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ABSTRACT 
 
 

Interactions with a keyboard and mouse fall short of human capabilities and what 

is lacking in the technological revolution is a surge of new and natural ways of 

interacting with computers. In-air gestures are a promising input modality as they are 

expressive, easy to use, quick to use, and natural for users. It is known that gestural 

systems should be developed within a particular context as gesture choice is dependent 

on the context; however, there is little research investigating other individual factors 

which may influence gesture choice such as expertise and exposure. Anesthesia 

providers’ hands have been linked to bacterial transmission; therefore, this research 

investigates the context of gestural technology for anesthetic task. The objective of this 

research is to understand how expertise and exposure influence gestural behavior and to 

develop Bayesian statistical models that can accurately predict how users would choose 

intuitive gestures in anesthesia based on expertise and exposure. 

Expertise and exposure may influence gesture responses for individuals; however, 

there is limited to no work investigating how these factors influence intuitive gesture 

choice and how to use this information to predict intuitive gestures to be used in system 

design. If researchers can capture users’ gesture variability within a particular context 

based on expertise and exposure, then statistical models can be developed to predict how 

users may gesturally respond to a computer system and use those predictions to design a 

gestural system which anticipates a user’s response and thus affords intuitiveness to 

multiple user groups. This allows designers to more completely understand the end user 

and implement intuitive gesture systems that are based on expected natural responses. 
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Ultimately, this dissertation seeks to investigate the human factors challenges associated 

with gestural system development within a specific context and to offer statistical 

approaches to understanding and predicting human behavior in a gestural system.  

Two experimental studies and two Bayesian analyses were completed in this 

dissertation. The first experimental study investigated the effect of expertise within the 

context of anesthesiology. The main finding of this study was that domain expertise is 

influential when developing 3D gestural systems as novices and experts differ in terms of 

intuitive gesture-function mappings as well as reaction times to generate an intuitive 

mapping. The second study investigated the effect of exposure for controlling a 

computer-based presentation and found that there is a learning effect of gestural control 

in that participants were significantly faster at generating intuitive mappings as they 

gained exposure with the system. The two Bayesian analyses were in the form of 

Bayesian multinomial logistic regression models where intuitive gesture choice was 

predicted based on the contextual task and either expertise or exposure. The Bayesian 

analyses generated posterior predictive probabilities for all combinations of task, 

expertise level, and exposure level and showed that gesture choice can be predicted to 

some degree. This work provides further insights into how 3D gestural input systems 

should be designed and how Bayesian statistics can be used to model human behavior.  
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CHAPTER ONE: OVERVIEW 

 
Computers have become closely integrated in our homes, cars, and work 

environments and cannot be easily separated from our daily routines. Although the 

keyboard and mouse have dominated the human-computer interaction (HCI) market 

(Hinckley, Jacob, Ware, Wobbrock, & Wigdor, 2014), the expanse of possible 

interactions with a keyboard and mouse falls short of human capabilities. What is lacking 

in the technological revolution is a surge of new and natural ways of interacting with 

computers (Hinckley et al., 2014). In-air gestures are a promising input modality as they 

are highly expressive, easy to use, quick to use, and natural for users. Gestural interaction 

is unique because the human is the input device, simplifying the transfer and information 

between human and computer (Hinckley et al., 2014). 

Despite the naturalness and ease of use of gestures, 3D gestural technology is not 

as prevalent in HCI as other input modalities. There are a variety of factors hindering the 

advancement of gestural control in HCI from both a technical perspective of developing 

robust and reliable technologies as well as from a human factors perspective of creating a 

natural and intuitive user experience. Gestures as an input modality is a unique design 

problem because it is beneficial for the user to be able to use natural hand gestures, but it 

is difficult to design intuitive gestural systems across all users because gestures are 

typically highly individualized (Stern, Wachs, & Edan, 2008). It is known that gestures 

should be developed within a particular context (Ardito, Costabile, & Jetter, 2014; Jacob 

& Wachs, 2014a; Jacob, Wachs, & Packer, 2013; Nielsen, Störring, Moeslund, & 
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Granum, 2004; Wigdor & Wixon, 2011), and all types of user groups, from novice to 

expert, should be able to interact with gestural systems naturally (Wigdor & Wixon, 

2011). However, there is limited research investigating the effect of expertise on gesture 

choice (Jurewicz, Neyens, Catchpole, & Reeves, 2018). Furthermore, gestural systems 

are intended to be integrated into work environments for extended periods of time, but 

there are no studies which investigate the gesture choices of users over time, despite the 

skills-, rules-, and knowledge-based taxonomy demonstrating how human behavior may 

change depending on task demands and the level of cognitive control (Rasmussen, 1983). 

Therefore, this research seeks to investigate how expertise and exposure influence gesture 

choice under a specific context. 

This dissertation additionally seeks to predict how users will respond gesturally in 

a 3D, vision-based gestural input system. If gesture choice can be predicted, then 

researchers may be able to design intuitive gesture systems that are based on expected 

natural responses. Gestures are difficult to learn (Hinckley et al., 2014), and there is little 

intuitive gestural agreement among users (Wobbrock, Morris, & Wilson, 2009). In other 

words, there is much uncertainty when it comes to gestural interaction from an observer’s 

standpoint, thus it may be advantageous to quantify the uncertainty behind gestural HCI. 

A Bayesian framework may be appropriate for understanding novel input systems, such 

as integrating 3D gestural input into human-computer interaction, because Bayesian 

statistics provides a quantitative framework for modeling uncertainty. Bayesian 

frameworks are able to represent knowledge of the current state of the system and are 

able to integrate new information for understanding a new state of a system (Cowles, 
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2013). This dissertation integrates Bayesian statistics into the data analysis to predict 

gesture choice for HCI in the context of anesthesiology.  

Research Objective and Questions 

The objective of this research is to understand how expertise and exposure 

influence gestural behavior and to develop models that can accurately predict how users 

would choose intuitive gestures based on expertise and exposure. Expertise and exposure 

may influence gesture responses for individuals; however, there is limited to no work 

investigating how these factors influence intuitive gesture choice and how to use this 

information to predict intuitive gestures to be used in system design. Therefore, my 

dissertation research questions are: 

 

1. How does expertise influence how users gesturally respond to a computer 

system? 

2. How does exposure to the gestural system influence how users gesturally 

respond to a computer system?  

3. How accurately can natural gestures be statistically predicted? 

 

Answering these research questions will provide a more complete understanding 

of the end users to aid in developing intuitive gesture systems that are based on expected 

user responses.  
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CHAPTER TWO: LITERATURE REVIEW AND RESEARCH FRAMEWORK 

Gestural Technology 

Gestures are a readily available means of communication and are integral in 

communicating with other humans (Efron, 1941; Freedman, 1972; Kendon, 1988; 

McNeill, 1992). Gestures can support and even replace verbal communication when 

speech is hindered or impossible (McNeill, 1992). Gestures come so easily and natural to 

people that infants may use gestures to communicate before they learn to talk; gestures 

are used when travelling to foreign countries and communicating with someone who 

speaks a different language; and generally, people use gestures in any verbal conversation 

to support key ideas. Gestures can also be used when someone is too far away or a barrier 

occludes verbal communication, such as an air marshal who signals with their hands to 

help pilots navigate an airplane on a tarmac. Since gestures are a natural part of human-

human communication, they can also serve as a natural way to communicate with 

computers and other devices (Karam & Schraefel, 2005), and with recent advancements 

in motion sensing technology, we introduce new avenues of human computer interaction 

and natural ways to interact with computers via gestures. 

