
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

May 2020

A Computational Framework for Axisymmetric Linear Elasticity A Computational Framework for Axisymmetric Linear Elasticity

and Parallel Iterative Solvers for Two-Phase Navier–Stokes and Parallel Iterative Solvers for Two-Phase Navier–Stokes

Alistair R. Bentley
Clemson University, alistairbntl@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Bentley, Alistair R., "A Computational Framework for Axisymmetric Linear Elasticity and Parallel Iterative
Solvers for Two-Phase Navier–Stokes" (2020). All Dissertations. 2638.
https://tigerprints.clemson.edu/all_dissertations/2638

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2638?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2638&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A COMPUTATIONAL FRAMEWORK FOR AXISYMMETRIC LINEAR
ELASTICITY AND PARALLEL ITERATIVE SOLVERS FOR TWO-PHASE

NAVIER–STOKES

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirement for the Degree of

Doctor of Philosophy
Mathematical Sciences

by
Alistair Bentley

May 2020

Accepted by:
Dr. Vincent Ervin, Committee Chair

Dr. Eleanor Jenkins
Dr. Chris Kees

Dr. Leo Rebholz
Dr. Fei Xue

ABSTRACT

This dissertation explores ways to improve the computational efficiency of linear

elasticity and the variable density/viscosity Navier–Stokes equations. While the ap-

proaches explored for these two problems are much different in nature, the end goal

is the same - to reduce the computational effort required to form reliable numerical

approximations.

The first topic considered is the axisymmetric linear elasticity problem. While the

linear elasticity problem has been studied extensively in the finite-element literature,

to the author’s knowledge, this is the first study of the elasticity problem in an ax-

isymmetric setting. Indeed, the axisymmetric nature of the problem means that a

change of variables to cylindrical coordinates reduces a three-dimensional problem

into a decoupled one-dimensional and two-dimensional problem. The change of vari-

ables to cylindrical coordinates, however, affects the functional form of the divergence

operator and the definition of the inner products. To develop a computational frame-

work for the linear elasticity problem in this context, a new projection operator is

defined that is tailored to the cylindrical form of the divergence and inner products.

Using this framework, a stable finite-element quadruple is derived for k = 1, 2. These

computational rates are then validated with a few computational examples.

The second topic addressed in this work is the development of a new Schur comple-

ment approach for preconditioning the two-phase Navier–Stokes equations. Consid-

erable research effort has been invested in the development of Schur complement pre-

conditioning techniques for the Navier–Stokes equations, with the pressure-convection

diffusion (PCD) operator and the least-squares commutator being among the most

popular. Furthermore, more recently researchers have begun examining precondi-

tioning strategies for variable density / viscosity Stokes and Navier–Stokes equations.

This work contributes to recent work that has extended the PCD Schur comple-

ment approach for single phase flow to the variable phase case. Specifically, this

work studies the effectiveness of a new two-phase PCD operator when applied to

dynamic two-phase simulations that use the two-phase Navier–Stokes equations. To

ii

demonstrate the new two-phase PCD operators effectiveness, results are presented

for standard benchmark problems, as well as parallel scaling results are presented for

large-scale dynamic simulations for three-dimensional problems.

iii

ACKNOWLEDGMENTS

I would like to extent a special thank you to my adviser Dr. Vincent Ervin for his

patience and support throughout my entire graduate school experience at Clemson.

I am especially grateful for the countless hours Dr. Ervin spent working closely with

me throughout my PhD. Without his advice, insights and time this dissertation would

not have been possible.

I would also like to thank Dr. Chris Kees for his mentorship and financial support.

Many of the most practical skills I developed while writing this document are the

result of working with Dr. Kees. Moreover, the workshops and conferences I attended

as a result of working Dr. Kees were among the most enriching experiences I had as

a PhD student.

iv

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

2 Elasticity 5

2.1 Introduction . 5

2.2 Notation . 8

2.3 Elasticity Problem Description . 10

2.3.1 Weak Symmetry and the Cartesian Elasticity Problem 13

2.4 Axisymmetric Function Spaces . 19

2.5 Axisymmetric Strong Form . 25

2.6 Axisymmetric Weak Form . 26

2.6.1 Modified Weak Symmetry and the Axisymmetric Elasticity Prob-

lem . 27

2.6.2 Inf-sup stability of the modified weak problem 30

2.6.3 Axisymmetric Meridian Continuous Inf-Sup Condition 32

2.7 Discrete Axisymmetric Problem . 41

2.8 Discrete Axisymmetric Inf-Sup Condition 42

2.9 Mappings and Th . 48

2.10 BDM1 and BDM2 . 53

2.11 Axisymmetric Elasticity Projection for General k 59

v

2.12 Error Analysis . 70

2.13 Computational Results . 79

2.14 Conclusion and Future Work . 83

3 Two-Phase Navier–Stokes Preconditioners 87

3.1 Introduction . 87

3.2 The RANS2P Free-Surface Model . 90

3.2.1 Two Phase Domain . 90

3.2.2 Navier–Stokes Equations . 91

3.2.3 Level set transport equation 93

3.2.4 Redistancing . 93

3.2.5 Volume fraction . 93

3.2.6 Mass correction . 94

3.3 Numerical Methods for Navier-Stokes 94

3.3.1 Discrete Navier-Stokes . 94

3.3.2 Stabilization . 96

3.3.3 Proteus Boundary Conditions 98

3.3.4 Nonlinear Solver . 104

3.4 Linear Solvers and Preconditioners 106

3.4.1 Sparse Direct Solvers . 107

3.4.2 Krylov Solvers . 109

3.4.3 Algebraic Multigrid . 111

3.4.4 Preconditioning Strategy 2: Block Schur Complement Precon-

ditioners . 115

3.4.5 Approximating A . 116

3.4.6 Approximating Ŝ . 118

3.5 Numerical Results . 125

3.5.1 Introduction . 125

3.5.2 Static Preconditioner Analysis 125

3.5.3 Dambreak Problem . 137

vi

3.5.4 MARIN Problem . 142

3.6 Conclusions . 161

4 Conclusions and Future Work 163

A Axisymmetric Linear Elasticity Derivation 165

A.0.1 Cylindrical Coordinate Operators and Function Spaces 165

A.0.2 Meridian and Azimuthal Subspaces 167

A.0.3 Axisymmetric Weak Form . 171

B Discrete Operator Forms 177

vii

viii

List of Figures

2-1 Axisymmetric Domain . 5

2-2 Applications of Axisymmetric Linear Elasticity Models [66] 7

2-3 Reference Triangle . 48

2-4 Bivariate Polynomial Map . 60

2-5 Example of a triangle where r2 is not constant along any edge and a

triangle that is constant along an edge. 67

2-6 Example of a triangle with an edge where r = 0. 70

3-1 Navier–Stokes Schur Complement Preconditioner Workflow 116

3-2 Two-phase lid driven cavity and step problems 127

3-3 Evolution of the dam-break simulation in Proteus at selected points

in times. The VOF (volume-of-fluid) is plotted with blue representing

the water phase and red being the air. 139

3-4 Average preconditioned GMRES iterations per time step for the two-

phase PCD and SIMPLE preconditioners with the CFL number less

than or equal to 0.9. 141

3-5 Evolution of the MARIN simulation in Proteus at selected points in

times. The VOF (volume-of-fluid) is plotted with blue representing the

water phase and red being the air. 143

3-6 Simulation run times at different refinement levels by preconditioner

type . 148

ix

3-7 Percent of MARIN simulation time spent in the setup phase as well as

in the linear solve phase of the NSE segment of the simulation using

the PCD method. 158

3-8 Weak Scaling Results for the MARIN simulation using the two-phase

PCD preconditioner. 162

x

List of Tables

2.1 Example 1 : Axisymmetric Elasticity Convergence Rates for BDM1

- disc P1 - discP0 - discP0 finite elements with grad-div stabilization

parameter γ = 1. 81

2.2 Example 1 : Axisymmetric Elasticity Convergence Rates for BDM2

- discP2 - discP1 - discP1 finite elements with grad-div stabilization

parameter γ = 1. 81

2.3 Example 2 : Axisymmetric Elasticity Convergence Rates for BDM1

- discP1 - discP0 - discP0 finite elements with grad-div stabilization

parameter γ = 1. 82

2.4 Example 2 : Axisymmetric Elasticity Convergence Rates for BDM2

- discP2- discP1 - discP1 finite elements with grad-div stabilization

parameter γ = 1. 82

2.5 Example 1 : Axisymmetric Elasticity Convergence Rates for BDM3 -

discP2 - discP2 - discP2 finite elements with γ = 1. 85

2.6 Example 2 : Axisymmetric Elasticity Convergence Rates for BDM3 -

discP2 - discP2 - discP2 finite elements with γ = 1. 85

3.1 Preconditioned GMRES iterations (average / maximum (Newton it-

erations)) using two-phase PCD for the P1 − P1 strongly enforced

boundary condition solution to the steady two-phase lid driven cav-

ity problem with varying mesh size h. 129

xi

3.2 Preconditioned GMRES iterations (average / maximum (Newton iter-

ations)) using two-phase PCD for the P1−P1 solution to the backward

facing step problem with Re = 10 and varying mesh size h. 129

3.3 Preconditioned GMRES iterations (average / maximum (Newton iter-

ations)) using two-phase PCD for the P1−P1 solution to the backward

facing step problem with Re = 100 and varying mesh size h. 130

3.4 Preconditioned GMRES iterations (average / maximum (Newton it-

erations)) using two-phase PCD for the P1 − P1 strongly enforced

boundary condition solution to the steady two-phase lid driven cav-

ity problem with varying mesh size h. 131

3.5 Preconditioned GMRES iterations (average / maximum (Newton it-

erations)) using two-phase PCD for the P1 − P1 strongly enforced

boundary condition solution to the steady two-phase step problem with

varying mesh size h. 131

3.6 Preconditioned GMRES iterations using two-phase PCD / SIMPLE

for the P1–P1 solution to the steady lid driven cavity problem with

density ratio ρ̂ = 1.2× 10−3, viscosity ratio µ̂ = 1.8× 10−2 (values for

air-water flow), and varying Reynolds number Re and grid size h. . . 134

3.7 Preconditioned GMRES iterations (average / maximum (Newton it-

erations)) using the two-phase PCD and SIMPLE preconditioners for

the P1−P1 strongly enforced boundary condition solution to the step

problem with h = 0.0125 and varying ∆t. 134

3.8 Preconditioned GMRES iterations (average / maximum (Newton iter-

ations)) using two-phase PCD for the P1−P1 strongly enforced bound-

ary condition solution to the lid driven cavity problem with h = 0.0125

and varying ∆t. 135

xii

3.9 Preconditioned GMRES iterations (average / maximum (Newton it-

erations)) using two different AMG configurations with the SIMPLE

method for the P1−P1 strongly enforced boundary condition solution

to the lid driven cavity problem with h = 0.0125 and varying ∆t. Note

that × indicates the simulation stopped due to failure in the solver

convergence. 135

3.10 Two-phase PCD preconditioned FGMRES iterations using different

configurations to solve the A-block of the saddle point system for the

P1–P1 solution to the steady lid driven cavity problem with density

ratio ρ̂ = 1.2×10−3, viscosity ratio µ̂ = 1.8×10−2 (values for air-water

flow), with h = 0.00625 and varying Reynolds number Re. 137

3.11 Two-phase PCD preconditioned FGMRES iterations using different

configurations to solve the A-block of the saddle point system for the

P1–P1 solution to the steady step problem with density ratio ρ̂ =

1.2 × 10−3, viscosity ratio µ̂ = 1.8 × 10−2 (values for air-water flow),

with h = 0.0125 and varying Reynolds number Re. 137

3.12 The average / maximum number of GMRES iterations and simulation

run times (in minutes) required across different meshes when running

the dam-break problem with the CFL number less than or equal to 0.9. 140

3.13 The average / maximum number of GMRES iterations and simulation

run times (in minutes) required across different meshes when running

the dam-break problem with fixed ∆t = 0.01. Note that × indicates

the simulation stopped due to failure in the solver convergence. . . . 142

3.14 Marin Mesh Statistics . 144

3.15 MARIN simulation run times across preconditioning strategies (total

run time (hours) / time in NSE preconditioner setup (%) / percent time

in NSE linear solve (%)). * indicates that the simulation was not run.

** indicates that a hypre error was encountered during simulation. †

indicates an error during mesh generation phase. ‡ indicates memory

usage limitations. 149

xiii

3.16 Marin simulation run times across preconditioning strategies (total run

time (hours) / time in NSE preconditioner setup (%) / percent time

in NSE linear solve (%)). * indicates that the simulation was not

run. A single number indicates an approximation of the total run time

(based off a four hour simulation) †indicates a segfault occurs with

mesh generator. ‡ indicates memory usage limitations. 150

3.17 Marin simulation run times across preconditioning strategies (total run

time (hours) / time in NSE preconditioner setup (%) / percent time

in NSE linear solve (%)). * indicates that the simulation was not

run. A single number indicates an approximation of the total run time

(based off a four hour simulation) †indicates a segfault occurs with

mesh generator. ‡ indicates memory usage limitations. 151

3.18 MARIN weak scaling results for approximately 4K DoF per core. The

factor increase represents the ratio of the time taken using the largest

number of processors against the time taken using the smallest number

of processors. The number listed in the final column of the top row in

parentheses denotes the factor by which the problem size increased. . 152

3.19 MARIN weak scaling results for approximately 8K DoF per core. The

number listed in the final column of the top row in parentheses denotes

the factor by which the problem size increased. 152

3.20 MARIN weak scaling results for approximately 20K DoF per core. The

number listed in the final column of the top row in parentheses denotes

the factor by which the problem size increased. 153

3.21 MARIN weak scaling results for approximately 40K DoF per core. The

number listed in the final column of the top row in parentheses denotes

the factor by which the problem size increased. 153

xiv

3.22 Details of the ASM preconditioner applied to the MARIN problem at

refinement levels 10 and 15. The first row lists the average / maxi-

mum number of GMRES iterations during the simulation. The sec-

ond, third and fourth rows present diagnostic information about the

Gram-Schmidt orthogonalization (GSO) step. The fifth row reports

the percentage change in time spent performing the LU factorization

component of the ASM preconditioner. 156

3.23 Details of the ASM preconditioner applied to the MARIN problem

at refinement levels 20, 25 and 30. The first row lists the average /

maximum number of GMRES iterations during the simulation. The

second, third and fourth rows present diagnostic information about the

Gram-Schmidt orthogonalization (GSO) step. The fifth row reports

the percentage change in time spent performing the LU factorization

component of the ASM preconditioner. 156

3.24 GMRES iterations of the PCD preconditioner applied to the MARIN

problem. The rows lists the average / maximum number of GMRES

iterations during the simulation. ** indicates that a hypre error was

encountered during simulation. † indicates an error during mesh gen-

eration phase. * indicates that the simulation was not run. 157

3.25 GMRES Iterations (average / maximum) running the MARIN problem

with ASM preconditioner. 160

3.26 GMRES Iterations (average / minimum) running the MARIN problem

with the two-phase PCD preconditioner. 161

xv

Chapter 1

Introduction

This dissertation explores ways to improve the computational efficiency in approxi-

mating the solution to the axisymmetric linear elasticity problem and the two-phase

Navier–Stokes fluid flow problem. Improving computational efficiency is an impor-

tant part of scientific computing research. For one, when computations become more

efficient, the space of solvable problems expands. Better efficiency also reduces the

computational resources and time needed to solve a given problem. This is valuable

because high-performance computing resources have a financial cost associated with

their use. In addition, faster solvers allow end users to perform analysis for their

applications more efficiently.

While this dissertation examines two different topics, both methods aim to reduce the

effort needed to solve the linear systems of equations that arise from using the finite

element method to approximate the solutions. In the axisymmetric linear elasticity

case, the problem is recast in a way that reduces the size of the resulting linear system

of equations. In the two-phase Navier–Stokes problem, a specialized preconditioner

is introduced that improves the efficiency of the GMRES method.

Axisymmetric Linear Elasticity

Chapter 2 examines the axisymmetric linear elasticity problem. Various forms of the

linear elasticity problem have been proposed and studied in the finite element liter-

1

ature (for example see [24, 26]). In this study, we restrict our analysis to the mixed

formulation with weak symmetry (see [82, 83, 49, 70, 6]).

The goal of this work is to use the axisymmetric property of the solution to reduce the

effort needed to compute a numerical approximation to the solution. In the axisym-

metric setting, applying a change of variable from Cartesian to cylindrical coordinates

allows the three-dimensional axisymmetric linear elasticity problem to be recast as

a decoupled two-dimensional and one-dimensional problem. The linear systems that

come from the decoupled systems can be solved in parallel and require less time and

memory to solve individually that the fully coupled problem.

Using axisymmetry to reduce computational effort is not a new idea. Since the 1980s

when Mercier and Raugel [69] undertook one of the earliest finite element analysis

of axisymmetric problems, axisymmetric computational frameworks have been de-

veloped for many problems. Some important examples include Poisson’s equation,

Stokes equation and Darcy’s equation [9, 10, 32, 35, 72, 20, 63, 43, 45, 46]. To the

author’s knowledge, however, no successful analysis has been undertaken for the ax-

isymmetric linear elasticity problem.

A key challenge to developing a computational framework for the axisymmetric linear

elasticity problem is the functional form of the axisymmetric divergence operator. In

particular, the axisymmetric divergence operator does not map polynomial spaces

into polynomial spaces. As a result, the standard approaches used to develop inf-sup

stable finite elements in the Cartesian environment cannot be used. To address this

challenge, a new projection operator is developed in this work that has been tailored

specifically to handle the axisymmetric divergence operator.

Two Phase Navier–Stokes

Chapter 3 examines preconditioning methods for the two-phase Navier–Stokes equa-

tions. An important motivation for studying two-phase Navier–Stokes preconditioners

are the dynamic free-surface models that arise in industrial applications. Free-surface

models that reliably track the interface between air and water over time are an impor-

2

tant part of modeling many complicated hydraulic processes such as waves crashing

into coastal barriers, or flow dynamics following a failure in infrastructure.

In many cases, a complete free-surface model involves coupling several different physi-

cal models. Frequently a splitting scheme that uses the two-phase Navier–Stokes equa-

tions is used to model free-surface models. Moreover, it is often the case that solving

the discrete two-phase Navier–Stokes equations forms a bottleneck when running the

splitting scheme. Therefore, effective preconditioners for the two-phase Navier–Stokes

equations are an important part of building a more efficient numerical method.

There is a large amount of literature about efficient Navier–Stokes preconditioners

that includes techniques like the Augmented Lagrangian method, two-threshold in-

complete LU factorizations, and Schur complement methods (for example see [18, 19,

62, 71, 40]). In addition to these methods, there is a significant body of literature on

specific tools – like LU, multigrid, and ILU – that can be used to solve the subprob-

lems that arise as part of a complete preconditioner [3, 1, 93, 84, 85, 14, 92, 60, 61, 39].

Much of the existing preconditioning work, however, has focused on the single-phase

Navier–Stokes problem or on the variable viscosity Stokes problem [41, 40, 57, 75, 88,

29, 11, 51, 52, 68], rather than the two-phase Navier–Stokes equations. This work

seeks to extend these methods to develop a preconditioner for a two-phase Navier–

Stokes that is effective for dynamic free-surface models.

There are two key elements necessary to develop a scalable preconditioner for the

two-phase Navier–Stokes equation. First, because the Schur complement operators

that have been developed for single-phase flow do not generalize well into the multi-

phase setting, an appropriate approximation to the Schur complement operator must

be developed for the two-phase Navier–Stokes equations. Second, this Schur comple-

ment approximation needs to be incorporated into a complete block preconditioner

framework. This requires an in-depth knowledge of the discrete finite element prob-

lem as well as the linear solver tools need to solve each of the subproblems that arise

as part of the complete block preconditioner.

3

Outline

The remainder of this dissertation proceeds as follows. Chapter 2 examines the ax-

isymmetric linear elasticity problem. In Sections 2.1-2.3 of Chapter 2 we provide

background, notation, and the weak formulation of the Cartesian axisymmetric lin-

ear elasticity problem. Next in Sections 2.4-2.6, we introduce the function spaces,

notation and weak formulation of the axisymmetric linear elasticity problem with

weak symmetry. In Sections 2.7-2.8, we introduce the discrete axisymmetric linear

elasticity problem with weak symmetry and present a useful theorem that establishes

a set of sufficient conditions for inf-sup stability. Sections 2.10-2.11 consider several

different examples of finite element spaces that satisfy the sufficient conditions out-

lined in Section 2.8. Finally, Sections 2.12 - 2.14 present a formal error analysis,

computational results and describe possible future research directions.

Chapter 3 examines preconditioning strategies for the solution of the approximating

linear system for two-phase Navier–Stokes equations. In Section 3.1, we introduce

the free-surface context in which the two-phase Navier–Stokes equations appear and

survey some of the existing methods that have been developed to precondition the

approximating linear system. Next, a detailed overview of the RANS2P free-surface

model considered in this work is presented in Section 3.2. Following this, Sections

3.3-3.4 describe various details about the numerical methods used. This includes a

discussion of the numerical techniques used to enforce boundary conditions, stabi-

lization methods, and the numerical methods used to solve linear systems. Finally,

Section 3.5 presents a number of numerical results demonstrating the effectiveness

of the two-phase PCD preconditioner in a number of settings compared to other

preconditioning strategies.

4

Chapter 2

Elasticity

2.1 Introduction

During the past twenty years, a number of papers have emerged in the numerical

analysis literature investigating three-dimensional axisymmetric problems. This class

of problem has attracted attention because a three-dimensional axisymmetric prob-

lem can be reduced to a two-dimensional problem when cylindrical coordinates are

used (see Figure 2-1). Indeed, it is well recognized that the computational effort re-

quired to solve a two-dimensional problem is significantly less that the computational

effort needed to solve a three-dimensional problem. It has also been noted that many

problems that are not axisymmetric can be locally approximated as axisymmetric,

permitting more opportunities for computational gains.

While axisymmetric problems have long appeared in engineering and mathematical

literature, Mercier and Raugel undertook one of the earliest finite element analyses of

Ω

Ω Γ

Ω

Γ0

Figure 2-1: Axisymmetric Domain

5

these problems in the 1980s. In [69], the authors investigated the appropriate Sobolev

spaces, projection properties and error analysis. In the late 1990s, Bernardi, Dauge

and Maday [21] studied the axisymmetric form of a number of standard problems (in-

cluding Laplace, Stokes and Maxwell equations) and introduced tools for analyzing

axisymmetric spectral methods.

In the early 2000s, two important papers [9, 10] were published in which the au-

thors studied the numerical approximation of the axisymmetric solution of the static

and time dependent Maxwell equations. Following these papers, a number of studies

analyzing different axisymmmetric problems began to appear. Notably, a computa-

tional framework for the axisymmetric Poisson equation was developed in [32] and a

computational framework for div-curl systems was presented in [35]. More recently,

[72] used finite element exterior calculus techniques to study the axisymmetric Hodge

Laplace problem.

One area that has received a great deal of focus are axisymmetric fluid dynamics

problems. In [20], axisymmetry was used to reduce the dimension of an eddy current

model and in [4], a computational framework for axisymmetric Brinkman flows was

developed. The axisymmetric Stokes and Darcy problems have also received a great

deal of attention as discussed in [16, 63, 43, 45]. A coupled axisymmetric Stokes-

Darcy problem was explored in [46].

Absent from this work, however, is a finite element analysis of the axisymmetric linear

elasticity problem. This gap in the literature is notable because the linear elasticity

problem appears in many applications. For example, a symmetric tank subjected to

an internal pressure force (e.g. gas expanding from a changing temperature) can be

modeled as an axisymmetric linear elasticity problem (see [66]). Mechanical systems

that involve engine valve stems can also be modeled using axisymmetric linear elas-

ticity [66]. See Figure 2-2.

The linear elasticity problem has been extensively studied and a number of excellent

resources investigating the problem are available (see [24, 26]). A detailed description

of the linear elasticity problem as well as a survey of the literature is presented in

Section 2.3. At the outset, however, we comment that this work considers the mixed

6

(a) Propane Tank (b) Engine Valve Stem

Figure 2-2: Applications of Axisymmetric Linear Elasticity Models [66]

form of the elasticity problem in which symmetry of the stress tensor is enforced

weakly.

The nature of differential operators in cylindrical coordinates (e.g. the addition of a

1
r

term) is an important reason that the linear elasticity problem becomes more chal-

lenging in the cylindrical setting. Indeed, a consequence of this radial scaling is that

the gradient and divergence operators do not map polynomial spaces to polynomial

spaces. This feature of cylindrical coordinates will be important in the construction

of inf-sup stable finite elements.

The outline of this work is as follows. Section 2.2 introduces some important notation

and operators that appear throughout our discussion on linear elasticity. Section 2.3

provides an overview of the general elasticity problem as well as the weak symmetry

problem. In Sections 2.4 and 2.6 we introduce the weak form of the linear elasticity

problem in the axisymmetric setting.

The key contributions of this work are presented in Sections 2.7 to 2.12, where the

discrete axisymmetric problem is formally introduced, and then spaces that satisfy

the saddle point theory of Brezzi [27, 28, 24] are introduced and explored. Finally,

computational results are presented in Section 2.13 and some concluding remarks are

presented in Section 2.14.

7

2.2 Notation

We start with an overview of the notation and definitions used in this Chapter. Bold

Greek letters (e.g. σ) will represent vectors, while bold Greek letters with an underline

(e.g. σ) will denote tensors. For English letters, bold lowercase letters (e.g. p) will

denote vectors, while bold uppercase letters (e.g. P) will denote tensors. Matrices

will be represented with capital, non-bold letters (e.g. A).

Additionally, we let Rn denote the space of n dimensional real numbers, Mn denote the

space of n × n dimensional real matrices, Sn denote the space of n × n dimensional

real symmetric matrices and Kn denote the space of n × n dimensional real skew-

symmetric matrices.

The domain is denoted as Ω and the boundary is denoted as ∂Ω. Throughout this

work, we assume that the coordinate system (either Cartesian or cylindrical) used to

represent Ω is labeled in such a way that z ≥ 0 for all x ∈ Ω. In addition, Th will be

used to denote a regular triangulation of Ω with element diameter h.

We will frequently use piecewise polynomials to define finite element spaces. To

denote the space of degree k piecewise polynomials on a mesh Th we use the notation

Pk(Th). If we are referencing a polynomial on a specific domain T or element T ∈ Th,

we use Pk(T). When referencing a vector or tensor space of polynomials, we use

(Pk(T))n and (Pk(T))n×n respectively.

The symmetric gradient operator, ε, is applied to a vector u and returns the tensor

ε(u) with components

ε(u)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.1)

The divergence operator, ∇·, can be applied to vectors and tensors. When acting on

a vector v,

∇ · v =
n∑
i=1

∂vi
∂xi

. (2.2)

8

When acting on a tensor σ,

∇ · σ =

∇ · σ1

∇ · σ2

 (2.3)

where σi denotes row i of σ.

The trace operator, tr, is applied to tensors and represents the sum of the diagonal

elements,

tr(σ) =
n∑
i=1

σii. (2.4)

The mixed linear elasticity problem also requires some notation and operators that

are not commonplace in finite element discussions. We take a moment to familiarize

the reader with some of the less common operators and definitions that appear in the

elasticity problem. The skew-symmetric part of a tensor σ is defined as

as(σ) =
1

2
(σ − σt) (2.5)

where σt is the transpose of σ. Furthermore, in two dimensions, as(σ) can be iden-

tified with a scalar value q ∈ R and the following operator

as(σ) = S2(q) =

 0 q

−q 0

 where q =
1

2
(σ12 − σ21). (2.6)

For vectors a = (a1, a2)t and b = (b1, b2)t,

a⊗ b =

a1b1 a1b2

a2b1 a2b2

 . (2.7)

9

If w = (w1, w2)t and v = (v1, v2)t are vectors, then the two-dimensional wedge product

is

w ∧ v = w1v2 − w2v1. (2.8)

For a tensor τ and vector v, the wedge product is

(τ ∧ v) =

τ11v2 − τ21v1

τ12v2 − τ22v1

 . (2.9)

Finally, if x = (x1, x2)t, then x⊥ = (x2,−x1)t.

Throughout this manuscript, some ideas are presented in Cartesian coordinates, while

others are presented in cylindrical coordinates. As outlined in Section 2.4, these

coordinate spaces motivate different inner product and bilinear forms. To distinguish

between the cylindrical coordinate case and the Cartesian case, a c subscript will be

attached to all Cartesian inner products and bilinear forms.

2.3 Elasticity Problem Description

Two formulations of the linear elasticity problem appear in the literature. The first

is the pure displacement formulation, which for a domain Ω ⊂ Rn, is described by

σ = Cε(u), ∇ · σ = f in Ω. (2.10)

Here σ denotes the stress tensor, C is the stiffness tensor, u is the displacement,

ε(u) is the symmetric gradient and f is an external body force. Since the stress

tensor is symmetric, the stiffness tensor satisfies C : Sn×n → Sn×n and takes the form

Cτ = 2µ(τ +λ tr(τ) I) for isotropic materials, where µ and λ are the Lamé constants

with values dependent on the material properties.

10

With this formulation, one typically solves

∇ · Cε(u) = f in Ω (2.11)

with appropriate boundary conditions for u. Then one calculates the stress tensor σ

via σ = Cε(u). For incompressible or nearly incompressible materials, however, the

Lamé constant λ → ∞. Examples of materials with nearly infinite Lamé constants

include rubber, some saturated clays and some types of foam. As λ becomes large,

the operator C becomes unbounded and the pure displacement formulation (2.10)

becomes numerically unstable [6, 48]. One solution to this problem, is to recast

(2.10) into a mixed formulation where the displacement vector and stress tensor are

solved simultaneous.

Taking A = C−1, (2.10) becomes

Aσ = ε(u), ∇ · σ = f in Ω. (2.12)

The compliance tensor A : Sn×n → Sn×n is a bounded, symmetric postive definite

operator that takes the form

Aσ =
1

2µ

(
σ − λ

2µ+mλ
tr(σ))I

)
(2.13)

for isotropic materials. To reflect that Ω ⊂ R3, we take m = 3 throughout this work.

For notational simplicity, we extend the domain of A to scalar functions. Then, Aσ

is given by (2.13) for σ ∈ S1×1.

In general, the pure displacement formulation requires less computational effort than

the mixed formulation. However, since it is unstable for nearly incompressible ma-

terials, it is also a less versatile formulation. Additionally, if the stress is a quantity

of interest, post processing of the solution is required to obtain the stress. In this

research, we focus on the mixed formulation.

Boundary conditions are necessary to fully specify the problem (2.12). Let ∂Ω =

11

Γ1 ∪ Γ2, and consider

u|Γ1 = 0, and (σn)|Γ2 = g (2.14)

where n is the outward pointing unit normal vector on ∂Ω. In the case where Γ1 = ∂Ω,

the problem has a pure clamped displacement boundary condition. In the case where

Γ2 = ∂Ω, the problem has a pure traction boundary condition. Unless specified

otherwise, we will take ∂Ω = Γ1.

To specify the weak formulation of (2.12), we first define the functions spaces

L2(Ω) = {v :

∫
Ω

v2 dΩ <∞},

L2(Ω) = {v : vi ∈ L2(Ω) for i = 1, · · · , n},

L2(Ω;Sn) = {σ ∈ Sn : σij ∈ L2(Ω) for i, j = 1, · · · , n} and

H(div,Ω;Sn) = {σ ∈ L2(Ω,Sn) : ∇ · σ ∈ L2(Ω)}.

One way of specifying the weak formulation of (2.12) is to multiply with test functions

from X = H(div,Ω;Sn) and Q = L2(Ω) and integrate by parts. In this way, the

problem becomes: find (σ,u) ∈ X ×Q such that for all (τ ,v) ∈ X ×Q∫
Ω

(Aσ : τ +∇ · τ u) dΩ = 0∫
Ω

∇ · σ · v dΩ =

∫
Ω

f · v dΩ.

(2.15)

An alternative way of deriving a weak formulation to (2.12), is to view the pair

(σ,u) ∈ X ×Q as the unique critical point of the Hellinger-Reissner functional

J (σ,u) =

∫
Ω

(
1

2
Aσ : σ + (∇ · σ) · u− f · u

)
dΩ. (2.16)

Setting the variationals of J with respect to σ and u to zero also yields the weak

formulation (2.15).

The existence and uniqueness of a solution to (2.15) is shown in [23]. To approximate

(2.15) with the finite element method, we need to choose approximation spaces Xh ⊂

12

X and Qh ⊂ Q. As is well known, the choice of such spaces is not arbitrary, but must

satisfy the following stability conditions [8].

1. There exists a positive constant c1 such that ‖τ‖H(div,Ω) ≤ c1‖τ‖L2(Ω) whenever

τ ∈ Xh satisfies
∫

Ω
(∇ · τ) · v dΩ = 0 for all v ∈ Qh.

2. There exists a C > 0 such that

inf
v∈Qh

sup
τ∈Xh

∫
Ω

(∇ · τ) · v dΩ

‖v‖Q‖τ‖X
≥ C.

Researchers have been studying ways to develop stable finite elements for (2.15) since

the 1960s [90]. For many years, the only known stable finite elements to (2.15)

were macro-elements in which the stress tensor was solved on a finer mesh than

the displacement vector [7, 56, 91]. It was not until 2002 that Arnold and Winther

developed a stable pair of piecewise polynomials with respect to a single triangulation

of Ω [8]. These elements, however, carry a significant computational cost since the

lowest order representation uses 24 degrees of freedom per triangle.

At its core, the challenge to creating a stable finite element scheme for (2.15) is

that symmetry of the stress tensor represents the law of conservation of angular

momentum, and imposing conservation laws exactly is difficult. As a result much of

the research on finite elements approximations for elasticity has moved away from

enforcing symmetry in a strong sense.

2.3.1 Weak Symmetry and the Cartesian Elasticity Problem

To avoid enforcing symmetry in the stress tensor strongly, a new Lagrangian multiplier

can be added to (2.15) that weakly enforces symmetry in the stress tensor σ [82, 83,

49, 70, 6]. The weak symmetry approach requires the introduction of a few new

13

function spaces

L2(Ω;Mn) = {σ ∈Mn : σij ∈ L2(Ω) for i, j = 1, · · · , n},

L2(Ω;Kn) = {σ ∈ Kn : σij ∈ L2(Ω) for i, j = 1, · · · , n} and

H(div,Ω,Mn) = {σ ∈ L2(Ω,Mn) : ∇ · σ ∈ L2(Ω)}.

Letting X = H(div,Ω,Mn), Q = L2(Ω), and W = L2(Ω;Kn), we want to find

(σ,u,ρ) ∈ X ×Q×W such that for all (τ ,v, ξ) ∈ X ×Q×W

∫
Ω

(Aσ : τ +∇ · τ · u + τ : ρ) dΩ = 0 (2.17)∫
Ω

∇ · σ · v dΩ =

∫
Ω

f · v dΩ (2.18)∫
Ω

σ : ξ dΩ = 0. (2.19)

It also bares mentioning that the weak symmetry problem can be consider as the

unique critical point of the modified Hellinger-Ressiner functional (recall (2.16))

Jw(σ,u, ρ) = J (σ,u) +

∫
Ω

σ : ρ dΩ. (2.20)

Again, setting the variationals of J with respect to σ, u and ρ to zero also produces

the weak formulation (2.17)-(2.19).

Defining the inner products

a(·, ·) : X ×X → R, a(σ, τ) :=

∫
Ω

Aσ : τ dΩ,

b(·, ·) : Q×X → R, b(u, τ) :=

∫
Ω

(∇ · τ) · u dΩ,

c(·, ·) : W ×X → R, c(ρ, τ) :=

∫
Ω

ρ : τ dΩ

(2.21)

and taking A(σ, τ) = a(σ, τ) and B(τ , (u,ρ)) = b(u, τ) + c(ρ, τ) clearly illustrates

that (2.17)− (2.19) preserves a saddle point structure. Indeed, the problem can now

14

be cast as finding (σ,u,ρ) ∈ X ×Q×W such that

A(σ, τ) +B(τ , (u,ρ)) = 0

B(σ, (v, ξ)) = (f ,v)
(2.22)

for all (τ ,v, ξ) ∈ X × Q ×W . If we let V = {σ ∈ X | B(σ, (u,ρ)) = 0 for all u ∈

Q,ρ ∈ W}, then showing existence and uniqueness of (2.22) requires verifying that

• there exists a C1 > 0 such that A(σ,σ) ≥ C1‖σ‖X for all σ ∈ V , and

• there exists a C2 > 0 such that

inf
v∈Q,ξ∈W

sup
τ∈X

B(τ , (v, ξ))

‖τ‖X(‖v‖Q + ‖ξ‖W)
≥ C2. (2.23)

Since ∇ · σ = 0 for all σ ∈ V [24], applying a standard bounding argument to

A(σ,σ) shows that A(., .) is cocercive in the X norm. Meanwhile, proving the inf-

sup condition relies on the following lemma.

Lemma 1. There exists a C > 0 such that for any v ∈ Q and ρ ∈ W , there exists a

τ ∈ X whereby

b(τ ,v) + c(τ ,ρ) = ‖v‖2
Q + ‖ρ‖2

W (2.24)

and

‖τ‖X ≤ C(‖v‖Q + ‖ρ‖W). (2.25)

Proof. Here we outline the proof for the Ω ⊂ R2 case. Let v ∈ Q and ρ ∈ W . The

idea behind this proof is to construct two tensors τ 1, τ 2 ∈ X such that τ = τ 1 + τ 2

satisfies (2.24) and (2.25).

15

Tensor τ 1 is constructed to satisfy

b(τ 1,w) =

∫
Ω

(∇ · τ 1) ·w dΩ = (v,w) (2.26)

for all w ∈ Q.

Meanwhile, tensor τ 2 needs to be divergence free so (2.26) holds for τ , while also

satisfying

c(τ , ξ) = c(τ 1, ξ) + c(τ 2, ξ)

= (as(τ 1), ξ) + (as(τ 2), ξ)

= (ρ, ξ)

(2.27)

for all ξ ∈ W . In other words, (as(τ 2), ξ) = (ρ− as(τ 1), ξ).

To build τ 1 ∈ X, for v ∈ Q = L2(Ω) given, let u ∈ H1(Ω) solve Poisson’s equation

with homogeneous Dirichlet boundary conditions [49]

∆u = v in Ω,

u = 0 on ∂Ω.

Let τ 1 = 2ε(u) − (∇ · u)I. Then ∇ · τ 1 = ∆u = v and it follows that τ 1 ∈ X.

Further,

‖τ 1‖X ≤ C1‖v‖Q. (2.28)

Next, we build τ 2 ∈ X. Let ρ ∈ W be given and p, θ ∈ L2(Ω) be chosen so that

ρ =

 0 p

−p 0

 = S2(p) and as(τ 1) = S2(θ). (2.29)

Then take s to be the mean value of θ − p. That is,

s =
1

|Ω|

∫
Ω

(θ − p) dΩ. (2.30)

16

If we set β = (θ − p)− s, then β has a mean value of zero over Ω (i.e.
∫

Ω
β dΩ = 0).

Then, from [50], there exists w ∈ H1
0(Ω) such that ∇ ·w = β and

‖w‖H1
0(Ω) ≤ C‖β‖L2(Ω) ≤ C(‖v‖Q + ‖ρ‖W). (2.31)

With w = (w1, w2)t, we construct

τ 2 = 2

curl w1

curl w2

− 2

0 s

0 0

 = 2

(w1)y −(w1)x

(w2)y −(w2)x

− 2

0 s

0 0

 . (2.32)

Since

∇ · τ 2 = 2

(w1)yx − (w1)xy

(w2)yx − (w2)xy

− 2

0

0

 =

0

0

 , (2.33)

using (2.31), τ 2 ∈ X. Also,

as(τ 2) =

 0 −∇ ·w − s

∇ ·w + s 0

 =

 0 −β − s

β + s 0


= S2(−(β + s)) = S2(p− θ) = ρ− as(τ 1).

(2.34)

Taking τ = τ 1 + τ 2, the desired properties are satisfied. First, using (2.33) for all

w ∈ Q

b(τ ,w) = b(τ 1,w) + b(τ 2,w) = b(τ 1,w) + 0

= (v,w).
(2.35)

Second, for all ξ ∈ W ,

c(τ , ξ) = c(τ 1, ξ) + c(τ 2, ξ) = (as(τ 1), ξ) + (as(τ 2), ξ)

= (as(τ 1), ξ) + (ρ, ξ)− (as(τ 1), ξ) = (ρ, ξ).
(2.36)

Taking w = v and ξ = ρ establishes (2.24).

17

To verify (2.25), first note that (2.28) implies

‖τ 1‖X ≤ C1(‖v‖Q + ‖ρ‖W). (2.37)

In order to develop a similar bound for τ 2, observe that

√
2 ‖p‖L2(Ω) =

(∫
Ω

2 p2 dΩ

) 1
2

=

∥∥∥∥∥∥
 0 p

−p 0

∥∥∥∥∥∥
L2(Ω)

= ‖S2(p)‖W = ‖ρ‖W (2.38)

and

‖θ‖2
L2(Ω) =

∫
Ω

(τ12 − τ21)2 dΩ ≤ 2

∫
Ω

(τ 2
11 + τ 2

12 + τ 2
21 + τ 2

22) dΩ ≤ 2 ‖τ 1‖2
X , (2.39)

where τij are the elements of τ 1.

