and admins” among other features. After feedback on part 1, the team added a main method

to System, but the specification still lacked any attributes or other methods. In the interviews, the

group described another approach they took to avoid addressing complexity in their specification of

the system: assigning functionality to human actors, by “giving more power to the admin.”

Their documentation was incomplete, lacking representations of UI-related classes, or

meaningful representation of non-physical entities and phenomena such as the the flow of con-

trol, support for collections, and history of transactions. Their documentation lacked consistency

across the multiple representations and verbal descriptions. They were aware that their represen-

tations and descriptions should be consistent, with one member stating “All I knew was that we

needed to have functionality that corresponded to every function we had in our class diagram” when

referencing the UI visuals. Even with this understanding, the group struggled with that consistency

in the submitted documentation as well as the features discussed in the interview. The subject of

payment was addressed in the interview but not supported in the UML class diagrams or descrip-

tions, although it is depicted to some extent in activity and state diagrams and was represented in

their UI visuals. Other UI visuals depicted History and Settings buttons, which were described in

the interview, but again these features were not supported in the documents. Another example of

inconsistency was a feature mentioned in the interview but not present in any design documentation:
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the group mentioned that a “beep would come from the phone” like a “metal detector” as a way to

alert visually impaired users that their car had arrived.

Discussion: This team was able to provide a detailed description of the UI and support for visually

impaired users. Their class diagrams provide support for the identification of visually impaired

and hearing impaired users via the specification of subclasses of the Rider class, and the features

are described somewhat in their use cases. However, they provided no details of how they would

support these features, as their submission lacked the description of any classes for UI support. When

discussing the difficulties faced for the project, the team members referenced the impact feedback

had on their work at multiple times, running into situations during design where they wondered

“how are we gonna implement this part?” but then they “received feedback about something” and

realized “Something’s missing.” Although the feedback was helpful, the students still struggled to

move beyond classes tied to physical entities.

6.4.3 Group 3

Difficulties with design and specification: In A2.1, this group submitted a document with a

UML class diagram that captured physical entities (users, cars, fleet owners) but failed to appropri-

ately represent non-physical phenomena such as a ride, a user interface, flow of control, support for

optimization, or the notion of collections of cars and riders. In an attempt to capture the notion

of a ride they depicted a 1-to-1 relationship between cars and riders, which fails to account for the

transient nature of the association or that over time a given rider may ride in many cars and a car

will transport many riders. Based on feedback they received, they updated their design to include a

GUI class, a Ride class and System class. However, the GUI class had no connection to underlying

system information, and the Ride class had an association with riders and the System but not with

cars.

To avoid complexity this group specified a UseAlg() method in the System class that

purported to handle all of the optimization and functionality intended to automate the fleet of cars;

i.e., the System class was a megaclass. In the interview, a team member stated, “...and the system

would use the location of the user and run the algorithm to determine which car to send..According

to each car’s location and gas level and all of that..Which would also be stored in the car’s database.”

When attempting to discuss the system further, there seemed confusion in the details, with a remark
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of “So I guess in our system, there’s a queue for user..It’ll use the algorithm that’s applied from

uhhh..”

This group also had difficulty with consistency and completeness. For example, this

group did not include the necessary variables or elements to store/input payment in their UML class

diagram, but simply a makePayment() function. They discussed a “priority queue” and algorithm

that determines which cars are sent first if more users request a car than are available, which is

not represented in their UML class diagram. The group included a GUI class in the UML diagram,

but it does not have access to the necessary system information to show the user when examining

the connections of the classes. They also mentioned “I guess if you order, it would send a ping to

the car” but the documentation contained no representation of how this notification or ping would

actually work.

Discussion: Although this group created a set of syntactically correct UML diagrams, the content

of the diagrams was overly simplistic, focusing on obvious behaviors. Their sequence diagrams

revealed misconceptions about active versus passive objects and in interviews it appeared that they

were unclear as to which objects should invoke which methods.

They struggled with scope, level of detail, and understanding how the different elements of

the design needed to work together to support the application. One team member stated, “For me,

one of the hardest things was trying to figure out what was communicating with what. ... Basically

interconnecting the different classes.”

They were uncomfortable with uncertainty in design and requirements and their incomplete

requirements analysis led them to struggle with understanding the scope of the project, with one

member saying it was hard “deciphering what was in the scope of us to do and what was outside of

the scope.” This confusion in the earlier parts explains some of the lack of consistency, as the project

as a whole builds on previous parts. There is an implication here of the importance of feedback, as

extensive feedback was provided between each assignment.

6.4.4 Group 4

Difficulties with design and specification: Group 4’s A2.1 submission contained many of the

same issues seen in other group’s projects: only one rider and one vehicle active at any one time,

a 1-to-1 rider to vehicle relationship, no support for the notion of a ride, a megaDB supposedly
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capable of finding the nearest vehicle or deploying Emergency assistance, a failure to represent

UI elements in the class diagrams, and no support for persistence across shutdown and startup.

However, they responded to the feedback they received and by dint of conscientious effort and a

solid requirements analysis in A1, produced a system specification that was consistent with the UI

visuals and description and met the stated requirements. In addition, good communication among

the team likely contributed to their success. During the interview, there were multiple references to

communication, with one member who “would communicate to *name* or *name* and be like hey!

Do you know if we have this in there and if not then let’s add it.” This good communication resulted

in consistency that was not seen in many projects. This group even came up with a security feature

of a QR code to scan to enter the car through interviewing stakeholders and communicating among

themselves to think about the security problems that could exist for an autonomous car. Although

not a required element, this practical and innovative design feature was consistent throughout their

UI visuals, user stories, and UML class diagram.

Though this group managed to maintain consistency with their design, they still found the

scope and level of detail a challenge, “getting more ideas as you implemented and realizing that Hey!

I should probably need this function to make this work. And then just adding that on is just like

a step by step thing that just like got complex.” They also experienced difficulty in understanding

the project as a whole, as “a challenge I had was just like conceptualizing. Like the whole system.

Just the amount of overlapping everything.” The group was not immune to the folly of avoiding

complexity, discussing in the interview a car that “knows..Well the car knows kind of who’s in the

car and it adjusts things accordingly.” This quote was in reference to interacting with a visually

impaired user and suggests some complexity being handled just by the system that exists within the

car instead of their own design.

Discussion: The strengths of this group centered around communication, feedback, and acting

on that feedback, saying “the vehicle controller...where I think she mentioned something about the

database couldn’t do calculations.” After receiving this feedback, the student “made that, and then

realized I could use that with a bunch of other classes to get information.” An important quote from

the interview summarizing their design process was “And I was looking through the class diagrams

and I was like Hey! Is this even feasible with what we actually have?” This ability to check for

consistency despite the system’s ever-growing complexity and ensuring communication between the
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group allowed for many good design decisions and even interesting features not required for the

assignment.

6.4.5 Group 5

Difficulties with design and specification: Group 5 was able to provide detailed class diagrams

that lacked only a few of the important elements: persistence in the form of databases and startup

and shutdown procedures, and a main method or event loop. To mitigate and avoid complexity,

Group 3 spoke of an artificial intelligence (AI) that seemed to handle many complex elements. A

member stated “The AI will automatically determine which vehicle is close to the customer and

it’ll dispatch that vehicle to that customer.” This AI megaclass was not represented consistently.

Although it was present in the maintenance scenario, it is not represented in the class diagrams or

their descriptions. Another example of complexity avoidance occurred when a member discussed

the idea of cancelling a ride, saying “he/she may decline it and we’ll automatically send it back to

the database.” The database is presented as a megaDB, with functionality to analyze a record of

rides and optimize the system, but its existence is not documented.

As described above, this group had issues with completeness and consistency. In the

interview, a member said that the car “will disable itself from the queue of receiving requests”

when a maintenance issue is occurring, but this functionality was not present in the UML class

diagram. Once a maintenance issue was resolved, according to the group “everything is recorded in

the database and the service is completed, the final report will be created and sent up, and then

the vehicle will be back on the queue.” This functionality also is not supported by the UML design

and shows inconsistency between what the group believed they had designed and what they actually

designed.

When asked what they found most challenging, this group found “the hardest part was

trying to envision how we would realize the functionality that was being requested of us” and

“capturing minor details. Cause it’s like..It’s so abstract.” Translating the requirements to design

details proved challenging as was conceptualizing a system that was more theoretical than concrete.

The latter point was addressed further as a member said “to envision, you know with this not being

an existing technology..How do we envision this being used? Because there’s not really anything you

can equate it to.”
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Discussion: Group 5 was able to document user cases with reasonable visuals and descriptions.

They mentioned that they also had difficulty in the requirements analysis phase, mentioning that

“it was hard for us to come up with the questions for the interviews.” Similar to a few other groups,

Group 5 could benefit from more experience with abstract concepts and more experience with the

design of small to moderate sized projects to give them experience in evaluating the relative merits

of various design choices and to gain additional hands-on experience with the properties of good

design.

6.4.6 Group 6

Difficulties with design and specification: Group 6 was able to achieve a reasonable level of

abstraction, after some struggle. As they describe, they “started with a lot of physical things. Like

the customer and the fleet” when designing their UML class diagram and then “thought about more

abstract things like the actual ride itself or the payment.” They compromised on choosing a level of

detail at which to represent the UI and the associated controller by including only a select subset of

the UI elements in the UML class diagram and in the visuals. Their representations lacked somewhat

in consistency. For example, their UI visuals and descriptions provided detailed scenarios of use

by visually or hearing impaired users, and in the interview a group member said “on this screen,

they will be given the accessibility needs that they need to be met.” However, there was no notion

of an impaired user or accessibility settings in the UML class diagram or class descriptions.

Similarly, they mentioned in their class descriptions that users would login to the system,

and in their interview a group member stated “the user would log on to the app. So they have

to create an account beforehand if they want to log on.” However, no visuals or user scenario

descriptions captured this aspect, nor was it represented in the UML class diagram

When asked about challenges, group 6 stated that they struggled with the amount of detail

and abstract overall concept of the system. They felt “we have this really intricate and in depth

system..But we really don’t know how to create these algorithms and functions and such that would

actually facilitate it.” They also reported challenges in the earlier requirements analysis phase, not

realizing that they could interview a variety of stakeholders, not just one per category, but then they

realized and decided that “adding in additional stakeholders and not limiting it” made sense.

Discussion: Feedback proved very valuable to this group from the beginning, stating that “when

107



we got feedback on it we started to think a lot more about like actual point A to point B..How to

actually design a system that would do something.” Another member explicitly stated “I liked the

fact that the first assignment every time was for feedback. That was a BIG big deal” in terms of

knowing “what direction we’re supposed to go is big for a project that’s all-encompassing like this.”

Even with useful feedback, “it was kind of hard to understand what class uses what class when we

don’t really know how the classes work.” Overall, this group performed well as they were able to

successively refine their specification to an appropriate level of detail.

6.4.7 Group 7

Difficulties with design and specification: The A2.1 submission by this group had some issues:

the need for container classes for the vehicles, a vehicle database, the ability to startup and shutdown,

maintaining history and support for the UI elements. They were able to respond to this feedback and

produce a detailed, high-quality design and specification document. This group handled complexity

and managed to represent it within their design documentation, showing no signs of avoiding the

necessary elements of design. They expressed that they felt that “there were always..fairly specific

criteria that were being looked for in our assignments,” although the group was not always sure of

the scope until they received feedback.

Discussion: Group 7 for the most part was very detailed and consistent with their designs. They

had only one instance of inconsistency, mentioning that when there was a major maintenance issue

with a vehicle the server “sends a message to the car database.” This functionality was not repre-

sented in either of the provided UML class diagrams. However, these diagrams were so detailed that

the absence of this functionality was likely an oversight rather than an example of complexity avoid-

ance. One potential criticism is that they may be guilty of overkill, providing so much detail that it

is difficult to absorb the key elements of the design. This group had the server API act as “the brains

of the system...making most of the decisions.” They expressed some struggle with understanding

the server concept originally, because “there’s a lot of logic going between these different systems”

and one member found it “very difficult having never had to do that before,” but the group rose to

the challenge and through feedback they were able to properly scope and design the system. This

work included “a lot of research” on things such as the model view controller pattern and associated

diagram. Overall, it seems as though the time and effort this group put into the project paid off, as
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they managed to avoid many of the problems that other groups had.

6.4.8 Group 8

Difficulties with design and specification: The A2.1 submission by this group failed to provide

sufficient detail. Their UML class diagram contained only thee classes (Administrator, Vehicle and

Passenger) and two associations, connecting the vehicle class to the other two classes. The class

descriptions were rudimentary, but they were able to provide reasonable scenarios of use, UI visuals

and UML activity and sequence diagrams describing the scenarios of use. Other feedback warned

them against the specification of a megadb, which they represented in the activity diagrams. They

acted on some of this feedback, adding databases, additional classes and appropriate methods to

their UML class diagram and expanding their class descriptions. However, their design still lacked

a representation of flow of control, startup and shutdown, or a class that captured the notion of a

ride (though they did have a database for ride history). They continued to struggle with finding an

appropriate level of detail, with one member stating

One big example of lack of consistency is found between the UI visuals and the UML

class diagram. The UI shown in the documentation and discussed in the interview is completely

disconnected from the class diagram. User interface was looked at as a separate entity. Another

example of inconsistency is found when looking at a theoretically nice feature of letting the system

know when a rider has entered or exited the vehicle. According to the interview, “you’d press the

button when everyone has exited the vehicle...which gives the vehicle permission to drive off.” This

feature could address security concerns, however it is not supported in the documentation. A similar

disconnect was found between the passenger services and vehicle services classes.

Discussion: Group 8 mentioned many facets of how they felt they could have better succeeded at

the project. The value of feedback arose, with the group feeling that they could not move forward

to the next step without feedback on the prior submission.

These comments spoke to the need for feedback and how feedback earlier in the process

would have helped them. Interestingly to note that “None of us went to her office hours” so there is

an element of lack of communication with each other as well as the instructor over the assignment

that could play a role in their concerns about feedback.
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6.5 Conclusions and Limitations

This work revealed various insights into students’ reasoning about design and what might

cause some of the difficulties. A brief summary leads is that “design is hard,” but we expand upon

this idea below.

A common issue noticed throughout this study was difficulty figuring out the level of detail

necessary for successfully designing the system. Many comments and observations seem to suggest

that this difficulty relates to translating the subjective nature of this process (gathering requirements,

figuring out what is necessary or useful features in the system) to the more objective side of designing

class diagrams that are consistent with the features the groups decided to design. There is also an

element of students’ expectations differing from a standard CS course, where instructors typically

provide students with the specifications or requirements of assignments. However, for this project,

it is necessary for students to do the requirements analysis phase on their own, leaving room for

them to not have asked questions needed to fully scope out the elements needed for the project.

Students seemed to have an easier job with creating the use case scenarios and the UI visuals to

represent those scenarios than with the design of the underlying system and capturing that design

in a collection of UML diagrams and explanatory text. Even within the class diagrams, representing

physical objects such as a car or rider proved less daunting than attempting to represent an abstract

concept such as a ride or even the multiplicities necessary to connect the classes in the system.

Abstraction difficulties in OO CS work were also found by Thommasson [204].

The issue of complexity avoidance persisted and was observed in many of the groups. A

common strategy used to avoid complexity, the megaclass, relates to work on software design antipat-

terns such as the “God class” [168] and the “blob” [18]. Students created classes or databases with

extended functionality to work around the complexity of the design problem. Complexity avoidance

in CS is an observation also noted in Lawson’s [119] work on students at various levels of undergrad-

uate study attempting to solve a concurrency problem and Kennedy’s [105] work in which students

reverse engineer a program based on an executable while following a think aloud method [61, 141].

An explanation that lines up with previous related work would suggest fragile knowledge[158], which

is a result that was also found in other work exploring student reasoning in CS topics [104, 105]. In

evaluating the interview and transcripts, we identified instances where group members responded

intuitively with features they believed they had designed or felt made sense, using the S1 part of
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thinking as seen in [83]. Using this intuitive thought process when designing the diagrams for the

system may have led students to unintentionally avoid complexity. Alternatively, students may have

been using the deep thinking of S2 after realizing that there was not an intuitive way to create the

overall system design, and used strategies of hiding or avoiding complexity to work around the lack

of an apparent simple solution. If probed further as in a task-based interview[97, 47, 35], or given

more time to examine their design during the interviews or in follow-up interviews, students might

have used S2 and noticed that the created designs did not justify the features they were claiming

during the interviews or use case scenarios.

We also observed issues with the completeness of the design and inconsistencies. Students

were generally able to produce UI visuals that captured their user stories, but had many inconsis-

tencies between the UI visuals, user stories, verbal descriptions from the interviews, and the UML

diagrams they designed. Factors related to this issue include scope and level of detail, with groups

not fully understanding the extent of the system to be designed nor the granularity at which to

represent it. Kennedy [105] has also looked at design and how students scope problems while trying

to code “in the wild.” We believe that some of this issue relates to insufficient requirements analysis

and failure to utilize available resources.

To follow up with this idea, another observed insight is the value that interacting with other

people can bring to the success of design. Groups consistently mentioned the importance of receiving

feedback through interactions with the instructor, but a benefit that some groups had and might

not have realized is communicating and interacting with each other. This open communication

allowed teams to stay more consistent with the various design elements and allowed the justification

of features derived from requirements analysis to be better represented in the class diagrams. The

importance of feedback in CS and programming has been examined in [120, 160] and Gusukuma

[80] even did work to address improving compiler feedback to base it more on misconceptions.

The ideas of communication and feedback being important echo software engineering in industry

valuing keeping stakeholders involved throughout the development process to ensure there is not

miscommunication on what is wanted compared to what is being developed.

Based on the observations of this study, suggestions for pedagogical improvements arise for

teaching OO design. The first is to allow students to immerse themselves in the process of translating

subjective requirements into more objective artifacts early on and on projects of increasing scale.

Another is to emphasize the importance of interacting with people particularly in work that is team-
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based. Instructors generally advertise their office hours, but there should be a push to ask questions

to clarify any unclear feedback and to ensure that as a team, members are communicating regularly,

even if it is necessary to be remote (video conference call or some other format).

This work was limited by not having access to the students after they finished the course

to attempt to follow through with more questions. The researchers also acknowledge the context

of this work, occurring at a large, public US institution, which affects generalizability. Students

in other geographical locations might have more exposure or experience to team environments in

early education or within the early years of CS higher education that could mitigate some of these

observed issues. It is our hope that this work can be used to inform pedagogy for instructors that

see its merit and offer researchers a stepping stone to build upon in expanding the knowledge and

understanding of student reasoning about CS topics.

Taking into consideration the issues with requirements and resulting scoping difficulties, a

suggestion would be to provide more practice with short turnaround on micro-versions of require-

ments analysis and associated design and specification before engaging students in a larger project.
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Chapter 7

Misconception-Based Peer

Feedback Intervention

The results of the formative studies suggest a number of possible interventions. After ob-

serving the role that feedback played in all of the formative studies, reflecting on the related work

surrounding active learning, conceptual engagement, and ways to incorporate feedback into an active

learning technique, I decided that a promising intervention would allow students to have structured

feedback that offered discourse to activate the problem solving elements of programming, allowing

the students to “make explicit that which is implicit.”[186]. This technique would offer a way to

address the scaling of CS courses by being low resource-intensive, and would ideally help address

retention rates if it were to have widespread adoption. This intervention is an active learning tech-

nique that I have labeled misconception-based feedback (MBF). The basic format is that one peer

(A) is provided prompts to ask another peer (B) about code that B has written. A has attempted

the same programming assignment and is thus familiar with both the problem and with the imple-

mentation approach, associated challenges, and design decisions. The coding problem employed in

the intervention has been designed to exercise the concepts related to these misconceptions. The

prompts are structured to give A and B an environment conducive to productive conversation cen-

tered around misconceptions that have been shown to cause difficulties with programming. While

discussing the prompts, the pair can also work to improve the code. This technique is supported

by Chi’s self explanation study[30], the benefits surrounding pair programming[214], and the rubber
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ducky debugging methodology[32]. The MBF technique is made using a “recipe” that incorporates

the following ingredients:

1. Identify Misconceptions

2. Design a programming assignment to exercise the concepts associated with those misconcep-

tions

3. Develop structured prompts to address those misconceptions

The following subsections walks through these steps in general, framing them with an ex-

ample before describing the evaluative study that I used for the purposes of this dissertation.

7.1 Identify Misconceptions

The first step in the MBF technique focuses on the “M,” or misconceptions. To design a

technique that addresses misconceptions, you must first know the misconceptions to address. This

can be done a variety of ways. One way could be through literature reviews. A growing body of

work in the computing education research (CER) community addresses misconceptions related to

concepts in computing. An advantage to using a literature review approach is that it can save time

by using already well-defined misconceptions that apply to your topic/s of interest. A disadvantage

to this approach is that you cannot ensure that the misconceptions apply to your population of

students without performing some testing.

To address this problem, another way to identify misconceptions is conducting studies

meant to identify misconceptions about a topic or set of topics. Available tools such as CS con-

cept inventories[201, 148], or modifications of them such as my “EYR” study[104], and observing

how students reason while they program as in my “coding in the wild” study[105] are helpful in

identifying misconceptions and the causes behind them. For example, I focused on introductory

programming misconceptions and narrowed that scope through related work on identifying impor-

tant and difficult CS topics[78] and cross-referencing that work with the context and scope of the

curricula for the courses that were a part of the studies (CS1 + CS2) and topics found in the ACM

curriculum guidelines[99]. After developing my “EYR” assessments, I administered them and used

the data to determine misconceptions relating to Pass by value, Scope, and Same name, same lo-

cation, as seen in Table 7.1. My “coding in the wild” study then observed how students reasoned
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while attempting to implement a program, and from that, the other misconceptions in Table 7.1

arose. It is important to note that the misconceptions identified need not to be an exhaustive list,

as the process of identifying and understanding the reason behind them can be time consuming.

You should define a scope of misconceptions you are interested in exploring and focus on miscon-

ceptions either supported by research or indicated by local context. A way to quickly gain insight

into the concepts your students are struggling with is analyzing online exams. Tools such as Canvas

provide breakdowns of the questions that students answered incorrectly the most often and also the

most common incorrect answer choices chosen (assuming the questions are multiple choice). For the

MBF technique, the defined misconceptions are the metric used to determine the learning outcomes

your students exhibit. These misconceptions become codes to be applied to an EYR pre-test and

post-test (explained in 7.4) through closed coding. After you have identified the misconceptions

you wish to address, the next ingredient to prepare is a programming assignment to address these

misconceptions.

7.2 Programming assignment to address misconceptions

Once you have obtained the set of misconceptions for which you qualitatively code, you

next need to design a programming assignment that allows students to attempt to use the concepts

associated with these misconceptions. This part of the recipe allows students to practice the concepts

and also provides them with a (hopefully) working artifact to discuss once it is time to participate

in the MBF technique. It is possible to provide students with pre-made example code that contains

the misconceptions and use the prompts to have students analyze the code for this step, although

it would detract from the students constructing their own knowledge and being able to work using

their own misconceptions as a guide. To ensure that the assignment thoroughly addresses the

concepts related to the misconceptions of interest, you should complete the assignment yourself

to see where students might use them. It is also wise to pilot test with other students or less

experienced programmers to determine approximately how long it takes to complete the assignment.

The programming assignment can be given as a lab exercise, classwork, homework, or project to

work on. The assignment should be completed individually if possible. An example programming

assignment could be the short calculator program used in my “coding in the wild” study[105]. This

program requires students to create multiple functions, with the ideal solution being implemented
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Table 7.1: Misconceptions
Misconception: The student thinks...

Pass by value (PBV)
operations on the
copy affect the original

Void function - no “return”
void functions return a
value despite the lack
of a return statement

Void function - “return”
void functions with an empty
return statement return a value

Scope
local variables can be
accessed outside the scope
of their declared function

Same name, same location
variables in different scopes
with the same name
are the same variable

Pass by reference (PBR)
passing a variable by reference
cannot result in a change to
the original variable

Arrays not PBR
the passing of an array
does not follow PBR semantics

Void function
not PBR (Arrays)

void functions with passed
arrays do not follow
PBR semantics

Pointers not PBR
pointers do not follow
PBR semantics

Void function
not PBR (Pointers)

void functions with pointers
do not follow PBR semantics

Pointers
pointers are references
or vice versa

using PBR for at least one of the functions. The functions take in two integers and either add them,

subtract them, or flip the signs of them (change positive to negative and vice versa). These functions

provide students the opportunity to work with the PBV and PBR-related misconceptions defined

in Table 7.1. The program also tasks students to have the code run in a loop and count the total

number of operations performed, which gives them the opportunity to work on the scope concepts.