Human-computer gestures can be 2D or 3D, depending on the type of technology 

used for the gestural interaction. 2D gestures are primarily contact-based and performed 

on a touch-sensitive surface (e.g., touchscreen on a smartphone). 3D gestures are 

primarily vision-based where the gesture is captured by a camera system (e.g., Microsoft 

Kinect). 3D, vision-based gesture systems could additionally be based on either hand 

movement or body movement. For example, Microsoft Kinect is a 3D, vision-based 
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gestural technology and is able to capture full body gestures whereas the Intel RealSense 

Camera is programmed to capture fine hand and finger movements. 3D, vision-based 

systems allow users to gesture in any direction, whereas 2D, contact-based systems, such 

as touchscreens, only allow users to perform static or dynamic gestures in either one or 

two directions. The use of a camera eliminates the need for additional sensors or other 

equipment (e.g., data glove) eliminating an unnatural and intrusive user experience 

(Baudel & Beaudouin-Lafon, 1993). Due to the nonintrusive component and the degree 

of flexibility, 3D, vision-based gestural systems have the potential to fill the need of 

creating natural and nonintrusive interaction experiences in HCI.  

For HCI in general, there are traditionally two approaches to developing new 

computing systems: centering around the technology or centering around the abilities of 

the human (Hinckley et al., 2014). Gestural technology follows these same traditional 

forms of HCI development as researchers may either take a technology-based approach, 

focusing on maximum recognition accuracy of gestures, or take a human-based approach, 

focusing on maximizing usability of the system as shown in Figure 1 (Nielsen et al., 

2004).  

 
Figure 1. Depiction of human-based and technology-based gesture development 
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The technology-based approach is more recently known as the centrist approach 

and is when a research group or designers choose the gesture vocabulary of the system 

and teach the gesture commands to end users (Stern et al., 2008). The gesture 

vocabularies under a centrist approach are typically distinguishable gestures that can be 

recognized easily by the software (Nielsen et al., 2004; Stern et al., 2008); however, since 

the gestures are derived based on technology capabilities, these systems may be 

implemented at the expense of usability and user intuition. On the other hand, human-

based approaches are centered around the user (Nielsen et al., 2004). Human-based 

approaches are broken down into a consensus approach or a customized approach (Stern 

et al., 2008). In both consensus and customized approaches, gestures are elicited directly 

from end users. In the consensus approach, users in an experimental group independently 

reach a “consensus” on which gestures intuitively map to the set of functions (i.e., the 

most frequently performed gesture for a function across a group is the most intuitive 

mapping for the function; Stern et al., 2008). The customized approach takes a more in-

depth user elicitation approach where each user of the system defines their own gesture 

vocabulary (Stern et al., 2008). The customized approach is entirely user-centered as each 

user defines their own gestures, and the gestures derived are completely natural and 

intuitive to the specific user. However, the computational effort of a system based on the 

customized approach is very high, and as the user group population grows in size, the 

development of the system may not scale well. In both the consensus and customized 

approaches, users often choose gestures that are intuitive, natural, and comfortable, but 

the users may fail to consider technological limitations (Stern et al., 2008). Therefore, 
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usability is maintained but possibly at the expense of recognition accuracy and 

subsequently reliability of the system.  

The tradeoff between usability and accuracy is one of the primary roadblocks to 

gestural system success, and it is not explicitly clear which approach is more 

advantageous. Despite both technology-based and human-based approaches being used in 

practice, Morris, Wobbrock, and Wilson (2010) compared a gesture set elicited from 

users and a gesture set developed by HCI researchers and demonstrated that participants 

preferred user-defined gestures over researcher-defined gestures. This finding suggests 

that participatory design methodologies are critical when developing a gesture vocabulary 

(Morris et al., 2010) and advocates for the user-centered approach that human-based 

methods offer.  

Applications of Gestural Technology 

Several researchers have investigated ways to implement gestural technology in a 

range of applications.  Before vision-based, 3D gestural input technology, 3D gestures 

were often captured via a glove worn on the hand. Charade is an example of this type of 

technology in which a data glove is worn and gestures are used to control a computer-

based presentation (Baudel & Beaudouin-Lafon, 1993).  However, glove-based devices 

proved to be intrusive since the user has to wear a glove, taking away from a natural 

communication experience (Sturman & Zeltzer, 1994). Aside from glove-based devices, 

television control by the means of a 3D, vision-based system was demonstrated to be 

possible, but the system only utilized the open-palm gesture (W. T. Freeman & 

Weissman, 1995).  With the refinement of vision-based, 3D gestural input devices, there 
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is the potential to expand gesture sets beyond one gesture for use in HCI. However, it is 

known that a gesture in one context may have a completely different meaning in a 

different context, thus gestural input systems need to be developed for a specific context 

and application (Nielsen et al., 2004). The system is not expected to succeed when there 

is not a specific application and general gesture vocabulary sets are used for HCI across 

multiple applications (Ardito et al., 2014).   

Transportation is one domain which has seen considerable interest in developing 

gestural control in the vehicle. With increasing internet capabilities and cloud-based 

computing in vehicles, drivers’ attention is demanded more than normal because of the 

potential to become engaged with secondary tasks (e.g., navigation, radio, mobile phones; 

Jæger, Skov, & Thomassen, 2008). Additionally, the recent push for semi-autonomous 

vehicles further provides the driver with possibilities for engagement in secondary tasks, 

thus leading to distracted driving and increased risk of crashes (Klauer, Guo, Sudweeks, 

& Dingus, 2010). With increases in the number of possible secondary tasks drivers can 

engage in, this comes with increased buttons, switches, and indicators surrounding the 

dashboard, thus increasing the visual workload of the driver (Riener et al., 2013). The 

controls can be visually overwhelming and the information that they represent must be 

processed concurrently with the primary driving task, despite the controls being designed 

to support the driver. Performing the secondary tasks with the controls while driving 

requires a high amount of perceptual, cognitive, and physical skill (Yale, Hansotia, 

Knapp, & Ehrfurth, 2003), and the secondary control tasks compete for the same 

perceptual and cognitive resources as the primary driving task (Normark, Tretten, & 
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Gärling, 2009). Driver distraction is already a leading cause for major crashes as drivers 

are frequently moving their attention away from the primary task of driving to secondary, 

non-driving activities (Klauer et al., 2010). Car manufacturers are continuously 

competing with the need to improve driver experience and the need to maintain a high 

level of safety. Since driving is primarily a visual task, it is important to study drivers’ 

visual workload (Riener et al., 2013) and seek ways to keep drivers’ eyes on the road in 

order to maintain or improve safety (Pickering, 2005).  