Next, from (2.30), observe that

|s| ≤ 1

|Ω|

∫
Ω

|p− θ| dΩ ≤ 1

|Ω|

∫
Ω

|p|+ |θ| dΩ ≤ C2(‖p‖L2(Ω) + ‖θ‖L2(Ω)). (2.40)

It then follows from (2.38) and (2.39) that

|s| ≤ C3(‖ρ‖W + ‖τ 1‖X). (2.41)

Therefore,

‖s‖L2(Ω) =

(∫
Ω

s2 dΩ

) 1
2

≤
(∫

Ω

C2
3(‖ρ‖W + ‖τ 1‖X)2 dΩ

) 1
2

= C3(‖ρ‖+ ‖τ 1‖X)
√
|Ω|.

(2.42)

18

Lastly, using (2.32), (2.31), (2.42), (2.37) and the fact that ∇ · τ 2 = 0,

‖τ 2‖X =
√
‖∇ · τ 2‖2

L2(Ω) + ‖τ 2‖2
L2(Ω) = ‖τ 2‖L2(Ω)

≤

∥∥∥∥∥∥2

(w1)y −(w1)x

(w2)y −(w2)x

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥2

0 s

0 0

∥∥∥∥∥∥
L2(Ω)

≤ C4

(
‖∇ w‖L2(Ω) + ‖s‖L2(Ω)

)
≤ C5(‖v‖Q + ‖ρ‖W).

(2.43)

Combining (2.37) and (2.43) with the fact that ‖τ‖X ≤ ‖τ 1‖X + ‖τ 2‖X verifies

(2.25).

2.4 Axisymmetric Function Spaces

When the three dimensional axisymmetric linear elasticity problem is expressed in

cylindrical coordinates, it can be expressed as a decoupled meridian and azimuthal

problem. Changing the coordinate system from Cartesian to cylindrical, however,

alters the algebraic form of differential operators and requires a new set of function

spaces and notation. In this section, we introduce the key changes needed to present

and discuss the meridian axisymmetric linear elasticity problem. Appendix A provides

additional details on cylindrical coordinates and the procedure for decoupling the

axisymmetric problem.

For axisymmetric vectors u = (ur, uz)
t, we define the gradient operators ∇ and ∇axi

as

∇ u =


∂ur
∂r

∂ur
∂z

∂uz
∂r

∂uz
∂z

 , and ∇axi u =


∂ur
∂r

0
∂ur
∂z

0 1
r
ur 0

∂uz
∂r

0
∂uz
∂z

 . (2.44)

Note that it is necessary to represent the gradient and axisymmetric gradient as ten-

sors with different sizes because the non-constant nature of the cylindrical coordinate

unit vectors creates additional terms in axisymmetric derivatives. However, in order

to express the meridian problem using a two-dimensional formulation, we represent

19

the tensor ∇axiu as an ordered pair made up of a tensor and a scalar function. That

is

∇axi u = (∇ u,
1

r
ur). (2.45)

Next, for the axisymmetric vector u = (ur, uz)
t, the divergence operators ∇· and

∇axi· are defined as

∇ · u =
∂ur
∂r

+
∂uz
∂z

, and ∇axi · u =
1

r

∂(r ur)

∂r
+
∂uz
∂z

=
1

r
ur +∇rz · u. (2.46)

As alluded to in (2.45) and described in Appendix A, the stress tensor that appears

in the meridian problem can be represented as (σ, σ) where σ denotes an M2 tensor

function and σ represents a scalar function. The divergence of the meridian stress

tensor is

∇axi · (σ, σ) =

∇axi · σ1 −
1

r
σ

∇axi · σ2

 . (2.47)

At times, the axisymmetric divergence operator will also be applied to an M2 tensor

function σ, in which case

∇axi · σ =

∇axi · σ1

∇axi · σ2

 . (2.48)

Note that for the skew symmetric component of (σ, σ) we have

as((σ, σ)) = as(σ) = S2(q), where q =
1

2
(σ12 − σ21). (2.49)

For a scalar function f , the axisymmetric Laplace operator ∆axi takes the form

∆axif =
1

r

∂

∂r

(
r
∂f

∂r

)
+
∂2f

∂z2
. (2.50)

20

For completeness, we note that for a vector function u, the axisymmetric Laplace

operator ∆axi takes the form

∆axiu =

∆axiu1 −
1

r2
u1

∆axiu2

 . (2.51)

The curl of an axisymmetric scalar function p is given by ∇ac and is defined as

∇ac p =

(
∂p

∂z
,−1

r

∂(r p)

∂r

)
. (2.52)

Note that ∇ac returns a row-vector. For a vector function p = (pr, pz)
t we have

∇ac p =

∇ac pr

∇ac pz

 . (2.53)

In addition to the divergence and curl, the cylindrical coordinate inner product also

takes a different form from the Cartesian inner product. Indeed, consider the change

of variables for a Cartesian function p̂ ∈ L2(Ω̆) into cylindrical coordinates

∫
Ω̆

p̂2 dΩ̆ =

∫∫
Ω

∫ 2π

θ=0

p2r dθ dr dz. (2.54)

Notice the r = r(x) scaling in the measure. In the axisymmetric setting, p ≡ p(r, z)

and the θ integral can be computed to give a factor of 2π. As this term is a constant

factor in all such integrals arising, we omit it. To distinguish the cylindrical coordinate

inner product from the Cartesian inner product, we use the following notation

∫
Ω

p q r dr dz = (p, q). (2.55)

21

To account for this scaling in the inner product, we introduce the following function

spaces

αL
2(Ω) = {v :

∫
Ω

v2rα dr dz <∞},

αL
2(Ω) = {v ∈ Rn : vi ∈ αL

2(Ω) for i = 1, ..., n},

αL
2(Ω,Mn) = {σ ∈Mn : σij ∈ αL

2(Ω) for i = 1, · · ·n and j = 1, · · ·n},

αL
2(Ω,Kn) = {σ ∈ Kn : σij ∈ αL

2(Ω) for i = 1, · · ·n and j = 1, · · ·n}.

The norms associated with these αL
2 spaces are

‖v‖2
αL2(Ω) =

∫
Ω

v2rα dr dz, ‖v‖2
αL2(Ω) =

n∑
i=1

‖vi‖2
αL2(Ω),

‖σ‖2
αL2(Ω,Mn) =

n∑
i=1

n∑
j=1

‖σij‖2
αL2(Ω) and ‖σ‖2

αL2(Ω,Kn) =
n∑
i=1

n∑
j=1

‖σij‖2
αL2(Ω).

In addition to the αL
2 spaces, the elasticity problem requires divergence spaces for

the stress tensors. These spaces are

αH(divaxi,Ω) = {v ∈ αL
2(Ω) : ∇axi · v ∈ αL

2(Ω)},

αH(divaxi,Ω;Mn) = {σ ∈ αL
2(Ω;Mn) : ∇axi · σ ∈ αL

2(Ω)},

αH(divaxi,Ω;Kn) = {σ ∈ αL
2(Ω;Kn) : ∇axi · σ ∈ αL

2(Ω)}.

with norms

‖v‖2
αH(divaxi,Ω) = ‖∇axi · v‖2

αL2(Ω) + ‖v‖2
αL2(Ω),

‖σ‖2
αH(divaxi,Ω; Mn) = ‖∇axi · σ‖2

αL2(Ω) + ‖σ‖2
αL2(Ω;Mn),

‖σ‖2
αH(divaxi,Ω; Kn) = ‖∇axi · σ‖2

αL2(Ω) + ‖σ‖2
αL2(Ω;Kn).

Various forms of the weighted 1H
k(Ω) function space also appear in this work. To

begin, the most important family of Hk(Ω) spaces that appear in the work are of the

22

H1(Ω) variety. Specifically, let

αH
1(Ω) = {v ∈ αL

2(Ω) : ∇vi ∈ αL
2(Ω), i = 1, · · · , n},

αH
1(Ω;Mn) = {σ ∈ αL

2(Ω;Mn) : ∇σi,j ∈ αL
2(Ω), i, j = 1, · · · , n},

with norms

‖v‖2
αH1(Ω) =

n∑
i=1

‖∇vi‖2
αL2(Ω) + ‖v‖2

αL2(Ω),

‖σ‖2
αH1(Ω) =

n∑
i=1

‖∇σi‖2
αL2(Ω,Mn) + ‖σ‖2

αL2(Ω;Mn).

More generally, one can define the function space Hk(Ω) for any k ≥ 1. First, let ζ

be a positive integer and v be ζ times differentiable. One can then define the vector

∇ζv =

[
∂ζv

(∂r)ζ
,

∂ζv

(∂r)ζ−1∂z
, · · · , ∂ζv

(∂r)(∂z)ζ−1
,
∂ζv

(∂z)ζ

]
.

Then,

αH
k(Ω) = {v ∈ αL

2(Ω) : ∇ζv ∈ αL
2(Ω) for all ζ ≤ k},

αH
k(Ω) = {v ∈ αL

2(Ω) : ∇ζvi ∈ αL
2(Ω) for all ζ ≤ k and i = 1, 2, · · ·n},

αH
k(Ω;Mn) = {σ ∈ αL

2(Ω;Mn) : ∇ζσi,j ∈ αL
2(Ω) for all ζ ≤ k and i, j = 1, 2, · · ·n},

with norms

‖v‖2
αHk(Ω) = ‖v‖2

αL2(Ω) +
k∑
ζ=1

‖∇ζv‖2
αL2(Ω),

‖v‖2
αHk(Ω) = ‖v‖2

αL2(Ω) +
n∑
i=1

k∑
ζ=1

‖∇ζvi‖2
αL2(Ω),

‖σ‖2

αHk(Ω;Mn)
= ‖σ‖2

αL2(Ω;Mn) +
n∑
i=1

n∑
j=1

k∑
ζ=1

‖∇ζσij‖2
αL2(Ω).

23

Next we consider some subtle details related to function spaces containing axisym-

metric derivative terms. To begin, recall from (2.44), that the gradient of the axisym-

metric vector v has the form

∇axiv = (∇v,
1

r
vr), (2.56)

which implies that

‖∇axiv‖2
1L2(Ω) =

∫
Ω

∇axiv : ∇axiv r dΩ =

∫
Ω

∇v : ∇v r dΩ +

∫
Ω

1

r
v2
r dΩ. (2.57)

Therefore, in order that ‖∇axiv‖1L2(Ω) < ∞, it is necessary for vr ∈ 1H
1(Ω) and

vr ∈ −1L
2(Ω). To denote this important subspace of 1H

1(Ω), we define

1V
1(Ω) = {v ∈ 1H

1(Ω) : v ∈ −1L
2(Ω)}. (2.58)

For general k, let

1V
k(Ω) = {v ∈ 1H

k(Ω) : v ∈ −1L
2(Ω)}. (2.59)

We also define a norm for v ∈ 1V
k(Ω) as

‖v‖
1V k(Ω) =

(
k∑
j=1

|v|2
1Hj(Ω) + ‖v‖2

−1L2(Ω)

) 1
2

. (2.60)

It is also important to observe that unlike in the Cartesian setting, 1H
1(Ω) 6⊂ 1H(divaxi,Ω).

When referencing a function space that has a vanishing trace along the boundary, we

adopt the standard convention of including a zero subscript. For example,

1H
1
0 (Ω) = {v ∈ 1H

1
0 (Ω) : v = 0 on Γ}. (2.61)

It is important to highlight that Γ here does not include the rotation axis portion of

the boundary of Ω as illustrated in Figure 2-1.

24

In the discussions that follow, we take U = 1L
2(Ω), Q = 1L

2(Ω). As the merdian

stress tensor is made up of a tensor and scalar component, we introduce the space

Σ(Ω) defined by

Σ(Ω) = {(σ, σ) ∈ 1L
2(Ω,M2)× 1L

2(Ω) : ∇axi · (σ, σ) ∈ 1L
2(Ω)}. (2.62)

Associated with Σ(Ω) we have the norm

‖(σ, σ)‖Σ(Ω) =
(
‖∇axi · (σ, σ)‖2

1L2(Ω) + ‖σ‖2
1L2(Ω; M2) + ‖σ‖2

1L2(Ω)

) 1
2
. (2.63)

Additionally, we define S(Ω) ⊂ Σ(Ω) by

S(Ω) = {(σ, σ) ∈ Σ(Ω) : σ ∈ 1H
1(Ω; M2), σ ∈ −1L

2(Ω)}, (2.64)

with norm

‖(σ, σ)‖S(Ω) =
(
‖∇axi · (σ, σ)‖2

1L2(Ω) + ‖σ‖2
1H1(Ω; M2) + ‖σ‖2

−1L2(Ω)

) 1
2
. (2.65)

For convenience, when referencing Ω specifically, Σ(Ω) and S(Ω) will be denoted as

Σ and S.

2.5 Axisymmetric Strong Form

The strong form of the axisymmetric problem is the same as the problem described

in (2.12) (restated here for convenience)

Aσ = ε(u), ∇ · σ = f in Ω (2.66)

with the boundary conditions described in (2.14).

For the complete three dimensional problem, the boundary consists of the surface

of an three dimensional axisymmetric object. When the axisymmetric problem has

been reduced to the two dimensional meridian problem in (r, z)-space, the symmetry

25

axis Γ0 is treated as a special boundary. To preserve the axisymmetry property of

the solution, it is necessary to apply the following boundary conditions along Γ0

u · n = 0 and σ · n = 0 on Γ0. (2.67)

The first condition prevents any normal displacement along the symmetry axis while

the second condition prevents any normal stress from occurring along the symmetry

axis.

2.6 Axisymmetric Weak Form

In this section we present the weak form of the axisymmetric meridian problem.

This problem has many similarities with the Cartesian problem, however, new terms

are introduced into the bilinear forms as a consequence of the change of variable

from Cartesian to cylindrical coordinates. Details of the derivation can be found in

Appendix A.

First, define the bilinear form ã(., .) : Σ×Σ→ R,

ã((σ, σ), (τ , τ)) = (Aσ, τ) + (Aσ, τ)− 1

2µ

λ

2µ+ 3λ
((σ, tr(τ)) + (tr(σ), τ)), (2.68)

and the bilinear form b̃(., .) : Σ× U → R,

b̃((τ , τ),u) = (∇axi · τ ,u)− (
τ

r
, ur). (2.69)

The axisymmetric meridian problem is then defined as: Given f ∈ 1L
2(Ω), find

((σ, σ),u) ∈ Σ× U such that

ã((σ, σ), (τ , τ)) + b̃((τ , τ),u) = 0 (2.70)

b̃((σ, σ),v) = (f ,v) (2.71)

26

for all ((τ , τ),v) ∈ Σ× U .

For the weak symmetry version of the problem, (recall (2.19)), we define the bilinear

form c̃(., .) : Σ×Q→ R

c̃((σ, σ), p) := (σ,S2(p)). (2.72)

The axisymmetric meridian problem with weak symmetry is then: Given f ∈ 1L
2(Ω),

find ((σ, σ),u, p) ∈ Σ× U ×Q such that

ã((σ, σ), (τ , τ)) + b̃((τ , τ),u) + c̃((τ , τ), p) = 0 (2.73)

b̃((σ, σ),v) = (f ,v) (2.74)

c̃((σ, σ), q) = 0 (2.75)

for all ((τ , τ),v, q) ∈ Σ× U ×Q.

2.6.1 Modified Weak Symmetry and the Axisymmetric Elas-

ticity Problem

Of interest is to develop discrete inf-sup stable elements for the axisymmetric elasticity

problem. In cylindrical coordinates, the divergence operator does not map polynomial

spaces into polynomial spaces, so some of the standard techniques for verifying inf-sup

stability cannot be used. Thus, to help establish a weak formulation for which stable

triples of finite elements may be verified to satisfy the discrete inf-sup condition, we

make two modifications to the problem (2.73)-(2.75).

To distinguish the modified weak symmetry problem, we introduce new notation.

Previously, the bilinear forms that appear in the weak formulation of the elasticity

problem were denoted with a tilde symbol (e.g. ã(·, ·)). The modified bilinear forms

introduced next can be distinguished because the tilde will be removed (e.g. a(·, ·)).

In the case of b̃(·, ·), no modification will be made. However, to maintain notational

consistency, we take b̃(·, ·) = b(·, ·).

First, we add a grad-div stabilization term to ã(·, ·) and define a new bilinear form

27

a(·, ·) : Σ×Σ :→ R

a((σ, σ), (τ , τ)) = ã((σ, σ), (τ , τ)) + γ(∇axi · (σ, σ),∇axi · (τ , τ)) (2.76)

where γ is the grad-div stabilization term. Unless specified otherwise, we take γ = 1.

As discussed in Section 2.6.2, this stabilization term ensures that a((·, ·), (·, ·)) is

coercive in the ‖ · ‖Σ norm. Also, recall from (2.12) that in cylindrical coordinates,

∇axi · (σ, σ) = f . Therefore, to account for the grad-div stabilization term in the

constituent equation, (f ,∇axi · (τ , τ)) must also be added to the right hand side of

(2.73).

For the second modification, recall that c̃((σ, σ), q) = (σ,S2(q)) and let x = (r, z)t.

As described in Lemma 7 below,∫
Ω

σ : S2(q) r d Ω = −
∫

Ω

(∇axi · (σ, σ) ∧ x) q r dΩ

+

∫
∂Ω

(σ · n) · x⊥q r ds−
∫

Ω

σ : (x⊥ ⊗∇q) r dΩ

−
∫

Ω

1

r
σ z q r dΩ,

(2.77)

or equivalently∫
Ω

σ : S2(q) r dΩ +

∫
Ω

(∇axi · (σ, σ) ∧ x) q r dΩ

=

∫
∂Ω

(σ · n) · x⊥q r ds−
∫

Ω

σ : (x⊥ ⊗∇q) r dΩ

−
∫

Ω

σ z q dΩ.

(2.78)

In terms of establishing stable approximation elements via the construction of a suit-

able projection (see Theorem 1) it is much more convenient to use equation (2.78)

than (2.77). To introduce (2.78) into the weak form, we add
∫

Ω
(∇axi ·(σ, σ)∧x) q r dΩ

to both sides of (2.75) giving

c̃((σ, σ), q) +

∫
Ω

(∇axi · (σ, σ) ∧ x) q r dΩ =

∫
Ω

(f ∧ x) q r dΩ, (2.79)

28

where we have used the relationship ∇axi · (σ, σ) = f on the right hand side. To

represent the left hand side of (2.79), we define a new bilinear form c(·, ·) : Σ×Q→ R

as

c((σ, σ), q) := c̃((σ, σ), q) + (∇axi · (σ, σ) ∧ x, q)

= (σ,S2(q)) + (∇axi · (σ, σ) ∧ x, q).
(2.80)

Therefore, (2.75) becomes

c((σ, σ), q) = (f ∧ x, q). (2.81)

To maintain the saddle point structure of the weak formulation with the bilinear form

c(·, ·), we need to add and subtract (∇axi · (τ , τ)∧x, p) to the left hand side of (2.73).

To understand the affect of this modification on the weak formulation, first observe

that

∇axi · (τ , τ) ∧ x =


∂τ11

∂r
+
∂τ12

∂z
+

1

r
(τ11 − τ)

∂τ21

∂r
+
∂τ22

∂z
+

1

r
τ21

 ∧
r
z


= z(

∂τ11

∂r
+
∂τ12

∂z
+

1

r
(τ11 − τ))− r(∂τ21

∂r
+
∂τ22

∂z
+

1

r
τ21)

= (∇axi · (τ , τ)) · x⊥.

(2.82)

Therefore,

((∇axi · (τ , τ)) ∧ x, p) =

∫
Ω

∇axi · (τ , τ) ∧ x p r dΩ

=

∫
Ω

(∇axi · (τ , τ)) · x⊥ p r dΩ

= b((τ , τ),x⊥ p).

(2.83)

This shows that ((∇axi · (τ , τ) ∧ x, p) can be expressed as b((τ , τ),x⊥p). As a result,

the negative part of ((∇axi · (τ , τ) ∧ x, p) that is used to balance the constituent

29

equation enters into the expression as part of the bilinear form b(·, ·). That is,

b((τ , τ),u)− b((τ , τ),x⊥p) = b((τ , τ),u− x⊥p). (2.84)

To reflect the fact that the expression within the bilinear form b(·, ·) no longer depends

only on the displacement u, we define a new variable w = u − x⊥p. As we discuss

further in Sections 2.12 and 2.13, once the true solution has be found, the true

displacement u = w+x⊥p can be accurately recovered during a post-processing step.

As an additional comment, we must specify a boundary condition for the pseudo

displacement w. Since p ∈ 1L
2(Ω) and it was introduced to enforced the symmetry

condition weakly, it is appropriate to impose the condition p = 0 on ∂Ω. Therefore,

the pure clamped boundary condition u = 0 becomes w = 0.

Therefore, an equivalent but modified version of the axisymmetric linear elasticity

problem (2.73)-(2.75) can be expressed as: Given f ∈ 1L
2(Ω) find ((σ, σ),w, p) ∈

Σ× U ×Q such that

a((σ, σ), (τ , τ)) + b((τ , τ),w) + c((τ , τ), p) = (f ,∇axi · (τ , τ)) (2.85)

b((σ, σ),v) = (f ,v) (2.86)

c((σ, σ), q) = (f ∧ x, q) (2.87)

for all ((τ , τ),v, q) ∈ Σ× U ×Q.

2.6.2 Inf-sup stability of the modified weak problem

Next we establish a set of conditions on the spaces Σ×U ×Q so that modified weak

symmetry problem described in (2.85)-(2.87) are inf-sup stable. First we establish

that a(·, ·) is coercive on Σ×Σ.

Lemma 2. The operator a(., .) defined in (2.76) is coercive. That is,

a((σ, σ), (σ, σ)) ≥ γ‖(σ, σ)‖2
Σ where γ = min{ 1

2µ

1

2µ+ 3λ
, 1}. (2.88)

30

Proof. We begin with the observation that

a((σ, σ), (σ, σ)) = (Aσ,σ) + (Aσ, σ)− 1

2µ

λ

2 + 3λ
[(σ, tr(σ)) + (tr(σ), σ)]

+ (∇axi · (σ, σ),∇axi · (σ, σ))

=
1

2µ
(σ,σ) +

1

2µ
(σ, σ)− 1

2µ

λ

2µ+ 3λ
(tr(σ) + σ, tr(σ) + σ)

+ (∇axi · (σ, σ),∇axi · (σ, σ)).

(2.89)

Next we must incorporate the (tr(σ) + σ, tr(σ) + σ) term into (2.89) in a way that

will allow us to obtain the Σ norm. To do so, we start by adding the inequalities

σ2
11 + σ2

22 ≥ 2σ11σ22, σ2
22 + σ2 ≥ 2σ22σ, σ2

11 + σ2 ≥ 2σ11σ (2.90)

to get that 2(σ2
11 + σ2

22 + σ2) ≥ 2(σ11σ22 + σ22σ + σ11σ). Adding additional positive

terms to the left-hand side of this inequality gives

2(σ2
11 + σ2

22 + σ2) + 3(σ2
12 + σ2

21) ≥ 2(σ11σ22 + σ22σ + σ11σ). (2.91)

Since (tr(σ) + σ)2 = σ2
11 + σ2

22 + σ2 + 2(σ11σ22 + σ22σ + σ11σ) and µ, λ > 0,

1

2µ

λ

2µ+ 3λ
(tr(σ) + σ, tr(σ) + σ) ≤ 1

2µ

3λ

2µ+ 3λ

∫
Ω

(σ2
11 + σ2

12 + σ2
21 + σ2

22 + σ2) r dΩ

=
1

2µ

3λ

2µ+ 3λ
(σ,σ) +

1

2µ

3λ

2µ+ 3λ
(σ, σ).

(2.92)

Combining (2.89) and (2.92)

a((σ, σ), (σ, σ)) ≥ 1

2µ

2µ

2µ+ 3λ
((σ,σ) + (σ, σ)) + (∇axi · (σ, σ),∇axi · (σ, σ))

=
1

2µ+ 3λ
‖(σ, σ)‖2

1L2(Ω;M2×R1) + ‖∇axi · (σ, σ)‖2
1L2(Ω)

≥ γ‖(σ, σ)‖2
Σ

(2.93)

where γ = min{ 1

2µ+ 3λ
, 1}.

31

Lemma 3. The operator a(·, ·) is bounded. That is,

a((σ, σ), (τ , τ)) ≤ α‖(σ, σ)‖Σ‖(τ , τ)‖Σ (2.94)

for some α > 0 and all (σ, σ), (τ , τ) ∈ Σ.

Proof. Using the Cauchy-Schwarz inequality,

a((σ, σ), (τ , τ)) =
1

2µ
(σ, τ) +

1

2µ
(σ, τ)− 1

2µ

λ

2µ+ 3λ
(tr(σ) + σ, tr(τ) + τ)

+ (∇axi · (σ, σ),∇axi · (τ , τ))

≤ 1

2µ

(
‖σ‖

1L2(Ω)‖τ‖1L2(Ω) + ‖σ‖
1L2(Ω)‖τ‖1L2(Ω)

)
+ ‖∇axi · (σ, σ)‖

1L2(Ω)‖∇axi · (τ , τ)‖
1L2(Ω)

+
1

2µ

λ

2µ+ 3λ
‖tr(σ) + σ‖

1L2(Ω)‖tr(τ) + τ‖
1L2(Ω)

≤ C
(
‖(σ, σ)‖Σ‖(τ , τ)‖Σ + ‖tr(σ) + σ‖

1L2(Ω)‖tr(τ) + τ‖
1L2(Ω)

)
.

(2.95)

Further, for any (σ, σ) ∈ Σ,

‖tr(σ) + σ‖
1L2(Ω) =

∫
Ω

(tr(σ) + σ)2r dΩ ≤ C ((σ,σ) + (σ, σ))

≤ C‖(σ, σ)‖
1L2(Ω;M2×R1) ≤ C‖(σ, σ)‖Σ.

(2.96)

Combining (2.95) and (2.96) yields (2.94).

2.6.3 Axisymmetric Meridian Continuous Inf-Sup Condition

Next we show that the inf-sup condition related to (2.85)-(2.87) is satisfied, i.e., there

exists C > 0 such that

inf
u∈U,p∈Q

sup
(σ,σ)∈Σ

b((σ, σ),u) + c((σ, σ), p)

‖(σ, σ)‖Σ(‖u‖U + ‖p‖Q)
≥ C. (2.97)

32

To establish the axisymmetric inf-sup condition (2.97), we follow a similar argument

as presented in Lemma 1. However, some important modifications to the argument

are necessary to account for the axisymmetric differential operators and function

spaces. To help address these modifications, we first introduce Lemmas 4 - 5. Proof

that the axisymmetric inf-sup condition (2.97) is satisfied is then presented in Lemma

6.

Lemma 4. For β ∈ 1L
2(Ω) and p ∈ 1L

2(Ω) with 0 < ‖p‖
1L2(Ω) ≤ 1, there exists

βs ∈ 1H
1
0 (Ω) such that

(βs, p) = (β, p) and ‖βs‖1H1(Ω) ≤ C‖β‖
1L2(Ω). (2.98)

Proof. For β, p as given, consider the problem: Determine βs ∈ 1H
1
0 (Ω), λ ∈ R such

that for all v ∈ 1H
1(Ω), µ ∈ R

∫
Ω

∇βs · ∇v r dr dz +

∫
Ω

λ v p r dr dz =

∫
Ω

β v r dr dz (2.99)∫
Ω

µ βs p r dr dz =

∫
Ω

µ β p r dr dz. (2.100)

For a(·, ·) : 1H
1
0 (Ω)× 1H

1
0 (Ω)→ R given by

a(u, v) =

∫
Ω

∇u · ∇v r dr dz (2.101)

and b(·, ·) : 1H
1
0 (Ω)× R→ R given by

b(v, µ) =

∫
Ω

µ v p r dr dz = µ(v, p), (2.102)

it is straight forward to show that a(·, ·) is continuous and coercive and that b(·, ·) is

continuous. Then, the existence and uniqueness of βs and λ satisfying (2.99)-(2.100)

depends upon if the inf-sup condition

inf
µ∈R,µ 6=0

sup
v∈1H1

0 (Ω)

b(v, µ)

‖v‖
1H1(Ω) |µ|

≥ C > 0 (2.103)

33

is satisfied.

To see that (2.103) is satisfied, choose w ∈ 1H
1
0 (Ω) such that (w, p) 6= 0. Without

loss of generality, we may assume that (w, p) > 0. Then, for µ > 0,

sup
v∈1H1

0 (Ω)

b(v, µ)

‖v‖
1H1(Ω)|µ|

= sup
v∈1H1

0 (Ω)

µ(v, p)

‖v‖
1H1(Ω)|µ|

≥ µ(w, p)

‖w‖
1H1(Ω)|µ|

=
(w, p)

‖w‖
1H1(Ω)

> 0.

(2.104)

For µ < 0,

sup
v∈1H1

0 (Ω)

b(v, µ)

‖v‖
1H1(Ω)|µ|

= sup
v∈1H1

0 (Ω)

µ(v, p)

‖v‖
1H1(Ω)|µ|

≥ µ(−w, p)
‖ − w‖

1H1(Ω)|µ|
=

(w, p)

‖w‖
1H1(Ω)

> 0.

(2.105)

Therefore, (2.103) is satisfied, guaranteeing that (2.99)-(2.100) has a unique solution

for βs and µ. That (βs, p) = (β, p) follows directly from (2.100).

Next, we establish the stated bound for βs. Taking v = βs and µ = λ in (2.99)-(2.100)

and subtracting gives

‖∇ βs‖2
1L2(Ω) = (β, βs)− λ(β, p). (2.106)

Since βs ∈ 1H
1
0 (Ω), the Poincarè’s inequality gives that there exists a C1 > 0 such

that

‖βs‖2
1H1(Ω) ≤ C1‖∇βs‖2. (2.107)

Therefore, combining (2.106) and (2.107)

c1 ‖βs‖2
1H1(Ω) ≤ ‖∇βs‖2

1L2(Ω)

≤ ‖β‖
1L2(Ω)‖βs‖1L2(Ω) + |λ| ‖β‖

1L2(Ω)‖p‖1L2(Ω)

≤ 1

2c1

‖β‖2
1L2(Ω) +

c1

2
‖βs‖2

1L2(Ω) + |λ| ‖β‖
1L2(Ω)‖p‖1L2(Ω).

(2.108)

34

This implies that

‖βs‖2
1H1(Ω) ≤

1

c2
1

‖β‖2
1L2(Ω) +

2

c1

|λ|‖β‖
1L2(Ω)‖p‖1L2(Ω). (2.109)

Next, from the inf-sup condition (2.103), and using (2.99)

C |λ| ≤ sup
v∈1H1

0 (Ω)

λ(v, p)

‖v‖
1H1(Ω)

= sup
v∈1H1

0 (Ω)

(β, v)−
∫

Ω
∇βs · ∇v r dr dz
‖v‖

1H1(Ω)

≤ sup
v∈1H1

0 (Ω)

‖β‖
1L2(Ω)‖v‖1L2(Ω) + ‖βs‖1H1(Ω)‖v‖1H1(Ω)

‖v‖
1H1(Ω)

≤ ‖β‖
1L2(Ω) + ‖βs‖1H1(Ω).

(2.110)

Combining (2.109) and (2.110) implies that

‖βs‖2
1L2(Ω) ≤

1

c2
1

‖β‖2
1L2(Ω) +

2

c1C
‖β‖2

1L2(Ω)‖p‖1L2(Ω) +
2

c1C
‖β‖

1L2(Ω)‖βs‖1H1(Ω)‖p‖1L2(Ω)

≤ 1

c2
1

‖β‖2
1L2(Ω) +

2

c1C
‖β‖2

1L2(Ω)‖p‖1L2(Ω) +
1

2
‖βs‖2

1H1(Ω)

+
2

(c1C)2
‖β‖2

1L2(Ω)‖p‖2
1L2(Ω).

(2.111)

Rearranging (2.111) and using ‖p‖
1L2(Ω) ≤ 1,

‖βs‖2
1H1(Ω) ≤

2

c2
1

‖β‖2
1L2(Ω) +

4

c1C
‖β‖2

1L2(Ω)‖p‖1L2(Ω) + (
2

c1C
)2‖β‖2

1L2(Ω)‖p‖2
1L2(Ω)

≤ C‖β‖
1L2(Ω).

(2.112)

Lemma 5. Assume Ω̆ is a bounded domain and ∂Ω̆ is C3. Then, given β∗s ∈ 1H
1(Ω)

35

with (β∗s , 1) = 0, there exists w ∈ 1V
2(Ω)× 1H

2(Ω) satisfying

∇axi ·w = β∗s in Ω (2.113)

with ‖w‖
1V 2(Ω)×1H2(Ω) ≤ C ‖β∗s‖1H1(Ω).

Proof. As (βs, 1) = 0, consider g satisfying the Neumann problem

∆axi g = ∇axi · ∇ g = β∗s in Ω (2.114)

∂g

∂n
= 0 on ∂Ω. (2.115)

Equivalently, equations (2.114) and (2.115) can be expressed as the three dimensional

Cartesian problem

∆(x,y,z)ĝ = β̂∗s in Ω̆ (2.116)

∂ ĝ

∂n
= 0 on ∂Ω̆. (2.117)

By elliptic regularity [42], since β̂∗s ∈ H1(Ω̆), then ĝ ∈ H3(Ω̆) with ‖ĝ‖H3(Ω̆) ≤

C‖β̂∗s‖H1(Ω̆). Then, ŵ = ∇(x,y,z) g ∈ H2(Ω̆). The reduction formula [16] then gives

w ∈ 1V
2(Ω)× 1H

2(Ω), that satisfies (2.113) and ‖w‖
1H2(Ω) ≤ C ‖βs‖H1(Ω).

Lemma 6. For any v ∈ U and p ∈ Q, there exists a C > 0 and a (τ , τ) ∈ Σ such

that

b((τ , τ),v) + c((τ , τ), p) = ‖v‖2
U + ‖p‖2

Q (2.118)

and

‖(τ , τ)‖Σ ≤ C(‖v‖U + ‖p‖Q). (2.119)

Proof. The approach used in this proof follows a similar outline to the one used in

Lemma 1. Specifically, we will construct two tensor and scalar pairs (τ 1, τ 1) and

(τ 2, τ 2) such that (τ , τ) = (τ 1, τ 1) + (τ 2, τ 2) satisfies (2.118) and (2.119).

36

Let v ∈ U and p ∈ Q be given. By a simple scaling argument, without loss of

generality, we may assume that ‖v‖U + ‖p‖Y ≤ 1. For v = (v1, v2)t, there exist

vectors w1,w2 ∈ 1V
1(Ω)× 1H

1(Ω) such that

∇axi ·w1 = v1 and ∇axi ·w2 = v2 (2.120)

where ‖∇axi ·w1‖1L2(Ω) + ‖w1‖1V 1(T)×1H1(T) ≤ C ‖v1‖1L2(Ω) and

‖∇axi ·w2‖1L2(Ω) + ‖w2‖1V 1(T)×1H1(T) ≤ C ‖v2‖1L2(Ω). To compute the vectors w1 and

w2, one can map the axisymmetric scalar functions v1 and v2 into 3D Cartesian space

and solve scalar Laplace equations to obtain functions t1 and t2. The gradient func-

tions ŵ1 = ∇(x,y,z)t1 and ŵ2 = ∇(x,y,z)t2 are then computed. Finally, the reduction

mapping described in [16], can be used to map ŵ1 and ŵ2 to Ω and create w1 and

w2.

Using w1 and w2, we then construct a matrix τ 1, where

τ 1 =

w1

w2

 . (2.121)

Thus, taking (τ 1, τ 1) = (τ 1, 0) ∈ ((1V
1(Ω)× 1H

1(Ω))2, −1L
2(Ω)), one has that

∇axi · (τ 1, τ 1) = v, hence b((τ 1, τ 1),v) = ‖v‖2
U , (2.122)

and

‖(τ 1, τ 1)‖Σ ≤ ‖(τ 1, τ)‖S ≤ C‖v‖U ≤ C(‖v‖U + ‖p‖Q). (2.123)

To build (τ 2, τ 2) ∈ Σ× S, we first choose θ, γ ∈ 1L
2(Ω) such that

S2(θ) = as(τ 1), and γ =
1

2
(v1z − v2r) =

1

2
(∇axi · τ 1 ∧ x). (2.124)

37

Next, set β = (γ + θ − 1
2
p) ∈ 1L

2(Ω). Note that

‖θ‖2
1L2(Ω) =

∫
Ω

(τ12 − τ21)2 r dΩ ≤ 2

∫
Ω

(τ 2
11 + τ 2

12 + τ 2
21 + τ 2

22) r dΩ

≤ 2‖(τ 1, τ 1)‖Σ ≤ C(‖v‖2 + ‖p‖2
Q)

(2.125)

Also,

‖γ‖2
1L2(Ω) =

∫
Ω

1

4
(v1z − v2r)

2 r dΩ ≤ 1

2

∫
Ω

(v2
1z

2 + v2
2r

2) r dΩ (2.126)

≤ C

∫
Ω

v · v r dΩ = C‖v‖2
U (2.127)

where C = maxΩ{
r2

2
,
z2

2
}.

Therefore,

‖β‖
1L2(Ω) ≤ C(‖p‖Q + ‖θ‖

1L2(Ω) + ‖γ‖
1L2(Ω))

≤ C(‖v‖U + ‖p‖Q).
(2.128)

Using Lemma 4, we construct βs ∈ 1H
1(Ω) such that (βs, p) = (β, p) and ‖βs‖1H1(Ω) ≤

C ‖β‖
1L2(Ω). It then follows that

(S2(βs),S2(p)) = (S2(β),S2(p)) = (S2(γ + θ − 1

2
p),S2(p)). (2.129)

Define β∗s = βs − β̄ where β̄ =
1

|Ω|
∫

Ω
βsr dr dz. Observe that

‖β̄‖
1L2(Ω) =

(∫
Ω

(
1

|Ω|

∫
Ω

βsr dr dz

)2

rdr dz

) 1
2

≤ C ‖βs‖1L2(Ω) ≤ C ‖βs‖1H1(Ω),

(2.130)

38

and

‖β∗s‖1H1(Ω) ≤ ‖βs‖1H1(Ω) + ‖β̄‖
1L2(Ω)

≤ ‖βs‖1H1(Ω) + c1 ‖βs‖1H1(Ω)

≤ C ‖βs‖1H1(Ω).

(2.131)

Moreover, by construction (β∗s , 1) = 0. As a result, Lemma 5 ensures that a w ∈

1V
2(Ω)× 1H

2(Ω) exists that satisfies

∇axi ·w = β∗s = βs − β̄ in Ω, (2.132)

and

‖w‖
1V 2(Ω)×1H2(Ω) ≤ C‖β∗s‖1H1(Ω) ≤ ‖β‖1L2(Ω) ≤ C (‖v‖U + ‖p‖Q). (2.133)

Next, we can take

τ 2 = 2

∂w1

∂z
−1

r

∂(r w1)

∂r
− ∂w2

∂z

0 0

+ 2

0 −β̄

0 0

 and τ 2 = 2 r
∂2w2

∂z ∂z
. (2.134)

It follows that

∇axi · (τ 2, τ 2) = 2

1

r

∂

∂r
(r
∂w1

∂z
)− 1

r

∂

∂z

∂(r w1)

∂r
− ∂2w2

∂z∂z
+
∂2w2

∂z∂z

0

 = 0, (2.135)

hence

b((τ 2, τ 2),v) = 0 (2.136)

and

‖(τ 2, τ 2)‖Σ ≤ C (‖v‖U + ‖p‖Q) . (2.137)

39

Furthermore,

as(τ 2, τ 2) =

 0 −∇axi ·w − β̄

∇axi ·w + β̄ 0

 =

 0 −βs
βs 0

 . (2.138)

As a result, for (τ , τ) = (τ 1, τ 1) + (τ 2, τ 2) we have using (2.122) and (2.136)

b((τ , τ),v) = b((τ 1, τ 1),v) + b((τ 2, τ 2),v) = ‖v‖2
U , (2.139)

and

c((τ , τ), p) = c((τ 1, τ 1), p) + c((τ 2, τ 2), p)

= (τ 1,S2(p)) + (∇axi · τ 1 ∧ x, p)

+ (τ 2,S2(p)) + (∇axi · (τ 2, τ 2) ∧ x, p)

= (τ 1,S2(p)) + (∇axi · τ 1 ∧ x, p) + (τ 2,S2(p)), (using ∇axi · (τ 2, τ 2) = 0)

= (as(τ 1),S2(p)) + 2(γ, p) + (as(τ 2),S2(p)), (using (2.124))

= (S2(θ),S2(p)) + (S2(γ),S2(p)) + (S2(−βs),S2(p)), (using (2.138))

= (S2(
1

2
p),S2(p)) (using (2.129))

= ‖p‖2
Q.

