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ABSTRACT 

Recent technological advances have made it possible to more accurately 

understand visitor travel patterns and their associated impacts. These advancements help 

to: accumulate voluminous data sets, collect alternative location data similar to GPS data, 

conduct spatiotemporal inferential statistics, and advance spatiotemporal visualizations. 

However, investigations of visitor travel patterns have not kept pace with recent 

technological advancements. Therefore, the purpose of this dissertation was to advance 

spatiotemporal research of visitor travel patterns within parks and protected areas by 

leveraging new technologies. The studies reported in this dissertation were designed to 

begin filling this gap, and include results from research conducted at: 1) Theodore 

Roosevelt National Park to identify which spatiotemporal variables are the most 

important to managers for understanding visitor travel patterns; 2) Hawai’i Volcanoes 

National Park to identify air tour travel patterns; and 3) the Bonneville Salt Flats to 

understand visitor travel patterns in a dispersed recreation setting that lacks 

organizational infrastructure. 

These three independent but conceptually linked studies were designed to inform 

our understanding of visitor travel patterns within parks and protected areas. This 

information is important so that park managers: a) understand how space and time 

influence visitor routes; and b) have relevant information to continue to conserve the 

biophysical resource while providing opportunities for quality visitor experiences. 

Results from the study at Theodore Roosevelt National Park showed that managers 

identified three temporal variables as being the most important towards understanding 
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visitor travel patterns. These variables were analyzed to determine time allocation and 

vehicle speed patterns. Results from the study at Hawai’i Volcanoes National Park 

determined air tour travel patterns and which terrestrial attraction areas were the most 

affected by air tours. The study at the Bonneville Salt Flats identified potential areas of 

conflict and designed areas recommended for monitoring. Overall, this dissertation 

contributes to further understanding of visitor travel patterns, which provides information 

for managers to continue conserving parks and protected areas for the benefit of society. 
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CHAPTER ONE 

INTRODUCTION 

Conserving the environment is inextricably connected to society, including the 

conservation of parks and protected areas (PPAs), which are important for many reasons, 

including leisure and recreation. The societal health benefits of leisure and recreation are 

well-documented (Godbey, 2009) and quality experiences in PPAs can foster 

conservation values and attitudes (McFarlane, Boxall, & Watson, 1998). Thus, these 

socially constructed and socially-valued areas require both environmental resource 

conservation and conservation of societal benefits to remain viable. Therefore, it is 

important to understand factors that contribute to quality visitor experiences. 

Research has shown that visitor experiences in PPAs are a spatially-conditioned 

process (Beeco & Brown, 2013). This means that space (referred to as the spatial 

component) is a fundamental resource for visitors in PPAs (An et al., 2015). Space as a 

resource is not an exclusive entity; space is inherently connected to time (referred to as 

the temporal component), which is highlighted by the conceptual framework known as 

time-geography (Hӓgerstrand, 1970). Time-geography is a framework for the analysis of 

spatiotemporal behavior that identifies the inherent relationships between space and time. 

The guiding principle of the time-geography framework is that spatiotemporal 

investigations should analyze both the spatial and temporal components. The assumptions 

of the time-geography framework are that the individual is indivisible, space and time are 

inseparable, and space and time are limited resources (Pred, 1977). Therefore, visitor 
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experiences in PPAs are spatiotemporally conditioned, because space and time are 

inherently linked and omnipresent. 

Understanding how space and time influence the visitor experience is essential. 

Every moment of each visitor experience is influenced by space and time. Thus, data that 

includes information about space and time are important. Data that identifies a location 

with a timestamp is referred to as spatiotemporal data, which are important for managers 

of PPAs to understand visitor travel patterns. Understanding visitor travel patterns can 

help managers conserve the environmental resource while conserving quality visitor 

experiences. 

Recent advancements in technology have enhanced research of visitor travel 

patterns. A valuable data collection tool is the GPS (Global Positioning System) data 

logger, which records timestamped locational data. The primary strength of GPS data 

loggers is the proven accuracy for collecting localized data (White, Brownlee, Furman, & 

Beeco, 2015). GPS data loggers are small, typically waterproof, record waypoints at 

regular intervals, and are intuitive to configure (Beeco & Hallo, 2014). However, 

methods of analyzing GPS data to understand visitor travel patterns can be improved by: 

a) incorporating site specific contextual information, b) conducting travel pattern analysis 

of wider ranges of visitor types, such as air tours, and c) analyzing visitor travel patterns 

in a dispersed PPA that lacks organizational infrastructure. Consequently, advancing 

spatiotemporal analyses of visitor travel patterns within PPAs is important to produce 

highly accurate information for managers to effectively conserve the environmental 

resource while providing opportunities for quality visitor experiences. Therefore, the 
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purpose of this dissertation is to advance spatiotemporal research of visitor travel patterns 

within PPAs. 

Accordingly, this dissertation features three empirical studies that advances 

understanding of visitor travel patterns. Each study occurred at a distinct type of park, 

and each study advanced spatiotemporal methods to understand visitor travel patterns. 

The research featured in Chapter 2 occurred at Theodore Roosevelt National Park in 

North Dakota and advanced spatiotemporal methods by using a management-centric 

approach to identify which spatiotemporal variables are most important to understand 

visitor travel patterns at the park. The managers identified spatiotemporal variables which 

were subsequently used by the researcher to segment visitors into travel groups, and these 

groups’ travel patterns were compared. Additionally, this research advanced 

spatiotemporal visualizations and presents intuitive spatiotemporal displays. 

The research featured in Chapter 3 occurred at Hawai’i Volcanoes National Park, 

which is located on the island of Hawai’i. This research used data that is conceptually 

similar to GPS data, known as Automatic Dependent Surveillance-Broadcast (ADS-B) 

Out, to analyze air tour travel patterns. These data were used to quantify air tour patterns 

and frequency across hours for weekdays, and weekends and holidays; and to 

spatiotemporally identify which terrestrial attraction areas are most affected by air tours. 

This research advanced spatiotemporal methods by using inferential statistics to analyze 

spatial variations of temporally-segmented air tour data to understand air tour travel 

patterns for an open system (air tours flying uninhibited above the park). Park managers 
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can use the findings of this research to plan with air tour operators, the Federal Aviation 

Administration (FAA), and other entities. 

The research featured in Chapter 4 occurred at the Bonneville Salt Flats in Utah. 

The Bonneville Salt Flats are a flat desert expanse comprised of a hard salt substrate that 

provides visitors with the opportunity to freely explore the vast landscape (Hogue, 2005). 

The Bonneville Salt Flats are popular for many reasons, but notably that there is no speed 

limit. Additionally, this park lacks organizational infrastructure (such as roads, trails, or 

signs), which is a challenging setting for understanding visitor travel patterns. This 

research advanced spatiotemporal methods by designing a digital grid to identify areas 

where potential conflict may occur and where there is high use and high vehicle speeds. 

Park managers can use the information produced by this research for monitoring purposes 

to reduce potential visitor conflict. 

The purpose of this dissertation was to advance spatiotemporal research of visitor 

travel patterns within PPAs. This research was necessary because space and time are not 

well understood for visitors, and technological advancements provide opportunities for 

richer analytical depth. It is important for managers to understand visitors’ use of space 

and time to understand where and when to allocate park resources. Additionally, this 

information is useful to understand how often to maintain resources, which is a function 

of time based on the location of park resources. The spatiotemporal methods documented 

in this dissertation advance analytical accuracy of understanding visitor travel patterns. 

This information can help managers understand visitor travel patterns to more effectively 
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conserve the environmental resource while providing opportunities for quality visitor 

experiences. 
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Abstract 

Visitor travel patterns are affected by the unique context of each park and 

protected area. Consequently, researchers have used numerous options and associated 

methods to understand specific visitor travel patterns at individual parks. However, 

management input to identify the most important spatiotemporal variables used to 

understand travel patterns has not been fully taken into consideration during previous 

investigations. In this study, the researcher conducted semi-structured interviews and 

surveyed managers at Theodore Roosevelt National Park to determine which 

spatiotemporal variables were deemed the most important for understanding visitor travel 

patterns at the park. Next, these spatiotemporal variables identified by managers were 

used to cluster travel groups. These travel groups were compared to gain more 

understanding of visitor travel patterns. Lastly, 3D geovisualizations that are intuitive and 

easy to understand were created for management purposes. A significant finding 

produced by this research was that managers at Theodore Roosevelt National Park 

identified three temporal variables as being the most important for understanding visitor 

travel patterns: total time spent at attraction areas, total time spent at the visitor center, 

and total time spent in the park. 
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Introduction 

No matter where humans visit, they travel along a route in which space and time 

are omnipresent. Accordingly, every human behavior and experience occurs at a specific 

location at a specific time because space and time are inherently linked (Hägerstrand, 

1970). All human behaviors and experiences are spatiotemporally conditioned because a 

tripartite relationship exists between humans, space, and time. Although, spatiotemporal 

information provides meaningful information about human behavior, it is often 

overlooked because it is ubiquitous. 

This fundamental tripartite relationship between humans, space, and time gained 

prominence from a research framework known as time-geography. According to the 

time-geography framework, all spatial behaviors should include a consideration of time 

because space and time are always linked (Hägerstrand, 1973). Consequently, budgeting 

of space and time by humans is constant. Therefore, human travel routes are comprised of 

a series of spatiotemporal-conditioned behaviors in which budgeting of space and time 

are regularly assessed (Grinberger & Shoval, 2019). These travel routes have 

implications for the management of parks and protected areas (PPAs), because as visitors 

move through these areas they spatiotemporally interact with biophysical resources and 

are influenced by other visitors’ spatiotemporal behaviors (Beeco & Hallo, 2014). 

Information about visitor travel patterns, such as the locations they visit, times of 

visitation, and duration of visitation, can help managers of PPAs conserve the biophysical 

resource and provide opportunities for quality visitor experiences (D’Antonio & Monz, 

2016). However, each PPA has a spatially unique context that influences visitor travel 
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patterns, including geography, infrastructure, and locations of attraction areas. Therefore, 

it is important to include these site specific contexts into research of visitor travel 

patterns. 

Tracking technologies, such as GPS (Global Positioning System), have made it 

possible to gather accurate and precise location data (D’Antonio & Monz, 2016). GIS 

(Geographic Information Systems) have made it possible to conduct geospatial mapping 

and statistics of location data (Shoval, Schvimer, & Tamir, 2018). These technological 

advances have provided an abundance of analytical possibilities, which make it difficult 

to determine which attributes to analyze regarding visitor travel patterns. Additionally, 

the unique spatial context of each PPA influences visitor travel patterns, and should be 

considered. Therefore, determining which travel pattern attributes to analyze needs to 

incorporate contextual information and contextual knowledge. Contextual knowledge is 

the capacity to navigate localized situations, and is important to incorporate into applied 

research (Aspers, 2006). Managers typically have the best contextual knowledge of the 

PPA they manage. 

Applied research should also provide results that are intuitive and useful. 

However, most applied research of PPAs, that incorporates GPS and GIS, often 

constructs two-dimensional density displays that can be difficult to process (D’Antonio et 

al., 2010). These displays are difficult to understand the magnitude of the attribute 

analyzed, such as how long people visit a location (Beeco & Hallo, 2014). Applied 

spatiotemporal research could produce better displays in which the magnitude of 

attributes is easier to understand, such as three-dimensional (3D) displays, which are 
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better at displaying magnitude than 2D density displays (Kwan & Lee, 2004). For 

example, 3D displays can be constructed to show time allocation and speed. Finally, 3D 

displays have been shown to avoid interpretative difficulties associated with other types 

of spatiotemporal displays (Kwan & Lee, 2004). 

This study is valuable because it introduces an approach that includes contextual 

knowledge of the study site to understand visitor travel patterns, and produces intuitive 

visualizations that can help managers easily understand visitor travel patterns. The study 

site was Theodore Roosevelt National Park (THRO). The researcher interviewed and 

surveyed managers to understand which spatiotemporal variables are most important to 

understand visitor travel patterns. These variables were used to produce distinct travel 

pattern groups, and 3D geovisualizations were created. The resultant information 

advances science by introducing an approach that includes contextual spatiotemporal 

knowledge and provides managers with intuitive and useful results. 

Literature Review 

Travel Pattern Variables 

Every visitor to a PPA travels a route comprised of numerous spatiotemporal 

intricacies known as travel patterns (Beeco & Hallo, 2014). Using GPS technology and 

GIS applications, it is possible to collect accurate, precise, and detailed travel pattern data 

and conduct several types of analyses (Riungu, Peterson, Beeco, & Brown, 2018). Using 

both GPS and GIS is valuable but hampered by a wide range of spatial, temporal, and 

spatiotemporal variables (An et al., 2015). This abundance allows for multiple analytical 

approaches but can result in challenges associated with determining which approaches 
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and variables to assess. Therefore, identifying contextually important variables and 

operationalizing those variables is important. 

The abundance of travel variables can make it difficult to identify which variables 

to analyze and how to include site specific context. Kidd et al. (2015) extracted 21 

operationalized variables derived from GPS data to classify visitor vehicular behavior in 

a protected area. The researchers used an exploratory factor analysis as a data reduction 

technique to focus analytical efforts. Another strategy is to use the data to identify 

contextual characteristics of the study site (Beeco et al., 2013). Stamberger et al. (2018), 

noted that aspects of the study site’s contextual characteristics are already naturally 

embedded in GPS data, and that GPS data can be used to identify visitor time allocation, 

visitor travel speed variations, use concentrations, and locations of visitation. However, 

contextual knowledge of the study site might be more effective to determine which travel 

variables to analyze, such as PPA managers’ knowledge of study site. By combining both 

managers’ knowledge and the study site’s contextual characteristics, researchers can 

identify travel pattern variables to operationalize and analyze. Yet, such a contextualized 

approach has not been conducted in which both manager knowledge and unique park 

characteristics were used to understand visitor travel patterns. 

Added to the challenge of abundant travel variables is the difficulty to 

operationalize travel patterns. Past research shows a variety of approaches. Beeco and 

Hallo (2014) examined factors that influenced visitor travel patterns in a complex trail 

system and operationalized travel patterns as total distance traveled, number of zones 

encountered, and distance from starting point. Ferrante, De Cantis, and Shoval (2016) 
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analyzed cruise passengers’ spatiotemporal behavior at a port destination with GPS 

tracking data, and operationalized travel patterns as total duration of tour, total length of 

tour, maximum distance from origin, average distance from origin, average speed, and 

90th percentile of speed. The study conducted by Ferrante, De Cantis, and Shoval (2016) 

also brought attention to the difficulty of identifying a ‘stop’ at a tourist attraction area 

when analyzing GPS data. The authors determined that speed and duration can be used to 

operationalize a ‘stop’. For example, a ‘stop’ could be identified when travel speed is 

below 2 mph for 2 minutes or longer. Past research demonstrates the challenges of 

operationalizing travel patterns, and the importance of including study site context. 

Data Clustering 

Technological advancements have resulted in efficient GPS data collection of 

voluminous datasets (Hagenauer & Helbich, 2013). GPS data includes a waypoint, 

timestamp, and an elevation (Hu & Wang, 2007). A waypoint is point location identified 

with a latitude and longitude (Niehöfer, Burda, Wietfeld, Bauer, & Lueert, 2009). One 

method to collect location data is by distributing GPS data loggers to a representative 

sample of PPA visitors (Riungu et al., 2018). However, when a sample population carries 

GPS data loggers this can result in large amounts of data (Shekhar, Gunturi, Evans, & 

Yang, 2012). For example, Beeco et al. (2013) conducted a study to analyze GPS tracks 

of different tourist typologies, which resulted in 1.5 million waypoints. The immensity of 

GPS data is also dependent on how often the devices record a waypoint, which are 

typically configured to record waypoints every 15 seconds (Beeco & Hallo, 2014). For 

example, if a sample of visitors (n=300) spent an average of five hours within a PPA, this 
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would result in 360,000 waypoints. Studies have recognized that a 15-second interval is 

burdensome yet rich (Beeco et al., 2013). 

These large datasets typically contain patterns that can be difficult to determine 

(Miller & Han, 2009). One method to overcome this challenge is clustering data with 

similar characteristics to facilitate further analyses (Peeters et al., 2015). These data 

groupings can be explored for patterns and tested for similarities and differences amongst 

cluster groupings (Hagenauer & Helbich, 2013). K-means clustering is one example of a 

clustering algorithm, which can be used to gain knowledge about visitor travel patterns in 

PPAs (Theodoridis, Pikrakis, Koutroumbas, & Cavouras, 2010). 