The final ingredient of the recipe adds in the “secret sauce” in the form of structured prompts to

address the misconceptions.

7.3 Structured prompts

To explain the construction and use of misconception-based feedback prompts, I describe

the prompts that were used in my associated study, which is described at the beginning of Section
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Figure 7.1: MBF Index Cards

7.4. The group that used MBF receives feedback from a peer, in the form of prompts based on

misconceptions identified in my formative studies (Chapter’s 3-6) that allow students to discuss

common issues that might arise and explain the decisions they make during the simple calculator

task with a partner. The questions are broken up into categories:

1. Overall Program

2. Pointers

3. Arrays

4. Operation Count

5. Code Cleanup
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The index cards are put together in a way so that each category was a section, and partner can go to

different sections depending on how B decides to implement the solution to the flip signs program.

The full list of prompts can be seen in Appendix G. Regardless of choice of implementation, the

expectation is to eventually go through the whole set of cards, with discussions based on how a person

can theoretically implement the solution using arrays or pointers if B does not use that option. The

questions are designed to prompt conversation between the partners about potential misconceptions.

A is instructed to ensure that the dialogue was conversation, with A being able to communicate his

opinions and not just ask questions that B is meant to respond to. B is instructed to make changes

if she feels they are appropriate based on the discussions. The following subsections walks through

the arrangement of the sections of index cards, providing a few examples of the prompts that are in

each section.

7.3.1 Overall Program Cards:

The prompts begin with some basic questions to ensure students understand the control flow

of their own program such as “Can you walk through the code/function?” Then there are questions

to check the syntax of the overall program such as “Where are variables declared?” and “What are

their types?” From this point, questions become more conceptual and focus on the required function,

asking “How do you send values (pass parameters) to the flip function?” and “How are the flipped

values accessed from the main function?” In between conceptual questions, there are still more

questions to check syntax for declaring the function, its return type, etc. The final prompt states

to “Reflect on your solution - did you use pass-by-value? Pass-by-reference? Something else?” The

lack of understanding of pass-by-value (PBV) semantics is a very common misconception seen in my

EYR study[104] (Chapter 4) and misconceptions relating to PBV and pass-by-reference (PBR) were

found in my “coding in the wild” study[105] (Chapter 5). This prompt causes much of the fruitful

discussion that seems to result in improved learning outcomes, causing multiple of the MBF pairs

to reflect and attempt to explain what pass-by-value and pass-by-reference are and how they work.

When the pair reaches the end of the Overall Program cards, they are directed to either the Pointers

or Arrays cards depending on how they attempt to implement the solution. If B uses neither arrays

nor pointers, A is instructed to go through both sections of cards and “discuss how the solution

might be implemented using the questions as a guide.”
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7.3.2 Pointers Cards:

This section of cards follows a pattern similar to the Overall Program, starting with questions

like “Where are the pointers created?” and “What are they pointing to?” These questions ensure

that students know the basics of pointers and that they point to an address. The questions then

get more conceptual, asking “Do you pass an address or a value as a parameter in the function call?

What’s the difference?” and “How are the addresses and their values accessed and/or changed inside

the function?” These questions require the students to think explicitly about the two elements of a

pointer variable (the address and the value) and discuss how to manipulate the values. When the

pair reaches the end of the Pointers cards, A is instructed to go through Arrays if time is available,

and if the pair has already gone through Arrays and Pointers, move on to the Operation Count and

Code Cleanup Cards.

7.3.3 Arrays Cards:

This section of cards also begins with ensuring the basics of declaration are understood,

prompting “Where is the array declared?” and “What values are stored in the array?” After

framing how the arrays are set up, more conceptual questions such as “Do you pass the array as a

parameter? If so, how?” and “Are the values in the array different after the function call returns?

How does that happen?” Similar to the Pointers card, the final prompt instructs the pair to either

go to Pointers or if they have finished both, move on to Operation Count and Code Cleanup cards.

7.3.4 Operation Count:

This section of prompts ensures that the students properly implement the functionality of

counting the number of operations performed and displaying it. It first asks “How do you know

when to stop running the program?” It then asks “How do you keep track of how many times you

performed the flip operation?” and finally asks “How and when do you display the count of how

many times you ran the flip operation?” In many cases, these questions made students realize that

they needed a counter variable because the counting operation is not explicitly in the instructions

but rather in the functionality of the executable provided. The questions in this category do not

elicit much conceptual discussion for this study.
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7.3.5 Code cleanup:

The final section of cards focuses on avoiding wasted declarations, revisiting declarations,

and considering duplicate variable names. The first question asks “Do you use all of the variables

you’ve declared?” The next prompt focuses on scope misconceptions that students have, asking “Do

you ever declare two variables of the same name in different functions?” The prompts follow up

by asking how assigning a value to one variable affects another variable of the same name but in a

different function. One of the prevalent misconceptions found in my formative studies was around

the idea of scope. Students struggle with variables that are declared in different functions with

different scopes and viewed them to be the same variable. This misconception is seen in both the

EYR study and the “coding in the wild” study (Chapter’s 4 and 5). The section finishes by asking

if global variables are used and if so, where are they initialized, where are they used, and how do

their values change, another misconception from formative studies.

The structured discussion around misconceptions as generally explained in subsections 7.3.1-

7.3.5 supports the MBF technique. These prompts are developed on the basis of plan-like approaches

to problem solving as seen in [211]. To develop these prompts, I look at the work of Bloom’s

taxonomy[1], the SOLO taxonomy[9], McCracken’s problem solving framework for first year stu-

dents learning to program[132], and Soloway’s work on learning to program by learning to construct

mechanisms and explain those mechanisms[186], all described in more detail in the following sub-

sections. The idea behind the development of these prompts is to nudge students to make explicit

the planning elements of programming that are implicit while trying to solve problems. In the fol-

lowing subsections, I discuss the related work behind the prompt development and how it led to the

choosing of the prompts.

7.3.6 Bloom’s Taxonomy

The content and order of the prompts in the MBF intervention are based in part on

Bloom’s Taxonomy. Bloom’s Taxonomy is a tool to classify thinking based on its level of cogni-

tive complexity[68]. The categories are arranged hierarchically, with each higher level suggesting

a mastery of the levels below it. The six levels in the original version of the taxonomy are, from

least complex to most complex: Knowledge, Comprehension, Application, Analysis, Synthesis, and

Evaluation[1]. The revised version of the taxonomy changed the categories from nouns to verbs
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and called them from least complex to most complex: Remembering, Understanding, Applying,

Analyzing, Evaluating, Creating[1]. The definitions of the revised terms are as follows:

• Remembering: Retrieving, recognizing, and recalling relevant knowledge from long-term

memory.

• Understanding: Constructing meaning from oral, written, and graphic messages through

interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.

• Applying: Carrying out or using procedure through executing, or implementing.

• Analyzing: Breaking material into constituent parts, determining how the parts relate to

one another and to an overall structure or purpose through differentiating, organizing, and

attributing.

• Evaluating: Making judgments based on criteria and standards through checking and cri-

tiquing.

• Creating: Putting elements together to form a coherent or functional whole; reorganizing

elements into a new pattern or structure through generating, planning, or producing.

This taxonomy helps to guide the development of the prompts. Within each of the sections of the

cards, the general trend requires students to move up with respect to the level of Bloom’s Taxonomy

that characterizes their thinking. Take for example the Pointers Cards, which is where the MBF

technique shows the most evidence quantitatively and qualitatively of improvement for the MBF

group and can be seen in Figure 7.2. The first question prompts “Where are the pointers created?”

This falls on the Understanding level of Bloom’s Taxonomy, as the students merely need to explain

where a construct (pointer) is created or infer where they would be created if the student did not

use pointers to implement a solution. The next two questions move up to the Applying level, and

asked “What are they pointing to? How did the pointer take on that value?” The students have

to be able to implement pointers and not just understand the construct to explain what they are

pointing to and how they take on values. A few questions later, students are asked “ Do you

pass an address or a value as a parameter in the function call? What’s the difference?” This

moves their thinking up to the Evaluating level, prompting them to judge the type of parameter

passing they have implemented and potentially critique decisions made. The questions in this section
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follow this pattern, with none of the questions placing the students in the lowest level of thinking

(Remembering), but generally asking about their understanding and explanations of concepts first,

and next ensuring they can apply that understanding, eventually prompting them to evaluate their

understanding of the material. This pattern relates to Soloway’s[186] work on students needing to

learn to construct mechanisms and explanations. Soloway states that as scientists we must “make

explicit that which was implicit,” particularly when attempting to teach novices. Novices need the

opportunity to explicitly state their plans and goals whereas experts already have plans implicitly

in their minds as schema. This prompt development also ties into the Perkins study I described

in Chapter 2[158]. Perkins categorizes fragile knowledge into four types: missing, inert, misplaced,

and conglomerate[158], described in more detail in Chapter 2, using a controlled experiment. The

results of Perkins’ study found that better cognitive skills needed to be taught, focusing on problem-

solving strategies to improve programming performances and address the fragile knowledge students

exhibited. Bloom’s Taxonomy also has a knowledge dimension that categorizes knowledge as factual,

conceptual, procedural, and metacognitive[114]. Factual knowledge is considered the basic elements

students must be familiar with in a given field to solve a problem. Conceptual knowledge consists of

the interrelationships between the factual knowledge elements within a larger structure that allow

them to function together. Procedural knowledge deals with the skills, techniques, and methods

associated with how to do something. Metacognitive knowledge relates to the knowledge about

cognition and awareness of one’s own cognition. Using these structured prompts I have developed

can help to expose missing knowledge and activate inert knowledge as defined by Perkins[158],

allowing students to have a better grasp of concepts. I also have designed the prompts so that they

explicitly have students explain their factual knowledge and procedural knowledge, combining these

with questions that allow discussion of conceptual knowledge to occur and reflective questions that

enable students to use metacognitive knowledge. Next, I discuss the related work surrounding the

desired level of discourse for students participating in the MBF technique.

7.3.7 SOLO Taxonomy

For each question developed in the prompts, I considered the language it would elicit, using

the SOLO taxonomy[9]. SOLO builds from Bloom’s Taxonomy[114], which looks at educational

objectives. The SOLO taxonomy is intended to categorize learning outcomes based on language

used. The categories are as follows:
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Figure 7.2: Pointers Cards

• Prestructural: The student manifests a significant misconception, or uses a concept irrelevant

to programming.

• Unistructural: The student manifests a correct grasp of a part of the problem. For example,

a student describes the functioning of one or two lines of code. (Describes the concept with a

base understanding).

• Multistructural: The student manifests an understanding of most lines of code, but does not

manifest an awareness of how the code functions as a single coherent whole - the student “fails

to see the forest for the trees.” For example, a student might translate each line of code into

pseudo code. (Manifests an understanding of most of the concept, but not all of the details of

usage are there - ex. gets that pointers can be used to pass by reference and change values,

but is unsure how to implement or when/where &s or *s should be applied).

• Relational: The student manifests an understanding of the code as a single coherent whole,

by describing the function performed by the code - the student “sees the forest.” (Manifests

an almost full understanding of the concept and can relate the concept to the programming

task or use it in other examples).

The parenthetical parts of the definitions have been added to capture the type of discourse
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that the MBF prompts are meant to elicit. These prompts were developed to elicit the miscon-

ceptions that students currently hold, but use appropriate terminology to define the concepts and

move the discussion students have away from prestructural towards one of the higher levels such

as unistructural or multistructural. Similar to the how the Bloom’s Taxonomy level of cognitive

complexity was considered when designing the prompts, the MBF prompts are also designed con-

sidering the type of expected discourse they would elicit. Using the Pointers cards as an example

again, the first prompt, “Where are the pointers created?” is categorized as unistructural. This

requires a cursory understanding of the concept of pointers to explain where in the code they are

created. The next two questions, “What are they pointing to?” and “How did the pointer take on

that value?” require a multistructural understanding of pointers. The students must know how the

syntax is used and how the address and value elements of a pointer interact to allow pointers to

take on a value. Several questions later, there is a Relational category when prompted “Do you pass

an address or a value as a parameter in the function call? What’s the difference?” These questions

require the students to think about the whole picture of the use of pointers with respect to PBR

and are intended to engage the students with a rich discussion of PBR vs. PBV, one of the common

misconceptions students struggle with when learning to program. Just as the questions increase

in complexity on Bloom’s Taxonomy, they also go up the hierarchy of the SOLO taxonomy, with

more discussion being expected/prodded for as the students are showing understanding of the basic

concepts.

7.3.8 McCracken’s Framework

McCracken developed a framework that can be used when determining learning objectives

for first year students learning to program. This framework is as follows[132]:

1. Abstract the problem from its description

2. Generate sub-problems

3. Transform sub-problems into sub-solutions

4. Re-compose the sub-solutions into a working program

5. Evaluate and iterate
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These stages are described in Chapter 2 and were used in my “coding in the wild” study (Chapter 5)

as codes to determine the part of the problem-solving phase students were currently working on. For

the prompt development, the questions were categorized by where in the framework they existed.

Again, looking at the Pointers cards, the first question, “Where are the pointers created?” requires

students to transform sub-problems into sub-solutions. Students must understand what pointers are

and the syntax it takes to create them. The following questions remain in the sub-solution space

until the questions “Do you pass an address or a value as a parameter in the function call? What’s

the difference?” These two questions are categorized as evaluate in the McCracken framework, as

it requires the students to understand and be able to tease apart the differences between PBR and

PBV. The next question has the students abstract the problem, prompting “How are the addresses

and their values accessed and/or changed inside the function?” Students must take this language and

be able to explain in terms of concepts and programming constructs how pointers are changing the

values in a function. After showing an understanding of the problem, the prompt moves to evaluating

the problem solving, asking “Are any values in the main function modified as a result of the flip

function’s execution? How does that happen?” This structure of questions ensures that students

are first understanding the concepts and pieces of the problem and the sub-solutions necessary to

solve it and then follows those types of questions with questions that evaluate their own problem

solving abilities and steps. This relates back to McCracken’s work on problem solving[132].

Building on the results from the McCracken study which suggested that students needed to

focus more on understanding and breaking down the problem, these prompts focus on addressing

these issues. The general flow of the prompts in each section goes from lower levels of cognitive

complexity to increasingly more difficult, encouraging novice students to make explicit their implicit

plans and problem solving strategies. The earlier questions in the section are designed to ensure that

the syntax and basic structure of a given subproblem are understood. These questions check that

students have properly declared the necessary pieces of the part of the problem they are currently

working on. These prompts are generally in the Understanding level of Bloom’s Taxonomy, the

Unistructural level of the SOLO Taxonomy, and the abstract the problem or sub-solution levels

of McCracken’s framework. The prompts then ask about the details of constructs and elements

necessary to solve the problem (declared variables, declared functions, etc.). These questions focus

more on the subproblems and make students explicitly consider common errors such as mismatched

types in their programs. This can address both the passing of variables into functions and those
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variables being received and returned from the functions. These questions typically fall in the

Applying or Analyzing in Bloom’s Taxonomy, the Multistructural category of the SOLO Taxonomy,

and the sub-solutions or sub-problems levels of McCracken’s framework. Then there are questions

that focus on making students plan out how they use the proper programming concepts. For

this particular programming example, this generally means explicitly discussing how and when

variables are passed into a function and how and when their values are changed/returned, depending

on implementation choice. These prompts are in the Analyzing and Evaluating levels of Bloom’s

Taxonomy, Multistructural and Relational levels of the SOLO Taxonomy, and the Evaluate and

Abstracting the Problem levels of McCracken’s framework.

This general guide in sections 7.1-7.3 can be followed to design the MBF technique for

other programming problems/projects. One method of implementing this process is in conjunction

with a scheduled lab for a programming course. The programming assignment designed to allow

students to work on the concepts of interest can be assigned the first week of a lab and then the

following week the students can break into pairs and complete the MBF technique. Another use case

is assigning the programming assignment in class and having students find a partner to complete

the MBF technique with as a homework assignment (or vice versa depending on how much time

the programming assignment would take to complete). Although index cards were used for how I

administered the MBF prompts, it is possible to have the prompts printed and sectioned out on a

sheet of paper for less overhead. The next section discusses how I have executed this MBF technique

in my experimental design for this dissertation.

7.4 Research Design

This study leverages a key theme of feedback that was a theme in the results of the formative

studies in Chapters 4-6 and attempts to compare the benefits of feedback provided by an autograder

with feedback provided by peers. In Chapter 4, the task-based interviews that followed my EYR

assessment survey found that students providing self-feedback through engaging in self explanation

were able to address and remedy misconceptions when attempting to walk through code[104]. In

Chapter 5, feedback’s role was in students interacting with the compiler to successfully implement a

program solution and also providing self-feedback through the think aloud protocol[105]. In Chapter

6, feedback was a core part of the design of the research, as students were provided feedback between
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their assignment submissions and interviewed about the feedback. For this study, the misconception-

based feedback (MBF) group is the treatment group and the human autograder (HAG) group is

the control. For each group, students are broken up into partners, with Partner A (A) being the

person who provides feedback and Partner B (B) being the person who receives feedback and also

the person who has up their code. These partners are peers enrolled in the same course and taking

the same lab as each other. The research questions that I address in this study are:

RQ1: Can a structured debriefing process based on misconceptions (misconception based feedback)

improve student learning outcomes related to a programming assignment?

Hypothesis: MBF will show improved learning outcomes related to a programming assignment in

the form of a reduction of misconceptions from pre-test to post-test.

RQ2: What misconceptions can be reduced using misconception based peer feedback?

Hypothesis: Misconceptions related to PBV and PBR, Scope, and difficulties with Pointers and

Arrays will be reduced based on MBF.

RQ3: How do the roles of the students in the MBF structured process (feedback provider/receiver)

affect their learning outcomes?

Hypothesis: The partners (A and B) will have similar improved learning outcomes as feedback

provider or receiver since the MBF technique is structured for discourse allowing both participants

to gain feedback, but B (feedback receiver) will have additional benefits because of their intellectual

ownership of the code being used for the MBF prompts.

To test these research questions, the MBF study used students from the second semester

programming course (CS 2) at an engineering-focused public institution in the US. Institutional

Review Board approval was obtained and the study took place during the first week of classes in the

Fall semester of 2019. The study utilized two 50-minute lab sessions, with students completing an

“Explain your reasoning” (EYR)[104] pre-test at the beginning of the first session with questions fo-

cused on concepts of interest (parameter passing, return values, pass-by-value vs. pass-by-reference)

and post-test at the end of the second session with similar questions but variable and function names

and values changed. Students were given 20 minutes for the pre-test and 20 minutes for the post-test.

As seen in Figure 7.3, the other 30 minutes of the lab sections consisted of students working

on a programming activity to flip the signs of two integers as described below on day 1 and either

a the MBF intervention or HAG protocol using the code from that programming activity on day 2.

For the first day, students received no assistance from peers or the instructors, unless that assistance
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Figure 7.3: Study Procedures Overview

dealt with manipulating the programming environment so that the students could continue to move

forward on the assignment. Students could leave when they successfully completed the task or the

50-minute lab session ended.

For the purposes of this dissertation study, the programming assignment (Section 7.2) stu-

dents were tasked to complete was an abridged version of the calculator task from my “coding in

the wild” formative study[105]. The students had to design a program that took in two integers and

a separate function to flip the signs of those integers (change negative to positive and positive to

negative). The program was to execute in a loop until a user entered an exit condition (an integer

other than 1). After the exit condition was entered, the program should print out the total number

of calculations performed. This programming assignment was chosen as it was shown in my “coding

in the wild” study (Chapter 5) to give students the opportunity to work on the misconceptions

found in my EYR study (Chapter 4). These misconceptions, seen in Table 7.1, were used to perform

closed coding on “Explain Your Reasoning (EYR)” pre-tests and post-tests, as described in Chapter

4. The bolded entries in the chart represent the misconceptions that were present in the statistically

significant quantitative results, as seen in Chapter 8.

I select an autograder as a point of comparison because it is a method that computer science

departments and courses are adopting to address rising enrollments, and although it may save
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time and resources[213, 57], it may not be providing benefits to student learning outcome[213, 57].

To control for the instruction style, the autograder is simulated using one of the partners (A)

as the autograder. This decision minimizes confounding variables, as using an actual autograder

would bring an issue of having two types of feedback (misconception-based and confirmation/correct-

incorrect) and two types of instruction delivery (human for MBF and computer for autograder).

These partners are peers who are enrolled in the same course and taking the same lab as each

other. In this study, the MBF group is the treatment group and the human autograder (HAG)

group is the control. This structured misconception-based feedback (MBF) that I compare against

the autograder is an active learning technique I developed to guide students to directly address

misconceptions that occur when programming and is described in 7-7.3.

The 2nd day of the study had the sections split into one of two conditions: human autograder

(HAG) peer feedback (control group) and misconception-based peer feedback (treatment group).

The HAG group had one partner simulate an autograder, providing only confirmation feedback and

the other partner testing their code from day 1. This group is explained in more detail in the next

subsection. The MBF group is as described in Sections 7.1-7.3 at the beginning of this chapter. For

both groups, audio and screen capture recordings of the first 30 minutes of day 2 were gathered.

For the remaining 20 minutes of day 2, all groups took an EYR post-test with similar questions to

the pre-test. Students took these tests individually and were instructed to write on the post-test

whether they were Partner A or Partner B.

I recruited the students in person, and the study took place at the same location and time as

the students’ regular lab sessions. The professor teaching the course agreed to count completion of

the study as a normal lab grade for the course. The course comprised two lecture sections and four

lab sections, with one of the lab sections designated for Bridge transfer students who did not have

the same background experiences as the other three sections. This Bridge transfer lab comprised

of students who transferred into the university from either a two-year college or another four-year

institution and had completed an acceptable CS1 pre-requisite course but not the one offered at the

institution used in this study. Considering CS introductory pedagogy does not have a consensus

on first programming language to teach students, the students in this lab were mostly not familiar

with the C programming language, the first language taught at the university and the one the

programming assignment was designed using. Thus, the Bridge group data was not used in this

study. Each lab section had approximately 30 students. Since in the human autograder condition,
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half of the students would be providing feedback as the human autograders, only 15 students per

section would receive feedback that could potentially help them learn. For the misconception-based

peer feedback, the co-constructivism theory of learning would suggest that both the provider and

receiver of this form of feedback would have learning benefits, but there is hypotheisized value

from B being the partner who has his code in front of him while participating in the intervention.

Therefore, the autograder group needed twice the number of sections/participants to have an even

balance. This process was randomized by placing the three non-Bridge section numbers in a hat and

selecting one to be the MBF condition. As the study had two conditions (human autograder and

peer misconception-based feedback), I decided to use the Bridge section as a misconception-based

feedback group. Their data was collected so that all students had the opportunity to be part of

the study, but was not used for analysis as the population is very different. With respect to the

populations of the other three sections, as they all needed to take the prerequisite course of CS1,

the expectation is that the populations are similar. However, as every individual was not randomly

assigned a condition but instead the lab sections were randomly assigned, it cannot be assumed

that the individual students were equivalent. Below, I walk through the HAG group’s experimental

protocol.

7.4.1 Human Autograder (HAG) Feedback Protocol

The human autograder (HAG) pairs were split into Partner A and Partner B. A took on

the role of the simulated autograder, tasked to only provide confirmation feedback for the test cases

they were given on index cards. The front of the index card had the inputs that B should use and

the back had what the output should be based on those inputs. Figure 7.4 shows an example of the

front of an index card providing the proposed input. Figure 7.5 shows an example of the back of

an index card providing the output for the input in 7.4. These index cards were designed based on

running test cases against an actual autograder, so that the outputs provided were identical to what

an individual would see if testing the given inputs. A was given a stack of 30 input cases, varying

from running the program with just 1 calculation up to running the program three times using the

required loop. The students were tasked to go through the 30 test cases provided to A, and if B

did not have working and testable code, there were instructions to either switch roles or for B to

edit and simplify the code until it was at a point where it could be executed and tested. The cases

consisted of various options that would need to be considered such as negative numbers, numbers
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too large for the memory of integers, zeros and negative zeros, and other cases. B was instructed

to make corrections to their program as necessary based on the HAG feedback from A. Following

the intervention, the pair was instructed to save and submit the video file that included the screen

recording as well as the audio.