(2.140)

Thus, (τ , τ) satisfies (2.118), and using (2.123) and (2.137),

‖(τ , τ)‖Σ ≤ ‖(τ 1, τ 1)‖Σ + ‖(τ 2, τ 2)‖Σ

≤ C(‖v‖Q + ‖p‖Q).
(2.141)

40

2.7 Discrete Axisymmetric Problem

Next we introduce a discrete version of the axisymmetric meridian problem described

in equations (2.85)-(2.87). For the discrete approximation we assume the following

setting for the approximation spaces.

Σh := Σh,σ × Σh,σ = {(σh, σh) : σh ∈ Σh,σ, σh ∈ Σh,σ} ⊂ Σ (2.142)

Uh ⊂ U where for all (uh1, uh2) ∈ Uh, uh1 ∈ Σh,σ (2.143)

Qh ⊂ Q and (Qh ∪ z Qh) ⊂ Σh,σ. (2.144)

Additionally, we assume that there exists a piecewise polynomial space (Θh)
2 such

that ((Θh)
2, Qh) is a stable axisymmetric Stokes pair satisfying: Given β∗S ∈ 1H

1(Ω)

with (β∗S, 1) = 0, there exists wh ∈ (Θh)
2 such that

(∇axi ·wh, qh) = (β∗s , qh), for all qh ∈ Qh, (2.145)

and

‖wh‖1V 1(Ω)×1H1(Ω) +

(∑
T∈Th

∥∥∥∥∂2wh2

∂z2

∥∥∥∥2

1L2(T)

) 1
2

≤ C ‖β∗s‖1H1(Ω) (2.146)

(compare (2.145) and (2.146) with (2.132) and (2.133)).

The meridan problem becomes: Given f ∈ 1L
2(Ω) find ((σh, σh),wh, ph) ∈ Σh×Uh×

Qh such that

a((σh, σh), (τ h, τh)) + b((τ h, τh),wh) + c((τ h, τh), ph) = (f ,∇axi · (τ h, τh)) (2.147)

b((σh, σh),vh) = (f ,vh) (2.148)

c((σh, σh), qh) = (f ∧ x, qh) (2.149)

for all ((τ h, τh),vh, qh) ∈ Σh × Uh ×Qh.

41

2.8 Discrete Axisymmetric Inf-Sup Condition

In this section, we introduce a framework for establishing inf-sup stability of the

discrete axisymmetric problem. The approach we use is similar to that for Fortin’s

Lemma [24]. Given uh ∈ Uh ⊂ U , ph ∈ Qh ⊂ Q we determine, as in the proof of

Lemma 6, a (τ , τ) = (τ 1, τ 1) + (τ 2, τ 2) such that the continuous inf-sup condition is

satisfied. Then, using a suitably defined projection (see (2.161) - (2.163)), we obtain

(τ h, τh) ∈ Σh such that

b((τ h, τh),uh) + c((τ h, τh), ph)

‖(τ h, τh)‖Σ(‖uh‖U + ‖ph‖Q)
≥ C. (2.150)

Helpful in this discussion is to define the restriction of the operators b(·, ·) and c(·, ·)

to T ∈ Th as:

b((τ , τ),u)T = (∇axi · τ ,u)T − (
τ

r
, ur)T (2.151)

c((τ , τ), p)T = (as(τ),S2(p))T + ((∇axi · (τ , τ)) ∧ x, p)T . (2.152)

Next, we present the following useful identity for the operator c(·, ·).

Lemma 7. For T ∈ Th,

c((τ , τ), p)T =

∫
∂T

(τ · n) · x⊥ p r ds−
∫
T

τ : (x⊥ ⊗∇ p) r dT −
∫
T

τ z p dT.

(2.153)

42

Proof. Let x = (r, z). Then

∇axi · (τ ∧ x) = ∇axi ·

τ11z − τ21r

τ12z − τ22r


=

∂

∂r
(τ11z − τ21r) +

∂

∂z
(τ12z − τ22r) +

1

r
(τ11z − τ21r)

= z
∂τ11

∂r
− τ21 − r

∂τ21

∂r
+ τ12 + z

∂τ12

∂z
− r∂τ22

∂z
+
z

r
τ11 − τ21

= z(
∂τ11

∂r
+
∂τ12

∂z
+

1

r
τ11)− r(∂τ21

∂r
+
∂τ22

∂z
+

1

r
τ21) + τ12 − τ21

= (∇axi ·

τ11 τ12

τ21 τ22

) ∧

r
z

+

τ11 τ12

τ21 τ22

 :

 0 1

−1 0


= (∇axi · τ) ∧ x + τ : P. (2.154)

Therefore,

∇axi · (τ ∧ x)− z

r
τ = ∇axi · (τ , τ) ∧ x + τ : P.

Next we multiply the left and right hand sides of (2.154) by p r and integrate over T

to yield

∫
T

∇axi · (τ ∧ x) p r dT −
∫
T

z τ p dT =

∫
T

(∇axi · (τ , τ)) ∧ x p r dT +

∫
K

τ : P p r dT

= ((∇axi · (τ , τ)) ∧ x, p)T + (as(τ , τ),S(p))T

= c((τ , τ), p)T . (2.155)

Note that we have used the relationship τ : P p = as(τ , τ) : S2(p). Next, applying

integration by parts to the first term on the left-hand side of (2.155) gives

∫
T

∇axi · (τ ∧ x) p r dT =

∫
T

∇ · (r τ ∧ x) p dT

=

∫
∂T

(τ ∧ x) · n p r ∂s−
∫
T

(τ ∧ x) · ∇p r dT. (2.156)

43

Then combining (2.155), and (2.156) yields

c(τ , p) =

∫
∂T

(τ ∧ x) · n p r ds−
∫
T

(τ ∧ x) · ∇p r dT −
∫
T

τ z p dT. (2.157)

Finally, since

(τ ∧ x) · ∇p = τ : (x⊥ ⊗∇p) and (τ ∧ x) · n = (τ · n) · x⊥,

we have

c((τ , τ), p)T =

∫
∂T

(τ · n) · x⊥ p r ds−
∫
T

τ : (x⊥ ⊗∇p) r dT −
∫
T

τ z p dT.

(2.158)

Theorem 1. Assume Σh, Uh, Qh satisfy (2.142)-(2.144). If there exists a mapping

Πh = Πh × πh : (S + (∇ac((Θh)
2)×Θh)→ Σh such that for all T ∈ Th:

if (σ, σ) ∈ S, ‖Πh × πh(σ, σ)‖Σ(T) ≤ C ‖(σ, σ)‖S(T), (2.159)

(σ, σ) ∈ (∇ac((Θh)
2)×Θh), ‖Πh × πh(σ, σ)‖Σ(T) ≤ C ‖(σ, σ)‖Σ(T), (2.160)

and

∫
T

(τ − Πhτ) : (∇uh + x⊥ ⊗∇qh) r dT = 0 ∀ uh ∈ Uh, ∀ qh ∈ Qh, (2.161)∫
`

((τ − Πhτ) · nK) · (uh + x⊥qh) r ds = 0 ∀ edges `, ∀ uh ∈ Uh, ∀ qh ∈ Qh,

(2.162)∫
T

1

r
(τ − πhτ) qh z r dT = 0 ∀ qh ∈ Qh (2.163)

then Σh × Uh ×Qh are inf-sup stable.

Proof. The approach to this proof is similar to that used in [23]. To begin, assume

44

vh = (vh1, vh2)t ∈ Uh ⊂ 1L
2(Ω,R2) and ph ∈ Qh ⊂ 1L

2(Ω). As described in Lemma

6, there exists a tensor (τ , τ) ∈ Σ that satisfies the inf-sup condition. Moreover, as

described in the proof of Lemma 6, (τ , τ) = (τ 1, τ 1) + (τ 2, τ 2).

Recall from Lemma 6 that for vh given, one can construct τ 1 ∈ (1V
1(T)×1H

1(T))2 ⊂

Σ(T) such that

∇axi · (τ 1, 0) = vh and ‖(τ 1, 0)‖S ≤ C (‖vh‖U + ‖ph‖Q) . (2.164)

Note that b((τ 1, 0),uh) = (vh,uh), and using (2.161)-(2.162) with qh = 0,

b((τ 1, 0)−Πh(τ
1, 0),vh) = b((τ 1 − Πhτ

1, 0),vh)

=
∑
T∈Th

(∇axi · (τ 1 − Πhτ
1),vh)T + (

0

r
, (vh)1)T = 0.

(2.165)

Furthermore, from (2.159) and (2.164),

‖Πh(τ 1, 0)‖Σ ≤ C‖(τ 1, 0)‖S ≤ C(‖vh‖U + ‖ph‖Q). (2.166)

Next, combining (2.158) with (2.161)-(2.162) when uh = 0 we have,

c((τ 1, 0)−Πh(τ 1, 0), ph) =
∑
T∈Th

c((τ 1 − Πhτ
1, 0), ph)T

=
∑
T∈Th

(∫
∂T

((τ 1 − Πhτ
1) · nT) · x⊥ ph r ds

−
∫
T

(τ 1 − Πhτ
1) : (x⊥ ⊗∇ ph) r dT

−
∫
T

1

r
() z ph r dT

)
= 0.

(2.167)

Due to the 1
r
∂
∂r

(r w1) entry in τ 2
12 given in (2.134), (τ 2, τ 2) may not lie in S. As an

alternative to using (τ 2, τ 2), we use our assumptions that ((Θh)
2 × Qh) is a stable

axisymmetric Stokes pair to obtain wh ∈ (Θh)
2 satisfying (2.145)-(2.146).

Note that as wh1 ∈ 1V
1(Ω), then wh1|r=0 = 0 [16]. As wh1 is a piecewise polynomial,

45

then on any triangle touching the axis of rotation, r = 0, we have wh1 = r p(r, z)

(where p(r, z) is a polynomial in r and z). Thus, 1
r
∂
∂r

(r wh1) = 1
r
wh1 + ∂

∂r
(wh1) is a

polynomial in r and z on any triangle that touches the axis of rotation.

Analogous to (2.134), define

τ 2
h = 2

∂wh1

∂z
−1

r

∂

∂r
(r wh1)− ∂w2h

∂z

0 0

+ 2

0 −β̄

0 0

 and τ 2
h = 2 r

∂2 wh2

∂z2
.

(2.168)

As in (2.135), (2.135) and (2.138)

∇axi · (τ 2
h, τ

2
h) = 0, b((τ 2

h, τ
2
h),vh) = 0 and as((τ 2

h, τ
2
h)) =

 0 −βs
βs 0

 . (2.169)

Also, from (2.146) and that ‖β∗s‖1H1(Ω) ≤ C (‖vh‖U + ‖ph‖Q), (see (2.131) and (2.133))

‖(τ 2
h, τ

2
h)‖Σ ≤ C (‖vh‖U + ‖ph‖Q) . (2.170)

Now, for Πh(τ
2
h, τ

2
h), proceeding as in (2.165); using (2.161)-(2.162) with qh = 0 and

(2.163) (and (2.143))

b((τ 2
h, τ

2
h)−Πh(τ

2
h, τ

2
h),vh) = b((τ 2

h − Πhτ
2
h, τ

2
h − πhτ 2

h),vh)

=
∑
T∈Th

(
∇axi · (τ 2

h − Πhτ
2
h),vh

)
T

+ (
1

r
(τ 2
h − πhτ 2

h),vh1)T

= 0.

(2.171)

46

Also, as in (2.167), and using (2.144),

c((τ 2
h, τ

2
h)−Πh(τ

2
h, τ

2
h , ph)) =

∑
T∈Th

c((τ 2
h − Πhτ

2
h), (τ

2
h − πhτ 2

h), ph)T

=
∑
T∈Th

(∫
∂T

((τ 2
h − Πhτ

2
h) · nT) · x⊥ ph r ds

−
∫
T

(τ 2
h − Πhτ

2
h) : (x⊥ ⊗∇ph) r dT

−
∫
T

(τ 2
h − πhτ 2

h) z ph dT

)
= 0.

(2.172)

Finally, with (τ h, τh) = (Πhτ
1, πhτ

1) + (Πhτ
2
h, πhτ

2
h),

sup
(σh,σh)∈Σh

b((σh, σh),vh) + c((σh, σh), ph)

‖(σh, σh)‖Σ (‖vh‖U + ‖ph‖Q)
≥ b((τ h, τh),vh) + c((τ h, τh), ph)

‖(τ h, τh)‖Σ (‖vh‖U + ‖ph‖Q)

≥ b((Πhτ
1, πhτ

1),vh) + c((Πhτ
1, πhτ

1), ph) + b((Πhτ
2
h, πhτ

2
h),vh) + c((Πhτ

2
h, πhτ

2
h), ph)

(‖(Πhτ 1, πhτ 1)‖Σ + ‖(Πhτ 2
h, πhτ

2
h)‖Σ) (‖vh‖U + ‖ph‖Q)

≥ C
b((τ 1, τ 1),vh) + c((τ 1, τ 1), ph) + 0 + c((τ 2

h, τ
2
h), ph)

(‖(τ 1, τ 1)‖S + ‖(τ 2
h, τ

2
h)‖Σ) (‖vh‖U + ‖ph‖Q)

(using (2.165), (2.167), (2.170), (2.169), (2.172), (2.159) and (2.160))

≥
‖vh‖2

U + ‖ph‖2
Q

(‖vh‖U + ‖ph‖Q + ‖vh‖U + ‖ph‖Q)(‖vh‖U + ‖ph‖Q)

(using (2.122), (2.140), (2.123) and (2.170)

≥ C.

Remarks

1. Concerning (2.159). Functions in Σ are not sufficiently regular to guarantee

Πh(σ, σ) is well defined. Specifically, for σ ∈ 1L
2(Ω,M2), σ|∂T may not be well

defined. The additional regularity required for Πh to be well defined is reflected

in the bound on the projection given by (2.159).

2. Concerning (2.160). As previously commented in the Proof of Theorem 1,

(τ 2, τ 2) defined in (2.134) may not be sufficiently smooth to guarantee that

47

Figure 2-3: Reference Triangle

Πh(τ
2, τ 2) is well defined. This lack of regularity is overcome by constructing

(τ 2
h, τ

2
h) using wh, a piecewise polynomial function.

3. Throughout the remainder of this document, we will denote the space S +

(∇ac((Θh)
2)×Θh) as ΣS. Moreover, we denote the tensor and scalar components

of ΣS as ΣS
h,σ and ΣS

h,σ. That is, ΣS = ΣS
h,σ × ΣS

h,σ.

2.9 Mappings and Th

In Section 2.8 and Theorem 1, we introduced sufficient conditions to establish that a

finite element space is inf-sup stable. Over the next several Sections, we will introduce

a number of specific spaces that, subject to the specified projection being bounded,

satisfy these conditions.

Before proceeding, we describe the different types of triangles T that can appear in

Th. In addition, we present some useful properties for mapping functions between the

physical domain T and the reference triangle T̂ . Finally, we present the general form

of several common integrals that appear in the discrete setting.

To start, the reference triangle T̂ is defined as the triangle with vertices (0, 0), (1, 0)

and (0, 1). Moreover, every triangle T ∈ Th has three coordinates (r0, z0), (r1, z1) and

(r2, z2). We assume that the coordinates are always labeled in a counter-clockwise

manner such that r0 ≤ r1, r2. Further, an affine mapping FT from the reference

48

triangle T̂ (see Figure (2-3)) to the physical domain T exists and takes the form

r
z

 =

r1 − r0 r2 − r0

z1 − z0 z2 − z0

ξ
η

+

r0

z0

 =

r10 r20

z10 z20

ξ
η

+

r0

z0

 . (2.173)

Observe that we have used the notational short hand ri − rj = rij, and zi − zj = zij.

Associated with each affine mapping FT is the determinant of the Jacobian matrix

|JT | = |r10z20 − z10r20|.

Provided that the triangulation Th is regular, every affine map FT can be expressed

as r
z

 =

r10 r20

z10 z20

ξ
η

+

r0

z0

 = h

c10 c20

d10 d20

ξ
η

+

r0

z0

 , (2.174)

where amin ≤ c10, c20, d10, d20 ≤ amax. Furthermore, the determinant of the Jacobian

is |JT | = h2(c10d20 − d10c20) = h2JD where 0 < jdmin ≤ JD ≤ jdmax.

For every regular triangulation Th of an axisymmetric domain Ω with symmetry axis

Γ0, each triangle T ∈ Th can be categorized as one of three types:

• Type I: ∂T ∩ Γ0 = e∗ where e∗ denotes an entire edge,

• Type II: ∂T ∩ Γ0 = P0 where P0 is a single point,

• Type III: ∂T ∩ Γ0 = ∅.

For each type of triangle, we can be more specific about the form of the affine mapping

FT . In the following, r̂ and ẑ represent the mapping of the variables r and z on the

physical element T to the reference triangle T̂ as functions of ξ and η.

If T is Type I, then

r̂ = h c10 ξ (2.175)

ẑ = (z0 + h d10ξ + h d20η) (2.176)

49

and

JT = h

c10 0

d10 d20

 = hJ̃T . (2.177)

Since c20 = 0, it must be the case that c10 > 0 to ensure that T is well defined.

If T is Type II, then

r̂ = h (c10ξ + c20η) (2.178)

ẑ = (z0 + h d10ξ + h d20η) (2.179)

and

JT = h

c10 c20

d10 d20

 = hJ̃T . (2.180)

In addition, since only one node lies on the symmetry axis, c10, c20 > 0.

Finally, if T is Type III, then

r̂ = (r0 + h c10ξ + h c20η) (2.181)

ẑ = (z0 + h d10ξ + h d20η) (2.182)

and

JT = h

c10 c20

d10 d20

 = hJ̃T (2.183)

where c10, c20 ≥ 0 and c10 + c20 > 0.

In many cases, is it more convenient to work on the reference triangle T̂ than the

physical domain T . However, it is important to recall that when mapping vector

functions in 1H(∇axi·,M2) between T and T̂ , it is necessary to preserve normal com-

ponents. Therefore, rather than using a standard affine mapping, we must use the

contravariant Piola transformation [44, 17]. Let JT be the Jacobian matrix associ-

50

ated with the affine mapping FT : T̂ → T , then the Piola mapping of the function q̂

(defined on the reference triangle) is

P(q̂)(x) :=
1

|JT |
JT q̂(x̂), where x = F (x̂). (2.184)

The following Lemma describes some useful properties of the Piola map as it relates

to the integration of 1H(∇axi·,M2) functions.

Lemma 8. Let τ̂ , σ̂ ∈ 1H(∇axi·, T̂ ;M2) and v̂ ∈ 1L
2(T̂), and let τ = P(τ̂), σ =

P(σ̂), and v = v̂ ◦ F−1

∫
T

τ : σ r dT =

∫
T̂

JT τ̂
t : JT σ̂

t 1

|JT |
r̂ dT̂ (2.185)∫

∂T

(τ · n) · v r ds =

∫
∂T̂

(τ̂ · n) · v̂ r̂ ds (2.186)

Additional details and proofs can be found in [44, 24].

As a result of using polynomials as the discrete finite element approximation spaces,

many of the integrals that appear in the finite element formulation have a similar

structure. The next Lemma introduces an analytical solution for a common class

of integrals that appear in the discrete finite element formulation of the axisymetric

linear elasticity problem.

To begin, for convenience of notation, if r0 > 0, let

r̂

r0

=
(r1 − r0)

r0

ξ +
(r2 − r0)

r0

η + 1 = r∗1ξ + r∗2η + 1 (2.187)

while if r0 = 0, then

r̂ = r1ξ + r2η. (2.188)

Since we assume that the coordinates of T are labeled such that r0 ≤ r1, r2, it follows

that r∗1, r
∗
2 ≥ 0. Thus, if we are calculating the integral of a function f(r, z) on T

51

using the reference element T̂ ,

∫
T

f(r, z) r dT =


r0

∫
T̂
f̂(ξ, η) (r∗1ξ + r∗2η + 1) dT̂ = r0 I(f̂(ξ, η)) if r0 > 0

∫
T̂
f̂(ξ, η) (r1ξ + r2η) dT̂ = I(f̂(ξ, η)) if r0 = 0.

(2.189)

where dT̂ = |JT | dξ dη.

Lemma 9. For integers s ≥ 0 and t ≥ 0,

∫ 1

0

∫ 1−ξ

0

ξsηt(r1ξ + r2η + 1) dη dξ =
s! t!

(s+ t+ 2)!

[
r1(s+ 1)

(s+ t+ 3)
+

r2(t+ 1)

(s+ t+ 3)
+ 1

]
=

s! t!

(s+ t+ 3)!
[r1(s+ 1) + r2(t+ 1) + (s+ t+ 3)]

(2.190)

and

∫ 1

0

∫ 1−ξ

0

ξsηt(r1ξ + r2η) dη dξ =
s! t!

(s+ t+ 2)!

[
r1(s+ 1)

(s+ t+ 3)
+

r2(t+ 1)

(s+ t+ 3)

]
=

s! t!

(s+ t+ 3)!
[r1(s+ 1) + r2(t+ 1)] . (2.191)

Proof. First, for Γ(·) denoting the gamma function, note that

∫ 1

0

∫ 1−ξ

0

ξsηt dη dξ =

∫ 1

0

ξs(1− ξ)t+1

t+ 1
dξ =

1

t+ 1

Γ(s+ 1)Γ(t+ 2)

Γ(s+ t+ 3)
=

s! t!

(s+ t+ 2)!
.

Therefore

∫ 1

0

∫ 1−ξ

0

ξsηt(r1ξ + r2η + 1) dη dξ

= r1

∫ 1

0

∫ 1−ξ

0

ξs+1ηt dη dξ + r2

∫ 1

0

∫ 1−ξ

0

ξsηt+1 dη dξ +

∫ 1

0

∫ 1−ξ

0

ξsηt dη dξ

= r1
(s+ 1)! t!

(s+ t+ 3)!
+ r2

s! (t+ 1)!

(s+ t+ 3)!
+

s! t!

(s+ t+ 2)!

=
s! t!

(s+ t+ 2)!

(
r1

(s+ 1)

(s+ t+ 3)
+ r2

(t+ 1)

(s+ t+ 3)
+ 1

)
.

52

which verifies (2.190). Removing the +1 from (r1ξ + r2η + 1) yields (2.191).

Some useful integrals computed using Lemma 9 for r0 > 0 are given below∫
T̂

η r̂ dT̂ =
1

4!
[r∗1 + 2r∗2 + 4]

∫
T̂

ξ r̂ dT̂ =
1

4!
[2r∗1 + r∗2 + 4]∫

T̂

η2 r̂ dT̂ =
2

5!
[r∗1 + 3r∗2 + 5]

∫
T̂

ξη r̂ dT̂ =
1

5!
[2r∗1 + 2r2 + 5]∫

T̂

ξ2 r̂ dT̂ =
2

5!
[3r∗1 + r∗2 + 5]

∫
T̂

η3 r̂ dT̂ =
3!

6!
[r∗1 + 4r∗2 + 6]∫

T̂

ξη2 r̂ dT̂ =
2

6!
[2r∗1 + 3r∗2 + 6]

∫
T̂

ξ2η r̂ dT̂ =
2

6!
[3r∗1 + 2r∗2 + 6]∫

T̂

ξ3 r̂ dT̂ =
3!

6!
[4r1 + r2 + 6].

(2.192)

2.10 BDM1 and BDM2

The first finite element approximation space we consider combines two BDM1 poly-

nomials to approximate ΣS
h,σ and P1 to approximate ΣS

h,σ.

Lemma 10. Let T ∈ Th. The projection operators Πh : ΣS
h,σ → (BDM1(T))2 and

πh : ΣS
h,σ → P1(T) given by

∫
`

(τ − Πhτ) · nk · p1 r ds = 0 for all edges ` ∈ ∂T and p1 ∈ (P1(`))2 (2.193)∫
T

(τ − Πhτ) p1 z dT = 0 for all p1 ∈ P1(T) (2.194)

are well defined and satisfy (2.161)-(2.163) for

Σh,σ = (BDM1)2 Σh,σ = P1 Uh = (P0)2 Qh = P0. (2.195)

Proof. First we show that πh is well defined. Since πhτ ∈ P1(T), the projection has 3

degrees of freedom, which matches the dimension of the trial space P1(T). Moreover,

(2.194) is a well defined weighted L2 projection because a relabeling of the coordinate

system allows us to assume z > 0 with out loss of generality.

Next we show that Πh is well defined. First note that Σh,σ = (BDM1)2 has 12 degrees

of freedom and (P1(`))2 has 4 degrees of freedom per edge. Therefore dim(Σh,σ) =

53

12 = 3 ∗ dim(P1(`))2, which means that the number of unknowns in Πhτ is equal to

the number of constraints in (2.193). It follows that if τ = 0 implies that Πhτ = 0,

then the projection Πh is well defined.

For ease of exposition, we first consider a single row of the tensor projection (2.193).

In this case, for τ = (τ1, τ2)t the projection (2.193) takes the form

∫
`

(τ s − Πhτ s) · nk p1 r ds = 0 for s = 1, 2. (2.196)

Next, observe that the function Πhτ s · nk p1 r is a cubic polynomial. Recalling that

a degree n Gauss quadrature rule integrates polynomials of degree 2n− 1 exactly, we

select two Gauss quadrature points {q`ki }2
i=1 on each edge `k for k = 1, 2, 3.

For `k ∈ ∂K, define a basis for P1(`k) so that

p`k1 (x) =

1 if x = q`k1

0 if x = q`k2

and p`k2 (x) =

0 if x = q`k1

1 if x = q`k2

. (2.197)

Next, let {φ`ki } be a basis for BDM1 [44] such that

(φ`mi · n)(q`nj) = δ(i,j),(`m,`n) for i, j = 1, 2 and m,n = 1, 2, 3.

That is, the normal component of the basis functions satisfy a Lagrangian property

at the boundary quadrature points. Since Πhτ s ∈ BDM1, it can be written

Πhτ s =
3∑

k=1

2∑
i=1

α`ki φ
`k
i .

Next, suppose that τ s = 0, then taking the basis function p`k1 for `k ∈ ∂K and using

54

(2.193) and Gaussian quadrature gives

0 =

∫
`k

Πhτ s · n p1 r ds =
2∑
j=1

(Πhτ s · n)(q`kj) · p`k1 (q`kj) r(q`kj) w(q`kj)

= α`k1 p`k1 (q`k1) r(q`k1)w(q`k1) + α`k2 p`k1 (q`k2) r(q`k2)w(q`k2)

= α`k1 r(q
`k
1)w(q`k1).

In the case where r(q`k1) 6= 0, this implies α`k1 = 0. If, however, r(q`k1) = 0, then α`k1

and β`k1 must be zero. Otherwise, the normal stress along the axis of symmetry will

be non-zero implying that the solution is not axisymmetric. A similar argument can

be used to show the rest of the α terms are zero as well. This then illustrates that

the vector projections from (2.196) are well defined.

Finally, to show that (2.193) is well defined, we can extend the basis for P1(`k) from

(2.197) to (P1(`k))
2 by taking

p`k1
0

 ,

p`k2
0

 ,

 0

p`k1

 ,

 0

p`k2

 . (2.198)

Using this basis, the arguments presented above for the vector case can be applied to

each row of (2.193) to show that Πh is well defined.

Lastly, we verify that the spaces given in (2.195) satisfy the conditions outlined in

(2.161)-(2.163). Since gradients of the piecewise constant spaces Uh and Qh are zero

on each element T , (2.161) is satisfied trivially. Next, observe that the test space

of (2.193) includes all p1 ∈ (P1(`k))
2 for k = 1, 2, 3, while (2.162) only requires that

the projection is satisfied on a subspace of (P1(`k))
2. Finally, since P0(T) ⊂ P1(T),

(2.194) ensures that (2.163) is satisfied.

Next, we consider approximating the tensor ΣSh,σ with (BDM2)2 and ΣSh,σ with

P2.

Lemma 11. Let T ∈ Th. The projection operators Πh : ΣSh,σ → (BDM2(T))2 and

55

πh : ΣSh,σ → P2(T) given by

∫
T

(τ − Πhτ) : (p0 + x⊥ ⊗ p0) r dT = 0 ∀ p0 ∈ (P0(T))2×2 ∀ p0 ∈ (P0(T))2

(2.199)∫
`

(τ − Πhτ) · nk · p2 r ds = 0 ∀ edges ` ∀ p2 ∈ (P2(`))2 (2.200)∫
T

(τ − πhτ) p2 z dT = 0 for all p2 ∈ P2(T) (2.201)

are well defined and satisfy (2.161)-(2.163) for

Σh,σ = (BDM2)2 Σh,σ = P2 Uh = (P1)2 Qh = P1. (2.202)

Proof. First we show that πh is well defined. Since πhτ ∈ P2(T), the projection has 6

degrees of freedom, which matches the dimension of the trial space P2(T). Moreover,

(2.201) is a well defined weighted L2 projection because a relabeling of the coordinate

system allows us, with out loss of generality, to assume z > 0.

Next we verify that Πh is well defined. First observe that the number of constraints

defined by Πh is the same as number of degrees of freedom in (BDM2(T))2. The

space (BDM2(T))2 has dimension 24. Moreover, (P2(`))2 has 6 degrees of freedom

per edge for a total of 18 boundary degrees of freedom, while (P0(T))2×2 and (P0(T))2

have four and two degrees of freedom, respectively. Therefore, dim((P2(`))2) +

dim((P0(T))2×2) + dim((P0(T))2 = 18 + 4 + 2 = 24 = dim(BDM2(T))2.

Second we verify that the projection is injective. That is, if

∫
T

Πhτ : (p0 + x⊥ ⊗ p0) r dT = 0 ∀ p0 ∈ (P0(T))2×2 ∀ p0 ∈ (P0(T))2 (2.203)∫
`

Πhτ · nk · p2 r ds = 0 ∀ edges ` ∀ p2 ∈ (P2(`))2 (2.204)

then Πhτ = 0. In other words, the kernel of Πh is {0}.

We can represent Πhτ in terms of the basis for (BDM2(T̂))2, where BDM2(T̂) is the

reference element representation presented in [44, Section 4.2]. This BDM2(T̂) basis

is expressed in terms of edge and interior element functions. Using equation (2.204)

56

with three Gauss quadrature points1 and an argument analogous to that used in the

proof of Lemma 10, it follows that all 18 of the BDM2(T̂) edge basis functions must

equal zero.

Therefore, the only possible non-zero basis functions on T̂ are the interior element

functions

φ
1

=

√
2

(g2 − g1)
(1− ξ − η)

 g2ξ

(g2 − 1)η

 φ
2

=
1

(g2 − g1)
ξ

g2ξ + η − g2

(g2 − 1)η



φ
3

=
1

(g2 − g1)
η

 (g2 − 1)ξ

ξ + g2η − g2


(2.205)

where g1 = 1/2−
√

3/6 and g2 = 1/2 +
√

3/6 are the Gaussian quadrature points on

[0, 1]. Thus, Π̂hτ , the representation of Πhτ on T̂ , must have the form Π̂hτ =

φαt
φβ

t


where

φα
t = α1φ1

t + α2φ2
t + α3φ3

t and φβ
t = β1φ1

t + β2φ2
t + β3φ3

t. (2.206)

It remains to show that αi = βi = 0 for i = 1, 2, 3. To do so, we consider the

matrix representation of equation (2.199). Indeed, the functions (2.205) can be used

to construct the six trial functions of (2.199), while the test space of (2.199) has

dimension 6, and is spanned by the functions

ψ
i

=

δi1 δi2

δi3 δi4

+

 η δi5 η δi6

−ξδi5 −ξδi6

 for i = 1, · · · , 6 and δij ∈ R for i, j = 1, 2, · · · 6.

(2.207)

Taking ψi as the test function for row i, the resulting matrix representation of equation

(2.199) is presented in (2.211) where I(·) is defined in (2.189).

To illustrate how the elements of (2.211) are calculated, we consider the first row of

1Recall the quadrature rule using three Gauss quadrature points is exact for polynomials of degree
less than or equal to 5

57

(2.211). Recalling (2.189), Lemma 9 and (2.192), the entries of the first row are

I(g2(1− ξ − η)ξ) =

∫
T̂

g2(1− ξ − η) ξ (r∗1ξ + r∗2η + 1) dT̂

= g2

[∫
T̂

(ξ − ξ2 − ηξ) (r∗1ξ + r∗2η + 1) dT̂

]
= g2

(
[
1

4!
(2r∗1 + r∗2 + 4)− 2

5!
(3r∗1 + r∗2 + 5)− 1

5!
(2r∗1 + 2r∗2 + 5)

)
= g2

[
1

5!
(2r∗1 + r∗2 + 5)

]
I(ξ(g2ξ + η − g2)) =

∫
T̂

(g2ξ
2 + ξη − g2ξ)(r

∗
1ξ + r∗2η + 1) dT̂

=

(
2g2

5!
(3r∗1 + r∗2 + 5) +

1

5!
(2r∗1 + 2r∗2 + 5)− g2

4!
(2r∗1 + r∗2 + 4)

)
= 2(1− 2g2)r∗1 + (2− 3g2)r∗2 + 5(1− 2g2)

I((g2 − 1)ηξ) =

∫
T̂

(g2 − 1)ηξ(r∗1ξ + r∗2η + 1) dT̂

= (g2 − 1)

[
1

5!
(2r∗1 + 2r∗2 + 5)

]

with the remaining columns equaling zero. A similar procedure can be used to find

the remaining terms in the system. The complete entires of the matrix expressed in

terms of the coordinates of the triangle T are shown in (2.212) which we denote MT .

Taking the determinate of (2.212) yields

|MT | =
1

36
(r∗1 + r∗2 + 3)(2r∗1 + r∗2 + 5)(r∗1 + 2r∗2 + 5)

(2r∗1 + 2r∗2 + 5)((r∗1)2 + 4r∗1r
∗
2 + (r∗2)2 + 10r∗1 + 10r∗2 + 15).

Since r∗1, r
∗
2 ≥ 0, it follows that |MT | > 0 implying that the matrix representation of

the projection operator is full rank. Therefore, the null space of Πh is {0} and Πh is

well defined.

Finally, we verify that the spaces given in (2.202) satisfy the conditions outlined in

(2.161)-(2.163). Observe that for Uh = (P1)2 and Qh = P1 the test space of (2.161)

58

is the set 
δ1 + zδ5 δ2 + zδ6

δ3 − rδ5 δ4 − rδ6

 | ∀ δ1, δ2, δ3, δ4, δ5, δ6 ∈ R

 , (2.208)

which is the same as the test space described in (2.199). Furthermore, Theorem 1

requires that (2.162) is satisfied on a subset of
s1 + s2s+ s3s

2

s4 + s5s+ s6s
2

 | ∀ s1, s2, s3, s4, s5, s6 ∈ R

 (2.209)

for all `. Since the boundary integral (2.200) is satisfied for all quadratic polynomials

on all `, this condition is also satisfied. Lastly, since P1(T) ⊂ P2(T), (2.201) ensures

that (2.163) is satisfied.

2.11 Axisymmetric Elasticity Projection for Gen-

eral k

In this section, we begin to lay the groundwork for establishing a projection Πh =

Πh×πh : ΣS → Σh that satisfies the conditions of Theorem 1 for a general polynomial

order k ≥ 3. To this end, we establish a convenient functional representation for

polynomial tensors with zero divergence and a vanishing normal component along

element boundaries. While we leave the development of the projection Πh to future

work, these functional representations should help to inform the development of Πh.

Lemma 12. Functions in the set S0 := {φ̄(r, z) =

φ1(r, z)

φ2(r, z)

 ∈ (Pk(r, z))2 : ∇axi·φ̄ =

0} can be expressed as

φ1 =
k∑

m=1

m−1∑
j=0

am,j r
m−j zj , φ2 =

k∑
m=0

bm,0r
m +

k∑
m=1

m∑
j=1

bm,j r
m−jzj (2.210)

59

m = 0 1
m = 1 r z
m = 2 r2 rz z2

m = 3 r3 r2z rz2 z3

m = 4 r4 r3z r2z2 rz3 z4

m = k rk rk−1z · · · · · · · · · rzk−1 zk

(a) Pk(r, z) polynomial basis

m = 0 0
m = 1 1 0
m = 2 2r z 0
m = 3 3r2 2rz z2 0
m = 4 4r3 3r2z 2rz2 z3 0

m = k k rk−1 (k − 1) rk−2z · · · · · · · · · zk−1 0

(b)
∂

∂r
Pk(r, z) polynomial basis

m = 0 0
m = 1 0 1
m = 2 0 r 2z
m = 3 0 r2 2rz 3z2

m = 4 0 r3 2r2z 3rz2 4z3

m = k 0 rk−1 · · · · · · · · · (k − 1) rzk−2 k zk−1

(c)
∂

∂z
Pk(r, z) polynomial basis

m = 0 a0,0

m = 1 a1,0 a1,1

m = 2 a2,0 a2,1 a2,2

m = 3 a3,0 a3,1 a3,2 a3,3

m = 4 a4,0 a4,1 a4,2 a4,3 a4,4

m = k ak,0 ak,1 · · · · · · · · · ak,(k−1) ak,k
(d) Pk(r, z) polynomial coefficients

Figure 2-4: Bivariate Polynomial Map

60



I(g2(1− ξ − η) ξ) I(ξ(g2ξ + η − g2)) I((g2 − 1)ηξ) 0 0 0

I((g2 − 1)(1− ξ − η) η) I((g2 − 1)ηξ) I(η(ξ + g2η − g2) 0 0 0

0 0 0 I(g2(1− ξ − η) ξ) I(ξ(g2ξ + η − g2)) I((g2 − 1)ηξ)

0 0 0 I((g2 − 1)(1− ξ − η) η) I((g2 − 1)ηξ) I(η(ξ + g2η − g2))

I((1− ξ − η)g2ξη) I(ξ(g2ξ + η − g2)η) I(η(g2 − 1)ξη) I(−(1− ξ − η)g2ξ2) I(−ξ(g2ξ + η − g2)ξ)) I(−η(g2 − 1)ξ2)

I((1− ξ − η)(g2 − 1)η2) I(ξ(g2 − 1)η2) I(η(ξ + g2η − g2)η) I(−(1− ξ − η)(g2 − 1)ηξ) I(−ξ(g2 − 1)ηξ) I(−η(ξ + g2η − g2)ξ)


(2.211)



g2(2r∗1 + r∗2 + 5) 2(1− 2g2)r∗1 + (2− 3g2)r∗2 + 5(1− 2g2) (g2 − 1)(2r∗1 + 2r∗2 + 5)

(g2 − 1)(r∗1 + 2r∗2 + 5) (g2 − 1)(2r∗1 + 2r∗2 + 5) ((2− 3g2)r∗1 + 2(1− 2g2)r∗2 + 5(1− 2g2)

0 0 0

0 0 0

g2(r∗1 + r∗2 + 3) (2− 3g2)r∗1 + (3− 4g2)r∗2 + 3(2− 3g2) (g2 − 1)(2r∗1 + 3r∗2 + 6)

(g2 − 1)(r∗1 + 3r∗2 + 6) (g2 − 1)(2r∗1 + 3r∗2 + 6) (2− 3g2)r∗1 + 3(1− 2g2)r∗2 + 6(1− 2g2)

0 0 0

0 0 0

g2(2r∗1 + r∗2 + 5) 2(1− 2g2)r∗1 + (2− 3g2)r∗2 + 5(1− 2g2) (g2 − 1)(2r∗1 + 2r∗2 + 5)

(g2 − 1)(r∗1 + 2r∗2 + 5) (g2 − 1)(2r∗1 + 2r∗2 + 5) (2− 3g2)r∗1 + 2(1− 2g2)r∗2 + 5(1− 2g2)

−g2(3r∗1 + r∗2 + 6) −[(3− 6g2)r∗1 + (2− 3g2)r∗2 + 6(1− 2g2)] −(g2 − 1)(3r∗1 + 2r∗2 + 6)

−(g2 − 1)(r∗1 + r∗2 + 3) −(g2 − 1)(3r∗1 + 2r∗2 + 6) −(3− 4g2)r∗1 + (2− 3g2)r∗2 + 3(2− 3g2)


(2.212)

where am,m = 0 for 0 ≤ m ≤ k, and bm,(j+1) =
−(1 +m− j)

(j + 1)
am,j for 1 ≤ m ≤ k and

0 ≤ j ≤ m− 1.

Proof. For φ̄ ∈ (Pk(r, z))2, let

φ̄(r, z) =

φ1

φ2

 =

a0,0 + a1,0r + a1,1z + · · ·+ ak,0r
k + · · ·+ ak,jr

k−jzj + · · ·+ ak,kz
k

b0,0 + b1,0r + b1,1z + · · ·+ bk,0r
k + · · ·+ bk,jr

k−jzj + · · ·+ bk,kz
k

 .

(2.213)

Alternatively, in summation notation,

φ1 =
k∑

m=0

m∑
j=0

am,j r
m−j zj and φ2 =

k∑
m=0

m∑
j=0

bm,j r
m−j zj. (2.214)

Next we identify the restrictions on φ1 and φ2 needed to ensure that ∇axi · φ̄ = 0.