K-means was developed by MacQueen (1967) and later improved by Hartigan 

and Wong (1979). The k-means clustering algorithm is an iterative process that divides 

observable continuous data into k clusters in which clusters maximize similarity within, 

and maximize differences between (Rendón, Abundez, Arizmendi, & Quiroz, 2011). A 

primary advantage of k-means is its simplicity and speed that makes it capable of 

processing large data sets, such as GPS data (Nath et al., 2010). Furthermore, clustering 

has proven to be a valid technique for understanding travel patterns (Grinberger, Shoval, 

& McKercher, 2014; Izakian, Pedrycz, & Jamal, 2012). K-means clustering has been 

used to identify spatial patterns of pedestrian-involved crashes (Kim & Yamashita, 2005), 

understand daily travel patterns of humans (Jiang, Ferreira, & González, 2012), and 

identify transit riders’ travel patterns (Ma, Wu, Wang, Chen, & Liu, 2013). K-means 

clustering can also be used to cluster data using spatiotemporal variables of PPA visitors 

(Kidd et al., 2018). 
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A disadvantage of k-means clustering is that the number of clusters must be 

specified before the algorithm is applied, which is typically identified through an iterative 

process (Pham, Dimov, & Nguyen, 2005). K-means clustering is possible with 

spatiotemporal data, because they are not latent variables. Determining the appropriate 

number of clusters involves a combination of trial-and-error and data validation 

techniques (Pham et al., 2005). Within SPSS (Statistical Package for Social Sciences) the 

k-means output provides an analysis of variance F statistic to assess the subjective input 

(Kim & Yamashita, 2005). It is also recommended that internal validation indices be used 

when a pre-specified cluster cannot be initially identified. Dunn’s index and Silhouette 

index can be used to check for internal validation, which assess inter-cluster distances 

and intra-cluster distances (Dunn, 1973). Lastly, it is recommended that k-means 

groupings should be checked by a team of experts who are familiar with the data by 

double-checking various cluster arrangements to validate optimal number of data 

groupings. 

Geovisualizations 

Geovisualizations are the display of geographically referenced spatiotemporal 

data (MacEachren, Wachowicz, Edsall, & Haug, 1999). Geovisualizations aid in the 

identification of spatiotemporal patterns and relationships within a geographic context 

(Kwan & Lee, 2004). Geovisualizations of visitor travel patterns within PPAs have been 

criticized for being limited to density displays (Beeco & Hallo, 2014). Density displays 

show where visitors concentrate (Riungu et al., 2018). However, it can be cumbersome to 

infer meaning from ‘density’ in these displays, which in geographic terms is equal to 
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‘parts per area’ (Downs, 2010). This can be problematic for applied research in PPAs 

because intuitive and useable information should be provided for managers. 

3D geovisualizations are a powerful tool to help understand travel patterns 

because they are capable of showing important and intuitive spatiotemporal 

characteristics, such as time allocation patterns and driving speed patterns (Kwan & Lee, 

2004). 3D geovisualizations allow for in-depth exploration of spatiotemporal data by the 

researcher because these displays are interactive (Herman, Popelka, & Hejlova, 2017). 

Kwan and Lee (2004) showed the utility of geovisualizations for understanding human 

activity patterns, and the authors noted that 3D geovisualizations provide a dynamic and 

interactive environment that include several useful navigational capabilities, such as 3D 

fly-throughs and dynamic rotations, which cannot be conducted with 2D density displays. 

Within ArcGIS, 3D geovisualizations can be constructed using the 3D viewing 

application known as ArcScene along with 3D Analyst (Herman et al., 2017). However, 

intuitive 3D geovisualizations of visitor travel patterns have not been widely produced for 

managers of PPAs. 

Study Objectives 

The purpose and research questions of this study were designed to address 

knowledge gaps in the literature: manager knowledge has not been systematically 

incorporated when investigating visitor travel patterns, this knowledge has not been used 

to cluster the data into groupings for further analyses, and geovisualizations have not 

been commonly constructed for transmission of intuitive information for PPA managers. 

Therefore, the purpose of this study is to advance understanding of visitor travel patterns 
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using contextual knowledge and contextual information of a park setting. The study site 

for this research is Theodore Roosevelt National Park in North Dakota. The findings of 

this study can assist managers with further understanding of visitor travel patterns. 

Specifically, the following questions guided this research: 

1.) What variables do managers identify as the most important to understand 

visitor travel patterns? 

2.) How well do these variables produce distinct travel pattern clusters? 

3.) How do travel patterns vary amongst cluster groups? 

4.) How can visualizations be advanced for management and planning purposes? 

Methods 

Study Area 

Theodore Roosevelt National Park (THRO) is located in western North Dakota, 

and is known for its unique badlands landscape, and abundance of wildlife. THRO is 

home to a variety of animals including: bison, mule deer, white-tailed deer, elk, feral 

horses, pronghorn, coyotes, bobcats, badgers, beavers, porcupines, prairie dogs, golden 

eagles, a variety of birds, and a variety of snakes (National Park Service, 2019). In 2019, 

THRO received 691,658 visitors (National Park Service, 2020). 

THRO is comprised of three units totaling more than 70,000 acres: South Unit 

(46,158 acres), North Unit (24,070 acres), and Elkhorn Ranch Unit (218 acres) (National 

Park Service, 2019). The South Unit gets the most visitation because it is located adjacent 

to a major travel corridor (Interstate 94), and is situated next to the town of Medora 
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which offers restaurants, museums, shops, and hotels (National Park Service, 2019). This 

research focused on the South Unit because of its popularity. 

The South Unit features a 36 mile scenic loop drive, side roads to explore, hiking 

trails, National Park Service ranger-led activities, camping, a visitor center, and 

opportunities for wildlife viewing (National Park Service, 2019). The speed limit of the 

scenic loop drive is 35 mph. To enter the South Unit, visitors must drive through an 

entrance fee gate (visitors exit the same way they entered) where they receive a National 

Park Service map (Figure 1). The popular scenic loop can be driven in either direction; 

visitors can either turn right or left onto the scenic loop. Recently, THRO management 

has posed concerns about high visitation rates and visitors concentrating at the South 

Unit. 

Procedure Overview 

To address the research questions, the researcher distributed GPS data loggers to 

visitors of the South Unit, identified travel pattern variables most important to THRO 

managers, performed data clustering, conducted spatiotemporal analyses, and constructed 

geovisualizations. 

GPS Data Loggers 

The researcher used a random probability sampling procedure to intercept day 

visitors for distributing GPS data loggers. This procedure was stratified across time of 

day, day of the week, and season (Vaske, 2008). The researcher distributed GPS data 

loggers to one visitor per travel party (e.g., a family) at the entrance gate of the South 

Unit. The GPS data logger used for this study was the Canmore GT-740FL Sport. White, 
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Brownlee, Furman, and Beeco (2012) compared the Canmore GT-740FL to three other 

GPS data loggers, and determined the Canmore unit achieved the highest accuracy, 

durability, and ease of use compared to the other loggers tested (Garmin Oregon 600, 

GlobalSat DG-100, and GlobalSat DG-200). The Canmore GT-740FL has extended 

battery capabilities, is approximately 2.5 x 1.3 centimeters, and is equipped with a power 

button but no LCD interface, which prevents visitors from accidently tampering with the 

device. The GPS data loggers were configured to record a waypoint in decimal degrees 

and a timestamp at 15-second intervals. The 15-second interval has proven useful in past 

research tracking pedestrians (e.g., walkers, hikers, runners) (Beeco & Hallo, 2014). The 

Canmore GPS data loggers must be analyzed retroactively, preventing the researcher 

from evaluating visitor travel patterns in real-time. This was communicated to visitors at 

the intercept location as an assurance of privacy. Visitors returned the data loggers as 

they exited THRO at the gate. 

The researcher imported raw GPS data from the data loggers into MS Excel to 

perform initial cleaning. The data was then imported into R version 3.4.3 for analytical 

configuration and to construct point shape files projected to Universal Transverse 

Mercator (UTM) Zone 13N. The point shapefiles were then uploaded, organized, and 

further cleaned in ArcGIS 10.6.1, and ArcCatalog was used for organization. Five 

primary cleaning considerations were implemented: 1) raw GPS data were inspected for 

15-second intervals for all consecutive waypoints, 2) mapped waypoint data were 

visually inspected if consecutive waypoints appeared congruous with a 15-second 

interval, 3) visual identification to confirm that the waypoints were consistent with 
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human behavior, 4) mapped line data were visually inspected for routes incongruous with 

human behavior, and 5) physical feasibility if humans would be at that location (Beeco, 

Hallo, English, & Giumetti, 2013). 

Identification of Spatiotemporal Travel Pattern Variables 

The spatiotemporal variables most important to THRO managers were identified 

in two steps: 1) semi-structured interviews with THRO managers, and 2) quantitative 

questionnaires with the same managers. The researcher used nonprobability purposive 

sampling to locate THRO managers for data collection. A script for the semi-structured 

interviews was developed for managers to identify important travel pattern variables. 

This script included numerous spatial, temporal, and spatiotemporal travel pattern 

variables identified by the literature. The script was reviewed by a team of researchers 

(n=3) familiar with the park context and visitor travel pattern research. This step ensured 

the script was effective for managers to identify important travel pattern variables. The 

researcher conducted semi-structured phone interviews during September of 2019 (n = 5; 

M minutes = 15). The interviews included all permanent managers who have multiyear 

experience at THRO. Interviews were concise to identify important travel pattern 

variables. They were audio-recorded and standard coding procedures outlined by Saldaña 

(2012) were used to identify common responses (Burla et al., 2008). 

Using the results of the semi-structured interviews, the researcher constructed a 

quantitative questionnaire to understand the level of importance of the identified travel 

pattern variables. Variables were assessed using a five-point Likert-type scale (1 = ‘not 

important at all’; 5 = ‘extremely important’) and rank order of importance (i.e., most 
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important, 2nd important). The quantitative questionnaires were distributed through email 

using Qualtrics Survey Software (Qualtrics, 2014). Scores on questionnaire items were 

aggregated to identify the spatiotemporal variables most important to THRO managers to 

understand visitor travel patterns. Managers identified three spatiotemporal variables: 

total time at attraction areas, total time spent at the visitor center, and total spent in the 

South Unit. The spatiotemporal variables identified by THRO managers were then 

calculated for each travel party, and correlations were conducted to check for relatedness 

of these variables. 

Data Clustering 

Data clustering of visitor-based GPS data was conducted in SPSS version 24.0 

using the k-means clustering algorithm. The spatiotemporal variables identified by THRO 

managers to be the most important for understanding visitor travel patterns were 

calculated for each travel party and entered into the k-means algorithm. K-means 

clustering algorithm has been commonly used to segment large data sets and performs 

well with observable continuous variables (Bishop, 2009; Duda, Hart, & Stork, 2001; Wu 

et al., 2008). Validation techniques were used to identify the optimal number of clusters: 

iterative trial-and-error, statistical output, Dunn’s index, Silhouette index, and validation 

by a team of experts. This phase identified a cluster membership for each travel party. 

Spatiotemporal Analyses 

Cluster membership was used to segment the point shapefiles into travel groups, 

and these were subsequently organized in ArcCatalog 10.6.1. Each travel group’s point 

shapefiles were merged together in ArcMap 10.6.1. Next, the researcher assessed 



22	
	

variations in each group’s spatiotemporal travel patterns. Continuous spatiotemporal 

variables were compared amongst groups using a One-Way ANOVA with a Bonferroni 

Post Hoc test. Dichotomous, proportion-based, spatiotemporal variables were compared 

using a chi-square test. 

In addition to the manager-identified variables, the researcher analyzed each 

groups’ travel patterns to determine other spatiotemporal variables of interest within the 

context of the South Unit. The researcher determined that it was important to analyze 

trail-use because time at attraction areas statistically differed amongst groups. To 

understand these differences the researcher analyzed each groups’ trail use, because most 

attraction areas have hiking trails. The researcher also chose to analyze visitor travel 

patterns along the scenic loop drive, because of its popularity. Characteristics of the 

scenic loop drive were analyzed by comparing the following dichotomous variables 

across cluster groups: percent of group members that drove the entire loop, percent of 

group members that turned right onto the scenic loop, and percent of group members that 

turned left onto the scenic loop. 

Geovisualizations 

To construct 3D geovisualizations for THRO managers, the researcher used 

ArcMap and ArcScene 10.6.1. In ArcMap a digital grid was constructed, which requires 

input of a THRO perimeter shapefile and a grid cell size. The researcher constructed the 

perimeter shapefile by using ArcMap’s aerial imagery. An appropriate grid cell size was 

determined using the ‘Calculate Distance Band from Neighbor Count’ tool, which 

assesses proximity of all neighboring waypoints. The output of this tool provides three 
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pieces of information: the furthest distance between neighboring waypoints, the least 

distance between neighboring waypoints, and the average distance between neighboring 

waypoints. The researcher calculated this for each travel group, and compared the 

furthest distance between neighboring waypoints. The smallest finding of this measure 

for the three groups was used for the grid cell size. The grid was then constructed using 

the ‘Grid Index Features’ tool in which the grid cell size was inputted along with a 

perimeter shapefile of THRO. The resulting grid was then spatially joined to the merged 

point shape files for each travel group, and three new shapefiles were produced. Next, the 

researcher used the ‘Summarize’ tool to aggregate attribute counts found within each grid 

cell, which was done for each of the travel groups. 3D features were then constructed 

using the ‘Feature To 3D By Attribute’ tool. The resulting shapefiles were then opened in 

ArcScene and geovisualizations were constructed. 

Results 

GPS data loggers were distributed to 265 travel parties, yielding a 93.97% 

response rate and achieving a 4.62% confidence interval. The researcher assessed GPS 

data for error using cleaning procedures stated in the methods, and found all GPS data fit 

for analysis. The sampling stratification procedures, high response rate, and low 

confidence interval suggest that the resulting sample is robust and appropriately 

represents the visiting population to the South Unit of THRO. On average, visitors 

traveled within the South Unit for 158.78 minutes (2 hours and 38.78 minutes). 

Approximately 42% of visitors stopped at the visitor center for 10.20 minutes or longer. 

Approximately 50% of visitors hiked 0.52 miles or further. 
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Travel Pattern Variables & Clustering – Research Questions 1 & 2 

The researcher identified six important travel pattern variables by conducting 

semi-structured interviews with THRO managers: total time at attraction areas, total time 

spent at the visitor center, total time spent within the South Unit, time entered the South 

Unit, total time on roads vs. trails, and vehicle speed patterns. The quantitative 

questionnaires identified the variables that were the most important: total time at 

attraction areas, total time spent at the visitor center, and total time spent within the South 

Unit. Using a map directly adopted from the National Park Service (Figure 1), the 

researcher defined attraction areas as any location referenced on the map, such as Prairie 

Dog Town and Buck Hill. The researcher operationalized a stop (e.g., at attraction areas 

and the visitor center) when the visitors’ speed dropped below 2mph (8.05 km/h), and the 

duration of time the speed was below 2mph spanned longer than 2 minutes (Ferrante et 

al., 2016). 

The researcher then calculated total time at attraction areas, total time spent at the 

visitor center, and total time spent within the South Unit for all travel parties. Using 

SPSS, the researcher checked for variable relatedness with a correlation test, which 

showed correlations to range from 0.14-0.66. The highest correlation was between total 

time spent at the visitor center and total time spent within the South Unit. 

The researcher segmented the sample population using k-means clustering. Total 

time at attraction areas, total time at the visitor center, and total time spent in the South 

Unit were entered into the k-means clustering algorithm. The clustering outcome was 

statistically significant, internal validity was checked, and the team of researchers agreed 
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on cluster results. These results showed that the manager-identified variables produced 

distinct travel pattern clusters. 

The k-means algorithm segmented the data into three groups. The three groups of 

data represented: a ‘Low’ group (n=154), a ‘Medium’ group (n=88), and a ‘High’ group 

(n=23). The ‘Low’ group totaled 133,684 waypoints (40.99% of the sample), the 

‘Medium’ group totaled 140,147 waypoints (42.97% of the sample), and the ‘High’ 

group totaled 52,289 waypoints (16.03% of the sample). The number of waypoints for 

each group is dependent on the number of members per each group. The entire sample 

population resulted in 326,120 waypoints. The ‘Low’ group spent the least amount of 

time at attraction areas, at the visitor center, and within the South Unit. The ‘High’ group 

spent the most amount of time at these locations. 