Figure 7.4: HAG Input

This group is meant to serve as a baseline and compare the misconception-based feedback

intervention to what autograders generally provide for programming assignments, which is confirma-

tion feedback. A was tasked to only provide feedback on whether or not B’s code worked properly,

but the interactions were not monitored. Instead, audio was recorded of the interactions between A

and B and analyzed to see if there were conversations that happened outside of the expected auto-

grader dynamic. Although tasked with providing only confirmation feedback, it was possible that

the human element of the HAG group would elicit conversation and some of that conversation could

affect how students performed on the post-test. The next chapter discusses the analysis methods,

results, conclusions, and future work suggested by the MBF study.
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Figure 7.5: HAG Output
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Chapter 8

Evaluation

In this study, I have obtained both quantitative and qualitative data and employed a mixed-

methods analysis approach, as shown in Figure 8.1 and described in more detail later in the chapter.

First, qualitative methods were used to identify misconceptions in the students’ EYR pre-tests

and post-tests. Then, quantitative data was gathered in the form of counts of these observed

misconception counts. Although I collect and analyze this data, the context of the observed learning

outcomes was determined based on qualitative analysis of the conversations students participated

in during the interventions, using the language exhibited during the MBF intervention or HAG

protocol to explain the transition from pre-test EYR explanations to post-test EYR explanations.

This chapter describes the mixed method analysis used for this study, the results, discussion of the

results, and ends with my limitations, conclusions, and final contributions.

8.1 Analysis

8.1.1 Identifying misconceptions using closed coding

To determine the misconceptions exhibited by study participants, “explain your reasoning

(EYR)” pre-tests and post-tests were created as seen in Chapter 4. These questions allowed for

students to exhibit misconceptions on the concepts of interest. Figure 8.2 shows a sample EYR test

question involving Pointers and PBR vs. PBV. Line 6 starts the main function block. Lines 7 and

8 declare two variables, setting grape’s value to -4 and banana’s value to 6. On line 9, functionG
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Figure 8.1: Analysis Order

is called, which passes in the address of grape (a pointer) and the value of banana. After line 6,

the function moves to line 1, where we see a void function (does not return anything) declared that

takes in two parameters, one integer pointer a and one integer variable b. Line 2 then performs

manipulation on a by dereferencing the pointer to obtain its value and then subtracting the value

of b from it and assigning that result to *a. Since this manipulation is done using a pointer, it is

PBR. Line 3 also performs a manipulation, this time on b. b is multiplied by itself, or effectively

squared. This manipulation uses PBV. The correct answer to the values of grape and banana after

functionG returns are grape = -10 and banana = 6, since banana is PBV and grape is PBR.

Below I provide examples of how the closed coding occurred for the misconceptions exhibited in the

study. In Figures 8.3 and 8.4, I provide a summary for all 8 questions of the concepts they focus on,

the misconceptions exhibited, and examples of the language seen in the EYR tests.

Sample Explanations:

In referring back to the table of misconceptions in Table 7.1, the question shown in Figure

8.2 had students exhibit misconceptions surrounding PBR such as “No return for functionG to affect

values” (ID 105). This explanation showed a PBR misconception, and more specifically Pointers

Not PBR, as seen in Table 7.1. The student further exhibited the misconception that the function

is not PBR because it is a void function (“No return.”)
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Q7: Consider the code segment below:

01. void functionG (int* a, int b){
02. *a = *a - b;
03. b = b * b;
04. }
05.
06. int main( ) {
07. int grape = -4;
08. int banana = 6;
09. functionG (&grape, banana);
10. return 0;
11. }
What are the values of variables grape and banana after
functionG returns?

grape:

banana:

Explain your reasoning below:
...

Figure 8.2: A sample test question

Another provided explanation that exhibits both the PBR and PBV misconceptions is“[var1]

changes memory location, and [var2] changes the variable’s value” (154). This student is confused

on the terminology and believes since banana is PBV this means that it can change the value

of the variable and since PBR involves passing an address, it is the address that is changed and

not the value. This student also exhibits the Pointers Not PBR misconception and a Pointers

misconceptions, not understanding the semantics of the address and value that are associated with

a pointer variable.

8.1.2 Mixed Methods

My study utilizes a mixed methods approach for analysis, as it is necessary to look at both

quantitative and qualitative results in an integrated way to paint the full picture of the benefits of

the intervention. To be more specific, I utilize first a sequential exploratory analysis design[200],

beginning with qualitative analysis and following this up with quantitative. In this form of mixed

methods, the qualitative results take precedence. For the purposes of my study, the first qualitative

part takes the form of closed coding of misconceptions, described in the “EYR Closed Coding”
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Figure 8.3: Descriptions of the first 4 EYR pre/post-test questions

section 8.1.1.1. Following this phase, I performed quantitative analysis by gathering misconception

counts and running appropriate statistical analyses to gauge differences in performance/learning

between the MBF intervention and the HAG control group, as described in more detail in section

8.2.1. My hypothesis was that the MBF group would have fewer misconceptions on the post-test

compared to the pre-test and that the difference of the pre-test to post-test misconceptions would

be greater for the MBF group than the HAG group.

After the sequential exploratory analysis, my design pivots and begins a concurrent nested

analysis phase[200]. This form of mixed methods has qualitative and quantitative analyses occurring

at the same time, but with one taking precedence over the other. In my case, the qualitative takes

precedence, being guided by the quantitative to gauge where best to look for qualitative results to

provide context for the quantitative results. After tallying the misconception counts, I performed

a thematic analysis, a method for identifying, analyzing, and reporting patterns, or themes, within

data[15] for the MBF and HAG groups, using the quantitative results as a basis for where to look in

the audio transcripts as well as the pre-test and post-test language that were part of determining the

themes. This language consisted of student explanations that incorporated vocabulary introduced

and discussed during the experimental phase, and exhibiting a more (or less in some instances)
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Figure 8.4: Descriptions of the last 4 EYR pre/post-test questions

complete grasp of the concepts during the explanation part of the EYR post-tests. This analysis led

to a thematic analysis, which consists of six phases, the six being as follows[15]:

1. Familiarizing yourself with the data

2. Generating initial codes

3. Searching for themes

4. Reviewing themes

5. Defining and naming themes

6. Producing the report

For this thematic analysis, the data consisted of the video intervention audio, which was transcribed.

In the following sections, I discuss in more detail the analysis methods used for the MBF study.
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8.1.2.1 EYR Closed Coding

To analyze the EYR pre- and post-tests, I first transcribed the students’ explanations into

an electronic form. Each student was given a unique identifier (ID). After the data was transcribed,

it was exported into a spreadsheet format. From there, closed coding was done based on a rubric I

designed to determine observable misconceptions. The rubric consisted of the misconceptions seen

in Table 7.1.

Three coders analyzed the data, with myself coding all of the tests and the other two coding a

subset to help ensure consistency of coding. The other two coders had graduate degrees in computer

science and were both familiar with the closed coding process and my research and the related work

on misconceptions and identifying them. They were not, however, as familiar with my data as I was,

so that they could provide outside perspectives. To ensure consistency, the coders started with a

rubric that was developed from the misconceptions and difficulties identified in the formative studies

in chapters 4 and 5. The coders individually reviewed and blindly coded the data, being unaware

of which lab section the student was in (to avoid implicit or explicit bias towards ideal results).

Each question response was observed and was given a mark of “1” for a given misconception if the

student’s explanation indicated that they held that particular misconception about that question.

Note that it is possible that student misconceptions were context-dependent – exhibited for some

questions but not for others. It was also possible for multiple misconceptions to be exhibited in a

single question. The coders would then come together and would discuss discrepancies and explain

their thought process behind certain codes. This process was done iteratively and both the codes

and rubric were refined as necessary until all the coders came to a consensus about coding the

transcripts. This process allowed us to refine our closed coding until our results were identical on

a given subset of transcripts. Although we did not calculate a kappa value to determine a precise

interrater reliability (IRR)[133], this process was done to ensure that there was a reasonable “extent

of agreement among data collectors,” as McHugh defines IRR. Once coding was completed for the

tests, the IDs were traced back to their section and grouped by section, so that the frequency counts

could be analyzed per section.
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8.2 Results

8.2.1 Quantitative

To look at the effectiveness of the interventions, various statistical tests to compare means

were performed. Table 8.3 shows the changes in misconceptions for each of the 8 questions broken

down by group (MBF and HAG) and by partner (A and B). In this chart, the bolded cells show

a statistically significant result, meaning that the group (MBF, MBF B, HAG B, etc.) for a given

question (Q1, Q3, Q5, etc.) had significantly fewer misconceptions on the post-test than the pre-

test. A negative percentage represents misconceptions being introduced in the post-test that were

not observable on the pre-test. Following this chart, I provide in Tables 8.4-8.10 an overview of

each question, showing the counts of misconceptions on the pre-tests, the post-tests, and then the

percent changed, with misconceptions reduced being positive values and misconceptions gained being

negative values.

To observe the effects of the interventions compared to one another, t-tests were conducted

between groups, comparing MBF to HAG. These tests compared the differences of means, with

the type of t-test used depending on whether the variances were equal or unequal, and calculated

whether one group performed significantly better than the other on a per question basis. The null

hypotheses for these t-tests were that there was no difference between the differences of the pre-test

and post-test scores of the two groups (MBF and HAG). The alternative hypothesis is that the

MBF group had fewer misconceptions when comparing the differences of the pre-test and post-test

scores. Table’s 8.11-8.18 show the results of these t-tests, with the first number representing the

p-value (0.05 being significant) and the second number representing the difference of means. Bolded

numbers represent cases where there was a significant result based on the alternative hypothesis.

The general trend of these quantitative results shows that MBF provided benefits for half of the

questions, particularly for Q6 and Q7 where significant results are found compared to the HAG

protocol. Q6 and Q7 relate to PBV and PBR, as seen in Table 7.1. Observing the data (both in

terms of misconception counts and the discussions during the MBF intervention), it seems these

questions are the ones students had the most misconceptions about and also the concepts that

students spent the most time on discussing using the prompts. It is important to note that although

these numbers have positive implications for the benefits of the technique, this study did not have

the power to make quantitative claims about the benefits. Although the sections were randomly
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Table 8.1: ANOVA per question for Partner As
Question Condition (MBF vs. HAG) Test (Pre. vs. Post) Test x Condition
Overall 0.22 0.22 0.099
Q1 0.49 0.18 0.03
Q2 0.29 0.29 0.29
Q4 0.91 0.01 0.22
Q5 0.496 0.34 0.94
Q6 0.20 0.48 0.30
Q7 0.20 0.48 0.21
Q8 0.33 0.17 0.08

assigned to treatment or control, the context of the experiment did not permit randomized selection

of individuals, so it cannot be assured that the characteristics of one section were equivalent to the

characteristics of the other, apart from a potential posthoc analysis on the grades of the students in

the course. Following a mixed methods analysis approach, I observe and analyze qualitative results

to provide evidence and context for the quantitative results found.

Mixed ANOVA

To look at the effects from another angle, I performed a mixed analysis of variance (ANOVA).

For the purposes of this study, the independent variables were the condition (MBF vs. HAG feed-

back); the partner (A vs. B); and the test taken (Pre-test vs. Post-test). The dependent variables

were the misconception counts. The ANOVA looked for main effects that these independent vari-

ables might have on the dependent variables as well as any interaction effects (Test x Condition).

The results of the mixed ANOVA tests, shown in Tables 8.1-8.2, have statistically significant results

(p < 0.05) bolded. The ANOVAs were performed on a by partner basis, so Table 8.1 shows the

results for Partner As and Table 8.2 shows the results for Partner Bs.

The ANOVA data mostly supports the results of the t-tests, although based on the ANOVA

data, the significant improvement for MBF over HAG on Q7 is only true if the participant was

Partner B. When looking further into the qualitative results, there is support for Partner A having

improved learning outcomes as well, but considering the low number of misconception counts that

the Partner As had on the pre-test, the improvement was not statistically significant when running

an ANOVA on the data. Having a larger sample size to run these calculations on would potentially

help improve the quantitative results.

In the Question Overview tables, numbers in parentheses represent the n (sample size)

for the group. The letters (A or B) represent whether the student was providing feedback (A)
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Table 8.2: ANOVA per question for Partner Bs
Question Condition (MBF vs. HAG) Test (Pre. vs. Post) Test x Condition
Overall 0.87 0.08 0.93
Q1 0.33 0.90 0.004
Q2 0.25 0.58 0.58
Q4 0.50 0.16 0.16
Q5 0.51 0.57 0.57
Q6 0.83 0.03 0.36
Q7 0.23 0.049 0.03
Q8 0.80 0.44 0.81

Table 8.3: Change in Misconceptions by Group

Questions
MBF
n=26

MBF A
n=13

MBF B
n=13

HAG A
n=23

HAG B
n=27

Overall 33% 38% 27% -5% 24%
Q1 -36% -13% -67% 44% 53%
Q2 0% 0% 0% 0% 0%
Q4 80% 100% 0% 56% 77%
Q5 18% 25% 14% 20% -20%
Q6 100% 100% 100% -14% 54%
Q7 74% 67% 77% -15% 10%
Q8 0% 11% -11% -87% -25%

or receiving it (B). These tables break down the number of misconceptions in the pre-tests and

post-tests, the percent changed, and the results of a paired t-test. For the paired t-tests, the null

hypothesis was that the intervention (MBF) or control (HAG) resulted in maintaining the same

number of misconceptions in the post-test as the pre-test. The alternative hypothesis was that there

were fewer misconceptions on the post-test than the pre-test, with the expectation that learning had

occurred. In Tables 8.4-8.10, the instances that show a significant p-value (<0.05) are shown with

the difference of means shown in the same cell to give insight into effect size and are bolded. P-values

of less than 0.05 with negative difference of means are not bolded as they are not significant based

on the alternative hypothesis. This was done because I was not looking for statistically significant

negative outcomes, as students were expected to either remain the same from a control protocol

(HAG) or improve from an intervention to help learning (MBF).

In the next section, I discuss the qualitative data found by analyzing the audio and screen

captures from the interventions and the language of the pre-tests and post-tests.
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Table 8.4: Q1 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value

Difference of Means
MBF (26) 14 19 -36 0.03/-0.19
MBF A (13) 8 9 -13 0.17/-0.77
MBF B (13) 6 10 -67 0.05/-0.31
HAG A (23) 16 9 44 0.008/0.31
HAG B (27) 17 8 53 0.005/0.33

Table 8.5: Q2 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 0 0 NA NA/0
MBF A (13) 0 0 NA NA/0
MBF B (13) 0 0 NA NA/0
HAG A (23) 0 0 NA NA/0
HAG B (27) 0 0 NA NA/0

8.2.1.1 Discussion

It is worth noting that in Table 8.3, some questions either do not show significant differences

(Q2, Q5, and Q8) or show the HAG group outperforming the MBF group (Q1). The statistically

significant quantitative results gave insight into where to look in the qualitative analysis to provide

context, but the resulting analysis also gave context for the results that did not show the benefits

of MBF under certain conditions. With respect to Q1, the qualitative evidence did not support

the HAG protocol reducing their misconceptions nor the MBF group for gaining misconceptions.

When examining Q1 and Q5, which both deal with the use of a swap algorithm, the results show

the MBF group performing slightly but not significantly better than the HAG group on Q5 and

the HAG group performing better than the MBF group on Q1. The qualitative analysis of the two

groups support that for questions relating to the swap algorithm, students encountered a conceptual

difficulty beyond whether the code used PBV or PBR semantics. Students seemed to stick with a

heuristic of either the swap algorithm always swapped the values (behaving in a PBR manner) or

they never swapped the values (PBV in nature). On Q2, no misconceptions were seen on either the

pre-test or the post-test, so the percent changed is not applicable. For Q3, the post-test question

was designed in a way that did not allow for the testing of the same concepts/look for the same

misconceptions (namely Scope and Same Name, Same Location), so it was not included for analysis.

This occurred as a result of an unintentional flaw in the experimental design and explains why the
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Table 8.6: Q4 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 10 2 80 0.04/0.31
MBF A (13) 8 0 100 0.04/0.67
MBF B (13) 2 2 0 NA/0
HAG A (23) 9 4 56 0.08/0.22
HAG B (27) 13 3 77 0.02/0,37

Table 8.7: Q5 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 11 9 18 0.08/0.08
MBF A (13) 6 4 33 0.08/0.15
MBF B (13) 5 5 0 NA/0
HAG A (23) 15 12 20 0.27/0.13
HAG B (27) 15 18 -20 0.21/-0.11

reductions for this questions are noticeably higher than the other questions, so the question’s results

are not included. The other questions (Q4 and Q8), show a lessened version of expected results, with

the MBF groups outperforming the HAG groups. However, this performance was not significant,

potentially because as found in the qualitative analysis, multiple MBF groups went through the

Pointers prompts but did not go as in depth through the Arrays prompts, and Q8 was based on

arrays. Q4, which focused on scope misconceptions, was also found in the qualitative analysis to not

be discussed with as much detail in the MBF groups and also did not have as many misconceptions

in the pre-test as some of the other questions, which may contribute to why it did not show statis-

tical significance. Overall, an observation was that a number of groups were not compliant with the

expected protocols (MBF or HAG). This led to HAG groups having some benefits from the human

side-chats versus pure autograder feedback and some MBF groups not having benefits because they

did not engage in discussions as the intervention was designed.

Table 8.8: Q6 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 11 0 100 0.01/0.42
MBF A (13) 3 0 100 0.04/0.23
MBF B (13) 8 0 100 0.04/0.62
HAG A (23) 7 8 -14 0.41/-0.04
HAG B (27) 13 6 54 0.11/0.26
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Table 8.9: Q7 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 19 5 74 0.008/0.54
MBF A (13) 6 2 67 0.13/0.31
MBF B (13) 13 3 77 0.02/0.77
HAG A (23) 13 15 -15 0.31/-0.09
HAG B (27) 10 9 10 0.43/0.04

Table 8.10: Q8 Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
MBF (26) 18 18 0 0.5/0
MBF A (13) 9 8 11 0.40/0.08
MBF B (13) 8 9 -11 0.40/-0.08
HAG A (23) 15 28 -87 0.006/-0.57
HAG B (27) 16 20 -25 0.16/-0.15

Table 8.11: Q1 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.0009/-0.50 0.008/-0.30 0.02/-0.67
HAG B (27) 0.0006/-0.56 0.005/-0.33 0.001/-0.69

Table 8.12: Q2 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) NA/0 NA/0 NA/0
HAG B (27) NA/0 NA/0 NA/0

Table 8.13: Q3 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.48/0.01 0.39/0.10 0.43/-0.07
HAG B (27) 0.41/0.06 0.33/-0.15 0.48/-0.02

Table 8.14: Q4 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.35/0.09 0.13/0.45 0.09/-0.22
HAG B (27) 0.40/-0.06 0.21/-0.30 0.02/-0.37

Table 8.15: Q5 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.34/-0.09 0.42/-0.05 0.29/-0.31
HAG B (27) 0.17/0.15 0.18/0.19 0.26/0.11

144



Table 8.16: Q6 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.04/0.47 0.15/0.27 0.05/0.66
HAG B (27) 0.28/0.16 0.49/-0.009 0.20/0.31

Table 8.17: Q7 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.01/0.63 0.11/0.39 0.02/0.86
HAG B (27) 0.04/0.50 0.20/0.30 0.03/0.73

Error and Considerations Multiple t-tests were conducted for a portion of the quantitative

analysis. Thus, there is a possibility of type 1 Error, or results showing a false-positive, which

would show a significant result when the results were not significant. This would be the case for the

per-question statistical analyses. When a Bonferroni correction[212] is applied, considering only 7

of the questions were valid for analysis, the adjusted p-value becomes 0.05/7, or 0.007. Using this

new p-value, no statistically significant results arise per question, with the closest being the within

groups paired t-test for Q7 having a p-value of 0.008. Some research has deemed attempting to

correct for multiple t-tests with a Bonferroni adjustment as unnecessary[171]. Rothman states that

the adjustment meant to minimize type 1 error will increase type 2 error, or results that do not reject

the null when they should, known more commonly as “false-positive.” In a quote from this work, it

is said “A policy of not making adjustments for multiple comparisons is preferable because it will

lead to fewer errors of interpretation when the data under evaluation are not random numbers but

actual observations on nature.”[171] The Bonferroni correction is also potentially over correcting as

although multiple t-tests are performed, what is being tested for is different question to question, as

each question represents different concepts.

Another consideration was heteroscedastity, or whether or not the variances of the groups

were equal. To account for this, an F-test was performed on the data sets before each between groups

t-test. For this F-test, the null hypothesis is that the two variances are equal and the alternative

Table 8.18: Q8 T-Tests and Difference of Means
MBF (26) MBF A (13) MBF B (13)

HAG A (23) 0.03/0.57 0.06/0.57 0.05/0.57
HAG B (27) 0.28/0.15 0.31/0.15 0.30/0.15
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is that they are unequal. Using a software to perform the F-test, the results provide an F-value

and F-critical value. If the F-value is greater than the F-critical value, you fail to reject the null

and if the F value is less than F-critical, you reject the null hypothesis that the two variances are

unequal. These results then allowed me to perform the appropriate t-test (assuming equal variances

or assuming unequal variances) depending on the F-test performed.

Legitimation Framework As this process of analysis was extensive, I needed to consider how

to ensure quality for these analysis methods. To do this, I look to the legitimation framework as

described in[143]. For this study, one of the relevant forms of legitimation is weakness minimization,

which is defined as “the extent to which the weakness from one approach is compensated by the

strengths of the other approach.” The ‘approaches’ in this case are quantitative and qualitative

analysis methods. For the MBF evaluation, the strengths of the qualitative analysis compensate for

the weaknesses of the quantitative. Although there were statistically significant quantitative results

found to support the benefits of MBF, the qualitative analysis allows for a deeper explanation of

the context of these results and allows for broader claims to be made. Another legitimation that

was considered was sequential[143]. This played a role in the mixing of data, as the order of how

the phases (quantitative and qualitative) of data are collected can play a factor in the interpre-

tation. Considering this, a concurrent nested[200] approach was taken for the thematic analysis,

having qualitative and quantitative analyses occurring at the same time, but kept separate and not

informing each other. The data were then mixed and integrated when time to interpret the data.

To additionally reduce sequential legitimation threat, there were waves of data analysis performed

in different orders, with additional statistical analyses performed on the data after conducting a

qualitative phase. In the next section I discuss how the screen and audio recordings of the two

conditions (MBF and HAG) were analyzed and the results that came from the analysis.

8.2.2 Qualitative Analysis of Videos

By categorizing student discussions in this framework while also looking for evidence in

the pre/post-test explanations, I was able to group certain categories of MBF partners and provide

common themes for the learning gains exhibited. Based on these categories, I performed a thematic

analysis[15], as described in 8.1.1 on the qualitative data and provide themes for these four categories.

The four MBF categories that developed from this process were:
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• Non-Conversational: These were pairs of students who did not actively engage in dialogue.

Usually, this meant that B only responded to the prompts presented by A and A offered no

additional dialogue.

• Conversational (Off-Prompt): These were pairs of students who were engaging in dialogue,

but the dialogue was not based on the provided prompts. Usually, this meant the pair was

discussing how to fix B’s code without discussing the concepts the MBF prompts were designed

to address.

• Conversational (Semi On-Prompt): These were pairs of students who engaged in dialogue,

but did not follow the prompts in the prescribed order. They used the prompts to provide

more fodder for questions or when relevant, but also have a substantial amount of conversation

about solving the problem without utilizing the prompts.

• Conversational (On Prompt): These were pairs of students who engaged in dialogue cen-

tered around the provided MBF prompts. These students followed the path of discussing the

prompts and concepts as they were presented, regardless of if they had successfully finished

the program before the intervention.