From Figure 2-4, observe that

1

r
φ1 =

k∑
m=1

m−1∑
j=0

am,j r
(m−j−1) zj +

1

r
(a0,0 + a1,1z + a2,2z

2 + · · ·+ ak,kz
k),

∂φ1

∂r
=

k∑
m=1

m−1∑
j=0

(m− j) am,j rm−j−1 zj,

∂φ2

∂z
=

k∑
m=1

m∑
j=1

j bm,j r
m−j zj−1 =

k∑
m=1

m−1∑
j=0

(j + 1) bm,(j+1) r
m−j−1 zj.

(2.215)

62

Furthermore,

∇axi · φ̄ =
1

r
φ1 +

∂φ1

∂r
+
∂φ2

∂z

=
1

r
(a0,0 + a1,1z + a2,2z

2 + · · ·+ ak,kz
k) +

k∑
m=1

m−1∑
j=0

am,j r
(m−j−1) zj

+
k∑

m=1

m−1∑
j=0

(m− j) am,j r(m−j−1) zj +
k∑

m=1

m−1∑
j=0

(j + 1) bm,(j+1) r
(m−j−1) zj

=
1

r

k∑
m=0

am,mz
m +

k∑
m=1

m−1∑
j=0

[(1 +m− j)am,j + (j + 1)bm,(j+1)]r
m−j−1zj.

(2.216)

The condition∇axi·φ̄ = 0, together with the linear independence of {1

r
,
1

r
z, · · · , 1

r
zk, r(m−j−1)zj}

for 1 ≤ m ≤ k and 0 ≤ j ≤ m− 1 implies that

a0,0 = a1,1 = a2,2 = · · · = ak,k = 0 , bm,(j+1) =
−(1 +m− j)

(j + 1)
am,j (2.217)

for 1 ≤ m ≤ k and 0 ≤ j ≤ m− 1.

Corollary 1. The set S0 := {φ̄(r, z) ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0} has dimension
(k + 2)(k + 1)

2
.

Proof. Using the representation of S0 from Lemma 12, φ1 has
k2 + k

2
degrees of

freedom. Meanwhile, the only independent degrees of freedom from φ2 correspond

to the bm,0 terms of which there are k + 1. Thus, dimS0 =
k2 + k

2
+ (k + 1) =

(k + 2)(k + 1)

2
.

Lemma 13. The sets S0 := {φ̄(r, z) ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0} and S1 :=

{∇ac r p(r, z) : p(r, z) ∈ Pk(r, z)} are equal.

Proof. To prove this result, we show that S1 ⊂ S0 and then S0 ⊂ S1. To show that

63

S1 ⊂ S0, consider ψ̄ ∈ S1. Then there exists p ∈ Pk(r, z) such that

ψ̄ = ∇ac r p(r, z) =


∂ r p(r, z)

∂z

−1

r

∂ r2 p(r, z)

∂r

 =

 r
∂ p(r, z)

∂z

−2 p(r, z)− r∂p(r, z)

∂r

 (2.218)

so ψ̄ ∈ (Pk(r, z))2. Furthermore,

∇axi · ψ̄ = ∇axi · ∇ac(r p(r, z)) =


1

r

∂

∂r
(r·)

∂

∂z

 ·


∂

∂z
r p(r, z)

−1

r

∂(r2 p(r, z))

∂r


=

1

r

∂

∂r
r2∂p(r, z)

∂z
− 1

r

∂

∂z

∂(r2p(r, z))

∂r
=

1

r

∂

∂r
r2∂p(r, z)

∂z
− 1

r

∂

∂r
r2∂p(r, z)

∂z
= 0.

(2.219)

Note that we have used the fact that r2p(r, z) is a polynomial to interchange the order

of differentiation. Therefore, ψ̄ ∈ S0.

To show that S0 ⊂ S1, consider φ̄ = (φ1 φ2)t ∈ S0. Recall from Lemma 12 that φ̄

has the form

φ1 =
k∑

m=1

m−1∑
j=0

am,j r
m−j zj and φ2 =

k∑
m=0

bm,0r
m +

k∑
m=1

m∑
j=1

bm,j r
m−jzj. (2.220)

Thus, to show that φ̄ ∈ S1, we construct a polynomial p(r, z) ∈ Pk(r, z) so that

φ̄ =

φ1

φ2

 = ∇ac r p(r, z) =


∂(r p(r, z))

∂z

−1

r

∂(r2p(r, z))

∂r

. Expressing p(r, z) in summation

notation

p(r, z) =
k∑

m=0

m∑
j=0

pm,j r
m−j zj. (2.221)

64

Therefore,

r
∂p(r, z)

∂z
= r

k∑
m=1

m−1∑
j=0

pm,(j+1) (j + 1) rm−j−1 zj =
k∑

m=1

m−1∑
j=0

pm,(j+1) (j + 1) rm−j zj.

(2.222)

Then, from (2.220), φ1 = r
∂p(r, z)

∂z
implies

pm,(j+1)(j + 1) = am,j for 1 ≤ m ≤ k and 0 ≤ j ≤ m− 1. (2.223)

Using (2.223), p(r, z) must have the form

p(r, z) =
k∑

m=0

pm0 r
m +

k∑
m=1

m−1∑
j=0

pm,(j+1)r
m−(j+1)zj+1

=
k∑

m=0

pm0 r
m +

k∑
m=1

m−1∑
j=0

am,j
j + 1

rm−(j+1)zj+1.

(2.224)

Next, we set φ2 = −2p(r, z)− r∂p(r, z)

∂r
. Starting with (2.224),

∂ p(r, z)

∂r
=

k∑
m=1

pm0 m rm−1 +
k∑

m=2

m−1∑
j=0

am,j
m− (j + 1)

j + 1
r(m−1)−(j+1)zj+1. (2.225)

65

Therefore,

φ2 = −2 p(r, z)− r∂p
∂r

= −2
k∑

m=0

pm0r
m − 2

k∑
m=1

m−1∑
j=0

am,j
j + 1

rm−(j+1)zj+1

−
k∑

m=1

pm0 m rm −
k∑

m=2

m−1∑
j=0

am,j
m− (j + 1)

j + 1
rm−(j+1)zj+1

= −
k∑

m=0

pm0(m+ 2)rm

−
k∑

m=1

m−1∑
j=0

am,j(
1 +m− j
j + 1

)r(m−1)−jzj+1

= −
k∑

m=0

pm0(m+ 2)rm +
k∑

m=1

m∑
j=1

bm,jr
m−jzj

(2.226)

where in the final step we have used (2.217). Thus, comparing (2.226) with (2.220),

the choices pm0 =
−bm,0

(m+ 2)
and (2.223) gives a polynomial p(r, z) ∈ Pk(r, z) such that

for φ̄(r, z) ∈ S2, φ̄(r, z) = ∇ac r p(r, z).

Lemma 14. Let T denote a triangle with no edge lying on the line r = 0. For k ≥ 3

let

S0 = {φ̄ ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0, φ̄ · n = 0 on ∂T},

and S1 = {∇ac r bT ψk−3},
(2.227)

where bT is the cubic bubble function on T and ψk−3 ∈ Pk−3(r, z). Then S0 = S1.

Proof. We present a standard inclusion argument to prove Lemma 14.

First, suppose φ̄ ∈ S0 and recall from Lemma 13 that

{φ̄ ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0} = {∇ac r p(r, z) : p(r, z) ∈ Pk(r, z)}. (2.228)

Since φ̄ · n = 0, then there exists p̃(r, z) ∈ Pk(r, z), such that (∇ac r p̃(r, z)) · n = 0

66

on ∂T . Noting that r 6= 0, we have that p̃(r, z) must satisfy


∂

∂z
r p̃

−1

r

∂

∂r
(r2p̃)

 · n = 0 on ∂T ⇒ 1

r


∂

∂z
(r2p̃)

∂

∂r
(−r2p̃)

 · n = 0 on ∂T

⇒1

r


∂

∂r
(r2p̃)

∂

∂z
(r2p̃)

 · t = 0 on ∂T ⇒ 1

r

d

ds
(r2p̃) = 0 on ∂T

(2.229)

where t is a unit tangent vector on ∂T and s is the arclength parameterization variable

for ∂T . An important implication of (2.229), is that r2p̃(r, z) is a constant function

on ∂T .

In fact, (2.229) implies that p̃(r, z) = 0 on ∂T . To see why, we must consider two

scenarios: (i) when r2 is not constant along any edge of ∂T , and (ii) when r2 = a2 6= 0

along an edge of ∂T .

First, suppose that r2 is not constant on any edge of ∂T . Since p̃(r, z) ∈ Pk(r, z),

(a) (b)

Figure 2-5: Example of a triangle where r2 is not constant along any edge and a
triangle that is constant along an edge.

the only way that r2p̃(r, z) can be constant on ∂T is for p̃(r, z) = 0 on ∂T .

Second, suppose that r = a along the edge `k of ∂T . As T is a non-degenerate

triangle, r cannot be constant along the other two edges `i and `j of ∂T . Thus,

67

p̃(r, z) = 0 on edges `i and `j, as described for case (i). Along `k, we have the

representation r2p̃(r, z) = a2p̃(a, z) = a2p̃(z), where p̃(z) is a polynomial in z of degree

≤ k. Therefore, on `k, 0 = d
ds

(r2p) = a2 d
dz
p̃(z) which shows that p̃(z) is constant on

`k. Since r2p(r, z) is continuous on ∂T , r2p(r, z) = 0 at the triangle vertices where `k

intersects with `i and `j. Therefore, since a 6= 0, p̃(z) = p̃(a, z) = p̃(r, z) = 0 on `k

from which it follows that p̃(r, z) = 0 on ∂T .

A consequence of p̃(r, z) = 0 on ∂T is that the cubic bubble function bT can be

factored from p̃(r, z). That is, p̃(r, z) = bT ψk−3 for some ψk−3 ∈ Pk−3(r, z). Using

this representation, φ̄ = curlac r bT ψk−3 for some ψk−3 ∈ Pk−3(r, z). Therefore,

φ̄ ∈ S1 and S0 ⊂ S1.

Next, let φ̄ ∈ S1, so that

φ̄ = curlac r bT ψk−3 =


∂(r bT ψk−3)

∂z

−1

r

∂(r2 bT ψk−3)

∂r

 =

 r
∂(bT ψk−3)

∂z

−1

r

(
2 r bT ψk−3 + r2∂(bT ψk−3)

∂r

)
 .

(2.230)

Observe that φ̄ ∈ (Pk(r, z))2 and

∇axi · φ̄ =
1

r

[
∂

∂r
r2∂(bT ψk−3)

∂z

]
− ∂

∂z

[
2 bT ψk−3 + r

∂(bT ψk−3)

∂r

]
=

1

r

[
2 r

∂(bT ψk−3)

∂z
+ r2 ∂

2(bT ψk−3)

∂z ∂r

]
−
[
2
∂(bT ψk−3)

∂z
+ r

∂2(bT ψk−3)

∂r ∂z

]
= 0.

(2.231)

Since bT = 0 on ∂T , the function r2 bT ψk−3 = 0 on ∂T . Therefore, the tangential

directional derivative
∂(r2 bT ψk−3)

∂r

∂(r2 bTψk−3)

∂z

 · t|∂K = 0 which implies
1

r


∂(r2 bT ψk−3)

∂z

−∂(r2 bTψk−3)

∂r

 · n|∂K = 0.

(2.232)

68

Rearranging this expression to match (2.230) gives

φ̄ · n|∂K =

 r
∂(bT ψk−3)

∂z

−1

r

(
2 r bT ψk−3 + r2∂(bT ψk−3)

∂r

)
 · n|∂K = 0. (2.233)

Therefore φ̄ ∈ S0, S1 ⊂ S0 and S1 = S0.

Corollary 2. Let T denote an arbitrary triangle with one edge lying on the line r = 0.

For k ≥ 2 let

S0 : = {φ̄ ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0, φ̄ · n = 0 on ∂K},

and S1 : = {∇ac bT ψk−2},
(2.234)

where bT is the cubic bubble function on T and ψk−2 ∈ Pk−2(r, z). Then S0 = S1.

Proof. Following a similar approach as described in the proof of Lemma 14, suppose

φ̄ ∈ S0 and recall from Lemma 13 that

{φ̄ ∈ (Pk(r, z))2 : ∇axi · φ̄ = 0} = {curlac r p(r, z) : p(r, z) ∈ Pk(r, z)}.

Since φ̄ · n = 0, then there exists p̃(r, z) ∈ Pk(r, z), such that (curlac r p̃(r, z)) · n = 0

on ∂T . That is,

 r
∂

∂z
p̃(r, z)

−2 p̃(r, z)− r∂p̃
∂r

 · n = 0 on ∂K. (2.235)

Let `i for i = 1, 2, 3 denote the edges of ∂T , where `1 represents the edge along the

line r = 0 (see Figure 2-6). As described in the proof of Lemma 14, p̃(r, z) = 0 along

`2 and `3. For edge `1, the normal vector is n = (−1, 0)t. Since r
∂

∂z
p̃(r, z)|`1 = 0,

(2.235) holds for any choice of p̃(r, z).

Thus, (r p̃(r, z)) ∈ Pk+1(r, z) and r p̃(r, z)|`i = 0 for i = 1, 2, 3. If the bubble function

bT is factored out, then r p̃(r, z) = bT ψk−2 for some ψk−2 ∈ Pk−2(r, z). Thus, S0 ⊂ S1.

The proof that S1 ⊂ S0 follows in a similar manner as in the proof of Lemma 14.

69

Figure 2-6: Example of a triangle with an edge where r = 0.

2.12 Error Analysis

In this section, for Σh × Uh ×Qh satisfying the inf-sup condition

inf
wh∈Uh,ph∈Qh

sup
(σh,σh)∈Σh

b((σh, σh),wh) + c((σh, σh), ph)

(‖(σh, σh)‖Σ)(‖wh‖U + ‖ph‖Q)
≥ β > 0, (2.236)

we present an error analysis for the solution to the discrete linear elasticity problem

(2.147)-(2.149). For notational compactness, we take

B((σh, σh), (vh, ph)) = b((σh, σh),vh) + c((σh, σh), ph). (2.237)

Before moving forward, we take a moment to consider a reformulation of the problems

described in (2.85)-(2.87) and (2.147)-(2.149) to simplify the error analysis. For A :

V → V
′
, B : V → M , B

′
: M

′ → V
′
, consider the well posed general saddle point

system problem: Given f ∈ V ′ and g ∈M , find u ∈ V and q ∈M such that

Au+B′q = f (2.238)

Bu = g. (2.239)

for f ∈ A′ and g ∈ M . In the context of (2.147)-(2.149), V := Σh, M := Uh × Qh,

A comes from the left most term of (2.147), B and B
′

come from the expression

(2.237), f = f and g = f + f ∧ x (which equals the sum of the right hand sides of

(2.148)-(2.149)).

70

Since the system is well posed, B is surjective [42]. Taking u = φ + ug, yields an

equivalent problem: Given f̃ ∈ V ′ , find φ ∈ V and q ∈ M such that find φ ∈ V and

q ∈M such that

Aφ+B
′
q = f̃ := f − Aug (2.240)

Bφ = 0. (2.241)

Note that for φ and its approximation φh, with uh = φh + ug, ‖φ− φh‖ = ‖u− uh‖.

Hence for the error analysis, we will assume g = 0.

Recall that operator a(·, ·) : Σh ×Σh → R as defined in (A.33) is both coercive and

continuous (see Lemma 2 and 3). That is,

a((σ, σ), (σ, σ)) = ‖(σ, σ)‖2
Σ ≥ γ > 0 for all (σ, σ) ∈ Σh, (2.242)

a((σ, σ), (τ , τ)) ≤ α‖(σ, σ)‖Σ‖(τ , τ)‖Σ (2.243)

for some α > 0 and all (σ, σ), (τ , τ) ∈ Σ. We also note that B((·, ·), (·, ·)) is continu-

ous since

B((σ, σ), (v, q)) = b((σ, σ),v) + c((σ, σ), q)

= (v,∇axi · σ)− (vr,
σ

r
) + (σ,S2(q)) + (∇axi · (σ, σ) ∧ x, q)

≤ C1‖v‖1L2(Ω)‖(σ, σ)‖Σ + C2‖q‖1L2(Ω)‖(σ, σ)‖Σ

≤ β‖(σ, σ)‖Σ(‖v‖U + ‖q‖Q)

(2.244)

for all (σ, σ) ∈ Σ, v ∈ U and q ∈ Q where C1, C2, β > 0.

The discrete null space of the operator B((·, ·), (·, ·)) is defined as

Zh = {(τ h, τh) ∈ Σh : B((τ h, τh), (vh, qh) = 0 for all vh ∈ Uh and qh ∈ Qh}. (2.245)

Since B((τ h, τh), (vh, qh)) = 0 only holds on the discrete subspaces Uh and Qh, Zh 6⊂

Z. This observation motivates the following theorem which bounds the error σh in

71

terms of the spaces Uh, Qh and Zh.

Theorem 2. Let ((σ, σ),w, p) solve (2.85)-(2.87) and (σh, σh) solve (2.147)-(2.149).

If Σh ⊂ Σ, Uh ⊂ U , Qh ⊂ Q, and Zh is defined as in (2.245), then

‖(σ − σh, σ − σh)‖Σ ≤ C
(

inf
(τh,τh)∈Σh

‖(σ − τ h, σ − τh)‖Σ

+ inf
vh∈Uh

‖w − vh‖U + inf
qh∈Qh

‖p− qh‖Q
)
,

(2.246)

where C > 0, the constant, is independent of h.

Proof. Let (σh, σh) ∈ Zh be the unique solution to

a((σh, σh), (τ h, τh)) = (f ,∇axi · (τ h, τh)) for all (τ h, τh) ∈ Zh, (2.247)

as ensured by the Lax-Milgram Theorem (provided that f lives in the dual space

of 1H(divaxi,Ω;R2)). To develop an error bound, for (σh, σh), we must compare it

with the true solution (σ, σ). Noting again that Zh 6⊂ Z, from (2.85)-(2.87) the true

solution ((σ, σ),w, p) satisfies

a((σ, σ), (ξ
h
, ξh)) = (f ,∇axi · (ξh, ξh))−B((ξ

h
, ξh), (w, p)) for all (ξ

h
, ξ) ∈ Σh.

(2.248)

Subtracting (2.247) from (2.248)

a((σ − σh, σ − σh), (ξh, ξh)) = −B((ξ
h
, ξh), (w, p)) for all (ξ

h
, ξh) ∈ Zh. (2.249)

From (2.245) it then follows that for all (ξ
h
, ξh) ∈ Zh,vh ∈ Uh, qh ∈ Qh

a((σ − σh, σ − σh), (ξh, ξh)) = −B((ξ
h
, ξh), (w, p)) +B((ξ

h
, ξh), (vh, qh)). (2.250)

72

Next, adding and subtracting (τ h, τh) ∈ Zh in a(·, ·), (2.250) becomes

a((τ h − σh, τh − σh), (ξh, ξh)) =− a((σ − τ h, σ − τh), (ξh, ξh))

−B((ξ
h
, ξh), (w − vh, p− qh)).

(2.251)

Choosing (ξ
h
, ξh) = (τ h − σh, τh − σh) ∈ Zh, and using the coercivity and continuity

of a(·, ·) (described in (2.242), (2.243)) and the continuity of B((·, ·), (·, ·)) (described

in (2.244)) we obtain

0 < γ‖(τ h − σh, τh − σh)‖2
Σ

≤ α ‖(τ h − σh, τh − σh)‖Σ‖(σ − τ h, σ − τh)‖Σ

+ β ‖(τ h − σh, τh − σh)‖Σ (‖w − vh‖U + ‖p− qh‖Q) .

(2.252)

Dividing through by γ‖(τ h − σh, τh − σh)‖Σ gives

‖(τ h − σh, τh − σh)‖Σ ≤
α

γ
‖(σ − τ h, σ − τh)‖Σ +

β

γ
(‖w − vh‖U + ‖p− qh‖Q) .

(2.253)

Next, applying the triangle inequality, for an arbitrary element (τ h, τh) ∈ Σh,

‖(σ − σh, σ − σh)‖Σ ≤ ‖(σ − τ h, σ − τh)‖Σ + ‖(τ h − σh, τh − σh)‖Σ. (2.254)

Since (τ h, τh) ∈ Σh, vh ∈ Uh and qh ∈ Qh are arbitrary, combining (2.253) and

(2.254) we get

‖(σ − σh, σ − σh)‖Σ ≤ (1 +
α

γ
) inf

(τh,τh)∈Zh
‖(σ − τ h, σ − τh)‖Σ

+
β

γ

(
inf

vh∈Uh
‖w − vh‖U + inf

qh∈Qh
‖p− qh‖Q

)
.

(2.255)

In order to lift the approximation of (σ−τ h, σ−τh) from the infinimum over Zh to the

infinimum over Σh, we use the inf-sup condition (2.236). A equivalent property to the

spaces Σh × Uh ×Wh satisfying (2.236) is the existence of a projection Πh : Σ→ Σh

73

satisfying

B(((τ , τ)− Πh(τ , τ)), (vh, qh)) = 0 for all (vh, qh) ∈ Uh ×Qh (2.256)

and

‖Πh(τ , τ)‖Σ ≤ CΠ‖(τ , τ)‖Σ, (2.257)

where CΠ > 0 is a constant that is independent of h.

Let (ξ
h
, ξh) ∈ Σh, and introduce (ρ

h
, ρh) ∈ Σh satisfying

(ρ
h
, ρh) = Πh(σ − ξh, σ − ξh) where ‖(ρ

h
, ρh)‖Σ ≤ CΠ‖(σ − ξh, σ − ξh)‖Σ. (2.258)

Taking (τ h, τh) = (ξ
h

+ ρ
h
, ξh + ρh)

B((τ h, τh), (wh, qh)) = B((ξ
h
, ξh), (vh, qh)) +B((ρ

h
, ρh), (vh, qh))

= B((ξ
h
, ξh), (vh, qh)) +B((σ, σ), (vh, qh))−B((ξ

h
, ξh), (vh, qh))

= B((σ, σ), (vh, qh)) = 0,

(2.259)

which implies that (τ h, τh) ∈ Zh. Note that the final equality in this expression is

a result of the saddle point reformulation (2.240)-(2.241). Next, using (τ h, τh) =

(ξ
h

+ ρ
h
, ξh + ρh)

‖(σ − τ h, σ − τh)‖Σ ≤ ‖(σ − ξh, σ − ξh)‖Σ + ‖(ρ
h
, ρh)‖Σ

≤ (1 + CΠ)‖(σ − ξ
h
, σ − ξh)‖Σ.

(2.260)

Finally, taking infinimums over the appropriate spaces on the left and right sides gives

the result

inf
(τh,τh)∈Zh

‖(σ − τ h, σ − τh)‖Σ ≤ (1 + CΠ) inf
(ξ
h
,ξh)∈Σh

‖(σ − ξ
h
, σ − ξh)‖Σ. (2.261)

74

Combining (2.255) and (2.261) we obtain

‖(σ − σh, σ − σh)‖Σ ≤ C(inf
τh,τh∈Σh

‖(σ − τ h, σ − τh)‖Σ

+ inf
vh∈Uh

‖w − vh‖U + inf
qh∈Qh

‖p− qh‖Q).
(2.262)

With error bounds for the stress space established, the following theorem estab-

lishes error bounds for the displacement and skew-symmetry approximations.

Theorem 3. For ((σ, σ),w, p) satisfying (2.85)-(2.87) and ((σh, σh),wh, ph) satisfy-

ing (2.147)-(2.149) there exists C > 0, independent of h, such that

‖w −wh‖U + ‖p− ph‖Q

≤ C

(
inf

τh,τh∈Σh

‖(σ − τ h, σ − τh)‖Σ + inf
vh∈Uh

‖w − vh‖U + inf
qh∈Qh

‖p− qh‖Q
)
.

(2.263)

Proof. Subtracting equations (2.147) from (2.85) gives

B((ξ
h
, ξh), (w −wh, p− ph)) = −a((σ − σh, σ − σh), (ξh, ξh)) (2.264)

for all (ξ
h
, ξh) ∈ Σh.

For any vh ∈ Uh and qh ∈ Qh, the inf-sup condition (2.236) gives

β (‖wh − vh‖U + ‖ph − qh‖Q) ≤ sup
(ξ
h
,ξh)∈Σh

|B((ξ
h
, ξh), (wh − vh, ph − qh))|
‖(ξ

h
, ξh)‖Σ

≤ sup
(ξ
h
,ξh)∈Σh

(
|B((ξ

h
, ξh), (wh −w, ph − p))|
‖(ξ

h
, ξh)‖Σ

+
|B((ξ

h
, ξh), (w − vh, p− qh))|
‖(ξ

h
, ξh)‖Σ

)

≤ sup
(ξ
h
,ξh)∈Σh

(
| − a((σ − σh, σ − σh), (ξh, ξh))|

‖(ξ
h
, ξh)‖Σ

+
|B((ξ

h
, ξh), (w − vh, p− qh))|
‖(ξ

h
, ξh)‖Σ

)
≤ max{α, β}(‖(σ − σh, σ − σh)‖Σ + ‖w − vh‖U + ‖p− qh‖Q),

(2.265)

75

where in the last step we have used the continuity of a(·, ·) and B(·, ·).

Combining (2.265) with the triangle inequality gives

‖w −wh‖U + ‖p− ph‖Q

≤ ‖w − vh‖U + ‖vh −wh‖U + ‖p− qh‖Q + ‖qh − ph‖Q

≤ C(‖(σ − σh, σ − σh)‖Σ + ‖w − vh‖U + ‖p− qh‖Q).

(2.266)

As vh ∈ Uh and qh ∈ Qh are arbitrary, (2.263) follows from (2.266) and (2.262).

Combining Theorems 2 and 3 we have the following.

Corollary 3. Let ((σ, σ),w, p) ∈ Σ × U × Q be the solution of (2.85)-(2.87) and

((σh, σh),wh, ph) ∈ Σh × Uh ×Qh the solution of (2.147)-(2.149), then

‖(σ − σh, σ − σh)‖Σ + ‖w −wh‖U + ‖p− ph‖Q

≤ C(inf
(τh,τh)∈Σh

‖(σ − τ h, σ − τh)‖Σ + inf
vh∈Uh

‖w − vh‖U + inf
qh∈Qh

‖p− qh‖Q).

(2.267)

Using Corollary 3, and additional smoothness assumptions, we can now form an

error bound in terms of the mesh parameter h. First observe that for the axisymmetric

BDMk interpolation operator ρ̃h : 1H
1(Ω) → BDMk(Th) as defined in [45], if u ∈

1H
k+1(Ω), then for some C > 0,

‖u− ρ̃h(u)‖
1L2(Ω) ≤ C hk+1|u|

1Hk+1(Ω). (2.268)

In addition, if ∇axi · u ∈ 1H
k(Ω) where

(
ΣT∈Th |∇axi · ρ̃h(u)|2

1Hk+1(T)

)2

< C1, then for

some C > 0,

‖∇axi · u−∇axi · ρ̃h(u)‖
1L2(Ω) ≤ Chk. (2.269)

Combining the results and assumptions of (2.268) and (2.269), if u ∈ 1H
k+1(Ω) and

∇axi · u ∈ 1H
k(Ω) where

(
ΣT∈Th|∇axi · ρ̃h(u)|2

1Hk+1(T)

)
< C1, then there exists C > 0

76

such that

‖u− ρ̃h u‖1H(div,Ω) ≤ C hk. (2.270)

Under analogous assumptions, this result can be extended to the tensor case, where

ρ̃ρρh : 1H
1(Ω)→ (BDMk(Th))2 represents the BDMk interpolation operator applied to

the rows of a tensor so that

‖σ − ρ̃ρρhσ‖1H(div,Ω) ≤ C hk. (2.271)

Next we present a result from [16] which bounds the Clément operator Λk
h. The

Clément operator Λk
h maps 1L

2(Ω) into the space of degree k Lagrangian finite el-

ements on the mesh Th. Indeed, as stated in Corollary 2 of Theorem 1 in [16], for

v ∈ 1H
k+1(Ω), there exists a C independent of h such that

‖v − Λk
hv‖1L2(Ω) ≤ Chk+1|v|

1Hk+1(Ω). (2.272)

As with the BDM interpolation ρ̃h, the bound for Λk
h can be extended to vector and

tensor functions.

The next corollary introduces error bounds in terms of the mesh parameter h for the

k = 1, 2 cases.

Corollary 4. Assume that Πh of Lemma 10 or 11 satisfies (2.159)-(2.160). If

(σ, σ,w, p) ∈ 1H
k(Ω)× (−1L

2(Ω) ∩ 1H
k(Ω))× 1H

k(Ω)× 1H
k(Ω) solves (2.85)-(2.87)

and (σh, σh,wh, ph) ∈ (BDMk)
2(Th)×Pk(Th)×(Pk−1(Th))2×Pk−1(Th) solves (2.147)-

(2.149) for k = 1, 2, then

‖(σ − σh, σ − σh)‖Σ + ‖w −wh‖U + ‖p− ph‖Q ≤ C hk. (2.273)

77

Proof. From Corollary 3,

‖(σ − σh, σ − σh)‖Σ + ‖u− uh‖U + ‖p− ph‖Q

≤ C
(

inf
(τh,τh)∈Σh

‖(σ − τ h, σ − τh)‖Σ + inf
vh∈Uh

‖u− vh‖U + inf
qh∈Qh

‖p− qh‖Q
). (2.274)

The BDM error bounds from (2.271), (2.272) gives

inf
(τh,τh)∈Σh×Sh

‖(σ − τ h, σ − τh)‖Σ ≤ C hk. (2.275)

In addition, using a vector generalization of (2.272)

inf
vh∈Uh

‖u− vh‖U ≤ ‖u− Λk−1
h u‖

1L2(Ω) ≤ C hk|u|
1Hk(Ω) (2.276)

and

inf
qh∈Wh

‖S2(p− qh)‖Q ≤ C1‖p− Λk
h p‖1L2(Ω) ≤ C hk|p|

1Hk(Ω). (2.277)

Combining (2.274), (2.275), (2.276) and (2.277) gives the result.

To conclude this section, we establish an error bound for the true displacement u.

At this point, error bounds have been established in terms of the pseudo displacement

variable w. Recall from Section 2.6.1, however, that w = u− x⊥p.

Corollary 5. Let ((σ, σ),w, p) ∈ Σ × U × Q be the solution of (2.85)-(2.87) and

((σh, σh),wh, ph) ∈ Σh × Uh × Qh the solution of (2.147)-(2.149). Furthermore, let

u = w + x⊥p denote the true displacement, and uh = wh + x⊥ph denote the discrete

approximation to the true displacement. There exists a C > 0 independent of h, such

that

‖u− uh‖U ≤ C
(

inf
(τh,τh)∈Σh

‖(σ − τ h, σ − τh)‖Σ

+ inf
vh∈Uh

‖w − vh‖U + inf
qh∈Qh

‖p− qh‖Q
)
.

(2.278)

78

Proof. For a bounded domain Ω, observe that

‖x⊥(p− ph)‖U ≤ Cx⊥‖p− ph‖Q, (2.279)

where the constant Cx⊥ > 0 is independent of h. Therefore, using Theorem 3 we have

that

‖u− uh‖U = ‖(w −wh) + x⊥(p− ph)‖U ≤ ‖w −wh‖U + ‖x⊥(p− ph)‖U

≤ C
(

inf
(τh,τh)∈Σh

‖(σ − τ h, σ − τh)‖Σ + inf
vh∈Uh

‖u− vh‖U

+ inf
qh∈Qh

‖p− qh‖Q
)
.

(2.280)

2.13 Computational Results

To verify our theoretical results, we next consider two computational experiments. A

square domain, [0, 1]× [0, 1], is used. We consider the displacement solution

u(r, z) =

 4r3(1− r)z(1− z)

−4r3(1− r)z(1− z)

 . (2.281)

To avoid confusion, this u represents the true displacement solution, not the pseudo-

displacement, w, solution that is described in Section 2.6.1.

The solution has been selected to be consistent with homogenous Dirichlet condi-

tions while maintaining a large enough polynomial degree to observe the order of

convergence. Based on u, the true solution for σ is derived from the relationship

Aσ = ε(u), where Aσ =
1

2µ

(
σ − λ

2µ+ 3λ
tr(σ)I

)
. (2.282)

The values of λ and µ vary based on the example.

79

Example 1

In our first example, we consider the parameters µ = 1
2

and λ = 0. Therefore, based

on (2.282), the true symmetric stress tensor is

σ =

4r2(4r − 3)(z − 1)z 2r2(r(r − 1)(2z − 1)− (4r − 3)(z − 1)z)

∗ −4r3(r − 1)(2z − 1)

 (2.283)

σ = 4r2(1− r)z(1− z) (2.284)

and the divergence of the stress tensor is

∇axi · (σ, σ) =

2r(2r3 − 2r2(4z − 1) + r(32z2 − 26z − 3)− 18(z − 1)z)− 4r(1− r)z(1− z)

−2r(4r3 + r2(1− 10z) + 4r(4z2 − 2z − 1)− 9(z − 1)z)

 .

(2.285)

Presented in Table 2.1-2.1 are results of the simulation with the grad-div parameter

(see (2.76)) γ = 1. We note that the convergence rate for the displacement reflects

the true displacement, not the pseudo displacement. Computations were performed

using the approximation elements BDM1− discP1− discP0− discP0 (shown in Table

2.1), and BDM2 − discP2 − discP1 − discP1 (shown in Table 2.2)

Example 2

For the second example, we consider the parameters µ = 1
2

and λ = 1. Therefore,
based on (2.282), the true symmetric stress tensor is

σ =

4r2(−2r2z + r2 + 9rz2 − 7rz − r − 7z2 + 7z) 2r2(2r2z − r2 − 4rz2 + 2rz + r + 3z2 − 3z)

∗ 4r2(−4r2z + 2r2 + 5rz2 − rz − 2r − 4z2 + 4z)

 (2.286)

σ = 4r2(−2r2z + r2 + 6rz2 − 4rz − r − 5z2 + 5z) (2.287)

and the divergence of the stress tensor is

∇axi · (σ, σ) =

2r(2r3 − 24r2z + 10r2 + 60rz2 − 42rz − 9r − 32z2 + 32z)

−2r(8r3 + r2(7− 30z) + 4r(4z2 + 2z − 3)− 9(z − 1)z)

 .

(2.288)

80

Table 2.1: Example 1 : Axisymmetric Elasticity Convergence Rates for BDM1 - disc
P1 - discP0 - discP0 finite elements with grad-div stabilization parameter γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 5.444E-01 1.0 2.679E-02 1.0 1.263E-01 1.0

1
6 3.584E-01 1.0 1.800E-02 1.0 8.268E-02 1.0

1
8 2.673E-01 1.0 1.353E-02 1.0 6.129E-02 1.0

1
10 2.132E-01 1.0 1.083E-02 1.0 4.867E-02 1.0

1
12 1.774E-01 – 9.029E-03 – 4.036E-02 –

Pred. 1.0 1.0 1.0

Table 2.2: Example 1 : Axisymmetric Elasticity Convergence Rates for BDM2 -
discP2 - discP1 - discP1 finite elements with grad-div stabilization parameter γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 6.797E-02 2.0 8.381E-03 1.9 1.602E-02 2.1

1
6 3.061E-02 2.0 3.915E-03 1.9 6.753E-03 2.1

1
8 1.730E-02 2.0 2.238E-03 2.0 3.647E-03 2.1

1
10 1.109E-02 2.0 1.442E-03 2.0 2.264E-03 2.1

1
12 7.711E-03 – 1.005E-03 – 1.536E-03 –

Pred. 2.0 2.0 2.0

Presented in Table 2.3-2.4 are results of the simulation with the grad-div parameter

(see (2.76)) γ = 1. We note that the convergence rate for the displacement reflects

the true displacement, not the pseudo displacement. Computations were performed

using the approximation elements BDM1− discP1− discP0− discP0 (shown in Table

2.3) and BDM2 − discP2 − discP1 − discP1 (shown in Table 2.4).

The computational results from Example 1 and Example 2 are consistent with the

theoretically predicted results from Lemma 10, Lemma 11, Corollary 4, and Corollary

5.

81

Table 2.3: Example 2 : Axisymmetric Elasticity Convergence Rates for BDM1 -
discP1 - discP0 - discP0 finite elements with grad-div stabilization parameter γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 1.273E+00 1.0 2.908E-02 1.0 1.912E-01 1.1

1
6 8.444E-01 1.0 1.911E-02 1.1 1.200E-01 1.1

1
8 6.308E-01 1.0 1.410E-02 1.0 8.636E-02 1.1

1
10 5.034E-01 1.0 1.115E-02 1.0 6.727E-02 1.1

1
12 4.189E-01 – 9.227E-03 – 5.508E-02 –

Pred. 1.0 1.0 1.0

Table 2.4: Example 2 : Axisymmetric Elasticity Convergence Rates for BDM2 -
discP2- discP1 - discP1 finite elements with grad-div stabilization parameter γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 1.169E-01 1.9 8.660E-03 1.9 2.202E-02 2.2

1
6 5.344E-02 1.9 3.986E-03 2.0 8.882E-03 2.2

1
8 3.053E-02 2.0 2.263E-03 2.0 4.652E-03 2.2

1
10 1.974E-02 2.0 1.454E-03 2.0 2.823E-03 2.2

1
12 1.380E-02 – 1.011E-03 – 1.881E-03 –

Pred. 2.0 2.0 2.0

82

2.14 Conclusion and Future Work

In this work, we develop a computational framework for the axisymmetric linear

elasticity problem with weak symmetry. Provided the projection bounds (2.159)-

(2.160) are satisfied, Lemmas 10, and 11 establish that the finite element spaces

(((BDM1)2×P1)× (P0)2×P0) and (((BDM2)2×P2)× (P1)2×P1) are inf-sup stable

with error bounds as stated in Corollary 4. Computational examples presented in

Section 2.13 support these results. It remains an open question whether for general

k, if (((BDMk)
2×Pk)× (Pk−1)2×Pk−1) form an inf-sup finite element for this prob-

lem.

In the Cartesian setting, the spaces ((BDMk)
2 × (Pk−1)2 × Pk−1) form an inf-sup

stable triple for the linear elasticity problem with weak symmetry [23]. Moreover,

in the axisymmetric setting (provided the projection bound is satisfied), the conver-

gence order for the k = 1, 2 cases matches the Cartesian result. Therefore, it maybe

a reasonable conjecture that the finite element (((BDMk)
2 × Pk) × (Pk−1)2 × Pk−1)

is inf-sup stable for the axisymmetric problem.

To test this conjecture, Tables 2.5 and 2.6 present convergence results for (((BDM3)2, P3)×

P2×P2). Encouragingly, the convergence rates match the theoretically expected rate

given the polynomial approximation order.

It is not clear how one can prove that (((BDMk)
2, Pk) × (Pk−1)2 × Pk−1) is inf-sup

stable. One problem lies in showing that a projection operator that satisfies the prop-

erties of Theorem 1 exists. Notably, any projection operator must account for the

functional form of the axisymmetric divergence. Specifically, relative to the Carte-

sian divergence, the axisymmetric divergence includes the term 1
r
pk(z), introducing

an additional k + 1 degrees of freedom.

The form of the divergence relates to another important difference between the ax-

isymmetric and Cartesian BDMk space. In the Cartesian setting, the basis functions

of BDMk can be grouped into three categories. The first are functions with a non-zero

normal component. In the standard BDMk space, these functions are associated with

83

the degrees of freedom

∫
`

u · n p(s) ds = 0 for all ` ∈ ∂K, and p(s) ∈ R∂K(s). (2.289)

The second set of basis functions are those with a zero normal component but non-zero

divergence. These functions are associated with the degrees of freedom

∫
K

u · ∇p dK = 0 for all p ∈ Pk−1(K). (2.290)

To see why, integrate by parts to get

∫
K

u · ∇p dK =

∫
∂K

u · n p ∂K −
∫
K

∇ · u p dK = 0 (2.291)

where u · n = 0 implies that ∇ · u = 0 and hence u = 0.

The third set of basis functions are those with a zero normal component and a zero

divergence. These functions are associated with the degrees of freedom

∫
K

u · q dK = 0 (2.292)

where q ∈ Φ = {w | w ∈ H(div;K),w · n = 0 and ∇ ·w = 0}. From here, it can be

shown that functions q ∈ Φ have the form q = curl(bK p) where p ∈ Pk−2(x, y).

In contrast, the equivalent axisymmetric bubble function representation from Lemma

14 shows that functions with zero normal component and zero divergence have the

form q = ∇ac(r bK p) where p ∈ Pk−3(r, z). This indicates that the space remaining

once the boundary and non-vanishing divergence functions are removed is notably

smaller than in the Cartesian case.