Spatiotemporal Analyses of Travel Patterns Groupings – Research Question 3 

The k-means groups of Low, Medium, and High established by the manager 

identified variables showed similar trends of low, medium, and high magnitudes for the 

researcher identified variables in Table 1. The groups’ data were statistically compared 

and found to be different for all variables in Table 1. This reveals that a variety of 

spatiotemporal behaviors are exhibited at THRO, otherwise statistical differences would 

not have resulted. The data also showed that the Low group spends the least time at 

attraction areas (M=9.67 minutes), spends the least time hiking trails (M=5.92 minutes), 

and spends the least time at the visitor center (M=5.21 minutes). In contrast, the High 

group spends the most time at attraction areas (M=61.96 minutes), spends the most time 

hiking (M=90.17 minutes), and spends the most time at the visitor center (M=27.35 
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minutes). An interesting finding was that the High group spends the most time on trails, 

but doesn’t hike far (M=2.2 miles). 

Table 2 shows analysis of the scenic loop drive. The results revealed that that 

there was not a significant association between cluster group and: if the entire loop was 

driven, and what direction was turned onto the scenic loop. Most visitors drove the scenic 

loop (85.70%), and the majority of visitors turned right onto the scenic loop (70.10%). 

Therefore, group membership is not an indicator of scenic loop driving characteristics. 

To further understand this data, the number of members per each group should be 

taken into consideration. The Low group had the most members (n=154). Therefore, the 

Low group could be used to characterize the typical visitor to the South Unit, and on 

average spends: 9.67 minutes at attraction areas, 5.21 minutes at the visitor center, 108.14 

minutes within the South Unit, and 5.92 minutes on trails. The Medium group (n=88), 

which did not have as many members as the Low group, should also be noted to 

understand common travel pattern behaviors at THRO. The Medium group on average 

spent 28.15 minutes at attraction areas, 14.43 minutes at the visitor center, 200.41 

minutes within the South Unit, and 35.42 minutes on trails. The High group (n=23) had 

the least amount of members, and thus the travel pattern behaviors exhibited by this 

group may depict atypical behaviors of visitors to the South Unit. 

The results related to research question 3, “how do travel patterns vary amongst 

cluster groups?” showed that travel groups exhibited different travel patterns. The results 

also showed that the manager-identified variables formed distinct cluster groupings, and 

the results of clustering showed trends that were observed in other spatiotemporal 
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variables. Therefore, the primary finding of this research question is that a variety of 

travel patterns are exhibited by visitors to the South Unit. 

Geovisualizations – Research Question 4 

To construct the geovisualizations a digital grid was constructed in which a grid 

cell size needed to be specified. A grid cell size of 61.42 meters2 (0.93 acres) was 

determined using the ‘Calculate Distance Band from Neighbor Count’ tool. Using the 

grid, 3D geovisualizations were created for each group that displays time allocation 

(Figure 2), and average speed (Figure 3). These figures do not include a base map, 

because they are dynamic 3D geovisualizations that can be virtually rotated in all 

directions, but for manuscript purposes these maps are displayed as 2D. A 

geovisualization of speed was necessary because of the popularity of driving the scenic 

loop. These geovisualizations intuitively show areas where visitors spend most of their 

time, and areas where visitors are driving at high speeds. Within the South Unit the 

maximum speed limit is 35 mph (56.33 km/h). The average speed geovisualizations 

identify areas where visitors drove faster than the speed limit. 

The geovisualizations provide intuitive information for managers. The height of 

the columns are proportional to the magnitude of the data for percent of time spent and 

average speed exhibited at the South Unit. The time allocation maps show that the 

following park locations are popular: the visitor center, Wind Canyon Trail, Buck Hill, 

Coal Vein Trail, and North Dakota Badlands Overlook. Is not surprising that visitors 

spent the highest percentage of their time at the visitor center. 
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The average speed maps show large variations in speed. These maps can be used 

to identify where visitors were hiking (i.e., speeds < 5.0mph), and areas where speeds 

exceeded the driving speed limit. The High group exceeds the driving speed limit the 

least. 

The researcher conducted dynamic definition queries in ArcScene to understand 

areas where average speeds were greater than 35mph between: 10:00am – 11:00am, 

11:00am – 12:00pm, 12:00pm – 1:00pm, and 1:00pm – 2:00pm (Figure 4). These maps 

serve as an example of the capability of these visualizations to further understand visitor 

travel patterns. Other definition queries are useful such as to understand where visitors 

are concentrated the most during peak visitation hours. 

Discussion 

The purpose of this study was to advance understanding of visitor travel patterns 

using a hybrid approach that included contextual knowledge and contextual information 

of the park setting. This was accomplished by identifying which spatiotemporal travel 

pattern variables were the most important to managers for understanding visitor travel 

patterns, determining how well management selected variables produce distinct clusters, 

determining how much travel patterns vary across cluster groupings, and advancing 

intuitive geovisualization displays. The South Unit of THRO proved to be a good study 

site for the purposes stated, because visitors exhibited a variety of travel patterns, the 

distribution and collection of GPS data loggers was easy at the entrance/exit gate, and 

managers were willing to participate in the interviews and questionnaires. Additionally, 

the methods demonstrated in this study are transferable to other PPAs. 
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The results revealed which variables managers at THRO thought were most 

important towards understanding visitor travel patterns: total time at attraction areas, total 

time at the visitor center, and total time spent in the South Unit. These variables produced 

distinct travel pattern groups in which the trends of those groups extended to other 

spatiotemporal variables identified for analysis by the researcher. This analysis showed 

that travel patterns vary greatly at the South Unit. 

It is a significant finding that THRO managers determined three temporal 

variables as the most important for understanding visitor travel patterns. In a study that 

analyzed tourists’ time-space consumption it was found that time was more valuable of a 

resource than space (Grinberger et al., 2014). In the state of knowledge review about 

understanding visitors’ spatial behavior, Riungu et al. (2018) explicitly acknowledged 

that the temporal component has not received as much research attention in regards to 

visitor travel patterns. Additionally, Fennel (1996) found that the longer a group of 

tourists stay in an area, the greater the implications to that area. This study with THRO 

managers suggests that the temporal component might be particularly important to 

managers, which may illuminate how managers evaluate park resources. Managers know 

the location of park resources, but need to understand how often to maintain resources, 

which is a function of time. 

The approach used in this study is a relevant research advancement because 

visitor travel patterns have largely been studied from the researcher perspective instead of 

incorporating contextual knowledge of managers. Any analysis of humans is innately 

complex, including human travel patterns. This complexity should not be underestimated, 
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and to gain richer insight, contextual knowledge should be incorporated. To further 

advance research on human travel patterns it is necessary to incorporate multiple 

perspectives for a more robust approach, such as manager and researcher perspectives in 

conjunction with the exhibited travel pattern characteristics of visitors. Future research of 

visitor travel patterns could use multiple perspectives to gain a richer understanding, 

which can be used to understand how visitors budget limited resources of space and time. 

A tripartite relationship exists between space, time, and visitor experiences. A 

similar tripartite relationship exists for managers. Managers regularly consider both space 

and time when making decisions regarding allocation of park resources. Thus decision-

making of resource allocation is spatiotemporally-conditioned. Future research could aim 

to understand managers’ valuation of the temporal and spatial components of visitor 

travel patterns, and how that information affects management decision-making. 

Furthermore, future research could investigate generalized trends of managers’ 

perspectives of travel pattern variables, and how managers can use information about 

spatial variations of visitor travel patterns. This research used a digital grid analysis to 

understand spatial variation of visitor travel patterns. However, grid analysis requires 

simplification and a level of diminishment of actual events. Alternatives to understand 

spatial variations of visitor travel patterns may provide more effective information for 

managers. 

An interesting finding of this study was that the majority of visitors turned right 

onto the scenic loop drive (70.10%). This has several management implications. The 

majority of visitors will be on the south side of the scenic loop earlier in the day, and later 
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in the day the majority of visitors will be on the north side of the scenic loop. Managers 

may want to assess this further to determine educational strategies that will result in equal 

amounts of visitors turning both directions onto the scenic loop. This information can 

also help managers identify where to place future park amenities (e.g., restrooms).  If 

more visitors are turning right, then it may be beneficial to put amenities on the north side 

of the loop for visitors who have been in the park for a longer duration. Future research 

could aim to understand why visitors choose to turn right or left onto the scenic loop. 

Most visitors to the South Unit drove the scenic loop, stopped at attraction areas, 

and did a small amount of hiking. This could be the result of how the infrastructure is 

designed. Infrastructure influences visitor spatiotemporal behavior in national parks. 

Most likely travel patterns would be different if the infrastructure was different. Future 

research is needed to understand how infrastructure affects visitor travel patterns in 

PPAs. This information could help managers design infrastructure that maximize quality 

visitor experiences while conserving the biophysical resource. In the future, when 

infrastructure updates are needed, managers will understand relationships between visitor 

travel patterns and park infrastructure. 

Limitations 

Limitations of this study are that GPS data loggers possibly influenced visitor 

behavior, one GPS data logger was distributed to each travel party, and only five 

managers were interviewed and surveyed. Although the GPS data loggers were small, 

they could have potentially influenced behavior, because visitors were aware that they 

were participating in research. Additionally, only one GPS data logger was distributed to 
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each travel party. This assumes that everyone within a travel party goes to the same 

locations. It is possible that individuals of the same travel party may separate within the 

park, such as to hike or relax at a vista. Lastly, the sample size of managers was small. 

This sample included all the managers who are permanent and have multiyear experience 

at THRO. 

Conclusions 

 The managers at THRO identified three temporal variables as being the most 

important towards understanding visitor travel patterns: total time at attraction areas, total 

time at the visitor center, and total time within the South Unit. Three travel groups were 

found at THRO: Low, Medium, and High. Each group exhibited different travel patterns 

for total time at attraction areas, total time at the visitor center, total time at the visitor 

center, total distance hiked on trails, and total time spent on trails. This research also 

found that travel group membership did not influence driving characteristics of the scenic 

driving loop. 
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Tables 

 

Table 1. Analysis of spatiotemporal variables. 
Spatiotemporal Variable Low Group 

(n=154) 
M (SD) 

Medium Group 
(n=88) 
M (SD) 

High Group 
(n=23) 
M (SD) 

All Groups 
(n=265) 
M (SD) 

F 

Manager Identified Variables      

Total time attraction areas (mins) 9.67 (11.21) 28.15 (19.85) 61.96 (48.46) 20.34 (25.22) 40.28** 

Total time visitor center (mins) 5.21 (10.61) 14.43 (19.96)a 27.35 (24.66) 10.20 (17.01)a 15.17** 

Total time South Unit (mins) 108.14 (32.53) 200.41 (33.88) 338.52 (56.62) 158.78 (78.40) 115.74** 

Researcher Identified Variables      

Distance on trails (miles) 0.13 (0.33) 0.80 (1.26)a 2.20  (2.27) 0.53 (1.17)a 26.59** 

Time spent on trails (mins) 5.92 (13.83) 35.42 (40.77) 90.17 (54.72) 23.03 (39.03) 44.33** 

Note. Superscripts within a row indicate groups are not statistically different; F = F-value; **p < .001. 
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Table 2. Analysis of scenic driving loop. 
Variable Low Group 

(n=154) 
Medium Group 
(n=88) 

High Group 
(n=23) 

All 
(n=265) 

χ2, p 

Percent that drove entire loop 81.20 93.20 87.00 85.70 6.61, 0.09 

Percent that turned right onto loop 73.40 65.50 66.70 70.10 1.75, 0.63 

Percent that turned left onto loop 26.60 34.50 33.30 29.90 1.75, 0.63 

Note. Degrees of freedom = 3; χ2 = chi-square. 
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Figures 

 
Figure 1. Map of THRO South Unit adapted directly from the National Park Service (National 
Park Service, 2019) 
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Figure 2. Geovisualization of each groups’ percent time allocation. 
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Figure 3. Geovisualization of each groups’ average speed. 
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Figure 4. Hourly geovisualization of where all groups drive faster than 35mph. 
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Abstract 
 

Air tour travel patterns, such as sight-seeing helicopter experiences, above parks 

and protected areas have proven difficult to research and for managers to understand. 

Although recent technology makes it possible to collect accurate air tour data, researchers 

have generally not quantified air tour travel patterns across a protected area. This 

information is important for managers to plan with air tour operators to ensure visitor 

experiences are not being compromised. Therefore, the purpose of this study was to 

quantify air tour travel patterns at Hawai’i Volcanoes National Park using data derived 

from Automatic Dependent Surveillance-Broadcast (ADS-B). The researcher used this 

data to construct and analyze a digital grid while employing hot spot clustering to identify 

spaces with a high volume of air tours. Some of these spaces overlap with terrestrial 

visitor attraction locations, suggesting potential conflict between air tours and terrestrial 

visitors. Specifically, results indicate that Nāpau Trailhead and Nāpau Crater receive a 

high volume of air tours and that spatial clustering of tours varies across hours of the day. 

The described methods provide a useful foundation for future research. 
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Introduction 

Understanding visitors’ travel patterns in parks and protected areas (PPAs) is 

important for several reasons. First, travel patterns provide managers with critical 

information about visitors’ behaviors (Hallo et al., 2012). Second, travel patterns are an 

omnipresent and inescapable aspect of the visitor experience because people always 

occupy a specific space at a specific time (Hägerstrand, 1970). Finally, since space 

(spatial component) and time (temporal component) are connected and ubiquitous, the 

visitor experience is a spatiotemporally-conditioned process. These basic tenets of travel 

patterns also apply to visitors experiencing PPAs via air tours. 

Air tours refer to low flying air traffic, such as helicopters that are specifically 

touring above PPAs for sightseeing purposes. The National Parks Overflight Act of 1987 

and the National Parks Air Tour Management Act of 2000 are evidence that the National 

Park Service is committed to managing air tours over NPS sites (Beeco & Joyce, 2019). 

This commitment is important because noise impacts (such as those from air tours) have 

shown to affect the quality of the visitor experience and ecological systems (Dumyahn & 

Pijanowski, 2011; Pilcher, Newman, & Manning, 2008). In the United States, laws and 

policies have recognized natural sounds as a resource that needs to be protected (Miller, 

2008). Thus, understanding air tour travel patterns are important for managing visitor 

experiences that are free of anthropogenic sounds (Marin, Newman, Manning, Vaske, & 

Stack, 2011). 

Air tour information can help managers make important decisions to ensure 

quality visitor experiences for both terrestrial visitors and air tour visitors (Newton, 
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Newman, Taff, D’Antonio, & Monz, 2017). This information can help managers: 

collaborate with officials involved with transportation, wildlife, law enforcement, and 

adjacent communities; reduce visitor conflict within park boundaries; and understand 

when and where soundscapes are possibly being compromised due to air tour noise 

(Beeco & Joyce, 2019). However, understanding air tour travel patterns has proven 

difficult. 

In the past it has been difficult for researchers to collect accurate and precise 

location data of air tours over PPAs. According to Beeco and Joyce (2019), prior studies 

have relied on mailed paper maps to air tour operators, and general observations by park 

staff to gain a better understanding of air tour travel patterns. A newer technology, 

Automatic Dependent Surveillance-Broadcast (ADS-B), provides exact information of air 

tours, including latitude, longitude, time stamp, and unique identification code (Beeco & 

Joyce, 2019). Using GIS (Geographic Information Systems), ADS-B data can be 

analyzed like GPS (Global Positioning System) data to determine air tour travel patterns. 

Information about air tour travel patterns can be used by managers for planning purposes, 

such as with the Federal Aviation Administration (FAA), and to understand where and 

when air tour noise may possibly be compromising the experience of terrestrial visitors 

(Beeco & Joyce, 2019). 

However, managers lack information about air tour travel patterns (Beeco & 

Joyce, 2019). The purpose of this study is to address this gap by: a) quantifying hourly 

and daily air tours, b) determining areas of intense clustering of air tours, and c) 

identifying specific terrestrial attraction areas most affected by air tours. This study 
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demonstrates analysis of air tours over Hawai’i Volcanoes National Park (HAVO) using 

ADS-B location data. 

Literature Review 

Air Tours 

During 2018, the United States National Park Service (NPS) reported that 54 units 

received a total of 47,145 air tours (National Park Service, 2018). The United States Title 

14 Code of Federal Regulations defines air tours as an airplane or helicopter used for 

sightseeing (Ballard, Beaty, & Baker, 2013). The NPS is legally required to manage air 

tours over parks, which first began with the National Parks Overflight Act of 1987 

(Beeco, Joyce, & Anderson, article production in process, hereinafter referred to as 

‘Beeco et al., 2020’). Additionally, the NPS is charged with providing public enjoyment 

while preserving cultural and natural resources (Miller, Fefer, Kraja, Lash, & Freimund, 

2017). Similar to visitors who drive or hike into a national park, visitors who take an air 

tour over a national park are also looking for a quality experience (McNicol & Rettie, 

2018). 

