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Abstract

Molecular dynamics (MD) is a widely used tool to study molecular systems

on atomic level. However, the timescale of a traditional MD simulation is typically

limited to nanoseconds. Thus many interesting processes that occur on microseconds

or larger timescale can’t be studied. Hyperdynamics provides a way to extend the

timescale of MD simulation. In hyperdynamics, MD is performed on a biased poten-

tial then corrected to get true dynamics provided certain conditions are met. Here,

we tried to study potassium channel conductance using the hyperdynamics method

with a bias potential constructed based on the potential of mean force of ion translo-

cation through the selective filter of a potassium ion channel. However, when MD

was performed on this biased potential, no ion translocation events were observed.

Although some new insights were gained into the rate-limiting steps for ion mobility

in this system from these negative results, no further studies are planned with this

project.

The second project is based on the assumption that hybrid human–computational

algorithm is more efficient than purely computational algorithm itself. Such ideas have

already been studied by many “crowd-sourcing” games, such as Foldit [1] for the pro-

tein structure prediction problem, and QuantumMoves [2] for quantum physics. Here,

the same idea is applied to cluster structure optimization. A virtual reality android

cellphone app was developed to study global optimization of Lennard-Jones clusters
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with both computational algorithm and hybrid human–computational algorithm. Us-

ing linear mixed model analysis, we found statistically significant differences between

the expected runtime of both methods, at least for cluster of certain sizes. Further

analysis of the data showing human intelligence weakened the strong dependence of

the efficiency of the computationl method on cluster sizes. We hypothesis that this is

due to that humans are able to make large moves that allows the alogrithm to cover a

large region in the potential energy surface faster. Further studies with more cluster

sizes are needed to draw a more complete conclusion. Human intelligence can poten-

tially be integrated into more advanced optimization technique and applied to more

complicated optimization problems in the future. Patterns analysis of human behav-

iors during the optmization process can be conducted to gain insights of mechanisms

and strategies of optimization process.
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Chapter 1

Introduction

1.1 Molecular Dynamics

Molecular dynamics (MD) is a simulation technique that enables the study of

microscopics interaction between atoms and molecules to help us understand the un-

derlying mechanisms for interesting macroscopic phenomena such as protein folding.

Compared to the other major family of classical simulation techniques, Monte Carlo

(MC), MD has the advantage of being able to determine both the thermodynamic and

dynamic properties of the simulated system. It does so by producing the trajectories

of atoms and molecules using Newtonian mechanics.

Newton’s second law states that

−→
F (−→x ) = m−→a , (1.1)

where
−→
F is the force acting on an object, m is the mass of the object and −→a is the

acceleration the object gains, which can also be written as the second derivative of

position −→x with respect to time t, d2−→x
dt2

.
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The force acting on an object can be calculated using its potential energy

funtion(V (−→x )) by the following equation

−→
F (−→x ) = −

−→
∇V (−→x ). (1.2)

Combining those two equations, we get the following equation of motion

m
d2−→x
dt2

= −
−→
∇V (−→x ). (1.3)

To model the physical movement of a 3-dimensional N -particle assembly, we

need to solve 3N coupled 2nd-order differential equations. When N gets large, the

anaytical solution is very hard if not impossible to determine. The numerical solution,

however, is straightforward.

There are many algorithms to solve the problem numerically. Velocity Verlet

[3] is one of the most popular numerical integrators. It is time reversible, symplectic

and has a global error of order two. The algorithm takes the initial positions and

velocities as the input and calculates the initial accelerations of the particles. It then

repeatly performs the following steps:

1. −→x (t+ ∆t) = −→v (t) + 1
2
−→a (t)∆t

2. calculate−→a (t + ∆t) using equation 1.3 and updated positions

3. −→v (t+ ∆t) = −→v (t) + 1
2
(−→a (t) +−→a (t+ ∆t))∆t

The timestep ∆t used by the integrator is a significant parameter in MD

simulations. A large timestep is desirable, in that we can model events on a larger

time scale with a reasonable running time. However, the larger the timestep we

use, the greater the error in the trajectory becomes. In practice, the timestep is
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usually chosen to be roughly one tenth of the timescale of the fastest motion in the

system. For certain systems where the event we are interested in occurs infrequently

and quickly, a variable timestep can be used to obtain longer simulation without

sacrificing accuracy of the result.

The trajectory data generated by MD ({x(t)}, {v(t)}) is useful for both kinetic

and thermodynamic study. It can be treated as a time series and allows correlations

and rates of the transition between states to be determined. We can also discard the

time evolution information and treat each data point in the trajectory as a Boltzmann

sampling result of the equilibrium system to determine the thermodynamic properties,

assuming our system is ergodic. The ergodic hypothesis states that a system spends

its time in all accessible microstates with a probability proportional to e−βE, where

E is the energy of the microstate, over a long period of time. Thus, the time average

of a ergodic system is equivalent to its ensemble average. A thermodynamic property

M can be calculted by the following equation:

< M >=
1

T

N∑
i=0

M(ti)∆ti, (1.4)

where ∆t is the time step size used by the integrator, N is the number of iterations

the integrator performs and T =
∑N

i=0 ∆ti is the total simulation time of the MD

simulation.

Basic MD simulations conserve the total energy of the system. Sometimes,

to match the existing experimental conditions, we would like the system to main a

constant temperature (T ) and/or pressure (P ). A thermodstat or a barostat is then

needed. There are generally three types of methods to control the T and P : Ad

hoc methods (velocity rescaling, berendsen [4]...) are the fastest and simplest. They

control T and P by directly adjusting the system velocities and volume to or toward
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a precomputed desired value. Such methods do not preserve the correct distribution

of the velocities and volume. The most represtentative of stochastic methods is the

Langevin thermostat and barostat, which model the surroundings as Brownian solvent

and control the T and P using random forces [5]. The resulting Langevin dynamics

extend basic MD with the following equation of motion:

m
d2−→x
dt2

= −
−→
∇V (−→x )−mγd

−→x
dt

+
−→
R, (1.5)

where γ is the friction coefficient characterizing the Brownian solvent and
−→
R is the

random Brownian force. A typical extended-system method is the Nose-Hoover ther-

mostat [6, 7], which couples an large external heat bath to the system and controls

the system T with heat transfer between the system and the heat bath.

1.2 The CHARMM Force Field

The quality of a computational simulation largely depends on the quality of

the potential energy function used. There are many existing force fields (the collec-

tions of the potential energy function and all the parameters in it) based on different

experimental data and quantum chemistry calculations at varying levels of theory.

The most widely used ones for biomolecular systems include CHARMM [8, 9], AM-

BER [10] and OPLS [11].

In this study, we used the CHARMM36 force field [9]. The potential energy

5



function includes the following components:

Vbond =
∑
bonds

kb(b− b0)2 (1.6)

Vangle =
∑

angles

kθ(θ − θ0)2 (1.7)

VUrey−Bradley =
∑

Urey−Bradley

ku(u− u0)2 (1.8)

Vdihedral =
∑

dihedrals

kφ[1 + cos(nχ− δ)] (1.9)

Vimproper =
∑

impropers

kψ(ψ − ψ0)2 (1.10)

VvdW =
∑

nonbonded

ε[(
Rminij

rij
)12 − (

Rminij

rij
)6] (1.11)

Velectrostatic =
∑

nonbonded

qiqj
εrij

(1.12)

VCAMP = f(χ1, χ2) (1.13)

The first five terms account for the internal interactions between bonded atoms. More

specifically, Vbond describes the bond stretching between 2 bonded atoms. Vangle and

VUrey−Bradley describe the bond bending between 3 bonded atoms. Vdihedral and Vimproper

describe dihedral rotation and out of plane bending between 4 bonded atoms respec-

tively. The external interaction between nonbonded atoms are represented by the

next two terms. VvdW describes the distance-dependent van der Waals attraction and

repulsion between a pair of nonbonded atoms. Velectrostatic describes the electrostatic

interaction between two charged nonbonded atoms. The last term, VCAMP accounts

for the correlation of the central two dihedral angles χ1 and χ2 in a dipeptide allowing

more realistic protein backbone conformations. Figure 1.1 gives a graphic illustration

of these terms.
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Figure 1.1: The CHARMM36 potential energy function.

1.3 Hyperdynamics

As mentioned in section 1.1, the timestep, ∆t, is usually chosen to be small

enough to cover the fastest the motion in the system to ensure numerical stability. The

vibration of covalent bonds with hydrogen is the fastest motion in most biological and

chemical systems and happens on timescales of approximately 10-20 femtoseconds.

Thus a timestep of 1 fs is necessary to maintain integrator accuracy. As a result, with

feasible computational resources, MD simulations rarely exceeds 109 steps or a few

micoseconds of physical time [12].

However, many events of interest occur on a much larger timescale. For ex-

ample, protein folding happens on timescales of microseconds to milliseconds [13].

Dissociation of a weak acid in water takes a few milliseconds. Vapor-deposited film

growth takes place over a timescale of seconds. To study such events, at least one time
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series with desired time length needs to be obtained. Furthmore, for the observation

to be statistically meaningful, multiple events need to be sampled.

Many efforts have been put forth in addressing this limitation. The SHAKE

[14] (for Verlet algorithm)/RATTLE [15] (for velocity Verlet) methods can be applied

to constrain bond lengths and thus remove the fastest motion, bond vibration of

covalent bonds involving hydrogen, in the system allowing a larger timestep to be

used.

Transition State Theory (TST) [16,17] takes a different direction in bypassing

the problem. For many molecular processes, the dynamic bottleneck is the rare

event of crossing a high energy barrier, relative to the thermal energy, between two

potential basins. Instead of sampling a single trajectory long enough for this rare

event to happen, which is very likely to exceed the pratical MD timescale, TST

treats the transition rate as an equilibrium property and calculates it using a two-

step procedure [18]. The system is first moved from the reactant state reversibly

to the transition state surface to determine probability for reaching the transition

state. Then many short trajectories are initated at the transition state surface and

the probability of actually passing over the transition state surface is determined by

the fraction of the trajectories that directly go to the product state. Combining these,

the TST rate can be obtained. Mathematically, the TST rate for eascaping a state

A can be expressed with the following formula:

kTSTA→ = 〈|vA|δA(−→r )〉A, (1.14)

where vA is the velocity normal to the transition surfaces that accounts for the proba-

bility of the actual crossing and δA(r) is the Dirac delta function that accounts for the

probability of the system being at the transition surface [19]. Even though theoreti-
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cally sound, in practice, TST is not easily applied to many systems because the states

of the system are often unknown and the transition surface between those states is

hard to characterize.