84

Table 2.5: Example 1 : Axisymmetric Elasticity Convergence Rates for BDM3 -
discP2 - discP2 - discP2 finite elements with γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 6.363E-03 2.9 1.357E-03 2.9 1.699E-03 3.0

1
6 1.930E-03 3.0 4.229E-04 2.9 5.031E-04 3.0

1
8 8.219E-04 3.0 1.815E-04 3.0 2.109E-04 3.0

1
10 4.230E-04 3.0 9.367E-05 3.0 1.074E-04 3.0

1
12 2.456E-04 – 5.443E-05 – 6.185E-05 –

Table 2.6: Example 2 : Axisymmetric Elasticity Convergence Rates for BDM3 -
discP2 - discP2 - discP2 finite elements with γ = 1.

h ‖(σ − σh, σ − σh)‖Σ Cvg. Rate ‖u− uh‖U Cvg. Rate ‖as(σh)‖Q Cvg. Rate

1
4 1.155E-02 3.0 1.359E-03 2.9 1.454E-03 3.1

1
6 3.459E-03 3.0 4.233E-04 2.9 4.192E-04 3.1

1
8 1.465E-03 3.0 1.816E-04 3.0 1.733E-04 3.1

1
10 7.517E-04 3.0 9.370E-05 3.0 8.742E-05 3.1

1
12 4.356E-04 – 5.445E-05 – 5.002E-05 –

85

86

Chapter 3

Two-Phase Navier–Stokes

Preconditioners

3.1 Introduction

Dynamic free-surface models are often used to simulate physical processes that appear

in industrial applications. For example, in fluid dynamics simulations free-surface

models track the interface between air and water over time. Reliably tracking fluid

interfaces over time is an important element of modeling many complicated hydraulic

processes such as waves crashing into coastal barriers, the stress forces affecting a

bridge, or flow dynamics following a catastrophic failure in infrastructure (e.g., a

dam break).

Often, several different physical models are coupled to form a complete free-surface

model, and a splitting scheme is then used to approximate the solution numerically.

The variable density/viscosity Navier–Stokes equations – which describe the evolu-

tion of fluid velocity – are an important component of these splitting schemes. In

many cases, the computational effort needed to numerically approximate the Navier–

Stokes equations forms a bottleneck in the splitting scheme, which limits the size of

the simulation that practitioners can perform. Therefore, developing efficient meth-

ods to solve the variable density/viscosity Navier–Stokes equations is important in

extending the size and scope of simulation that can be performed with free-surface

87

models.

Indeed, because of the importance in industrial applications, a lot of research has

been done to develop efficient methods for solving the Navier–Stokes equations. One

technique used to improve the performance of the Navier–Stokes equations is to use a

projection style schemes like those developed by Chorin and Temam (see [53]). These

techniques involving splitting the Navier–Stokes equation to first solve an advection-

diffusion equation to obtain a non-mass conserving approximation. Next, a pressure

correction is made to make the velocity mass conserving. While these methods have

the advantage of reducing simulation run times, there are important challenges about

the appropriate boundary conditions in the pressure correction step as well as diffi-

culties in applying the methods to higher order approximation schemes. For these

reasons, it remains important to find faster ways of solving the fully coupled Navier–

Stokes problem.

While significant progress has been made, finding efficient solvers for the fully cou-

pled Naiver–Stokes equation remain a challenge, particularly for high Reynolds num-

ber flow. Typically, the simulation size is too large for direct solvers to be practi-

cal. Therefore, most research has focused on preconditioned Krylov based iterative

techniques like GMRES [79]. Examples of preconditioning methods that have been

purposed include augmented Lagrangian, algebraic multigrid and incomplete LU-

factorization [18, 19, 62, 89, 71].

In this work, we focus our attention on Schur complement preconditioners, a strategy

that makes use of the physical structure of the Navier–Stokes equations. Schur com-

plement preconditioners have been studied extensively, for example see [41, 40, 57,

75, 88]. Until recently, however, these methods have only been successfully applied

to the constant density-viscosity form of the Naiver–Stokes equations.

In [25] a new pressure convection diffusion (PCD) Schur complement approximation

for the variable density/viscosity Navier–Stokes equation is presented. While other

work has examined variable viscosity problems in the Stokes context [29, 11, 51, 52,

68], this new PCD operator represents the first scalable Schur complement precondi-

tioner designed specifically for the variable density/viscosity Naiver–Stokes equations.

88

This research extends the development of the variable density/viscosity PCD opera-

tor in several ways. First, numerical experiments are conducted using the RANS2P

module of Proteus (http://proteustoolkit.org) – an industrial software package

used to simulation free-surface fluid dynamics problems. As such, this work demon-

strates that the the variable density/viscosity PCD operator provides a meaningful

improvement relative to other Navier–Stokes preconditioners used in industrial ap-

plications. Second, numerical experiments are run for large-scale three dimensional

problems on high-performance computers with thousands of computational nodes,

demonstrating that the variable density/viscosity PCD preconditioner is effective in

a large scale modern computing environment.

The first several sections of this chapter provide useful background material. Section

3.2 offers a brief overview of the continuous conservative level-set method used to solve

dynamic two-phase flow problems in the RANS2P module. Section 3.3 highlights the

discrete nonlinear Navier-Stokes equations that arise at each time step of the discrete

level-set approach. In addition, this section describes the stabilization method used

in the RANS2P model, the enforcement of boundary conditions, and the approach to

linearizing the discrete Navier–Stokes equations. Section 3.4 discusses how the linear

system of equations that arise from the discrete nonlinear Navier–Stokes equations

are solved. This section includes a discussion of direct methods and the need for

iterative Krylov methods to solve the large linear systems of equations that arise in

Proteus. An overview of algebraic multigrid methods is also given, as these methods

form an important tool in larger preconditioning strategies. Finally, we present the

details of the current Additive Schwarz preconditioner used in Proteus and introduce

the variable density-viscosity approach described in [25].

Finally, Section 3.5 presents numerical results of the variable density/viscosity PCD

preconditioner used solve fluid dynamics problems in Proteus. In the first part of

this section, results are presented for two static benchmark problems that appear

frequently in the Navier–Stokes literature – a cavity problem and a channel flow

with a step. Next, results are presented for a two-dimensional dynamic free-surface

model that simulates a column of water collapsing under the force of gravity. Finally,

89

the last experiment explores a three-dimensional dambreak simulation that uses sev-

eral million unknowns and is solved with high-performance computing resources and

thousands of processors.

3.2 The RANS2P Free-Surface Model

This section describes the weak formulation of the Navier–Stokes equations and the

level-set method used in the Reynolds Averaged Two-Phase Navier–Stokes (RANS2P)

module of the Proteus toolkit (http://proteustoolkit.org). For ease of exposition,

we present the method in R2, but the method extends in a straight forward way to

R3. Additionally, we use bold letters to denote vector quantities.

We begin with a brief overview of the RANS2P level set model. At each discrete

time step, the RANS2P module first solves the Navier–Stokes equations to generate

a fluid velocity profile across the simulation domain. This solution is then coupled

with a level set model to track the interface between the air and water phases. In the

discrete setting, however, this approach can lead to unacceptable mass conservation

errors. Therefore, RANS2P also generates a mass conserving approximation of the

volume fraction across the domain. Finally, the mass conserving volume fraction is

coupled with the level set model to produce an adjustment to create a mass conserving

level set function. A number of details are omitted in this discussion, but interested

readers can find a complete description in [58].

3.2.1 Two Phase Domain

Consider a domain Ω ⊂ R2 occupied by two immiscible fluids — air and water. Let Ωw

denote the segment of the domain containing water and Ωa the segment of the domain

containing air. Γ := Ωw ∩Ωa describes the fluids’ interface and Ω = Ωa ∪Ωb ∪Γ. The

non-interface boundaries of Ωa and Ωw are defined as ∂Ωi = Ωi \ (Ωi ∪ Γ) for i = a, w

and ∂Ω = ∂Ωa ∪ ∂Ωw.

The air and water phases of the domain can be described with a level set function φ

90

such that

Ωw = {x : φ(x, t) < 0}, Ωa = {x : φ(x, t) > 0} and Γ = {x : φ(x) = 0}. (3.1)

3.2.2 Navier–Stokes Equations

For a given time step, the RANS2P module first solves the two-phase Navier–Stokes

equations. In this section, we present the continuous weak formulation of the Navier–

Stokes equations. The discrete form of the equations is described in Section 3.3.

Consider a variable density and viscosity Navier-Stokes model for incompressible flu-

ids in [0 × T] × Ω. To describe the two-phase nature of the problem, let ρa, ρw and

νa, νw denote the density and kinematic viscosity of the air and water respectively.

We then define ρ, ν and µ as

ρ = ρaH(φ) + ρw(1−H(φ)) , ν = νaH(φ) + νw(1−H(φ)), (3.2)

and µ = ρaνaH(φ) + ρwνw(1−H(φ)), (3.3)

where H is the Heaviside function

H(φ) =


1 if φ > 0

1
2

if φ = 0

0 if φ < 0

. (3.4)

The dynamic viscosity Navier–Stokes equations are

ρ
∂u

∂t
+ ρ u · ∇u +∇p−∇ · (2µ∇su) = ρ g in Ωw ∪ Ωa, (3.5)

∇ · u = 0 in Ωw ∪ Ωa, (3.6)

where u =
(
u v

)t
is the velocity, p is the pressure, µ is the dynamic viscosity, ρ

is the density, g is the gravitational acceleration and ∇su = 1
2
(∇u + ∇ut) is the

symmetric gradient tensor.

91

Along the dynamic fluid interface, Γ(t) = Ωw ∩ Ωa, we have

uw − ua = 0, (3.7)

(σw − σa) · n = f , (3.8)

where n is the outward normal vector for the water phase, σi = −piI+2µi∇sui is the

stress tensor for i = a, w, and f denotes the surface tension force between the fluids.

Along the fluid interface, we use uw to denote the velocity of the water phase and ua

to denote the velocity of the air phase. We assume

f = γκ n. (3.9)

where γ is the air-water surface tension coefficient and κ is the mean curvature of Γ.

Boundary conditions for (3.5)-(3.6), can be either Dirichlet or Neumann, where

u = w on ∂ΩD, (3.10)

n · σ = h on ∂ΩN (3.11)

and σ · n =

(σ1) · n

(σ2) · n

.

To define the variational form, let VT (0, T ; V(Ω)) denote an appropriate function

space for the vector-quantity velocity across time and space, and MT (0, T ;M(Ω))

denote an appropriate function space for the pressure across time and space.

For equations (3.5) and (3.6), a weak formulation requires finding u ∈ VT (0, T ; V(Ω))

and p ∈MT (0, T ;M(Ω)) such that for t ∈ (0, T]∫
Ω

ρ
∂u

∂t
v dΩ +

∫
Ω

ρ (u · ∇u) · v dΩ = −
∫

Ω

∇p · v dΩ−
∫

Ω

(2µ∇su) · ∇v dΩ

+

∫
Ω

ρ g · v dΩ +

∫
∂Ω

(2µ∇su · n) · v ∂Ω + γ

∫
Γ

κ nΓ · v dΓ,

(3.12)∫
Ω

u · ∇q dΩ = −
∫
∂Ω

(u · n) q ∂Ω, (3.13)

92

for all v ∈ V(Ω) and q ∈ M(Ω). Note that we assume that the pressure is constant

across Γ.

This weak form differs from the standard variational form of Navier-Stokes in that

(3.13) represents an integration by parts resulting from (3.6) instead of integrating

the pressure gradient ∇p term in the momentum equation.

3.2.3 Level set transport equation

Once the fluids’ velocity u is solved, the level set function φ is updated via a transport

equation

∂φ

∂t
+ u · ∇φ = 0 in Ω (3.14)

which implicitly describes the time evolution of the fluids’ interface in Ω.

3.2.4 Redistancing

Once the level set has been updated, the Eikonal equation is used to redistance φ to

φd so that

‖∇φd‖ = 1 in Ω, (3.15)

φd = 0 on Γ. (3.16)

Note that Γ is given by φ = 0, where φ satisfies (3.1).

3.2.5 Volume fraction

Next, the linear scalar conservation of fluid mass equation

∂Ĥ

∂t
+∇ · (Ĥu) = 0 in Ω (3.17)

Ĥ(x, t) = H(φ) on ∂Ω (3.18)

93

is solved for Ĥ and the velocity u comes from the solution of the Navier–Stokes

equations.

3.2.6 Mass correction

Finally, the volume fraction and signed distance functions are coupled through the

nonlinear equation

κ∆φ
′
= H(φd + φ

′
)− Ĥ in Ω (3.19)

∇φ′ · n = 0 on ∂Ω (3.20)

and solved for φ
′
to enforce mass conservation on each subdomain of the triangulation.

In the discrete setting, the mass conserving adjustment φ
′

prevents the accumulation

of temporal error that appears in the level set approximation. See [58] for more

details.

3.3 Numerical Methods for Navier-Stokes

In this section we outline the discrete nonlinear Navier-Stokes equations that arises

in the discrete level-set method. To establish the fluid phases, we assume there is a

continuous level-set phase function φ (recall (3.1)) from the previous time step.

3.3.1 Discrete Navier-Stokes

Assume that the physical domain Ω and its boundary ∂Ω are fixed during [0, T].

Next, assume the time interval [0, T] is partitioned into a sequence of subintervals

0 = t0 < · · · < tn < tn+1 < · · · < tN = T , with time intervals ∆tn = tn − tn−1. In

practice, this partition is done dynamically during the simulation.

At each time step, the domain Ω is partitioned into an unstructured mesh Th of Ne

simplex elements Ki. Each element Ki has diameter hi and boundary ∂Ki. The mesh

Th also partitions ∂Ω into ne segments ∂Ωi. When calculating element or boundary

94

integrals over the entire domain, we use the notation

∫
Ω′

=
Ne∑
i=1

∫
Ki

and

∫
∂Ω′

=
ne∑
i=1

∫
∂Ωi

. (3.21)

For the mesh partitioning Th, we define our finite element spaces as continuous degree

k polynomials of equal order

Vh = {uh ∈ V(Ω) ∩ C0(Ω) : uh|Ki ∈ (P k(Ki))
2 for all Ki ∈ Th} (3.22)

Mh = {wh ∈M(Ω) ∩ C0(Ω) : wh|Ki ∈ P k(Ki) for all Ki ∈ Th}. (3.23)

Let {φi}Nvi=1 and {ψi}Npi=1 denote bases for Vh and Mh respectively. When referring to

the components of an element of {φi}Nvi=1, we use the notation φi =
(
φui φvi

)t
.

The RANS2P module allows the user to specify the polynomial order k for the velocity

and pressure spaces. A frequently used element pair is k = 1 for the velocity and

pressure (commonly referred to as P1-P1). This choice requires pressure stabilization

terms, which are discussed in Section 3.3.2.

At each time step tn, we use the discrete solution from the previous m time steps to

approximate the temporal derivative,
∂vn
∂t

, with a backward differentiation formula

(BDF)

∂vn
∂t
≈ Dtvn = αvn +

m∑
i=1

βivn−i (3.24)

where the subscript n indicates the time of the solution variable. That is, un indicates

the discrete solution at time tn. Also, note that for m = 1, α = 1
∆tn

, and β1 = −1
∆tn

(3.24) represents the backward Euler formula.

Using Vh and Mh, we can define the discrete approximation to the continuous prob-

95

lem (3.12) and (3.13) at time tn as: find uhn ∈ Vh and phn ∈Mh such that∫
Ω

ρ Dtu
h
n · vh dΩ−

∫
Ω

ρ(uhn · ∇uhn) · vh dΩ = −
∫

Ω

∇phn · vh dΩ

−
∫

Ω

(2µ∇suhn) : ∇vh dΩ +

∫
Ω

g · vh dΩ +

∫
∂Ω

(2µ∇suhn · n) · vh ∂Ω

(3.25)

∫
Ω

uhn · ∇qh dΩ = −
∫
∂Ω

(uhn · n) qh ∂Ω (3.26)

for all vh ∈ Vh and qh ∈ Mh. Implementation of the boundary conditions are

discussed in Section 3.3.3.

3.3.2 Stabilization

It is well known that discrete formulations such as (3.25)-(3.26) often produce non-

physical approximations unless the discretization parameters, ∆t and h, are taken

“sufficiently small.” However, for high Reynolds’ number flow taking the discretiza-

tion parameters “sufficiently small” may lead to an approximation scheme that is

not computationally tractable. Moreover, pressure stabilization is needed when finite

element pairs are not inf-sup stable (e.g. P1-P1). In this section, we outline the

stabilization terms used to address these issues in Proteus’ RANS2P module. For

more information on the stabilization methods discussed herein see [54, 33, 86].

RANS2P uses a variation of algebraic subgrid scale (ASGS) stabilization. ASGS

stabilization uses weighted element integrals of the strong residual tested against an

adjoint differential operator to stabilize (3.25)-(3.26). As described in [54], ASGS

stabilization assumes that the subgrid component of the discrete solution (e.g. the

part of the solution that is too fine to be captured by the mesh) can be determined

analytically on each element using the strong residuals of the discrete solution, adjoint

operators, and Green’s functions. The resulting correction for the subgrid component

of the solution can then be added to the discrete weak formulation to provide the

ASGS stabilization. To illustrate, consider the strong residuals of equation (3.6)

rp =
∂uhn
∂x

+
∂vhn
∂y

= ∇ · uhn. (3.27)

96

Note that if there was a mass source, it would be part of this term. For the two

components of the vector equation (3.5), the strong residuals are defined as

ru = ρ Dtu
h
n + ρ uhn−1 · ∇uhn +

∂phn
∂x
−∇ · (µ∇uhn)− ρ g1, (3.28)

rv = ρ Dtv
h
n + ρ uhn−1 · ∇vhn +

∂phn
∂y
−∇ · (µ∇vhn)− ρ g2. (3.29)

For linear elements, the diffusion terms in (3.28) and (3.29) are dropped because the

second derivatives of linear functions vanish (we assume linear finite elements for the

rest of this section). Also, (3.28) and (3.29) use different forms of the advection and

diffusion operators from (3.5). Finally, the solution from the previous time step is

used to calculate the advective velocity field in (3.28) and (3.29).

Next we define the adjoint operator L∗. Rather than acting on the solution functions

uh and ph, L∗ acts on the test functions vh and qh. The components of L∗ are

L∗uuvh = ρ (−uhn−1 · ∇vh1 + g1v
h
1),

L∗upqh = −∂q
h

∂x
,

L∗puvh = −∂v
h
1

∂x
,

L∗vvvh = ρ (−uhn−1 · ∇vh2 + g2v
h
2),

L∗vpqh = −∂q
h

∂y
,

L∗pvvh = −∂v
h
2

∂y
.

(3.30)

Each element Ki ∈ Th also has the stabilization weighting terms

τv(Ki) =

(
4ν

h2
i

+
2‖uhn−1‖2

hi
+ |α|

)−1

, (3.31)

τp(Ki) = ρ
(
4ν + 2‖uhn−1‖2hi + |α|h2

i

)
. (3.32)

Recall that α is the coefficient from the BDF formula (3.24) and hi is the diameter

of element Ki.

97

Finally, the stabilization terms

∫
Ω′
τv(Ki) (ru L∗uu + rv L∗vv)vh dKi +

∫
Ω′
τp(Ki) rp (L∗pu + L∗pv)vh dKi, (3.33)

are added to (3.25) and

∫
Ω′
τv(Ki) (ru L∗up + rv L∗vp)qh dKi, (3.34)

is added to (3.26).

A separate numerical diffusion term is also used to account for discontinuity capturing.

Specifically,

∫
Ω′
q∗∇uh : ∇vh dΩ where q∗ = Cdc

√
(riu)

2 + (riv)
2 h2

i (3.35)

is added to the conservation of momentum equation (3.25), where Cdc > 0 is a con-

stant and riu and riv denote the residuals (3.28) and (3.29) on the element Ki.

The formulas for τv, τp and q∗ above are the simplest versions used in RANS2P. While

the details are omitted, Proteus has more sophisticated methods for calculating these

quantities that account for elements with wide aspect ratios. For more information

on metric based approaches to calculating the τv, τp and q∗ quantities see [55] and [80].

3.3.3 Proteus Boundary Conditions

In this section, we describe the implementation of boundary conditions in Proteus. As

discussed in Section 3.2.2, to be fully specified, the Navier-Stokes equations require

boundary conditions. In this work, we consider Dirichlet and Neumann boundary

conditions where

u = w on ∂ΩD, and (−pI + 2µ∇su) · n = h on ∂ΩN . (3.36)

98

The boundary conditions for most problems include a mixture of Dirichlet and Neu-

mann boundary conditions (e.g., ∂Ω = ∂ΩD ∪ ∂ΩN). Pure Dirichlet problems (e.g.,

∂Ω = ∂ΩD) can also occur, in which case the pressure solution is only specified up to

a constant.

First we explore how Proteus enforces Dirichlet boundary conditions strongly and

weakly. While the strong enforcement of Dirichlet boundary conditions is easier to

implement, in [15] it is shown that in the presence of unresolved boundary layers,

weakly enforced Dirichlet conditions often produce better solution approximation

properties.

After our discussion on the enforcement of Dirichlet boundary conditions, we conclude

with a discussion on the advective flux condition that appears in the conservation of

mass equation and the enforcement of the Neumann boundary condition.

In some cases, the enforcement of boundary conditions will vary depending on whether

the boundary segment represents and inflow or an outflow region. When it is neces-

sary to distinguish these regions we use

∂Ω+ = {x ∈ ∂Ω : u · n < 0}

∂Ω0 = {x ∈ ∂Ω : u · n = 0}

∂Ω− = {x ∈ ∂Ω : u · n > 0}

(3.37)

where ∂Ω+ is the inflow region, ∂Ω0 is the characteristic boundary and ∂Ω− is the

outflow region.

Strongly Enforced Dirichlet Conditions

When Dirichlet conditions are enforce strongly, it is equivalent to requiring that the

velocity approximation come from the space

Vh(Ω) = {uh | u ∈ Vh , uh = w on ∂ΩD}. (3.38)

To enforced this condition, the row corresponding to every Dirichlet boundary degree

of freedom is replaced with zeros except in the column of the unknown, which is re-

99

placed with a one. The value of the right-hand-side vector is then set to the value of

w at the point corresponding to that degree of freedom. This has the effect of setting

the degree of freedom to the value specified by the boundary condition.

As an additional note, matrix entries in the column corresponding to the Dirichlet

degree of freedom are not removed. This is because removing column values is an ex-

pensive operation for the compressed sparse row (CSR) sparse matrix representation.

Therefore, using strong Dirichlet boundary conditions can introduce non-symmetry

into the global matrix. Since the Navier–Stokes equations are not symmetric, how-

ever, this is not a concern in this context.

Weakly Enforced Dirichlet Boundary Conditions

Dirichlet Boundary Conditions

Rather than require the solution to satisfy certain boundary conditions strongly,

weakly enforced Dirichlet boundary conditions use penalty terms in the finite element

formulation (see [15] and [5] for more details). A drawback of this approach is that the

weak formulation becomes more complicated and a penalty parameter must be chosen.

However, in the case of under-resolved boundary layers it has been demonstrated that

weakly enforced boundary conditions produce more accurate solution approximations

than those from strong enforcement [15].

To enforce the Dirichlet boundary conditions weakly on the velocity, the following

boundary integral terms are added to the weak formulation (3.25)-(3.26)

∫
∂ΩD

γ(uh −w) · vh ds (3.39)

+

∫
∂ΩD∩∂Ω+

((2µ∇svh · n) + (u · n) vh) · (w − uh) ds (3.40)

+

∫
∂ΩD∩(∂Ω+)c

(2µ∇svh · n) · (w − uh) ds (3.41)

where (∂Ω+)c = ∂Ω0 ∪ ∂Ω− and γ =
Cb|2µ|
h

for a penalty constant Cb > 0. The

first equation (3.39) can be viewed as a penalty term. Indeed, along the Dirichlet

100

boundary, deviations of the solution uh away from the boundary condition w are

penalized.

Next we describe the adjoint diffusive flux term (i.e., 2µ∇sv ·n) that appears in (3.40)

and (3.41). This adjoint flux term is derived from the diffusive term that appears in

the conservation of momentum equation (3.25). Applying integration by parts gives∫
Ω

(2µ∇suh) : ∇vh dΩ =

∫
∂ΩD

w · (2µ∇vh · n) ds

+

∫
∂ΩN

uh · (2µ∇vh · n) ds−
∫

Ω

uh · (∇s · (2µ∇vh)) dΩ

(3.42)

where we have set uh = w on the Dirichlet boundary. Applying integration by parts

again, this time without substituting the Dirichlet boundary condition, gives∫
Ω

uh · (∇s · (2µ∇vh)) dΩ =

∫
∂ΩD

uh · (2µ∇vh · n) ds

+

∫
∂ΩN

uh · (2µ∇vh · n) ds−
∫

Ω

(2µ∇suh) · ∇vh dΩ.

(3.43)

Combining equations (3.42) and (3.43), we get the adjoint diffusive flux term along

the entire Dirichlet boundary

0 =

∫
∂ΩD

(w − uh) · (2µ∇vh · n) ds. (3.44)

This integral is then separated into the inflow region and the outflow / characterisitic

boundary to give the diffusion adjoint terms in (3.40) and (3.41).

The last term to consider is the advective flux term (i.e. (u · n) vh)) that appears

on the inflow boundary in equation (3.40) . As constructed, the advection term from

the conservation of momentum equation (3.25) is non-linear

∫
Ω

ρ (uh · ∇uh) · vh dΩ. (3.45)

101

The approach to linearizing the discrete Navier-Stokes equations is described in more

detail in Section 3.3.4. For our purpose, however, assume that the the first uh that

appears in (3.45) has been replaced with a known solenoidal vector field a (e.g., the

solution approximation from a previous time step). Applying integration by parts,

∫
Ω

ρ(a · ∇uh) · vh dΩ =

∫
Ω

ρ

(
a1
∂uh1
∂x

vh1 + a2
∂uh1
∂y

vh1 + a1
∂uh2
∂x

vh2 + a2
∂uh2
∂y

vh2

)
dΩ

=

∫
Ω

ρ (vh at) : ∇uh dΩ

=

∫
∂Ω

ρ (a · n) (uh · vh) dΩ−
∫

Ω

∇ · (ρ vh at) · uh dΩ.

(3.46)

Following a procedure analogous to that used for the adjoint diffusion terms, we get

the advective flux condition

0 =

∫
∂ΩD

ρ (a · n) · vh(w − uh). (3.47)

To illustrate why this advective flux penalty condition is only included along the

Dirichlet inflow boundary (3.40), suppose we are interested in solving the homogenous

advection equation

w · ∇u = 0 (3.48)

where w is a conservative vector field and u is a scalar function of several variables.

Consider a characteristic curve

c(s) =

x = x(s)

y = y(s)

for 0 ≤ s ≤ s1 (3.49)

102

associated with the vector field w (i.e.,
dc

ds
= w(c(s))). Then, using (3.48) the solution

u satisfies

d

ds
(u(c(s))) =

∂u

∂x

dx

ds
+
∂u

∂y

dy

ds
=
dc

ds
· ∇u = w · ∇u = 0. (3.50)

In other words, the solution u is constant along the characteristic curve c(s). Suppose

that c(s) begins at an inflow boundary Γin. Since the solution u is constant along

the characteristic curve, u(c(0)) = u(c(s1)), the inflow condition specifies exactly the

outflow boundary condition.

In the presence of diffusion, an outflow boundary condition can be specified that is

not consistent with the advection process. If, however, the equation is advection

dominated, the solution may exhibit strange behavior at the outflow boundary. To

avoid unnatural boundary layer solution profiles when weakly enforcing the velocity,

we only incorporate the advective terms along the inflow boundary. For additional

discussion of these issues see [40, 15].

Advective Flux Boundary Conditions

In Proteus, the first step in setting a Neumann type boundary condition is to specify

a Dirichlet boundary condition on the pressure unknown. Care must be taken to

specify this pressure condition correctly. For example, for an outflow boundary that

includes air and water, the pressure value must be consistent with the hydrostatic

pressure from gravity, as well as the varying densities of the fluid phases. Once an

appropriate value for the pressure condition is established, the boundary condition

can be enforced strongly or weakly, following analogous procedures described for the

Dirichlet velocity conditions.

Once the pressure term has been specified, a diffusive flux condition must be set to

enforce the Neumann condition

(−pI + 2µ∇su) · n = h on ∂ΩN . (3.51)

103

In other words, if one wishes to enforce the normal stress h along the boundary with

a specified pressure p∗, then the diffusive flux boundary condition must be specified

as

2µ∇uh · n = h + p∗I · n = σd. (3.52)

Free Slip vs No Slip Boundary Conditions

In addition to weak and strong enforcement of boundary conditions, we also consider

the difference between free slip and no slip. Both free slip and no slip boundary

conditions occur on the characteristic boundary (i.e. u · n = 0, recall (3.37)). In the

case of free slip, no restriction is placed on the tangential flow component. For no

slip boundary conditions, however, the tangential component is enforced to be zero

(i.e. u · t = 0).

3.3.4 Nonlinear Solver

The discrete two-phase Navier-Stokes problem at time tn was outlined in Sections 3.3

- 3.3.3. Because of the advection term, the Naiver–Stokes equations are nonlinear

and must be solved using a iterative method which we outline in this section.

Applying standard finite element techniques to (3.25), (3.26) together with the sta-

bilization terms and boundary condition terms presented in Sections 3.3.2 and 3.3.3,

results in a nonlinear system of equations F(x) = 0 at each time step tn, where

x =
(
u p

)t
. The solution to this problem, is x∗ satisfying

F(x∗) = 0, (3.53)

that can be solved using a fixed point Newton iteration.

To approximate x∗, we use the multivariate Newton’s method. Recall that Newton’s

method is a fixed point iteration, that creates a sequence {x0,x1, · · · } of approxima-

tions to the true solution x∗. Note that in Section 3.3.2, the subscript was used to

identify the time step. In this section, subscripts are used to indicate the Newton

104

iteration. If it is necessary to refer to the solution from the previous time step, we

use the notation x∗−1. Provided the initial guess x0 is sufficiently close to x∗ and F is

sufficiently regular, this sequence converges to x∗ quadratically.

Newton’s method follows from the linear approximation of the vector function F(x) =(
f1(x), f2(x), · · · , fn(x)

)t
centered at a point xk

F(x) ≈ F(xk) +DF(xk)(x− xk) (3.54)

where DF(xk) is the Jacobian matrix with entries

[DF(xk)]i,j =

[
∂fi(xk)

∂xj

]
i,j

. (3.55)

It follows that if F(xk) +DF(xk)(xk+1 − xk) = 0, then F(xk+1) ≈ 0 where

xk+1 = xk −DF(xk)
−1F(xk). (3.56)

That is, each Newton iteration generates an updated solution approximation xk+1

using the previous iterate xk and the solution update −DF(xk)
−1F(xk) = ∆xk.

The initial guess for the Newton iteration x0, comes from the solution at the previous

time step x∗−1, except for the initial time step t0 = 0 where x0 = 0. Provided the

time steps are sufficiently close together, these initial guesses will be in the Newton

solver’s radius of convergence. The Newton iteration will continue until the `2 norm

of the solution update decreases below a small threshold such as 10−6.

For most problems of interest, computing DF(xk)
−1F(xk) using a direct method to

find ∆xk is impractical. Instead, the sparse linear system DF(xk)∆x = −F(xk) is

solved using an iterative Krylov technique like GMRES. It is the process of solving

the linear system DF(xk)∆xk = −F(xk) that constitutes the majority of the work for

each Newton iteration (see Section 3.4). While the numerical values of the Jacobian

matrix change at each Newton iteration, the linear system DF(xk)∆xk = −F(xk),

105

always has the block structure

DF(xk)∆xk =

A BT

B C

∆xk = −F(xk), (3.57)

where DF(xk) is a sparse matrix.

3.4 Linear Solvers and Preconditioners

In this section, we discuss techniques to solve the large, sparse linear systems of

equations that arise from the discrete linearized Navier–Stokes equations (e.g., (3.57)).

Specifically, we explore two distinct approaches to solving linear systems - direct

LU-factorization based methods and iterative Krylov subspace methods. Assuming

exact computational arithmetic, direct methods produce exact answers but require

computationally expensive numerical algorithms. Iterative methods, in contrast, can

produce computationally efficient and reliable solution approximations, but usually

require well designed preconditioners.

Before delving into the details of different linear solver techniques, we first introduce

some important terminology. To describe linear solver performance, we often refer

to the complexity of an algorithm. Complexity describes how the computational

effort required to solve a problem grows as the problem size increases. This idea is

frequently described using O notation.

Definition 1. Let f(n) denote the number of floating point operations required to

solve a linear system and let g(n) denote a real valued function of n. We say that

f(n) = O(g(n)) as n→∞ if there exists integers n0 and M such that

|f(n)| ≤M g(n) for all n ≥ n0. (3.58)

Typically, g(n) refers to a polynomial degree. For example, LU-factorization is a

O(n3) algorithm. This means that the number of floating point operations required

to perform an LU decomposition to an n × n matrix can be bounded by a cubic

106

polynomial. Another example are large sparse linear systems, which when solved

using effectively preconditioned iterative methods, can exhibit O(n) complexity. Note

that as the problem size increases, the work required to solve a system with direct

solvers grows significantly faster than for effectively preconditioned iterative methods.

Related to the algorithmic complexity of a linear solver is scalability. Indeed, when

assessing linear solver performance, we consider two measures of scalability: (i) how a

solver performs when a computational mesh is refined, and (ii) how a solver performs

when the number of processors used to compute the solution increases.

The first notion of scalability arises when one solves the same problem to a higher level

of precision. Generating an increasingly accurate solution requires solving a larger

system of approximating equations. The change in simulation run time that results

from running the problem on an increasing refined mesh is referred to as scaling with

mesh size or scaling with h. Ideally, if the problem size doubles, then the amount of

time it takes an algorithm to finish would double.

The second notion of scalability arises when more processors are used to solve a linear

system of equations. This type of processor scaling has two flavors: strong and weak.

Strong parallel scaling refers to the change in run time when the number of processors

is increases but the problem size remains constant. Weak parallel scaling refers to the

change in run time when a problem size grows but the work per processor remains

constant. For example, if we double the number of unknowns but use twice as many

processors, it would be ideal for the amount of time needed to complete the simulation

to remain unchanged.

3.4.1 Sparse Direct Solvers

Direct solvers are a fundamental technique for solving linear systems of equations.

Indeed, direct methods are more robust numerically than Krylov iterative algorithms

[3] and thus offer a useful benchmark for comparison. Furthermore, for reasonable

problem sizes, direct methods are often faster. Direct methods are also a useful tool

for physics based preconditioners that utilize the block structure of a matrix and

require solving a series of smaller localized problems. Finally, direct solvers form the

107

basis for the development of incomplete factorization based preconditioners [67].

While important, the drawbacks of direct linear solvers for large systems of equations

are well understood. The algorithmic complexity of the standard LU factorization is

O(n3). As a result, the number of operations required to use a direct solver become

prohibitively expensive as the size of a linear system is increased. Moreover, the

LU-factorization of a sparse matrix usually generates dense matrices that require an

infeasible amount of storage. Finally, direct solver algorithms are inherently serial in

nature which makes it difficult to realize scaling advantages from distributing work

across parallel computing resources.

Significant research has been dedicated to minimizing the bottlenecks that arise from

direct solvers, particularly when the underlying matrix structure is sparse and dis-

tributed across multiple processors. When considering the linear systems that arise

from the discretization of differential equations in three-dimensional geometries with

problem size n, state-of-the-art direct methods typically require O(n2) work and

O(n
4
3) memory [31]. This n2 work requirement still becomes prohibitively expensive.

The algorithms used to solve sparse systems of equations directly are typically more

complicated than standard LU -factorization methods because fill-in must be limited

as much as possible. Most sparse, distributed direct linear solver algorithms apply

the following four steps:

1. the degrees-of-freedom are reordered into a structure that minimizes fill-in, or to

arrange the system of unknowns in a more convenient manner, such as triangular

dependent structure;

2. the nonzero structure of the factorization is established and the relevant data

structures are initialized;

3. the LU factorization is computed;

4. the LU factorization is then used to calculate the solution.

Each step in the direct linear solver algorithm is very involved. Rather than provide

an overview of the steps here, we refer the reader to [36] and the extensive references

108

cited therein. A number of excellent software packages are designed to develop and

implement state-of-the-art sparse matrix solvers that have parallel implementations

(see [2, 65]). In this work, we use the direct sparse matrix solver SuperLU Dist.

3.4.2 Krylov Solvers

The algorithmic complexity, memory limitations and serial nature of direct solvers

limit their effectiveness in solving the large nonsymmetric sparse linear systems of

equations that occur in large scale fluid problems. Thus, our goal is to improve

performance using the iterative preconditioned GMRES method. In this section, we

provide a brief survey of the preconditioned GMRES and flexible GMRES algorithms

used in our work. Further details can be found in [78].

The k-th Krylov space of the linear system Ax = b is defined as

Kk(A, r0) := span{r0,Ar0, · · · ,Ak−1r0} (3.59)

where r0 = b−Ax0 for some initial guess x0. To create a numerically stable space with

nice algebraic properties, the Arnoldi algorithm is used to construct an orthonormal

basis Vk = [v1, · · · ,vk] of Kk(A, r0). Typically, a modified Gram-Schmidt orthogo-

nalization [87] is used to improve the stability of this orthogonalization step.

Starting with an initial guess x0 and the corresponding residual r0 = b − Ax0, the

k-th step of the GMRES iteration identifies the vector xk in the space Kk(A, r0) that

minimizes the residual rk = b − Axk. If the residual norm ‖rk‖2 is not sufficiently

small, the process is repeated with the enlarged Krylov space Kk+1(A, r0) until a

desired residual tolerance is reached.

GMRES Complexity

At each GMRES iteration, a new orthonormal basis vector is added to the previous

Krylov space. This requires saving all previous Krylov vectors and performing a

Gram-Schmidt orthogonalization across a growing set of vectors. Thus, the GMRES

algorithm will only scale if the number of GMRES iterations remains constant as the

109

size of the approximating linear system increases.

Unfortunately, in most cases, as the size of the approximating linear system increases

(i.e., the mesh is refined), the spectrum and condition number of A increase. This

negatively impacts the GMRES performance which generally works best when the

eigenvalues of A are clustered and bounded away from 0 [40]. Thus, applying GMRES

directly rarely produces useful results, motivating the need for preconditioning.

Preconditioners can be applied to the GMRES algorithm from the right or left side

(there is also a split variant that we do not consider here). In left preconditioning, the

preconditioner P is applied from the left side of the equation, creating the equivalent

system

P−1Ax = P−1b. (3.60)

to which the GMRES algorithm is then applied.

Right preconditioning, meanwhile, is applied to the vector of unknowns x and has

the algebraic form

AP−1u = b where Px = u. (3.61)

Note that it is not necessary to compute Px directly. Indeed, the initial residual

can be computed using the initial approximation x0 (e.g., r0 = b − Ax0 = b −

AP−1u0). Moreover, during the GMRES iteration, the Krylov basis is constructed

from preconditioned residual vectors. That is,

Kk := span{r0,AP−1r0, · · · , (AP−1)k−1r0}. (3.62)

Thus, once the algorithm is complete, it returns the minimum vector u. To obtain

the true the solution approximation x we simply apply P−1 one more time (e.g.,

x = P−1u).

For two reasons we only consider right preconditioning in this work. First, right

preconditioning is easily adapted to the flexible GMRES algorithm. This offers a big

110

advantage when building a block preconditioner that uses nest Krylov solves as part

of a global scheme. Second, right preconditioned GMRES minimizes over the true

residual vector while left preconditioned GMRES minimizes over the preconditioned

residual vector. As a result, right preconditioning allows for the direct comparison of

residual performance across different preconditioners.

3.4.3 Algebraic Multigrid

Multigrid Basics

Since the 1980s, multigrid methods have been a fundamental tool for solving the

linear systems of equations that occur when differential equations are discretized [85].

Multigrid methods can be used as stand alone solvers for linear systems of equations,

or as effective preconditioners for iterative Kryolv subspace methods such as GMRES.

Another common use of multigrid methods is to approximate solutions to the various

subproblems that emerge from the block Schur complement preconditioner outlined

in Section 3.4.4 [1].

Multigrid methods can be divided into two classes - geometric and algebraic methods.

As the name suggests, geometric multigrid (GMG) methods are developed from the

physical geometry (e.g., mesh) of the problem. In contrast, algebraic multigrid (AMG)

methods only use information from the linear system of equations to develop a solver.

As a result of their algebraic nature, AMG methods can be applied to problems defined

on unstructured meshes. As unstructured meshes are used in many applications of

interest, we focus on AMG methods.

The literature on multigrid methods is extensive and growing, so we do not attempt

to provide a complete summary of these methods. Rather, the reader can refer to

[93, 84, 85] and the extensive reference listed therein. In this section, we instead

aim to provide a brief summary and mention some specific issues related to parallel

implementation that relate to our current work.

Consider the linear system Ax = b, and a solution approximation xk. The residual

111

of this system is given by

rk = b− Axk. (3.63)

It has been observed that running a relaxation method like Jacobi or Gauss-Seidel

will quickly smooth (i.e., force to zero) the high-frequency error of the residual vector

rk, while removing the low frequency errors very slowly. The idea of multigrid meth-

ods is to move the residuals to a coarser mesh where the low-frequency errors become

high-frequency errors relative to the coarser mesh and can be smoothed further. This

process continues until a coarse enough mesh is reached that the linear system can

be solved quickly with a direct method. The solution is then propagated back up the

mesh hierarchy to form a solution on the original mesh.