3D, vision-based gestural technology is suitable for the transportation domain as it 

does not require visual attention which allows the driver to maintain their eyes on the 

road simultaneously manipulating controls in the vehicle. There has been a push to 

develop novel user interfaces, such as gestural control, that make it easy to operate in-

vehicle systems while driving (Ashley, 2014). As of 2014, Audi, BMW, Cadillac, Ford, 

General Motors, Hyundai, Kia, Lexus, Mercedes-Benz, Nissan, Toyota, and Volkswagen 

are all working on incorporating gestures as an input mode for secondary tasks (Ashley, 

2014). Gestural interfaces have been shown to reduce driver distraction (Ohn-Bar & 

Trivedi, 2014) and reduce visual and cognitive workload of the driver (Jæger et al., 2008; 

Riener, 2012) which ultimately may increase safety. There has been extensive research 

investigating the use of 3D, in-air gestures; however, a majority of these studies are 

technology-based or centrist-developed systems (Akyol, Canzler, Bengler, & Hahn, 

2000; Cairnie, Ricketts, McKenna, & McAllister, 2000; Ohn-Bar & Trivedi, 2014; 

Parada-Loira, González-Agulla, & Alba-Castro, 2014; Rahman, Saboune, & El Saddik, 

2011). Very few studies found in the literature review incorporated human-based 
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methods for 3D gestural interfaces (Fariman, Alyamani, Kavakli, & Hamey, 2016; Riener 

& Rossbory, 2011) despite human-based methods being preferred over technology-based 

methods (Morris et al., 2010). Of the human-based systems, only a few climate control 

and some infotainment functions were investigated with limited results (Fariman et al., 

2016; Riener & Rossbory, 2011).  

As shown in this review of the literature for transportation gestural HCI, 

technology-based approaches are considerably more prevalent than human-based 

methods. The technology-based systems in transportation are potentially highly accurate 

at the expense of usability and intuition to the end user. (Nielsen et al., 2004; Stern et al., 

2008). If this is the case and gestures are not intuitive and natural to the user, then the 

user must use cognitive resources to explicitly remember the gesture-function mapping 

thus potentially increasing mental workload, decreasing performance, and increasing 

driver distraction. Furthermore, if the gestural system is not intuitive and usable then 

incorrect gestures may be performed resulting in system errors, so regardless of the 

technology-based system being highly accurate, there might still be errors due to a lack of 

usability. System errors lead to user frustration, less trust in the system, and eventually 

disuse which leads to overall low adoption of the technology. We are seeing these effects 

in real time within the transportation domain and the manufacturers who are developing 

gestural systems quickly via a technology-based approach, and we can learn from 

transportation how to move forward with future development of gestural systems 

(Ashley, 2014). 
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Operating Room 

A second domain that can benefit from 3D, vision-based gesture systems is 

healthcare, especially in areas which must stay clean like the operating room (OR). 

Healthcare has been on the forefront of investigating gestural systems because the 

touchless interactions are useful in preventing the spread of pathogens and preventing 

patients from contracting healthcare-associated infections (HAIs) subsequently 

preserving sterility in ORs and other clean environments (Wachs et al., 2008). Gestural 

control could be advantageous to several healthcare applications and environments as the 

U.S. Department of Health and Human services (2013) states that HAIs can be contracted 

anywhere across the continuum of care for a patient. In 2002, there were approximately 

1.7 million cases of HAIs among U.S. Hospitals with 99,000 associated deaths (Klevens 

et al., 2007). It is also estimated that hospital-contracted HAIs account for $28 billion to 

$33 billion in healthcare costs every year (U.S. Department of Health and Human 

Services, 2013). As modern healthcare continues to increase in complexity, it is 

important to develop innovative ways to combat bacterial infection such as through 

technological interventions.   

In 2010, The Society of Healthcare Epidemiology of America (SHEA) offered a 

national approach to HAIs and minimizing bacterial transmission (The Society of 

Healthcare Epidemiology of America, 2010).  Since its release, numerous studies have 

strengthened the understanding of HAIs and developed prevention techniques to be 

implemented hospital-wide, including but not limited to further training (Barsuk, Cohen, 

Feinglass, McGaghie, & Wayne, 2009; Comer et al., 2011), improvement in hand 
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hygiene (Pittet et al., 2000; Sax et al., 2007), and best practices guidelines for healthcare 

providers (Marschall et al., 2014). However, due to the nature of work in the OR (i.e., 

interaction with one patient over a long period of time), these measures may not be 

adequate to eliminate contamination (Stackhouse et al., 2011). Additionally, the surface 

environment has been extensively connected to HAIs (Weber, Anderson, & Rutala, 

2013); pathogens can survive on hospital room surfaces and medical equipment for 

hours, days, and even up to months (Weber et al., 2013). As healthcare providers in the 

OR care for multiple patients while touching multiple surfaces and equipment, they are 

potentially facilitating the transfer of bacteria from one patient to another.  

3D, vision-based gestural technology has been introduced to the healthcare 

domain focusing on minimizing bacterial spread in the OR. A majority of the healthcare 

literature focuses on surgeons interactions in the OR and navigating radiological images 

during a case (Bizzotto et al., 2014; Jacob & Wachs, 2014b; Jacob et al., 2013; Mewes, 

Saalfeld, Riabikin, Skalej, & Hansen, 2016; Schroder, Loftfield, Langmann, Frank, & 

Reithmeier, 2014; J. Wachs et al., 2006). Surgeons scrub into a surgical case and must 

stay sterile while working at the incision site, and if the surgeon wants to review 

radiological images, they must remove themselves from the sterile field to interact with 

non-sterile technology. This is a timely process, so it is beneficial for surgeons to be able 

to interact with medical imaging in a sterile manner. The studies investigating surgeon’s 

interactions in the OR have shown positive results of the technology and positive 

feedback from the users. However, there are other providers in the OR who do not scrub 

into a surgical case, such as anesthesia providers, who may benefit from touchless HCI. 
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Anesthesia providers interact greatly with the patient before, during, and after a surgical 

case, and it has been shown that anesthesia providers switch tasks about every six 

seconds (Jurewicz et al., Under Review). If new hand-hygiene steps are introduced into 

the anesthetic task flow, this could potentially impact overall workflow and subsequently 

introduce new and unanticipated patient safety events. Thus, it is important to consider 

how bacterial contamination can be mitigated in a way that is cohesive to current 

anesthetic work. One way is integrating new technologies that support infection control 

and workflow such as touchless interactions via gestural control. 

Anesthesia Workstation 

There is plentiful evidence in the literature that shows that the anesthesia 

workstation is often contaminated and anesthesia providers are linked to bacterial 

transmission in patients. A novel study sought to understanding the dynamics of bacterial 

spread in the anesthesia workstation. They simulated the bacterial contamination in the 

anesthesia workstation by using fluorescent marker and having anesthesia providers 

perform the intubation process (the anesthetic step that occurs before the operation 

begins) as they normally would (Birnbach, Rosen, Fitzpatrick, Carling, & Munoz-Price, 

2015). Although the fluorescent marker was initially present only inside the mouth and 

on the lips of the patient simulator, the fluorescent marker spread throughout the 

anesthesia environment during the intubation process (Birnbach et al., 2015). Thirteen 

areas within the anesthesia environment (including the IV hub, anesthesia machine 

surface, anesthesia circuit, oxygen valve, and anesthesia cart) were contaminated in 100% 
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of the observations, and the computer keyboard was contaminated in 80% of the 

observations (Birnbach et al., 2015).  This study demonstrates that there is potential for 

widespread bacteria contamination before the operation even begins.  A separate 

observational study showed that the anesthesia environment has bacterial transmission in 

89% of the observed surgical cases (Loftus et al., 2011).  These findings support the 

notion that there is a cyclical pattern of bacterial transmission from the patient to the 

anesthesia environment back to the patient and there is widespread bacterial 

contamination in the anesthesia workstation. This pattern supports corresponding 

research that shows the anesthesia providers’ contaminated hands play a key role in 

bacterial transfer (Loftus et al., 2012).  This a major concern for infection control because 

not all of the bacteria on surfaces and objects can be completely removed, so patients are 

at risk of being infected by the bacteria that is immediately present on surfaces and 

objects within the anesthesia environment (Stackhouse et al., 2011).   