Hyperdynamics [19–22] is a TST-based method to extend the time scale of

MD but without having the knowledge of system states or transition surfaces ahead

of time. It is built on TST’s basic assumption that the TST rate is an equilibrium

property of the system. It also incorporates the idea of importance sampling by

introducing a bias potential (∆Vb(
−→r )) to the original system. The bias potential

needs to be zero on the dividing surface and nonnegative elsewhere. With some

manipulations of equation 1.14, the TST rate on the biased potential can be expressed

as the following:

kTSTAb→ = kTSTA→ 〈eβ∆Vb(
−→r )〉Ab , (1.15)

where Ab represents the biased state A. Since the bias potential is nonnegative, term

〈eβ∆Vb(
−→r )〉Ab must be larger than or equal to 1, thus kTSTAb→ ≥ kTSTA→ . We get faster

dynamics with the biased potential. Furthermore, if we compute the relative rates of

escaping from state A to its adjacent states B and C (assuming the bias potenital

does not remove those basins), we get an important property of hyperdynamics:

kTSTAb→B

kTSTAb→C
=
kTSTA→B
kTSTA→C

, (1.16)

which states that with the biased potential, the probability of the system evolving

from one state to another is the same as that for the unbiased system. So not only do

we get acclerated dynamics, we also get correct ordering of state-to-state dynamics.

The average boost factor is defined by the ratio of the total time the system has

9



envolved and the total time of the MD simulation:

t

tMD

= 〈eβ∆Vb(
−→r )〉 =

1

N

N∑
i=1

eβ∆Vb[
−→r (ti)], (1.17)

where N is the total number of MD steps and ti is the time at the ith MD step. The

overall computational speedup for hyperdynamics is the average boost factor offset

by the extra cost of evaluating the bias potential.

1.4 Potential of Mean Force

The potential of mean force (PMF) [23], the free energy profile along a specific

reaction coordinate, can be used to study various complex biological processes such

as ion permeation through ion channels and enzyme catalysis.

There are a few methods that can be used to calculate the PMF. Popular and

widely used ones include thermodynmaic integration [24], free energy perturbation

[25], force constraint [26] and umbrella sampling [27] with weighted histogram analysis

method (WHAM) [28]. The last one is used in this study and explained in detail in

the following paragraphs.

Based on statistical mechanics, the free energy in the canonical ensemble

along a chosen reaction coordinate ξ = ξ(q) (assuming a geometrical reaction co-

ordinate)/PMF can be determined by the following equation:

A(ξ) = −kBT lnP (ξ) + C, (1.18)

where C is a constant and P (ξ) is the probability distribution. P (ξi)dξ at a particular

value of the reaction coordinate ξi can be approximated by the fraction of data points

generated by MD simulations in which the system has ξ ∈ [ξi, ξi + dξ]. A issue of
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practical importance, is that due to high energy barriers in the energy landscape and

finite simulation time, the system is likely to be stuck in some basins leaving the rest

of the configuration space poorly sampled or completely unsampled. This will cause

great statistical errors for the probability estimation and in turn, affect the PMF

calculation. Umbrella sampling addresses the issue by adding a harmonic biasing

funciton

Vi(ξ) =
1

2
k(ξ − ξi)2 (1.19)

to the original energy surface. The system is restrained to sample ξi and its neighbor-

hood allowing a statistically significant estimation of the biased probability at that

region. The original PMF can be produced with the biased probability through

Ai(ξ) = −kBT lnP ′(ξi)− Vi(ξ) + Ci, (1.20)

where Ci is a constant depending on Vi. To ensure sufficient sampling along the whole

reaction coordinate, a series of simulations each with a harmonic potential added at

different ξi values can be performed. The results from each simulation ({Ai(ξ)}) are

then combined by WHAM, which adjusts the Ci to minimize the difference between

the individual distributions in their overlapping regions, to give the final PMF (A(ξ)).
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Chapter 2

Ion channel conductance with

hyperdynamics

2.1 Introduction

Voltage-gated potassium (Kv) ion channels play an essential role in the gen-

eration and propagation of electrical signals in the nervous system. As the name

suggests, they open/close in response to changes in the transmembrane potential.

Upon activation, these channels allow rapid and selective passive flow of potassium

ions from the intracellular space to extracellular space to repolarize the action po-

tential. Potassium ions flow at a rate of approximately 108 ions per second in a

concentration gradient of 140mM to 5mM, from intracellular to extracellular space,

respectively.

Mutations in Kv channels have been found to be responsible for many diseases

such as episodic ataxia with myokymia syndrome, and long QT syndrome [29]. Such

mutations may either cause failure in producing functional channels (ex. Arg174Cys,

Glu261Lys in KCNQ1) or alter the channel kinetics so as to reduce conductance (ex.

12



Leu272Phe, Ala300Thr in KCNQ1), change selectivity (ex. Asn629Asp in HERG),

shift the voltage-dependence of activation to a more positive or negative potential (ex.

Arg243His, Trp258Arg in KCNQ1), or slow or accelerate activation or deactivation

(ex. Arg243Cys, Arg243His in KCNQ1) [29].

The structure of Kv channels (Fig. 2.1) has 4 identical α subunits arranged

symmetrically around a central pore inside the membrane. There are also intracellular

β subunits that co-assemble with the α subunits to modulate the activity of the

channel and stabilize the multimeric complex. Each α subunit is composed of six

membrane-spanning hydrophobic α-helical sequences. The peripheral four helices

from each subunit form the voltage sensor domain while the inner helices form the

pore domain. The narrowest part of the pore (selective filter, SF) is close to the

extracellular side and is responsible for the selectivity of the channel. It’s composed

of five amino acids (TVGYG) and is highly conserved among potassium channels.

Those five amino acids form 5 binding sites (S0-S4), which can be occupied either by

a potassium ion or a water molecule. Below the SF in the pore domain is the wide

diffuse cavity which helps overcome the dielectric barrier caused by the membrane [30].

Because of the biological importance of potassium channels and the avail-

ability of high resolution crystal structures (PDB ID: 2A79, 2R9R) [31, 32], many

computational studies have been performed to study the ion-binding sites and per-

meation pathways [33–35], ion conductance [34–38], selectivity [39–41] and channel

gating [34, 42–44] on the atomistic level. Among all simulation methods, molecular

dynamics (MD), in which one propagates the classical equations of motion forward in

time, has been widely used because of its ability to study the dynamical properties of

a system. However, since accurate integration requires time steps short enough (∼fs)

to resolve atomic vibrations, the timescale of a traditional all-atom MD simulation is

typically limited to nanoseconds. As mentioned before, a typical ion permeation pro-
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Figure 2.1: Kv channel (PDB ID: 2R9R)
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cess under physiological conditions occurs on a timescale of nanoseconds. Thus, direct

measurement of ion conductance, which would involve at least tens of ion permeation

events to generate meaningful statistics, is quite challenging. This does not even

consider gating events, which occur on a much longer timescale than ion conduction.

To study ion conductance with MD simulation, therefore, unphysically high

voltages have been applied [37]. Though ions passing across the membrane can be ob-

served this way, the dynamics might be distorted due to the unphysiological conditions

used in these MD simulations [37, 38]. In another approach to address the timescale

problem, a study has been done with a special machine designed to run millisecond-

timescale MD simulations [35]. In that study, potassium ion concentration (0.6 M) at

which saturation of conductance is reached was used instead of physiological concen-

tration (0.15 M) to maximize ion permeation. Though enough ion permeations were

observed to allow a measurement of the current, it was much lower than experimental

data and the I–V curve vas not linear. Thus, more studies need to be done to fully

understand ion conductance in Kv channels and a more general method to overcome

the MD timescale limitation is desired.

Hyperdynamics is a powerful method to extend the time scale in MD simu-

lations [19–22]. In the hyperdynamics approach, the potential energy surface of a

system is modified by a bias potential, designed to raise the energy in regions other

than at the dividing surface, and molecular dynamics are performed on this biased

energy surface. Because the wells in the biased energy surface are not as deep as

those in the unbiased one, when the system gets trapped, it escapes that state at

an accelerated rate. And if the potential is not modified at the dividing surface,

and if transition state theory (TST) is valid for the system and the biased poten-

tial, the system evolves from state to state in a sequence representative of the exact

dynamics [19].
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In practice, the difficulty of implementing hyperdynamics lies in building bias

potentials that strictly satisfy the requirements (i.e. vanish at any transition state

or dividing surface, and generate kinetics which should obey TST) while providing

substantial acceleration of the dynamics. Several different types of bias potentials

have been proposed since hyperdynamics was first introduced. The first was Voter’s

original Hessian-based method where the bias potential is positive for regions where

the lowest eigenvalue of the Hessian is positive and zero elsewhere [19]. Another is

the “bond-boost” method where the bias potential is determined by the deviation of

the bond lengths of a specified set of atoms from their equilibrium values, and turned

off if the distortion of any bond exceeds a predefined threshold [45]. In cases where

suitable reaction coordinates are known, “collective variable-driven hyperdynamics”

methods can be used, in which the bias potential depends only on a global collective

variable calculated from local distortions of a set of local properties and is turned off

if any local property is involved in a transition somewhere in the system [46]. When

the dividing surfaces are understood, it is possible to use a “ridge-based” method,

where the bias potential is a constant value if the system is far from the ridge and the

total biased potential is set to the energy of the transition state if the system is near

the ridge [47]. The difficulties in using many of these bias potentials are that they

often require on some prior knowledge about the system, and thus are not suitable for

general systems, and their effectiveness often decreases rapidly with dimensionality.