There are many steps involved in this process. First, one must decide what type of

smoother to apply. One must then specify the coarser meshes and define operators

that can restrict the problem to the coarser meshes and interpolate these results back

to the refined meshes. These steps can be broken into four main components: coars-

ening operators, interpolation operators, restriction operators and smoothers. We

take a moment to highlight some key features of each of these ingredients relevant to

our work.

Relaxation or smoothing step - the first step of the multigrid method is to

smooth or relax the solution to dampen the high frequency part of the error, mak-

ing it easier to approximate on a coarser mesh. A foundational result in multigrid

convergence analysis shows that in order for a multigrid method to be effective, the

smoothing operation must be selected in way that is consistent with the interpolation

operator [85]. For GMG methods, the geometric nature of the coarsening typically

defines the form of the interpolation operator. Thus, for difficult problems, a great

deal of effort is needed to develop effective smoothers. For AMG methods, however,

a simple smoothing operator is often used, while considerable effort is spent building

an effective coarsening and interpolation strategy. Therefore, AMG methods often

employ basic algorithms like a single pass of a Jacobi or Gauss-Seidel iteration. The

112

Gauss-Seidel approach, however, has the downside that the smoothing operation is

inherently serial. Some parallel algorithms like hybrid and polynomial smoothers

have been developed and shown promise as scalable smoothers [94, 12]. The default

smoother option in the AMG library hypre [47] is a hybrid Gauss-Seidel smoother.

Coarsening operator - a major challenge for AMG methods is choosing an ef-

fective coarsening method. In this setting it is convenient to think of the coefficient

matrix as describing a graph with the non-zero entries denoting the non-zero entires

denoting weighted edges between nodes. Indeed, coarsening algorithms must select

nodes that will reduce the problem size while also allowing the construction of an

effective interpolator. Most coarsening algorithms consider strongly connected nodes,

where one says i strong depends on j or j strongly influences i if

|aij| ≥ αmax
k 6=i
|aik|

for some 0 < α < 1. Notably, the larger the α, the stronger the implied connection

between two nodes.

Nodes that strongly influence a number of other points can then be selected as po-

tential candidates to preserve on the coarser mesh. To further restrict the space

of coarsening nodes, several heuristics are used (see [94]) to ensure these nodes will

in turn have good interpolation properties while not including too many nodes for

coarsening. Perhaps the most common of these approaches is the Ruge-Struben (RS)

coarsening method.

While this general approach has proven effective, the algorithms are serial in nature

and are of limited use for 3D problems. To address this, the PMIS and HMIS parallel

algorithms have been proposed and shown to produce reasonably scalable results [38].

One downside of these methods, however, is that they generally do not ensure that

the coarse mesh will support an effective interpolant.

Even though PMIS and HMIS methods can effectively reduce complexity, for many

3D problems, aggressive coarsening algorithms may be needed to maintain efficiency

[84]. The concept underlying these methods is to weaken the definition of strongly

113

connected nodes. Naturally, this additional reduction in complexity typically causes

the AMG solver to be less effective.

Restriction operators - once the solution approximation has been smoothed, the

residual must be transfered to a coarser mesh. These restriction operators typically

use a weighted average of values on the finer mesh to approximate values on the

coarser mesh. At this point, the discrete differential operator must also be transfered

to the coarse mesh.

Interpolation or Prolongation operators - once a solution update has been

computed on a coarse mesh, it must be be interpolated back to the fine mesh using

the solution values from the coarse grid nodes. The most effective interpolating strat-

egy will then depend on the coarsening strategy used. For serial coarsening strategies

like the RS method, every fine grid point will be strongly connected with one of the

nodes on the coarse mesh. Therefore a distance one interpolating strategy such as

classical interpolation (or direct) is an appropriate choice [37].

For the parallel coarsening strategies like PMIS and HMIS or aggressive coarsening

strategies, many nodes on the fine mesh will not strongly depend on a coarsen grid

point. In this case, the interpolator will need to find a strongly connected point

through an intermediary point. A class of algorithms known as long-range inter-

polation strategies have been designed for this purpose and includes methods like

multipass interpolation, extended interpolation and extended-i interpolation [37].

When analyzing the effectiveness of a multigrid method, it is helpful to decompose

the process into two stages: the setup stage and the solve stage. In the setup stage,

the mesh coarsening is performed, and then the coarse matrices, interpolation and

restriction operators are built. Here we need to consider two sources of complexity -

operation complexity (the amount of memory needed to store the coarse information

relative to the refined matrix) and stencil size (number of degrees of freedom per row

in coarse matrices).

Once the setup phase has been completed, the multigrid method follows a sequence

of recursive coarse grid corrections. Once the coarsest mesh has been reached, an

LU decomposition is used to calculate the solution and the method then propagates

114

the solution back to the finest mesh. As such, multigrid methods require making

a trade-off between setup time and solution time. Typically, the more effort ones

spends setting up the coarse mesh and its components the faster and more effective

the solve phase will be.

In this study, we use the PETSc [13] wrapper for the external hypre [47] for all AMG

calculations.

3.4.4 Preconditioning Strategy 2: Block Schur Complement

Preconditioners

The linear systems of equations that arise in dynamic free-surface models for the two-

phase Navier-Stokes equations have a saddle point structure (see Section 3.3.4). Block

Schur complement preconditioners [40] are one popular strategy for preconditioning

saddle point systems. To illustrate, consider a block LU factorization of the saddle

point matrix F,

F =

A BT

B C

 =

 I 0

BA−1 I

A BT

0 −S

 = L U (3.64)

where S = BA−1BT − C.

Equation (3.64) implies that F U−1 = L. Since L is a triangular matrix with ones

along the diagonal, it has a single eigenvalue of one. This suggests that U maybe be

a powerful preconditioner. Indeed, in [81] it is shown that GMRES converges in two

iterations when

U−1 =

A−1 A−1BTS−1

0 −S−1

 (3.65)

is used as a right preconditioner.

In practice, directly applying U−1 is not feasible because it requires knowledge of

the dense matrices A−1 and S−1. Instead, block Schur complement preconditioners

115

approximate U−1 via

P−1 =

Â−1 Â−1BT Ŝ−1

0 −Ŝ−1

 (3.66)

where Â−1 and Ŝ−1 approximate the action of A−1 and S−1 respectively. In the rest

of this section, we describe several different approaches to approximating A and S.

Figure 3-1 outlines the work flow required to apply (3.66).

3.4.5 Approximating A

The quality of the approximation of the operator Â−1 has an important bearing on

the quality of the preconditioner P−1. A great deal of research on developing effective

saddle point preconditioners focus on the more challenging Ŝ−1 problem. However,

for large problems, a reliable scalable approximation to A−1 is equally important.

There are a number of ways one can approximate the action of A−1 including a dis-

tributed direct solver, the classical additive Schwarz method or a multigrid based

approach. While each method has inherent advantages, the need to approximate A

frequently and quickly for large problems suggests the multigrid approach offers the

Navier–Stokes Schur Complement Right Preconditioner Overview

Right preconditioned GMRES and FGMRES requires computing the preconditioned
quantities (vPu , v

P
p) from the vector (vu, vp). This requires computing

P−1

(
vu

vp

)
=

(
Â−1 Â−1BT Ŝ−1

0 −Ŝ−1

)(
vu

vp

)
=

(
vPu

vPp

)
. (3.67)

The procedure for finding vPu and vPp requires three steps.

First, Apply Ŝ−1vp = −vPp .

Second, Apply Â−1vu = u1 and −Â−1BTvPp = u2.

Third, Add u1 + u2 = vPu .

Figure 3-1: Navier–Stokes Schur Complement Preconditioner Workflow

116

best choice.

The first option we considered was a distributed sparse direct solver (e.g. SuperLU DIST

[64] or MUMPS [2]) that applies A−1 exactly. By utilizing a sparse matrix structure

and distributing work across multiple processors, this method is capable of achieving

some parallel speed up. That said, the serial nature of direct solvers does limit the

capacity for speed up. Furthermore, since the work involved with direct solvers grows

cubicly with the number of unknowns, distributed sparse direct solvers cannot achieve

scaling with the mesh size. Thus, while providing a simple and reliable option for

small problems, the effectiveness of this approach is limited for large scale simulations.

Approximating A−1 in a scalable way requires using an iterative method. Regardless

of the iterative method used, to achieve scaling with respect to mesh size, an effective

preconditioner for A is necessary. Without an effective preconditioner, the iterative

method will become less effective as the mesh is refined. It is also important that the

preconditioner is scalable across multiple processors. To satisfy these requirements,

we used a multigrid preconditioner.

A naive approach is to use an algebraic multigrid preconditioner directly on the entire

system A. As we shall see in the examples presented, however, this method typically

does not scale well for advective dominated problems. Instead, the block structure of

A can be used to develop a more effective preconditioner. Arranging the degrees of

freedom of A in terms of velocity component (e.g., in two dimensions u and v) gives

the block matrix

A =

Auu Auv

Avu Avv

 . (3.68)

Since the off diagonal blocks are a result of the symmetric gradient term, for advection

dominated flows, the main features of the system is preserved even after these blocks

are removed. Thus, the block diagonal matrix

Â−1 =

A−1
uu 0

0 A−1
vv

 (3.69)

117

should serve as a quality preconditioner. Again, instead of applying the exact oper-

ators A−1
uu and A−1

vv , which would require a complete LU factorization, we consider

approximating the actions of A−1
uu and A−1

vv using iterative methods. In the context of

a GMRES iteration, applying this preconditioner requires solving the sub-problems

Auuû = u and Avvv̂ = v. (3.70)

To limit the work required to solve the entire system, the solutions to these local

problems are approximated quickly with a fixed number of multigrid steps. Since

these local problems have less global coupling, the goal is to achieve better scaling

results than from applying the AMG method to the global system directly.

3.4.6 Approximating Ŝ

Recall that Ŝ−1 is intended to approximate the action of the dense matrix S−1 =

(BA−1BT −C)−1. Finding an effective approximation for S arising in Navier–Stokes

equations is a difficult problem and has been extensively researched. The two-phase

nature of the Navier–Stokes equations further complicates matters. In this section, we

consider two methods that are appropriate for approximating the two-phase Schur

complement S−1: a two-phase version of the pressure convection-diffusion (PCD)

operator [40], and the SIMPLE approximation [88].

ŜPCD: The Pressure Convection Diffusion (PCD) Approximation

In this section, we present a two-phase pressure convection diffusion approximation

(PCD) for the Schur complement, ŜPCD. We begin with some notation and introduce

a brief derivation of the well known single-phase operator. Following this discussion,

we discuss how the single-phase PCD approximation can be extended to a variable

density–viscosity setting.

118

Discrete Operators

Since the PCD operator is an approximation of the Schur complement operator S, it

acts on the pressure space of the Navier–Stokes finite element formulation. As such,

it is necessary to define several new finite element operators that act on the pressure

space. If {ψi}npi=1 denotes a basis for the discrete pressure space, then discrete mass,

Laplace and advection operators for the pressure can be defined as

Q
(γ)
p;i,j =

∫
Ω

γ ψi ψj, A
(γ)
p;i,j =

∫
Ω

γ ∇ψi · ∇ψj, N
(γ)
p;i,j =

∫
Ω

γ (w · ∇ψj) · ψi (3.71)

where w is a velocity field and γ is a scalar function. Combining these terms, we can

also define a discrete pressure advection-diffusion-reaction operator

F
(ρ,µ)
p;i,j =

α

∆t
Q

(ρ)
p;i,j + A

(µ)
p;i,j +N

(ρ)
p;i,j. (3.72)

Forms of operators in (3.71) and (3.72) appear in both the single-phase and variable

density-viscosity cases. To distinguish between these two settings, omitted subscripts

will denote single-phase flow, while including the superscript γ and ρ will indicate the

variable density-viscosity setting.

The Commutator

One way of deriving the PCD operator is to assume that, in some sense, the advection-

diffusion-reaction operators defined on the Navier–Stokes pressure and velocity spaces

are commutative [40]. While this approach is heuristic, it does illustrates why the

PCD operator provides a reasonable approximation to the Schur complement. For

a rigorous derivation of the PCD approximation using Fourier analysis and Green’s

tensors see [57].

To motivate the connection between commuting differential operators and the Schur

complement, recall that the Schur complement (stated here without stabilization)

119

matrix has the form

S = BA−1BT (3.73)

where BT : Mh → Vh, A−1 : Vh → Vh, and B : Vh → Mh. This highlights that

the operator S maps pressure functions into the velocity space, applies an inverse

discrete advection-diffusion-reaction operator and maps the result back to the discrete

pressure space. Thus, one interpretation of S is an inverse advection-diffusion-reaction

operator applied to pressure functions.

Therefore, consider the continuous convection-diffusion operator L defined on the

velocity space and assume an analogous operator Lp exists on the pressure space.

That is, for a viscosity µ and a velocity field w,

L := −µ∇2 + w · ∇+
α

∆t
and Lp := (−µ∇2 + w · ∇+

α

∆t
)p (3.74)

where α = 0 for steady-state problems and α = 1 for time dependent problems. Note

that since the pressure space is often only L2(Ω), the operator Lp may not be well

defined, but as the argument is heuristic in nature, the point is safely ignored.

Using L, Lp and the divergence operator B, we define a commutator E acting on the

velocity space

E = BL − LpB. (3.75)

Assuming that E is small in some sense, (e.g. BL − LpB ≈ 0, implying that the

action of advection-diffusion operators on the velocity and pressure space are similar)

it follows that BL ≈ LpB.

To use this approximate relationship between the continuous pressure and velocity

spaces, we must identify discrete analogues for the continuous operators B, L and Lp.

As discussed in [40], the matrix representations of the these operators are

L ∼ Q−1A, B ∼ Q−1
p B and Lp ∼ Q−1

p Fp (3.76)

120

where Q represents the velocity mass matrix, A and B come from (3.64) and Qp and

Fp are defined in (3.71)-(3.72). For further details, see Appendix B.

Therefore, provided our commuting assumption holds, BL ≈ LpB can be represented

in matrix form as

(Q−1
p B)(Q−1A) ≈ (Q−1

p Fp)(Q
−1
p B). (3.77)

Right multiplying (3.77) by A−1BT and left multiplying by Qp(Q
−1
p Fp)

−1 yields

QpF
−1
p BQ−1BT ≈ BA−1BT . (3.78)

Rearranging suggests that

S−1 = (BA−1BT)−1 ≈ (Qp F
−1
p BQ−1BT)−1 = (BQ−1BT)−1Fp Q

−1
p . (3.79)

While S takes the form BA−1BT in (3.79), this approximation for the Schur comple-

ment is also valid for stabilized finite element pairs in which C 6= 0 [40].

Single-Phase PCD Operator

In the single-phase setting, where the density ρ (for ease of exposition, let ρ = 1) and

viscosity µ are constant functions in space, (3.79) becomes

Ŝ−1
PCD = (BQ−1BT)−1Fp Q

−1
p (3.80)

where Ap, Fp and Qp are described in (3.71) and (3.72) (see [40]). From a prac-

tical perspective, (3.80) can be applied in a straight forward manner except for

the (BQ−1BT)−1 term. To construct (BQ−1BT)−1, one needs to compute Q−1 (a

dense matrix) and perform an expensive matrix-matrix product. To avoid this,

(BQ−1BT)−1 can be replaced with the spectrally equivalent, sparse pressure Laplace

121

operator Ap [40] so that

Ŝ−1
PCD = A−1

p FpQ
−1
p . (3.81)

Two-Phase PCD Operator

In the discrete two-phase setting, the density ρ and viscosity µ are non-constant

piecewise continuous functions. As a result, it is not clear that the Laplace and

mass operators that appear in the PCD operator (3.81) are correctly scaled for linear

systems that arise from the variable density-viscosity problem. Indeed, the Fourier

analysis used to derive the single-phase PCD operator in [57] is not valid in the two-

phase setting because of the non-constant viscosity and density terms. Therefore, to

establish effective scaling parameters for the two-phase PCD operator, it is helpful to

view the two-phase NSE as a generalization of the two-phase Stokes problem.

To begin, consider that the inverse viscosity scaled mass matrix (Q
(1/µ)
p)−1 is an effec-

tive Schur complement preconditioner for the steady-state variable-viscosity Stokes

problem [74]. Based on this, it seems reasonable to replace Q−1
p with (Q

(1/µ)
p)−1 in

(3.81) to establish a steady-state (e.g. α = 0) version of the two-phase PCD operator

Ŝ−1
PCD = A−1

p F (ρ,µ)
p (Q(1/µ))−1 = A−1

p (A(µ)
p +N (ρ)

p)(Q(1/µ))−1

= A−1
p A(µ)

p (Q(1/µ))−1 + A−1
p N (ρ)

p (Q(1/µ))−1.
(3.82)

However, observe that in the case of a Stokes flow where N
(ρ)
p = 0, (3.82) becomes

A−1
p A

(µ)
p (Q(1/µ))−1 6= (Q(1/µ))−1 as suggested in [74]. Therefore, it is natural to replace

Ap in (3.82) with A
(µ)
p so that

Ŝ−1
PCD = (A(µ)

p)−1F (ρ,µ)
p (Q(1/µ))−1. (3.83)

While (3.83) represents a generalization of an established Stokes preconditioner, nu-

merical results reveal that (3.83) does not scale effectively for general Navier–Stokes

problems [25].

Therefore, to improve the scaling performance, we instead consider a Schur comple-

122

ment preconditioner designed specifically for the time-dependent Stokes problem (see

[73])

Ŝ−1 =
1

∆t
(A(1/ρ)

p)−1 + (Q(1/µ)
p)−1. (3.84)

This operator can be viewed as a generalization of the Cahouet-Chabard precon-

ditioner developed specifically for the single-phase, time-dependent Stokes problem

[30, 25]. A notable feature of this operator is the inverse density term that appears

in the Laplace operator. To understand where this term comes from, note that in the

original Cahouet-Charbard preconditioner, the density appears in the time dependent

term as
ρ

∆t
A−1
p =

1

∆t
(1
ρ
Ap)

−1. Since the density is no longer constant, it is necessary

to include the density function with the integral equations that form Ap.

To develop a two-phase PCD approximation that is a NSE generalization of (3.84),

one must account for the different scaling terms that appear in the convection-

diffusion operator F
(ρ,µ)
p [25]. Specifically, consider decomposing F (ρ,µ) into terms

that are viscosity scaled, F
(µ)
1 , and terms that are density scaled, F

(ρ)
2 . That is,

F (ρ,µ)
p = A(µ)

p + (N (ρ)
p +

α

∆t
Q(ρ)) = F

(µ)
1 + F

(ρ)
2 . (3.85)

Using this representation, the scaling of the terms (A
(γ)
p)−1 and (Q(γ))−1 can be se-

lected to match either F
(µ)
1 or F

(ρ)
2 . Thus,

Ŝ−1
p =

(
A(µ)
p

)−1
F (µ)
p

(
Q(1

µ
)
)−1

+

(
A

(1
ρ

)
p

)−1

F (ρ)
p

(
Q(ρ)

)−1

=
(
Q(1

µ
)
)−1

+

(
A

(1
ρ

)
p

)−1 (
N (ρ)
p +

α

∆t
Q(ρ)

) (
Q(ρ)

)−1

(3.86)

since F
(µ)
1 = A

(µ)
p . Note that when Np = 0, (3.86) assumes the same form as the

generalized Cahouet-Chabard preconditioner (3.84). Furthermore, as described in

[25], numerical results illustrate that this form of the two-phase PCD approximation

performs well in scaling experiments, suggesting that the method accurately captures

the variable density and viscosity features of the flow.

123

In practice, taking ρ = 1 for F
(ρ)
2 and Q(ρ) so that

Ŝ−1
p =

(
Q(1

µ
)
)−1

+

(
A

(1
ρ

)
p

)−1 (
N (1)
p +

α

∆t
Q(1)

) (
Q(1)

)−1
(3.87)

produces results that are more stable than (3.86).

SIMPLE

The SIMPLE preconditioner [88] has the form

Ŝ−1
p = (−C +B (diag(A))−1 BT)−1, (3.88)

where C,B,BT and A are as given in (3.64).

If we suppose C = 0, then Ŝp acts as a pressure Laplacian operator for small ∆t. To

see why, recall that A =
1

∆t
Q+A+N where Q is the discrete mass operator, A is the

discrete velocity Laplace operator and N is the discrete advection operator. Indeed,

for sufficiently small ∆t, Q is the dominant term in A. Since BT and B represent

the discrete gradient and divergence operators,

B (diag(A))−1 BT ∼ ∇ ·
(
I

∆t

)
∇ =

1

∆t
∆. (3.89)

The SIMPLE preconditioner offers several advantages over the PCD operator. First,

since it’s components are drawn directly from the original linear system, it does

not require special treatment between the single and two phase settings. Moreover,

stabilization and boundary conditions are automatically incorporated into the pre-

conditioner’s construction.

The SIMPLE precondition, however, has several important drawbacks. First, much

of the information related to the flow’s advective component is lost when every-

thing but the diagonal component is dropped from A. Furthermore, calculating

B(diag(A))−1BT explicitly becomes prohibitively expensive for large scale problems.

124

3.5 Numerical Results

3.5.1 Introduction

In this section, we analyze preconditioner performance for several numeric simula-

tions. In the first set of experiments, we consider the two-dimensional steady-state,

lid driven cavity and backward facing step problems [40] modified to replicate a two-

phase flow problem. These test problems are used to analyze the performance of the

SIMPLE and two-phase PCD preconditioners. Specifically, these experiments allow

us to verify our Schur complement approximations are implemented correctly and to

assess the effects of stabilization, time-stepping, and boundary condition configura-

tions.

In the second set of experiments, we consider two dynamic free-surface models. The

first simulation is a two-dimensional dambreak problem. In this simulation, we com-

pare the efficiency of the two-phase PCD and SIMPLE preconditioners in a dynamic

setting while keeping simple boundary conditions and stabilization. The second sim-

ulation is the Marin problem, a three-dimensional model that must be run using

high-performance computing resources. In this problem, we explore the effective-

ness of different preconditioning strategies to scale across thousands of computational

cores.

3.5.2 Static Preconditioner Analysis

In this section, we analyze serial preconditioner performance for several static test

problems. Specifically, we are interested in studying the GMRES iteration scaling

behavior of the two-phase PCD Schur complement approximation (see Section 3.4.6)

and the Â−1 approximation (see Section 3.4.5). For our analysis, we consider modified

versions of two benchmark simulations that appear frequently in the Navier-Stokes

literature - the lid driven cavity and the backward facing step problems [40].

125

Lid Driven Cavity

The lid driven cavity is a standard benchmark problem that appears throughout

the Navier-Stokes literature [40]. This simulation allows us to study preconditioner

performance independent of the effects of inflow and outflow boundary conditions.

Moreover, since the problem has pure Dirichlet conditions, the lid driven cavity prob-

lem also allows us to study preconditioner performance when a constant pressure null

space exists.

The simulation domain is a closed two-dimensional tank spanning [−1, 1] × [−1, 1].

The bottom and side boundaries of the tank enforce no-flow boundary conditions.

Flow within the tank is generated by applying the Dirichlet velocity condition

u =

1− x2

0


across the top of the tank.

To mimic a two-phase flow, we artificially create a phase change along the interface

x2 + y2 =
1

4
. (3.90)

The ratio of the density
ρ1

ρ2

, is taken to be 1.2 × 10−3 and for the viscosity
µ1

µ2

is

1.8×10−2, which reflects the ratios between air and water. Graphics of the lid driven

cavity simulation for different Reynolds numbers are shown in Figure 3-2.

Step Problem

Another popular benchmark problem for the Navier-Stokes equation is the step prob-

lem which is a modified channel flow in which the domain has a distinct L-shape [40].

As shown in Figure 3-2, the channel spans the x-values [−1, 5], and doubles in width

at x = 0. This simulation is a useful benchmark since it allows us to study precondi-

tioner performance in the presence of inflow and outflow boundary conditions.

126

(a) Re = 10 (b) Re = 100

(c) Re = 10 (d) Re = 100

Figure 3-2: Two-phase lid driven cavity and step problems

To initiate a left to right flow, the Dirichlet boundary condition

u =

4y(1− y)

0

 (3.91)

is specified for the velocity at the inflow boundary x = −1.

As with the lid driven cavity problem, we modify the single-phase step problem in a

nonphysical way to mimic a two-phase problem. Specifically, the top part of the tank

is set to be air and the bottom part of the tank water where the curve

y =
1

2
− 1

72
(x+ 1)2 (3.92)

127

defines the boundary between the two-phases. Examples of the two-phase problem

for Reynolds number 10 and 100 are shown in Figure 3-2.

Schur Complement Analysis

In this section we analyze the convergence behavior of the two-phase PCD Schur

complement approximation (see Section 3.4.6) for the cavity and step problems. In

particular, we assess steady state scaling performance in terms of GMRES iterations

for different boundary conditions and pressure stabilizations. In addition, we compare

the two-phase PCD Schur complement method to the SIMPLE method (see Section

3.4.6). While the two-phase PCD method should significantly outperform the SIM-

PLE method in the steady state case, we assess how competitive the SIMPLE method

becomes when short time steps are used.

To keep our analysis focused on the Schur complement approximation, we use a di-

rect solver for the A-block and apply the action of the two-phase pressure Laplacian

operator that appears in the two-phase PCD operator using a single BoomerAMG

V-cycle with default settings. Further, the GMRES iteration is performed using a

right preconditioner with a relative residual tolerance of 10−6.

Boundary Conditions

The GMRES iteration counts for the two-phase cavity and step problems with differ-

ent boundary conditions and Reynolds numbers are shown in Table 3.1 and Tables

3.2-3.3, respectively. For a description of the different boundary conditions described

in the Tables, the reader is referred to Section 3.3.3.

These results show that for strongly enforced boundary conditions, the two-phase

PCD preconditioner scales independently of mesh size. Indeed, Table 3.1 report a

constant number of GMRES iterations as the mesh is refined whether using free slip

or no slip boundary conditions. This is a promising indication that the boundary

modifications outlined in Section 3.4.6 are adequately capturing the boundary condi-

tion dynamics.

The results using weakly enforced boundary conditions are not so promising. As high-

128

Reynolds Number = 10 Reynolds Number = 100
h No Slip Free Slip No Slip Free Slip

0.4 25 / 26 (5) 23 / 24 (5) 29 / 31 (10) 28 / 29 (11)
0.2 27 / 29 (4) 24 / 26 (4) 30 / 33 (7) 31 / 33 (11)
0.1 26 / 28 (4) 23 / 25 (4) 29 / 33 (6) 30 / 32 (10)
0.05 26 / 28 (4) 22 / 24 (4) 29 / 33 (6) 30 / 33 (7)
0.025 25 / 27 (4) 22 / 24 (4) 29 / 33 (6) 30 / 33 (6)
0.0125 26 / 28 (4) 22 / 25 (4) 30 / 33 (6) 29 / 34 (5)
0.00625 24 / 27 (3) 22 / 24 (4) 30 / 33 (6) 28 / 33 (4)

Table 3.1: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 strongly enforced boundary condition
solution to the steady two-phase lid driven cavity problem with varying mesh size h.

Strongly Enforced Weakly Enforced
h No Slip Free Slip No Slip Free Slip

0.4 31 / 31 (4) 25 / 25 (4) 30 / 31 (4) 36 / 37 (4)
0.2 31 / 32 (4) 23 / 23 (4) 31 / 33 (4) 46 / 48 (4)
0.1 32 / 33 (4) 24 / 25 (4) 32 / 34 (4) 60 / 63 (4)
0.05 32 / 33 (4) 24 / 25 (4) 32 / 36 (4) 79 / 84 (4)
0.025 32 / 34 (4) 23 / 25 (4) 32 / 35 (4) 98 / 105 (4)
0.0125 32 / 35 (4) 24 / 26 (4) 32 / 35 (4) 124 / 135 (4)

Table 3.2: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 solution to the backward facing step
problem with Re = 10 and varying mesh size h.

lighted in Tables 3.2 and 3.3, the two-phase PCD preconditioner does not demonstrate

mesh independent scaling when using weakly enforced free slip boundary conditions

with inflow and outflow boundary conditions. This suggests that the adjustment for

inflow and outflow boundary conditions considered in Section 3.4.6 is failing to ac-

count for the boundary integrals outlined in equations (3.39), (3.40) and (3.41).

A few other trends emerge from Tables 3.1-3.3 that merit comment. As expected,

more GMRES iterations are required to achieve convergence when the Reynolds num-

ber is increased from 10 to 100. It is also worth noting that the number of GMRES

iterations are typically lower for free-slip boundary conditions than no-slip. This is

not too surprising given that the free-slip boundary conditions enforce less stringent

requirements on the solution.

129

Strongly Enforced Weakly Enforced
h No Slip Free Slip No Slip Free Slip

0.4 41 / 44 (6) 38 / 41 (6) 44 / 51 (5) 58 / 66 (6)
0.2 45 / 51 (6) 36 / 42 (6) 49 / 55 (6) 63 / 72 (6)
0.1 44 / 51 (6) 36 / 43 (6) 49 / 56 (6) 76 / 83 (6)
0.05 40 / 45 (6) 34 / 40 (6) 45 / 50 (6) 96 / 105 (6)
0.025 38 / 43 (6) 32 / 38 (6) 42 / 47 (6) 123 / 138 (6)
0.0125 38 / 42 (6) 32 / 38 (6) 42 / 46 (6) 159 / 179 (6)

Table 3.3: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 solution to the backward facing step
problem with Re = 100 and varying mesh size h.

Stabilization

Next we explore the effects of stabilization on the two-phase PCD preconditioner. For

problems of interest, we use the full Proteus subgrid error (SGE) stabilization outlined

in Section 3.3.2. To identify potential issues in the application problems, however,

it is useful to see how the stabilization method affects preconditioner performance.

Ideally, we would like to compare the SGE stabilization with a non-stabilized method.

However, since the full SGE approach stabilizes for the advective and pressure terms

simultaneously, and we are using P1 − P1 finite elements, a pressure stabilization

method is needed. Thus, as a basis for comparison, we consider the parameter free

pressure projection stabilization method described by Bochev et al. in [22].

GMRES iterations for the two stabilization methods in the lid-cavity and step problem

are shown in Tables 3.4 and 3.5, respectively. These results are encouraging and

suggest that for both problems, the GMRES iterations are scaling independent of

the mesh size for both stabilization techniques. It should be noted, however, that

the pressure projection approach does result in fewer iterations than the full SGE

approach. Furthermore, it is interesting that this difference in the number of iterations

is significantly larger for the step problem than the cavity problem.

Comparison with SIMPLE

To gauge the effectiveness of the two-phase PCD Schur complement approximation, it

is helpful to compare its performance with another method. While research has been

130

Reynolds Number = 10 Reynolds Number = 100
h Pressure Projection Full SGE Pressure Projection Full SGE

0.4 25 / 26 (5) 25 / 26 (5) 25 / 27 (5) 29 / 31 (10)
0.2 24 / 26 (3) 27 / 29 (4) 27 / 28 (5) 29 / 33 (7)
0.1 24 / 26 (3) 26 / 28 (4) 28 / 30 (6) 29 / 33 (6)
0.05 24 / 26 (4) 26 / 28 (4) 29 / 31 (6) 29 / 33 (6)
0.025 24 / 26 (4) 25 / 27 (4) 29 / 31 (6) 29 / 33 (6)
0.0125 22 / 25 (3) 26 / 28 (4) 28 / 31 (6) 30 / 33 (6)
0.00625 22 / 25 (3) 26 / 28 (4) 28 / 31 (6) 30 / 33 (6)

Table 3.4: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 strongly enforced boundary condition
solution to the steady two-phase lid driven cavity problem with varying mesh size h.

Reynolds Number = 10 Reynolds Number = 100
h Pressure Projection Full SGE Pressure Projection Full SGE

0.4 31 / 31 (4) 34 / 35 (5) 41 / 44 (6) 44 / 46 (11)
0.2 31 / 32 (4) 37 / 38 (5) 45 / 51 (6) 52 / 57 (9)
0.1 32 / 33 (4) 40 / 42 (5) 44 / 51 (6) 57 / 68 (8)
0.05 32 / 33 (4) 37 / 39 (4) 40 / 45 (6) 55 / 67 (7)
0.025 32 / 34 (4) 37 / 40 (4) 38 / 43 (6) 56 / 68 (6)
0.0125 32 / 35 (4) 37 / 40 (4) 38 / 42 (6) 55 / 68 (6)

Table 3.5: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 strongly enforced boundary condition
solution to the steady two-phase step problem with varying mesh size h.

131

done to extend Schur complement approximations from single-phase to multi-phase

problems, these efforts have focused on the Stokes problem (e.g. see [51, 74, 29, 68])

and are not applicable in the Navier–Stokes setting. Therefore, as a basis of compari-

son, we consider the SIMPLE Schur complement approximation introduced in Section

3.4.6. Indeed, the algebraic nature of the SIMPLE method captures some limited ad-

vective features of the flow and automatically incorporates the variable density and

viscosity of the two-phase model.

As shown in Table 3.6, across a range of Reynolds numbers, the SIMPLE approxima-

tion shows poor scaling for the steady state two-phase lid-driven cavity problem, while

the two-phase PCD approximation demonstrates reliable scaling performance. This

result is not surprising because the diagonal block approximation of the A matrix

used in the SIMPLE approximation (recall equation (3.88)) does not capture many

of the important advective features of the system.

In applications of interest, however, the Navier–Stokes equations include a time-

dependent term. While the cavity and step problems are steady state, we can add

a 1
∆t

scaled mass matrix to the velocity-velocity block to mimic the behavior of a

time-dependent problem. This modification allows us to examine the performance of

the SIMPLE and two-phase PCD preconditioners for different values of 1
∆t

.

Results for the step simulation that include the 1
∆t

scaled mass matrix are presented

in Table 3.7. For both the PCD and the SIMPLE approximations, the number of GM-

RES iterations decreases as ∆t decreases. This is behavior is to be expected because

a smaller ∆t increases the magnitude of the added mass matrix. Moreover, since the

mass matrix is spectrally equivalent to the identity matrix, increasing the magnitude

of the mass matrix in the global matrix will improve the condition number of the

system. In turn, an improved condition number typically corresponds to improved

convergence performance of Krylov iterative methods.

While the SIMPLE and PCD approximations both exhibit improved performance as

∆t decreases, the performance improvement is significantly larger for the SIMPLE

method. Indeed, for ∆t = 1, the SIMPLE approximation takes roughly 100 iterations

for Reynolds number of 10 and 100, while the PCD approximation takes fewer than

132

30. However, when ∆t = 10−5, the SIMPLE and two-phase PCD approximations

both require 10 or fewer GMRES iterations. This suggests that for time dependent

problems in which a small enough step size is used, the SIMPLE approximation may

provide a competitive alternative to the PCD approximation.

The results for the driven cavity simulation that include the 1
∆t

scale mass matrix

are presented in Table 3.8 and 3.9. These results highlight a different aspect of the

SIMPLE and two-phase PCD approximations that need to be considers. As in the

step problem, the results for the two-phase PCD method (Table 3.8) suggest that as

a shorter time step are taken, the two-phase PCD operator accounts for the effect of

the mass operator and solves the system in fewer GMRES iterations. This, again, is

expected as the increased presence of the mass operator improves the conditioning of

the linear system.

For the cavity problem, the behavior of the SIMPLE method is more complicated

than in the step problem. To illustrate, Table 3.9 provides results using two different

hypre BoomerAMG configurations to apply the SIMPLE approximation. Both con-

figurations use the default hypre settings, with different strong threshold parameters

(see Section 3.4.3). Specifically, configuration one uses α = 0.25 and configuration

two uses α = 0. Recall that a lower α value implies that fewer entries are discarded

in the AMG setup phase. Therefore, a smaller α value results in a more accurate

V-cycle but requires a more expensive setup.

As seen in Table 3.9, both configurations exhibit a downward trend in iterations as

shorter time steps are taken. However, when configuration one is used, several simu-

lations experience a solver failure. The reason for this instability appears related to

the accuracy of the AMG V-cycle. Indeed, when the simulations are run using config-

uration two, no solver failures are encountered. This suggests that in some contexts,

a very accurate hypre BoomerAMG configuration must be used to ensure that the

SIMPLE preconditioner produces stable results.

133

h
Re

10 101.5 100 102.5 1000
1
16

25 / 18 27 / 18 29 / 23 36 / 26 49 / 25

1
32

24 / 38 26 / 23 29 / 32 35 / 36 47 / 39

1
64

25 / 56 27 / 55 29 / 56 35 / 45 46 / 56

1
128

24 / 53 27 / 85 29 / 77 34 / 83 46 / 84

1
256

24 / 116 27 / 116 30 / 105 35 / 112 47 / 115

Table 3.6: Preconditioned GMRES iterations using two-phase PCD / SIMPLE for
the P1–P1 solution to the steady lid driven cavity problem with density ratio ρ̂ =
1.2 × 10−3, viscosity ratio µ̂ = 1.8 × 10−2 (values for air-water flow), and varying
Reynolds number Re and grid size h.

Reynolds Number = 10 Reynolds Number = 100
∆t PCD SIMPLE PCD SIMPLE
100 24 / 27 (4) 105 / 121 (4) 26 / 30 (5) 96 / 110 (5)

10−1 19 / 21 (4) 101 / 116 (4) 22 / 24 (5) 79 / 88 (5)
10−2 17 / 19 (4) 80 / 89 (4) 19 / 20 (5) 66 / 71 (5)
10−3 15 / 16 (4) 66 / 70 (4) 15 / 16 (5) 26 / 28 (5)
10−4 13 / 14 (4) 25 / 26 (4) 10 / 10 (4) 9 / 10 (4)
10−5 9 / 10 (4) 10 / 10 (4) 6 / 6 (4) 6 / 7 (4)

Table 3.7: Preconditioned GMRES iterations (average / maximum (Newton iter-
ations)) using the two-phase PCD and SIMPLE preconditioners for the P1 − P1

strongly enforced boundary condition solution to the step problem with h = 0.0125
and varying ∆t.

A-block

Next we turn our attention to approximating the inverse action of the A-block. In-

deed, recall from Section 3.4.4 that applying the the Schur complement block precon-

ditioner requires approximating the action of both S as well as A. For the problem

sizes considered up to this point, it is appropriate to solve the A-block with a direct

LU solver. However, for large 3D problems, using a direct method to approximate the

action of A−1 will quickly become infeasible, so different approaches to approximating

A−1 are necessary.

In Section 3.4.5, we outlined an approach for approximating the A block in the saddle-

point system that arises in dynamic free-surface models. In this section, we assess

134

∆t Reynolds Number = 10 Reynolds Number = 100

100 24 / 28 (2) 25 / 29 (3)

10−1 21 / 23 (2) 20 / 22 (3)

10−2 17 / 19 (2) 18 / 19 (2)

10−3 15 / 16 (2) 14 / 15 (2)

10−4 12 / 13 (2) 9 / 9 (2)

10−5 9 / 9 (2) 7 / 7 (2)

Table 3.8: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two-phase PCD for the P1 − P1 strongly enforced boundary condition
solution to the lid driven cavity problem with h = 0.0125 and varying ∆t.

Reynolds Number = 10 Reynolds Number = 100
SIMPLE SIMPLE SIMPLE SIMPLE

∆t Config. 1 Config. 2 Config. 1 Config. 2

100 78 / 78 (2) 87 / 94 (2) 85 / 88 (3) 88 / 91 (2)
10−1 79 / 80 (2) 81 / 82 (2) 246 / 572 (3) 86 / 87 (2)
10−2 × / × 77 / 78 (2) × / × 72 / 73 (2)
10−3 60 / 62 (2) 63 / 64 (2) 28 / 28 (2) 30 / 30 (2)
10−4 25 / 25 (2) 26 / 27 (2) 10 / 10 (2) 10 / 10 (2)
10−5 9 / 9 (2) 9 / 9 (2) × / × 7 / 7 (2)

Table 3.9: Preconditioned GMRES iterations (average / maximum (Newton itera-
tions)) using two different AMG configurations with the SIMPLE method for the
P1 − P1 strongly enforced boundary condition solution to the lid driven cavity prob-
lem with h = 0.0125 and varying ∆t. Note that × indicates the simulation stopped
due to failure in the solver convergence.

135

the performance of this method using three different approaches for the cavity and

step problems. For the first simulation, we report the results using a direct LU solve

for the A-block. This exact solve will form the basis for comparison.

For the second and third simulations, we approximate the inverse action of A using a

GMRES iteration with a relative or absolute stopping tolerance of 0.01. Such a low

resolution approach may seem surprising, but since the inverse of A is approximated

twice per preconditioner application, it is important that the application of Â−1 can

be performed quickly. It is also important to note that the A block solve will require

an indeterminate number of GMRES iterations. Therefore, it is necessary to use the

FGMRES for the global Krylov method [77].