This section walks through the results that came up through a qualitative analysis of the

audio and screen capture of the pairs engaging in the interventions. The results are presented as video

observations first, and then the language changes noticed in the pre-tests and post-tests. Multiple

instances occurred where the MBF and HAG groups use language in the intervention/protocol or the

pre-test/post-test that directly supports students having improved learning outcomes or students

gaining misconceptions. These are reported and discussed throughout the results section. For both

the MBF and HAG groups, cases are seen where no direct evidence supports either the improved

learning outcomes or students gaining misconceptions between the pre-test and post-test. In these

instances, a variety of explanations are possible. One thought is that the students reviewed material

between the two days of the intervention. This could potentially help or hurt them, depending

on if their studying led to a correct understanding of the concepts. Another possible explanation

for learning benefits is that testing experience and environments themselves caused students to

learn. Being provided the pre-test and then the opportunity to implement a solution through coding

may have caused the students to think about the concepts between the two days of the study
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without actively reviewing the material. For the HAG pairs, it is also possible that the students

benefited from the social interaction or human element present during the protocol and from their

interactions outside of the protocol. To tease this apart, a future study could perform the more

realistic comparison of a computer autograder directly versus the MBF technique to control for

the human element. Another testing effect consideration is that a learning effect occurred, where

students were able to recognize the similarities of the questions on the post-test and provide more

appropriate and conceptually accurate responses on the post-test. In my results, I mention instances

where there is not direct evidence to support the observed learning outcomes. Each entry pair in

the results section is framed by the ID number of the student who was A (feedback provider) listed

first followed by the B (feedback receiver). For example, if A was 74 and B was 203, the entry is

listed as (74-203) There are some entries where one of the partners is listed as “Unknown.” These

cases occurred when one of the partners did not complete either a pre-test, post-test, or both, so it

was not possible to perform analysis on the data for these individuals. I present the MBF entries

in the four themed categories that emerged from the thematic analysis. At the beginning of each

category, I have provided a table that gives an overview of the observed qualitative results. For the

MBF groups, this table has the following columns:

• ID: This column provides the ID number randomly generated for the student.

• Misconceptions introduced: A checkmark indicates that misconceptions were introduced

in the post-test that did not exist in the pre-test.

• Misconceptions reduced: A checkmark indicates that misconceptions that existed in the

pre-test were not observed in the post-test.

• Improved Language: A checkmark indicates that the language used on the post-test showed

improvement from the pre-test. In most cases, this aligns with Misconceptions reduced, as

misconceptions were coded based on the pre-test and post-test language. However, there are a

few instances where students did not exhibit observable misconceptions in the pre-test and also

did not exhibit misconceptions in the post-test, but the language on the post-test improved.

Improved language occurred when students: now use terminology/vocabulary correctly that

was not used or used incorrectly on the pre-test; correctly explain a concept that was incorrectly

explained in the pre-test.
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• Support: A checkmark indicates that there is evidence in the audio recordings during the

intervention to support the improved language/reduced misconceptions noted for the student.

• Code working: This is only relevant for B, as they were the students to bring up their

code during the intervention. A checkmark + indicates the student started the intervention

with code that compiled, executed, and used PBR to implement the solution. A checkmark

indicates the student started the intervention with code that would compile and run, but did

not fully have the functionality required or was implemented not following the instructions.

No checkmark indicates that the student came into the intervention without having working

code.

8.2.2.1 Non-Conversational MBF:

Figure 8.5: Overview of MBF Non-Conversational

(276-Unknown) Video Observations: This pair begins with B having working code using PBV

to implement a solution. In this instance, the partners are not being conversational and instead A is

asking the questions on the prompts and B is replying to them. B does not have detailed comments

about the concepts represented in the prompts.

Language in Pre/Post-tests: There is no change in language for either partner in this instance.

(398-350) Video Observations: In this pairing, B started out with code that compiled and ran

but did not follow instructions. He states “In my program, I just used one function in the main, so I

didn’t actually use a flip function.” B begins discussing pointers, focusing on how they theoretically

could have used them, saying things like “I didn’t use pointers but if I were to use pointers, I would
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have needed to use them if I created a flip function on its own.” and “I would have called that flip

function and in order to use that flip function I would have had to use pointers.” When asked about

whether pointers would pass the address or the value, B responds “You pass the address of a pointer.

You pass the address of the value, not the actual value.” B then continues with a misunderstanding

of PBV, stating “Because if you pass the value, the value can be manipulated.” B seems to have

PBV and PBR confused, saying about pointers “Well if I had used a separate function and used

pointers, the value should not be manipulated or changed, but if that were to happen, it would

have been because I passed in the actual values instead of the addresses.” Interestingly, B believes

there is a difference between pass by pointer (a non-standard term) and pass by reference, asking

“Pass by pointer passes in the address and then pass by reference passes in the actual value, right?”

This shows either confusion in terminology or potentially discussing concepts that are not generally

taught in CS1 courses. The pair continues throughout the prompt with little conversation and B

not providing any more in-depth replies.

Language in Pre/Post-tests: This pair shows no notable language differences from pre-test to

post-test.

(85-124) Video Observations: This pair begins with B having working code that is implemented

using pointers. When prompted about whether values are returned from the flip function, B correctly

responds “Values are not returned using a return statement but they’re stored using pointers.”

Discussing how the flipped values are accessed, B states “The flipped values are accessed by taking

the values and using pointers to carry over the signFlipper variables back into the main function

and then it displays it.” B continues to respond to the prompts and explains the use of pointers in

their solution. There is not much conversation and B provides straightforward answers.

Language in Pre/Post-tests: In the pre-test for Q6, A comments “Uh I lowkey don’t know what

happened.” They state that they just did the math, unsure of the concepts why it worked. In the

post-test for Q6, A explains correctly “*a is a pointer back to the main function.”

(160-254) Video Observations: This pair begins with B having code that does not compile and

originally attempts to return two integer values from a function. A does question this at a point,

asking “How would you? Because you’re returning two values?” to which B discusses a workaround

of “Well what I would do is just be stupid and write two functions.” B follows this by mentioning

PBR, saying “But if I was to. . . If I needed to return two, I would just use pointers and arrays to
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return.” When the MBF prompts specifically ask about PBV or PBR, B states “Well if I correctly

did the program, I would have used a...Pass by reference” because “Pass by value doesn’t change the

main block numbers.” This consistent thought process continues when asked whether an address or

value was passed, with B echoing “If you pass it by value, then only the numbers in the function

block change...But if you want to change the value after the function call, you would have to use

pass by reference.” When the pair begins with the Arrays prompts, there seems to be confusion

from B, particularly with arrays operating in a PBR-like manner. After being asked if the values

in the array are different after the function call returns, B responds “This one I’m not sure because

I don’t think the value changes..” and follows this up with “I would have used pointers.” Towards

the end of the prompts, B is asked how assigning a value to a variable in one function would affect

a variable of the same name in a different function. B correctly replies with a solid grasp of the

concept of scope “Umm, they’re completely separate because they’re two different function blocks.

So whatever happens in one doesn’t carry over to the next function block.”

Language in Pre/Post-tests: In the pre-test, A originally remarks for Q6 that they are “Not

sure what * does, cow = 13 - 6 = 7 duck = 10 * 2 = 20.” This shows evidence of just doing the math

and not understanding the concept/syntax of pointers. After the intervention, on Q7 (also about

pointers), A states that “Grape would be equal to (-4 - 6) 10” but “banana would stay 6 because

there is no pointer in the functionG,” showing an understanding of how to use/interpret the syntax

of pointers. Another noteworthy language change for A appears in Q4, where on the pre-test, it

is said that “Number is returned as (8-5) 3 and other number = number in line 10,” an incorrect

use and understanding of scope. In the post-test, A on Q4 says “Value is never changed from -5

and other value is equal to 2 from functionD.” Although not a language change, it is noted that B

on the post-test seems to believe that arrays are not PBR, which supports the confusion exhibited

during the intervention. This confusion was never challenged or discussed further because this pair

was not conversational.

(393-294) Video Observations: This pair begins with B having code that doesn’t compile,

stating “Yeah. This doesn’t work at all.” When asked about the flow of control of the program,

B correctly states “Well pretty much you need to have a function that uses pointers to change the

signs. Because you can’t return two values from a function.” One of the few interactions between

the pair comes when for void functions, B states “Yeah, but don’t you still have to add a return
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statement?” and A wonders “Do you have to?” B suggests that they compile and test it. After

spending some time working to fix the code, B realizes that the code was not saved as a “.c file”

and addresses that issue. When prompted about the return type of the function, B recalls and says

“We’re gonna test our theory to see which one is right.” After testing, B accepts that A was right

that the return statement is not required, saying “Well if you write return or don’t write return in a

void type function, it’s not going to matter.” The pair discusses pointers when asked about if there

are values returned from the flip function. B states “So pretty much all you need to do is use the

pointers and then it’s going to change the values in the memory allocated by the pointers.” After

being prompted about whether PBV or PBR was used, B comments “I’d say we probably used pass

by reference...Because of using pointers to go through and then adjust them with the pointers so you

could keep on going through.” During the Pointers prompts, B discusses in depth how the pointers

go through the code, even mentioning “And our flipSign function is expecting pointers and so it all

works out because the types are the same.” The terminology of dereferencing confuses B, with the

incorrect thought of “I know dereferencing is usually when you put an ampersand in from of your

pointer” (Dereferencing is putting a star “*” in front of the pointer variable). However, after the

MBF prompt asking whether an address or value was passed for pointers, B states that an address

was passed and “If we passed the value it wouldn’t have done anything because you change the

value inside the function and then it would just go back to normal because it wouldn’t carry over

everything because we have a void return type for our function.” Explaining this out loud causes B

to want to return to the dereferencing question, where they add “We dereference the pointers inside

our flip function when we put the asterisks in front of our pointers for value x and value y.” The

pair continues through the prompt but does not go through the Arrays cards.

Language in Pre/Post-tests: Although B provided in depth explanations, particularly around the

concept of pointers, there were no notable language differences as both partners correctly answered

and explained the questions surrounding pointers (Q6 + 7) in both the pre-test and the post-test.

8.2.2.2 Conversational (Off-Prompt) MBF:

(75-142) Video Observations: This pair begins with B having code that doesn’t compile. There

is little in-depth discussion from this pair. Towards the end of the prompts, they begin a discussion

about scope and variables of the same name in different scopes. A remarks “Didn’t she talk about

this in class? When she was saying having two of the same thing kind of changes the output of the
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Figure 8.6: Overview of MBF Conversational (Off-Prompt)

other one.” B quickly shoots down this idea, saying “No that was only.. That was only argc and

argv.”

Language in Pre/Post-tests: This pair shows no notable changes in language from their pre to

post-tests.

(Unknown-1) Video Observations: This pair begins with B having code that does not compile,

remarking “See that’s the thing, I don’t have the exact code solution.” The pair spends time

attempting to fix the program. They begin to operate in a pair programming dynamic, with A

catching syntax issues “Oh make sure you put the parentheses.” They spend time discussing the

algorithm of how to flip the signs, with B mentioning the use of the absolute value function and

conditionals. After a while, A attempts to see if B wants to compile, to which B replies “Umm, not

yet. . . which is usually horrible advice.” The pair spends time trying to figure out if it’s possible to

return two values from an integer function, and never get the code working as intended. They also

do not spend much time talking about the MBF prompts, instead just attempting to fix the code.

Language in Pre/Post-tests: With this pair, the only language improvement noticed is that A

mentions “pointers” in the post-test for Q6 and Q7 when the term was not used in the pre-test.

However, the pre-test exhibited no misconceptions and based on analysis of the transcript, the only

support for this improvement the intervention suggests is A having a deck of cards that mentions

the term “pointers” frequently.

8.2.2.3 Conversational (Semi On-Prompt) MBF:

(119-154) Video Observations: This pair begins with B having code that compiles and runs,

but is implemented using PBV. In this instance, it is observed that B uses both feedback from A

and online searching resources to improve. While discussing the prompts during the intervention, B
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Figure 8.7: Overview of MBF Conversational (Semi On-Prompt)

brings up a search engine and looks up “first element array pointer.” This occurs after remarking

“Well arrays and pointers aren’t they the same thing, right? Or the first element’s a pointer or

something?” (An array’s name is a pointer to the address of that array’s first element). When

referring to the functions that “don’t return anything,” A remarks “It actually changes the memory?

I guess that’s what it does?” This supports discussion of pass by reference and how it is referring to

memory locations. The two partners go back and forth on whether or not an array is a pointer or

pointing to something, with A stating “Well I don’t think it’s pointing anywhere yet” and “But we

haven’t like assigned any pointers yet, I don’t think.” B holds fast to this heuristic of “I just know

the first element of an array is a pointer.”

Language in Pre/Post-tests: With respect to language from pre- to post-test, B begins with the

incorrect belief that “with pointers the thing that changes is their memory location not the actual

value” on Q6. For Q6 in the post-test, the explanation states “The value of the memory address gets

changed in the function,” now showing an understanding that there are both a value and memory

address associated with pointer variables. This participant does not use pass by reference correctly

in Q7, mentioning that “[variable] is passed by reference,” where the variable is actually passed by

value in that particular question.

8.2.2.4 Conversational (On Prompt) MBF:

(301-27) Video Observations: This interaction begins with B having code that does not compile,

remarking that they “don’t even remember what this does.” Despite this, the pair begins a discussion

using the prompts. When discussing how values are passed, A states “Using ampersand. That’s

pass by value,” which is an incorrect statement as passing values using an ampersand is actually pass

by reference (PBR). This is another pair that begins interacting as if they were pair programming.
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Figure 8.8: Overview of MBF Conversational

B has attempted to implement the program incorrectly, saying “Yeah. I return two values from

flip.” A suggests that they “Recompile it” after wondering “In C, how does it return..” confused by

the attempt to return two integers. Later, it is discovered that A implemented the solution using

pointers, causing B to inquire “But when you return is it?” A informs B that there is nothing

returned and pointers “just reassign the value.” B seems to continue to struggle with pointers and

eventually A decides to avoid the discussion about those cards, remarking “Yeah. Don’t even worry

about that one.” They spend the rest of the time attempting to implement the solution using arrays,

ultimately successfully completing the task.

Language in Pre/Post-tests: This pair shows no notable changes in language from their pre to

post-tests.

(192-167) Video Observations: This pair begins the intervention with B having code that

compiles and runs using pointers. During the intervention, it is noticed that some of the language is

confusing for B, saying “I don’t know what that means..” after being asked whether they used pass

by value, pass by reference, or something else. A helps by responding “Did you pass the pointer

by value or by reference. Like did you use its location or use its value?” This causes B to remark

“I think by reference.” A helps assure B, stating “Oh yeah. You used its location, so reference.”

Interestingly, a little later, when asked if an address or value was passed, A incorrectly responds

for B saying “You pass a value,” even though B used pointers and so passed an address into the

function. When this pair gets to arrays, it comes to light that A implemented the solution using
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arrays. The pair decides to continue the discussion with A responding to the array questions based

on how they implemented the solution.

Language in Pre/Post-tests: A in the post-test for Q6 states “Pass by reference allows the

functionF to perform its calculations.” Although the partner correctly answered the question in

the pre-test and exhibited no misconceptions, there was no mention of pass by reference, which

supports that the discussion occurring in the intervention helped with that terminology. Similarly

for B, there is a mention of pointers in the post-test that does not exist in the pre-test. A also

exhibits confusion over pass by value in the post-test, correctly stating in Q7 saying “a or grape is

passed by reference while b or banana is passed by value,” and leaving banana unchanged because

it is passed by value. However, on Q8, A states “Pass by value means that the variables lose their

old value to store a new value,” and on Q1 remarks “The two variables are swapped using pass by

value (I think...)” This confusion is consistent with the conversation present during the intervention.

(253-70) Video Observations: In this situation, B begins with code that does not compile. A

seems to have a better grasp of pointers and through the prompted discussion, A is able to improve

B’s understanding of the concepts. A asks if B would use pass by value or pass by reference if

trying to implement the code using pointers. B responds “Probably value?” to which A soon says

“I feel like you should pass by reference. . . Cause then you can just change the value of it.” After

working on the code and making adjustments to incorporate pointers into the implementation, A

asks the prompt question “How are the addresses and/or values changed inside the function?” To

this question, B replied “Well, since we’re passing the address, it’s changing the value at that

address?” and A confirmed that this is the case.

Language in Pre/Post-tests: Looking at the language used on the EYR pre- and post-tests for

Q6 and 7, B in this case was uncertain about pointers, remarking “Passing these values by pointer

has no actual impact on their original value (or I have it flipped in my brain and it’s the opposite)”

on the pre-test. After going through the intervention, the post-test had more certainty about the

subject, the explanations on the post-test say “functionF calls pig and fox by reference to change

the values at their addresses” for Q6 and “grape is called by reference and functionG changes the

value at that address. banana is called as a regular integer and, because there is no return on the

function, banana stays the same” for Q7.
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(321-354) Video Observations: This pair begins with B having code that compiles and runs

using PBV and calling the function twice to flip the numbers as opposed to using PBR. The audio

shows rich discussion from both partners, particularly around the concepts of pointers and how they

are PBR. Originally, when they get to the Pointers cards, A asks “Well where could they have been

created, I guess?” In response to this, B responds “So you can use a pointer if you want to just

pass the address of wherever the number is stored in your function.” This comment shows a basic

understanding of what was happening with pointers, but after realizing the rest of those cards were

about pointers and that B did not implement the solution using pointers, the pair decides to skip

over the cards. After finishing the rest of the cards, they inform the researcher that they had skipped

the sections irrelevant to their implementation choice. They are then informed to still go through

all of the cards and discuss the concepts if they had been implemented that way. This causes the

pair to go back and have more in depth discussion about pointers, with B getting the opportunity

to self explain that “So pointers point to the address. Like the location of wherever that value is

stored. So essentially it’s passing by reference.” Going back to discuss allows B to understand that

there’s a value associated with a pointer’s address, stating “So any time you need the value or need

to rewrite the value you would have to use the asterisk.” The arrays discussion focuses more on

syntax than the concepts.

Language in Pre/Post-tests: B in the pre-test for Q7 remarks “3. cow/duck not declared as

pointers − > 13, 10 are memory locations 4. Oof I don’t remember a lot about pointers I was

banking on a refresher 5. Let’s assume %’s are memory locations − > only reallocated w/o ok.”

However, after going through the intervention, for Q6, B mentions “passed as pointer” and for Q7

correctly notes that “banana/b doesn’t change (not pointer) grape/a changes.”

(105-344) Video Observations: In this case, B begins with code that does not compile. There

seems to be almost a learn through teaching experience for A. After prompting B asking what

the pointers are pointing to, A responds saying “Well they’re just kind of pointing to. . . kind of

the address of where the data is stored..” B has some confusion, questioning “Yeah. Can’t you

control whether it’s set to the address or the value?” A then explains things, stating “Well the

value is..What goes in the box it’s pointing to.” A appears to have a better grasp on pointers than

B, and through helping explain how the idea of pointers and them referring to addresses that can

hold and alter values, A was able to learn. This result back to Chi’s self-explanation study[30], with
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A getting learning gains from getting to explain the material.

Language in Pre/Post-tests: When referring to pointers during the intervention, A remarks

“they’re kind of pointing to..the address of where the data is stored” and that you “only use the

address with pointers.”

Even A’s explanations in the post-test for these two questions now reference (no pun in-

tended) how the function performs the operations and changes the values“via use of pass by reference

and pointers” and noting how for Q7 “It changes banana by pass by value” which would mean the

value of the variable named banana would not be changed in the main function.

8.2.3 HAG Pairs:

For the HAG pairs, the categories that developed were as follows:

• HAGs: These were pairs of students in which B came in with working code and the pair

performed the HAG protocol as expected, with A only providing confirmation feedback and

B testing their code.

• HAG Nots (Irrelevant Discussion): These were pairs of students who did not follow the

protocol and had discussions relating to programming concepts throughout the intervention,

but the discussions were irrelevant to the concepts addressed in the EYR pre-/post-tests.

• HAG Nots (Relevant Discussion): These were pairs of students who did not follow the

protocol and had discussions relating to programming concepts throughout the intervention

and those discussions were relevant to the concepts addressed in the EYR pre-/post-tests.

• Other: This was only one case where the audio was lost a few minutes into the video.

As with the MBF groups, each category begins with an overview of the qualitative results. The

columns for the HAG/HAG Nots were as follows:

• ID: This column provides the ID number randomly generated for the student.

• Misconceptions maintained: A checkmark indicates that the same misconceptions that

were present in the pre-test were also present in the post-test.

• Misconceptions reduced: A checkmark indicates that misconceptions that existed in the

pre-test were not observed in the post-test.
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• Sustained Language: A checkmark indicates that the language used on the post-test was

consistent with the language used in the pre-test. In most cases, this aligns with Miscon-

ceptions maintained, as misconceptions were coded based on the pre-test and post-test

language.

• Improved Language: A checkmark indicates that the language used on the post-test showed

improvement from the pre-test. In most cases, this aligns with Misconceptions reduced, as

misconceptions were coded based on the pre-test and post-test language. However, there are a

few instances where students did not exhibit observable misconceptions in the pre-test and also

did not exhibit misconceptions in the post-test, but the language on the post-test improved.

Improved language occurred when students: now use terminology/vocabulary correctly that

was not used or used incorrectly on the pre-test; correctly explain a concept that was incorrectly

explained in the pre-test.

• Support: A checkmark indicates that there is evidence in the audio recordings during the

intervention to support either the improved language/reduced misconceptions or the sustained

language/maintained misconceptions noted for the student.

• Code working: This is only relevant for B, as they were the students to bring up their

code during the intervention. A checkmark + indicates the student started the intervention

with code that compiled, executed, and used PBR to implement the solution. A checkmark

indicates the student started the intervention with code that would compile and run, but did

not fully have the functionality required or was implemented not following the instructions.

No checkmark indicates that the student came into the intervention without having working

code.

8.2.3.1 HAGs:

(319-189) Video Observations: This pair begins with B having code that compiles and runs.

They work through the test cases according to the protocol and successfully complete them all.

Language in Pre/Post-tests: Both A and B seem to keep the consistent belief that arrays do not

operate in a PBR manner for Q8 on the pre-test and post-test. B on the pre-test remarks “cow[0],

cow[1], and horse do not get assigned/returned new values in functionH...” for Q8 and on the post-

test says “shark[0], shark[1], and bear do not change..,” showing very similar language and thought
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Figure 8.9: Overview of HAGs

process. A on the pre-test for Q8 states “cow and horse are not changed;...” and on the post-test

for the same question says “Everything up to val is unchanged,...” Keeping these misconceptions is

expected with the pair completing the HAG protocol according to the protocol.

A exhibited changed language not supported by the intervention. For Q5 (arrays and swap

algorithm), A on the pre-test correctly believes that the values are swapped, saying “The function

called in line 11 reverses the order.” On the post-test, however, A changes the thought process,

stating “once function is returned values stay original.” A similar change (but from misconception

to correct reasoning) is seen on Q1, where A on the pre-test incorrectly states “The void function

swaps the values for x and y,...” but on the post-test, notices that “void function does not return

a value back.” B similarly has a change of reasoning on Q5 (arrays and swap algorithm), on the

pre-test incorrectly stating “In functionE we are simply being passed 4, 7 and then swapping the

values in the array x but not returning the array x, so cow[] stays the same,” while on the post-test

saying “simple swap function like question 1.” Analysis of the audio from the intervention provides

no evidence that the changes around Q1 and Q5 were related to the intervention.

(58-335) Video Observations: B begins with code that compiles and runs and the pair perform

the HAG condition as expected, with A providing test cases for B and responding with whether the

outputs were correct or not.

Language in Pre/Post-tests: The language from pre- to post-test supports this as well, where

we see in Q6 B saying “Values remain unchanged due to the ’&’ being run through the function”

and then in the post-test still believing “Original values of [variables] remain the same.”
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(256-35) Video Observations: This pair begins with B having code that compiles and runs using

PBV. After figuring out the instructions, the pair performs the HAG protocol as intended, with A

only providing confirmation feedback.