Generally speaking, then, hyperdynamics is not suitable for accelerating dy-

namics in complex biological systems. First, TST is often not a good approximation

for reactions in solution. Second, the number of degrees of freedom required to model

biological systems is typically very large compared to that needed to model solid state

systems, because complex biological processes involve various types of nonbonded in-

teractions, with a wide range of energy barriers. Building a proper bias potential for
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a large system with a complex energy surface is quite challenging if possible at all.

However, the potassium ion channel is quite special. The pore structure is

similar among different channels in the family and the selective filter structure is ex-

actly conserved. The ion binding sites and permeation pathway have been extensively

studied. And Hodgkin and Keynes’s knock-on model [48] is widely accepted as the

mechanism of ion permeation across the potassium channel with both experimental

and computational supporting evidence. The rate-limiting step in the conduction

process is usually assumed to be potassium ions passing through the SF in single file,

which is further thought to be well described by a low-dimensional free energy profile

or potential of mean force (PMF). Based on this prior knowledge, the idea comes that

we can build a bias potential based on a a 2D PMF and perform MD on the resulting

biased energy surface. If the bias potential is good enough and provided those widely

held views about potassium channels match the true channel behavior, it should be

possible to use this approach to speed up the ion permeation process and measure

the channel conductance quantitatively. It should be emphasized that our method

does not meet all of the conditions required by hyperdynamics, thus the dynamics we

get might be distorted. However, since some features about the true energy surface

are included in the bias potential, it is expected that the method should give a better

approximation to the true dynamics than simply applying a constant strong electrical

field.
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2.2 Methods

2.2.1 System building and MD simulation

The membrane protein system was built mainly using the CHARMM-GUI

tools [49]. The protein structure of the Kv1.2-Kv1.1 chimera (Kvchim, PDB ID:

2R9R) was obtained from the OPM (orientations of protein in membranes) [50]

database. Only the pore and voltage sensor domains (resid id: 148-417) were kept.

The protein was embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)

bilayer. The whole system was solvated in 0.15 M KCl. Additional K+ ions were used

to keep system neutral. The final system has a volume of 113.243×113.243×86.701Å
3

large with a total of 100,335 atoms. Three potassium ions were initially placed in the

SF, separated by single water molecules.

Molecular dynamics simulations were performed using NAMD2.10 [51]. The

system first underwent energy minimization for 10 ps. Harmonic potentials with

spring constants of 10 kcal ·mol−1 · Å−2
were first applied to the protein and lipid.

The constraints were gradually released during the roughly 30 ns equilibration. A

timestep of 1.0 fs was used in the beginning several stages of the equilibration and then

was switched to 2.0 fs until the end of the equilibration. The temperature was held

at 303.15 K using a Langevin thermostat with a damping coefficient of 1.0 ps−1. The

pressure was maintained at 1 atm using a Langevin piston barosat with an oscillation

period of 50 fs and a damping time constant of 25 fs. Electrostatic interactions

between charged atoms were calculated using the particle mesh Ewald method [52].

Van der Waals interactions were truncated at 12 Å with a switching function applied

from 10 Å. RATTLE was used to constraint the length of all bonds involving a

hydrogen atom. The root mean standard deviation (RMSD) from the initial structure

was calculated using CHARMMc39 to confirm the system’s equilibrium state.
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2.2.2 Umbrella sampling and 2D PMF calculation

We followed the method of Fowler [53] which is a slightly simplified version of

the method of Berneche and Roux [33] and make the following definition: The pore

axis is parallel to the Z axis with the origin at the center of mass of the backbone

atoms of the residues TVGY in the selective filter. Ions in the selective filter are

labeled 1 to 3 in successive order starting from the outermost ion (i.e. the one closest

to the extracellular end). The configuration of the selective filter is described by a

point in the (Z12, Z3) space with Z12 corresponding to the center of mass of ions 1

and 2 along the pore axis and Z3 corresponding to position of ion 3 along the pore

axis.

For the umbrella sampling PMF calculations, a total of 182 independent sim-

ulations of 600 ps with a biasing harmonic potential centered on Z12 and Z3 (varying

successively from −5.0 Å to −11.0 Å and 4.0 Å to −2.5 Å, respectively, every 0.5 Å)

were generated with a force constant of 20 kcal ·mol−1 · Å−2
using NAMD2.10. The

first 200 ps of each simulation was considered as equilibration and was thus discarded.

Any frames with two adjacent ions with no intervening water were discarded.

The umbrella sampling simulations were unbiased and merged using the weighted

histogram analysis method (WHAM) [54] to calculate the two dimensional potential

of mean force (PMF).

2.2.3 Hyperdynamics method

Based on the 2D PMF generated from umbrella sampling, three Gaussians

were constructed in a way that raised the lowest-energy basins while affecting the

transition state as little as possible. The three Gaussians were then used as the bias

added to the system during molecular dynamics simulation. This was done using the
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Tcl scripting interface provided by NAMD. With a user defined Tcl script, external

forces were calculated from the bias and applied to involved atoms. Additionally,

a constant electric field of 2.306 kcal/(mol · e), corresponding to a voltage of 100

mV (upper limit of voltages used in most experimental studies of voltage potassium

channel conduction properties) across the simulation cell, was also applied.

2.3 Results and Discussion

MD simulations of the pore and voltage sensor domains were carried out. Fig.

2.2 shows a molecular representation of the simulation system.

Properties of the system (total energy, volume, temperature and protein back-

bone RMSD) were measured during the simulation to monitor equilibration. As

shown in Figs. 2.3-2.6, the value of the each of these properties becomes stable,

with fluctuations, by the end of the equilibration. Thus it’s reasonable to assume

the system reaches equilibrium. The RMSD of the backbone protein is relatively

high. To ensure the protein structure is not distorted, the RMSD of each residue was

measured at the end of the equilibration, as shown in Fig 2.7. The large RMSD is

mainly due to residues with residue id around 200, which forms a highly flexible loop

structure [31]. The RMSD of the remaining residues remains small. So we assume

the protein structure is physiological.

After equilibration, a 10 ns MD simulation was performed with constant ex-

ternal electric field corresponding to 100 mV across the simulation box and no ion-

crossing events were observed.

In order to build a proper bias potential, an equilibrium PMF was first calcu-

lated using umbrella sampling. Fig. 2.8 shows the resulting 2D PMF. As discussed

in section 2.2.2, a two-coordinate collective variable (Z12, Z3) was used to follow the
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Figure 2.2: Molecular representation of the atomic model of the Kv1.2 chimera chan-
nel embedded in an explicit POPC membrane bathed by a 0.15M KCl aqueous salt
solution. (a) Top view. (b) Side view. (c) Initial configuration of the selective filter.
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Figure 2.3: System total energy during the equilibration.
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Figure 2.4: System volume during the equilibration.
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Figure 2.5: System temperature during the equilibration.
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Figure 2.6: RMSD of protein backbone atoms during the equilibration. The reference
structure used is the structure at the beginning of the equilibration.
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Figure 2.7: RMSD of each residue at the end of equilibration. The reference structure
used is the structure at the beginning of the equilibration.
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Gaussian A (kcal/mol) µx (Å) µy (Å) σx (Å) σy (Å)
1 4.0 3.85 -5.45 0.4 0.8
2 6.0 3.6 -6.5 0.5 2.0
3 3.5 0 -8 0.8 0.4

Table 2.1: Values for parameters in equation 2.1

motion of the three potassium ions in the SF. Snapshots corresponding to several im-

portant configurations are provided (Fig 2.8(b)). The roughly estimated pathway for

conduction process, 1–2–3–4, is consistent with the well accepted “knock-on” mecha-

nism [48]. An ion in the cavity approaches the intracellular end of the SF and pushes

two ions in the SF to move to the extracellular end.

Based on the 2D PMF, a bias potential composed of three Gaussians was

proposed (Fig 2.9(a)):

f(Z12, Z3) = A1e
(− (Z12−µx1 )2

2σ2x1

− (Z3−µy1 )2

2σ2y1

)
+ A2e

(− (Z12−µx2 )2

2σ2x2

− (Z3−µy2 )2

2σ2y2

)

+A3e
(− (Z12−µx3 )2

2σ2x3

− (Z3−µy3 )2

2σ2y3

)
(2.1)

where A, µ and σ values for three Gaussians are shown in Table 2.1.

Gaussians were optimized by overlapping the potential and PMF and examin-

ing the resulting PMF+potential graph by eye so that transition states were modified

as little as possible while energy barriers were still reduced. Then umbrella sampling

MD simulations were performed and an equilibrium 2D PMF were calculated on the

biased potential to evaluate the quality of the bias potential.

As shown in Fig 2.9(b), with the bias potential, large energy barriers are

removed and shape of the original energy surface is to some extent preserved. In

particular, the barrier for the 3 → 4 transition is reduced from ≈ 5 kcal/mol to ≈ 2

kcal/mol.
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Figure 2.8: (a) 2D PMF of potassium ion translocation through SF of Kvchim channel
calculated from umbrella sampling MD simulation. Z12 is the center of mass of the two
potassium ions closest to the periplasm and Z3 is the position of the third potassium
ion. (b) Snapshots of the SF configurations corresponding to the points labeled in
(a).
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Figure 2.9: (a) bias potential for hyperdynamics (kcal/mol) (b) 2D PMF of potassium
ions translocation through SF of Kvchim channel calculated from umbrella sampling
MD simulation on biased energy surface (kcal/mol).
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Hyperdynamics on the proposed biased energy surface with constant electric

field corresponding to 100 mV across the simulation box were carried out. However,

after 10 ns (MD time) simulation, still no ion crossing event was observed. It was

also observed that no ions entered the cavity, from which a “knock-on” event could

be initiated.

2.4 Conclusions

In this project, we applied the hyperdynamics method to extend the timescale

of traditional MD simulations in an attempt to study the conductance properties of

a potassium ion channel. A bias potential was built based on a 2D equilibrium PMF

of potassium ions translocation through the SF of the channel. However, despite the

acceleration, no ion crossing process has been observed.