It is important for managers to understand relationships between air tours and 

quality experiences of terrestrial visitors (Mace, Bell, Loomis, & Haas, 2003). One 

reason is the noise of air tours can compromise the natural soundscape (Beeco et al., 

2020). A compromised soundscape has been shown to have adverse effects on visitors 

(McDonald, Baumgarten, & Iachan, 1995). Additionally, air tours can affect terrestrial 

visitors in a variety of ways, including the sight of too many air tours (Miller, 2008). 
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In February of 2014, the NPS released an Environmental Assessment of HAVO 

(National Park Service, 2014). This document detailed an evaluation of HAVO’s 

soundscape in terms of air tour noise (National Park Service, 2014). It was documented 

that visitors found it unacceptable to hear an air tour once every 15 minutes or more often 

(Lawson et al., 2007). Additionally, other aspects of air tours may affect experiences of 

terrestrial visitors, such as number of air tours seen at one time (Tarrant, Haas, & 

Manfredo, 1995). Air tours may also impact aspects of the biophysical resource, such as 

wildlife (Shannon et al., 2016). Therefore, it is important for managers to be familiar with 

precise and accurate air tour travel pattern information. 

Until recently, managing air tours has been challenging because there has not 

been a valid method for collecting precise and accurate air tour data (Beeco & Joyce, 

2019). Past studies have relied on mailing paper maps to air tour operators, and 

generalized information from park personnel (Beeco & Lignell, 2019). However, these 

techniques are not exact, and have been shown to vary by as much as several miles 

(Beeco & Joyce, 2019). Although these techniques were effective for managers to begin 

understanding air tour travel patterns, managers have not benefited from accurate and 

precise objective data. This information can help managers to understand relationships 

between terrestrial visitors and air tour visitors, and to provide quality visitor experiences. 

Tracking Air Tours using ADS-B Data 

A newer technology called ADS-B can be used for tracking air tours (Beeco et al., 

2020). ADS-B is an air tour’s signal that is broadcasted for monitoring purposes, which is 

intended to improve airspace safety and improve air traffic efficiency (FAA, 2018). 
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Broadcasted ADS-B data is unencrypted, publicly accessible, and can be gathered using a 

data logger that records ADS-B signals (Beeco & Joyce, 2019). ADS-B data loggers can 

record latitude, longitude, time stamp, and unique identification code. Beginning January 

1st of 2020, the United States FAA requires all aircraft that enters designated airspace to 

have ADS-B technology (see 14 CFR § 91.225 and 14 CFR § 91.227). 

ADS-B data can be collected via a radio signal, and therefore ADS-B data loggers 

should be located with an expansive skyward exposure. Data logger components include 

antennas, software, display screen, USB dongle, 5V AC-DC regulator, 50’ AC power 

cable, thermal transfer pads, and a shielded aluminum enclosure (see Beeco & Joyce, 

2019 for a review of these components). Research conducted by Beeco and Joyce (2019) 

validated that ADS-B data can be analyzed like GPS data, and is viable for understanding 

air tour travel patterns over national parks. One primary drawback of the ADS-B data 

logger is that it may not identify all air tours depending on geographic areas (Beeco & 

Joyce, 2019). The requirements for aircraft to be equipped with ADS-B depends on the 

airspace designation (see Beeco & Joyce, 2019 for a detailed description). 

Visitor Travel Patterns 

Space and time are limited resources, which affects how humans travel 

(Hägerstrand, 1970). Accordingly visitors must make decisions of where to visit, when, 

and for how long. Thus, visitation within PPAs is spatiotemporally-conditioned. The 

spatiotemporal characteristics of visitors’ routes is referred to as visitor travel patterns 

(Beeco & Hallo, 2014). Understanding visitor travel patterns helps managers identify 

where and when visitor experiences are occurring. Additionally, managers can use this 
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information to identify if travel patterns of different types of visitors are coinciding, and 

if this is potentially problematic. Therefore, it is important for managers to understand 

visitor travel patterns spatially and temporally of both terrestrial visitors and air tour 

visitors (Riungu et al., 2018). 

Prior studies have analyzed visitor travel patterns using GPS data, and have 

documented many analytical strategies and techniques (Riungu et al., 2018). However, 

the spatial component of visitor travel patterns has received more research attention than 

the temporal component. One strategy to more fully incorporate the temporal component 

is to segment location data temporally for analytical purposes (Birenboim, Anton-Clavé, 

Russo, & Shoval, 2013). Spatial variations can then be analyzed using the temporally 

segmented data. For example, Kim et al. (2019) segmented visitor travel data hourly and 

seasonally to spatiotemporally understand activity hot spots. This information can help 

managers understand where visitors travel dependent on the temporal component (e.g., 

summer at 10:00am) (Kim et al., 2019). However, temporally segmented data has not 

been analyzed for air tour travel patterns using accurate and precise data, such as ADS-B 

data. 

GIS 

GIS is an extensive toolset that can be used to analyze geographic data, such as 

GPS and ADS-B data (Allen, 2016). ArcGIS is an example of a GIS software package, 

and includes ArcMap and ArcCatalog. ArcMap can be used to analyze geospatial data, 

while ArcCatalog can be used to organize data (Allen, 2016). ArcMap features a spatial 

statistics toolbox that has tools to conduct inferential statistics. One example is the Hot 



52	
	

Spot Analysis (Getis-Ord Gi*; hereinafter referred to as Gi*) tool, which identifies 

statistically significant clustering of point data (Getis & Ord 1992). This tool has been 

used: to identify locations of high-impact automobile accidents in Houston, Texas 

(Songchitruksa & Zeng, 2010); to determine ambulance standby points using historical 

emergency data in Minhang District of Shanghai in China (Yi, Xu, Song, & Wang, 

2019); and to conduct spatiotemporal analysis of lightning distribution in Golden Gate 

Highlands National Park in South Africa (Mofokeng, Adelabu, Adepoju, & Adam, 2019). 

The Gi* tool is suitable to understand spatial variations of ADS-B data. 

Another effective technique to analyze spatial variations is to construct a digital 

grid (Liu, Yan, Wang, Yang, & Wu, 2017). A grid can be used in conjunction with the 

Gi* tool to identify spatial variations of travel patterns. For example, Clevenger, Sinha, & 

Howe (2018) used a grid and the Gi* tool to assess physical activity of students during 

recess at an elementary school in Ohio. Additionally, Kim et al. (2018) showed that 

visitor travel patterns can be analyzed hourly and seasonally using a grid and the Gi* tool 

to understand spatiotemporal variations of visitors within Seoraksan National Park in 

South Korea. These studies validate that temporally segmented location data can be 

analyzed using a grid and the Gi* tool. Therefore, this type of analysis can be conducted 

using ADS-B data. However, ADS-B data has not been analyzed using a grid and the Gi* 

tool. 

Study Objectives 

The researcher conducted this study at Hawai’i Volcanoes National Park 

(HAVO). 
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The purpose and research questions of this study addressed knowledge gaps in the 

literature: air tour ADS-B data has not been analyzed for spatial variations of temporally 

segmented data, nor has this data been analyzed using a grid analysis and the Gi* tool, 

nor has this information been connected to terrestrial visitor attraction areas to determine 

which attraction areas are potentially affected the most by air tours. Therefore, the 

purpose of this study was threefold, to: 1) provide spatiotemporal information about air 

tour travel patterns across hour of the day and day of the week; 2) determine which 

terrestrial visitor attraction areas are potentially affected the most by air tours; and 3) 

assess if a spatial grid analysis advances understanding of air tour travel patterns. This 

study benefits managers by detailing air tour travel patterns, identifying when and where 

potential conflicts could occur between air tour visitors and terrestrial visitors, and 

reporting usable information that can be used for managing and planning of air tours. 

This study advanced research by using ADS-B data to conduct statistical analyses in 

which spatial variations of temporally segmented data were analyzed, and by statistically 

identifying terrestrial areas to monitor. Specifically, the following research questions 

guided this research: 

 
At HAVO, 
 

1. How do flight patterns differ across hour of the day, day of the week, and areas of 

the park? 

2. What are the spatiotemporal relationships between flight patterns and terrestrial 

visitor attraction areas? 
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2. How does the process of spatial grid analysis advance our understanding of air 

tour travel patterns, and what are the drawbacks of the application? 

 

Methods 

Study Area 

The study site, Hawai’i Volcanoes National Park (HAVO), is located on the 

island of Hawai’i (Figure 1). HAVO is comprised of 333,000 acres, has over 136 miles of 

hiking trails, and has two active volcanoes (Kīlauea and Mauna Loa) (Lawson et al., 

2007). Kīlauea is located on the southeastern flank of Mauna Loa, and appears as a slight 

bulge at an elevation of 4,091ft. Kīlauea is its own volcano and last erupted in 2018 

(National Park Service, 2019a). Mauna Loa rises 13,100ft above sea level and is the 

largest active volcano on the planet. Mauna Loa last erupted in 1984 (United States 

Geological Survey, 2019). The combination of adjacent volcanoes, and Kīlauea’s recent 

eruption, makes HAVO a popular destination for air tours. 

Procedure Overview 

To address the research questions, the researcher used a terrestrial data logger to 

collect ADS-B air tour signals, prepared and organized the data for analysis, conducted 

spatial descriptive analysis, constructed a grid, assessed spatial variations of temporally 

segmented data using the Gi* tool, and determined which terrestrial attraction areas were 

the most affected by air tours. 

Data Collection and Preparation 
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The ADS-B data was collected using a terrestrial data logger that was located 

approximately one mile to the north of Kīlauea Caldera (latitude 19.421, longitude -

155.288) and positioned with an unimpeded and expansive skyward exposure. The 

terrestrial data logger recorded the ADS-B signals as text files. The researcher imported 

the text files into ArcMap 10.6.1, and merged data into a single point shapefile. The 

researcher then projected the shapefile to Universal Transverse Mercator (UTM) Zone 

5N. This resulted in nearly 2.3 million waypoints because the data logger recorded 

hundreds of waypoints per minute per air tour. Air tours were identified by their unique 

identification code. 

The researcher then exported the point shapefile’s attribute table and imported it 

into MS Excel. Using MS Excel, the researcher reduced the data so that each flight had 

one waypoint per minute for the purpose of assessing where air tours were hovering over 

HAVO. A similar technique was conducted by Beeco et al. (2013) to reduce 1.5 million 

waypoints using a five-minute interval for automobile GPS data. The researcher then 

imported the reduced data back into ArcMap, and data cleaning was conducted using 

similar techniques as Beeco & Joyce (2019), and Beeco, Hallo, English, & Giumetti 

(2013). To prevent inclusion of commercial air traffic, ADS-B data above 15,000 feet 

elevation were not included. Using ArcMap, the researcher assessed all flights for one 

waypoint within half a mile of the park boundary. If this inclusion criteria was met, then 

all waypoints were clipped that were beyond five miles of the park boundary. This 

resulted in 1,576 air tours analyzed. 

Descriptive Statistics 
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The researcher used the single shapefile to conduct spatial descriptive analysis to 

determine mean center point, median center point, one standard deviational circle around 

the mean center point, and kernel density. The researcher then segmented the data into 

two groupings: ‘Weekdays’ and ‘Weekends and Holidays’, and determined the average 

number of hourly flights and associated standard deviations. Independent samples t-tests 

were conducted to compare hourly flights between Weekdays and Weekend and 

Holidays. Within each grouping of data, the research compared number of flights per 

hour using a One-Way ANOVA with a Bonferroni Post Hoc test. 

Analysis for Research Question 1 

To assess spatial variations of temporally segmented data, the researcher 

constructed a digital grid in ArcMap, and then conducted clustering analyses using the 

Gi* tool. (Nam, Hyun, Kim, Ahn, & Jayakrishnan, 2016). The researcher designated a 

grid cell size of 0.5mi2 because this space was determined the distance that air tour noise 

likely affects conversation of terrestrial visitors. Speech interference between people 

(e.g., an interpretive terrestrial tour) begins at approximately 50dBA (Lam, Ng, Hui, & 

Chan, 2005). An EC130 helicopter (considered quiet technology) produces 58.7dBA at a 

distance of 2,000ft (0.38mi) in overflight mode (flying in a straight line). This means that 

a helicopter that doesn’t have quiet technology will likely disrupt terrestrial conversations 

at a distance of approximately half a mile. Therefore, a half mile grid cell is valid to 

understand what areas in HAVO are possibly compromised by air tour noise. 

The researcher constructed the grid in ArcMap using the ‘Grid Index Features’ 

tool. This tool requires designating a grid cell size and a perimeter polygon of the area to 
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be analyzed. The researcher inputted a perimeter polygon of HAVO which was 

downloaded from a National Park Service geospatial data website (National Park Service, 

2019c). The resulting grid was then spatially joined to two shapefiles: Weekday 

waypoints, and Weekend and Holidays waypoints. The spatially joined grids were then 

temporally segmented by hour producing several hourly grids for Weekdays and for 

Weekends and Holidays. The researcher then used the Gi* tool to identify grid cells that 

had statistically significant clustering for the temporally segmented data to determine 

areas most affected by air tours (Kim et al., 2019; Kim et al., 2018). The Gi* tool 

accounts for the spatial structure of the data, and assesses each grid cell’s attribute value 

(i.e., number of waypoints) in relation to neighboring cells, and geographically displays 

areas of high and low clustering, along with associated p-values and Z-scores (Peeters et 

al., 2015). The Z-scores produced by the Gi* tool can be used to assess the intensity of 

data clustering (Kim & Choi, 2017). Higher values of Z-scores signify more intense 

clustering. 

Analysis for Research Question 2 

The researcher assessed areas that had statistically significant clustering for 

proximally located terrestrial attraction sites. GPS coordinates of attraction sites were 

determined from HAVO’s website (National Park Service, 2019). Using ArcMap, the 

researcher constructed a half-mile buffer around each terrestrial attraction site. The 

results of the Gi* tool were overlaid with the buffers of the attraction sites to determine 

which attraction areas spatially intersected with grid cells that had statistically significant 

clustering. The researcher used Z-scores of the Gi* tool to assess clustering intensity of 
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air tours by hour for Weekdays and Weekend and Holidays. Attraction areas that 

intersected with multiple statistically significant clustering grid cells, were designated an 

aggregate Z-score for all intersecting grid cells. This process was repeated for each hour 

of analysis for Weekdays and Weekends and Holidays. The researcher used this 

information to assess air tour clustering intensity over attraction areas. 

Results 

Descriptive Statistics 

The data logger recorded air tour signals from June 25th, 2019 to September10th, 

2019. The researcher analyzed a total of 33 Weekdays, and 22 days that were Weekends 

and Holidays (holidays being July 4th and Labor Day). The data logger failed to record a 

unique air tour identifier for all flights for some of the dates. The researcher did not 

include these dates in analysis. On average, between the hours of 7:00am – 7:00pm, there 

were 33.97 air tours per day for Weekdays, and 31.45 air tours per day for Weekends and 

Holidays. The researcher conducted spatial descriptive analysis and determined that the 

mean center point of all waypoints was 19.40774, -155.241942 decimal degrees, and the 

median center point was 19.39462, -155.236274 decimal degrees. A kernel density 

display was constructed for all waypoints and shows high density of air tours near Nāpau 

Trailhead, Nāpau Crater, and Kīlauea Caldera (Figure 2, Figure 3). 

Research Question 1 

Research question 1 asked, how do flight patterns differ across hour of the day, 

day of the week, and areas of the park? Table 1 displays hourly data for Weekdays data. 

Table 2 displays hourly data for Weekend and Holidays. Hourly statistical comparisons 
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were made using a One-Way ANOVA with a Bonferroni Post Hoc test. For Weekdays, 

air tours between 3:00pm - 4:00pm (M = 2.09) were the most similar to other hours, and 

air tours between 5:00pm – 6:00pm (M = 0.32) and 6:00pm – 7:00pm (M = 0.35) were 

the least similar to other hours (Table 1). For Weekends and Holidays, air tours between 

2:00pm - 3:00pm (M = 3.09) were the most similar to other hours, and air tours between 

6:00pm – 7:00pm (M = 0.14) were the least similar to other hours (Table 2). Table 3 

shows the average number of hourly air tours. The researcher compared the number of 

hourly flights between Weekdays and Weekends and Holidays using independent 

samples t-tests. No differences were detected between the two groups for number of 

flights per hour. 