Language in Pre/Post-tests: A in this case maintains the same misconceptions from pre-test

to post-test. In Q1, A says on the pre-test “functionA sets the value of int x to the value of int

y. x is cat, y is dog.” On the post-test for the same question, A states “functionA is a value

swap function, and it swaps the values of lion & wolf.” This is the only notable misconception and

the language stays consistent as would be expected from someone performing the HAG duties as

intended. B maintains pointers misconceptions from pre-test to post-test for Q6 and Q7. On the

pre-test for Q6, B responds “functionF passes the address of cow and duck so after the function

passes, the values haven’t changed even though the location/address has” and on the post-test, the

explanation is “The functionF has pointer parameters so the values of pig and fox doesn’t change

but their addresses do.” Similarly, on Q7, the pre-test explanation is “functionG passes the address

of apple so in the function, the location containing the value is moved 3 places but the value stays

the same...” and the post-test explanation echoes this with “The value of grape doesn’t change since

the value itself wasn’t passed in functionG.” With B coming into the intervention with working code

not using pointers and A taking on the role of the HAG only providing confirmation feedback, this

consistency makes sense. B also had a consistent PBV misconception with Q1 on the pre-test to

post-test, saying on the pre-test “I can see in the main function, cat starts out to be 5 and dog 8. In

functionA, a temporary variable is assigned the value of x which is 5, so temp is 5 (line 3). In line

4, x is assigned the value of y so x is 8. In line 5, y is assigned the temp variable which is 5. So y is

5 when the function returns, x (which is the cat) is now 8 and y (the dog) is 5.” On the post-test,

B echoes this, stating “In functionA, a temp variable is assigned the value of a (line 3), a to b (line

4) and b to the temp variable (line 5). The function then returns wolf which is b so its 6.” B had

one instance of reducing misconceptions where there is no evidence in the intervention to support

the improvement on Q4. On the pre-test, B incorrectly said “In the functionD.” On the post-test,

B explained “The variable othervalue is assigned to the value of the a+b (line 3) in functionD so

it’s 2. value is still -5 since it remains in the main function.” Video analysis does not support the

intervention as the cause of the misconceptions reduced.

(331-141) Video Observations: In this case, B comes in with code that compiles and runs and
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the pair goes through the HAG protocol as intended.

Language in Pre/Post-tests: This pair shows an interesting example for language changes. A

exhibits improved language on Q5, relating to arrays. In the pre-test, A states “Since functionE

is void, the array is not changed.” In the post-test, however, A correctly explains “In functionE,

a[0] is temporarily moved to num, a[0] becomes 12, and a[1] becomes -4.” B on the other hand,

exhibits consistent language from pre-test to post-test with regards to the misconceptions seen. On

Q5, B’s pre-test response is “The function isn’t changing anything outside it’s scope.” and the

post-test response is “not a pointer to swap numbers.” On Q8, B says “They aren’t changing value

in the function because it is outside of the scope” and on the post-test, the response is “there are

no pointers.” In both of these questions, B had issues with PBR and believed that arrays did not

operate in a PBR manner. Considering this pair performed the HAG protocol as intended, this

case seems to show A gaining benefits from a phenomenon outside of the scope of the experiment

whereas B did not and performed as expected for a HAG participant (gaining no learning outcomes

and keeping consistent misconceptions from pre-test to post-test).

(59-359) Video Observations: B comes into the protocol with code that compiles and runs. Since

this is the case, B tests the code using A as a human autograder and it works as intended. Of note,

when looking at the actual code in the video, it can be seen that this code was not implemented in a

way that follows the instructions given on Day 1. B has included the print statements for the original

and modified values in the flipSign function, so that there is not genuinely a flip that is happening, it

is just temporarily happening during the flipSign function through a copy of the variables passed and

then once it returns to the main function, the change goes away. This phenomena is interesting as it

shows a result where confirmation feedback, commonly the feedback provided by autograders, can

lead to no benefits if the code produces the correct output but is not implemented in the intended

way. This result also supports previous findings where students are able to produce correct output

of code without fully understanding the concepts[105]. This shortcut and not following instructions

could have led the student to believe they had more of an understanding than they actually did and

perhaps cemented their misconceptions.

Language in Pre/Post-tests: B in this case did not have any language changes from pre-test

to post-test. The questions that were incorrectly answered on the post-test were not answered on

the pre-test, so it cannot be claimed that there was less understanding. A actually exhibits worse
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language in the post-test for Q3, saying “The final result is 5 because of the division inside of func-

tionC.” On the pre-test, A says “The final result is 0 is what will be printed because although the

math was multiplied correctly in the function, there is already an int num declared w/ the value

already set to 0.” There is no evidence in the audio transcript of the intervention to support this

acquisition of a misconception.

(212-183) Video Observations: This pair begins with B having code that does not compile

and attempting to implement the program using PBR. In this interesting case, B ends up actually

running the provided executable by accident as opposed to their own (which would not have worked

correctly). Since the executable worked as intended, the pair begins going through the test cases.

Language in Pre/Post-tests: Both partners maintain their misconceptions from pre-test to post-

test. A believes that arrays do not function in a PBR manner, saying on the pre-test for Q5 that

“The return statement does verify what is returned thus cow does not change” and on the post-test

“You didn’t return anything in the function so it didn’t change.” A has a similar consistent language

from pre-test to post-test for Q8, which is also incorrect. B’s language does not improve between

pre-test or post-test either.

(94-312) Video Observations: In this pair, B begins the protocol with code that compiles and

runs. The code worked as intended, but used PBV and twice called a flipSign function that returned

a single value instead of using PBR. The pair goes through the intervention with A taking on the

HAG as intended, making no relevant comments outside of providing inputs and outputs.

Language in Pre/Post-tests: A for the pre-test and post-test gave arithmetic rather than textual

explanations. Still, A exhibited the same misconceptions in the post-test as the pre-test. B shows

textual evidence of retaining the misconceptions from pre-test to post-test on questions surround-

ing arrays. For Q5, B’s explanation is “...functionE does not change the values of the elements in

cow. Thus, after functionE returns, cow is unchanged..” On the post-test for Q5, B still holds

this belief of arrays not being able to change values, stating “functionE is a void function. Since

no pointers were used, the zebra array is unchaged.” For Q8 on the pre-test (also arrays), B says

“...cow[2] = 4, 7 and horse = 3 both are unchanged after functionH ends” and then on the post-test

says “B/c of no pointers used in functionH, none of the changed values are permanent...” Working

with the HAG was not able to help B address misconceptions that were held before the intervention.
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(214-147) Video Observations: This pair begins with B having code that compiles and runs

using pointers. A played the role of the HAG providing confirmation feedback as the pair went

through the test cases as intended.

Language in Pre/Post-tests: For this pair, the pre-test and post-test for A were not available

as they did not complete one of the tests. However, for B, there were no improvements in lan-

guage. For most questions, there were no misconceptions exhibited by B, and for a few, there was

not enough data (either no response or no explanation on a pre-test or post-test) to observe benefits.

(Unknown-39) Video Observations: This pair begins with B having code that compiles and

runs using pointers but that has not implemented the looping functionality. After reading over the

instructions, B tests the first test case with A providing the confirmation feedback that the code

does not work (As there is no way to loop). B spends time trying to implement a do-while loop,

eventually asking A “Do you know if this is the right way to do a do-while loop?” B then adds

“Maybe I should just do a while loop.” B then edits the code to add the looping functionality.

After another round of testing, B realizes from the feedback that their code does not have the final

line telling the user the number of operations performed. B goes back and adds this functionality.

Following having a fully working program, the pair complete the intervention as intended with A

providing confirmation feedback as the HAG.

Language in Pre/Post-tests: B used pointers to implement the solution and had no misconcep-

tions on questions relating to pointers. B did have misconceptions about arrays, and since there was

no feedback relating to this concept, B maintained these misconceptions from the pre-test to the

post-test. On Q5, B’s explanation on the pre-test was “functionE switches the input array but does

not return it so the array cow stays as 4, 7” and on the post-test, B stated “functionE didn’t return

anything but 0.” This consistent belief that arrays do not have PBR functionality and particularly

because the functions were void is echoed in the post-test, which is to be expected considering B

only received confirmation feedback during the intervention.
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Figure 8.10: Overview of HAG Nots (Irrelevant Discussion)

8.2.3.2 HAG Nots (Irrelevant Discussion):

(Unknown-81) Video Observations: B begins having code that does not compile and spends

the session trying to fix the code. It did not seem as if this was done collaboratively, with instead

B debugging code and working through the issues.

Language in Pre/Post-tests: When actually looking at the pre- and post-test for this participant,

it seems as if the “improvement” of scores might have been somewhat superficial, as there were

questions that had numerous misconceptions on the pre-test that on the post-test just were not

answered, therefore we could not accurately measure or assume misconceptions for the problems in

the post-test.

(32-391) Video Observations: This pair had a technical issue and audio was lost for the video.

During the video, it is seen that B begins with code that does not compile and spends the protocol

time attempting to get the code to work. B attempted this using only one function, never declaring

a flipSign function. B did not produce testable code, even by the end of the intervention.

Language in Pre/Post-tests: B exhibits the same misconceptions and language about pointers

from pre-test to post-test. For Q6 in the pre-test, B says “The pointers didn’t change the values

of cow and duck.” Similarly, for Q6 in the post-test, B remarks “The function doesn’t affect the

values of pig and fox.” B retaining the same reasoning from pre-test to post-test is consistent with

the expectations of the HAG group. A loses a PBV misconception on the post-test for Q1, saying

“It does not change because it is a void function” whereas on the pre-test their explanation was

“The function switches the values of the inputs.” Without audio, there is no evidence to suggest

this benefit came from the protocol or from testing, since they never had code to test.
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(165-252) Video Observations: This pair begins with B having code that does not compile,

initially having tried to implement the program using PBV and returning two integer values from

the function. In the beginning, there are errors and A suggests moving the flipSign function to the

top of the code as opposed to the bottom, as the compiler is not reading that there is a function

before B is attempting to call it in main. The code then compiles but is not properly flipping

the signs of the integers. A notices “it’s not returning it right” and that there is an issue with

attempting to return the two variables. A then suggests a workaround, where B could “call [the

function] twice.” There is still another issue with return values that A suggests fixing by assigning

two new variables in main to equal flipSign. This solution allows B to get working code. From this

point on, the pair completes the test cases with A acting as the HAG.

Language in Pre/Post-tests: Although the pair manages to successfully get the program work-

ing through discussion and some pair programming dynamics, there is no language change for the

misconceptions exhibited in the pre-test.

(Unknown-131) Video Observations: In this case, the pair begins with B having code that does

not compile but attempts to implement the solution using pointers. Time is spent to determine the

appropriate algorithm to flip the signs of the integers. Eventually, B solves the problem by having

conditionals for if the values are above or below zero, and a different algorithm to flip it depending

on which value is input. From this point on, the pair completes the intervention with A taking on

the intended role of HAG.

Language in Pre/Post-tests: A for this pair is unknown so their pre-test/post-test data are not

available. B exhibits one improvement, on Q1, which relates to PBV. In the pre-test, B explains

“the function switches the values of x and y,...” but for the post-test, changes the explanation to

“No value is returned by the function.” There is no evidence to support this language improvement

in the protocol and B otherwise is consistent with the misconceptions and language observed.

(302-153) Video Observations: This pair begins with B having code that does not compile. The

video was noticeably shorter than other videos, meaning maybe it was a pair who arrived to class

late or had issues setting things up. B managed to get the program working using PBV and then

the pair performed a few test cases with A acting as the HAG as intended until time ran out for
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the intervention.

Language in Pre/Post-tests: A in this pair did not have any language improvements and retained

the misconceptions from pre-test to post-test. B did seem to improve with the concept of pointers

and them being PBR. On Q7, B said on the pre-test “The pointer is not changed but the static

variable is,” incorrectly believing that a PBV variable changes value and a PBR value does not. On

the post-test for this same question, B now says “Only the pointer was changed.” Video analysis

does not support the intervention as the cause of the misconceptions reduced.

(113-43) Video Observations: This pair begins with B having code that does not compile. B

had attempted to implement using a separate flipSign function, but could not get it figured out so

then decided to use just the main function to accomplish the task. They spend some of the protocol

time discussing the logistics of the protocol, not spending much time on the concepts of fixing the

code. They eventually manage to get the code compiling and running, but there is an issue with the

while loop. They test some cases and realize that it is going to be incorrect for all cases because of

this issue. B then spends some time trying to fix the code and never gets it working as intended.

A majority of time is spent doing the HAG protocol as expected, just with A telling B that their

output is incorrect.

Language in Pre/Post-tests: Both partners retain a majority of their misconceptions or do not

provide enough data to show improvement (no answers on pre-test or post-test for some questions).

A retains misconceptions on Q4 relating to scope, stating on the pre-test “Both now hold the same

value after the function is executed.” and on the post-test “Value and other value are both equal

to the value of the function.” Similarly, for Q5 that deals with arrays, A incorrectly reasons on

the pre-test “The array is never changed through the function” and then on the post-test says

“Because its the same as zebra.” One change for A that is not supported by the protocol is the

improvement on Q1 about PBV and the swap algorithm. On the pre-test, A remarks “The code

puts the value of x assigned to dog’s value before the value of y is changed.” However, on the

post-test, A says “The value of wolf doesn’t change.” No real reasoning is given behind why the

value does not change on the post-test, so it is not necessarily a language improvement, but A does

manage to correctly respond to Q1 on the post-test whereas on the pre-test the answer was incorrect.

(Unknown-390) Video Observations: The pair begins with B having code that compiles and

runs using PBV and calling the flipSign function twice with an integer return value. They then
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complete the protocol with A providing confirmation feedback as the HAG. The pair spends some

time attempting to fix unnecessary things, such as when the inputs have leading “0’s” and they

want to be able to see the leading 0’s in the output. These fixes were outside of the scope of the

assignment and also do not relate to any of the misconceptions addressed in the study.

Language in Pre/Post-tests: B in this case had an instance of misconceptions being reduced and

an instance of misconceptions being gained from pre-test to post-test, with neither supported by

the feedback received. On Q1, B incorrectly reasoned in the pre-test that “temp is set to hold what

value is in x or cat. Then x or cat is set to y or dog’s value, this changes temp’s value accordingly.

So now temp holds y or dog’s value. Then y or dog is set with the value in temp which has been

since set to y or dog’s value,” not realizing that PBV only passes a copy so this swap does not stay

after the function returns. On the post-test for Q1, B says “wolf will stay the same. the values

will not be changed by the function.” For Q5 about arrays, B correctly reasoned on the pre-test

that “temp is set to 4, the first value in the array.” On the post-test for this question, B says “any

modifications to the array only occur in the function.” What is interesting about these responses

is that the logic and heuristic used stays consistent from pre-test to post-test. It seems as if in the

pre-test, B believed that the swap algorithm could swap the actual values, which holds true for Q5

where arrays function like PBR, but not for Q1 where the variables are PBV. On the post-test,

the heuristic has changed to not believing variables passed into a function can change values unless

they are passed by pointers, which is true for Q1, but not for Q5, since arrays function in a similar

manner to pointers with regards to allowing variables to change values. Video analysis does not

support the intervention as the cause of the misconceptions reduced and gained.

(41-257) Video Observations: In this case, B comes into the protocol with code that compiles

but does not originally work exactly as intended. A notices and comments how “oh. . . it didn’t say

’you have performed 1 calculations”’ B then goes to fix the print statement. After spending time

discussing the print statements and loops, the pair eventually gets the code working as intended. At

this point, they mostly behave in the intended HAG nature for the rest of the intervention.

Language in Pre/Post-tests: B improves in the post-test on Q1 and Q7 when it comes to PBV

misconceptions. On the pre-test for Q1, B states “When the function is called temp is assigned 5

-cat then x is assigned y-value (8).” In the post-test, however, B says on Q1 “The function, func-

tionA switches the a and b values but without pointers or a return type it won’t change anything.”
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B similarly mentions pointers in the post-test of Q7, stating “grape is pointer and so its value is

changed in main, while banana is not and thus remains 6 when called in main.” Video analysis does

not support the intervention as the cause of the misconceptions reduced.

(338-246) Video Observations: In this pair, B begins in with code that does not compile. Some

time is spent to fix it, with A helping with the print and scan functions. After that part is fixed,

they test it and realize that there is not the final line printing out the total number of operations

performed and choose to go back and add this functionality. Eventually, the pair gets the code

working using PBV and calling the flipSign function twice. After that point, they go through the

HAG protocol as intended, with A providing confirmation feedback for the test cases.

Language in Pre/Post-tests: Both A and B exhibited the same misconceptions about arrays

(Q5 and Q8) on the pre-test and the post-test. B on the pre-test for Q5 comments “functionE

does not return anything to the main function, so cow is unaffected and remains the same as when

initialized” and on the post-test for Q5 says “The array zebra is not changed by the function, since

nothing is returned to the main function,” almost identical language. A similar lack of improvement

is seen on the language for Q8. A for Q8 on the pre-test explains “cow[0], cow[1] and horse are

established in the main function and never changed” and on the post-test echoes this with “shark

and bear are initialized as 6, 8 and 9 respectively and never changed.” Similar to B, A has a lack

of improvement on Q5 as well. B does seem to show improved certainty on questions relating to

pointers, as in Q6 on the pre-test, B remarks “This is a complete guess. I forgot how pointers work

in C. I think the * means what that points to changes.” On the post-test, B says for Q6 “The

function is affecting where the pointers are pointing, so the values change even though functionF

returns nothing.” There were no misconceptions for this question in either the pre-test or post-test,

and no evidence in the protocol to support this improvement. Video analysis does not support the

intervention as the cause of the misconceptions reduced. Based on the uncertainty exhibited in the

pre-test and that this was done the first week into the semester, it is possible B felt uncomfortable

with pointers after taking the pre-test and went home and reviewed them before coming to the

second day of the intervention, although it cannot be verified as the improvement was outside of the

scope of the experiment.
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8.2.3.3 HAG Nots (Relevant Discussion):

Figure 8.11: Overview of HAG NOTs (Relevant Discussion)

(305-220) Video Observations: This pair begins with B having code that does not compile

and using some syntax from a different programming language (C++). After getting the program

working using just one function and no flipSign function, the pair begins the HAG tests as intended.

At one point, there is discrepancy between B’s output and the expected output. B states “I never

even changed the variables.” “I just in the print statement said minus.” B continues “Maybe

because I never stored it as anything” “Cause I never actually changed the value.” A replies “Yeah.

You’re just printing the value. You never stored it anywhere.” The pair then continues and finishes

the intervention as expected.

Language in Pre/Post-tests: B has a improvement and less misconceptions for Q5 about arrays

after the intervention. On the pre-test, the response to Q5 is “array cow is unchanged because

FunctionE returns nothing.” On the post-test however, B now says “The two were flipped” and

chooses the correct answer. Based on the protocol observation, it is possible that the pairs discussion

about not changing the values and never storing them prompted B to realize that arrays do have the

ability to store and change values, supporting this improvement. A does not exhibit any language

improvement from pre-test to post-tests, and keeps the same misconceptions as expected from a

HAG A participant.

(229-239) Video Observations: In this case, B begins with code that compiles and runs, although
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there is not a separate flip function used as required in the instructions. After one test, it is noticed

that B also has not included a print statement to tell the user the number of operations performed.

B goes back and addresses this problem, and when trying to print count, includes an ampersand.

A comments “You don’t need the ampersand..” to which B remarks “You don’t? It wouldn’t work

without it for me, so..” After attempting to compile and it not working, the pair think about the

error and eventually B says “Let me just take out this right here. See if that fixes it.” B then

says “Oh yeah. It doesn’t always need it. Ok, you’re right,” all referring to the ampersand. After

successfully getting the code compiling, the pair goes through the test cases and A performs the

HAG role as intended.

Language in Pre/Post-tests: A in this case performed worse on Q6 and Q7 after the HAG pro-

tocol. On Q6 for the pre-test, A explained “The values get passed through functionF.” However, on

the post-test for Q6, A says “The addresses of the variables are being changed and not the actual

values.” Based on the protocol, there is evidence that attempting to fix the code and seeing the

error that arose when trying to put an ampersand before the count variable, A misconstrued this

as passing variables with the ampersand symbol does not allow for the value to be changed.

(101-45) Video Observations: This pair begins with B having code that does not compile. A

helps B get the code working through the use of pointers, reminding of syntax such as “make sure to

dereference” and “then you can send the address.” After attempting to compile, there is one more

error, which B realizes how to fix, stating “Oh! Is it because I have this as an int and is it supposed

to return something?” A tells B “You could either do void or you could do return 0.” The pair

soon gets the program working using pointers and an integer flipSign function that returns 0. After

attempting to test a case, they realize the functionality to loop the program was not implemented.

The pair fixes this issue after some time and working in a pair programming dynamic. They then

complete the HAG test cases with A providing confirmation feedback as the HAG.

Language in Pre/Post-tests: Neither partner exhibited many misconceptions in the pre-test for

this pair. The only observable one comes from B and is on Q1, relating to PBV. In the pre-test,

B’s explanation is “... a temp variable is used to switch the values of x and y...” Similarly, in

the post-test, B has the same misconception, stating “Wolf is set to equal the variable a in func-

tionA.” This pair did seem to benefit from working together and the social elements of discussing

programming concepts to get the code working correctly, but since both partners had correct reason-
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ing from the start, there was not enough room to see improved learning outcomes based on language.

(306-240) Video Observations: This pair begins with B having code that compiles but does not

run properly and attempts to return two integers. They spend some time working on this issue,

eventually realizing it was an issue with return values and implementing the function using PBV and

calling the function twice, fixing some issues with the number of decimal places they were printing

along the way. After the code works properly, the pair performs the HAG protocol as intended, with

A providing the expected confirmation feedback.

Language in Pre/Post-tests: Both A and B exhibited the same misconceptions about arrays

(Q5 and Q8) on the pre-test and the post-test. A on the pre-test for Q5 says “The array x[2] is

not returned to the main function or assigned to cow.” and on the post-test says “array a in func-

tionE is not returned or assigned to array zebra,” showing almost identical language. A exhibited

a similar language having misconceptions for the other array question. B on Q8 for the pre-test

says “The numbers assigned stay the same...” and on the post-test for the same question says “All

values remain as set...” For Q5, B answered incorrectly but gave the reasoning “FunctionE changes

2 values of an array using a temp int.” On the post-test, however, B reasons for Q5 that “The array

is set to those values and never changed.” Based on answering the question wrong in the pre-test

and the reasoning given for Q8, it seems likely that B was exhibiting misconception language for Q5

and might have thought that the function changes the values only within the scope of that function,

which would explain why B chose the response that the values were unchanged once the function

ended. The pair showed language supporting that the confirmation feedback of autograders was not

able to address their misconceptions.

(110-263) Video Observations: This pair begins with B having code that compiles and runs but

uses only the main function and conditionals. They perform the HAG protocol as intended with

A providing confirmation feedback. After going through multiple cases, B realizes that their count

operation was not properly implemented. The pair discuss how to fix it, and B successfully gets this

implemented. After this point, the pair finishes the test cases with A as the HAG.

Language in Pre/Post-tests: A has no noticeable change of misconceptions or language based on

the unanswered questions in the pre-test and post-test. B shows improvement for both Q1 and Q6 in

the post-test. For Q1, B originally says “In the function functionA, the variable temp is assigned the
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value of the first variable, x, or in this case cat. cat is assigned the value of dog and dog is assigned

the value of temp. cat is assigned to 8, the value of dog,” walking through the swap algorithm and

answering that the value of cat switches. In the post-test, B says “The function doesn’t replace the

value of wolf itself.” For Q6, B on the pre-test first says “They remain the same because the function

returns nothing,” thinking that pointers do not operate in a PBR manner when the function is void.

On the post-test, B explains “Pointers allow for variables to be changed directly.” Video analysis

does not support the intervention as the cause of the misconceptions reduced.

(170-201) Video Observations: This pair begins with B having code that compiles and runs

implemented using pointers. A assumes the role of the HAG and provides confirmation feedback for

B throughout the test cases. There were a few of the trickier test cases that do not seem to work for

B’s program originally. When the group finished all of the cases, they went back to see what was

wrong in the code. B shows the code to A and explains how the algorithm was very simple and so

B would be unsure how to change anything. At this time, it is visible that B had an integer return

type for the flipSign function although it used pointers and had that function return 0.