An important observation during the simulation is that no ion entered the

cavity. This may indicate that there is a substantial energy or entropy barrier for

ions to enter the cavity, thus limiting the ion conductance rate. It is generally believed

that ions passing through the SF is the rate limiting step. Thus, in the current study,

the bias potential was applied only to the SF. However, it is possible that the barrier

for ions entering the cavity is substantial enough that, after reducing the barriers in

the SF, population of the cavity is the new rate-limiting step in the biased simulations,

preventing ion crossing events on the ns timescale.

Previous studies have used either a bulk potassium ion concentration at which

saturation of conductance is reached or a non-physiological electric field to maximize

the current through the channel. It is worth noting that both of those methods

would increase the rate of transitions into the cavity, as well as through the SF.

Under high potassium concentration, for example, the cavity is typically filled with
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several potassium ions. The importance of the barriers to ions entering the cavity

has thus not been noticed before this work, and is worthy of further investigation.

In terms of future work, here are some ideas to explore. 1. Since in vivo, the

movement of potassium ions is driven by the concentration difference between the

intracellular environment and the extracellular environment, performing MD simu-

lations under asymmetric ionic concentrations could potentially solve the problem

mentioned above, i.e. few ions entered the cavity during the simulation. 2. One

problem with applying hyperdynamics simulation to a complicated membrane pro-

tein in solution phase is that the actual potential surface is very complicated, making

it very difficult to construct a bias potential that has no transition state modification

and large speed up. In this work, we assumed the 2D PMF constructed using the

methods mentioned above is a true representation of the real energy surface and built

our bias potential based on the PMF. This assumption may be a potential cause

of the failure of the hyperdynamic simulations. Instead, other accelerated dynamics

simulation methods that are not dependent on the knowledge of the energy surfaces,

for example, the parallel replica method, can be tried to study ion conductance of

the potassium ion channel.
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Part II

Human-Guided Global

Optimization of Lennard-Jones

Clusters
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Chapter 3

Introduction

3.1 Lennard-Jones Cluster

A Lennard-Jones(LJ) cluster is a group of atoms in which the pair interaction

between any two atoms is modeled by the LJ potential

V = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.1)

where ε and σ are atom type specific parameters, and rij is the distance between

particle i and j. A graph representation is shown in Fig 3.1.

The LJ system has served as a testing ground for global optimization algorithm

development due to its relatively simple mathematical form. It’s also a widely used

model for noble gas clusters. And its minimum energy geometry could provide some

guidelines for the structure optimization of metal clusters such as nickel and gold [55].

For those reasons, the LJ clusters has attracted much attention and been studied

intensely over the past years. Figure 3.2 shows the global minimum structure for

some LJ clusters.
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Figure 3.1: The Lennard-Jones potential for a pair of neural atoms.
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Figure 3.2: Energy structure of LJ clusters of size 6, 7, 12, 13, 19, 38.
.
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3.2 Optimization Methods

Mathematically, the LJ cluster problem is

argmin
x∈Rn

VLJ(x) = 4ε
n∑
i=1

n∑
j>i

[(
σ

‖xi − xj‖

)12

−
(

σ

‖xi − xj‖

)6
]
. (3.2)

It’s a continuous nonlinear optimzation problem with a nonconvex objective

function. The problem is NP-hard, as proven by Wille and Vennik in 1985 using

polynomial-time reductions [56]. It was shown by them that the traveling salesman

problem is a special case of the heterogeneous LJ cluster optmization problem. Since

the traveling salesman problem is a well known NP-hard problem, so is the heteroge-

neous LJ cluster problem. In computational complexity theory, the complexity class

P contains all problems that are solvable in polynomial time with respect to the input

size. The complexity class NP contains all problems that are solvable in polynomial

time by nonderministic algorithms. A nondeterministic algorithm, is an algorithm

that’s able to track all possible paths simultaneously at any branching points, and

return a solution as long as some paths are able to confirm it. Such alogrithms are

purely theoretical. Equivalently, we can think of those problems in the NP class

as: given a valid solution of the problem, such solution can be verifiable in polyno-

mial time. An NP-hard problem is then defined as a problem such that if there is a

polynomial-time alogrithm for the problem, all problems in NP class can be solvable

in polynomial time (NP = P). An NP-hard problem is also an NP-complete problem

if itself belongs to the NP class.

This section gives a overview of some major optimization methods in the

context of this problem.

Deterministic global optimization methods are a group of methods that guar-
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antee the global minimum to be found in finite time. To acheive this, the whole

conformational space needs to be searched completely which is impossible to finish

in finite time for continuous variables if doing naively. Branch and bound methods

divides the whole search space into small subspaces. For each subspace, upper/lower

bounds are estimated and compared to the existing solution to decide whether a bet-

ter solution is likely to be found in the given region. The ones that are promising are

subdivided further while the others are skipped without further search. Despite clever

tricks, deterministic methods are still limited to small systems. With dimensionality

increasing, they quickly become infeasible.

Simulated annealing [57] is one of the earliest methods used for global op-

timization problems. The system is equilibriated at some high temperature then

gradually cooled down and eventually ends up in a local minimum of the potential

energy surface. This minimum however, is not guaranteed to be the global minimum.

To increase the chance of getting the correct result (the true global minimum), multi-

ple simulations are usually attempted and the local minimum with the lowest energy

is selected as the final result. For the LJ cluster problem, the simulated annealing

methods haven’t had much success except for the cluster with 24 atoms due to the

problem that the free-energy global minimum can change at a temperature that the

thermal energy is not enough for the system to escape its current local minimum [55].

Genetic algorithms [58] adopt the concept of the evolutionary theory. It starts

with a population of cluster conformations, choosing randomly or/and with a priori

knowledge. Each conformation is associated with a fitness value measuring its quality

as global minimum structure candidate. The fitter ones are more likely to be selected

and produce the next generation population of structure candidates through crossover

and mutation. Crossover mixes the features of two conformations and produce one or

two new conformations. Mutation changes part of a conformation to generate a new
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one. The new generation is maintained the same size as the old one. The process is

repeated for a certain number of generation or until a satisfying result is obtained. In

practice, genetic algorithms work quite well in finding the global minimum structure

of LJ clusters. However, no existing theories so far can explain such success. There

are some hypotheses, such as the building block hypothesis [59], trying to provide a

theoretical explanation for their success but lacking consensus among researchers.

Hypersurface deformation approaches [60–63] apply transformations to smooth

the potenital energy surface thus reduce the number of minima as well as large energy

barriers between minima. The global minimum of this smoothed surface is easier to

find and its position can then be mapped back to the original surface to get the

real result. However, depending on the smoothing transformation used, the global

minimum on the deformed surface might differ from the original one dramatically.

A local search procedure can be used during the reverse mapping step to address

this issue. Serveral methods have been proposed using the hypersurface deformation

technique, such as the distance scaling method [63] and the stochastic tunneling

method [64]. Basin hopping [65] is one of the most successful methods to solve the

LJ problem. It performs a “staircase” deformation where energy of each point on

the original potential energy surface is mapped to the minimum energy of the basin

it belongs to. This transformation broadens the transitions between local minima

resulting in a significant probability of occupation at the global minimum provided

the thermodynamic energy is high enough to overcome the free energy barriers [66,67].

3.3 Virtual Reality

Virtual reality (VR) is a computer-generated environment that provides its

users an experience through artificial sensory stimulations making them immersed in
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the virtual enviroment with little awareness of the real world.

A VR system is mainly comprised of displays that immerse the user in a

simulated enviroment. In addition to visual stimuli, the system includes an array of

sensors that collect information about the use’s behaviors and the surroundings and

relays this to the software. Collectively, the sofware combines sensor data to generate

a immersive simulated environment that the user can interact with in real time [68].

VR is most commonly used in video games and immersive cinema. It has also

been used for education, medical/astronaut/driver training, architectural design and

many other fields.

3.4 Hypothesis Testing

Hypothesis testing is a framework used in statistical analysis to determine the

validity of a claim regarding a population parameter, such as its mean or variance,

using sample measurements. It’s generally conducted through the following four steps:

1. State the null hypothesis (H0) and the alternative hypothesis (H1).

The null hypothesis, H0, states what value of the parameter of a population

we assume to be true. The alternative hypothesis, H1, states the population

parameter takes a value: (i) not equal to, (ii) greater than, or (iii) less than the

value asserted by H0. Based on H1, the test is labeled with one of two categories:

a one-tailed test when H1 is stated as an inequality, and a two-tailed test when

H1 is stated as a negation of equality, as in case (i).

2. Set the significance level (α) of the test.

There are four outcomes of a hypothesis test, as shown in Table 3.1. The

significance level α is the maximum acceptable probability of committing a
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Truth value of hypothesis
Decision

Do not reject Reject
True Correct Type I error
False Type II error Correct

Table 3.1: Four outcomes of a hypothesis test.

type I error, in which a true hypothesis is mistakenly rejected. Common values

used in studies are 5% and 1%.

3. Compute the value of the test statistic from the selected sample.

The test statistic is a mathematical formula that its sample distribution under

H0 is known. For example, if we want to test whether two population means

are the same under the assumptions that the two populations are independent

from each other and variance of both are unkown and different from each other,

the test statistic is the following formula

T =
(X̄1 − X̄2)−∆0√
S2

1/n1 + S2
2/n2

(3.3)

ν =
(
S2
1

n1
+

S2
2

n2
)2

(S2
1/n1)2

n1−1
+

(S2
2/n2)2

n2−1

, (3.4)

which follows a t-distribution with degree of freedom ν under the null hypoth-

esis.

4. Decide whether or not the hypothesis should be rejected.

Based on the sample test statistic value, the p-value can be determined. A

p-value is the probability of obtatining a value of the test statistic as extreme

as the result computed, assuming H0 is true. H0 is retained if the p-value is

larger than α and rejected otherwise.
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Alternatively, we can compute the critical values, i.e. the test statistic values

whose p-value is equal to α. Test statistics more extreme than this value form

a rejection region. H0 is rejected if the sample test statistic value falls inside

the rejection region and retrained otherwise.