We consider two preconditioners for this GMRES iteration, both of which are based

on the diagonal block preconditioner outlined in Section 3.4.5. First we consider us-

ing a full LU factorization to precondition each sub-block of A. While this approach

does not scale, it gives an indication of the best performance one can expect from

using (3.69) as a preconditioner. For the second GMRES iteration, we approximate

the inverse action of the diagonal blocks with a single pass of boomerAMG using

the default settings. It is worth noting that while the default boomerAMG are often

effective for 2D problems, some modifications are necessary for 3D problems.

Results for these three simulations are given in Table 3.10 and provide encouraging

feedback about the preconditioning approach to A. As expected, the full LU fac-

torization exhibits the lowest GMRES iteration counts, but both FGMRES iteration

methods are competitive. Further, while there appears to be a slight deterioration

in the number of FGMRES iterations required when the BoomerAMG method is

applied to the preconditioner blocks instead of using the full LU factorization, the

two methods are very competitive with one another. It should be noted that while

the data is not presented here, all three methods demonstrate mesh independence in

FGMRES iterations scaling.

In this section, we have presented results which demonstrate that the two-phase PCD

approximation to the Schur complement exhibits stable scaling for two-phase vari-

ations of the driven cavity and step problems for a variety of boundary conditions,

136

Re
Method

LU FGMRES with LU FGMRES with AMG

10 23 / 27 (3) 26 / 29 (3) 26 / 30 (3)

100 30 / 33 (6) 33 / 36 (6) 33 / 36 (6)

1000 48 / 57 (6) 54 / 64 (6) 55 / 64 (6)

Table 3.10: Two-phase PCD preconditioned FGMRES iterations using different con-
figurations to solve the A-block of the saddle point system for the P1–P1 solution to
the steady lid driven cavity problem with density ratio ρ̂ = 1.2× 10−3, viscosity ratio
µ̂ = 1.8 × 10−2 (values for air-water flow), with h = 0.00625 and varying Reynolds
number Re.

Re
Method

LU FGMRES with LU FGMRES with AMG

10 37 / 40 (4) 38 / 41 (4) 38 / 41 (4)

100 55 / 68 (6) 59 / 71 (6) 60 / 72 (6)

Table 3.11: Two-phase PCD preconditioned FGMRES iterations using different con-
figurations to solve the A-block of the saddle point system for the P1–P1 solution to
the steady step problem with density ratio ρ̂ = 1.2×10−3, viscosity ratio µ̂ = 1.8×10−2

(values for air-water flow), with h = 0.0125 and varying Reynolds number Re.

stabilization and time stepping regimes. In addition, we have seen evidence that

our preconditioning strategy for the A block is effective for the steady state prob-

lems studied here. In the next section, we examine preconditioner performance in a

dynamic free-surface setting.

3.5.3 Dambreak Problem

The first dynamic free-surface simulation we examine is a two dimension dambreak

(see [34] and [95]). The linear systems that arise in this simulation are different from

the lid-cavity and step problems because the Navier-Stokes equations include a time

stepping term. Moreover, the linear system changes during the simulation as the

free-surface dynamics evolve.

In this setting, one would expect the SIMPLE operator to become more competitive

with the PCD operator. For one, the large temporal term dampens the system’s

advective features which the SIMPLE operator fails to capture. Furthermore, the

137

SIMPLE operator is built using components of the linear system. Thus, it is easier

to implement and automatically captures the stabilization and boundary conditions

of the system.

The PCD preconditioner’s superior steady-state performance, does however suggest

that the preconditioner can be useful when preconditioning these types of problems.

Indeed, the results below suggest that PCD is superior to SIMPLE when larger time

steps are permitted. Additional work is needed to optimize Proteus’ PCD perfor-

mance with respect to the stabilization methods and better ways to handle the nu-

merical challenges of dealing with large density / viscosity ratios. However, the results

presented herein suggest that the PCD preconditioner could be part of a dynamic pre-

conditioning strategy that varies based on the problems’ mesh size, dynamic Reynolds

number and time step.

Problem Description

The domain is rectangular, with Ω = (0, 3.22) × (0, 1.8), and free-slip conditions

(see Section 3.3.3) are applied everywhere on the boundary ∂Ω. Initially, there is a

standing column of water in Ω1 = (0, 1.2) × (0, 0.6) with the remaining space being

air. The simulation runs for a two second time interval and begins as the column of

water collapses under gravity and proceeds to collide with the right-hand wall of the

tank. This collision creates a wave and ultimately topological changes in the phases.

Figure 3-3 displays several snapshots of the simulation. The dam-break problem pro-

vides a good benchmark for testing the two-phase PCD and SIMPLE preconditioners

because its features are typical of many dynamic, multi-physics problems of practical

interest.

To compare the scaling performance of two-phase PCD and SIMPLE, we consider

two simulations. In the first, time steps are selected to ensure that the CFL number

is less than or equal to 0.9. Such restrictions are often necessary for nonlinear solver

convergence and solution accuracy. However, in some important cases this restriction

138

(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

(e) t = 1.75 (f) t = 2

Figure 3-3: Evolution of the dam-break simulation in Proteus at selected points in
times. The VOF (volume-of-fluid) is plotted with blue representing the water phase
and red being the air.

on the CFL number is not strictly necessary.1 Thus, in the second simulation, we

use a fixed time step of ∆t = 0.01. In this case, the CFL number is larger than one

for much of the simulation, reaching a maximum of 20.5 and typically being above

1Accurate computation of relevant quantities of interest, such as drag force, for fixed hydraulic
structures or vessels, frequently results in quasi-steady flows. In particular, the free surface may
tend towards a steady wake structure or standing wave pattern, and this structure dominates the
force on the given structure. In these cases, it is frequently desirable to use a fixed time step that
results in CFL numbers significantly larger than one. Time stepping is then carried out until the
quasi-steady hydrodynamic conditions are reached or the quantity of interest has reached a constant
or steady periodic value.

139

h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Two-phase PCD 5 / 8 (0.5) 5 / 9 (0.6) 5 / 10 (2.6) 5 / 11 (14.7) 5 / 10 (126.0)

SIMPLE 4 / 10 (0.4) 4 / 10 (0.6) 4 / 10 (2.4) 5 / 13 (15.5) 5 / 17 (140.1)

Table 3.12: The average / maximum number of GMRES iterations and simulation
run times (in minutes) required across different meshes when running the dam-break
problem with the CFL number less than or equal to 0.9.

2.5. Nonetheless, the time step is still small enough to achieve nonlinear solver con-

vergence and solution accuracy. For both simulations, we analyse the average and

maximum number of GMRES iterations required at five different levels of mesh re-

finement. These mesh refinement levels are selected so that, by the final refinement,

the physics of the simulation is sufficiently resolved to perform relevant engineering

analysis. The dambreak timings were collected using 8 cores of a dedicated 2.3-GHz

Intel Xeon Haswell processor with 128 GBytes of DDR4 memory on the Topaz super-

computer in the Department of Defense High Performance Computing Modernization

Program.2

Table 3.12 presents the average and maximum number of GMRES iterations taken

during the first simulation with a restricted CFL number. These results suggest that,

on average, the SIMPLE and two-phase PCD preconditioners both scale well with the

mesh size. However, Table 3.12 also reveals that the maximum number of iterations

required by the SIMPLE preconditioner increases as the mesh is refined. As seen in

Figure 3-4, the increase in maximum iterations of the SIMPLE preconditioner occurs

as the air and water phases begin to undergo topological changes around one and a

half seconds into the simulation. Indeed, as the water phase reconnects with itself, it

generates a pressure that causes the air phase to accelerate and increase the advec-

tive features of the simulation. Since SIMPLE only uses the diagonal elements of the

matrix A, it appears unable to fully capture these additional advection dynamics. In

contrast, the two-phase PCD preconditioner scales well during this mixing phase of

the simulation.

Table 3.12 also reveals that on the most refined meshes, the two-phase PCD pre-

2In this example, the number of elements for h = 0.025 is 29,328 while for h = 0.0125 it is
117,353.

140

Time
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

A
v
er
a
g
e
G
M
R
E
S

it
er
a
ti
o
n
s
p
er

ti
m
e-
st
ep

2

3

4

5

6

7

8

9

10

11

h = 0.05

h = 0.025

h = 0.0125

(a) Two-phase PCD

Time
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

A
v
er
a
g
e
G
M
R
E
S

it
er
a
ti
o
n
s
p
er

ti
m
e-
st
ep

2

3

4

5

6

7

8

9

10

11

h = 0.05

h = 0.025

h = 0.0125

(b) SIMPLE

Figure 3-4: Average preconditioned GMRES iterations per time step for the two-
phase PCD and SIMPLE preconditioners with the CFL number less than or equal to
0.9.

conditioner is faster than the SIMPLE approach. One reason for this is that the

two-phase PCD preconditioner requires fewer GMRES iterations than the SIMPLE

method during the mixing phase of the simulation. A second reason is that the AMG

method applied to the SIMPLE preconditioner requires more computational effort

than the AMG method used in the two-phase PCD preconditioner. Finally, the two-

phase PCD preconditioner tends to exceed the linear solver threshold by a larger

margin than the SIMPLE approach, leading to slightly smaller residual norms in the

nonlinear solver. Interestingly, this difference slightly reduces the computational ef-

fort needed to solve other components in the full RANS2P model.

Results for the second simulation, using a fixed time step ∆t = 0.01, are shown

in Table 3.13 and suggest that, on coarse meshes, SIMPLE and the two-phase PCD

preconditioner are competitive with one another. In contrast to the first simulation,

however, as the mesh is refined, the SIMPLE method requires a rapidly increasing

number of GMRES iterations to solve the linear system. Meanwhile, the two-phase

PCD preconditioner remains relatively stable, with iteration counts increasing only

modestly.

These results are consistent with the steady-state performance observed above in

Section 3.5.2. As the mesh is refined for a fixed time step, the advective features of

the system become more pronounced and the CFL number increases. As observed

for the steady lid driven cavity problem, the SIMPLE approach does not capture the

features of an advection dominated flow well enough to provide a robust precondi-

141

h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Two-phase PCD 4 / 8 (0.5) 5 / 9 (0.6) 8 / 14 (1.6) 11 / 25 (5.8) 14 / 34 (26.5)

SIMPLE 4 / 10 (0.4) 4 / 10 (0.6) 5 / 10 (1.5) 10 / 32 (6.6) ×

Table 3.13: The average / maximum number of GMRES iterations and simulation
run times (in minutes) required across different meshes when running the dam-break
problem with fixed ∆t = 0.01. Note that × indicates the simulation stopped due to
failure in the solver convergence.

tioner. The two-phase PCD preconditioner, however, does account for such features

and thus remains capable of producing stable, reliable results in this setting.

Overall, our results for the two-phase PCD preconditioner in a free-surface, multi-

physics setting are encouraging. When a restricted CFL number is used, the two-

phase PCD preconditioner slightly outperforms the SIMPLE method both in terms

of the reducing the number of GMRES iterations required, as well as delivering faster

run times. As the CFL number of the flow increases, two-phase PCD demonstrates

a significant improvement over the SIMPLE method due to its superior steady-state

performance. Together, these results suggest that the two-phase PCD approach can

be effectively used as an approximation to the inverse Schur complement in coupled

free-surface problems.

3.5.4 MARIN Problem

The next free-surface benchmark problem we consider is a three-dimensional dam

break simulation based on physical experiments run at the Maritime Research Insti-

tute Netherlands (MARIN) [59]. These experiments provide measurements of water

heights, pressures and forces over time that can be used to validate numerically mod-

eled results. This simulation has been selected because it allows us to study precon-

ditioner performance on a three dimensional, realistic free-surface test problem.

The MARIN simulation takes place in a tank with dimensions 3.22m × 1m × 1m.

Located around x = 2.5, a 0.161m × 0.161m × 0.403m obstacle protrudes from the

bottom of the tank. The initial setup can be seen in Figure 3-5.

The simulation begins when gravity, acting on a 1m × 1m × 0.55m column of water

142

positioned at the front of the tank, causes the column to collapse. As illustrated in

the snapshots of the simulation shown in Fig 3-5, the column of water collapses and

flows towards the obstacle, making contact around t = 0.5 seconds. Following this

initial contact, various topological changes occur between the air and water phases

as the water over tops and splashes around the obstacle. The next major component

of the simulation occurs as the water makes contact with the back wall of the tank.

At this time, the water reverses direction and forms a wave resulting in complicated

topological changes between the air and the water phases.

Because of its three-dimensional domain, the MARIN problem is a useful extension

(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

(e) t = 1.75 (f) t = 2

Figure 3-5: Evolution of the MARIN simulation in Proteus at selected points in times.
The VOF (volume-of-fluid) is plotted with blue representing the water phase and red
being the air.

to the dambreak simulation examined in Section 3.5.3. Indeed, the matrices that arise

from three-dimensional finite element discretizations present new challenges relative

143

Refinement (R) 10 15 20 25 30 35 40 45 50
Nodes (000s) 57 186 432 835 1 433 2 264 3 347 4 782 6 544
DoF (000s) 228 743 1 729 3 338 5 733 9 057 13 386 19 128 26 176

Table 3.14: Marin Mesh Statistics

to those that appear in two-dimensional domains. For example, in two-dimensions,

it remains feasible to use a direct solver to solve for the A-block across a range of

computationally relevant refinement levels. The increased matrix bandwidth that

arises in a three-dimensional finite-element matrix means that solving the A-block

with a direct method quickly becomes infeasible and an iterative approach such as

preconditioned GMRES must be used. Furthermore, in three-dimensions, the accu-

racy of multigrid methods deteriorate relative to that in two-dimensions, because of

memory and scaling limitations. Specifically, three-dimensional problems typically

use complexity reducing algorithms such as aggressive coarsening and multi-level in-

terpolation operators (see Section 3.4.3).

Preconditioner Results

To analyze preconditioner performance for the MARIN problem, we consider mesh

refinement levels from R = 10 to R = 50 where R is the refinement parameter. The

relationship between the refinement level and the mesh diameter h is approximately

h ≈ 1

2R
. At the coarsest level (R = 10), a three dimensional tetrahedral mesh with

roughly fifty-seven thousand vertices is used. At the finest level (R = 50), a three

dimensional tetrahedral mesh with roughly 6.5 million vertices is used.

The simulations ran in these experiments use linear finite elements to approximate the

three velocity components and the pressure. Therefore, the total number of degrees

of freedom is four times the number of vertices. Table 3.14 reports the number of

tetrahedral mesh vertices and degrees of freedom for a given refinement level.

Scaling Results

The first set of results presented in this section give a performance overview of the

SuperLU DIST, two-phase PCD, SIMPLE and ASM preconditioning strategies. Sim-

144

ulation run times have been collected across nine refinement levels incrementing by

five from R = 10 to R = 50. Results for the refinement levels R = 10, 15, 20 are given

in Table 3.15, results for the refinement levels R = 25, 30, 35 are given in Table 3.16

and results for the refinement levels R = 40, 45, 50 are given in Table 3.17. The tables

have been broken into separate blocks to keep the number of degrees of freedom per

processor roughly bounded between 50K and 2K.

The second set of results provided in Tables 3.18 – 3.21 highlight the weak scaling

performance of the PCD and ASM preconditioners.

Three major observations emerge from these results. First, the data suggests that

the SuperLU DIST approach is the least competitive method considered. Second,

the SIMPLE preconditioner is a competitive – and in some cases slightly faster –

alternative to the PCD preconditioner. Finally, in nearly all respects, the PCD pre-

conditioner is superior to the ASM preconditioner. In the following sections, we

explore the details of these observations in more detail.

SuperLU DIST

As an initial observation, the data in Table 3.15 suggests that the SuperLU DIST

approach is the least competitive method considered. At the coarsest refinement

levels of 10 and 15, SuperLU DIST recorded significantly slower speeds than the

other methods. For instance, when the simulation was run at the R = 10 refinement

level with 256 processors, it took nearly one and a half hours to complete while all the

other approaches finished in under 15 minutes. An even worse relative performance

can be observed at the R = 15 refinement level.

For the R = 10 and R = 15 problem sizes, the SuperLU DIST method does exhibit

some limited strong scaling capacity. As highlighted in Figure 3-6 for the R = 10

and R = 15 refinement levels, initially adding more processors to the SuperLU DIST

method reduces simulation run times. However, Figure 3-6 also makes it clear that

simulation run times begin to increase once the number of processors increases past

a certain threshold.

The SuperLU DIST method becomes essentially ineffective for refinement levels of

145

R = 20 and above, so no results are reported. Indeed, a trial run of the R = 20 case

with 512 processors suggested that the simulation would require roughly 72 hours to

finish. In contrast, using the same refinement level and number of processors, the

PCD method was able to run in under an hour. It is also worth mentioning that for

the SuperLU DIST method, memory usage starts to become an issue at the R = 20

level. Indeed, for R = 20, at least 256 processors are necessary to ensure that there

is sufficient memory for the factorization step to complete.

The poor computational results for the SuperLU DIST method are not surprising.

As discussed in Section 3.4.1, scaling performance is difficult to achieve for direct

solvers. The fact that this is a three-dimensional simulation and the linear system is

not symmetric further complicates matters.

SIMPLE

The data reported in Tables 3.15-3.17 suggest that the SIMPLE preconditioner results

in similar run times as the PCD preconditioner. In some cases (e.g. R = 25), the

SIMPLE preconditioner reported times that were faster than the PCD preconditioner,

while in other cases, the PCD preconditioner exhibited consistently faster performance

(e.g. R = 45). Throughout the simulations, however, the timing results were typically

within 15 % of each other.

It is not surprising that the SIMPLE and the PCD preconditioners exhibit similar

performance. Indeed, both approaches use the same block preconditioner, albeit

with different approximations to the Schur complement. As the results highlight,

the setup portion of the PCD preconditioner is typically more expensive than the

SIMPLE approach. The increased expense in the setup face, however, is offset by

faster performance in the linear solver phase.

PCD and ASM

As a final observation, Tables 3.15-3.17 suggest that the two-phase PCD is a superior

preconditioner to the ASM preconditioner in nearly all respects. For instance, at

refinement level 25, the simulation takes roughly two-hours when 256 processors are

146

used with the PCD preconditioner. In contrast, to run the simulation with the ASM

in two-hours, 4096 processors are necessary. This suggests the PCD method was able

to achieve the same performance as the ASM using one sixteenth the computational

resources. Furthermore, on the most refined computational meshes (i.e., R ≥ 40),

it is not clear how many processors would be necessary for the ASM preconditioner

to generate comparable computational run times with the PCD preconditioner. We

expand further on the advantages and disadvantages of the two methods below.

147

(a) R = 10 (b) R = 15

(c) R = 20 (d) R = 25

(e) R = 30 (f) R = 35

(g) R = 40 (h) R = 45

Figure 3-6: Simulation run times at different refinement levels by preconditioner type

148

Refinement 32 64 128 256 512 1024

10

DOF / Core 7,121 3,561 1,780 890 445 223

SuperLU DIST 2.54 / 90 / 1 1.83 / 91 / 1 1.45 / 90 / 1 1.46 / 90 / 1 1.55 / 89 / 1 2.57 / 90 / 1
PCD 0.28 / 21 / 16 0.17 / 22 / 21 0.14 / 22 / 27 0.11 / 20 / 31 0.24 / 25 / 55 0.32 / 25 / 56

SIMPLE 0.3 / 9 / 30 0.18 / 10 / 35 0.14 / 10 / 37 0.09 / 9 / 42 0.14 / 9 / 54 **
ASM 1.59 / 1 / 88 0.63 / 1 / 83 0.34 / 1 / 79 0.18 / 1 / 71 0.12 / 1 / 50 0.12 / 1 / 46

15

DOF / Core 23,205 11,602 5,801 2,901 1,450 725

SuperLU DIST > 24 hrs 21.51 / 93 / 1 14.26 / 93 / 1 12.37 / 92 / 1 11.05 / 92 / 1 12.97 / 93 / 0
PCD 1.36 / 23 / 17 0.77 / 23 / 18 0.46 / 24 / 23 0.47 / 25 / 42 0.43 / 25 / 49 0.26 / 23 / 38

SIMPLE 1.45 / 9 / 33 0.82 / 10 / 34 0.53 / 11 / 40 0.3 / 11 / 40 0.23 / 9 / 41 0.23 / 9 / 47
ASM 22.42 / 0 / 96 7.56 / 0 / 94 2.62 / 1 / 90 1.12 / 1 / 86 0.65 / 1 / 82 0.4 / 1 / 73

20

DOF / Core 54,033 27,016 13,508 6,754 3,377 1,689

SuperLU DIST * * * † * *
PCD 5.1 / 22 / 19 2.9 / 23 / 24 1.5 / 24 / 21 † 0.7 / 24 / 35 **

SIMPLE ‡ 2.89 / 9 / 36 1.54 / 9 / 37 † 0.56 / 10 / 42 0.49 / 11 / 49
ASM > 24 hrs > 24 hrs 19.61 / 1 / 95 † 2.51 / 1 / 88 1.28 / 1 / 84

Table 3.15: MARIN simulation run times across preconditioning strategies (total run time (hours) / time in NSE preconditioner
setup (%) / percent time in NSE linear solve (%)). * indicates that the simulation was not run. ** indicates that a hypre error
was encountered during simulation. † indicates an error during mesh generation phase. ‡ indicates memory usage limitations.

149

Refinement 64 128 256 512 1024 2048 4096

25

DOF / Core 52,157 26,079 13,039 6,520 3,260 1,630 815
PCD 7.3 / 23 / 23 3.9 / 24 / 24 2 / 24 / 22 1.6 / 23 / 36 1.9 / 25 / 54 3.5 / 9 / 83 1.3 / 29 / 49

SIMPLE 7.39 / 9 / 38 ** 2.2 / 11 / 40 1.37 / 11 / 43 0.97 / 11 / 48 0.69 / 10 / 47 0.64 / 8 / 47
ASM > 24 hrs > 24 hrs > 24 hrs 9.61 / 0 / 93 6.09 / 0 / 0 2.57 / 1 / 87 2.02 / 1 / 84

30

DOF / Core 89,576 44,788 22,394 11,197 5,598 2,799 1,400
PCD ‡ 7.8 / 23 / 23 4.1 / 23 / 23 2.5 / 23 / 27 1.7 / 24 / 35 1.4 / 27 / 41 1.6 / 28 / 47

SIMPLE ‡ 8.34 / 12 / 38 4.33 / 11 / 39 3.99 / 8 / 60 1.76 / 12 / 48 1.44 / 12 / 53 1.37 / 13 / 53
ASM ‡ > 24 hrs > 24 hrs > 24 hrs 9.89 / 0 / 93 5.19 / 1 / 90 3.81 / 1 / 88

35

DOF / Core 141,516 70,758 35,379 17,689 8,845 4,422 2,211
PCD ‡ ‡ 6.8 / 24 / 20 4.2 / 23 / 24 2.8 / 24 / 32 1.7 / 25 / 33 1.6 / 26 / 39

SIMPLE ‡ ‡ 7.65 / 11 / 39 4.65 / 11 / 43 2.68 / 10 / 44 1.83 / 11 / 50 1.58 / 10 / 54
ASM ‡ > 24 hrs > 24 hrs > 24 hrs > 24 hrs 10.48 / 0 / 92 7.18 / 0 / 91

Table 3.16: Marin simulation run times across preconditioning strategies (total run time (hours) / time in NSE preconditioner
setup (%) / percent time in NSE linear solve (%)). * indicates that the simulation was not run. A single number indicates
an approximation of the total run time (based off a four hour simulation) †indicates a segfault occurs with mesh generator. ‡
indicates memory usage limitations.

150

Refinement 256 512 1024 2048 4096

40

DOF / Core 52,289 26,145 13,072 6,536 3,268
PCD * 6.3 / 23 / 21 4.3 / 24 / 29 2.9 / 24 / 34 2.6 / 27 / 41

SIMPLE * ** 4.46 / 11 / 46 3.03 / 10 / 50 2.24 / 11 / 56
ASM > 24 hrs > 24 hrs > 24 hrs 23.07 / 0 / 94 12.3 / 0 / 93

45

DOF / Core 74,719 37,360 18,680 9,340 4,670
PCD * 10.6 / 23 / 23 6.7 / 25 / 30 4.1 / 24 / 31 3.1 / 26 / 39

SIMPLE * 11.69 / 11 / 41 6.75 / 10 / 45 4.61 / 11 / 50 3.59 / 11 / 58
ASM * * * * 20.6 / 0 / 94

50

DOF / Core 102,251 51,125 25,563 12,781 6,391
PCD * 16.6 / 23 / 27 9 / 24 / 25 5.7 / 24 / 29 4.2 / 25 / 35

SIMPLE * 17.43 / 11 / 41 10.1 / 10 / 43 6.47 / 11 / 47 4.19 / 10 / 49
ASM * * * * *

Table 3.17: Marin simulation run times across preconditioning strategies (total run time (hours) / time in NSE preconditioner
setup (%) / percent time in NSE linear solve (%)). * indicates that the simulation was not run. A single number indicates
an approximation of the total run time (based off a four hour simulation) †indicates a segfault occurs with mesh generator. ‡
indicates memory usage limitations.

151

128 256 512 1024 2048 4096 Factor Increase (34.2)

PCD
Total Run Time 0.57 1.51 1.95 2.14 2.55 3.41 6.0

Preconditioner Setup Time 0.27 0.36 0.49 0.55 0.67 0.91 3.4
Linear Solve Time 0.29 0.47 0.79 0.88 0.99 1.41 4.9

ASM
Total Run Time 5.41 7.26 8.01 11.02 14.13 19.48 3.6

Preconditioner Setup Time 0.04 0.04 0.05 0.06 0.07 0.07 2.0
Linear Solve Time 4.79 6.56 7.29 10.16 13.14 18.24 3.8

Table 3.18: MARIN weak scaling results for approximately 4K DoF per core. The factor increase represents the ratio of the
time taken using the largest number of processors against the time taken using the smallest number of processors. The number
listed in the final column of the top row in parentheses denotes the factor by which the problem size increased.

64 128 256 512 1024 2048 Factor Increase (34.2)

PCD
Total Run Time 2 2.28 2.77 2.82 3.06 3.98 2.0

Preconditioner Setup Time 0.45 0.52 0.66 0.65 0.71 0.96 2.1
Linear Solve Time 0.43 0.52 0.91 0.81 0.84 1.33 3.1

ASM
Total Run Time 13.69 18.82 18.11 23.76 29.17 37.75 2.8

Preconditioner Setup Time 0.06 0.08 0.08 0.09 0.1 0.12 2.0
Linear Solve Time 12.55 17.49 16.8 22.31 27.56 35.87 2.9

Table 3.19: MARIN weak scaling results for approximately 8K DoF per core. The number listed in the final column of the top
row in parentheses denotes the factor by which the problem size increased.

152

32 64 128 256 512 1024 Factor Increase (33.6)

PCD
Total Run Time 4.26 4.68 5.05 5.86 5.33 6.95 1.6

Preconditioner Setup Time 0.94 1.08 1.19 1.35 1.24 1.6 1.7
Linear Solve Time 0.76 0.91 1.19 1.39 1.15 1.92 2.5

Table 3.20: MARIN weak scaling results for approximately 20K DoF per core. The number listed in the final column of the
top row in parentheses denotes the factor by which the problem size increased.

32 64 128 256 512 Factor Increase (16.1)

PCD
Total Run Time 8.63 8.08 9.08 10.03 11.21 1.3

Preconditioner Setup Time 1.96 1.88 2.14 2.38 2.67 1.4
Linear Solve Time 1.59 1.54 1.88 1.99 2.52 1.6

Table 3.21: MARIN weak scaling results for approximately 40K DoF per core. The number listed in the final column of the
top row in parentheses denotes the factor by which the problem size increased.

153

Analysis of the ASM and two-phase PCD preconditioners

In this section, we compare the performance of the two-phase PCD and ASM pre-

conditioners in more detail. As highlighted in Tables 3.15-3.17 and Figure 3-6, the

PCD preconditioner generates equivalent or faster simulation run times using less

computational resources than the ASM preconditioner. Next, to better understand

the relative performance of these methods, we investigate the strong and weak scaling

performance of the PCD and ASM preconditioners.

Strong Scaling Capacity

Figures 3-6 illustrate that the ASM exhibits more consistent strong scaling perfor-

mance than the two-phase PCD method. Simulation run times at refinement level

15 provide a clear illustration of this. As reported in Table 3.15, using 32 proces-

sors, simulation runtime using the ASM is roughly 22 hours while the runtime using

the PCD method is less than one and a half hours. After increasing the number of

processors to 1024, however, the simulation run time using both the ASM and the

PCD is less than half an hour. This highlights that, on average, the ASM run time

decreased by roughly 50% every time the number of processors doubled while the run

time using the two-phase PCD preconditioner decreased by roughly 25% every time

the number of processors doubled.

The source of the ASM strong scaling performance is the rapid reduction in compu-

tational effort required to perform the direct local solves as the mesh is distributed

across more processors. Indeed, the sparse LU factorization algorithm has complexity

O(n2). This suggests that every time the number of processors doubles, the time re-

quired to solve the local problems decreases roughly 75%. One of the metrics reported

in Tables 3.22 and 3.23 is the percentage change in time needed to perform the LU

factorization component of the ASM preconditioner. While this data suggests that

a 75% decrease is the best case scenario, it does highlight every time the number of

processors doubles, the factorization time decreases by more than half.

There are two factors, however, that limit the ASM strong scaling capacity as the

154

number of processors increases. First, since the speed up in the factorization step is

faster than other parts of the simulation, the percentage of time spent performing

the LU factorization decreases. This implies that there is less scope for faster fac-

torizations to reduce overall run times. A second factor affecting the strong scaling

performance of the ASM is the deteriorating quality of the ASM preconditioner as

the domain is decomposed into smaller and smaller regions.

To analyze the effect of deteriorating preconditioner quality, Tables 3.22 and 3.23

report GMRES iterations for several refinements. As expected, as the number of pro-

cessors (and hence subdomains) increases, so does the number of GMRES iterations.

The computational cost of increased GMRES iterations is manifest in two ways. The

first is the increased memory requirements of storing the residual vectors. The sec-

ond is the increased time spent in the Gram-Schmidt orthogonalization routine that

generates the orthogonal Krylov basis.

The additional memory requirements necessary as the number of GMRES iterations

increases is not a concern in this context. As the problem is distributed across a larger

number of cores, the avaliable memory increases. Therefore, as long as the number

of GMRES iterations does not increase too rapidly as the work is distributed, the

memory gained from using additional processors is sufficient to absorb the additional

storage requirements.

Instead, the limiting factor to strong scaling is the time spent in the Gram-Schmidt

orthogonalization step of the GMRES algorithm. As shown in Tables 3.22 and 3.23,

while the time spent in the Gram-Schmidt orthogonalization generally decreases as

more processors are used, it does so at a slower rate than the rest of the simulation.

This causes the percentage of time the simulation spends in that orthogonalization

stage to increase.

The strong scaling performance of the two-phase PCD method is not as consistent

as it is for the ASM. For some numerical experiments, the two-phase PCD exhibits

ideal strong scaling. For example, when R = 20, the MARIN simulation runtime de-

creases by a factor of approximately two as the number of processors increases from

64 to 128. Similar results can be seen at refinement levels R = 25 and R = 30. In

155

Refinement 32 64 128 256 512 1024

10

GMRES Iterations 43 / 50 49 / 57 64 / 77 75 / 87 83 / 96 88 / 106
GSO Function Calls 30422 33804 48543 53082 60874 71547
Time In GSO (mins) 3 2.5 2.6 2.5 1.7 2.4

% Time in GSO 3.2 6.6 12.7 23.5 23.4 33.5
% ∆ in LU Fact. Time – -69 -59 -69 -68 -58

15

GMRES Iterations 50 / 61 63 / 77 71 / 89 85 / 105 99 / 121 113 / 139
GSO Function Calls 59075 72689 83116 97931 114749 130921
Time In GSO (mins) 19.2 27.91 14.17 9.67 10.94 9.93

% Time in GSO 1.4 6.1 9 14.4 28.2 41.3
% ∆ in LU Fact. Time – -72 -72 -69 -59 -75

Table 3.22: Details of the ASM preconditioner applied to the MARIN problem at
refinement levels 10 and 15. The first row lists the average / maximum number of
GMRES iterations during the simulation. The second, third and fourth rows present
diagnostic information about the Gram-Schmidt orthogonalization (GSO) step. The
fifth row reports the percentage change in time spent performing the LU factorization
component of the ASM preconditioner.

Refinement 128 256 512 1024 2048 4096

20

GMRES Iterations 82 / 103 – 111 / 138 130 / 159 145 / 178 167 / 204
GSO Function Calls 147158 – 195787 217624 246017 280682
Time In GSO (mins) 109.62 – 24.06 20.89 20.06 43.49

% Time in GSO 9.3 – 15.9 27.1 41 67.1
% ∆ in LU Fact. Time – – – -63 -70 -67

25

GMRES Iterations * * 122 / 155 – 161 / 205 184 / 237
GSO Function Calls * * 309854 – 382362 430052
Time In GSO (mins) * * 85.9 – 62.86 74.39

% Time in GSO * * 14.9 – 40.7 61.3
% ∆ in LU Fact. Time * * – – – -75

30

GMRES Iterations * * * 150 / 191 175 / 225 199 / 261
GSO Function Calls * * * 424468 498007 562476
Time In GSO (mins) * * * 116.2 95.02 123.29

% Time in GSO * * * 19.6 30.5 54
% ∆ in LU Fact. Time * * * – -61 -69

Table 3.23: Details of the ASM preconditioner applied to the MARIN problem at
refinement levels 20, 25 and 30. The first row lists the average / maximum number of
GMRES iterations during the simulation. The second, third and fourth rows present
diagnostic information about the Gram-Schmidt orthogonalization (GSO) step. The
fifth row reports the percentage change in time spent performing the LU factorization
component of the ASM preconditioner.

156

Refinement 32 64 128 256 512 1024 2048 4096
10 11 / 20 11 / 19 12 / 23 12 / 21 12 / 26 13 / 27 * *
15 12 / 20 12 / 18 12 / 19 12 / 22 13 / 26 13 / 32 * *
20 12 / 21 13 / 24 12 / 19 † 13 / 23 ** * *
25 * 13 / 24 13 / 26 13 / 27 13 / 31 13 / 30 14 / 78 14 / 34
30 * * 13 / 27 13 / 24 13 / 32 13 / 26 13 / 35 14 / 42
35 * * * 13 / 28 13 / 31 13 / 33 13 / 28 14 / 42
40 * * * * 13 / 28 13 / 33 13 / 34 14 / 46
45 * * * * 13 / 32 13 / 39 13 / 32 14 / 43
50 * * * * 13 / 32 13 / 32 13 / 39 14 / 40

Table 3.24: GMRES iterations of the PCD preconditioner applied to the MARIN
problem. The rows lists the average / maximum number of GMRES iterations during
the simulation. ** indicates that a hypre error was encountered during simulation.
† indicates an error during mesh generation phase. * indicates that the simulation
was not run.

most cases, however, the computational run time does not halve when the number of

processors doubles.

The factors that limit the strong scaling potential of the two-phase PCD method are

different than that for the ASM. As shown in Table 3.24, the number of GMRES it-

erations scale reasonably well for two-phase PCD method across processors and mesh

refinements. Instead, the limiting factor in strong scaling performance is a result

of deteriorating linear solver performance as the number of degrees of freedom per

processor decreases. Figure 3-7 plots the percentage of simulation time spent in the

NSE preconditioner setup phase and percentage of time spent in the NSE linear solve

phase against the number of degrees of freedom per processor for the PCD precon-

ditioner. Thus, as the number of processors is increased, the degrees of freedom per

processor becomes smaller. One can observe from this plot that the percentage of

time spent in the setup phase remains relative consistent between 20 % and 30 % as

the DoF per processor changes. In contrast, the percentage of simulation time spent

in the linear solve phase begins to increase as the degrees of freedom per processor

decreases below 5K, and then begins to increase rapidly as the degrees of freedom per

processor decreases below 2K.

To understand why this is the case, recall that AMG includes a setup phase and

a linear solve phase. Moreover, note that different AMG solvers are used for the

velocity sub-blocks and the two-phase Laplace operator that appear in the PCD pre-

conditioner. Both AMG solvers use the parallel HMIS coarsening algorithm. After

157

(a) setup phase (b) linear solve phase

Figure 3-7: Percent of MARIN simulation time spent in the setup phase as well as in
the linear solve phase of the NSE segment of the simulation using the PCD method.

experimenting with different solver options, however, a more aggressive coarsening

algorithm was used for the two-phase Laplace operator from the PCD preconditioner

(recall (3.87)). Specifically, two levels of aggressive coarsening are used along with a

strong coarsening value of α = 0.5. For the velocity sub-blocks, the strong coarsening

parameter is α = 0.5 as well, but no aggressive coarsening is used (see Section 3.4.3

for more details on AMG solver options).

As seen in Figure 3-7, when a problem uses 5K or more DoF per processor, the setup

and solve times are roughly the same. However, when the number of DoF per pro-

cessors begins to fall below 5K, the linear solve phase does not scale well. This is not

surprising given the communication costs associated with using AMG across multiple

processors.

While the ASM capacity for strong scaling is superior to the two-phase PCD, the

two-phase PCD preconditioner still achieves superior timing results using fewer com-

putational resources. This outperformance is clearly illustrated in Figure 3-6. No-

tably, when enough processors are used, the ASM preconditioner can produce run

times that are competitive with the PCD preconditioner. However, the PCD pre-

conditioner is able to achieve these comparable run times for the fastest ASM trial

with significantly fewer processors. As the problem size increases, the ASM becomes

increasing less competitive with the PCD preconditioner (see Tables 3.15-3.17 and

Figure 3-6).

158

Weak Scaling Analysis

Next we consider the weak scaling performance of the two-phase PCD and ASM pre-

conditioners. Recall that weak scaling refers to the change in run time when the

problem size is increased and the work is distributed across a larger number of pro-

cessors to keep the DoF per processor fixed. The factor increase is one metric that

will be considered when analyzing weak scaling performance. For a fixed number of

DoF per processor, the factor increase represents the ratio of the time taken using

the largest number of processors against the time taken using the smallest number of

processors.

Weak scaling results for 4K, 8K, 20K and 40K DoF per processor for the ASM and

the two-phase PCD method are given in Tables 3.18-3.21. The rows of the tables

report overall run, preconditioner setup, and linear solve time respectively. The final

column of each table reports the factor increase in run time between the largest and

smallest problem sizes. The factor increase in the problem size is reported in the

parentheses in the final column of the top row. Note that the ASM weak scaling

results for the 20K and 40K DoF per core have been omitted because they cannot be

computed in a reasonable amount of time.

The values of 4K, 8K, 20K and 40K were selected to accommodate the two-phase PCD

preconditioner. Recall that in the block Schur complement preconditioner (3.66), the

size of the Schur complement is one quarter the total number of degrees of freedom.

As a result, the AMG preconditioner used in the Schur complement sub-block has

1K, 2K, 5K and 10K DoF per core respectively.

First, we consider the ASM weak scaling results. As seen in Tables 3.18 and 3.19, in

the 4K and 8K DoF per core simulations, the problem size is increased by 34 times.

However, the simulation run time using the ASM only increases by a factor of 3.6 and

2.8 respectively. These results are quiet good when one considers that the quality of

the ASM preconditioer deteriorates as more processors are used. As shown in Table

3.25, the average number of preconditioned GMRES iterations increased by 2.3 times

when the problem size increased 34 times.

159

Refinement 64 128 256 512 1024 2048 4096
4K – 69 / 85 94 / 117 115 / 148 143 / 188 178 / 244 234 / 319
8K 60 / 73 83 / 103 99 / 126 124 / 165 161 / 215 200 / 269 –

Table 3.25: GMRES Iterations (average / maximum) running the MARIN problem
with ASM preconditioner.

Next we consider the weak scaling results of the PCD method. One important obser-

vation from Tables 3.18-3.21 is that the weak scaling performance of the two-phase

PCD preconditioner depends on the problem size. In the 4K DoF per core simula-

tion (see Table 3.18), when the problem size is increased by a factor of 34, the total

simulation run time increases by a factor of 6. In contrast, when 20K DoF per core

are used and the problem size is increased by a factor of 34, the total simulation run

time only increases by a factor of 1.6. Notably, this suggests that when sufficient DoF

per core are used, the two-phase PCD preconditioner exhibits superior weak scaling

performance relative to the ASM. However, when insufficient DoF per core are used,

the ASM can actually outperform the weak scaling of the two-phase PCD.

It is also useful to note that Tables 3.18-3.21 and Figure 3-8 illustrate that the setup

phase of the two-phase PCD preconditioner has better weak scaling behavior than the

linear solve segment. This partial reflects the choice of the AMG settings used for the

velocity and Schur complement sub-blocks. Indeed, the weak scaling behavior of the

linear solver could be improved using more a expensive AMG setup. Ultimately, the

AMG settings were selected to generate reliable performance across all the simulation

profiles.