Language in Pre/Post-tests: B exhibited no language changes between pre-test and post-test

and also had no notable misconceptions. A actually gained misconceptions about pointers on the

post-test. For Q6 on the pre-test, A’s explanation was “Values 13 and 10 are put in functionF as x

and y respectively. The lines then do simple math to change their values since x and y are pointers.”

On the post-test for the same question, A claimed “There is not a return in functionF.” Considering

A correctly answered Q7 (also relating to pointers) on the pre-test, this conceptual change seems to

have come from the intervention. I would attribute it to A getting to look over B’s working code

and noticing that B used an integer return type function as opposed to a void, causing A to develop

the heuristic and misconception that pointers cannot change the values of variables if used in a void

function.

(296-67) Video Observations: This pair begins with B having code that does not compile, but

has attempted to implement the solution using pointers. They attempt to fix the code together, and

after realizing it is not compiling correctly, A suggests “Maybe because um the pointer thing,..” B

then decides to stop attempting PBR and try to implement the solution using PBV. Through this

process, they are able to get code that compiles and prints the original values, but the modified

(flipped) values are not printing correctly. The pair attempts to return two values from the flipSign
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function, and also are fundamentally incorrect in thinking that PBV variables can operate in a PBR

manner. After some time, A wonders “I forget if you can return two values.” B responds with

“well, even if it was, I feel like the first would be right but it’s not.” They continue to attempt to

fix B’s code, without producing testable code by the end of the intervention.

Language in Pre/Post-tests: A maintains consistent language and PBV misconceptions for Q7,

saying on the pre-test “Apple and orange are set equal to new values in the void functionG after they

are sent from the main function” and on the post-test “The value of grape is sent as a pointer to the

function and b is sent as a variable to the void function.” A even calls out a difference in the post-

test of grape being sent as a pointer and b being sent as a variable, but maintains the misconception

that b, which is PBV, is manipulated as if it were PBR. On Q1, A gains a PBV misconception on

the post-test, originally saying “cat = 5 is input into the void function from where it was defined

in main function, cat remains equal to 5.” but then on the post-test saying “In the functionA, the

values of wolf and lion are switched.” It is possible that working with B and never getting the

correct answer caused a confusion about PBV, but there is no direct evidence in the transcript of

the HAG protocol. B actually gains misconceptions relating to pointers that are supported by the

protocol data. In the pre-test for Q6, B says “13 and 10 are put into the functionF and used in their

respective equations 13 - 6 = 7 and 10 * 2 = 20 and since the values are pointers they point back to

the address of cows and ducks.” On the post-test, however, B explains “the values of pig and fox are

arranged in the equations in functionF but there is no return statement so the original values are

input.” For Q7, B on the pre-test correctly responds “Orange stays the same as the value initialized

in the main while apple changes because it is addressed to *x.” Then on the post-test, B has the

incorrect response that “the address stays the same for the pointer grape so its value does...” The

discussion of pointers being what caused B’s program not to compile and then the pair managing to

get compiling (albeit not working properly) code after switching from implementing with pointers

seems to have ingrained in the mind of B that pointers do not allow values to be changed, only

addresses. B also maintains misconceptions relating to return values, saying on the pre-test for Q4

“Since functionD returns a number after number is initially declared the original value disappears,

leaving the resent [value] to be the same as othernumber.” and then on the post-test for the same

question saying “Value is changed in functionD from -5 to 2 and otherval is equal to the return value.”
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Table 8.19: Q6 Protocol Followers Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
True MBF (12) 9 0 100 0.03/0.75
HAGs A (7) 2 2 0 NA/0
HAGs B (9) 1 1 0 NA/0

Table 8.20: Q7 Protocol Followers Overview
Section Tot. Pre Misc Tot. Post Mis % Changed Paired T-test p-value/

Difference of Means
True MBF (12) 13 2 85 0.03/0.92
HAGs A (7) 4 6 -50 0.09/-0.29
HAGs B (9) 3 4 -33 0.17/-0.11

8.2.3.4 Other:

(54-264) Video Observations: This video lost sound a few minutes in, making analysis difficult.

I can see from the video that B is attempting to fix code and it is possible that A is helping with

this, but without the audio it is impossible to say for sure.

Language in Pre/Post-tests: With respect to language, B did not show any improvement from

pre to post-test. A on the other hand mentions pointers in both the pre and post-test for Q6, but

in the pre-test says that the values cannot change because they are passed by pointers whereas in

the post-test mentions that passing by pointers allows for the change of the values in a void function.

8.2.4 Protocol Followers

After completing the thematic analysis, it was noted that the themes could be broken into

subjects who adhered to the protocol and those who strayed away. For the MBF technique, the

Conversational (Semi On Prompt) and the Conversational (On Prompt) groups were the

two groups who did engage in the MBF technique as expected. For the HAG protocol, the HAGs

were the group the adhered to the protocol and participated in providing/receiving confirmation

feedback as expected. Additional quantitative analysis was done to observe the effects of the inter-

vention when using the protocol follower groups for Q6 and Q7, the questions relating to PBR and

PBV where the MBF prompts and intervention showed the most promising results.

When looking at the paired t-tests seen in Tables 8.19-8.20, it is clear that the True MBFs
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Table 8.21: Q6 T-Tests and Difference of Means Between Groups for Protocol Followers
True MBFs (12)

HAGs A (7) 0.03/0.75
HAGs B (9) 0.03/0.75

Table 8.22: Q7 T-Tests and Difference of Means Between Groups for Protocol Followers
True MBFs (12)

HAGs A (7) 0.009/1.20
HAGs B (9) 0.02/1.03

significantly improved from pre-test to post-test on Q6 and Q7 and the HAGs did not. Using the t-

tests to compare between groups as shown in Tables 8.21-8.22, the results show that the True MBFs

significantly outperformed the HAGs regardless of whether the HAG participant was providing or

receiving feedback on these questions.

Table 8.23: ANOVA for Q6 and Q7 for Protocol Follower Partner As
Question Condition (True MBF vs. True HAGs) Test (Pre. vs. Post) Test x Condition
Q6 0.48 0.34 0.34
Q7 0.66 0.39 0.39

8.3 Discussion

Through this intervention, I have been able to show benefits that MBF provides, such

as reducing the overall misconceptions significantly from pre-test to post-test, and specifically the

benefits for questions relating to parameter passing with and without the use of pointers (PBV versus

PBR). I have also found that the greater adherence to the protocol results in greater reduction in

misconceptions for the MBF protocol, the hypothesized results. That is to say, the MBF groups that

are conversational and on prompt result in more improved learning outcomes and the HAG groups

that are true HAGs and do not engage in addition discussion result in more maintained outcomes

as would be expected from a control group. This section describes the benefits seen in the MBF

group, discusses how the emergent themes from the MBF and HAG groups affects the results, and

gives concluding opinions on this study and future work that could be conducted.
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Table 8.24: ANOVA for Q6 and Q7 for Protocol Follower Partner Bs
Question Condition (True MBF vs. True HAGs) Test (Pre. vs. Post) Test x Condition
Q6 0.04 0.007 0.007
Q7 0.18 0.007 0.007

8.3.1 MBF vs. HAG Quantitative Improved Learning Outcomes

Quantitatively, I found significant improvement for the misconception based feedback (MBF)

groups when comparing the number of post-test misconceptions to the number of pre-test miscon-

ceptions, and the results were stronger when comparing the “true MBF” (Conversational Semi

On-Prompt and Conversational On-Prompt to the “true HAG” (HAGs). The concepts that were

evaluated were PBV vs. PBR, Scope, Arrays, and Pointers. I found that MBF provided significantly

greater improved learning outcomes than the human autograder (HAG) groups for questions and

concepts relating to pointers and their use in PBR parameter passing. These quantitative learning

outcomes are promising and suggest additional exploratory analysis for the MBF technique. Al-

though only the PBR vs. PBV concepts showed statistically significant differences/improvements

for the technique, the other concepts were either understood well (minimal misconceptions exhib-

ited in the pre-test) or the EYR questions were not sufficiently challenging to have students exhibit

multiple misconceptions on the questions. In practice, the design of the EYR pre and post-test

questions, the lab assignments, and the prompts all rely on the instructor’s knowledge of students’

prior experience. This is and would be an iterative process that instructors would refine over time.

Future iterations of the technique could work on question design for the EYR pre/post-tests that

offer sufficient challenge to elicit multiple misconceptions on every question, which could result in

statistical significance for concepts outside of parameter passing using PBR and PBV.

8.3.2 How MBF Categories Affect Results

From my final study, four categories of MBF emerged: Non-Conversational; Conversational

(Off-Prompt); Conversational (Semi On-Prompt); and Conversational (On Prompt). Below, I dis-

cuss how these categories affected results and give suggestions for ideal pairings based on these

results.
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8.3.2.1 Non-Conversational:

This group comprised three pairs. For the most part, these groups saw the least amount

of improvement in learning outcomes. Overall, there were no cases of misconceptions introduced

between the partners, so although B was doing the majority of the talking and sometimes said

incorrect things, there was no evidence of these incorrect beliefs being exhibited by A in the post-

tests. All but one of the non-conversational pairs started with either code that did not compile or

code that did not attempt to implement PBR. There were a few noticeable times that people in this

group were able to gain benefits, either B from self explanation[30] or A from listening to B and

picking up on the language and heuristics surrounding PBR, Pointers, and Scope. This group had

multiple instances of Support within the intervention for the improved language, as seen in Figure

8.5.

These students did not follow the MBF protocol and thus did not incorporate the core

feedback element of the technique as A is not providing feedback so much as being an interviewer for

B. Any benefits from this group came from the prompts allowing A or B to realize some information

they either had never learned (missing knowledge) or had forgotten (inert knowledge)[158]. To

address this issue, instructors may wish to develop short videos walking through the MBF protocol

to ensure students are not falling into this non-conversational group or hold training sessions where

teaching assistants can help walk students through the protocol.

8.3.2.2 Conversational (Off-Prompt):

This group was comprised of only two pairs. Both of the pairs started out with code that

did not work. The partners both were involved in speaking, but there was not much in depth

discussion. A benefit noticed was that one of the pairs went into a pair programming dynamic and

successfully were able to complete the code using arrays by the time the intervention ended. This

group did not experience learning gains, but there were no misconceptions introduced as a result of

the Conversational (Off-Prompt) theme of the MBF intervention.

The improvements in this group cannot be directly be attributed to the intervention as they

mostly did not follow the given MBF prompts. Overall, this might be the least ideal pairing to

have, as the students are essentially not participating in the technique and unable to address the

misconceptions the prompts are developed to address. Instructors would want to find ways to avoid
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this situation when using this technique, and although it may not always be feasible in larger classes

to have knowledge of all of the students’ comprehension of the concepts, a potential aid could be

changing partners with frequency (i.e. every week or every time MBF is used for an assignment).

Similar approaches of training sessions or videos could be adopted to solve this problem.

8.3.2.3 Conversational (Semi On-Prompt):

Only one pair that fell into this category. The pair begins with B having implemented the

solution using PBV, but they then work together to attempt to use PBR while going through the

prompts. The pair work together guided by the prompts when relevant to better understand the

concepts while also using feedback from the compiler and internet to clear things up. This was

evident in the improved learning outcomes exhibited by B in the post-test. The improvements here

can directly trace back to the conversation and feedback that occurred during the MBF intervention,

as described in the Support column of Figure 8.7. There was no introduction of misconceptions

observable in this group. This group still does exhibit some pointer syntax issues while trying to

work with the code, blindly applying operators (&, *) as seen in[43, 105].

Overall, this category had many positive outcomes from the intervention. Although this

was not the intended way to utilize the MBF technique, having students guided by the prompts

when relevant to them working on part of implementing a programming assignment as opposed to

discussing them directly in the order they are given seems a promising way to benefit from this

technique.

8.3.2.4 Conversational (On Prompt):

This category was comprised of five pairs. Of these five, there were various levels of com-

pletion of the assignment from not completed (3/5) to completed using PBV (1/5) to completed

using pointers (1/5). Most of the pairs spent a significant amount of time discussing the Pointers

cards, a side effect of them being the first set of cards that really delve into a topic that is commonly

found to be difficult for students learning to program[105, 43, 78]. This group had the most relevant

discussions, which seemed to help with improving their learning outcomes. Self-explanation appears

to have helped many of the students in these pairs and also there were times when A was able to

clear up misconceptions that B had about pointers when B had code that was not working. The

prompts allowed groups to work as if they had hypothetically used pointers and some even decided
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to attempt to implement the code using them as a result of the prompts. The discussion led by the

prompts allowed for pairs to address most of the misconceptions for the topics that were discussed

at length. Here it is also noticed that there is no introduction of misconceptions. The benefits

gained from this group can also be traced back to the discussions that were happening during the

intervention.

This group serves as a model for how the intervention was intended to work. It is promising

that almost half of the pairs fell into either this category or the Conversational (Semi On-Prompt)

category. This category represents a majority of the quantitative and qualitative improvement in

learning outcomes observed to result from the technique, which helps to support its effectiveness.

8.3.3 How HAG Categories Affect Results

8.3.3.1 HAGs:

The pairs who performed the HAG protocol as expected had the hypothesized results for

a control group, in that they maintained their misconceptions. In these pairs, there was noticeable

evidence of the partners retaining their misconceptions and keeping consistent language for those

misconceptions, as seen in the Sustained Language and Support columns of Figure 8.9. All of

the groups showed some instance of the misconceptions and language staying consistent. In the four

instances of change in misconception counts that were not hypothesized and there was not support

in the video analysis of the protocol, one of the potential uncontrolled reasons mentioned at the end

of section 8.2.2 could have occurred, such as one of the partners reviewing or gaining clarity from

another source between the days of the intervention, or the act of participating in the experiment

triggered the students to think about the concepts and perform better or worse on the post-test.

8.3.3.2 HAG Nots (Irrelevant Discussion):

The pairs who were in the HAG group but had discussions about programming concepts not

relating to those addressed in the pre-/post-tests performed very similarly to the HAGs. All but one

of these cases exhibited the hypothesized results on a majority of the questions with misconceptions,

having consistent misconceptions and language from the pre-test to post-test, and Support, as seen

in Figure 8.10 based on them being a control group. In the one case where the results were opposite

to the hypothesis, the swap algorithm seemed to play a role in confusing the student, as also seen
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with one of the students in the HAGs. This student had correctly answered Q1 on the pre-test and

incorrectly answered Q5, but on the post-test had the reverse effect. As with the other student who

showed this pattern, there was consistency in the belief that the swap algorithm would change the

values regardless of PBV/PBR or that the algorithm would not be able to change the values. The

other few instances in this HAG Nots group where there is improved language, there is no evidence

in the intervention and one of the possible explanations for unsupported results could apply. In

future work, students could directly be asked whether they engaged in additional review or practice

since the pre-test. One case showed some evidence that there was review based on the language

exhibited in the pre-test “This is a complete guess. I forgot how pointers work in C. I think the *

means what that points to changes.” and then the post-test “The function is affecting where the

pointers are pointing, so the values change even though functionF returns nothing.” The change

in the certainty from pre-test to post-test suggests that some phenomenon occurred to make this

student certain. This group generally did not show evidence of benefiting from the intervention, and

instead, retained the misconceptions and language as hypothesized for only confirmation feedback

or discussion irrelevant to the topics being tested.

8.3.3.3 HAG Nots (Relevant Discussion):

This group showed the most dynamic range of results. Of the seven pairs who were cat-

egorized this way, there were three cases where the relevant discussion led to evidence of gained

misconceptions and language that did not improve, one case where it led to evidence of fewer mis-

conceptions and improved language, two cases where there were no pre-test misconceptions on the

topic discussed during the intervention, and one case where there is an improvement with no sup-

porting evidence from the intervention. These discussions made it difficult to clearly evaluate the

actual differences between autograders and MBF, which are the two scenarios intended to be com-

pared. This group shows how adding the human element of the autograder can result in unexpected

differences. The group not only left the script of the expected HAG protocol, but had conversations

that seem to have affected their responses on the post-tests. As seen in the results, this can either

work out to the benefit or detriment to learning. It does not provide as much consistent benefit as

the structured and guided nature of the MBF technique.
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8.4 Conclusions

None of the MBF categories caused students to have negative learning outcomes that were

supported by the qualitative analysis of the video transcripts. Even in the least ideal scenarios

(Non-Conversational and Conversational (Off-Prompt)), there were no instances of observable mis-

conceptions that were introduced based on the conversations that occurred during the intervention.

The two ideal groups (Conversational (Semi On-Prompt) and Conversational (On Prompt) exhibited

significant improvements both quantitatively and qualitatively. Students were able to reduce their

misconceptions in the post-test from the pre-test and the language used to explain the answers on

the post-test improved from the pre-test, which can be in many cases directly traced back to the

conversations students engaged in during the intervention. One suggestion would be to not have

pairs where neither partner had much understanding of the concepts coming into the activity. The

one group that I observed this with had very little discussion and no learning gains were particularly

possible. Any other pairing seemed to be able to provide benefits, regardless of which partner had

a better grasp on concepts coming into the intervention. Instructors could feasibly randomly assign

pairs. Another suggestion would be to encourage students to implement the solution to an assign-

ment in different ways and then to assign partners to students who used different implementation

methods. The ideal situation allows for students to be able to use the prompts to actually engage

in discussion, so instructors may wish to redesign the prompts or how the technique is administered

to foster an environment more conducive to discussion. This could be made possible by having

both partners display their code instead of one, and allowing them to both respond to the provided

prompts.

8.4.1 MBF vs HAG Improved Language

When looking at the language between the two groups, the MBF group exhibited more

improved language that was supported by their intervention than the HAG groups. Even in instances

where the HAG groups did have conversations relating to programming concepts (HAG NOTs),

they either discussed things irrelevant to the concepts addressed during the pre-tests and post-

tests (HAG NOTs (Irrelevant Discussion)) or discussed concepts addressed during these tests but

those discussion led to as many cases of gained misconceptions as reduced (HAG NOTs (Relevant

Discussion)). The MBF groups, particularly the conversational semi on-prompt and on prompt, had
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relevant discussions guided and prompted by the MBF technique, and then used what was learned

from these discussions to exhibit improved language on the post-tests, usually also being accompanied

with a reduction in misconceptions. MBF participants also had no instances of language getting

worse. The HAGs group in general maintained the same language from the pre-test to the post-test.

The few instances where the language improved on the post-test were mostly not supported by the

conversations in the interventions, and there were several instances where participants had worse

language on the post-test that was supported by the pairs having unprompted discussions during

the intervention. Overall, as hypothesized, the MBF group, which was intended to have discussion

based on misconceptions, exhibited a better grasp of the concepts as evidenced by the language used

compared to the HAG group.

8.4.2 Limitations

This work was conducted with one course at a specific type of institution, student popu-

lation, concepts, and misconceptions searched for, so claims cannot be generalized for other envi-

ronments. Replicating this study changing factors such as the demographics of the students, type

of institutions, concepts/misconceptions observed, and the potential to completely randomize both

the treatment groups and ensure the students are randomly assigned with similar levels would be

beneficial to increase the generalizability of results. Although this work is motivated by the desire to

help bridge the gap for underrepresented groups (URGs) in CS, this study was limited in not having

a proper population to test the benefits for URGs. Proper usage of this methodology would allow

practitioners who want to replicate the study to develop the materials based on the population they

are studying. Replicating the study at minority serving institutions (MSIs), such as HBCUs and

Hispanic Serving Institutions (HSIs), would provide data to aid in generalizing the benefits to URGs.

Another limitation is the human element of the autograders. Although this methodology choice was

made to control for the instruction style, as introducing a third variable of feedback being provided

by a human for one condition and a machine for the other would have confounded the study design,

having a human simulate an autograder did result in instances of discussions not intended for the

protocol. Replicating the study with an autograder software used as the control would address this

limitation and provide a direct comparison to what is a more realistic alternative. In the future, a

study could be designed to test feedback style across instruction style (machine designed to provide

MBF vs. machine autograder giving confirmation feedback). Another study could examine the ben-
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efits of the prompts themselves versus the interactive nature by having a computer provide just the

prompts to respond to in one group and in another having a computer provide the prompts and also

interact/have discussion with the student. This would help to tease apart some of the differences of

the benefits, such as how important is the social constructivism aspect of having a peer to discuss

the prompts vs. being able to discuss and go through the process with a machine. The design

of the experiment being carried out over two days is another limitation to consider. Students had

the opportunity to review material between the first (pre-test) and second (post-test) day of the

experiment. However, students were not instructed to review between the days and all students had

the same opportunity to review. A final limitation to mention exists in the methodology. Some

students did not answer all of the questions in either the pre-test or post-test or did not provide

explanations. Although I attempted to correct for this in my closed coding, there was still some

noise in calculating the change of misconceptions that existed from the pre-test to the post-test.

Replicating the study with a larger study group would help to provide more data and validate the

results of thee study.

8.4.3 Future Work

This work leads to promising scenarios for future work. One noteworthy observation was

how many pairs in the MBF intervention spent much more time on the Pointers cards than the Array

cards. While this did lead to significant results in the Pointers category, it would be worthwhile to

examine Arrays or other concepts and how successful the technique is at addressing misconceptions

in those categories. Based on analyzing the audio and video of the interventions, I believe that

the reason pairs spent more time on Pointers is that the prompts were given in a way so that the

Pointers card pile was before the Arrays pile. I believe that the Pointers prompts in many cases

provided enough fodder for discussion that pairs did not have enough time to adequately discuss the

Arrays cards. To rectify this, the index cards could be placed on the desk beforehand so that they

are presented in no set order. Another option is developing a virtual version of this technique. This

version would allow students to choose the topics/prompts they want to go through and instructors

could assign certain topics to students to focus on particular concepts/misconceptions. To introduce

a more engaging element to this modification of the technique, it could be developed as a Choose

Your Own Adventure game. A virtual version would also make it easier to have the prompts not feel

as if they are interview questions, as both students could display the prompts as well as their code.
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This would help address the issue of students falling into the Non-Conversational category. However,

the virtual version might reduce the level of human interaction, which was shown to benefit not only

the students who followed the MBF protocol, but also the students who did not adhere to the HAG

protocol and had discussions.

Another consideration would be to experiment with interleaving the MBF technique with

an autograder. There were noticeable benefits that came from students who decided to test aspects

of their code while working. This relates back to previous work that shows the benefits of interacting

with the compiler[105, 80]. In this version of the technique, students would be encouraged to test

out via the use of an autograder their various ways of implementing the solution to a programming

problem while discussing the concepts. The autograder could help correct some of the uncertainty,

as having the confirmation feedback supporting their self explanations and MBF dialogue would

strengthen their conceptions. For this particular lab exercise, this would allow students to see if the

signs had been flipped for various test cases and also work on the concepts of scope while ensuring

that their counting operation functioned properly. The autograder would need to prepared in a way

to ensure that correct solutions could not exist without a proper understanding. A consideration in a

similar vein is to integrate the use of MBF prompts into an autograder/compiler. This would lead to

a more refined and peer-based version of Gusakuma’s misconception-based compiler feedback[80]. In

a similar augmented version, MBF could be tweaked to provide immediate feedback while students

performed pair programming[214]. As Epstein found in[59], immediate feedback shows learning

benefits for students, and a study comparing MBF giving immediate feedback to MBF as evaluated

in my dissertation would help tease apart which benefits can be attributed to when the feedback is

received versus benefits that are tied to students being able to construct and take ownership of their

own code. Of interest to researchers wishing to replicate this MBF study would be using actual

autograders as opposed to the human autograder approach used in this study. This would allow the

experiment to eliminate the variable nature of humans being able to have conversations that have

been shown in this study to potentially be helpful or detrimental to their learning.