Anesthesiology, health technology, and healthcare in general will continue to 

grow in complexity, and as this occurs, it is crucial to reduce and ultimately eliminate the 

risk of infection in the OR. The anesthesia environment and the anesthesia provider play 

key roles in the transmission of bacteria during the perioperative care of a patient. If 

anesthesia providers can reduce the number of surfaces and objects they come in contact 

with in the anesthesia environment, there can be a potential reduction in risk of bacterial 

transmission to the patient.  It would be ideal, sterility-wise, to have all HCI be touchless 

in the OR, but this is not possible with the current work practices of anesthesiology and 

it’s fast-paced environment. Although completely touchless HCI is futuristic, the 
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technology currently exists to facilitate a number of touchless interactions through 

gestural communication.  

There is an opportunity to determine if gestural input technology makes sense as 

an intervention for anesthesia providers in the OR to improve bacterial transmission and 

sterility.  In order to do so successfully, gestures should be elicited from users (Morris et 

al., 2010) and be suitable for the context and domain in which it is applied (Ardito et al., 

2014; Nielsen et al., 2004; Wigdor & Wixon, 2011).  There has been some research 

investigating gestural control for anesthesia providers in the OR (Jurewicz & Neyens, 

2017; Jurewicz et al., 2018); however, several barriers, relative to the technology and the 

human-system, still exist to the adoption of gestural technology in anesthesia and it’s 

extension to other healthcare applications. 

Barriers to Adoption of Gestural Technology 

Technical Barriers 

There are several challenges to developing gestural systems which are currently 

slowing its growth in the HCI field and application in healthcare. One challenge inherent 

in gestural systems is the tradeoff associated with the number of gestures in the 

vocabulary and performance of the system (Wachs, Kölsch, Stern, & Edan, 2011). The 

training and software development become increasingly difficult as the gesture 

vocabulary set grows (Anderson & Bischof, 2013; Ardito et al., 2014). Furthermore, 

camera-based gestural systems perform continuous capture of either hand or body 

movement; therefore, as the expanse of possible gestures and gesture combinations grow, 
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there is a segmentation issue in the capture of the gestures (Baudel & Beaudouin-Lafon, 

1993; Pickering, Burnham, & Richardson, 2007). The gestural input system needs to be 

capable of segmenting the movements to understand which gesture has actually been 

performed, and since the capture is continuous, it may become difficult for the gestural 

system to differentiate distinct gestures, especially if a specific gesture for a function is 

complex (e.g., dynamic, rotating gestures). Along the same lines of hardware limitations 

is the issue of occlusion. The cameras of the gestural system rely on a clear visual of the 

hand and fingers, and if a person or an object occludes the camera, the gesture cannot be 

captured (Rautaray & Agrawal, 2015). Lastly, one of the biggest challenges from the 

technical side is ensuring that gestures are accurately recognized, and there has been 

considerable interest in the research community to develop methods which ensure a high 

recognition accuracy. One example is developing a deep neural network which learns 

particular features for gesture recognition from the raw data from the camera (Huang, 

Zhou, Li, & Li, 2015). The deep neural network recognition approach has been shown to 

increase recognition accuracy to about 99% (Huang et al., 2015). Other methods have 

shown equal success such as hidden markov models, support vector machines, 

Eigenspace-based methods, and dynamic programming (Pisharady & Saerbeck, 2015). 

Human Factors Barriers 

Aside from these more technical concerns, there are several human factors related 

issues of gestural systems relating to context, expertise, and how interaction behavior 

may change over time via increased exposure with the gestural system. It has been shown 
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that gestures are highly individualized (Stern et al., 2008), and that this individualization, 

specifically the interpretation of a gesture, is dependent on an individual’s culture and 

past experiences (Mauney, Howarth, Wirtanen, & Capra, 2010; Rautaray & Agrawal, 

2015). The differing gesture interpretations make it difficult to create a gesture 

vocabulary that is intuitive for all users. Another challenge when developing a gesture 

system is considering that a gesture interpretation may differ from context to context 

(Ardito et al., 2014; Jacob & Wachs, 2014a; Jacob et al., 2013; Nielsen et al., 2004; 

Wigdor & Wixon, 2011). Gestural systems are not expected to succeed if general gesture 

vocabulary sets are used for HCI across multiple contexts (Ardito et al., 2014). Thus, 

gestural interfaces must consider the context in which it will be used (Ardito et al., 2014; 

Jacob & Wachs, 2014a; Jacob et al., 2013; Nielsen et al., 2004; Wigdor & Wixon, 2011) 

and incorporate new possibilities that the gestural interaction could bring to that context 

(Wigdor & Wixon, 2011). Some user-elicitation studies have revealed the issue of 

context sensitivity in that multiple functions are mapped to the same gesture (Jurewicz & 

Neyens, 2017; Jurewicz et al., 2018; Pereira, Wachs, Park, & Rempel, 2015). If there is 

overlap in gesture-function mappings then the recognition software needs to be aware of 

the context in which a gesture is used in order to complete the correct task.  

All users of a gestural system, from novice to expert, should be able to use the 

system (Wigdor & Wixon, 2011); therefore, an additional challenge to gestural system 

design is ensuring that multiple user groups have an intuitive and natural experience. 

There has only been one study investigating the gesture behavior of both experts and 

novices within a specific context, and it was shown that domain expertise is influential 
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when generating gesture-function mappings in a study investigating gestural control for 

anesthetic tasks in the OR (Jurewicz et al., 2018). Domain experts’ gesture choices 

tended to be influenced more by physical components in the anesthesia environment 

whereas the gesture choices generated by domain novices did not show a relationship to 

the physical environment (Jurewicz et al., 2018). Domain novices additionally 

demonstrated longer reaction times in generating gestures potentially suggesting that 

there is a greater cognitive load for those gesture-function mappings (Jurewicz et al., 

2018).  

Since there is evidence that shows expertise is influential in gesture choice, it may 

be important to capture how experience with the gesture system is gained over time and 

how gesture responses may change as expertise grows or as a user becomes more familiar 

with the system. However, no studies have investigated the effect of exposure to the 

system over time on gesture behavior. Overall, there is minimal, if any, evidence 

addressing human factors challenges as a whole to gestural system design, and it remains 

unclear how to overcome these challenges in order to implement an intuitive, reliable, 

and natural gestural system. The current develop approaches to 3D gestural systems is to 

either take a technology-based approach or human-based approach (see Figure 2). 

 

Technology-Based Human-Based

High Recognition Accuracy
Low Usability

Low Recognition Accuracy
High Usability

High Recognition Accuracy
High Usability

Figure 2. Illustration of the tradeoffs between recognition accuracy and usability in 
current gesture development techniques 
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However, there is a tradeoff between recognition accuracy and usability. Ideally, the 

systems would be both highly accurate and highly usable as shown in the middle of 

Figure 2. Thus, the purpose of this dissertation is to the further understand the arrow 

between the human-based approaches and move towards the goal of the middle box with 

highly accurate and highly usable 3D gestural systems.   