Overall, these results suggest that, provided sufficient DoF per processor are used,

the two-phase PCD preconditioner exhibits better weak scaling performance than the

ASM preconditioner. Moreoever, it is important to note that even when the number

of DoF per processor are small enough for the ASM preconditioner to exhibit better

weak scaling performance than the PCD preconditioner, that the PCD preconditioner

is still significantly faster than the ASM preconditioner for all simulations considered.

160

Refinement 32 64 128 256 512 1024 2048 4096
4K – – 13 / 28 13 / 31 13 / 28 13 / 30 14 / 37 14 / 37
8K – 13 / 22 13 / 27 13 / 27 13 / 31 13 / 28 14 / 33 –
10K 13 / 23 13 / 25 13 / 27 13 / 31 13 / 33 13 / 29 – –
20K 13 / 22 13 / 23 13 / 29 13 / 27 13 / 33 – – –

Table 3.26: GMRES Iterations (average / minimum) running the MARIN problem
with the two-phase PCD preconditioner.

3.6 Conclusions

In this work we have examined several preconditioning strategies for the two-phase

Navier–Stokes equations. Of particular interest has been the introduction of a new

Schur complement preconditioner. One novel feature of this preconditioner is a Schur

complement approximation designed to handle variable density / viscosity Navier–

Stokes equations. In addition, this preconditioner has been constructed in a way to

work effectively on high-performance computing clusters. As shown in this work, the

design and implementation of this algorithm marks a significant improvement over

the current baseline preconditioning strategy used in Proteus.

161

(a) Preconditioner Setup Time

(b) Linear Solve Time

Figure 3-8: Weak Scaling Results for the MARIN simulation using the two-phase
PCD preconditioner.

162

Chapter 4

Conclusions and Future Work

In this work, we developed a computational framework for an axisymmetric linear

elasticity problem and introduced and implemented a new Schur complement ap-

proach to preconditioning the variable density/viscosity two-phase Navier–Stokes

equations. In the axisymmetric linear elasticity chapter, we showed that the fi-

nite element spaces Σh,σ = (BDM1),Σh,σ = (P1), Uh = (P0)2,Wh = (P0), and

Σh,σ = (BDM2),Σh,σ = (P2), Uh = (P1)2,Wh = (P1) form inf-sup stable finite

element pairs. For the variable density/viscosity two-phase Naiver–Stokes precon-

ditioner, we demonstrated the methods scaling potential and implemented a global

Schur complement preconditioner that exhibits a meaningful improvement over the

current preconditioning approach used in Proteus.

As a departure point, this work suggests a number of avenues of future work to

pursue. For the axisymmetric problem, new approaches should be explored to see

whether inf-sup stability can be established for (((BDMk)
2, Pk) × (Pk−1)2 × Pk−1).

Another path forward is to extend this work on the linear elasticity problem into the

poroelasticity problem. As with linear elasticity, this presents another important area

which the axisymmetric literature has not explored.

For the iterative linear solver work, perhaps the most important unresolved problem

at this point is to better understand the role boundary conditions play in precondi-

tioner scaling performance. The next natural problem to consider would be two and

three dimensional versions of the dambreak simulation that include inflow and outflow

163

boundary conditions. As highlighted in section 3.5.2, challenges remain in terms of

scaling GMRES iterations when weakly enforced boundary conditions are used. One

possible reason for this is the way Neumann conditions are treated in Proteus.

164

Appendix A

Axisymmetric Linear Elasticity

Derivation

In this Appendix, we illustrate how using a change of variable from Cartesian to

cylindrical coordinates, the axisymmetric linear elasticity problem can be expressed as

the decoupled meridian and azimuthal problems. Recall that cylindrical coordinates

form a triple (r, θ, z) where r is the radial distance, θ is the azimuthal coordinate

and z is the vertical coordinate. In this section, let Ω̆ denote a three dimensional

axisymmetric domain, Ω represent an (r, z) cross section of Ω̆ and Ωθ denotes the

domain of the θ angle.

A.0.1 Cylindrical Coordinate Operators and Function Spaces

First we define the differential forms and inner products that arise in cylindrical

coordinates. To begin, the cylindrical coordinate unit vectors are denoted er, eθ and

ez. Expressed in terms of Cartesian unit vectors,

er =


cos θ

sin θ

0

 , eθ =


− sin θ

cos θ

0

 and ez =


0

0

1

 . (A.1)

165

One can note from these equations that the cylindrical coordinate unit vectors vary

in space. Moreover, unless otherwise specified, we assume tensors and vectors are

represented in terms of the cylindrical coordinates unit vectors. That is,
φ1

φ2

φ3

 = φ1er + φ2eθ + φ3ez (A.2)

and 
φrr φrθ φrz

φθr φθθ φθz

φzr φzθ φzz

 = φrrerr + φrθerθ + φzzerz + φθreθr + φθθeθθ + φθzeθz

+ φzrezr + φzθezθ + φzzezz

(A.3)

where eij = ei ⊗ ej.

As a result of the spatially varying unit vectors, differential operators in cylindrical

coordinates have a different algebraic form than in Cartesian coordinates. These

operators are not derived here, but details can be found in many sources including

[76].

We use two forms of notation for differential operators in cylindrical coordinates:

∇cyl and ∇axi. The first denotes the complete cylindrical coordinate operator, while

the second represents the cylindrical coordinate operator applied to an axisymmetric

function (recall that
∂u

∂θ
= 0 if u is axisymmetric).

The cylindrical coordinate del operator is

∇cyl = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
. (A.4)

Applied to the scalar function f , this gives the gradient operators

∇cylf =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez and ∇axif =

∂f

∂r
er +

∂f

∂z
ez. (A.5)

166

For a vector function u = (ur, uθ, uz)
t, the gradient tensor is

∇cylu =


∂ur
∂r

1

r

∂ur
∂θ
− uθ

r

∂ur
∂z

∂uθ
∂r

1

r

∂uθ
∂θ

+
ur
r

∂uθ
∂z

∂uz
∂r

1

r

∂uz
∂θ

∂uz
∂z

 and ∇axiu =


∂ur
∂r

−uθ
r

∂ur
∂z

∂uθ
∂r

ur
r

∂uθ
∂z

∂uz
∂r

0
∂uz
∂z

 . (A.6)

For a vector function u = (ur, uz)
t, we also define the gradient operator ∇ such that

∇u =


∂ur
∂r

∂ur
∂z

∂uz
∂r

∂uz
∂z

 . (A.7)

The divergence operator applied to u = (ur, uθ, uz) gives

∇cyl · u =
1

r

∂(r ur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

and ∇axi · u =
1

r

∂(r ur)

∂r
+
∂uz
∂z

. (A.8)

The divergence of an M3 tensor σ is,

∇cyl · σ =



∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ)

∂σθr
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
1

r
(σθr + σrθ)

∂σzr
∂r

+
1

r

∂σzθ
∂θ

+
∂σzz
∂z

+
1

r
σzr

 and

∇axi · σ =



∂σrr
∂r

+
∂σrz
∂z

+
1

r
(σrr − σθθ)

∂σθr
∂r

+
∂σθz
∂z

+
1

r
(σθr + σrθ)

∂σzr
∂r

+
∂σzz
∂z

+
1

r
σzr

 .

(A.9)

A.0.2 Meridian and Azimuthal Subspaces

Next, we assume all functions are axisymmetric and define the meridian and azimuthal

subspaces for tensor and vector functions. In addition, we specify the action of the

differential operators introduced in Section A.0.1 on the meridian and azimuthal

subspaces.

167

The meridian and azimuthal subspaces of αH(∇axi·, Ω̆;M3) are

αHM(∇axi·, Ω̆ ;M3) =

σ ∈ αH(∇axi·, Ω̆;M3) : σ =


σrr 0 σrz

0 σθθ 0

σzr 0 σzz


 , (A.10)

αHA(∇axi·, Ω̆;M3) =

σ ∈ αH(∇axi·, Ω̆;M3) : σ =


0 σrθ 0

σθr 0 σθz

0 σzθ 0


 . (A.11)

Note that αH(∇axi·, Ω̆;M3) = αHM(∇axi·, Ω̆;M3) ⊕ αHA(∇axi·, Ω̆;M3). This decom-

position extends naturally to tensors in αH(∇axi·, Ω̆;K3) as well

αHM(∇axi·, Ω̆;K3) =

σ ∈ αH(∇axi·, Ω̆;K3) : σ =


0 0 σrz

0 0 0

−σrz 0 0


 , (A.12)

αHA(∇axi·, Ω̆;K3) =

σ ∈ αH(∇axi·, Ω̆;K3) : σ =


0 σrθ 0

−σrθ 0 σθz

0 −σθz 0


 . (A.13)

For σ ∈ 1HM(∇axi·, Ω̆;M3),

∇axi · σ =

(
∂σrr
∂r

+
1

r
(σrr − σθθ) +

∂σrz
∂z

)
er +

(
∂σzr
∂r

+
1

r
σzr +

∂σzz
∂z

)
ez (A.14)

and for σ ∈ 1HA(∇axi·, Ω̆;M3),

∇axi · σ =

(
∂σrθ
∂r

+
∂σzθ
∂z

+
1

r
(σrθ + σθr)

)
eθ. (A.15)

168

The meridian and azimuthal subspaces for the displacement space 1L
2(Ω̆) are

1L
2
M(Ω̆) =

u :


ur

0

uz

 ∈ 1L
2(Ω̆)

 and 1L
2
A(Ω̆) =

u :


0

uθ

0

 ∈ 1L
2(Ω̆)

 .

(A.16)

For uM ∈ 1L
2
M(Ω̆) and uA ∈ 1L

2
A(Ω̆), the cylindrical gradient operator (A.6) has the

form

∇axiuM =


∂ur
∂r

0
∂ur
∂z

0
ur
r

0

∂uz
∂r

0
∂uz
∂z

 and ∇axiuA =


0

−uθ
r

0

∂uθ
∂r

0
∂uθ
∂z

0 0 0

 . (A.17)

For uM ∈ 1L
2
M(Ω̆) and uA ∈ 1L

2
A(Ω̆), the divergence operator (A.8) has the form

∇axi · uM =
1

r

∂r(rur)

∂r
+
∂uz
∂z

and ∇axi · uA = 0. (A.18)

Because of axisymmetry, the θ variable does not appear in the meridian or azimuthal

subspaces. Therefore, for functions p, q ∈ 1L
2(Ω̆), we define the axisymmetric cylin-

drical coordinate inner product as

(p, q) =
1

2π

∫∫
Ω

∫ 2π

θ=0

p q r dθ dr dz =

∫∫
Ω

p q r dr dz. (A.19)

When working with the meridian and azimuthal problems, it is helpful to use the fol-

lowing reduced dimensional representations of the meridian and azimuthal subspaces.

To begin, elements u ∈ 1L
2
M(Ω̆;R3), can be represented as R2 vectors


ur

0

uz

→
ur
uz

 ∈ 1L
2(Ω;R2). (A.20)

169

Elements of 1HM(∇axi·, Ω̆,M3) can be represented as an M2 tensor and a scalar

function
σrr 0 σrz

0 σθθ 0

σzr 0 σzz

→
σrr σrz

σzr σzz

 ∈ 1L
2(Ω,M2) and σθθ ∈ 1L

2(Ω) (A.21)

where ∇axi ·

σrr σrz

σzr σzz

 , σθθ

 ∈ 1L
2(Ω).

To specify that the reduced form notation is being used, elements u ∈ 1L
2
M(Ω̆;R3) are

denoted uM . Further, the reduced form of σ ∈ 1HM(∇·, Ω̆,M3) is the pair (σM , σθθ)

where σM is a tensor component and σθθ is a scalar component of σ. Moreover,

∇axi · (σM , σθθ) = ∇axi · σ as defined in (A.14).

Elements of u ∈ 1L
2
A(Ω̆;R3) can be identified with scalar functions


0

uθ

0

→ uθ ∈ 1L
2(Ω) (A.22)

and elements of 1HA(∇axi·, Ω̆;M3), can written as a M2 tensors


0 σrθ 0

σθr 0 σθz

0 σzθ 0

→
σrθ σθr

σθz σzθ

 ∈ 1H(∇axi·,Ω;M2). (A.23)

To indicate the reduced form is being used, for u ∈ 1L
2
A(Ω̆;R3), the reduced form

will be expressed simply as the scalar function uθ. Further, the reduced form of

σ ∈ 1HA(∇axi·, Ω̆;M3), is denoted σA.

Norms in reduced form are inherited from the norms of the original space. For

170

example, taking σ ∈ 1HM(∇axi·, Ω̆,M3),

‖σ‖2

1HM (∇axi·,Ω̆;M3)
= ‖(σM , σθθ)‖2

1HM (∇axi·,Ω)

= ‖∇axi · (σM , σθθ)‖2
1L2(Ω) + ‖(σM , σθθ)‖2

1L2(Ω).
(A.24)

In the following, we take

Σ = {(σ, σ) ∈ 1L
2(Ω,M2)× 1L

2(Ω) : ∇axi · (σ, σ) ∈ 1L
2(Ω)}, (A.25)

Σ = 1H(∇axi·,Ω,M2), (A.26)

U = 1L
2(Ω), and Q = 1L

2(Ω). (A.27)

A.0.3 Axisymmetric Weak Form

At this point, we are ready to define the weak form of the meridian and azimuthal

problems. First we note that the strong form of the axisymmetric linear elasticity

problem (2.12) is

Aσ − 1

2
(∇axiu + (∇axiu)t) = 0 in Ω̆ (A.28)

∇axi · σ = f in Ω̆ (A.29)

where we use clamped boundary conditions as described in (2.14). An axisymmetric

solution to (A.28) and (A.29) can be expressed in terms of the orthogonal subspaces

HA(∇axi·, Ω̆,M3) and HM(∇axi·, Ω̆,M3), and 1L
2
A(Ω̆;R3) and 1L

2
M(Ω̆;R3).

Meridian problem

The first step to derive the meridian problem is to multiply (A.28) with a test function

τ ∈ HM(∇axi·, Ω̆;M3) and integrate. For σ ∈ HM(∇axi·, Ω̆;M3), Aσ has the form

171

(recall the operator A (2.13) for m = 3)

Aσ =
1

2µ


σrr −

λ

2µ+ 3λ
tr(σ) 0 σrz

0 σθθ −
λ

2µ+ 3λ
tr(σ) 0

σzr 0 σzz −
λ

2µ+ 3λ
tr(σ)

 .

(A.30)

Therefore, for τ ∈ HM(∇axi·, Ω̆;M3),

A σ : τ =
1

2µ
(σrrτrr + σθθτθθ + σzzτzz + σrzτrz + σzrτzr −

λ

2µ+ 3λ
tr(σ)tr(τ)).

(A.31)

Using reduced form notation,

A σ : τ =
1

2µ
(σM : τM −

λ

2µ+ 3λ
(tr(σM) + σθθ)tr(τM)

+ σθθτθθ −
λ

2µ+ 3λ
(tr(σM) + σθθ)τθθ)

= AσM : τM +Aσθθ τθθ −
1

2µ

λ

2µ+ 3λ
(σθθ tr(τM)) + tr(σM)τθθ).

(A.32)

Integrating (A.32) over Ω gives the bilinear form aM(·, ·) : Σ×Σ→ R,

aM((σM , σθθ), (τM , τθθ)) = (AσM , τM) + (Aσθθ, τθθ)

− 1

2µ

λ

2µ+ 3λ
[(σθθ, tr(τM)) + (tr(σM), τθθ)].

(A.33)

Next, observe that for u ∈ 1L
2
M(Ω) and (τ , τθθ) ∈ Σ,

−
∫

Ω

∇axiu : τ r dΩ = −
∫

Ω


∂ur
∂r

∂ur
∂z

∂uz
∂r

∂uz
∂z

 :

τrr τrz

τzr τzz

 r dΩ−
∫

Ω

ur
r
τθθ r dΩ

= −
∫

Ω

∇uM : τM r dΩ−
∫

Ω

ur
r
τθθ r dΩ.

(A.34)

172

Next, we apply integration by parts to the expression

−
∫

Ω

∇uM : τM r dΩ = −
∫
∂Ω

ur (τM)1 · n r dΩ +

∫
Ω

ur ∇ · (r (τM)1) dΩ

−
∫
∂Ω

uz(τM)2 · n r dΩ +

∫
Ω

uz ∇ · (r(τM)2)dΩ.

(A.35)

As we are integrating over the domain Ω, the boundary ∂Ω is comprised of two parts.

The first corresponds to the boundary of the entire three dimensional domain ∂Ω

upon which clamped displacement condition uM = 0 is enforced. The second part

of the boundary Γ0 corresponds to the symmetry axis along which the conditions

ur = 0, (τM)1 · n = 0 and (τM)2 · n = 0. Therefore, all of the boundary integrals in

(A.35) vanish so that

−
∫

Ω

∇uM : τM r dΩ =

∫
Ω

ur ∇ · (r (τM)1) dΩ +

∫
Ω

uz ∇ · (r(τM)2)dΩ

=

∫
Ω

uM · ∇axi · (τM) r dΩ.

(A.36)

Thus from (A.34) and (A.36) from we define the bilinear form bM(·, ·) : Σ× U → R

as

bM((τM , τθθ),uM) = (uM ,∇axi · τM)− (ur,
τθθ
r

). (A.37)

For (σ, σθθ ∈ Σ, multiplying the left hand side of (A.29) with a test function v ∈

1L
2
M(Ω) gives

(∇axi · σ) · v = (∂rσrr +
1

r
(σrr − σθθ) + ∂zσrz)vr + (∂rσzr +

1

r
σzr + ∂zσzz)vz

= (∇axi · σM) · vM −
1

r
σθθvr.

(A.38)

From integrating this expression we define the bilinear form

bM((σM , σθθ),vM) = ((∇axi · σM),vM)− (vr,
σθθ
r

). (A.39)

173

Finally, multiplying the right hand side of (A.29) with a test function v ∈ 1L
2
M(Ω)

and integrating, defines the linear functional (fM ,vM).

The meridian problem can now be defined as: Find ((σM , σθθ),uM) ∈ Σ × U such

that

aM((σM , σθθ), (τM , τθθ)) + bM((τM , τθθ),uM) = 0 (A.40)

bM((σM , σθθ),vM) = (fM ,vM)M (A.41)

for all ((τM , τθθ),vM) ∈ Σ× U .

For the weak symmetry constraint (recall (2.19)), we define the bilinear form cM(., .) :

Σ→ R

cM((σM , σθθ), p) = (ρ
M
, p). (A.42)

The meridian problem with weak symmetry is: Find ((σM , σθθ),uM , p) ∈ Σ×U ×Q

such that

aM((σM , σθθ), (τM , τθθ)) + bM((τM , τθθ),uM) + cM((τM , τθθ), p) = 0 (A.43)

bM((σM , σθθ),vM) = (f ,vM)M (A.44)

cM((σM , σθθ), q) = 0 (A.45)

for all ((τM , τθθ),vM , q) ∈ Σ× U ×Q.

Azimuthal Problem

Finally we consider the azimuthal problem. Starting with (A.28) and following the

standard variational approach, we multiply with a test function τ ∈ HA(∇axi·, Ω̆;M3)

and integrate over Ω.

174

Recall that for σ ∈ HA(∇axi·, Ω̆;M3), Aσ has the form

Aσ =
1

2µ


0 σrθ 0

σθr 0 σθz

0 σzθ 0

 . (A.46)

Thus, for all τ ∈ HA(∇axi·, Ω̆;M3), the first term of (A.28) is

A σ : τ =
1

2µ
(σrθτrθ + σθrτθr + σθzτθz + σzθτzθ), (A.47)

and using reduced form notation, Aσ : τ = 1
2µ
σA : τA. Integrating (A.47) defines

the bilinear form aA(·, ·) : Σ× Σ→ R,

aA(σA, τA) =
1

2µ
(σA, τA)A. (A.48)

For the second term in (A.28), taking u ∈ 1L
2
A(Ω̆) and τ ∈ HA(∇axi·, Ω̆;M3), then

integrating by parts gives

−
∫

Ω

∇axiu : τ r dΩ = −
∫

Ω


0

−uθ
r

0

∂uθ
∂r

0
∂uθ
∂z

0 0 0




0 τrθ 0

τθr 0 τθz

0 τzθ 0

 r dΩ

= −
∫

Ω

∇uθ ·

τθr
τθz

 r dΩ +

∫
Ω

τrθ uθ
r

r dΩ.

(A.49)

Integrating the first term by parts

−
∫

Ω

∇uθ ·

τθr
τθz

 r dΩ = −
∫
∂Ω

uθ

τθr
τθz

 · n r ∂Ω +

∫
Ω

uθ ∇ ·

r
τθr
τθz

 dΩ.

(A.50)

175

Since τ · n = 0 on ∂Ω, it follows that

−
∫

Ω

∇axiu : τ r dΩ =

∫
Ω

u · (∇axi · τ) r dΩ. (A.51)

Using the reduced form notation,∫
Ω

u · (∇axi · τ) r dΩ =

∫
Ω

uθ (∂rτrθ + ∂zτzθ +
1

r
(τrθ + τθr)) r dΩ

=

∫
Ω

uθ ∇axi · τA r dΩ.

(A.52)

This defines the bilinear form bA(., .) : Q× Σ→ R as

bA(uθ, τA) = (uθ,∇axi · τA). (A.53)

For σ ∈ HA(∇·, Ω̆,M3), multiplying the left hand side of (A.29) with a test function

v ∈1 L2
A(Ω̆) and integrating over Ω gives∫

Ω

(∇axi · σ) · v r dΩ =

∫
Ω

(∂rσrθ + ∂zσzθ +
1

r
(σrθ + σθr))vθ r dΩ

= bA(vθ,σA).

(A.54)

Therefore, the weak form of the azimuthal problem can be defined as: Find (σA, uA) ∈

Σ×Q such that

aA(σA, τA) + bA(u, τA) = 0 (A.55)

bA(v,σA) = (fθ, v) (A.56)

for all (τA, v) ∈ Σ×Q.

176

Appendix B

Discrete Operator Forms

In this Appendix, we describe how one can derive discrete matrix representations

from continuous differential operators. In Section 3.4.4, it is stated that

B = Q−1BT , B∗ = Q−1B

L = Q−1F, Lp = Q−1Fp

(B.1)

where B and B∗ are the gradient and divergence operators respectively and L and Lp
are advection-diffusion operators for the velocity and pressure space respectively.

To understand where these discrete representations come from, we examine B and

B∗ in more depth. First, let the discrete velocity space be denoted as Vh and Mh

denote the discrete pressure space. Moreover, let {~φi}nui=1 denote a basis for Vh and

let {ψi}npi=1 denote a basis for Mh. Next, consider the discrete negative divergence

operator Dh : Vh →Mh which satisfies

(Dhuh, qh) = (−∇ · uh, qh) for all qh ∈Mh. (B.2)

Moreover, we can express uh ∈ Vh, and ph = Dhuh in terms of finite element basis

functions

uh =
nu∑
i=1

ui~φi, and ph =

np∑
i=1

piψi. (B.3)

177

If we let B denote the matrix representation of (B.2), then row j of Bu becomes

[Bu]j = −
nu∑
i=1

ui(∇ · ~φi, ψj) = (−∇ ·
nu∑
i=1

ui~φi, ψj)

= (Dhuh, ψj) = (ph, ψj)

= (

np∑
i=1

piψi, ψj) =

np∑
i=1

pi(ψi, ψj)

= [Qp]j.

Since this holds for an arbitrary row j, it follows that Bu = Qp. In other words,

B∗ := ∇· = Q−1B.

Similarly, the discrete gradient operator Gh : Mh → Vh satisfies

(Ghph,vh) = (∇ph,vh) = −(ph,∇ · vh) for all vh ∈ Vh. (B.4)

For a given ph, let uh = Ghph, where uh and ph are expressed as in (B.3). Expanding

row j of BTp gives

[BTp]j = −
np∑
i=1

pi(ψi,∇ · ~φj) = (∇
np∑
i=1

piψi, ~φj)

= (∇ph, ~φj) = (uh, ~φj)

= (
nu∑
i=1

ui~φi, ~φj) =
nu∑
i=1

ui(~φi, ~φj)

= [Qu]j.

Since this holds for an arbitrary row j, it follows that BTp = Qu, or B := ∇ =

Q−1BT .

178

Bibliography

[1] N. Ahmed, C. Bartsch, V. John, and U. Wilbrandt, An assessment of

some solvers for saddle point problems emerging from the incompressible Navier–

Stokes equations, Comp. Meth. Appl. Mech. Engin., 331 (2018), pp. 492–513.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, MUMPS:

a general purpose distributed memory sparse solver, in Applied Parallel Comput-

ing. New Paradigms for HPC in Industry and Academia, T. Sorevik, F. Manne,

A. Gebremedhin, and R. Moe, eds., no. 1947 in Lecture Notes in Computer

Science, Springer,Berlin,Heidelberg, 2001, pp. 986–985.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li, Analysis

and comparison of two general sparse solvers for distributed memory computers,

ACM Trans. Math. Software, 27 (2001), pp. 388–421.

[4] V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier, Stabilized mixed

approximation of axisymmetric Brinkman flows, ESAIM Math. Model. Numer.

Anal., 49 (2015), pp. 855–874.

[5] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified

analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer.

Anal., 39 (2001/02), pp. 1749–1779.

[6] D. N. Arnold, F. Brezzi, and J. Douglas, Jr., PEERS: a new mixed

finite element for plane elasticity, Japan J. Appl. Math., 1 (1984), pp. 347–367.

179

[7] D. N. Arnold, J. Douglas, Jr., and C. P. Gupta, A family of higher

order mixed finite element methods for plane elasticity, Numer. Math., 45 (1984),

pp. 1–22.

[8] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer.

Math., 92 (2002), pp. 401–419.

[9] F. Assous, P. Ciarlet, Jr., and S. Labrunie, Theoretical tools to solve the

axisymmetric Maxwell equations, Math. Methods Appl. Sci., 25 (2002), pp. 49–

78.

[10] F. Assous, P. Ciarlet, Jr., S. Labrunie, and J. Segré, Numerical solu-

tion to the time-dependent Maxwell equations in axisymmetric singular domains:

the singular complement method, J. Comput. Phys., 191 (2003), pp. 147–176.

[11] O. Axelsson, X. He, and M. Neytcheva, Numerical solution of the time-

dependent Navier-Stokes equation for variable density–variable viscosity. Part I,

Math. Model. Anal., 20 (2015), pp. 232–260.

[12] A. Baker, R. D. Falgout, T. Kolev, and U. Yang, Scaling Hypres Multi-

grid Solvers to 100,000 Cores, High-Performance Scientific Computing, Springer,

London, 10 2012, pp. 261–279.

[13] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik,

M. Knepley, L. McInnes, K. Rupp, B. Smith, S. Zampini, H. Zhang,

and H. Zhang, PETSc users manual. http://www.mcs.anl.gov/petsc/petsc-

current/docs/manual.pdf, 2016.

[14] A. T. Barker and X.-C. Cai, Scalable parallel methods for monolithic cou-

pling in fluid-structure interaction with application to blood flow modeling, J.

Comput. Phys., 229 (2010), pp. 642–659.

[15] Y. Bazilevs and T. J. R. Hughes, Weak imposition of Dirichlet boundary

conditions in fluid mechanics, Comput. & Fluids, 36 (2007), pp. 12–26.

180

[16] Z. Belhachmi, C. Bernardi, and S. Deparis, Weighted Clément operator

and application to the finite element discretization of the axisymmetric Stokes

problem, Numer. Math., 105 (2006), pp. 217–247.

[17] A. Bentley, Explicit construction of computational bases for RTk and BDMk

spaces in R3, Comput. Math. Appl., 73 (2017), pp. 1421–1432.

[18] M. Benzi and M. A. Olshanskii, Field-of-values convergence analysis of

augmented Lagrangian preconditioners for the linearized Navier-Stokes problem,

SIAM J. Numer. Anal., 49 (2011), pp. 770–788.

[19] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian

preconditioners for the incompressible Navier-Stokes equations, Internat. J. Nu-

mer. Methods Fluids, 66 (2011), pp. 486–508.

[20] A. Bermúdez, C. Reales, R. Rodŕıguez, and P. Salgado, Numerical

analysis of a finite-element method for the axisymmetric eddy current model of

an induction furnace, IMA J. Numer. Anal., 30 (2010), pp. 654–676.

[21] C. Bernardi, M. Dauge, and Y. Maday, Spectral methods for axisymmet-

ric domains, vol. 3 of Series in Applied Mathematics (Paris), Gauthier-Villars,

Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam,

1999. Numerical algorithms and tests due to Mejdi Azäıez.

[22] P. B. Bochev, C. R. Dohrmann, and M. D. Gunzburger, Stabilization of

low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal.,

44 (2006), pp. 82–101.

[23] D. Boffi, F. Brezzi, and M. Fortin, Reduced symmetry elements in linear

elasticity, Commun. Pure Appl. Anal., 8 (2009), pp. 95–121.

[24] D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and

applications, vol. 44 of Springer Series in Computational Mathematics, Springer,

Heidelberg, 2013.

181

[25] N. Bootland, A. Bentley, C. Kees, and A. Wathen, Preconditioners

for Two-Phase Incompressible Navier–Stokes Flow, SIAM J. Sci. Comput., 41

(2019), pp. B843–B869.

[26] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Meth-

ods, vol. 15 of Texts in Applied Mathematics, Springer-Verlag New York, 3 ed.,

2008.

[27] F. Brezzi, On the existence, uniqueness and approximation of saddle-point prob-

lems arising from Lagrangian multipliers, Rev. Française Automat. Informat.

Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129–151.

[28] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15

of Springer Series in Computational Mathematics, Springer-Verlag, New York,

1991.

[29] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox,

Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow

problems, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1691–1700.

[30] J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for

the generalized Stokes problem, Internat. J. Numer. Methods Fluids, 8 (1988),

pp. 869–895.

[31] C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, and

E. Darve, A distributed-memory hierarchical solver for general sparse linear

systems, Parallel Comput., 74 (2018), pp. 49–64.

[32] P. Ciarlet, Jr., B. Jung, S. Kaddouri, S. Labrunie, and J. Zou, The

Fourier singular complement method for the Poisson problem. II. Axisymmetric

domains, Numer. Math., 102 (2006), pp. 583–610.

[33] R. Codina, A stabilized finite element method for generalized stationary incom-

pressible flows, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 2681–

2706.

182

[34] A. Collagrossi and M. Landrini, Numerical simulation of interfacial flows

by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2003), pp. 448–475.

[35] D. M. Copeland, J. Gopalakrishnan, and J. E. Pasciak, A mixed method

for axisymmetric div-curl systems, Math. Comp., 77 (2008), pp. 1941–1965.

[36] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of

direct methods for sparse linear systems, Acta Numer., 25 (2016), pp. 383–566.

[37] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang,

Distance-two interpolation for parallel algebraic multigrid, Numer. Linear Al-

gebra Appl., 15 (2008), pp. 115–139.

[38] H. De Sterck, U. M. Yang, and J. J. Heys, Reducing complexity in paral-

lel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006),

pp. 1019–1039.

[39] S. Deparis, D. Forti, G. Grandperrin, and A. Quarteroni, FaCSI: A

block parallel preconditioner for fluid-structure interaction in hemodynamics, J.

Comput. Phys., 327 (2016), pp. 700–718.

[40] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast It-

erative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford

University Press, 2 ed., 2014.

[41] H. C. Elman, D. Loghin, and A. J. Wathen, Preconditioning techniques for

Newton’s method for the incompressible Navier-Stokes equations, BIT, 43 (2003),

pp. 961–974.

[42] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159

of Applied Mathematical Sciences, Springer-Verlag, New York, 2004.

[43] V. Ervin and E. Jenkins, Stenberg’s sufficiency condition

for axisymmetric Stokes flow, tech. report, Clemson Univer-

sity. http://www.clemson.edu/science/departments/mathematical-

sciences/about/technical-reports.html.

183

[44] V. J. Ervin, Computational bases for RTk and BDMk on triangles, Comput.

Math. Appl., 64 (2012), pp. 2765–2774.

[45] V. J. Ervin, Approximation of axisymmetric Darcy flow using mixed finite el-

ement methods, SIAM J. Numer. Anal., 51 (2013), pp. 1421–1442.

[46] V. J. Ervin, Approximation of coupled Stokes-Darcy flow in an axisymmetric

domain, Comput. Methods Appl. Mech. Engrg., 258 (2013), pp. 96–108.

[47] R. D. Falgout, J. E. Jones, and U. M. Yang, The design and implementa-

tion of hypre, a library of parallel high performance preconditioners, in Numerical

solution of partial differential equations on parallel computers, vol. 51 of Lect.

Notes Comput. Sci. Eng., Springer, Berlin, 2006, pp. 267–294.

[48] R. S. Falk, Finite element methods for linear elasticity, in Mixed Finite El-

ements, Compatibility Conditions, and Applications. Lecture Notes in Mathe-

matics, D. Boffi and L. Gastaldi, eds., Spring-Verlag Berlin Heidelberg, 2008,

pp. 159–194.

[49] M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the

Stokes problems: a unified approach, Numer. Math., 76 (1997), pp. 419–440.

[50] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes

equations, Springer Monographs in Mathematics, Springer, New York, sec-

ond ed., 2011.

[51] P. P. Grinevich and M. A. Olshanskii, An iterative method for the Stokes-

type problem with variable viscosity, SIAM J. Sci. Comput., 31 (2009), pp. 3959–

3978.

[52] S. Groß, V. Reichelt, and A. Reusken, A finite element based level set

method for two-phase incompressible flows, Comput. Vis. Sci., 9 (2006), pp. 239–

257.

184

[53] J. Guermond, P. Minev, and J. Shen, An overview of projection meth-

ods for incompressible flow, Comput. Methods Appl. Mech. Engrg., 195 (2006),

pp. 6011–6045.

[54] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-

Neumann formulation, subgrid scale models, bubbles and the origins of stabilized

methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), pp. 387–401.

[55] T. J. R. Hughes, M. Mallet, and A. Mizukami, A new finite element for-

mulation for computational fluid dynamics. II. Beyond SUPG, Comput. Methods

Appl. Mech. Engrg., 54 (1986), pp. 341–355.

[56] C. Johnson and B. Mercier, Some equilibrium finite element methods for

two-dimensional elasticity problems, Numer. Math., 30 (1978), pp. 103–116.

[57] D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state

Navier-Stokes equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[58] C. E. Kees, I. Akkerman, M. W. Farthing, and Y. Bazilevs, A conser-

vative level set method suitable for variable-order approximations and unstruc-

tured meshes, J. Comput. Phys., 230 (2011), pp. 4536–4558.

[59] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski,

and B. Buchner, A volume-of-fluid based simulation method for wave impact

problems, J. Comput. Phys., 206 (2005), pp. 363–393.

[60] F. Kong and X.-C. Cai, A highly scalable multilevel Schwarz method with

boundary geometry preserving coarse spaces for 3D elasticity problems on do-

mains with complex geometry, SIAM J. Sci. Comput., 38 (2016), pp. C73–C95.

[61] F. Kong and X.-C. Cai, A scalable nonlinear fluid-structure interaction solver

based on a Schwarz preconditioner with isogeometric unstructured coarse spaces

in 3D, J. Comput. Phys., 340 (2017), pp. 498–518.

185

[62] I. N. Konshin, M. A. Olshanskii, and Y. V. Vassilevski, ILU precon-

ditioners for nonsymmetric saddle-point matrices with application to the incom-

pressible Navier-Stokes equations, SIAM J. Sci. Comput., 37 (2015), pp. A2171–

A2197.

[63] Y.-J. Lee and H. Li, On stability, accuracy, and fast solvers for finite element

approximations of the axisymmetric Stokes problem by Hood-Taylor elements,

SIAM J. Numer. Anal., 49 (2011), pp. 668–691.

[64] X. S. Li, An overview of SuperLU: algorithms, implementation, and user inter-

face, ACM Trans. Math. Software, 31 (2005), pp. 302–325.

[65] X. S. Li and J. W. Demmel, SuperLU−DIST: a scalable distributed-memory

sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software,

29 (2003), pp. 110–140.

[66] D. Logan, A First Course In The Finite Element Method, Cengage Learning,

5 ed., 2012.

[67] S. Lungten, W. H. Schilders, and J. M. Maubach, Threshold incomplete

factorization constraint preconditioners for saddle-point matrices, Linear Algebra

and its Applications, 545 (2018), pp. 76–107.

[68] D. A. May, J. Brown, and L. Le Pourhiet, A scalable, matrix-free multi-

grid preconditioner for finite element discretizations of heterogeneous Stokes flow,

Comput. Methods Appl. Mech. Engrg., 290 (2015), pp. 496–523.

[69] B. Mercier and G. Raugel, Résolution d’un problème aux limites dans un

ouvert axisymétrique par éléments finis en r, z et séries de Fourier en θ, RAIRO

Anal. Numér., 16 (1982), pp. 405–461.

[70] M. E. Morley, A family of mixed finite elements for linear elasticity, Numer.

Math., 55 (1989), pp. 633–666.

186

[71] J. Moulin, P. Jolivet, and O. Marquet, Augmented Lagrangian precondi-

tioner for large-scale hydrodynamic stability analysis, Comp. Meth. Appl. Mech.

Engin., 351 (2019), pp. 718–743.

[72] M. Oh, A new approach to the analysis of axisymmetric problems, IMA J. Nu-

mer. Anal., 34 (2014), pp. 1686–1700.

[73] M. A. Olshanskii, J. Peters, and A. Reusken, Uniform preconditioners

for a parameter dependent saddle point problem with application to generalized

Stokes interface equations, Numer. Math., 105 (2006), pp. 159–191.

[74] M. A. Olshanskii and A. Reusken, Analysis of a Stokes interface problem,

Numer. Math., 103 (2006), pp. 129–149.

[75] M. A. Olshanskii and Y. V. Vassilevski, Pressure Schur complement pre-

conditioners for the discrete Oseen problem, SIAM J. Sci. Comput., 29 (2007),

pp. 2686–2704.

[76] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equa-

tions, vol. 113 of International Series of Numerical Mathematics, Birkhäuser

Verlag, Basel, 1993.

[77] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.

Comput., 14 (1993), pp. 461–469.

[78] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and

Applied Mathematics, Philadelphia, PA, second ed., 2003.

[79] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algo-

rithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.,

7 (1986), pp. 856–869.

[80] F. Shakib, T. J. R. Hughes, and Z. Johan, A new finite element formu-

lation for computational fluid dynamics. X. The compressible Euler and Navier-

Stokes equations, Comput. Methods Appl. Mech. Engrg., 89 (1991), pp. 141–219.

Second World Congress on Computational Mechanics, Part I (Stuttgart, 1990).

187

[81] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes sys-

tems. II. Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994),

pp. 1352–1367.

[82] R. Stenberg, On the construction of optimal mixed finite element methods for

the linear elasticity problem, Numer. Math., 48 (1986), pp. 447–462.

[83] R. Stenberg, A family of mixed finite elements for the elasticity problem, Nu-

mer. Math., 53 (1988), pp. 513–538.

[84] K. Stüben, Algebraic multigrid (AMG): an introduction with applications, in

Multigrid, U. Trottenberg, C. Oosterlee, and A. Schüller, eds., Academic Press,

2001.

[85] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001),

pp. 281–309. Numerical analysis 2000, Vol. VII, Partial differential equations.

[86] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow

computations, in Advances in applied mechanics, Vol. 28, vol. 28 of Adv. Appl.

Mech., Academic Press, Boston, MA, 1992, pp. 1–44.

[87] L. N. Trefethen and D. Bau, III, Numerical linear algebra, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[88] M. ur Rehman, C. Vuik, and G. Segal, SIMPLE-type preconditioners for

the Oseen problem, Internat. J. Numer. Methods Fluids, 61 (2009), pp. 432–452.

[89] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in

primitive variables, J. Comput. Phys., 65 (1986), pp. 138–158.

[90] F. Veubeke, A conforming finite element for plate bending, Int. J. Solids Struc-

tures, 4 (1968), pp. 95–108.

[91] F. Veubeke, Displacement and equilibrium models in the finite element method,

Int. J. for Numer. Meth. Engng, 52 (2001), pp. 287–342.

188

[92] Y. Wu and X.-C. Cai, A fully implicit domain decomposition based ALE

framework for three-dimensional fluid-structure interaction with application in

blood flow computation, J. Comput. Phys., 258 (2014), pp. 524–537.

[93] J. Xu and L. Zikatanov, Algebraic multigrid methods, Acta Numer., 26

(2017), pp. 591–721.

[94] U. M. Yang, Parallel algebraic multigrid methods—high performance precondi-

tioners, in Numerical solution of partial differential equations on parallel comput-

ers, vol. 51 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2006, pp. 209–236.

[95] Z. Q. Zhou, J. O. De Kat, and B. Buchner, A nonlinear 3-D approach

to simulate green water dynamics on deck, in Proc. 7th Int. Conf. Num. Ship.

Hydrod., J. Piquet, ed., Nantes, 1999, pp. 5.1–1, 15.

189

	A Computational Framework for Axisymmetric Linear Elasticity and Parallel Iterative Solvers for Two-Phase Navier–Stokes
	Recommended Citation

	tmp.1590591963.pdf.9kydw