Future work also exists outside of the scope of this one intervention I have developed and

evaluated. Looking back to my formative studies, there are multiple suggestions that would be worth

examining in the future. It was noted in my coding in the wild study in Chapter 5 that students

exhibited difficulties with arrays and using them to change values in different functions, at times

just deciding to avoid the use of arrays totally. These difficulties persisted in my final evaluative

185



study, and with many students not discussing the Arrays prompts as often, the misconceptions

were not able to be addressed. Instructors may wish to ensure that students gain experience with

non-standard cases with arrays and the idea of pass by reference semantics, allowing them to work

through the difficulties and ensuring that they understand the concepts. A particular case that

would be valuable to address is when the swap algorithm is present. I observed multiple instances

in my final study of students being confused by the use of swap algorithm, either thinking that it

always swaps the actual values or never does. Since arrays behave in a PBR manner, this adds an

additional layer of complexity which potentially causes cognitive overload.

Another common difficulty seen in the coding in the wild study was the blind application

of syntax when it came to pointers. This was echoed in my final study as there still seemed to

be instances of students not understanding when to use a “&” versus “*.” To address this issue,

instructors may wish to provide additional opportunities for students to work with pointers and

allow the students to discuss, explain, and at times justify why certain syntax is used in certain

situations. This opportunity to have conversations and address the misconceptions early on has

proven to offer the benefit of addressing misconceptions through the MBF group. Although the

developed prompts did attempt to address dereferencing (*) vs. passing an address (&), a simple

but potentially effective change would be to explicitly use the symbols while having the students

discuss the use of each when first learning pointers.

A general recommendation for these misconceptions and difficulties students are facing while

learning CS is to ensure instructors are aware of them so that they can be properly addressed. As

mentioned in related worked, misconceptions are persistent and resistant to change, meaning that

just telling students they are wrong as a way to address the misconceptions will not be effective. Stu-

dents need to be provided the opportunities to form their own correct schemas through experiences.

This constructivist approach, whether through active learning, discovery learning, inquiry-based

learning, or some other form of constructivism-based pedagogical approach, is the way that has

shown to effectively address misconceptions.

8.4.4 Contributions and Final Thoughts

This dissertation presents one quasi-experimental study of how MBF can provide learning outcome

benefits for students who have misconceptions, particularly related to PBR and pointers. From

a more generalized idea, instructors could develop prompts using a different lab assignment that
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focuses on different concepts. For example, a programming assignment to implement a bank that

provided loans to people based on various interest rates could be the problem. This assignment

could be broken down into the types of bank accounts, the algorithms/functions for how to calculate

interest, and keeping track of the total calculations performed. Following a similar structure as

seen in 7.1, instructors could develop questions that first focus on ensuring students understand the

syntax of the functions and concepts necessary to implement the solution. The questions would then

allow the students to analyze and apply those concepts through discussion, and at the end, offering

them the opportunity to evaluate the decisions they either have made or would have made.

This dissertation presents the motivation, background, and evaluation to support a new

active learning technique to use in CS classrooms. I have established a “recipe”/methodology to

develop and implement an active learning technique centered around misconceptions in CS topics.

Through designing and evaluating my MBF technique, I provide a pedagogical technique to address

the rising enrollments of CS courses without sacrificing conceptual learning benefits. An active

learning technique allows for everyone to benefit, but can particularly benefit underrepresented

groups (URGs), who can be hurt most by approaches that focus on limiting enrollment or on quick

feedback rather than quality. As seen in the work by [82] and [126], active learning has been shown

to provide benefits to all, but have particular benefits to URGs. MBF offers students a way to learn

and gain conceptual benefit from peers, similar to peer instruction[44], one of the active learning

techniques with demonstrated benefits for URGs. Although my evaluation of MBF did not have

the demographic variety to look at effects on URGs and so direct benefit cannot be claimed, it

is likely that techniques such as MBF would help to bridge the gap of URGs underperforming in

CS courses. Addressing these difficulties that are common in introductory CS courses can help

students complete the first two years of programs, at which point there is a better chance of them

staying in the major[142]. I hope to continue work to provide all students, and hopefully especially

URGs, tools to grasp the content and make them feel comfortable to avoid the identity issues

associated with navigating a field that doesn’t have much representation. After having authored

with two of my committee members a book chapter on how active learning has been and can be

applied in a CS context, the development of this MBF technique offers a novel approach to not only

CS active learning, but STEM learning in general. This reusable development of active learning

technique can be applied to STEM courses that have some form of activity associated with them. For

chemistry, physics, or biology, it could be a laboratory assignment similar to a programming lab. For
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mathematics, it could be a set of problems that relate to certain concepts and misconceptions. The

benefits of developing a structured set of prompts based on the misconceptions and how knowledge

of novices learn combined with allowing students to have a discourse to address those misconceptions

should theoretically apply across disciplines. These are issues that students continue to face while

navigating through learning how to program and STEM courses. I intend to continue researching to

bridge the gap that exists not just in CS, but in STEM fields in general, with a desire to intersect

discipline-based education research with science policy. This dissertation is my first step on the way

towards this goal.
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X Do not go back X                                                                                     Next    

Name: 
 
Start Time __________      End Time ____________ 
 
Instructions: For the following questions, you will be asked to either choose 
between two answer choices or provide your own answer. Following each answer, 
you should describe your thought process in arriving at your answer.  
 
You may assume that all code snippets compile. Do not go back after answering a 
question.  
 
An example is provided below. 
 

Example: Consider the following code snippet below: 
 

1. int main(){ 
2.   int number, sign; 
3.   printf(“Please type in a number: “); 
4.   scanf (“%d”, &number); 
5.   if (number < 0) 
6.      sign = -1; 
7.   else 
8.      sign = 1; 
9.   printf (“Sign = %i\n”, sign); 
10.   return 0; 
11. } 

 
Assume the user inputs the value “3.” What is the result of the execution of this 
code?  
 
a. “Sign is -1” 
b. “Sign is 1” 
 

Explain your reasoning below: 
 
In this example, I can see that there are “if” and “else” statements in lines 5 and 7. 
The “number” variable that is given by the user is checked to see if it is less than 0 in 
line 5. Since we are assuming the number is 3, it is not less than 0 and does not meet 
the “if” condition. So we look at the else condition and assign the value 1 to the 
variable sign, which is then printed.  
 
 
 
 



X Do not go back X                                                                                     Next    

1. Consider the following code snippet: 

 
1. int x; 
2. x = 5 % 3; 
3. printf (“x is %d”, x); 

 

What is the result of the execution of this code?  
 
 
 
 

Explain your reasoning below: 
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2. Consider the following code snippet below: 
 

1. int i, j, k, m; 
2. i = 10; 
3. j = 10; 
4. k = i++; 
5. m = ++j; 

 

What are the values of the variables k and m after this code executes?  
 
k: 
 
m: 
 
Explain your reasoning below: 
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3. Consider the following snippet of code: 

 
1. int Scores[3];  
2.  
3. Scores[0] = 1; 
4. Scores[1] = 2; 
5. Scores[2] = 3; 
6.  
7. if (Scores[1 + 1] == 2 ) 
8.    printf (“This answer.”); 
9. else 
10.    printf (“That answer.”);  

 

What is the result of the execution of this code?  
 
a. This answer. 
b. That answer. 
 
Explain your reasoning below: 
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4. Consider the following snippet of code: 

 
1. int x; 
2. x = 6; 
3.  
4. if (x = 7) 
5.     printf (“first choice”); 
6. else 
7.     printf (“second choice”); 

 
What is the result of the execution of this code?  
 
 
 

Explain your reasoning below: 
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5. Consider the following code snippet: 

 
1. int x, y; 
2. x = 13; 
3. y = 21; 
4.  
5. if (20 > y - x) 
6.    printf (“Thing One”); 
7. else 
8.    printf (“Thing Two”); 

 

What is the result of the execution of this code?  
 
a. Thing One 
b. Thing Two 
 

Explain your reasoning below:  
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6. Consider the following code snippet below: 
 

1. int cow, moon, star; 
2. cow = 4; 
3. moon = 1; 
4.  
5. if ((cow == 1 + 5) && (7 > moon)) { 
6.    star =0;     
7. } 
8.  
9. else { 
10.    star = 10; 
11. } 

 
What is the value of the variable star after this code executes?  
 

a. 0 
b. 10 

 
Explain your reasoning below: 
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7. Consider the following code segment: 
 

1. int a, b, c, d; 
2. a = 5;  
3. b = 3; 
4. c = 6; 
5. d = 2; 
6. if (a < d)  
7.     b = c; 
8. if (d< b) 
9.     c = a; 
10. d = b; 

 
What are the values of b, c, and d after this code executes? 
 
b = 
c =  
d = 
 
Explain your reasoning below: 
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8. Consider the following code  
 

1. int fish, dog, i; 
2. fish = 4; 
3. dog = 2; 
4. for (i = 0; i < 3; i++) { 
5.    fish++; 
6.    dog--; 
7.    if (dog < 0) { 
8.        int temp; 
9.        temp = dog; 
10.        dog = fish; 
11.        fish = temp; 
12.    } 
13. } 

 
At the end of this code, what are the values of the variables fish and dog? 
 
fish: 
dog: 
 

Explain your reasoning below: 
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9. Consider the following function definition: 
 
int measure (double x, double y);  
 
What type of value does this function return? 
 
a. double 
b. integer 
 
Explain your reasoning below: 
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10. Consider the following function definition: 

 
int measure (char x, char y);  
 
What type of variable does this function take in as a parameter? 
 
a. character 
b. integer 
 
Explain your reasoning below: 
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11. Consider the following code segment: 

1. void swap (int x, int y){ 
2.   int temp; 
3.   temp = x; 
4.   x = y; 
5.   y = temp; 
6.   return; 
7. }  
8.  
9. int main( ) { 
10.   int cat, dog; 
11.   cat=5; 
12.   dog =8; 
13.   swap (cat, dog); 
14.   return 0; 
15. } 

 
What is the value of variable cat after the swap function returns? 
 
a. 5 
b. 8 
 
Explain your reasoning below: 
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12. Consider the following code segment: 

 
1. int subtract (int x, int y){ 
2.   int answer; 
3.   answer = x -y; 
4.   return answer; 
5. }  
6.  
7. int main( ) { 
8.   int cat, dog, solution1, solution2; 
9.   cat=5; 
10.   dog =8; 
11.   solution1 = subtract (cat, dog); 
12.   solution2 = subtract (dog, cat); 
13.   printf (“Solution1 is %d\n”, solution1); 
14.   printf (“Solution2 is %d”, solution2); 
15.   return 0; 
16. } 

 
What is the result of the execution of this code?  
 
 
 
 

Explain your reasoning below: 
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13. Consider the following code snippet: 

 
1. int volume (int height, int width, int length) { 
2.    int solution; 
3.    solution = height * width * length; 
4.    return solution; 
5. } 
6.  
7.  
8. int main() { 
9. int x, y, z, vol; 
10. x = 3; 
11. y = 2; 
12. z = 4;  
13. vol = volume (z, x, y);    
14. return 0; 
15. } 

 
In this example, what is the value of the variable width in the volume function? 
 
width:  
 

Explain your reasoning below: 
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14. Considering the following code snippet below: 

 
1. void findArea(int length, int width) { 
2. int area; 
3. area = length * width; 
4. return; 
5. } 
6.  
7. int main () { 
8. int x, y, area; 
9. x = 4; 
10. y = 8; 
11. area = 0; 
12. findArea(x, y); 
13. printf(“The area of the shape is %d”, area); 
14. return 0; 
15. } 

 
What is the result of the execution of this code?  
 
 

Explain your reasoning below: 
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15. Consider the following code snippet below: 

 
1. void findArea(int length, int width) { 
2. int area; 
3. area = length * width; 
4. printf (“The area of the shape is %d\n”, area); 
5. return; 
6. } 
7.  
8. int main () { 
9. int x, y; 
10. x = 3; 
11. y = 5; 
12. findArea(4, 6); 
13. findArea(x, y); 
14. return 0; 
15. } 

 
What is the result of the execution of this code?  
 
 
 

Explain your reasoning below: 
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16. Consider the following code snippet below: 

 
1. int sum (int num1, int num2) { 
2.   int answer; 
3.   answer = num2 + num1; 
4.   return answer; 
5. } 
6.  
7. int main () { 
8.   int solution; 
9.   solution = sum (9, 4); 
10.   solution = sum (5, 3); 
11.   printf(“The solution is %d”, solution); 
12.   return 0; 
13. } 

 
What is the result of the execution of this code?  
 
 
 
Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



X Do not go back X                                                                                     Next    

17. Consider the following code segment below: 

 
1. void subtract (int x, int y){ 
2.   int answer; 
3.   answer = x -y ; 
4.   return; 
5. }  
6.  
7. int main( ) { 
8.   int answer; 
9.   answer = 7; 
10.   subtract (8, 5); 
11.   printf (“Answer is %d”, answer); 
12.   return 0; 
13. } 

 
What is the result of the execution of this code?  
 
a. Answer is 3 
b. Answer is 7 
 
Explain your reasoning below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



X Do not go back X                                                                                     Next    

18. Consider the following code segment below: 

 
1. int answer = 7; 
2.  
3. int subtract(int x, int y){ 
4.   int answer; 
5.   answer = x -y  ; 
6.   return answer; 
7. }  
8.  
9. int main( ) { 
10.   int cat, dog, solution; 
11.   cat = 5; 
12.   dog = 8; 
13.   solution = subtract (cat, dog); 
14.   printf (“Answer is %d”, answer); 
15.   return 0; 
16. } 

 
What is the result of the execution of this code?   
 
a. Answer is -3 
b. Answer is 7 
 
Explain your reasoning below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



X Do not go back X                                                                                     Next    

19. Consider the following code snippet below: 

 
1. int maximum (int test[3]) { 
2.    int max, i; 
3.    max = test[0]; 
4.    for (i = 1; i < 3; i++) { 
5.        if (test[i] > max) 
6.            max = test[i]; 
7.        } 
8.    return max; 
9. } 
10.  
11. int main () { 
12.    int answer; 
13.    int num[3] = {13, 31, 19}; 
14.    answer = maximum (num); 
15.    printf (“The maximum value is %d”, answer); 
16.    return 0; 
17. } 

 
What is the result of the execution of this code?  
 
 
 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



X Do not go back X                                                                                     Next    

20. Consider the following code snippet below: 

 
1. int add (int x, int y){ 
2.   int answer; 
3.   answer = x +y  ; 
4.   return answer; 
5. }  
6.  
7. int main( ) { 
8.   int cat, dog, solution; 
9.   cat = 5; 
10.   dog = 8; 
11.   add(cat, dog); 
12.   printf(“Solution is %d”, solution); 
13.   return 0; 
14. } 

 

What is the result of the execution of this code?  
 
 

Explain your reasoning below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



X Do not go back X                                                                                     Next    

21. Consider the following code segment: 

 
1. int add(int a, int b) { 
2.   int sum, answer; 
3.   answer = 7; 
4.   sum = a + b; 
5.   return sum; 
6. } 
7.  
8. int main( ) { 
9.   int x, y, answer; 
10.   x = 4; 
11.   y = 9; 
12.   answer = add (x, y); 
13.   return 0; 
14. } 

 

What values does the variable named answer take on over the course of this 
program’s execution? Use program lines to make it clear what part you’re 
discussing. Explain your reasoning behind each value: 
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Instructions:	Run	the	executable	using	the	command:	
	

• ./splay	
	
Try	out	each	of	the	operations	to	get	a	feel	for	the	program/s	functionality.	
	
Now	recreate	the	functionality	of	the	executable,	using	separate	functions	to	
accomplish	each	operation	(subtraction,	addition,	flip	sign).	
	
Remember	to	think	aloud	and	explain	what	you	are	doing	while	working	through	
the	task.	
	
Below	is	an	example	of		a	code	snippet	that	you	can	use	to	get	you	started	on	the	
framework:	
	

1. #include	<stdio.h> 
 

2. int	main(void){ 
 

3. printf("Hello,	world\n"); 
 

4. /* 
5. We	get	you	started	with	a	simple	call	to	an	addition	function 
6. */ 

 
7. //printf("%d	+	%d		=	%d\n",	x,	y,	add(x,y)); 

 
8. }	

	
NOTE:	Your	print	statements	should	be	in	the	main	function	and	not	in	the	separate	functions.	
Your	call	to	the	addition	function	does	not	have	to	look	exactly	like	line	7.	 
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Name: 
 

Start Time __________      End Time ____________ 

 

Instructions: For the following questions, you will be asked to either choose 
between two possible answers or to provide your own answer. Following each 
question, you should describe your thought process in arriving at your answer.  
 

You may assume that all code snippets compile. Please answer the questions in 
order. Do not return to earlier questions.  
 

An example is provided below. 
 

Example: Consider the following code snippet below: 
 

1. int main(){ 
2.   int number; 
3.   printf(“Please type in a number: “); 
4.   scanf (“%d”, &number); 
5.   if (number % 2 == 0) 
6.      printf(“This is even”); 
7.   else 
8.      printf(“This is odd”); 
9.   return 0; 
10. } 

 

Assume the user inputs the value “3.” What is the result of the execution of this 
code?  
 

a. “This is even” 
b. “This is odd” 

 

Explain your reasoning below: 
 

In this example, I can see that there are “if” and “else” statements in lines 5 and 7. 

The expression number % 2 is checked to see if it is equal to 0 in line 5. Since we are 

assuming the number is 3, number % 2 is not equal to 0 and does not meet the “if” 

condition. So we look at the else condition and see that what should be printed is 

“This is odd.” 
 

 
 
 
 
 
 
 



 
 
1. Consider the following code segment: 
 

1. void functionA (int x, int y){ 
2.    int temp; 
3.       temp = x; 
4.       x = y; 
5.       y = temp; 
6.       return; 
7. }  
8.  
9. int main( ) { 
10.    int cat, dog; 
11.       cat=5; 
12.       dog =8; 
13.       functionA (cat, dog); 
14.       return 0; 
15. } 

 

What is the value of variable cat after the functionA function returns? 

 

a. 5 
b. 8 

 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
2. Consider the following code segment: 
 

1. int functionB (int x, int y){ 
2.      x = x / y; 
3.      return x; 
4. }  
5.  
6. int main( ) { 
7.   int moon, cat, number; 
8.      moon = 12; 
9.      cat = 4; 
10.      number = functionB (moon, cat); 
11.      printf (“The value of number is %d”, number); 
12.      return 0; 
13. } 

 

What will be printed from line 11? 

 

a. The value of number is 12 
b. The value of number is 3 

 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
3. Consider the following code segment: 
 

1. void functionC (int a, int b) { 
2.    int num; 
3.       num = a * b; 
4.       return; 
5. } 
6.  
7. int main () { 
8.    int x, y, num; 
9.       x = 4; 
10.       y = 8; 
11.       num = 0; 
12.       functionC (x, y); 
13.       printf(“The final result is %d”, num); 
14.       return 0; 
15. } 

 

What will be printed from line 13?  
 
 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
4. Consider the following code segment: 
 

1. int functionD (int x, int y){ 
2.   int number; 
3.      number = x - y; 
4.      return number; 
5. }  
6.  
7. int main( ) { 
8.   int number, other_number; 
9.      number = 7; 
10.      other_number = functionD (8, 5); 
11.      printf  (“Number is %d.  Other number is %d.”, number, other_number); 
12.      return 0; 
13. } 

 

What will be printed from line 11? 

 

Number is _____.  Other number is _____. 
 
 

Explain your reasoning below:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
5. Consider the following code segment: 
 

1. void functionE (int x[2]){ 
2.   int temp; 
3.      temp = x[0]; 
4.      x[0] = x[1]; 
5.      x[1] = temp; 
6.      return; 
7. }  
8.  
9. int main( ) { 
10.   int cow[2] = {4, 7}; 
11.      functionE (cow); 
12.      return 0; 
13. } 

 

What is the value of array cow after functionE returns? 

 

a. {4, 7} 
b. {7, 4} 

 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
6. Consider the following code segment: 
 

1. void functionF (int* x, int* y){ 
2.   *x = *x - 6; 
3.   *y = *y * 2; 
4. }  
5.  
6. int main( ) { 
7.   int cow = 13; 
8.   int duck = 10; 
9.      functionF (&cow, &duck); 
10.      return 0; 
11. } 

 

What are the values of variables cow and duck after functionF returns? 
 

       cow: 
 

duck: 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
7. Consider the following code segment: 
 

1. void functionG (int* x, int y){ 
2.   *x = *x + y; 
3.    y = y / y; 
4. }  
5.  
6. int main( ) { 
7.   int apple = 7; 
8.   int orange = 3; 
9.      functionG (&apple, orange); 

     return 0; 
10. } 

 

What are the values of variables apple and orange after functionG returns? 
 

       apple: 
 

orange: 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
8. Consider the following code segment: 
 

1. int functionH (int x[2], int y){ 
2.      y = x[0]; 
3.      x[1] = y * 2; 
4.      return x[0]; 
5. }  
6.  
7. int main( ) { 
8.   int cow[2] = {4, 7}; 
9.   int horse = 3; 
10.   int num; 
11.      num = functionH (cow, horse); 

     return 0; 
12. } 

 

What is the values of the variables cow[0], cow[1], horse, and num after funcionH 
returns? 

 

       cow[0]: 
        
       cow[1]: 
 
       horse: 
 
       num: 
 

Explain your reasoning below: 
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Name: 
 
Partner A or B: 
 
Start Time __________      End Time ____________ 

 

Instructions: For the following questions, you will be asked to either choose 
between two answer choices or provide your own answer. Following each answer, 
you should describe your thought process in arriving at your answer.  
 

You may assume that all code snippets compile. Do not go back after answering a 
question.  
 

An example is provided below. 
 

Example: Consider the following code snippet below: 
 

a. int main(){ 
b.   int number; 
c.   printf(“Please type in a number: “); 
d.   scanf (“%d”, &number); 
e.   if (number % 2 == 0) 
f.      printf(“This is even”); 
g.   else 
h.      printf(“This is odd”); 
i.   return 0; 
j. } 
 

 

Assume the user inputs the value “3.” What is the result of the execution of this 
code?  
 

a. “This is even” 
b. “This is odd” 

 

Explain your reasoning below: 
 

In this example, I can see that there are “if” and “else” statements in lines 5 and 7. 
The expression number % 2 is checked to see if it is equal to 0 in line 5. Since we are 
assuming the number is 3, number % 2 is not equal to 0 and does not meet the “if” 
condition. So we look at the else condition and see that what should be printed is 
“This is odd.” 
 
 

 
 
 
 



 
 
1. Consider the following code segment: 
 

1. void functionA (int a, int b){ 
2.    int num; 
3.       num = a; 
4.       a = b; 
5.       b = num; 
6.       return; 
7. }  
8.  
9. int main( ) { 
10.    int lion, wolf; 
11.       lion = -6; 
12.       wolf = 2; 
13.       functionA (lion, wolf); 
14.       return 0; 
15. } 

 

What is the value of variable wolf after the functionA function returns? 

 

a. -6 
b. 2 

 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
2. Consider the following code segment: 
 

1. int functionB (int a, int b){ 
2.    a = a * b; 
3.    return a; 
4. }  
5.  
6. int main( ) { 
7.    int sky, cloud, value; 
8.       sky = -10; 
9.       cloud = 3; 
10.       value = functionB (sky, cloud); 
11.       printf (“The value of value is %d”, value); 
12.       return 0; 
13. } 

 

What will be printed on line 11? 

 

a. The value of value is -30 
b. The value of value is -10 

 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
3. Consider the following code segment: 
 

1. void functionC (int x, int y) { 
2.    int num; 
3.       num = x / y; 
4.       return; 
5. } 
6.  
7. int main () { 
8.    int a, b, val; 
9.       a = -10; 
10.       b = -2; 
11.       val = 0; 
12.       functionC (a, b); 
13.       printf(“The final result is %d”, val); 
14.       return 0; 
15. } 

 

What will be printed from line 13?  
 
 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
4. Consider the following code segment: 
 

1. int functionD (int a, int b){ 
2.    int value; 
3.       value = a + b; 
4.       return value; 
5. }  
6.  
7. int main( ) { 
8.    int value, other_value; 
9.       value = -5; 
10.       other_value = functionD (-4, 6); 
11.       printf (“Value is %d.  Other value is %d”, value, other_value); 
12.   return 0; 
13. } 

 

What will be printed from line 11?  
 

Value is _____.  Other value is _____. 
 