To assess how flight patterns differed across areas of the park, the researcher used 

a grid and the Gi* tool to analyze clustering for each hour from 7:00am - 7:00pm for 

Weekdays, and Weekends and Holidays. The researcher included in this manuscript the 

results from the Gi* tool for: 1) 9:00am – 10:00am; 2) 10:00am – 11:00am; 3) 11:00am – 

12:00pm; and 4) 12:00pm – 1:00pm. Figure 4 displays the results for Weekdays, and 

Figure 5 displays the results for Weekdays and Holidays. The two figures show grid cells 

highlighted in red and orange. Red grid cells represent statistical clustering at the 99% 

confidence level, and the orange grid cells represent statistical clustering at the 95% 

confidence level. Both figures document that air tours are primarily occurring over the 

west side of the park forming similarly looking arcs of hot spot clustering, regardless of 

the hour of day. These figures show where high intensity of clustering of air tours is 

occurring over HAVO. 
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Research Question 2 

The purpose of Research Question 2 was to determine which visitor attraction 

areas have the highest clustering intensity of air tours (what are the spatiotemporal 

relationships between flight patterns and terrestrial visitor attraction areas?). To answer 

the question objectively, the researcher used the outputted Z-scores from the Gi* tool and 

aggregated them across the hours of 7:00am – 7:00pm (see Table 4). Z-scores were only 

assessed if statistically significant air tour clustering occurred over the attraction area. Z-

scores are a measure of standard deviations and high Z-scores signify intense clustering 

of grid cells with similar levels of air tours (Prasannakumar, Vijith, Charutha, & Geetha, 

2011). Two attraction areas had high clustering intensity of air tours: Nāpau Trailhead 

and Nāpau Crater. For Weekdays, Nāpau Trailhead had the highest clustering intensity 

from 12:00pm – 1:00pm, and Nāpau Crater had the highest clustering intensity from 

4:00pm – 5:00pm. For Weekends and Holidays, Nāpau Trailhead had the highest 

clustering intensity from 9:00am – 10:00am, and Nāpau Crater had the highest clustering 

intensity from 6:00pm – 7:00pm. The researcher conducted further analysis to determine 

if the Kīlauea Caldera was attracting air tours because the volcano recently stopped 

erupting in 2018. It was found that the Kīlauea Caldera was indeed attracting air tours, 

however there are still park closures in this area due to the eruption events of 2018 

(National Park Service, 2019a). 

Research Question 3 

Research Question 3 was: “How does the process of spatial grid analysis advance 

our understanding of air tour travel patterns, and what are the drawbacks of the 
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application?” The grid enabled the researcher to conduct statistical analyses using the Gi* 

tool, which outputs p-values and Z-scores that can be used to understand clustering 

intensity of air tours. However, the grid analysis does have a drawback because it 

simplifies the data. In this analysis a grid cell size of 0.5mi2 was used. This means that all 

waypoints that occur within that grid cell are counted, and it doesn’t matter if waypoints 

are homogeneously or heterogeneously spread within the grid cell. Therefore, 

determining the size of the grid cell is a significant methodological step. 

Determining the appropriate grid cell size remains controversial because it is 

typically a decision that requires consideration of the context (Nam et al., 2016). The 

larger the grid cell, the more potential simplification, although a larger grid cell might be 

necessary to understand spatial variations depending on context. The researcher decided 

to use a 0.5mi2 grid cell because air tour noise impacts typically occur within a half mile 

distance. Grid cell size can also be calculated using the data, such as calculating a 

distance measure of all neighboring waypoints. For the purposes of this research, the grid 

was effective because it enabled the researcher to draw the conclusion that the Nāpau 

Trailhead and Nāpau Crater attraction areas were receiving the highest clustering 

intensity of air tours. 

Discussion 

The purpose of this study was to spatiotemporally quantify air tour travel patterns, 

determine which areas of HAVO are the most affected by air tours, and to assess the 

effectiveness of grid analysis in regards to understanding air tour travel patterns. HAVO 

proved to be a good study site because of the recent eruption of Kīlauea attracted visitors 
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to take air tours; there was no shortage of air tour data for this site. Additionally, the 

methods demonstrated in this study are transferable to other types of PPAs. 

The researcher found that not all flights recorded by the data logger had an 

associated unique flight identification. Beginning January 1st of 2020 air tours that fly 

over HAVO are mandated to have ADS-B technology. The data used in this study were 

collected between June 25th, 2019 – September 10th, 2019. Therefore it is possible that 

some air tours over HAVO were not equipped with ADS-B technology. This possible 

lack of ADS-B technology may explain why some of the flights did not receive a unique 

identification number. However, the waypoints of these flights were still recorded, which 

likely means these air tours were using ADS-B to transmit location signals. Knowing that 

waypoints were recorded, but unique flight identifications were not recorded may mean 

there was a technological issue with the data logger. 

The data logger is still in a state of infancy as identified by Beeco and Joyce (2019). The 

researcher chose to exclude flights that had no identification because it was impossible to 

objectively determine how many different air tours the non-identified data recorded. The 

data was voluminous enough that this did not affect the results. 

A primary purpose of this research was to identify which terrestrial attraction 

areas were the most affected by air tours. This is important information because terrestrial 

visitors may have their experience compromised due to air tour noise and/or number of 

flights seen from the ground (Lawson et al., 2007). The identification of these areas is 

necessary for future research and can be used to assess noise and number of air tours 

seen. Lawson et al. (2007) identified an air tour threshold in which terrestrial visitors had 
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a diminished experience when they saw more than one flight per fifteen minute interval. 

Future research should assess Nāpau Trailhead and Nāpau Crater for these data: 

soundscape recordings and number and frequency of air tours seen. Although it 

conceptually appears that the data used in this study could be used to understand how 

many flights terrestrial visitors see, this is not the case. This type of measurement should 

be taken from the ground because there could be terrestrial limitations to seeing the sky, 

such as vegetation and topography. 

The grid analysis conducted by the researcher is transportable to other types of 

PPAs, particularly those that lack visitor travel infrastructure (e.g., roads), such as marine 

or wilderness settings. In the past, to understand travel patterns a unit of analysis was 

needed, such as a trail or a road. However, infrastructure is not always present, such as 

with air tours above HAVO. Thus, a grid analysis is suitable for those types of settings. 

Conversely, grid analysis can also be conducted at PPAs that do have visitor travel 

infrastructure. For example, a grid cell size can be constructed to the width of a road or a 

trail. A grid analysis can be used in a wide range of PPA settings to understand spatial 

variations of location data. Future research should be aware of the advantages and 

limitations of grid analysis. 

Table 4 shows Z-scores from the Gi* analysis. An interesting finding was that for 

Weekends and Holidays at the Nāpau Crater the highest Z-score was for the hour of 

6:00pm – 7:00pm. This may seem surprising because not many flights occur at that hour, 

yet there was still intense flight clustering. This finding highlights the difference between 

lots of flights and intense clustering of flights. Even if there are not a high number of 
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flights, the terrestrial visitor experience can still be compromised by hovering air tours. 

Therefore it is important to understand intense clustering of air tours and the numbers of 

hourly flights. 

Interestingly, air tours did not exhibit flight patterns over Mauna Loa (elevation of 

13,100ft.). Mauna Loa is the largest volcano on Earth, has erupted 33 times since 1832, 

last erupted in 1984, and is within the bounds of HAVO (Trusdell & Lockwood, 2019). 

The high elevation of Muana Loa is probably not conducive for air tours, because of the 

density of air being too thin. Although air tours probably did not visit Mauna Loa because 

of the high elevation, the researcher double-checked the data. As stated in the methods, 

the researcher cleaned the data as outlined by Beeco and Joyce (2019), which included 

clipping out all waypoints above 15,000ft to prevent inclusion of commercial flights. The 

researcher revisited the data before the 15,000ft data clip was conducted, and found that 

air tours did not visit Mauna Loa. This means that air tours probably avoid Mauna Loa 

because of its high elevation. 

Despite that air tours probably don’t fly at high elevations, this research may have 

benefited from an analysis of air tour elevation. Air tours that hover at a higher elevation 

above terrestrial attraction sites may not be heard as loudly from the ground. However, 

the researcher chose not to do that type of analysis for two reasons. First, the primary 

purpose of this study was to quantify hourly air tours above HAVO to provide 

information for managers for planning purposes. Second, this research was not designed 

to understand the soundscape, but to provide information for future research that can be 

conducted by soundscape experts. Using an elevation analysis of air tours would not 
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suffice to understand what noise levels are like on the ground. To understand noise levels 

on the ground, soundscape measurements would need to be taken. The information 

provided by this study identified which attraction sites future research should take noise 

measurements at. 

Limitations 

The primary limitations of this study occurred during research design 

conceptualization, data collection, and data management. The research design used a 

cautious approach to understand which terrestrial attraction sites were the most affected 

by air tours. This approach was devised as a beginning step towards understanding air 

tour travel patterns. Thus, the researcher did not consider air tour elevations for this study 

because this studied was designed to understand air tour travel patterns in relation to 

terrestrial attraction areas. The data logger was also a limitation. Beeco and Joyce (2019) 

tested the data logger, but it still may need revisions. For example, the researcher found 

that not all flights received a unique identification number. 

Two limitations occurred with data management. The first being the ADS-B 

signals recorded by the data logger were reduced to a one-minute interval, which could 

have been too large of an interval. The other data management technique that is a 

limitation is the grid analysis. Designing the grid entails designating a grid cell size, 

which is a difficult decision because grid cell size is essentially an inclusion/exclusion 

criteria that is dependent on context of the study site. The researcher understands the 

influence this decision has on further analyses: too small of a grid cell size may risk 

exclusion of data, and too large a grid cell size may risk inclusion of too much data. 
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These difficult decisions are predicated on the research questions and the context of the 

study site. 

Conclusions 

The researcher used ADS-B data to understand air tour travel patterns. The 

analytical techniques demonstrated in this research have high transferability to other 

types of visitor travel pattern data and at other types of PPAs. Additionally, techniques 

featured in this study are beneficial because inferential statistics were conducted to 

understand where and when attraction areas are most affected by air tours. These results 

are usable by managers for future planning efforts, and the methods are usable by 

researchers to further understand visitor travel patterns within all types of PPAs. The 

information produced by this study serves as a resource for future research aiming to 

connect relationships between air tour visitors and terrestrial visitors. Lastly, these 

methods advanced techniques to further understand visitor travel patterns by assessing for 

spatial variations. 
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Tables 
 
 

Table 1. Weekday ANOVA results comparing across hours. 

         Hour Number of Flights 
M (SD) Hour Identifier Hour means statistically 

different (p>.05) 
7:00am - 8:00am 3.50(1.96) 1 10, 11, 12 
8:00am - 9:00am 2.29(1.77) 2 3, 11, 12 
9:00am - 10:00am 5.32(3.71) 3 2, 8, 9, 10, 11, 12 
10:00am - 11:00am 3.97(3.05) 4 10, 11, 12 
11:00am - 12:00pm 4.15(2.89) 5 9, 10, 11, 12 
12:00pm - 1:00pm 3.74(2.67) 6 10, 11, 12 
1:00pm - 2:00pm 3.74(2.85) 7 10, 11, 12 
2:00pm - 3:00pm 3.26(2.39) 8 3, 10, 11, 12 
3:00pm - 4:00pm 2.09(1.99) 9 3, 5 
4:00pm - 5:00pm 1.24(1.35) 10 1, 3, 4, 5, 6, 7, 8 
5:00pm - 6:00pm 0.32(0.68) 11 1, 2, 3, 4, 5, 6, 7, 8 
6:00pm - 7:00pm 0.35(0.69) 12 1, 2, 3, 4, 5, 6, 7, 8 
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Table 2. Weekends and Holidays ANOVA results comparing across hours. 

         Hour Number of Flights 
M (SD) Hour Identifier Hour means statistically 

different (p>.05) 
7:00am - 8:00am 3.23(1.95) 1 10, 11, 12 
8:00am - 9:00am 2.14(1.25) 2 3, 4, 12 
9:00am - 10:00am 4.77(2.37) 3 2, 7, 9, 10, 11, 12 
10:00am - 11:00am 4.68(2.36) 4 2, 7, 9, 10, 11, 12 
11:00am - 12:00pm 3.77(2.22) 5 9, 10, 11, 12 
12:00pm - 1:00pm 3.68(1.89) 6 9, 10, 11, 12 
1:00pm - 2:00pm 2.59(1.89) 7 3, 4, 11, 12 
2:00pm - 3:00pm 3.09(2.47) 8 11, 12 
3:00pm - 4:00pm 1.77(1.74) 9 3, 4, 5, 6 
4:00pm - 5:00pm 1.32(1.29) 10 1, 3, 4, 5, 6 
5:00pm - 6:00pm 0.27(0.46) 11 1, 3, 4, 5, 6, 7, 8 
6:00pm - 7:00pm 0.14(0.35) 12 1, 2, 3, 4, 5, 6, 7, 8 
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Table 3. Hourly HAVO air tours. 

        Hour Weekdays 
M(SD) 

Weekends and 
Holidays 

M(SD) 
t-value 

7:00am - 8:00am 3.50(1.96) 3.23(1.95) 0.51 
8:00am - 9:00am 2.29(1.77) 2.14(1.25) 0.36 
9:00am - 10:00am 5.32(3.71) 4.77(2.37) 0.68 
10:00am - 11:00am 3.97(3.05) 4.68(2.36) -0.93 
11:00am - 12:00pm 4.15(2.89) 3.77(2.22) 0.52 
12:00pm - 1:00pm 3.74(2.67) 3.68(1.89) 0.09 
1:00pm - 2:00pm 3.74(2.85) 2.59(1.89) 1.80 
2:00pm - 3:00pm 3.26(2.39) 3.09(2.47) 0.26 
3:00pm - 4:00pm 2.09(1.99) 1.77(1.74) 0.61 
4:00pm - 5:00pm 1.24(1.35) 1.32(1.29) -0.23 
5:00pm - 6:00pm 0.32(0.68) 0.27(0.46) 0.31 
6:00pm - 7:00pm 0.35(0.69) 0.14(0.35) 1.55 

Note. Hour of the day for Weekdays and, Weekends and Holidays, were compared 
using  independent sample t-tests; no statistical significance was found; all hourly 
groups are similar. 
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Table 4. Z-score analysis of areas most affected by air tours. 
 Weekdays Z-scores  Weekends and Holidays Z-scores 
Hour Nāpau 

Trailhead 
Nāpau 
Crater 

Kīlauea 
Volcano 

 Nāpau 
Trailhead 

Nāpau 
Crater 

Kīlauea 
Volcano 

7:00am-8:00am 3.37 6.28 7.48  15.91 4.12 15.91 
8:00am-9:00am 8.27 8.27 5.46  12.79 5.39 9.10 
9:00am-10:00am 15.17 5.89 5.17  18.75 4.05 11.78 
10:00am-11:00am 6.23 9.68 2.78  6.17 4.59 3.02 
11:00am-12:00pm 3.52 6.64 3.01  7.76 6.00 4.25 
12:00pm-1:00pm 15.81 4.96 7.53  15.69 4.03 9.06 
1:00pm-2:00pm 5.10 6.83 p>.05  5.11 6.40 3.80 
2:00pm-3:00pm 4.63 7.80 3.84  13.46 4.07 5.11 
3:00pm-4:00pm 2.07 9.59 p>.05  8.78 5.83 p>.05 
4:00pm-5:00pm p>.05 15.37 p>.05  4.46 4.46 p>.05 
5:00pm-6:00pm 5.73 5.73 5.73  10.06 p>.05 10.06 
6:00pm-7:00pm 13.00 6.43 13.00  p>.05 12.15 p>.05 
Total 82.90 93.47 54.00  118.94 61.09 72.09 

Note. If p>.05, then the Z-score was not used. 
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Figures 
 

 
Figure 1. Hawai’i Volcanoes National Park boundary (ESRI basemap, 2019). 
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Figure 2. Spatial descriptives of air tours at HAVO (ESRI basemap, 2019). 
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Figure 3. Locations of high clustering intensity of air tours (ESRI basemap, 2019). 
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Figure 4. Gi* clustering analysis by hour for Weekdays (ESRI basemap, 2019). 
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Figure 5. Gi* clustering analysis by hour for Weekends and Holidays (ESRI basemap, 2019). 
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GRID ANALYSIS OF VISITOR TRAVEL PATTERNS IN A 
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Abstract 

Understanding visitor travel patterns within parks and protected areas has 

continually been recognized as beneficial for managers. This information can identify 

high use areas and locations of potential conflicts. However, visitor travel patterns can be 

difficult to understand in parks and protected areas that lack organizational infrastructure, 

such as trails, roads, or signs (e.g., open deserts and marine environments). In this article, 

the author demonstrates a digital grid analysis of travel patterns at the Bonneville Salt 

Flats, which is a vast desert expanse where trails, roads, or wayfinding signs do not exist. 