Often, we have data collected from some experiments designed to study a

phenomenon that we are interested in. We propose a statistical model to predict

the outcome from predictors and assess how the proposed model fits our data using

hypothesis testing. Linear models are the most widely used, which use weighted sum

of the predictors to predict the outcome. The general form of a linear model is shown

in the following equation:

Yi = b0 + b1x1,i + b2x2,i + ...+ εi, (3.5)

where Yi is the outcome, xj,i are the j predictors and εi is the error, all for the ith

measurement. The fitness of the model is assessed by a test statistic, which is defined

as the ratio of the variance that can be explained by the model (systematic variance)

over the variance that can not (unsystematic variance):

test statistic =
systematic variance

unsystematic variance
. (3.6)

Depending on our null hypothesis, test statistics take different form. If the null

hypothesis is that there’s no relationship between the outcome and predictors, the F

statistic is used. If the null hypothesis is that the j predictors significantly predict

the outcome, the t statistic is used.

If we include both fixed and random effects in a linear model, the model is

then called a linear mixed model. The definition of fixed factors and random factors
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varies among different sources [69] and whether a factor is chosen to be fixed or

random is often problem/context dependent. In general, a factor is considered fixed

if data is collected from all levels of interest of the factor. A random factor, on

the contrary, only has a small random sample from some normal distribution of all

possible treatments in an experiment.

The introduction of random effects to a linear model provides certain benefits.

In a traditional linear model, we have to assume fixed intercept (b0) and slopes (bj)

among different groups and the observational units are independent of each other.

However, the real world data is often complex, includes missing data and has hierar-

chical structures in nature. As a result, such assumptions are often violated. A linear

mixed model allows us to model the multilevel relationships and the non-independence

in such data. In the case of missing data, a linear mixed model allows the parameters

to be assessed from available data so that the whole data case needs not be deleted.
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Chapter 4

Human-Guided Global

Optimization of Lennard-Jones

Clusters

4.1 Introduction

Global optimization is the process of finding a function’s extremum (or mini-

mum/maximum since maximization and minimization can be turned into each other

by a simple overall sign change of the function) on the entire domain of it. It plays an

important role in various areas of chemistry including cluster structure optimiza-

tion [2, 70, 71], molecular distance geometry [72], molecular docking [73], protein

folding [74–76], parameterization of force fields [77, 78] or semi-empirical methods,

quantum optimal control theory [79], etc.

Global optimization methods can generally be classified into two large cate-

gories: deterministic global optimization methods, which guarantee the solution found

is the true global minimum, and stochastic global optimization methods, for which
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no rigorous global optimality can be guaranteed. Though deterministic methods are

highly valuable, for a non-convex objective function they typically need to perform

a complete search over all points in the domain of the function. The search space

grows exponentially with dimensionality and even in a one-dimensional case, visit-

ing the entire search space already needs an infinite number of function evaluations

for continuous variables in the absence of further simplifying assumptions. Thus de-

terministic global minimization is often too expensive to be practical. For larger

systems, stochastic methods using heuristic strategies to search the search space in a

more or less intelligent way are often used. Such methods (e.g. simulated annealing,

genetic methods, basin-hopping) can find minima with function values not too far

above the global minimum much faster than deterministic methods can find the true

global minimum.

Nonetheless, global optimization problems are still quite challenging, especially

for large complex systems. Employing clever tricks that reduce the search space or

lead the search to promising regions is a common technique, but these tricks are not

trivial to find. And the most efficient methods are system/problem-dependent due

to additional heuristic elements especially tailored for the system/problem making

generalization of global optimization method for routine usage quite difficult.

Human minds are capable of intuitively forming simple, low-dimensional heuris-

tic strategies when trying to solve complex high-dimensional problems. By combining

human intelligence with traditional computational stochastic-heuristic global opti-

mization algorithms, a hybrid method might be able to improve the sampling of the

search space and guide the search to promising regions more efficiently thus find-

ing the global minimum faster or minima with function value closer to true global

minimum. A hybrid algorithm will be able to make use of the strengths of the compu-

tational algorithm for fine-scale optimization steps (i.e. near a local minimum, when
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the function is locally convex) and the complementary strengths of human intuition

for coarser-scale optimization steps (i.e. in deciding when to abandon a local basin,

and in determining which distant region of the domain to explore next).

The idea of exploiting human intelligence to solve scientific problems by general

publics have already been successfully applied by several “crowd-sourcing” games,

including Foldit [1] for the protein structure prediction problem, CrowdPhase [80]

for the phasing problem in x-ray crystallography, EteRNA [81] for the RNA design

problem, Quantum Moves [82] for the optimization problem in quantum physics and

Phylo [83] for the multiple sequence alignment problem.

Compared to traditional computational methods, these citizen science applica-

tions have the advantage of allowing massive computaional resources (computer and

human) to run simultaneously in parallel, allowing the solution space to be explored

in a much faster way and new solutions to be discovered. And the natural diversity

of human brains allows the search space to be searched in a less biased way collec-

tively by the citizens, finding solutions that are otherwise difficult to be discovered by

traditional computational methods. Phylo [83], for example, completely relies on the

advantage of such massive quantity of computing power (computer and human). The

application is designed intentionally to encapsulate the scientific detials into a casual

game to allow more participants to be involved, and thus more computing power to

be collected.

In addition to the large quantity of computing power, other applications also

explore humans’ skill at visual problem solving. Foldit [1] replaces the stochastic

element of the Rosetta’s search algorithm, the random perturbation of protein stuc-

tures, with human decision making. Quantum Moves [82] uses players’ solutions as

seeds instead of computer generated seeds for the following multistarting local opt-

mization alogritm. Both cases show results that, for certian problems, the algorithms
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exploiting human intelligence are able to give superior solutions compared to the

purely computationl ones [1, 82]. These applications studied a complex optimization

problem and replaced the stochastic phase of a high-level optimization paradigm. We

asked whether human intelligence can benefit fundamental optimization algorithms

also, as they are the foundations of more complex algorithms. And further, can we

add the human intelligence as an additional element to the existing algorithm rather

than replacing certain elements of the exiting algorithm and acheive the same or bet-

ter result? We believe this kind of integration can be more easily expanded to other

applications.

In this work, we explore how human intelligence can be integrated with tra-

ditional optimization algorithms to help finding the minimum energy conformation

of homogeneous Lennard-Jones (LJ) clusters, which are formed by identical atoms

interacting with each other under the following potential:

VLJ = 4ε
n∑
i=1

n∑
j>i

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (4.1)

where ε and σ are atom type specific parameters, and rij is the distance between

particle i and j.

Even though the mathematical form of the potential is rather simple, the

problem is notorious hard to solve and serves as a standard benchmark for global op-

timization algorithms. The number of local minima grows exponentially with cluster

size n. To find the one with the lowest energy, successful alogrithms need to move

among different local areas, identify promising local areas and avoid revisting the

same area as effectively as possible. We believe that humans are capable of moving

atoms in a way that helps the overall cluster to hop from one local minima to another

on the potential energy surface. Moreover, based on previous knowledge of different
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cluster configurations and associated energies, humans can form a rough intuitive idea

of whether the current local search area is likely to contain the global minimum. In

addition, human memory can be used to decide whether the current local search is

exploring an new local minima or revisiting a old one. Most importantly, the ability

of human minds can be easily combined with current state of art global optimization

algorithms rather than replacing them to make potentially more effective ones.

Here we test the idea using a simple global optimization algorithm containing

a series of a short period of Metropolis Monte Carlo simulation followed by a steepest

descent optimization. We demonstrate that by incorporating human intelligence, such

algorithm can solve the optimization problem more effectively.

4.2 Methods

4.2.1 Global Optimization Algorithm

In this study, we chose a Metropolis Monte Carlo method coupled with steep-

est descent method (as shown in Algorithm 1; all values are in LJ units) as the

computational global optimization algorithm for its simplicity.

In such a method, the steepest descent method brings the LJ cluster to one of

its local minima, at which point the energy is compared to the lowest energy for the

cluster, based on prior literature results. If the energy doesn’t match, the Metropolis

Monte Carlo method allows the cluster to escape the current local basin and explore

the surrounding area. Then the steepest descent method again brings the cluster

to one of its local minima (ideally different from previous one) and compares the

energy with the lowest energy known to date. The process repeats until the “global

minimum” (at which the energy matches the lowest energy known to date) is found.
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Algorithm 1 Global Optimization

Input: N : number of particles; T : temperature of the cluster system; Emin;global:
lowest energy found in the literature for Lennard Jones cluster of size N

Output: The optimum solution
(i) Initialization:
for i = 1 to N do

Randomly initialize the position (xi) of the ith particle in a 10×10×10 box with
the following constraints:
• the distance between the ith particle and any existing particle j (dij) is larger

than 1.0 (∀j < i, dij > 1.0)
• the distance between the ith particle and at least one existing particle is smaller

than 2.0 (∃j < i, dij < 2.0)
end for
Calculate the cluster potential energy (f(x) = 4

∑N
i=1

∑N
j>i(

1
d12ij
− 1

d6ij
))

Steepest Descent phase:
(ii) β = 0.001
(iii) ∆x = β 5 f(x)
if ||∆x|| > 2.0 then
β = 0.5β
Go to step (iii)

else
x′ = x−∆x

end if
if f(x′) > f(x) then
β = 0.5β
Go to step (iii)

else
if |f(x)− f(x′))| < 1e−12 then
x = x′

if |f(x)− Emin;global| < 5e−7 then
Terminate

else
Go to step (iv)

end if
else
x = x′

β = 1.1β
Go to step (iii)

end if
end if
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Metropolis Monte Carlo phase:
(iv) α = 0.04
for t = 1 to b80.964× 1.09453Nc do
for i = 1 to N do

Randomly choose a direction and move the ith particle along that direction
with distance α
end for
Accept the new particle positions with the probability min(1, e−

f(x′)−f(x)
T )

end for
Go to step (ii)

Steepest descent is a widely used first-order iterative method to find the local

minimum of a function. The method involving taking steps proportional to the nega-

tive gradient of the function at current point. Most commonly, a locally optimal step

size found by a line search is used at each iteration. Such a line search is complex

and can be time-consuming, thus is avoided in our algorithm. Instead, a fixed step

size is used to determine the step size at each iteration. Careful considerations about

the value of the step size are needed. If the step size is too small, convergence to

the local minimum is too slow. On the other hand, if the step size is too large, the

algorithm might fail to converge or even diverge. And as the algorithm moves to dif-

ferent regions of the energy surface, range of proper step size values might vary. The

strategy we used here is to start with a very small step size to enable convergence.