Skills-, Rules-, and Knowledge-Based Behavior 

Using the hands as an input modality in HCI is relatively new to the science of 

human factors, so it is important to understand how humans perform different tasks in 

information systems. The skills-, rules-, and knowledge- (SRK) based behavior taxonomy 

(see Figure 3), developed by Rasmussen (1983), may be utilized to explain how context, 

expertise, and exposure influence the human’s behavior in a gestural system.  
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Figure 3. Skills Rules and Knowledge-Based Behavior framework. Figure image 
derived from (Rasmussen, 1983) 
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The SRK taxonomy was built in order to describe human performance in different 

task conditions, whether tasks be routine or unfamiliar (Rasmussen, 1983). Human 

behavior can be categorized into knowledge-based behavior, rule-based behavior, and 

skill-based behavior (Rasmussen, 1983). Knowledge-based behavior is most often 

practiced in unfamiliar situations and is commonly seen in novice users or in novice 

situations (Rasmussen, 1983; Vicente & Rasmussen, 1992). A user in knowledge-based 

behavior carefully develops a goal, analyzes the environment, and formulates a plan for 

acting on the system (Rasmussen, 1983). At the next level is rule-based behavior where 

actions are dominated by a stored rule that is driven by previous experiences or 

expectations of the system (Rasmussen, 1983). Rule-based behavior requires less analysis 

and conscious thought than knowledge-based behavior (Rasmussen, 1983). At the highest 

level of SRK is skill-based behavior where actions are executed without conscious effort 

(Rasmussen, 1983). Skill-based behavior is often practiced in very familiar situations 

where users react automatically to input from the environment (Rasmussen, 1983).  

The discrepancy between the two ends of SRK lies in the applied cognitive effort. 

With knowledge-based behavior, a goal is explicitly formed and conscious effort is put 

towards planning how to achieve the goal, whereas a user in skill-based behavior, who 

has performed this action many times in previous experiences, will go straight from the 

sensory input to an intuitive action (Vicente & Rasmussen, 1992). Skill-based behavior is 

highly automated, and the body and environment work fluidly together (Rasmussen, 

1983).  
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The SRK taxonomy was not developed to be explicitly context sensitive; 

however, context may influence how information is perceived in the environment and 

may influence the decision process and action chosen. In the end, the decision process 

and action chosen depends on the user’s familiarity with the system and their prior 

beliefs, emphasizing the role of expertise. Users often must go complete the decision 

process and complete an action multiple times thus extending the SRK taxonomy from a 

single interaction to multiple interactions via exposure over time.  Users do not stay in the 

same level of cognitive control throughout interaction with a system due to varying task 

demands, and users rather fluctuate between knowledge-, rule-, and skill-based behavior 

(Vicente & Rasmussen, 1992). Therefore, when designing a new HCI, it is suggested that 

the goal is to support all three levels in the SRK taxonomy and to avoid forcing a user to 

a certain level of cognitive control (Vicente & Rasmussen, 1992).  

The SRK taxonomy is a means of understanding how human behavior may adapt 

as context, expertise, and exposure change over time, especially when investigating a 

new interaction method such as 3D gestural control. Understanding a user’s gesture 

behavior is valuable to researchers and designers as this data can be applied in statistical 

models to predict how users may gesturally respond to a computer system based on 

specific individual factors. Designers can more completely understand the end user and 

implement intuitive gesture systems that are based on expected natural responses if 

gesture choice can be predicted accurately. If designers can anticipate and predict gesture 

choice for users, then the system can be designed to support multiple gestural interactions 

thus affording an intuitive and natural experience for multiple user groups.   
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Bayesian Framework 

Several statistical techniques could be applicable to understanding and predicting 

gesture behavior. Bayesian statistical approaches may be most suitable for understanding 

novel input systems, such as integrating 3D gestural input into HCI. Gestures are difficult 

to learn (Hinckley et al., 2014), and there is little intuitive gestural agreement among 

users (Wobbrock et al., 2009). In other words, there is much uncertainty when it comes to 

gestural interaction from an observer’s standpoint. A Bayesian analytical approach may 

be useful in such scenarios because Bayesian statistics provides a quantitative framework 

for modeling uncertainty. Bayesian statistical approaches are able to represent knowledge 

of the current state of the system and then integrate new information to understand a new 

or updated state of a system (Cowles, 2013).  

Bayesian statistics is not currently as widely used in human factors research as 

frequentist approaches despite its several advantages. Frequentist approaches rely on 

many assumptions that may difficult to meet when attempting to predict a user’s gesture 

behavior. In frequentist statistics, an experimenter tests whether an event (the hypothesis) 

occurs or not. Experiments are repeated under the same conditions until a stopping point, 

and it is calculated whether there is enough evidence in the data to state if a hypothesis is 

rejected or if it failed to be rejected. The key to frequentist statistics is the concept of 

repeating experiments over and over again and having a large enough sample size or 

“frequency” to come to make inferential statements, and it is possible that there are 

different outcomes depending on the stopping point of the experiment. The calculation of 

point estimates, confidence intervals, and p-values may differ depending on when an 
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experiment is stopped. These calculations may additionally continue to differ as sample 

sizes change and as the experiment is repeated. 

Bayesian statistics is different approach from frequentist statistics from modeling 

data, to the calculations, and to how the data is modeled conceptually. From the 

computational side, both Bayesian and frequentist approaches account for the likelihood 

of data. However, Bayesian statistics uses probabilities to quantify prior beliefs whereas 

frequentist statistics does not. Before collecting or gathering data, there is a belief about 

the outcome of interest and this belief is modelled in terms of a prior distribution. The 

prior may have different functional forms depending on the scenario. After data is 

observed, the belief is then updated through computation of the posterior distribution, and 

then the posterior distribution is used to make inferences about the data. Bayesian 

statistics can be analytically advantageous as it is capable of incorporating one’s beliefs 

about the data. Analytically, this concept is grounded in Bayes’ theorem which defines 

the relationship between prior and posterior probabilities in that the posterior probability 

of a model is proportional to the prior probability times the likelihood (graphically shown 

in Figure 4): 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)  

where: 

 𝑃(𝜃) is the strength of the current belief of the system (i.e., the prior belief) 

𝑃(𝐷|𝜃) is the likelihood of observing our result given the distribution of our belief 

𝑃(𝐷) is the new information 
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𝑃(𝜃|𝐷) is our new belief of the system after gaining the new information (i.e., posterior 

belief) 

 

 

There are parallels between the Bayesian mindset of incorporating prior beliefs 

with data and how humans process information and make decisions through the SRK 

taxonomy. As new information is gained or as different users process information in 

either skill-, rule-, or knowledge-based behavior, a new belief of the system is formulated 

in order to make a decision on how to act upon that system. For example, consider a 

driver approaching a yellow and then a red traffic light. At a previous instance, the driver 

speeds through the yellow light so as to miss the red light but does not do so fast enough 

and crashes into a car travelling perpendicular to them. The driver develops a new belief 

in the system and next time they see a yellow light, they decide to slow down earlier or 

decide to perform more visual checks before trying to speed through the yellow light.  

The same process of updating beliefs and its influence on decision making can be 

extended to how humans interact with computers, especially with novel input modalities 

Figure 4. Graphical Representation of Bayes' Theorem 
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such as 3D gestural displays. Consider any given person interacting with a computer with 

hand gestures for the first time. The gesture chosen can be represented by the user’s 

belief in the system (i.e., it represents the prior and subsequently posterior beliefs after 

data has been gathered), and it is also the action decision in terms of SRK-based 

behavior. Given the context and expertise within the context, the intuitive gesture choice 

(i.e., the SRK-based behavior action or the Bayesian posterior inference) may update 

over time (i.e., the effect of exposure) as the user gains information about the system and 

the interactions. Thus, the 3D gestural interactions can be explained by the SRK 

taxonomy in how actions are chosen but also be translated analytically through the 

Bayesian mindset to model the decision making process and eventually make predictions 

on future use of the system based on prior data.  