Using Hot Spot Analysis, the researcher determined areas where high use and high 

vehicle speeds were coinciding, which informed a spatial grouping analysis to identify 

monitoring areas. The findings of this study demonstrate the utility of grid analysis for 

advancing understanding of visitor travel patterns and identifying areas to monitor in a 

dispersed recreation environment. 
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Introduction 

Visitation to parks and protected areas continues to globally increase (Balmford et 

al., 2015). Visitation to the United States’ National Parks was the highest it has ever been 

during the past four years (2016 = 330,971,689; 2017 = 330,882,751; 2018 = 

318,211,833; 2019 = 327,516,619) (National Park Service, 2020). Others types of 

protected areas within the United States have also witnessed a substantial increase in 

visitation (Smith, Wilkins, & Leung, 2019). Although there are numerous positive 

benefits to this trend, problematic issues may arise, such as the diminishment of the 

visitor experience and potential conflict between visitors (Manning, 2011). 

Visitor conflicts are potentially becoming more frequent because of increased 

demand for public resources within parks and protected areas (PPAs) (Stamberger, van 

Riper, Keller, Brownlee, & Rose, 2018). This places added pressure on public land 

managers to balance the conservation of biophysical resources and the visitor experience 

(Hammitt, Cole, & Monz, 2015). One type of conflict that could occur is visitor safety at 

high use areas, which could be mitigated by spatial zoning (Manning, 2011). For 

example, recreational lake boaters typically encounter low speed zones near the shore or 

in high traffic areas, which is intended to increase boater safety and reduce conflict. 

The spatial element of visitor conflict is important because recreation in PPAs is a 

spatially conditioned process (Beeco & Brown, 2013). Space is an omnipresent aspect of 

the visitor experience and it continuously influences visitor travel patterns. Therefore, it 

is important for managers to understand how space affects the visitor experience 

(Stamberger et al., 2018). However, this is challenging when there are no organizing 



84	
	

features at a PPA, such as roads, trails, wayfinding signs, or other visitor travel 

infrastructure. 

Organizing infrastructure can help managers understand spatial variations of 

visitor travel patterns. However, open-dispersed recreation settings often lack organizing 

features, which provides challenges to understanding visitor travel patterns (Smallwood, 

Beckley, Moore, & Kobryn, 2011). An example is the Bonneville Salt Flats in Utah, 

which is a desert setting that has no roads, trails, wayfinding signs, or other infrastructure. 

At the Bonneville Salt Flats, visitors are permitted to freely explore with few managing 

limitations, including no vehicle speed limits. Additionally, the Salt Flats are comprised 

of a hard salt substrate that often prevents vehicle tracks from being visually apparent, 

and thus observing where other visitors explore is not easy. Consequently, it is difficult 

for managers to understand visitor travel patterns at the Salt Flats. The lack of 

infrastructure challenges managers’ ability to objectively identify visitor use monitoring 

areas. 

Using GPS (Global Positioning System) data and GIS (Geographic Information 

Systems) techniques it is possible to objectively identify areas to monitor, including 

PPAs that feature open-dispersed recreation that lack organizational infrastructure. GIS is 

an extensive toolset, including the automated ability to overlay data layers (e.g., 

topographic layers with GPS data), manipulate and manage spatial data, and conduct 

geospatial statistical analyses (Worboys & Duckham, 2004). GIS advancements have 

created a medium for researchers to combine multiple methods and techniques to 

efficiently gain a more comprehensive understanding of geospatial data (D’Antonio & 
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Monz, 2016). PPAs featuring open-dispersed recreation that lack organizational 

infrastructure can benefit from GIS analyses to objectively determine areas to monitor, 

such as areas where potential conflict could occur. 

The study site for the investigation described in this paper was the Bonneville Salt 

Flats where the majority of visitors explore freely within cars. The management agency, 

Bureau of Land Management (BLM), dictates few rules and does not enforce a speed 

limit. Thus, visitors are at liberty to explore and drive as fast as they want. However, high 

use conditions sometimes exist and driving at high speeds may contribute to visitor 

conflict. Therefore, the purpose of this study was threefold, to: 1) analyze visitor travel 

patterns to identify potential areas of conflict between high use areas and areas where 

visitors are driving fast, 2) advance research methods associated with understanding 

visitor travel patterns, and 3) provide management recommendations for monitoring. 

Literature Review 

Visitor Travel Patterns 

Traditionally, visitor travel patterns within PPAs are understood and influenced 

by organizing structures such as roads, trails, signs, or other infrastructure (Beeco, Hallo, 

English, & Giumetti, 2013). Organizing structures help managers and researchers 

understand visitor travel patterns. Dispersed recreation areas lack roads, trails, signs, and 

other infrastructure resulting in difficulty in understanding visitor travel patterns 

(Smallwood et al., 2011). An example of a dispersed recreation setting is large lakes 

where boating is common or vast desert expanses where vehicle use is unimpeded (Hunt, 

Morris, Drake, Buckley, & Johnson, 2019). Similar to other types of recreation 
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environments, dispersed recreation settings have safety concerns, such as areas with high 

use and vehicles travelling fast. Yet, dispersed recreation settings have received less 

research attention regarding visitor travel patterns because it is more difficult to analyze 

travel patterns when there are no distinct spatial units of analysis, such as roads (Hunt et 

al., 2019). Therefore, a scarcity of knowledge exists about visitor travel patterns in PPAs 

that feature dispersed recreation and where there is limited organizational infrastructure. 

Visitor Conflict 

Preventing visitor conflict is an important task for managers (Wolf, Brown, 

Wohlfart, 2017). Conflict may potentially occur when there is goal interference between 

visitors (Manning, 2011). High use areas have shown more likelihood of conflict between 

visitors (Burns, Arnberger, & von Ruschkowski, 2014). Visitor conflict has also been 

found to increase in areas where visitors are driving at high speeds because perceptions of 

safety may be compromised (Hallo & Manning, 2009). Consequently, areas that have 

both high use and visitors driving at high speeds are important to identify for monitoring 

purposes. 

One method for managing diverse recreational opportunities is by designing 

management zones in which certain recreation activities are assigned to specific areas 

(Manning, 2011). Zoning has proven to effectively mitigate visitor conflict (Cole & Hall, 

2006). Zoning stems from the Recreation Opportunity Spectrum, which provides a 

framework for recreation opportunities where visitors can have various experiences 

within spatial zones, such as front-country versus backcountry settings (Clark & Stankey, 
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1979). Designing zones requires objective data and spatial data can help in this process 

(Beeco, Hallo, & Brownlee, 2014). 

GPS and GIS 

Advancements in GPS have enabled researchers to gather high-resolution and 

accurate data to better understand visitor travel patterns (D’Antonio & Monz, 2016). 

Furthermore GPS devices, such as GPS data loggers, have proven to be an effective tool 

for collecting spatial data in all types of recreational settings (D’Antonio et al., 2010). 

The primary strength of GPS data loggers is the proven accuracy for collecting localized 

data (Riungu et al., 2018). GPS data loggers are usually waterproof, record waypoints at 

regular intervals, and are easy to configure (Beeco & Hallo, 2014). GPS data loggers are 

small (about the size of a USB flash drive), automate GPS data collection, and these data 

can be used to gain insight into visitor travel patterns. Using GPS data loggers it is 

possible for researchers to understand where high use areas are located and understand 

spatial variations in speed (Bauder, 2015). 

Advancements in geographic information systems (GIS) have resulted in 

improvements in analyzing GPS data (Beeco et al., 2013). GIS software packages (e.g., 

ArcGIS and R) have the ability to conduct descriptive calculations and also to conduct 

geospatial statistical analyses (Allen, 2016). GIS advancements allow for combining 

multiple methods and techniques to efficiently gain a comprehensive understanding of 

geospatial data (Kim et al., 2019). Using GPS data and GIS techniques, researchers can 

determine where specific conditions spatially overlap, such as high use areas and areas 

with high vehicle speeds. Additionally, combining GPS and GIS can be used to help 
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managers accurately and precisely understand visitor travel patterns and identify 

monitoring areas. 

Grid Analysis 

Grid analysis has been used to understand spatial variations of travel patterns for a 

variety of research. For example, Kim et al. (2018) used a grid to understand seasonal and 

hourly visitor activity patterns at Seoraksan National Park in South Korea. Smallwood et 

al. (2011) used a grid to understand recreational use patterns in marine parks of Australia. 

Fjørtoft, Löfman, and Thorén (2010) used a grid to understand student activity during 

recess at a school in Norway. Grid analyses enable integrative and dynamic methods that 

are vital for understanding spatial variations and relationships (Zhao & Zhao, 2011). 

Using a GIS software package, such as ArcMap, a grid can be designed where each grid 

cell is characterized by conditions found within. Geospatial calculations can then be 

conducted for each grid cell (Clevenger et al., 2018). 

For PPAs that lack organizational infrastructure, the grid cell can be used as the 

unit of analysis, along with the travel party, to gain insight into spatial variations of travel 

patterns (Dalton, Thompson, & Jin, 2010). Grid cells can be further analyzed using a tool 

that computes statistically significant clustering, such as the Getis-Ord Gi* tool. Kim et 

al. (2018) used a grid along with the Gi* tool to statistically understand seasonal and 

hourly visitor activity clustering. Additionally, results of clustering analysis can be 

inputted into spatial grouping analysis. This technique is valuable because multiple 

variables simultaneously can be assessed to identify areas of spatial overlap 

(Weerasinghe & Bandara, 2019). However, grid analysis has rarely been used for PPAs 
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that lack organizational infrastructure. Therefore, using these techniques helps increase 

knowledge about spatial variations of visitor travel patterns and to identify areas to 

monitor. 

Spatial Behavior 

Spatial behavior refers to the behaviors visitors exhibit in PPAs, such as changing 

locations if high use is observed (Riungu et al., 2018). Technological advancements of 

GPS and GIS applications have increased knowledge about visitor spatial behavior in 

PPAs (Beeco & Brown, 2013). Using GPS and GIS applications, Taczanowska et al. 

(2014) found that a formal trail network has little influence on hikers’ behavior; Kidd et 

al. (2015) found that different types of educational approaches to keep hikers on a trail 

had a range of effectiveness on behaviors; D’Antonio and Monz (2016) found that visitor 

dispersion may have an inverse relationship with concentration of visitor use in 

backcountry trail settings where the potential to distribute off-trail is available; and 

Korpilo, Virtanen, Saukkonen, and Lehvävirta (2018) found that activity type influences 

visitor spatial behavior when deciding to use formal trails or to explore off-trail. 

However, a literature gap exists regarding visitor spatial behavior in PPAs that lack 

organizational infrastructure. 

Study Objectives 

The purpose and research questions of this study were designed to address the 

knowledge gaps present in the research literature: little knowledge is known about visitor 

travel patterns in dispersed recreation settings, spatial grouping analysis has scarcely been 
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used to identify monitoring areas, and visitor spatial behavior is not well understood in 

these types of settings. 

Therefore, the purpose of this study is to understand spatial relationships of visitor travel 

patterns in a dispersed recreation setting that lacks organizational infrastructure. The 

study site for this research was the Bonneville Salt Flats (BSF) in Utah, which is a 

dispersed recreation PPA that lacks organizational infrastructure. This study can assist 

managers with information about zones to monitor and spatial behaviors exhibited by 

visitors. Specifically, the following research questions guided this research: 

At BSF, 

1.) What areas have intense clustering of waypoints? 

2.) What areas have intense clustering of high vehicle speeds? 

3.) How can this information be used to help managers design monitoring zones? 

4.) What do the results reveal about visitors’ spatial behavior in a PPA? 

Methods 

Study Area 

The BSF, located at the western edge of Utah, is a dispersed recreation setting that 

lacks roads, trails, signs, or other infrastructure. It is managed by the Bureau of Land 

Management, and visitors are permitted to explore freely (Bowen et al., 2018). The BSF 

covers an area larger than 75km2 and is comprised of a perennial salt pan that is remnant 

of the Pleistocene Lake Bonneville (Bowen, Kipnis, & Pechmann, 2018). Visitors gain 

access into the BSF via a paved access road. Upon exiting the access road and entering 

the BSF, visitors find themselves in an expansive homogeneous flat landscape comprised 
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of a hard salt substrate (Figure 1). The broad flatness of the landscape provides visitors an 

opportunity to see the curvature of the earth and to freely explore the vast landscape 

(Hogue, 2005). The primary type of recreation at the BSF is vehicular recreation. 

The BSF is the location of the historic Bonneville Speedway that hosts annual 

events where enthusiasts attempt to set land-speed records in racing vehicles. The salt 

crust makes an ideal location to drive fast because vehicle tires stay cool on the salt and 

the flat terrain allows for linear driving without obstacles (Bowen et al., 2018). The 

racing events have witnessed vehicles travelling beyond 600mph (Red Bull, 2018).  

The BSF is conducive for driving fast, not only for professional drivers, but also 

for visitors. There are no posted speed limits at the BSF. However, most of the year there 

is a shallow layer of water during which time vehicular recreation is not permitted. 

During summer months, surface water has typically evaporated, and visitors can drive 

fast while exploring the BSF. The research in this manuscript was part of a larger project 

that evaluated the rapidly changing biophysical resources and human uses of the BSF. 

Procedure Overview 

To address the stated research questions, the researcher conducted spatial analyses 

of data collected using GPS data loggers. A representative sample of BSF visitors was 

acquired using a stratified random probability sampling approach in which one person of 

at least 18 years of age from each travel party (i.e., a personal vehicle) was asked to carry 

a GPS data logger during their BSF visit. Sampling occurred in the summer of 2018 

during peak visitation season with the exception that data was not collected during 

sanctioned vehicle racing events. Data collection was stratified by day of week, week of 



92	
	

the season, and time of the day. This approach was conducive to capture typical visitation 

during non-racing peak season and to increase sample representativeness by ensuring all 

visitors had equal probability of being included in the study during the sampling period 

(Vaske, 2008). 

GPS Data Loggers 

GPS data loggers were distributed at an intercept location along the paved access 

road. The intercept location was intentionally positioned approximately three miles from 

the entrance to the BSF to decrease the potential of visitors altering their behavior due to 

direct observation by the researcher. At the intercept location, a research assistant 

distributed GPS data loggers, which were returned at the same site upon conclusion of the 

visit. 

Numerous types of GPS data loggers have been used to collect spatiotemporal 

data of visitors to PPAs. The researcher chose to use the Canmore GT-740FL Sport 

because it achieved the highest accuracy, durability, and ease of use when compared to 

three other models (Garmin Oregon 600, GlobalSat DG-100, and GlobalSat DG-200) 

(White, Brownlee, Furman, & Beeco, 2012). Additionally, the Canmore GT-740FL has 

extended battery capabilities, lacks an LCD interface that could be accidentally engaged 

by research participants, and is relatively small (2.5 x 1.3 centimeters). These GPS data 

loggers have an internal memory that records data allowing for research analysis to occur 

retroactively; these units are not capable of real-time monitoring by the researcher. Like 

previous research, the GPS data loggers were configured to record a waypoint and time 

stamp at 15-second intervals (Beeco, Hallo, & Brownlee, 2014). 
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Data Cleaning and Configuring 

The researcher exported data from the GPS data loggers and imported that data 

into 

MS Excel for initial cleaning. The researcher then used R to configure files for analysis 

including designation of a speed attribute and to construct point shapefiles projected to 

Universal Transverse Mercator Zone 12N. The shapefiles were then uploaded, organized, 

and further cleaned in ArcGIS 10.6.1. The researcher used ArcMap to upload the 

shapefiles, and ArcCatalog for organizing shapefiles. Five primary cleaning 

considerations were implemented: 1) raw GPS data were inspected for 15-second 

intervals for all consecutive waypoints, 2) mapped waypoint data were visually inspected 

if consecutive waypoints appeared congruous with a 15-second interval, 3) visual 

identification to confirm that the waypoints were consistent with human behavior, 4) 

mapped line data were visually inspected for routes incongruous with human behavior 

and 5) physical feasibility if humans would be at that location (Beeco, Hallo, English, & 

Giumetti, 2013). 