Then the step size is increased at each iteration by a small amount to speed up the

converging process. However, if at any iteration, any particle is moving too far or the

step results in a higher energy, the step size is reduced by half and this iteration is

redone. Since steepest descent is used as part of the global optimization algorithm

and the local minimum energy needs to be compared to the reference global minimum

energy, it should stop at a position that’s as close to the actual local minimum as

possible. Considering the precision of double-precision floating point numbers, the

stop limit for steepest descent was chosen to be an energy difference between two
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iterations that’s smaller than 10−12 (LJ units).

Metropolis Monte Carlo method is a Markov chain Monte Carlo method for

generating a set of configurations of the system from a desired statistical mechanical

distribution. At each step of the algorithm, a random move from the current state

i to a new state j is tried. If the move results in an energy decrease, the move is

accepted. If the move is uphill in energy, the move is accepted with a probability

defined by the ratio of probabilities of state i and j:

Pj
Pi

= e−
vj−vi
kT . (4.2)

vi, vj are energy at state i and j, k is the Boltzmann constant and T is the system

temperature. If the move is accepted, the system is now in the new state j. If the

move is rejected, the system remains in state i.

To actually implement the method in our system, several details need to be

further explained. First of all, we consider move algorithm. The random move can

be done by changing position of one particle at a time, randomly choosing several

particles and changing their positions, or changing positions of all particles simulta-

neously. The choice shouldn’t affect the results. The move algorithm chosen here is

to simultaneously change all particle positions.

Second of all, we consider the move size. At each iteration, the particles try

a move of size α along a random direction. A large move will be more likely to be

rejected, thus causing the algorithm to be less efficient. A small move, on the other

hand, is more likely to be accepted, but can only explore a much smaller nearby area,

causing the algorithm to be inefficient too.

Here, we calculated the acceptance ratio (r) at various α for clusters of size 5,

10, 15, 20, 25 and 30. Clusters were first optimized by a steepest descent simulation
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then underwent a Metropolis Monte Carlo simulation of 10000 steps where the number

of steps that were accepted (nacc) is recorded and the acceptance is ratio is calculated:

r =
nacc

10000
. (4.3)

The value of α was chosen to be the largest value at which acceptance ratios for all

clusters are greater than 20%. The results are presented in section 4.3.

Lastly, it is necessary to choose the number of Metropolis Monte Carlo iter-

ations (n) between two steepest descent simulations. If the Metropolis Monte Carlo

algorithm is only run for a short time, it’s very unlikely the cluster can escape the

current local basin and the next steepest decent will bring the cluster to the same

local minimum. On the other hand, if Metropolis Monte Carlo algorithm is run for

too long, the cluster is likely to have explored several local basins by the end of the

Metropolis Monte Carlo simulation. Since in our current global optimization algo-

rithm, only the local basin at which the cluster is at the end of the Metropolis Monte

Carlo simulation that matters, sampling multiple energy basins in one Metropolis

Monte Carlo phase decreases the performance of the algorithm. Also, the cluster is

more likely to evaporate or dissociate with longer Metropolis Monte Carlo simulations

(since the equilibrium phase for LJ atoms in an infinitely large box is a gas). The

steepest descent algorithm might then fail to converge to a local minimum. And even

if it does, it would require a lot of steps to do so. This too makes the performance of

the global optimization algorithm undesirable.

Note that the length of the Metropolis Monte Carlo simulation depends on

the system dimension. Generally, larger the cluster size, longer the simulation. Here,

for each of the clusters of size 10, 15, 18, 20, 22, 25, 28, the algorithm was run with

different n. The one that needs smallest total number of steps to find the “global
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minimum” are chosen to be the nopt for the cluster. Then the nopt as a function of

cluster size is fitted using those data. These results are summarized in section 4.3.

4.2.2 Hybrid Optimization Algorithm

The hybrid optimization algorithm integrates human input by allowing a per-

son to move any particle in the cluster to any position in the space at any time during

the automatically global optimization process introduced in previous section. And

once the algorithm detects a human input, it will immediately perform a steepest

descent simulation on the new configuration and continue the global optimization

process from there. Formally, the hybrid algorithm is described in Algorithm 2. The

Initialization, Steepest Descent and Metropolis Monte Carlo steps are the same as in

Algorithm 1, thus those details are omitted here.

4.2.3 Virtual Reality (VR) App

To implement the hybrid optimization algorithm, a VR application has been

developed with Google Daydream and Unity. To use the app, a Daydream-ready

smartphone and a Daydream View (a headset and a controller) are needed. The

smartphone needs to be placed in the front compartment of the headset and viewed

in VR through the headset’s two lenses.

Fig. 4.1 shows the view that the user can see upon starting the application.

A cluster of 10 particles whose positions are randomly assigned is displayed in the

center of the view. On the top left corner, information about the cluster energy and

optimzation process are shown. Such information can be hidden by deselecting the

“Show simulation information” option on the control panel which can be brought out

clicking the “Menu” icon on the top right (Fig. 4.2). The control panel also allows
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Algorithm 2 Hybrid Optimization

Input: N : number of particles; T : temperature of the cluster system; Emin;global:
lowest energy found in the literature for Lennard Jones cluster of size N ; human
inputs(optional)

Output: The optimum solution
(i) Initialization
(ii) Steepest Descent phase:
while Steepest Descent is not converged do
if Human input detected then

Update particle positions
Go to step (ii)

end if
Run one step of Steepest Descent

end while
if Global optimum is reached then

Terminate
end if
(iii) Metropolis Monte Carlo phase:
for t = 1 to b80.964× 1.09453Nc do
if Human input detected then

Update particle positions
Go to step (ii)

end if
Run one step of Metropolis Monte Carlo

end for
Go to step (ii)
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Figure 4.1: VR app interface.
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Figure 4.2: VR app interface - control pannel.
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the user to choose the number of particles in the cluster by sliding the “Cluster Size”

slide. Once the “Restart” button has been clicked, the current cluster configuration

is discarded and a new one is initiated.

In our app, the user interacts with the VR environment mainly through the

controller. A controller visualization is shown in VR corresponding to the actual

controller the user holds in his/her hand. A laser is shown with the controller to

allow the user to track easily where it is pointing at. Tool tips are also shown around

the controller to remind the user of the allowable operations (Fig. 4.3).

At the begining, there’s no simulation running. An optimization can be started

by clicking the “App” button on the controller. If a simulation is currently running,

clicking the same button causes it to pause. Users can move their viewpoint toward

the cluster/away from the cluster by clicking the top/bottom edge of the touchpad

until they reach a comfortable position. They can also swipe on the touchpad at any

time to rotate the cluster to get whole picture of the cluster geometry. Typically,

when the user starts the application, the cluster is shown in the center of view and

controller is shown at lower right with the laser pointing to the front. In case the

view shown is off the standard, holding the “Home” button will restore the standard

view.

The optimization algorithm takes user inputs by allowing users to select any

particle at any time and move the selected particle to any position in the space. The

user selects a particle by pointing the controller toward the particle and clicking the

center of the touchpad as the reticle shows on the particle. Once a particle is selected,

the cluster is no longer rotatable until the selected particle is released. The user moves

the selected particle up/down/left/right by moving the controller correspondingly and

further/closer to the user by swiping vertically on the touchpad. Once the particle is

at a desirable position, the user can release it by clicking the center of the touchpad
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(a) The Daydream controller

(b) Normal situation

(c) During particle selection and movement

Figure 4.3: Tool tips for the Daydream controller.
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again.

To assist humans in solving the problem, the particles are colored based on

their individual potential energy (Fig. 4.4b). The black body color map (Fig. 4.4a)

is used here, where as the energy goes from low to high, the color changes from black

to red to yellow then finally to white. This allow the user to identify a relative high

energy particle during the optimization process and help the optimization by placing

it to a more favorable position.

Once the cluster is in its global optimum configuration, the “cluster energy”

on the top left corner is highlighted red with “Global optimum” appended to it (Fig.

4.5) to inform the user the problem has been solved.

To allow further analysis of the perfomance of the hybrid optimization method,

the app automatically records the lowest energy the algorithm has found at each

timestep and saves them to the phone device while it’s running.

4.3 Results and Discussion

Temperature is an important parameter for the Metropolis Monte Carlo phase

of our optimization algorithm. Since we are interested in learning the optimal struc-

ture for LJ clusters, we hope to maintain our particle system in a liquid phase. If

the temperature is so high that the equilibrium system is in the gas phase, clusters

will not be sampled often, since interactions between LJ particles will be very small

compared to kT. Even though we initialize the system in a way that LJ particles

are in a cluster form, this initial cluster can easily be dissociated by the subsequent

Metropolis Monte Carlo simulations. On the other hand, if the temperature is so

low that the system is in a solid phase, we don’t have this cluster forming problem.

However, as shown in equation 4.2, the probability of accepting a Metropolis Monte
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(a) The black body color map.

(b) An app snapshot

Figure 4.4: VR app interface — color change of the cluster.
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Figure 4.5: VR app interface — the end of a simulation.
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Carlo move when the move results in an energy uphill depends on the temperature.

Low temperature will cause the Metropolis Monte Carlo moves to be more likely to

be rejected, thus making the algorithm less efficient. The LJ systems in this study

have densities in the range of 10−3 to 10−2, in reduced LJ units, thus the system

temperature was chosen to be 0.7 to maintain the system in liquid phase, based on a

LJ phase diagram.

As discussed in section 4.2.1, for the purpose of efficiency, we want the α to

be as large as possible while maintaining a good acceptance ratio. Fig. 4.6 shows the

acceptance ratio with different α for different cluster sizes. As shown in the graph,

with α of 0.04, the acceptance ratio for all clusters of size 5, 10, 15, 20, 25 and 30

are larger than 20% which is high enough to be acceptable. With α larger than 0.04,

the acceptance ratios for the cluster of size 30 decreases to around 0, which means

that in Metropolis Monte Carlo simulations, the tentative moves are rejected most

of the time, thus the system is almost always stuck in the initial local minimum.