 

Explain your reasoning below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
5. Consider the following code segment: 
 

1. void functionE (int a[2]){ 
2.    int num; 
3.       num = a[0]; 
4.       a[0] = a[1]; 
5.       a[1] = num; 
6. }  
7.  
8. int main( ) { 
9.    int zebra[2] = {-4, 12}; 
10.       functionE (zebra); 

      return 0; 
11. } 

 

What is the value of array cow after the FunctionE returns? 

 

a. {12, -4} 
b. {-4, 12} 

 

Explain your reasoning below: 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
6. Consider the following code segment: 
 

1. void functionF (int* a, int* b){ 
2.   *a = *a + 4; 
3.   *b = *b / 2; 
4. }  
5.  
6. int main( ) { 
7.   int pig = -3; 
8.   int fox = 8; 
9.   functionF (&pig, &fox); 

  return 0; 
10. } 

 

What are the values of variables pig and fox after the functionF returns? 
 

       pig: 
 

fox: 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
7. Consider the following code segment: 
 

1. void functionG (int* a, int b){ 
2.   *a = *a - b; 
3.    b = b * b; 
4. }  
5.  
6. int main( ) { 
7.    int grape = -4; 
8.    int banana = 6; 
9.       functionG (&grape, banana); 

      return 0; 
10. } 

 

What are the values of variables grape and banana after functionG returns? 
 

        grape: 
 

 banana: 
 

Explain your reasoning below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
8. Consider the following code segment: 
 

1. int functionH (int a[2], int b){ 
2.    b = a[0]; 
3.    a[1] = b / 2; 
4.    return a[0]; 
5. }  
6.  
7. int main( ) { 
8.    int shark[2] = {6, -8}; 
9.    int bear = 9; 
10.    int val; 
11.       val = method (shark, bear); 

      return 0; 
12. } 

 

What is the values of the variables shark[0], shark[1], bear, and val after 
functionH returns? 

 

       shark[0]: 
        
       shark[1]: 
 
       bear: 
 
       val: 
 

Explain your reasoning below: 
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Instructions:  

1. Log in using your Clemson credentials. 

2. Have your RecordMyDesktop set up for you by one of the TAs or researchers. 

3. Open a Terminal window (ask for help if needed). 

4. Type mkdir CPSC1020 and press Enter 

5. Type cd CPSC1020 and press Enter 

6. Type mkdir Lab1 and press Enter 

7. Type cp ~cazembk/public_html/flip . and press Enter. 

8. Run the executable by typing ./flip and press Enter. 

  

Try out the operation a few times to get a feel for the program’s functionality. 

  

Now recreate the functionality of the executable, using a SEPARATE flipSign function to 

accomplish the flipping operation. You may use any editor you are comfortable using.  

Your program should be named userID_flip.c. 

For example, my program would be named cazembk_flip.c 

   

Below is an example of a code snippet that you can use to get you started: 

  

 #include <stdio.h> 

 int main(void) { 

     printf("Hello, world\n"); 

   return 0; 

} 

  

NOTE: Your print statements should be in the main function and not in the flipSign function.  

 

 

 

 

 



 

Submitting your work: 

You will submit your video file of your recorded screen.  

To submit your file, you should: 

 

1. Go to a Terminal window (ask for help if needed). 

2. Type cd and press Enter. 

3. Type ls *.ogv and press Enter. 

4. You should see a file named out.ogv or similar. 

5. Type mv out.ogv yourusername.ogv and press Enter. 

a. For example, I would type mv out.ogv cazembk.ogv and press Enter. 

6. Type ls *.ogv and press Enter to confirm that you have renamed the file. 

7. Type cp yourusername.ogv /group/vidcap/fall2019 and press Enter to 

submit the file. 

a. For example, I would type  

cp cazembk.ogv /group/vidcap/fall2019 and press Enter. 
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Misconception-Based Feedback Instructions 

 

• A TA or researcher will set up Partner B’s machine to capture video & audio. 

• Partner B should wear the microphone headset as demonstrated by the researcher. 

• Partner A should hold the card deck. 

• Partner B should bring up the code solution from the last Thursday’s lab. 

• Work ONLY on Partner B’s machine (Partner A should not even log in). 

• Discuss how Partner B implemented the solution. 

• Partner A should use the cards, in the order provided, to guide the discussion. 

• Partner B may choose to modify their code as the discussion progresses. 

• The interaction should be conversational, with Partner A and Partner B both sharing their 

knowledge, opinions, strategies, etc.  Feel free to use the index cards for notes or sketches to 

aid your discussion. 

• If a question on a particular card does not elicit responses from either Partner, Partner A should 

move on to the next question. 

 

 

Submitting your work: 

You will submit your video file of your recorded screen that includes the audio of your 

discussions.  

To submit your file, you should: 

1. Have a researcher or TA help you stop and save your video file 

2. Go to a Terminal window (ask for help if needed). 

3. Type cd and press Enter. 

4. Type ls *.ogv and press Enter. 

5. You should see a file named out.ogv or similar. 

6. Type mv out.ogv PartnerBusername-PartnerAusername.ogv and press 

Enter. 

a. For example, if I was Partner B and Dr. Kraemer was Partner A, I would type 

 mv out.ogv cazembk-etkraem.ogv and press Enter. 

6. Type ls *.ogv and press Enter to confirm that you have renamed the file. 

7. Type cp RenamedFileName.ogv /group/vidcap/fall2019 and press Enter 

to submit the file. 

a. For example, I would type  

cp cazembk-etkraem.ogv /group/vidcap/fall2019 and press Enter. 

 



Human Autograder Instructions 

 

• A TA or researcher will set up Partner B’s machine to capture video & audio. 

• Partner B should wear the microphone headset as demonstrated by the researcher. 

• Partner A should hold the card deck. 

• Partner B should bring up the code solution from the last Thursday’s lab. Be sure that the code 

compiles and that it executes, takes in inputs, and produces outputs. 

• If Partner B does not have code that is ready to test, Partner B should comment out lines to 

simplify the program to a point where it is testable. 

• Work ONLY on Partner B’s machine (Partner A should not even log in). 

• Partner A will read the following test cases, in order, and Partner B will enter the inputs 

provided. 

• Partner A will display what is the back of the card, compare with Partner B’s screen output and 

say either  “Correct” or “Incorrect.” 

• Partner B may choose to modify their code based on the test results. 

 

Submitting your work: 

You will submit your video file of your recorded screen that includes the audio of your 

discussions.  

To submit your file, you should: 

 

1. Have a researcher or TA help you stop and save your video file 

2. Go to a Terminal window (ask for help if needed). 

3. Type cd and press Enter. 

4. Type ls *.ogv and press Enter. 

5. You should see a file named out.ogv or similar. 

6. Type mv out.ogv PartnerBusername-PartnerAusername.ogv and press 

Enter. 

a. For example, if I was Partner B and Dr. Kraemer was Partner A, I would type 

 mv out.ogv cazembk-etkraem.ogv and press Enter. 

7. Type ls *.ogv and press Enter to confirm that you have renamed the file. 

8. Type cp RenamedFileName.ogv /group/vidcap/fall2019 and press Enter 

to submit the file. 

a. For example, I would type  

cp cazembk-etkraem.ogv /group/vidcap/fall2019 and press Enter. 
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Partner A should hold the card deck.   

Partner B should bring up the code solution from the last Thursday’s lab. 

Discuss how Partner B implemented the solution.   

Partner A should use the cards, in the order provided, to guide the discussion.   

Partner B may choose to modify their code as the discussion progresses. 

The interaction should be conversational, with Partner A and Partner B both sharing their knowledge, 

opinions, strategies, etc.  Feel free to use the index cards for notes or sketches to aid your discussion. 

If a question on a particular card does not elicit responses from either Partner, Partner A should move 

on to the next question. 

 

Overall Program Cards 

1. What is the overall flow of control of the program? 

2. Can you walk through the code/function?  

a. Where do you create variables?  

b. What are their types? 

Variables/Values 

3. How do you get values from the user? Where/How do you display those values on the screen? 

4. Where do your variables change values? 

Function Call/Parameter Passing/Return Values 

5. How do you send values (pass parameters) to the flip function?  

6. How do you flip those values?   

7. What is the return type of your flip function?  

8. Do you return values from the flip function? How? Where are they stored? 

9. How are the flipped values accessed from the main function? 

10. Reflect on your solution – did you use pass-by-value? Pass-by-reference?  Something else? 

a. If pass-by-reference, did you use arrays or pointers? 

i. If arrays, Partner A should read from Arrays card deck now 

ii. If pointers, Partner A should read from Pointers card deck now 

iii. If neither and time remains, Partners A and B should look through the Arrays 

and Pointers cards and discuss how the solution might have been 

implemented using the questions as a guide. 

Pointers Cards: 

1. Where are the pointers created? 

2. What are they pointing to? How did the pointer take on that value? 

3. Where are pointers dereferenced? 



4. Do you pass an address or a value as a parameter in the function call? What’s the difference? 

What is the type of the parameter/s passed into your function?  

5. How are the addresses and their values accessed and/or changed inside the function?   

6. Are any values in the main function modified as a result of the flip function’s execution? How 

does that happen? 

7. How are pointers and references related? Different? 

8. Do you create any reference variables? 

9. Where are the reference variables created? 

10. Where are they assigned a value?  What do they refer to? 

11. Do you use reference variables in passing parameters to a function?   

12. How are the reference variables used inside the flip function? 

13. Are any values returned from the function by using a reference variable? 

14. If Partner B used pointers and time remains, Partners A and B should go through the Arrays 

cards and discuss how the solution might have been implemented using the questions as a 

guide. If you have gone through both Pointers and Arrays, move on to Operation Count and 

Code Cleanup Cards. 

 

Arrays Cards: 

1. Where is the array declared? 

2. What values are stored in the array? Where in the code does that happen? 

3. How many elements can the array contain? 

4. What are the indices of the array? What values are at each index location? 

5. Do you pass an array element as a parameter? If so, how? 

6. Do you pass the array as a parameter? If so, how? 

7. Are the values in the array different after the function call returns? How does that happen? 

8. If Partner B used arrays and time remains, Partners A and B should go through the Pointers 
cards and discuss how the solution might have been implemented using the questions as a 
guide. If you have gone through both Pointers and Arrays, move on to Operation Count and 
Code Cleanup Cards. 

 

 

Operation Count 

1. How do you know when to stop running the program?   

2. How do you keep track of how many times you performed the flip operation? 

3. How and when do you display the count of how many times you ran the flip operation? 

 



Code Cleanup 

1. Do you use all of the variables you’ve declared? 

2. Do you ever declare two variables of the same name in different functions?  

a. If yes, how does assigning a value to one affect the other?  

b. If no, how would assigning a value to one affect the other if you did declare two 

variables of the same name in different functions? 

3. Do you ever use global variables?  

a. Where were they initialized?  

b. Where were they used?  

c. How did their values change? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Test Inputs (HAGs) 

 

Partner A should hold the card deck.   

Partner B should bring up the code solution from the last Thursday’s lab. Be sure that the code 

compiles and that it executes, takes in inputs, and produces outputs. 

If Partner B does not have code that is ready to test, Partner B should comment out lines to simplify 

the program to a point where it is testable. 

Partner A will read the following test cases, in order, and Partner B will enter the inputs provided. 

Partner A will display what is the back of the card, compare with Partner B’s screen output and say 

either  “Correct” or “Incorrect.” 

 

Test Case 1: 

Please enter the first integer: 3 

Please enter the second integer: 7 

Would you like to continue? Press 1 for yes, any other number for no: 4 

Output Case 1: 

The original values are 3 and 7 

The modified values are –3 and –7 

Thanks! You have performed 1 calculations. 

Test Case 2: 

Please enter the first integer: -385 

Please enter the second integer: 12 

Would you like to continue? Press 1 for yes, any other number for no: -56 

Output Case 2: 

The original values are -385 and 12 

The modified values are 385 and –12 

Thanks! You have performed 1 calculations. 

 

 

 



Test Case 3: 

Please enter the first integer: 0 

Please enter the second integer: -8462 

Would you like to continue? Press 1 for yes, any other number for no: 473 

Output Case 3: 

The original values are 0 and -8462 

The modified values are 0 and 8462 

Thanks! You have performed 1 calculations. 

 

Test Case 4: 

Please enter the first integer: -0 

Please enter the second integer: 0 

Would you like to continue? Press 1 for yes, any other number for no: 0 

Output Case 4: 

The original values are 0 and 0 

The modified values are 0 and 0 

Thanks! You have performed 1 calculations. 

 

Test Case 5: 

Please enter the first integer: -592 

Please enter the second integer: 70000000000 

Would you like to continue? Press 1 for yes, any other number for no: 797 

Output Case 5: 

The original values are -592 and 1280523264 

The modified values are 592 and -128052364 

Thanks! You have performed 1 calculations. 

 

 

 



Test Case 6: 

Please enter the first integer: -93 

Please enter the second integer: -17  

Would you like to continue? Press 1 for yes, any other number for no: 4 

Output Case 6: 

The original values are -93 and -17 

The modified values are 93 and 17 

Thanks! You have performed 1 calculations. 

 

 

Test Case 7: 

Please enter the first integer: 99 

Please enter the second integer: 56871 

Would you like to continue? Press 1 for yes, any other number for no: -3 

Output Case 7: 

The original values are 99 and 56871 

The modified values are -99 and -56871 

Thanks! You have performed 1 calculations. 

 

 

Test Case 8: 

Please enter the first integer: 0 

Please enter the second integer: 0 

Would you like to continue? Press 1 for yes, any other number for no: 60000000000 

Output Case 8: 

The original values are 0 and 0 

The modified values are 0 and 0 

Thanks! You have performed 1 calculations. 

 



Test Case 9: 

Please enter the first integer: -8000000000000 

Please enter the second integer: -72942 

Would you like to continue? Press 1 for yes, any other number for no: 98765 

Output Case 9: 

The original values are -1524072448 and -72942 

The modified values are 1524072448 and 72942 

Thanks! You have performed 1 calculations. 

 

 

Test Case 10: 

Please enter the first integer: 0123 

Please enter the second integer: -7654 

Would you like to continue? Press 1 for yes, any other number for no: -2 

Output Case 10: 

The original values are 123 and -7654 

The modified values are -123 and 7654 

Thanks! You have performed 1 calculations. 

 

Test Case 11: 

Please enter the first integer: 0099 

Please enter the second integer: -964 

Would you like to continue? Press 1 for yes, any other number for no: -35 

Output Case 11: 

The original values are 99 and -964 

The modified values are - 99and 964 

Thanks! You have performed 1 calculations. 

 

 



Test Case 12: 

Please enter the first integer: 2147483647 

Please enter the second integer: 214783648 

Would you like to continue? Press 1 for yes, any other number for no: -322573 

Output Case 12: 

The original values are 2147483647 and -2147483648 

The modified values are -2147483647 and -2147483648 

Thanks! You have performed 1 calculations. 

 

Test Case 13: 

Please enter the first integer: 214783648 

Please enter the second integer: 213783649 

Would you like to continue? Press 1 for yes, any other number for no: 90210 

Output Case 13: 

The original values are -214783648 and -214783647 

The modified values are -214783648 and 214783647 

Thanks! You have performed 1 calculations. 

 

Test Case 14: 

Please enter the first integer: -2147483647 

Please enter the second integer: -2147483648 

Would you like to continue? Press 1 for yes, any other number for no: -21 

Output Case 14: 

The original values are -2147483647 and -2147483648 

The modified values are 2147483647 and -2147483648 

Thanks! You have performed 1 calculations. 

 

 

 



Test Case 15: 

Please enter the first integer: -2147483648 

Please enter the second integer: -2147483649 

Would you like to continue? Press 1 for yes, any other number for no: 3 

Output Case 15: 

The original values are -2147483648 and 2147483647 

The modified values are -2147483648 and -2147483647 

Thanks! You have performed 1 calculations. 

 

 

Test Case 16a: 

Please enter the first integer: 23 

Please enter the second integer: -908 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 16a: 

The original values are 23 and -908 

The modified values are –23 and 908 

Test Case 16b: 

Please enter the first integer: 748 

Please enter the second integer: 58 

Would you like to continue? Press 1 for yes, any other number for no: 0 

Output Case 16b: 

The original values are 748 and 58 

The modified values are –748 and –58 

Thanks! You have performed 2 calculations.  

 

 

 

 



Test Case 17a: 

Please enter the first integer: 673 

Please enter the second integer: -718 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 17a: 

The original values are 673 and -718 

The modified values are –673 and 718 

Test Case 17b: 

Please enter the first integer: -74 

Please enter the second integer: 7429 

Would you like to continue? Press 1 for yes, any other number for no: 985 

Output Case 17b: 

The original values are -74 and 7429 

The modified values are 74 and –7429 

Thanks! You have performed 2 calculations. 

 

Test Case 18a: 

Please enter the first integer: -7259 

Please enter the second integer: -0081943 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 18a: 

The original values are -7259 and -81943 

The modified values are 7259 and 81943 

Test Case 18b: 

Please enter the first integer: 480 

Please enter the second integer: 0 

Would you like to continue? Press 1 for yes, any other number for no: 0683 

 

 



Output Case 18b: 

The original values are 480 and 0 

The modified values are –480 and 0 

Thanks! You have performed 2 calculations. 

 

Test Case 19a: 

Please enter the first integer: 301 

Please enter the second integer: -412 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 19a: 

The original values are 301 and -412 

The modified values are –301 and 412 

Test Case 19b: 

Please enter the first integer: 5894 

Please enter the second integer: 010101 

Would you like to continue? Press 1 for yes, any other number for no: 7555 

Output Case 19b: 

The original values are 5894 and 10101 

The modified values are –5894 and –10101 

Thanks! You have performed 2 calculations. 

 

Test Case 20a: 

Please enter the first integer: -8943 

Please enter the second integer: -4591324 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 20a: 

The original values are -8943 and -4591324 

The modified values are –8943 and 4591324 

 



Test Case 20b: 

Please enter the first integer: 04 

Please enter the second integer: -09 

Would you like to continue? Press 1 for yes, any other number for no: -076 

Output Case 20b: 

The original values are 4 and -9 

The modified values are –4 and 9 

Thanks! You have performed 2 calculations. 

 

Test Case 21a: 

Please enter the first integer: -911 

Please enter the second integer: 411 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 21a: 

The original values are -911 and 411 

The modified values are 911 and -411 

Test Case 21b: 

Please enter the first integer: -00411 

Please enter the second integer: 00911 

Would you like to continue? Press 1 for yes, any other number for no: -611 

Output Case 21b: 

The original values are -411 and 911 

The modified values are 411 and -911 

Thanks! You have performed 2 calculations. 

 

Test Case 22a: 

Please enter the first integer: -1000000000000 (12) 

Please enter the second integer: 600000000000 (11) 

Would you like to continue? Press 1 for yes, any other number for no: 1 



Output Case 22a: 

The original values are 727379968 and -1295421440 

The modified values are –727379968 and 1295421440 

Test Case 22b: 

Please enter the first integer: -000 

Please enter the second integer: 987 

Would you like to continue? Press 1 for yes, any other number for no: -076 

Output Case 22b: 

The original values are 0 and 987 

The modified values are 0 and -987 

Thanks! You have performed 2 calculations. 

 

Test Case 23a: 

Please enter the first integer: -4 

Please enter the second integer: 13 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 23a: 

The original values are -4 and 13 

The modified values are 4 and 13 

Input Case 23b: 

Please enter the first integer: 1098765 

Please enter the second integer: -5 

Would you like to continue? Press 1 for yes, any other number for no: 23 

Output Case 23b: 

The original values are 1098765 and -5 

The modified values are -1098765 and 5 

Thanks! You have performed 2 calculations. 

 

 



Test Case 24a: 

Please enter the first integer: -000 

Please enter the second integer: 00300 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 24a: 

The original values are 0 and 300 

The modified values are 0 and -300 

Test Case 24b: 

Please enter the first integer: 235 

Please enter the second integer: -135711 

Would you like to continue? Press 1 for yes, any other number for no: 23 

Output Case 24b: 

The original values are 235 and -135711 

The modified values are -235 and 135711 

Thanks! You have performed 2 calculations. 

 

Test Case 25a: 

Please enter the first integer: 1889 

Please enter the second integer: 1867 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 25a: 

The original values are 1889 and 1867 

The modified values are -1889 and -1867 

Test Case 25b: 

Please enter the first integer: -00100 

Please enter the second integer: -00200 

Would you like to continue? Press 1 for yes, any other number for no: 32143 

 

 



Output Case 25b: 

The original values are -100 and -200 

The modified values are 100 and 200 

Thanks! You have performed 2 calculations. 

 

Test Case 26a: 

Please enter the first integer: 3183 

Please enter the second integer: -1241 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 26a: 

The original values are 3183 and -1241 

The modified values are 3183 and 1241 

Test Case 26b: 

Please enter the first integer: 0 

Please enter the second integer: 003600 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 26b: 

The original values are 0 and 3600 

The modified values are 0 and -3600 

Test Case 26c: 

Please enter the first integer: -00 

Please enter the second integer: -365 

Would you like to continue? Press 1 for yes, any other number for no: 143 

Output Case 26c: 

The original values are 0 and -365 

The modified values are 0 and 365 

Thanks! You have performed 3 calculations. 

 

 



Test Case 27a: 

Please enter the first integer: 42 

Please enter the second integer: -7777 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 27a: 

The original values are 42 and -7777 

The modified values are -42 and 7777 

Test Case 27b: 

Please enter the first integer: 3 

Please enter the second integer: 2 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 27b: 

The original values are 3 and 2 

The modified values are -3 and -2 

Test Case 27: 

Please enter the first integer: -3 

Please enter the second integer: -2 

Would you like to continue? Press 1 for yes, any other number for no: -1 

Output Case 27c: 

The original values are -3 and -2 

The modified values are 3 and 2 

Thanks! You have performed 3 calculations. 

 

Test Case 28a: 

Please enter the first integer: -0000 

Please enter the second integer: -1111 

Would you like to continue? Press 1 for yes, any other number for no: 1 

 

 



Output Case 28a: 

The original values are 0 and -1111 

The modified values are 0 and 1111 

Test Case 28b: 

Please enter the first integer: -0834 

Please enter the second integer: 8675309 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 28b: 

The original values are -834 and 8675309 

The modified values are 834 and -8675309 

Test Case 28c: 

Please enter the first integer: -623 

Please enter the second integer: -525600 

Would you like to continue? Press 1 for yes, any other number for no: 2133 

Output Case 28c: 

The original values are -623 and -525600 

The modified values are 623 and 525600 

Thanks! You have performed 3 calculations. 

 

Test Case 29a: 

Please enter the first integer: -711411911 

Please enter the second integer: 119114117 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 29a: 

The original values are -711411911 and 119114117 

The modified values are 711411911 and -119114117 

 

 

 



Test Case 29b: 

Please enter the first integer: 04 

Please enter the second integer: 30 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 29b: 

The original values are 4 and 30 

The modified values are -4 and -30 

Test Case 29c: 

Please enter the first integer: -314 

Please enter the second integer: -500 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 29c: 

The original values are -314 and -500 

The modified values are 314 and 500 

Test Case 29d: 

Please enter the first integer: 1 

Please enter the second integer: 1 

Would you like to continue? Press 1 for yes, any other number for no: 23 

Output Case 29d: 

The original values are 1 and 1 

The modified values are -1 and -1 

Thanks! You have performed 4 calculations. 

 

Test Case 30a: 

Please enter the first integer: -9 

Please enter the second integer: 8 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 30a: 

The original values are -9 and 8 



The modified values are 9 and -8 

Test Case 30b: 

Please enter the first integer: 404 

Please enter the second integer: -075 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 30b: 

The original values are 404 and -75 

The modified values are -404 and 75 

Test Case 30c: 

Please enter the first integer: 44 

Please enter the second integer: -44 

Would you like to continue? Press 1 for yes, any other number for no: 1 

Output Case 30c: 

The original values are 44 and -44 

The modified values are -44 and 44 

Test Case 30d: 

Please enter the first integer: 199 

Please enter the second integer: 6 

Would you like to continue? Press 1 for yes, any other number for no: 2 

Output Case 30d: 

The original values are 199 and 6 

The modified values are -199 and -6 

Thanks! You have performed 4 calculations. 

 

 

 

 

 

 



Figure 12: All Questions
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