In ArcMap the researcher constructed a half mile buffer around the access road 

and subsequently clipped out all waypoints that were located within this buffer. At the 

end of the access road is a parking lot, and visitors often walk along the access road from 

the parking lot. It was necessary to keep the scope of the analysis focused on dispersed 

visitation and not on visitation occurring adjacent to the access road. The initial sample 

consisted of 257 travel parties, and subsequently was reduced to 130 after the data was 

clipped using the half mile road buffer. 
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Descriptive Analyses 

In ArcMap spatial descriptive analysis was conducted for point and line data. The 

point data were combined into a single shapefile to determine the mean and median 

center point, and one standard deviation directional ellipse (D’Antonio & Monz, 2016). 

The median center point is typically viewed as a better measure of spatial central 

tendency than mean center point because it is less skewed by outliers (D’Antonio & 

Monz, 2016). The mean and median center point analyses produce coordinates that can 

be used by managers for navigational purposes. The one standard deviational ellipse 

displays the spatial dispersion and directional tendency of the data and produces an 

ellipse that can be used for visual inspection to identify directional trends (D’Antonio & 

Monz, 2016). The researcher then converted individual point shapefiles for each travel 

party vehicle to line features. The line data were used to determine the central line feature 

to identify the most geographically common track. 

Grid Construction 

To assess spatial variations of high use and vehicle speed the researcher 

constructed a grid (Nam, Hyun, Kim, Ahn, & Jayakrishnan, 2016). Although grid 

analysis is useful for study sites that lack organizational infrastructure, the ideal grid cell 

size remains controversial and is typically determined by site-specific information (Nam 

et al., 2016). For example, the distribution of waypoints could be used to determine grid 

cell size. This approach includes site-specific information because the distribution of 

waypoints is affected by the landscape. To include the contextual nature of the data, the 

researcher calculated a distance band from neighbor count using the ‘Calculate Distance 
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Band from Neighbor Count’ tool. This determined the furthest distance between two 

neighboring waypoints, which was determined to be 514.88 meters. The researcher 

rounded down to 500 meters and designated that distance as the grid cell size. 

In ArcMap the researcher constructed a perimeter polygon of the BSF using aerial 

imagery. Using the ‘Grid Index Features’ tool the researcher constructed a digital grid by 

inputting a grid cell size of 500m2 and the BSF perimeter polygon. The resulting grid was 

then spatially joined to a shapefile of all waypoint data. The final grid used for analysis 

featured 1,116 grid cells (Figure 2). Lastly, the ‘Summarize’ tool was used to aggregate 

number of waypoints, maximum speed, and average speed for the data found within each 

grid cell. These attributes were used to conduct hot spot clustering for waypoints, 

maximum speed, and average speed. 

Hot Spot Clustering Analysis – Research Questions 1 & 2 

In ArcMap, the researcher used the ‘Hot Spot Analysis (Getis-Ord Gi*)’ tool to 

asses statistically significant clustering at the 99% and 95% confidence intervals for 

number of waypoints, maximum speed, and average speed (Kim, Thapa, & Jang, 2019). 

The Gi* is a univariate tool that accounts for the spatial structure of the data (Peeters et 

al., 2015). The Gi* tool assesses each cell’s attribute value in relation to neighboring 

cells, geographically displays areas of high and low clustering, and calculates p-values 

and Z-scores. This analysis identified areas with intense clustering of waypoints, 

maximum speeds, and high average speeds. 
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Of specific interest was to determine if clustering of maximum speed and/or high average 

speeds spatially intersected with intense clustering of waypoints for the same grid cells. 

The findings of this step informed the analysis of the next step. 

Spatial Grouping Analysis – Research Questions 3 & 4 

The researcher visually inspected results of the Gi* tool for spatial intersection of 

intense clustering of high waypoints with either high maximum speeds and/or high 

average speeds. Spatial grouping analysis was conducted in ArcMap using the ‘Grouping 

Analysis’ tool, which spatially groups data using multiple inputted variables. This tool 

evaluates the optimal number of groups using a pseudo F-Statistic, which evaluates if 

variance within groups is low and variance between groups is high. The highest pseudo 

F-statistic identifies the optimal number of groups. The optimal number of groups is then 

inputted into the ‘Grouping Analysis’ tool. The output of this tool can be used to identify 

potential management monitoring areas. A schematic flow chart of complete analytical 

procedures is shown in Figure 3. 

Results 

Response Rate and Description of the Sample 

The research assistant intercepted 327 travel parties and 285 elected to participate 

in the research, which yielded an 87% response rate. After cleaning for GPS error, the 

researcher elected to reduce the sample to 257, which generated a 6.03% confidence 

interval at the 95% confidence level. The larger study also collected survey data of the 

travel parties that included demographic data in which one person from a travel party 

completed a quantitative paper-based onsite questionnaire. Although the questionnaire 
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data is not the focus of this paper, it is appropriate to share the demographic data to 

understand the visiting population at the BSF. This sample included 50% males, 33% 

females, and participants who chose to not identify their gender. Participants ranged in 

age from 18-79, with only 8% identifying between the ages of 18-25, and 10% 

identifying between the ages of 66 or older. The majority of participants identified as 

white/Caucasian (79%), Asian participants comprised 8%, and Hispanic or Latino/a 

comprised 6%. Approximately 63% of participants reported being residents of the United 

States, and the remainder of participants consisted of citizens from one of 23 different 

countries. Annual income was evenly distributed, and level of education trended towards 

completion of a four-year college degree or graduate degree (52%). 

Descriptive Statistics 

The researcher conducted descriptive statistics using all waypoint data merged 

into a single point shapefile, which consisted of 5,011 waypoints. The average speed was 

51.82 km/h (32.20 mph). The maximum speed was 265 km/h (164.55 mph) and high 

speeds were common: 10.77% of visitors drove faster than 160.93 km/h (100 mph), 

19.23% drove faster than 128.75 km/h (80 mph), and 50% drove faster than 96.56 km/h 

(60 mph). 

The mean center point was 40.786, -113.855 decimal degrees, and the median 

center point was 40.777, -113.872 decimal degrees. These measures are displayed in 

Figure 4 along with a one standard deviation directional ellipse and the central line 

feature. The one standard deviation directional ellipse identifies where the majority of 

waypoints are located, and that the majority of travel parties traveled approximately in 
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the northeast direction. The central line feature shows the approach from the access road 

and into the BSF. The central line feature extends 2.75 kilometers (1.71 miles) from the 

end of the access road. 

Hot Spot Analyses – Research Questions 1 & 2 

Hot spot clustering analysis illuminated that high intensity clustering of waypoints 

intersected with high intensity clustering of maximum speeds in three grid cells (Figure 

5). These results show that in those grid cells there are both high use and high maximum 

speeds. These three grid cells are located near the end of the access road, suggesting that 

visitors are driving high speeds immediately after leaving the access road. 

Figure 5 marks three grid cells where high intensity clustering of waypoints 

intersected with high intensity clustering of maximum speeds. Table 1 displays further 

analysis of these three cells. For Cell 1, 12.40% of visitors who travelled through that cell 

drove faster than 96.56 km/h (60 mph). For Cell 2, 7.81% of visitors who travelled 

through that cell drove faster than 96.56 km/h (60 mph). For Cell 3, 11.76% of visitors 

who travelled through the cell drove faster than 96.56 km/h (60 mph). Table 1 also shows 

that the average speed is low for these three cells, which confirms that the majority of 

visitors are not driving fast through these areas. Lastly, Table 1 displays the p-values and 

Z-scores of Cells 1, 2, and 3. The higher the Z-score, the higher intensity of clustering. 

Cell 1 had the highest Z-score for clustering intensity of waypoints and maximum speed. 

Spatial Grouping Analysis – Research Questions 3 & 4 

The previous analytical step identified that hot spot clustering of waypoints and 

hot spot clustering of maximum speed occurred in three of the same grid cells, therefore 
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these two variables were entered into spatial grouping analysis. The researcher compared 

pseudo F-statistics for number of groups (number of spatial areas) ranging in from 2-15. 

The highest pseudo F-statistic calculated (922.92) was for six groups (Table 2), which 

was used to identify six areas for monitoring. Figure 6 displays the BSF divided into six 

areas. To understand the differences in these areas, the researcher included a parallel box 

plot that shows the differences in waypoints and maximum speeds for each area (Figure 

7). The values in this figure are standardized for comparison sake.  

Areas 1 and 5 exhibit high numbers of waypoints and high maximum speeds 

(Table 3), and thus should be monitored for potential conflict. Figure 6 shows that from 

the end of the access road to the northeast corner of Area 1 is a distance of 1.85 

kilometers (1.15 miles), and the distance from the end of the access road to the northeast 

corner of Area 5 is 3.94 kilometers (2.45 miles). This allows for navigation to monitoring 

areas by using a vehicle’s odometer once it leaves the access road, granted that the 

vehicle drives in a fairly linear trajectory. The researcher recommends that managers 

focus monitoring efforts on Areas 1 and 5, because these two areas are likely where high 

visitor use and high vehicle maximum speeds coincide. These two areas potentially could 

have visitor conflict. 

Discussion 

The purpose of this study was to identify specific areas of the BSF that have both 

high use and high vehicle speeds, and to provide relevant information for management. 

Since the BSF lack organizational infrastructure, the researcher conducted a grid analysis. 

The grid cell was used as the unit of analysis along with each travel party vehicle. 
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Identifying the areas with high use and high vehicle speeds can help managers understand 

if safety is possibly being compromised, and if potential visitor conflict could be 

occurring. 

The results showed that high vehicle speeds occurred near the end of the access 

road, which coincides with areas of high use. These two variables were the drivers of 

spatial grouping analysis, which produced information for monitoring purposes. This 

study also produced other information that has functional utility for managers. The mean 

and median center points are expressed in decimal degrees that can be inputted into any 

smartphone, or GPS unit, for navigation. The clustering and grouping results answered 

research questions 1, 2, & 3.  

The one standard deviational ellipse showed that most visitors traveled in the 

northeast direction. Visitors are most likely guided by the exit of the access road, which 

points visitors to the northeast. Furthermore, visitors mostly drove in linear trajectories, 

which could result from being in an area that does not have organizational infrastructure 

to disrupt a straight trajectory. Visitors also may have driven in linear trajectories to 

experience driving fast in a large area without a speed limit. 

The researcher also conducted clustering analysis of average speed, which did not 

coincide with areas of high use. It may seem confusing that grid cells with high clustering 

intensity of average speeds did not spatially intersect with high way points, while 

maximum speeds did. The grid cells that had high maximum speeds also exhibited low 

speeds, which reduced the average speed. This suggests that most visitors are not 
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demonstrating high maximum speeds. These types of differences were not apparent until 

the researcher conducted grid analysis. 

The grid analysis was effective for two primary reasons. The first was that the 

grid is capable of analyzing spatial variations using inferential statistics. The results show 

spatial variations of the variables for 500 meter increments. Depending on the data and 

the research questions the grid cell size can be adjusted to analyze micro or macro spatial 

variations. Grid cell size highly influences the analysis. Instead of conceptually deciding 

on a grid cell size, the researcher used the data’s context and calculated a distance band 

from neighbor count to determine the furthest distance between waypoints, which was 

514.88 meters. Also, this distance conceptually made sense to use, because a 500 meter 

buffer is a safe distance to separate high use areas from areas with high vehicle speeds. 

Secondly, grid analysis produced results that have utility for managers. Without the grid 

it is difficult to statistically analyze spatial variations of waypoints and speed, and to 

conduct a spatial grouping analysis. 

The final research question (#4) asked what was learned about spatial behavior. 

Weber & Bauder (2013) posit that ‘spatial visitor behavior’ is the connection between 

location-dependent actions and the broad structure of movement via a connecting 

element, such as mobility. Mobility is of interest because a decision must be made to 

move, moving involves choosing a route, and those decisions are predicated on a 

person’s preconditions and aims. Two findings about spatial behavior are apparent from 

this study. The first was that visitors drove fast immediately after leaving the access road 

and entering the BSF, which has no speed limit. The excitement of driving in an area 
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without a speed limit may have influenced visitors to drive fast immediately upon 

entering the BSF. Managers may want to put a speed limit near the access road for visitor 

safety. The other finding was that most visitors stayed nearby the access road. 

Stamberger et al. (2018) found similar results with backpackers in Denali where outdoor 

recreationists camped near the road despite being encouraged to disperse and camp away 

from the road. The findings from this study and Stamberger et al. (2018) could mean that 

recreationists stay within sight of a perceived safety outlet in case of an emergency. The 

BSF are a vast flat homogeneous landscape and once the access road isn’t visible 

anymore visitors may feel uncomfortable. It has been documented that for an observer 

who has a height of 5 feet and 7 inches, and is standing on flat ground in standard 

atmospheric conditions, the horizon is at a distance of 5.00 km (3.1 miles) (Young, 

2016), and this data showed that the majority of visitors to the BSF did not drive beyond 

3.93 km (2.44 miles) of the access road. This also could explain why many travel parties 

were clipped out after the half-mile access road buffer was applied, and why there are not 

more waypoints extending into the far reaches of the BSF. 

All GPS data is embedded with speed, yet park visitors’ speed has been under-

researched. Past research has mostly focused on distances traveled and when events 

occurred. As seen in this study, further understanding about visitor spatial behavior can 

be investigated with speed analyses. Analyzing where visitors stop and where visitors are 

moving quickly can help researchers identify attraction areas and areas that are not 

capturing the attention of visitors. This knowledge can help managers with more 

sophisticated decision-making and is essential towards developing visitor management 
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strategies (Pettebone, Newman, & Lawson, 2010). For example, at the BSF managers can 

use this information to create educational signs at the end of the access road that state the 

distances out to Areas 1 and 5. 

Besides conducting more research of visitor speeds in PPAs, this study showed 

several necessary areas for future research. Acceleration has not been studied for PPA 

visitors and this study could have benefited from an acceleration assessment to determine 

exact areas vehicles are increasing speed rapidly. Trajectory analysis has not been 

robustly conducted for PPA visitors either. In the R software package, it is possible to 

conduct acceleration and trajectory analyses to gain a more robust understanding of 

spatial behavior. 

The grid can also be used to increase understanding of temporal patterns of 

visitors. As Tobler’s First Law of Geography (1970) states, near entities are more similar 

than distant entities, and the same is true for temporal entities: more recent entities are 

more similar. Conducting a speed analysis in which the visitor trajectory is segmented 

temporally could help researchers and managers understand if visitors are travelling the 

same or differently throughout their experience (i.e., is a group always moving at high 

speeds). 

Lastly, the analysis presented in this paper could be enhanced when coupled with 

visitor surveys, which help gain information about complex social questions (e.g., ‘why’ 

do visitors exhibit spatial behaviors). Using survey data combined with GPS data it is 

possible to gain knowledge about why visitors make decisions to move, why visitors 

choose a specific route, and what visitor preconditions may contribute towards decision-
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making within a PPA. Surveys can also be used to validate where crowding conditions 

occur instead of using number of waypoints as a proxy. Crowding is a perception, so a 

high density of waypoints may not necessarily constitute feelings of being crowded. 

The methods used in this study have far-reaching transferability. Obvious 

transferability is to other locations that have dispersed recreation with limited 

organizational infrastructure, such as lakes or wilderness areas devoid of trails. These 

methods can also be used at PPAs that have organizational infrastructure to understand 

spatial variations, such as speed variations along a scenic loop drive in a PPA. Beyond 

PPAs, these methods are also transferable to tourist settings. A grid can be constructed 

for any study site, and can be used to conduct inferential statistics, instead of relying on 

visual analysis, such as with density displays. This is also applicable to non-vehicular 

tourism settings that are rather homogeneous, such as beaches or battlefield sites. 

Limitations 

The use of GPS data loggers may have influenced visitor behaviors. GPS data 

loggers are intrusive, even if the GPS data logger is small. These are limitations of all 

studies using GPS data loggers. GPS data loggers are being used in research less 

frequently as technology continues to advance. Smart phone tracking applications and 

geotagged social media data are two examples of GPS data that are being used by 

researchers that are less intrusive (Hale, 2018). Another limitation of this study was the 

500m2 grid cell size. Although this size was determined from the data, it is difficult to 

determine with certainty that it was the best grid cell size. Lastly, with any study 

researchers should be aware of simplification that may occur during analysis. Using a 
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grid, although pragmatic, does simplify because data is aggregated for each cell even if 

data for a cell is not uniformly distributed. 