This is obviously very undesirable. Even though we might have chosen α differently

for different cluster sizes, such choice will make determination of another important

parameter, nopt, more complicated since it is dependent on the choice of α. And

because the overall efficiency of the optimization algorithm does not depend solely

on α, this extra work might not make a huge difference on the performance of the

algorithm. Thus an α of 0.04 was chosen for all cluster sizes.

With α determined, n is another important parameter that has a large effect

on the performance of the algorithm. Fig. 4.7 shows total number of steps needed

for a cluster of size 20 to reach the “global minimum” with different n. As shown in

the figure, as n increases, the performance of the algorithm first improves, then gets

worse, which agrees with our expectation as explained in section 4.2.1. The nopt is

chosen to be the n value corresponding to the lowest point in the graph, 500. Similar

61



Figure 4.6: Acceptance ratio with different α for different cluster sizes.

62



Size 5 8 10 12 15 18 20 22 25 28
nopt 100 150 200 200 300 450 500 650 750 100

Table 4.1: nopt values for cluster of different sizes

graphs were obtained for cluster of sizes in the range of 5 to 28 and the corresponding

nopt values are shown in Table 4.1.

The value of nopt varies with different cluster sizes. Thus it’s impractical to

choose a constant n value and expect it to work well for all cluster sizes. Instead,

using a function of cluster size to represent nopt is a more reasonable choice. The data

were fit with a power function, which provided a reasonable description of the data.

Fig. 4.8 shows the relationship between nopt and cluster size. As shown in the figure,

the power function nopt = 80.964× 1.09453N fit the data adequately to describe the

trend.

The performance data for the purely computational method is collected through

a C++ implementation of Algorithm 1. Compared with the actual app, the C++

implementation excludes the graphic representation of the cluster and VR compo-

nents. Further more, it runs on the desktop which has larger computational capacity

compared to the phone. Together, the C++ implementation allows a faster data

collection. To evaluate the quality of the data collected by the C++ implementation,

100 runs of both C++ implementation and unity vr implementation with cluster size

10 were conducted. Fig. 4.9 gives the comparison between the average data collected

by both implementations.

In the graph, the two lines appears almost identical. Thus we claim that

it’s reasonable to collect the performance data for the purely computational method

through the C++ implementation and use the collected data to establish a benchmark

for the hybrid method.
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Figure 4.7: Total number of steps needed for a cluster of size 20 to reach the “global
minimum” with different n. Each data point in the graph represent an average of 100
simulations. The error bars represent the standard error of the mean.
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Figure 4.8: nopt as a function of cluster size.
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Figure 4.9: Comparison between the data collected by c++ implementation and unity
VR implementation of Algorithm 1. Each data points represents an average of 100
runs with cluster size 10.
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To collect the performance data for the hybrid method, we asked the volunteers

to use the VR app and try to help the optmization process. The study is approved by

Institutional Review Board (IRB) (Number : IRB2019-290). The informed consent

form is attached in Section A. Due to practical considerations, the cluster sizes used

for evaluating the hybrid method are restricted to the ones that can finished within

10 minutes half of the time using the purely computational method. So, for cluster

size 2 to 28, with purely computational method, we first find the median finish time

in the unit of number of timesteps. To find the conversion coefficient from number of

timesteps to seconds, we run 5 simulations with cluster sizes 5,10,15,20 and 25 using

the unity vr app but without the human input. The final results of median finish

time in minutes vs. cluster size are shown in Fig. 4.10.

For cluster sizes < 10, the purely computaional method is fast enough that

half of the runs finish within 3 minutes. It’s reasonable to assume with those cluster

sizes, a human will not improve the efficiency of the optimization process or even

harm it as the process finishes before a human can form an intuition and helping the

algorithm when it’s reached a difficult point in the optimization. Thus the cluster

sizes used for perfomance evaluation are chosen to be 10 to 15.

Each participant was asked to perform 3 trials with different cluster sizes.

Before these 3 formal trials, they were given a cluster of size less than 10 as a practice

trial to help them get familiar with app and gain essential knowledge about the

problem they need to solve. Table 4.2 shows the records of the participant data. In

summary, we had 22 participants: half female, half male. All the participants were

associated with the chemistry department. Among them, one was a faculty, one was

an instructor, 19 were graduate students and one was an Undergraduate student.

To compare the performance of the purely computational method and the

hybrid method, we need to choose a quantity that characterize the performance of
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Figure 4.10: Median finish time (elapsed time) for different cluster sizes with purely
computational method.
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Id cluster sizes Gender Occupation
1 10,11,12 F Faculty(Chemistry)
2 11,12,13 M Graduate Student(Chemistry)
3 12,13,14 M Graduate Student(Chemistry)
4 13,14,15 M Graduate Student(Chemistry)
5 10,11,12 M Graduate Student(Chemistry)
6 11,12,13 F Graduate Student(Chemistry)
7 12,13,14 M Graduate Student(Chemistry)
8 13,14,15 F Graduate Student(Chemistry)
9 10,11,12 F Instructor(Chemistry)
10 11,12,13 M Graduate Student(Chemistry)
11 12,13,14 F Graduate Student(Chemistry)
12 13,14,15 M Graduate Student(Chemistry)
13 10,11,12 F Graduate Student(Chemistry)
14 11,12,13 F Graduate Student(Chemistry)
15 12,13,14 F Graduate Student(Chemistry)
16 13,14,15 F Graduate Student(Chemistry)
17 10,11,12 M Graduate Student(Chemistry)
18 11,12,13 M Undergraduate Student(Chemistry)
19 12,13,14 M Graduate Student(Chemistry)
20 13,14,15 M Graduate Student(Chemistry)
21 10,11,12 F Graduate Student(Chemistry)
22 11,12,13 F Graduate Student(Chemistry)

Table 4.2: Participant records. (Data for participant 14 was discarded due to the
device overheating during the experiment.)
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Size
Computational Method Hybrid Method

#trials avg std #trials avg std
10 100 16552 14910.3 7 4635.6 2091.7
11 100 18218 14304.4 14 7852.9 7546.0
12 100 14377 12047.0 17 9128.1 8576.3
13 100 20710 15881.5 14 11320.8 10415.2
14 100 10973 8071.2 9 8403 8198.8
15 100 14766 9870.4 5 15020 10841.6

Table 4.3: Algorithm runtimes (number of timesteps) for different cluster sizes.

different algorithms.

The runtime is a natural choice. Table 4.3 shows the results of algorithm

runtimes for different cluster sizes with both methods. The data is plotted in Fig.

4.11.

To understand how human involvement and cluster size affect the runtime of

the algorithm, we performed a linear mixed model analysis using R [84]. The fixed

factors we choose are the method (computational or hybrid), cluster sizes and an

interactive term between the two. Because each participant did trials with several

different cluster sizes, we can not consider these two factors to be independent. Also,

the participants we had are only a random sample of the overal human population.

The effect of the hybrid method depends on the particular sample of the participants.

To take these issues into account, we incorporate the participant id as a random

effect. The result of the linear mixed model is shown as the following:
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Figure 4.11: The plot of algorithm runtimes (number of timesteps) vs cluster sizes.
The error bars represent the standard deviation.
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The result shows that, with α = 0.05, both method (p-value = 0.030) and

cluster size (p-value = 0.023) have statistically significant effects on the runtime of

the algorithm. Although the interactive term (p-value = 0.059) is not significant at

the α = 0.05 level, the value is near the α = 0.05 cutoff, and might deserve further

consideration. In other words, the effect of method on the timesteps required varies

as the cluster size changes. To visualize the interaction effect, we plot the timesteps

required vs. the cluster size for both hybrid method and the computational method,

as shown in Fig.4.12. The shaded gray area surrounding the trend lines represents
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the 95% confidence interval for the predicted timestep value at a specific cluster size.

For cluster size 10 to 13, the 95% confidence intervals of both methods don’t overlap

and the expected timesteps required by the hybrid method is lower than the expected

value for the purely computational method. As cluster sizes increase, the confidence

intervals of both method gradually overlap, showing no statistically significant differ-

ence between the average timesteps required of both methods. The results suggest

that human participation improves the performance of the optimization algorithm.

However, such improvements tends to be diminished as the cluster sizes increase.

To further investigate the role humans play in the optimization process, we

plot the minimum energy found till each timestep Emin vs the timestep t for both

computational and hybrid methods, as shown in Fig. 4.13 and 4.14.

The faster Emin decreases, the more efficient the optimization method is. From

the graphs we can see Emin decreases dramatically at the begining of the optimization.

As the Emin approaches the global minimum, the rate of decrease gets slower due to

the alogrithm frequently revisiting local minima that have been explored before and

taking longer time to escape deeper minima. At the end of the optimization, the rate

of decrease is almost zero.

For each cluster size i, the change of Emin with t is fitted by

Emin = a [exp(−tγ)− exp(−tγe )] + Emin,global, (4.4)

where a and γ are the fitting parameters, Emin,global is the global minimum energy for

cluster of size i, and te is the timestep that Emin,global is found. The fitting results for

both computational and hybrid methods are shown in Fig 4.13 and 4.14.

The parameter γ represent the efficiency of the optimization method. The

larger the γ is, the faster the alogrithm finds the global minimum. Table 4.4 shows γ

73



Figure 4.12: The effect of the human involvement changes with the cluster size. The
shaded gray area surrounding the trend lines represents the 95% confidence interval
for the predicted timestep value at a specific cluster size.
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Figure 4.13: The performance data for purely computational method. Emin is the
minimum energy found for each timestep t. t starts with 1. Each data point is an
average of 100 runs.
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Figure 4.14: The performance data for hybrid method. Emin is the minimum energy
found for each timestep t. t starts with 1. Data points for size 10, 11, 12, 13, 14 and
15 are averages of 6, 12, 15, 13, 9 and 5 runs, respectively.
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Size Computational Method Hybrid method
10 0.1794 0.1787
11 0.1742 0.1935
12 0.1676 0.1763
13 0.1431 0.1648
14 0.1595 0.1770
15 0.1550 0.1678

Table 4.4: γ values for different cluster sizes.