Research Objective and Questions 

The objective of this research is to understand how expertise and exposure influence 

gestural behavior and to develop Bayesian statistical models that can accurately predict 

how users would choose intuitive gestures in anesthesia based on expertise and exposure. 

Expertise and exposure may influence gesture responses for individuals; however, there 

is limited to no work investigating how these factors influence intuitive gesture choice 

and how to use this information to predict intuitive gestures to be used in system design. 

Therefore, my dissertation research questions are: 

Q1- How does expertise influence how users gesturally respond to a computer 

system? 
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Q2 - How does exposure to the gestural system influence how users gesturally 

respond to a computer system?  

Q3 - How accurately can intuitive gestures be statistically predicted? 

Answering these research questions will provide a more complete understanding 

of the end users so that intuitive gesture systems that are based on expected user 

responses can be developed. If gestures can be predicted with a particular level of 

certainty, then displays and systems can be redesigned to support all levels of cognitive 

control as modelled by the SRK taxonomy. These questions will be answered in a series 

of experiments: 

1. Chapter 3 - A preliminary repeated measures study investigating the 

effect of domain expertise (Q1) on gestural behavior within the context 

of anesthesia  

2. Chapter 4 - A longitudinal study investigating the effect of workload 

and exposure (Q2) on gestural behavior for controlling a PowerPoint 

presentation 

3. Chapter 5 – Development of Bayesian statistical models of expertise and 

exposure data from chapters 3 and 4 to accurately predict gesture choice 

(Q3). 
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CHAPTER 3: INVESTIGATING THE EFFECT OF DOMAIN EXPERTISE ON 

GESTURAL BEHAVIOR WITHIN THE CONTEXT OF ANESTHESIOLOGY 

 

Introduction 

The work in this chapter contributes to addressing the first research question of 

this dissertation: Q1 – How does expertise influence how users gesturally respond to a 

computer system?  Both expert and novice users should be able to interact with the 

gestural system naturally (Wigdor & Wixon, 2011), so it is important to capture the user 

behavior of both domain experts and domain novices as domain novices may also be 

asked to interact with anesthesia equipment at various points in the device’s life cycle. 

Environmental context must be considered when eliciting gestures from users (Ardito et 

al., 2014; Jacob & Wachs, 2014b; Jacob et al., 2013; Nielsen et al., 2004; Wigdor & 

Wixon, 2011), and complete novices should be included from the very beginning of 

developing natural user interfaces (Wigdor & Wixon, 2011). Thus, if a gesture 

vocabulary is to be developed for the application of anesthesia tasks and functions in the 

OR, gestures should be elicited from both expert and novice users, within a representative 

environmental context, focusing on similarities and differences of gesture behaviors 

across users. 

A repeated-measures study was conducted with two cohorts: anesthesia providers 

(i.e., domain experts) (N=16) and students (i.e., domain novices) (N=30). Participants 

chose gestures for ten anesthetic functions across three blocks to determine intuitive 

gesture-function mappings, and reaction time was collected as a complementary measure 
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for understanding the mappings. This work sought to compare the mappings of gestures 

to functions generated for domain experts and novices when exposed to the same OR 

anesthesia context. The work of this chapter was presented at the 2016 Human Factors 

and Ergonomics Society Annual Meeting (Jurewicz & Neyens, 2017) and is published in 

Human Factors (Jurewicz et al., 2018). 

Methods 

Nielsen Störring, Moeslund, & Granum (2004) created a human-centered 

procedure for developing intuitive and ergonomic gesture interfaces. As part of this 

procedure, gesture vocabularies can either be elicited from end users in a bottom-up or 

top-down fashion. The bottom-up approach presents functions and identifies matching 

gestures, and the top-down approach presents gestures and identifies a function mapping 

(Nielsen et al., 2004). The top-down approach is more suitable for testing a gesture 

vocabulary (Nielsen et al., 2004), so the bottom-up approach was used in this study since 

the goal is to generate gesture-function mappings,. In this approach, the function is shown 

to the user, and the user chooses a gesture that they believe maps to the function. The 

gesture that is most frequently performed across all users is mapped to a function as the 

most intuitive gesture. Therefore, this approach is a human-based, specifically one that 

reaches consensus, investigating two cohorts: the responses of undergraduate and 

graduate students and the responses of anesthesia providers. This research was approved 

by Clemson University IRB (IRB#: 2016-110) to study the responses of undergraduate 

and graduate students. This research was additionally approved by The Medical 

University of South Carolina IRB (IRB#: Pro00048787) to study the responses of 
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anesthesia providers. The two cohorts were studied at separate times due to the 

availability of novice and expert participants, and the distance between the hospital and 

the university.  

Participants 

All participants needed to be able to move their fingers, wrists and arms without 

issue in their non-dominant hand and needed to be able to read, write, and speak in 

English. Participants were domain novices (N=30) and domain experts (N=16). The 

domain novices were undergraduate and graduate students, and the domain experts were 

anesthesia providers that included attending anesthesiologists, certified registered nurse 

anesthetists (CRNAs), and anesthesia residents. 

 Study Design 

 This study employed a repeated measures design where the functions (N=10) 

were repeated across three blocks. The functions are described in Figures 5, 6, 7, 8, and 9. 

Each block included all ten functions, and the presentation order of the functions was 

randomized within each block. The function displays were placed in a PowerPoint 

presentation according to a randomized order for each participant. The functions tested in 

the experiment were representative of typical tasks done by anesthesia providers in the 

OR and were selected after performing in-person and video observations in the OR 

(Betza et al., 2016). Some functions were generic examples used to elicit gestures for 

question answering (e.g., “Is the heart rate normal?”), and Function 9 was used for 

making choices among different options. Function 9 (See Figure 9a, “Select Heart Rate”) 
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is not a task currently done by anesthesia providers but is a function that could be 

implemented as part of a 3D gestural system for anesthesia, as it is recommended to test 

new gestural functionalities when building gestural systems (Wigdor & Wixon, 2011).  
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a)  

b)  

Figure 5. Functions shown to participants in gesture elicitation experiment. (a) 
Function 1 - Start the flow of anesthesia gas. (b) Function 2 - Stop the flow of 
anesthesia gas 
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a)  

b)  

Figure 6. Functions shown to participants in gesture elicitation experiment. (a) 
Function 3 – Inc. the flow of anesthesia gas. (b) Function 4 - Dec the flow of anesthesia 
gas 
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a)  

b)  
Figure 7. Functions shown to participants in gesture elicitation experiment. (a) 
Function 3 - Silence the alarm (b) Function 6 - Acknowledge the message 
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a)  

b)  

Figure 8. Functions shown to participants in gesture elicitation experiment. (a) 
Function 7 – Is heart rate normal? (b) Function 8 – Is SpO2 normal? 
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a)  

b)  

Figure 9. Functions shown to participants in gesture elicitation experiment. (a) 
Function 9 - Select heart rate (b) Function 10 – Cancel the request 
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Equipment 

The study of the two cohorts were completed at the same table with the same 

standard desktop computer with two monitors side by side (Figure 10). The study 

equipment (i.e., desk, two Dell 22-inch LED monitors, an Intel RealSense F200 Camera 

gestural camera, a PC running Windows 10, and medical gloves) was used at both 

locations with the position of the monitors and the gestural camera marked on the desk. 