Conclusions 

The use of GPS technology and GIS techniques are helpful for conducting 

analysis of visitors in a dispersed PPA that lacks organizational infrastructure. This study 

also demonstrated the use of GPS data to help managers identify areas where safety 

potentially is compromised and areas of possible visitor conflict. The analysis and results 

are powerful because they produced statistical significance and did not exclusively rely 

on visual assessment of visitor travel patterns. The researcher hopes that this study will 

stimulate future studies to employ grid analysis to assess spatial variations to gain more 

understanding of visitor travel patterns in PPAs. 
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Tables 
 

Table 1. Summary of Cells 1, 2, and 3. 
 Percent of 

Total 
Waypoints 
of Sample 

Maximum Speed Average 
Speed 

Percentage of 
Visitors who 

Travelled 
through the Cell 

Faster than 
96.56 km/h 
(60 mph) 

Waypoint 
Clustering 

Z-score 

Waypoint 
Clustering 

p-value 

Maximum 
Speed 

Clustering 
Z-score 

Maximum 
Speed 

Clustering 
p-value 

Cell 1 14.97% 235 km/h  
(146.02 mph) 

15.69 km/h 
(9.75 mph) 

12.40% 8.15 <.001 2.77 0.006 

Cell 2 4.59% 233 km/h  
(144.78 mph) 

31.34 km/h 
(19.47 mph) 

7.81% 2.30 0.02 2.73 0.006 

Cell 3 3.45% 212 km/h 
(131.73 mph) 

29.27 km/h 
(18.19 mph) 

11.76% 4.61 <.001 2.32 0.02 
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Table 2. Analysis of Pseudo F-statistic to 
determine optimal number of groups. 

Number of Groups Pseudo F-Statistic 
2 97.92 
3 487.49 
4 668.47 

5 841.63 
6 922.92* 

7 910.60 
8 879.41 
9 869.77 
10 845.42 
11 837.16 
12 813.49 
13 798.49 
14 791.18 
15 793.27 

Note. Six groupings received the high 
Pseudo F-statistic. 
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Table 3. Descriptive statistics of grouping analysis; calculations 
are per grid cell. 

Area Variable Mean (SD) 
1 Waypoints 744.00 (6.00) 
2 Waypoints 4.57 (5.66) 
3 Waypoints 1.22 (6.15) 
4 Waypoints 0.49 (9.14) 
5 Waypoints 128.17 (62.83) 
6 Waypoints 17.04 (29.33) 
   
1 Maximum Speed 202.00 km/h (33.00), 125.52 mph 
2 Maximum Speed 100.68 km/h (32.13), 62.56 mph 
3 Maximum Speed 3.76 km/h (13.15), 2.34 mph 
4 Maximum Speed 2.68 km/h (14.13), 1.67 mph 
5 Maximum Speed 162.42 km/h (35.87), 100.92 mph 
6 Maximum Speed 99.95 km/h (51.33), 62.11 mph 

Note. Areas 1 and 5 had the highest means for waypoints and 
maximum speed. 
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Figures 
 

 
Figure 1. Map of the Bonneville Salt Flats. 
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Figure 2. Waypoints and grid used in analysis of the Bonneville Salt Flats. 
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Figure 3. Schematic flow chart of methods. 
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Figure 4. Map displaying mean center point, median center point, central line feature, a 
one standard deviation directional ellipse, and waypoints. 
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Figure 5. Hot spot (Getis-Ord Gi*) clustering results for: waypoints, maximum speed, and 
average speed. 
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Figure 6. Spatial groupings of waypoints and maximum speed. 
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Figure 7. Parallel box plot of grouping analysis of maximum speed (MAX_SPEED) and 
waypoints (COUNT_). 
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CHAPTER FIVE 

CONCLUSION 

This dissertation features three independent empirical research studies that are 

conceptually linked by the time-geography framework (Hӓgerstrand, 1970). The purpose 

of this dissertation was to advance spatiotemporal research of visitor travel patterns 

within parks and protected areas (PPAs). This research is pertinent because space and 

time are omnipresent influencers of visitor travel patterns. 

This concluding dissertation chapter discusses how this research advanced 

scholarship of visitor travel patterns, highlighted opportunities for future investigations, 

and provides information that could benefit society. This final chapter also includes 

reflections on management and theoretical implications. A noteworthy theme of this 

dissertation is the incorporation of contextualized information found at each unique study 

site: Theodore Roosevelt National Park, Hawai’i Volcanoes National Park, and the 

Bonneville Salt Flats. 

Chapter 2 featured research at Theodore Roosevelt National Park (THRO) where 

a management-centric approach was used to understand visitor travel patterns. This 

approach is important methodologically because it included the contextual knowledge of 

managers to identify the spatiotemporal variables most important to understand visitor 

travel patterns. An important finding of this research was that managers identified three 

temporal variables as the most important to understand visitor travel patterns within the 

Park. This was an exciting discovery because a state of knowledge review about 

understanding visitors’ spatial behavior (published in January of 2019) identified that the 
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temporal component of visitor travel patterns was under-researched (Riungu, Peterson, 

Beeco, & Brown, 2018). The research conducted at THRO also determined spatial 

variations of visitor time allocation and visitor speed patterns.  This information was used 

to produce 3D spatiotemporal visualizations that are more easily interpreted than 

traditional density visualizations. The spatiotemporal visualizations of this dissertation 

display intuitive quantitative results, unlike density displays that are difficult to 

quantitatively comprehend. Managers can use these intuitive visualizations to efficiently 

interpret information related to visitor travel patterns. Future research could assess which 

spatiotemporal variables are most important to managers at other PPAs, and determine 

the effectiveness of those variables for understanding travel patterns. 

Chapter 3 featured research conducted at Hawai’i Volcanoes National Park 

(HAVO) where I used Automatic Dependent Surveillance-Broadcast (ADS-B) Out, 

which is conceptually similar to GPS data and can be analytically assessed similar to 

terrestrial GPS data (Beeco & Joyce, 2019). The ADS-B data were used to quantify 

visitor air tours across hours of the day and to determine the terrestrial attraction areas 

most affected by air tours. Collecting accurate and precise data of air tours has not been 

possible until recently and this study was the first to use accurate and precise locational 

data to understand air tour travel patterns over a PPA. This study advanced research by 

understanding spatial variations of temporally segmented data of air tours over HAVO. 

The analysis of air tours is considered an open system because air tours can enter the Park 

from any location, can freely fly around, and are uninhibited by entrance/exit gates, 

roads, trails, and other infrastructure. Open system settings have previously provided 
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challenges related to analyzing travel patterns because open systems are complex. To 

overcome this challenge, this research demonstrated the effectiveness of a spatial grid 

analysis for investigating visitor travel patterns. A key finding of this research was 

determining the attraction areas most affected by air tours, which was made possible 

using a spatial grid analysis and inferential statistics. This research produced usable 

information for managers to coordinate with air tour operators, the Federal Aviation 

Administration (FAA), and other officials. Future research can use the information from 

Chapter 3 to conduct further analysis of the visitor experience at the terrestrial attraction 

areas potentially most influenced by air tours. 

Chapter 4 featured research conducted at the Bonneville Salt Flats (BSF) where 

methods were designed to identify monitoring areas where there is both high visitor use 

and high vehicle speeds. Speed is a function of space and time but spatial variations of 

speed patterns within PPAs have received limited research attention. The research at the 

Bonneville Salt Flats analyzed spatial variations of waypoints and vehicle speed patterns 

to identify areas where both high use and high vehicle speeds coincided. However, 

because the Bonneville Salt Flats has no organizational infrastructure it is challenging to 

identify areas to monitor. This research overcame that challenge and reported monitoring 

information that is intuitive for navigation. Future research should include an analysis of 

spatial variations of acceleration patterns. This information would help managers 

understand where people are accelerating rapidly and if these areas coincide with high 

use and high speed areas. 
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All three of these research studies used a digital spatial grid analysis constructed 

using GIS software. The spatial grid is a worthy tool for understanding spatial variations, 

such as variations in visitor time allocation, temporally-segmented air tour data, or 

vehicle speed patterns. A spatial grid is exceptionally useful in open system settings that 

lack organizational infrastructure. Spatial grid analysis is useful because it creates and 

focuses a new unit of analysis – the grid cell. However, grid analysis is limited by 

aggregating data for each grid cell as if the data is homogeneous within the grid cell, 

which is rarely true. Therefore, the size of the grid cell is extremely important and highly 

influential in the analysis process. 

Past research has identified that the question of the best grid cell size remains 

controversial (Nam, Hyun, Kim, Ahn, Jayakrishnan, 2016) because the context of the 

study site is relevant for determining the appropriate grid cell size. All three research 

studies featured in this dissertation used the context of the study site to determine the 

appropriate grid cell size. For the research conducted at THRO and the BSF, the 

Calculate Distance Band from Neighbor Count Tool was used to determine the 

appropriate grid cell size. Using this tool it is possible to include the contextualized 

nature of the data that results from the influence of the PPA setting. At HAVO, the spatial 

grid was designed using conceptual information about helicopter noise instead of using a 

spatial tool. As seen with the construction of the spatial grid, this dissertation 

incorporated relevant information contextual to each study site. 

Constructing a spatial grid was also necessary to conduct inferential statistics. The 

research conducted at both HAVO and the BSF used inferential statistics to understand 
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spatial variations of temporally-segmented air tour data (HAVO) and spatial variations of 

waypoints and speed patterns (BSF). Rarely has research used inferential statistics to 

more accurately understand travel patterns. Past research has typically relied on density 

displays that are descriptive in nature and do not provide statistical information to make 

conclusions about the data that can be reported to managers and planners. 

There is a literature gap identifying how to determine spatiotemporal 

inclusion/exclusion criteria. The research conducted at THRO quantified data for 

attraction areas, which was a challenge because it is difficult to define the parameters 

constituting an attraction area. Thus, attraction areas needed to be operationalized for 

further analysis. One technique is to put a spatial buffer (e.g., half a mile) around the 

parking lot of an attraction area but this was not suitable for THRO. Instead, attraction 

areas were operationalized as areas where speed dropped below 2 mph, and the duration 

of time the speed was below 2 mph spanned longer than 2 minutes. This was suitable for 

THRO because there are several vehicle pull-outs along the scenic loop drive. 

At HAVO, inclusion/exclusion criteria of an attraction area was operationalized 

differently. To understand which terrestrial attraction areas were most affected by air 

tours a buffer with a radius of one half mile was constructed around each attraction site. 

The half mile buffer was used because this was the distance helicopter noise would likely 

impact conversation of terrestrial visitors. For this research at HAVO, operationalized 

inclusion/exclusion criteria needed to be spatial to determine what terrestrial attraction 

areas were most affected by air tours. Similarly to constructing a spatial grid, the context 

of the study site is important towards determining inclusion/exclusion criteria. 
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The research conducted at HAVO demonstrated that other types of locational data 

other than traditional GPS loggers can be used to understand visitor travel patterns. As 

technological advancements continue, researchers will be able to use other types of 

locational data, such as mobile phone data. Other types of locational data could be 

effective for researching multiphasic visitor travel patterns to understand where visitors 

travel before and after visiting a PPA. Understanding multiphasic visitor travel patterns is 

important to gain insight into factors that influence visitor travel patterns within a PPA. 

Experiences that occur before visiting a PPA could affect travel patterns within a PPA, 

and perceptions of future events immediately after visiting the PPA could affect travel 

patterns during the PPA visit. For example, future events may constrain the amount of 

time a visitor can spend in a PPA. Similarly, events before visiting a PPA could result in 

a visitor having less time to explore a PPA. 

This research was also the first to posit and document that every moment of every 

experience for visitors within a PPA is ‘spatiotemporally-conditioned’. Past research 

provided the conceptual basis for this advancement by identifying that recreational 

experiences within PPAs are spatially-conditioned (Beeco & Brown, 2013). Using the 

time-geography framework, this research extended this concept to include the temporal 

component. Therefore, visitor travel patterns and visitor experiences are always affected 

by space and time because space and time are omnipresent, enduring, and inescapable for 

a PPA visitor. Consequently, these omnipresent influencers are valuable for managers to 

recognize when attempting to understand a visitor population. 
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A major challenge of this dissertation was operationalizing travel patterns, and 

specifically operationalizing spatiotemporal variables. Visitor travel pattern research is 

broad because travel patterns are comprised of many variables. For example, Kidd et al. 

(2015) extracted 21 operationalized variables derived from GPS data to classify visitor 

vehicular behavior in a PPA. Hence, it is difficult to determine which spatiotemporal 

variables to focus research efforts towards. This is why the research conducted at THRO 

was important because it demonstrated a management-centric focus that identified the 

spatiotemporal variables necessary to understand visitor travel patterns. In the future, 

multiple perspectives should be used to research travel patterns: management 

perspectives, researcher perspectives, and visitor perspectives to more holistically 

understand visitor travel patterns. 

All visitor experiences are spatiotemporally-conditioned. This concept illuminates 

that space and time are constant influencers of the visitor experience. Therefore, it is 

important to understand how space and time affect the visitor experience. Consequently, 

management should take into consideration how space and time influence the visitor 

experience to more effectively and efficiently manage. 
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APPENDIX A 
 
THEODORE ROOSEVELT NATIONAL PARK EMAIL SCRIPT 
 
Hello, my name is Brian Peterson. I am a graduate student at Clemson University in the 
department of Parks, Recreation, and Tourism Management. I am conducting research on 
visitor travel patterns in national parks, and I am inviting you to participate because you work 
at a national park. Participation in this research includes a telephone interview to discuss 
what spatiotemporal variables are most important towards your understanding of visitor 
travel patterns for the national park you work at. The interview will last approximately 15-30 
minutes, and will be audio-recorded. After the interview has been conducted, I will follow up 
with an email to confirm your interview responses were recorded accurately. Your part in this 
study will inform which spatiotemporal variables to assess as a step in the study’s analysis. 
The results of this study may be published in scientific journals, professional publications, or 
educational presentations. The information collected during this study will not be used or 
distributed for future research studies. 
 
Participation in this research is completely voluntary, and your responses will remain 
anonymous. You may choose not to take part and you may choose to stop taking part at any 
time. You will not be punished in any way if you decide not to be in the study or to stop 
taking part in the study. Identifiable information collected during the interview will be 
removed and de-identified information will not be used or distributed for future research 
studies. Audio recordings will be retained until data analysis is complete, which will be 
completed by May of 2022. You can choose to be in the study or not. 
 
If you have any questions or concerns about your rights in this research study, please contact 
the Clemson University Office of Research Compliance (ORC) at (864)656-0636 or 
irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the 
ORC’s toll-free number: (866)297-3071. The Clemson IRB will not be able to answer some 
study-specific questions. However, you may contact the Clemson IRB if the research staff 
cannot be reached or if you wish to speak with someone other than the research staff. 
 
By participating in this study, you indicate that you have read the information written 
above, been allowed to ask any questions, and you are voluntarily choosing to take part 
in this research. You do not give up any legal rights by taking part in this research 
study. 
 
If you’d like to participate or have any questions about the study, please email me at 
bpeter6@clemson.edu. You may print a copy of this document for your records. 
 
Thank you very much. 
 
Sincerely, 
Brian Peterson 
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APPENDIX B 
 
THEODORE ROOSEVELT NATIONAL PARK INTERVIEW SCRIPT 
 

1. Do you mind if I record the interview with you? 
2. Did you read the consent form I emailed you? 
3. Please describe components of visitor travel patterns that are most important to the visitor 

experience. 
4. When you think of visitor travel patterns in your park, are there any specific 

characteristics that interest you? 
5. Are there any issues in your park that could be resolved by analyzing GPS data? 
6. What types of spatial characteristics do you want to know about visitors? 
7. What types of temporal characteristics do you want to know about visitors? 
8. What speed characteristics do you want to know about visitors? 
9. Tell me about any specific locations in your park where space and time need to be 

researched. 
10. Using GPS data – is there any research in your park that you’d be interested in? 
11. Are you more interested in knowing about visitors’: spatial patterns, temporal patterns, or 

speed patterns? 
12. Are there any specific spatial variables, temporal variables, or speed variables you’d like 

to mention/discuss? 
13. What spatial and temporal variables do you recommend to use to objectively designate 

management zones? 
 

POSSIBLE VARIABLES 
 
SPACE VARIABLES 
Total distance traveled 
Distance traveled on roads 
Distance traveled on trails 
Distance traveled on water (e.g., rivers & lakes) 
 
 
TIME VARIABLES 
Total time spent in park 
Time entered park 
Time exited park 
Accumulated time spent on paved roads 
Accumulated time spent on trails 
Accumulated time spent at attraction sites 
 
 
SPEED VARIABLES 
Average speed 
Maximum speed 
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APPENDIX C 
 

THEODORE ROOSEVELT NATIONAL PARK QUESTIONNAIRE 
 

DISTRIBUTED VIA QUALTRICS SURVEY SOFTWARE 
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