Size
Computational Method Hybrid Method
meidan avg median avg

10 12354 16552 5069 4636
11 13480 18218 4746 7853
12 11577 14377 7041 9128
13 16358 20710 5701 11321
14 9026 10973 5157 8403
15 12257 14766 12996 15020

Table 4.5: Average runtimes (number of timesteps) vs median runtimes (number of
timesteps) for different cluster sizes.

values for clusters of different sizes for both computaional and hybrid methods.

In general, as the cluster sizes increases, the gamma vaule decreases. This is

expected since the number of local minimum the depth of local minimum increase

as the cluster size increase causing the algorithm to be less efficient. The inversely

proportional relationship between γ and cluster size n is quite prominent for compu-

tational method as shown in Figure 4.15. It’s worth noting that for cluster size 13, the

computational alogrithm has a particular hard time optimize the cluster structure.

With the help of human, we find that the optmization efficiency increase except

for cluster of size 10. This is not consistent with previous conclusions we made based

on the linear mixed model analysis. Following are some possible explanations.

1. Average might not be a good characterization for the runtime data. Table 4.5
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Figure 4.15: γ as a function of cluster size (n).
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shows the average runtimes vs the median runtimes. The medians are smaller

than the average except for cluster of size 10 with hybrid method, indicating

the runtime distribution is not symmetrical, but right-skewed. This indicates

average might not be a good characterization for the runtime data. The un-

usual trend of cluster size 10 with hybrid method migh be attributed to under

sampling since the sample size is only 7.

2. There are sampling errors associated with γ. The γ value is based on the

function fitting of average Emin vs t. With large sampling sizes, especially for

the hybrid method, the trend of Emin over t can potential change and a different

γ value could be obtained.

3. The function used to fit the (t, Emin) doesn’t match the true function underlying

the data.

4. For size 10, the data shows that the starting point of Emin for the hybrid method

is smaller than the starting point of Emin for the computational one. This could

be due to humans are able to help to select a starting configuration with lower

energy or simply sampling errors.

5. For cluster of size 14 and 15, γ values suggests humans improving the compu-

tationl method while the linear mixed model analysis suggests there’s no sta-

tistically significant difference between efficency of computaional method and

hybrid method.

It could be because that humans are able to make large moves that allows

the alogritm to explore different regions in the potential energy surface faster,

causing an initial faster decrease in Emin, thus larger γ values. This also causing

the strong dependency of γ on cluster sizes with the computationl method to be
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weakenend with the hybrid method, as shown in fig 4.15. But to find the actual

global minimum, the alogritm needs to visit a specific basin with extremely

small area compared to the whole energy surface, causing a very long tail of

very slow decrease in the Emin. As the cluster sizes increase, the structure gets

more complicated and humans are not able to help much with identifying the

exact region that are relavent to the global minimum structure, causing the

overall average runtime to be the same for both method.

Or this controdiction is simply due to the sampling errors.

Futher studies with more data are needed to investigate those possible expla-

nations and draw a more confident conclusion about the impact of human inputs on

the optimization process.

4.4 Conclusions

In this project, we explore the idea that human intelligence can be integrated

into a computational optimization algorithm to allow faster optimization process. By

using homogeneous LJ clusters and a simple Metropolis Monte Carlo coupled with

steepest descent optmization alogrithm, we are able to show preliminarily that human

does have some positive impact on the structure optimization process, at lease for

cluster of certian sizes. We hypothesize that the increased efficency of the optimization

is attributed to human helping the alogrithm to start with a initial structure that has

lower energy compared to a randomly selected one, make large moves to cover larger

areas in the potential energy surface and escape a deep local minimum.

While only preliminarily, the result is significant as it provides a new strategy

to improve the existing optimization algorithms that can potentially solve difficult

optmization problems are currently unsolvable.
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While promising, future works are needed to confirm our result and investigate

in details under what conditions and how exactly human can help with the optimiza-

tion. And the insights gained by studying the human behaviors during the optimiza-

tion can potenitally be transfered to new strategies or improve existing strategies for

computational algorithms.
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Chapter 5

Future Work

In this section, we discuss the potential future works for the project.

First, more data should be collected with more participants to allow more

confident conclusions.

We hypothesis that in our test system, human intelligence can only help the

optimization with cluster of sizes in a certain range. If the cluster size is too small,

the compuational method finish too fast for human to help. If the cluster size is too

large, the cluster structure is too complicated for human to form intuitions that are

helpful to the optimization alogrithm. To test this hypothesis and find out the critical

cluster sizes, data with a large range of cluster size need to be collected and studied.

During the trials, we observed that some participants provide no inputs during

the optimization process. Features such as recording user interaction counts and user

interaction types can be added to the VR app to allow a more accurate study of the

impact of human intelligence on the optimization process.

The lack of inputs can be caused by either the participants don’t have any

intuition that they think will help the optmization process or the participants are not

fully engaged in the task.
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In the former case, we should investigate how the background of the partic-

ipants affects the ability of forming intuitions and helping the optimization process

by grouping the participants into groups such as “general public”, “undergraduates”,

“graudates”, “professors” based on their supposed knowledge about chemistry and

compare participants’ performance in different groups. Currently, the participant are

given a cluster of size < 10 for them to get familiar with different operations in the

app and gain the necessary knowledge that are important to form good intuitions

that help with the optmization. A multi-stage in-app interactive introduction section

can be used instead, to allow the first-time user to learn the essentials faster.

In the second case, we can add more game-like features such as sound effects

to better engage the participants and encourge them to actively thinking and solving

the optimization problem.

Efforts can also be made to study the human behaviors that help with the

optmization. Even though human approach the problem intuitively, we can identify

partterns and find strategies in those intuitive behaviors. This can potentially pro-

vides insights on mechanism of optimization process and improvements to the existing

computationl optimization algorithms.

At last, we can try to incorporate human intelligence with the state-of-art

optimization algorithms to solve more complicated optimization problem.
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Information about Being in a Research Study 
Clemson University 

 
Human-Guided Global Optimization of Molecular Structures via Virtual Reality 

 
KEY INFORMATION ABOUT THE RESEARCH STUDY  
 
Voluntary Consent: Professor Steven J Stuart is inviting you to volunteer for a research study. 
Steven J Stuart is a chemistry professor at Clemson University conducting the study with 
Wenxing Zhang, a chemistry PhD student. 
 
You may choose not to take part and you may choose to stop taking part at any time. You will 
not be punished in any way if you decide not to be in the study or to stop taking part in the study.  
 
Alternative to Participation: Participation is entirely voluntary and the only alternative is to not 
participate. 
 
Study Purpose: The purpose of this research is to test whether using human input in a virtual 
reality (VR) environment can improve the rate at which a computational method can find optimal 
structures for a molecular cluster. 
 
Activities and Procedures: Your part in the study will be to use a VR app, and provide input 
during optimization of several structures. You will be instructed in the use of a VR headset, and 
a VR app through which you can manipulate a molecular cluster displayed in VR. You will then 
engage in several trials in which you will assist an automatic computational algorithm in 
searching for optimal (low-energy) structures for the molecular cluster. 
 
Participation Time: You may be asked to participate in one or two one hour sessions. 
 
Risks and Discomforts: There is a possibility of certain risks or discomforts that you might 
expect if you take part in this research. Some users complain of motion sickness or migraine 
headaches when using VR technology for prolonged periods of time. You will be able to stop at 
any point if you begin to experience any discomfort while participating. 
 
Possible Benefits: You will not benefit directly from taking part in this study, aside from any 
enjoyment derived from playing a video game-like app, and perhaps gaining some chemical 
intuition and knowledge about the stability of cluster structures. The research does have broader 
possible benefits to the fields of chemistry, education, and computer science, in advancing the 
methods used for structure optimization, and developing methods at the boundary between 
human interfaces with computational technology. 
 
EQUIPMENT AND DEVICES THAT WILL BE USED IN RESEARCH STUDY 
 
A VR headset and a cellphone with a VR app will be used in this study. You might experience 
motion sickness or migraine when using the VR headset for a long time. Notify the research 
team immediately if you experience any discomforts during the study. If you continue to 
experience any discomforts after the study, contact your preferred healthcare provider and notify 
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the research team. Clemson University has not set aside funds to compensate you for any injury, 
complication or related medical care that may arise from participation in this study. 
 
PROTECTION OF PRIVACY AND CONFIDENTIALITY 
 
The results of this study may be published in scientific journals, professional publications, or 
educational presentations. 
 
No personal information will be collected during the study. The only data collected will be the 
progress and performance of the optimization, and whether or not a human was contributing to 
the optimization. This data will not be collected with any identifying information about 
individual participants. 
 
The information collected during the study could be used for future research studies or 
distributed to another investigator for future research studies without additional informed consent 
from the participants or legally authorized representatives. 
 
We might be required to share the information we collect from you with the Clemson University 
Office of Research Compliance and the federal Office for Human Research Protections. If this 
happens, the information would only be used to find out if we ran this study properly and 
protected your rights in the study. 

 
CONTACT INFORMATION 
 
If you have any questions or concerns about your rights in this research study, please contact the 
Clemson University Office of Research Compliance (ORC) at 864-656-0636 or 
irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the ORC’s 
toll-free number, 866-297-3071. The Clemson IRB will not be able to answer some study-
specific questions. However, you may contact the Clemson IRB if the research staff cannot be 
reached or if you wish to speak with someone other than the research staff. 
 
If you have any study related questions or if any problems arise, please contact Prof. Steven J 
Stuart at Clemson University at 369 Hunter Laboratory, ss@clemson.edu. 
 
CONSENT 
 
By participating in the study, you indicate that you have read the information written 
above, been allowed to ask any questions, and you are voluntarily choosing to take part in 
this research. You do not give up any legal rights by taking part in this research study. 
 
 
Participant’s signature: ____________________________________ Date: __________ 

 
Print name: _____________________________________________ 

 
 
A copy of this form will be given to you. 
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[76] J. M. Garćıa-Mart́ınez, E. M. Garzón, J. M. Cecilia, H. Pérez-Sánchez, and P. M.
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