Participants primarily interacted with the right monitor as this monitor presented the 

function displays and had the 3D camera attached on the top. A digital clock with the 

computer system time and depth-feedback of the 3D camera view were displayed on the 

left monitor. The setup of the computer and monitors did not differ between novices and 

experts; however, the study occurred in different rooms due to the participants being 

located at either the hospital or the university. The domain experts were in a conference 

room at the hospital that had additional tables, chairs, and a TV. The domain novices 

were at the university in an experimental room in a research lab without windows.  

 

  Figure 10. Experimental setup 
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The experimental session duplicated certain features of an anesthesia setting in 

the OR by sounding continuous and intermittent patient alarms and by having participants 

wear medical gloves. The World Health Organization (2009) recommends healthcare 

providers wear gloves when working with a patient, so wearing the gloves helped 

emulate anesthetic work. The alarms additionally helped to establish environmental 

context.  

Procedure 

The same study procedure was followed for both cohorts. Upon arrival, the 

informed consent process was completed and the participant filled out a demographics 

survey and the Complacency Potential Rating Scales (Singh, Molloy, & Parasuraman, 

1993). There were two different demographic surveys created due to the differences in 

characteristics of the two cohorts. For example, anesthesia providers were not asked any 

questions about their major as these questions were not applicable. After completing the 

demographic survey, the participant familiarized themselves with the technology by 

practicing with the set of 14 gestures provided by the Intel RealSense SDK (Intel 

Corporation, 2016). Each gesture was performed 15 times according to Nielsen et al.’s 

(2004) approach for assessing the comfort of gestures in a user elicitation study.  

 The participant then completed the experimental task. A “Wizard of Oz” 

technique was used in the experimental session, which has shown to be valuable in 

gesture user-elicitation studies (Aigner et al., 2012; D. Freeman, Benko, Morris, & 

Wigdor, 2009; Höysniemi, Hämäläinen, & Turkki, 2004; Morris et al., 2010). In the 
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Wizard of Oz technique, the experimenter takes the place of an automatic system, 

interpreting inputs and controlling outputs. The manual control is done in order to 

evaluate functions and interfaces prior to investing in the technology required for 

automatic input and output. In the experiment, the system is perceived to be controlled by 

a participant’s gestural input, but the experimenter manually progresses to the next 

function after a gesture is performed; therefore, this is not a complete Wizard of Oz study 

as the experimenter is physically in the room with the participant. Having the 

experimenter manually progress to the next function generates an effect-cause 

relationship between gesture and function that would be expected if the gestural system 

were actually implemented and working. The function display (the effect) was always 

presented first and then the participant would choose a gesture (the cause) that they 

believed initiated the function. Participants performed gestures of their choosing and 

whichever gesture was their “first guess” to complete the function. 

Intuitive Gestures Measure 

The intuitive gesture-function mappings were analyzed separately for the experts 

and novices in order to identify the differences between the two gesture sets. Videos of 

the participants’ hands and fingers were recorded and analyzed to determine which 

gestures were performed for each function. A list of potential gestures performed was 

built by the research team to aid in the gesture analysis. The gesture list included the 

name and definition of all gestures used in the practice session, gestures from other 

studies, and commonly known cultural gestures. The list of potential gestures was created 
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to provide standardization in gesture classification among the researchers. All videos 

were analyzed by three researchers separately, and gestures were classified according to 

the best-fit definition in the gesture list. Any discrepancies in gesture classification were 

discussed until the three researchers agreed on which gesture was chosen by the 

participant.  

Incomplete gestures were removed from analysis. According to Nielsen et al.’s 

(2004) approach, the intuitive gesture for a function is the gesture that is most frequently 

chosen across a group. The gesture responses for each function were compiled in a table, 

and the gesture response that was performed most frequently across the experimental 

group was chosen as the intuitive gesture-function mapping.  

Reaction Time Measure 

The reaction time from presentation of the function display to completion of a 

gesture was recorded for every gesture-function pair by a Visual Basic program 

embedded in PowerPoint. This data was collected to complement the analysis of the 

intuitive gesture-function mappings because it has been shown that shorter reaction times 

are associated with higher convergence of gestures performed for a function (Pereira et 

al., 2015). The reaction time data was combined into one analysis for the experts and 

novices. A mixed linear regression model with participant ID as the random effect was 

used to identify gesture-function mappings that exhibited longer reaction times. A mixed 

linear regression model was used in order to account for both fixed and random effects. 

The fixed effects in the model were handedness, video game experience, virtual reality 
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experience, the functions, and participant type. Interaction effects between function and 

participant type were included in the model to identify differences between experts and 

novices. Only reaction times from the first block were analyzed in order to separate the 

first instance the participant was exposed to a function and to avoid any issues in the 

statistical model related to learning effects that could be present in the other blocks. The 

equation below shows the mixed effects linear regression model in matrix notation. 

𝒚 = 𝑿𝜷 + 𝒁𝜸 + 𝜺 

 

where: 
 
𝒚 is an N x 1 column vector of the response variable 

𝑿 is an N x p matrix of p predictor variables 

𝜷 is a p x 1 column vector of the regression coefficients of the fixed effects 

𝒁 is an N x q matrix of q random effects 

𝜸 is a q x 1 column vector of the random effects 

𝜺 is an  N x 1 column vector of the residuals 

R version 3.2.2 was used for all data analysis; the lmer function of the lme4 

package (Bates, Mächler, Bolker, & Walker, 2014) was used to build the mixed linear 

regression model, and the ggplot2 package (Wickham, 2009) was used to plot the data. 

Before fitting this mixed effects model, an ANOVA was performed to compare two 

linear models: a linear model with a fixed intercept plus the random effect and a null 

model with only the fixed intercept.  If the P-value is <0.001, then the mixed model was 

preferred over the null model.  Insignificant variables were stepwise deleted to obtain the 
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final model. Diagnostic tests were performed to ensure the assumptions for the linear 

model is met: linearity, homescedacity, normality, independence, and no multicollinearity 

issues. To identify any multicollinearity issues, variance inflation factors (VIFs) were 

calculated and any predictor variables with a VIF >5 were removed from the model. Any 

influential points were also removed from the data set by calculating Cook’s distance.  

Cook’s distance is a measure for one unit’s influence on parameter estimates (Cook, 

1977).  The formula for calculating Cook’s distance is shown below: 

D! =
𝑒!"

𝑠"𝑝 3
ℎ!

(1 − ℎ!)"
7 

where: 

D! is Cook’s distance for the ith observation 

𝑒! is the residual for the ith observation 

𝑠" is the mean squared error of the regression model 

ℎ! is the leverage of the ith observation 

For mixed models, a point is regarded as influential if the respective Cook’s Distance 

value exceeds the cut off value of  (Van der Meer, Te Grotenhuis, & Pelzer, 2010): 

4/𝑛 

where n refers to the number of groups of the grouping variable.  

The mixed effects linear regression model can only determine if functions are 

associated with response times compared to one reference function, so in order to 

compute differences in response times for each pair of functions, Tukey contrasts were 

calculated to make the pairwise comparisons. R version 3.3.2 was used to do the analysis 



 42 

and used the skewness function of the e1071 package (Meyer, Dimitriadou, Hornik, 

Weingessel, & Leisch, 2015), the lmer function of the lme4 package (Bates et al., 2014), 

the glht function of the multcomp package (Hothorn, Bretz, & Westfall, 2008), and the 

cooks.distance function of the influence.ME package (Nieuwenhuis, te Grotenhuis, & 

Pelzer, 2012).   

Results 

The characteristics of the participants for both experiments are shown in Table 1. 

Some data were not collected in Experiment 2 that were collected in Experiment 1 to 

ensure that subjects could not be identifiable with the smaller sample size in Experiment 

2 thus this data is absent from Table 1. The mean response time across all blocks for 

Experiment 1 was 4.77 seconds (SD=2.93 seconds), and the mean response time across 

all blocks for Experiment 2 was 4.31 seconds (SD=2.29 seconds). In Experiment 1, there 

could have been a total of 900 gestures taken into account for the analysis, but due to a 

lack of complete gestures in participants for some functions, only 849 gestures were 

analyzed. In Experiment 2, a total of 438 out of the 460 possible gestures were analyzed 

after removing responses that were incomplete. Overall, 42 unique gestures were 

performed in Experiment 1 and 27 unique gestures were performed in Experiment 2.  
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Variable Name Experiment 1 Experiment 2 
N (%) N (%) 

Age M=21.80, SD=2.23 - 
Gender    
  Male 15 (50) - 
  Female 15 (50) - 
Handedness    
  Right 26 (86.7) 14 (87.5) 
  Left 3 (10) 2 (12.5) 
  Ambidextrous 1 (3.3) - 
Education, highest degree obtained   
  High School/GED 16 (53.3) - 
  Bachelors 11 (36.7) - 
  Masters 3 (10) - 
Education, area of study   
  Science or Engineering 19 (63.3) - 
  Not Science or Engineering 11 (26.7) - 
Video Game Use   
  Yes 15 (50) 5 (31.3) 
  No 15 (50) 11 (68.7) 
Virtual Reality Gaming Experience   
  Yes 14 (46.7) 4 (25.0) 
  No 16 (43.3) 12 (75.0) 

 
 
 
  

Table 1. Participant characteristics for novices (Experiment 1) and experts 
(Experiment 2) 
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Intuitive Gesture Mappings 

Bar graphs for the intuitive mappings are shown in Appendix A for the novices 

and Appendix B for the experts. A summary of the intuitive gesture-function mappings 

are shown in Table 2. Pictorial representations of the gestures that were intuitively 

mapped are shown in Figure 11. There were several functions with different intuitive 

mappings between the novices and the experts.  Functions 1-5 were associated with 

different gestures for the novices and the experts.  Functions 6-10 resulted in the same 

gestures for both the novices and the experts. Functions 6, 7, and 8 were all mapped to 

the “Thumbs up” gesture for both cohorts.  

 
 

Function [#] 
Intuitive Gesture Mapped 

Novices Experts 

Start the flow [1]* Thumbs up Rotate right 
Stop the flow [2]* Five up Rotate left 
Inc. the flow [3]* Swipe hand up Rotate right 
Dec. the flow [4]* Swipe hand down Rotate left 
Silence alarm [5]* Swipe hand left Push hand 

Ack. the message [6] Thumbs up Thumbs up 
Heart rate normal? [7] Thumbs up Thumbs up 
Pulse ox normal? [8] Thumbs up Thumbs up 
Select heart rate [9] Push fingers Push fingers 
Cancel the message 

[10] 
Swipe hand left Swipe hand left 

Note: * indicates dissimilar mappings between the novices and experts 
  

Table 2. Intuitive gesture-function mappings for novices and experts 
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Thumbs up 

 
Five up 

 
Swipe hand left 

 
Swipe hand up 

 
Swipe hand down 

 
Push fingers 

 
Rotate left Rotate right 

 
Push hand 

  
Figure 11. Pictorial representation of intuitive gestures mapped 
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Reaction Times 

The mean reaction time for block 1 data for novices was 5.90 seconds (SD=3.66 

seconds), and the mean reaction time for block 1 data for experts was 4.34 seconds 

(SD=2.28 seconds). Figure 12 shows the raw data of the reaction times for both groups.  
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Figure 12. Jitter plot of response times for all participants in the first experimental 
block 
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Several assumptions needed to be met before moving forward with the mixed 

model regression analysis, including normality, testing random effects vs. fixed effects 

model, linearity, independence, homoscedasticity, and no multicollinearity issues.  The 

skew of response times exhibited a positive skew with a value of 2.52, so the data was 

transformed by taking the natural logarithm of response times. After the transformation, 

the skew was 0.47. The ANOVA of the model comparison showed that the linear 

regression model with “Participant ID” as the random effect performed significantly 

better than the regression model with only the fixed intercept (P<0.0001); therefore, the 

mixed model was used for the analysis.  With a mixed model, the within-subjects 

variability is removed as each participant is treated as a random effect; therefore, the 

assumption of independence of the data is met. The VIF values of this model were 

calculated and all VIF values were less than 5 indicating that there were no severe 

multicollinearity issues. There were no influential points in the data set as all of the 

calculated Cook’s distances were below the cutoff value.  The cutoff value for this 

dataset was 4/n=4/30=0.133. 

A summary of the final mixed linear regression models is shown in Table 3. 

Handedness, video game experience, and virtual reality experience were not significantly 

associated with longer reaction times and were thus stepwise deleted from the model.  

For variables with interactions, only the interaction terms are evaluated and main effects 

are not discussed. There were significant interactions between the user groups and some 

of the specific functions. Novices had significantly longer reaction times than experts for 

functions 7 through 10. These functions included: “Is heart rate normal?” (p=0.007), “Is 
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Pulse ox normal?” (p<0.001), “Select heart rate” (p<0.001), and “Cancel the message” 

(p=0.005).  
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Note: * p<0.05. 

  

 
Table 3. Results of mixed effects regression model for expertise study 

 β SE t P >| t | 
(Intercept) 1.54 0.12 13.26 <0.001* 
Stop the flow [2] 0.07 0.14 0.52 0.603 
Inc. the flow [3] -0.07 0.14 -0.48 0.634 
Dec. the flow [4] -0.08 0.14 -0.59 0.555 
Silence alarm [5] -0.32 0.14 -2.29 0.022* 
Ack. the message [6] -0.24 0.14 -1.73 0.084 
Heart rate normal? [7] -0.38 0.14 -2.76 0.006* 
Pulse ox normal? [8] -0.34 0.14 -2.45 0.015* 
Select heart rate [9] -0.25 0.14 -1.80 0.073 
Cancel the message [10] -0.51 0.14 -3.72 <0.001* 
Novice -0.01 0.17 -0.06 0.954 
Stop the flow [2] x Novice -0.31 0.17 -1.81 0.071 
Inc. the flow [3] x Novice -0.09 0.17 -0.51 0.611 
Dec. the flow [4] x Novice -0.11 0.17 -0.66 0.508 
Silence alarm [5] x Novice 0.27 0.17 1.60 0.111 
Ack. the message [6] x Novice 0.19 0.17 1.08 0.280 
Heart rate normal? [7] x Novice 0.46 0.17 2.70 0.007* 
Pulse ox normal? [8] x Novice 0.61 0.17 3.56 <0.001* 
Select heart rate [9] x Novice 0.59 0.17 3.43 <0.001* 
Cancel the message [10] x Novice 0.48 0.17 2.81 0.005* 
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Discussion 

The objective of this study was to evaluate the differences in intuitive gesture-

function mappings between novices and experts. The students generated 40 unique 

gestures, and the anesthesia providers generated 27 unique gestures. The context did not 

change between anesthesia providers and students, and all participants were exposed to 

the same functions and displays, yet the gesture-function mapping sets differed between 

the anesthesia providers and the students. Five of the functions mapped to different 

gestures, and five mapped to the same gesture. The main finding of this study is that 

experts and novices differ in terms of intuitiveness of gestures thus emphasizing the need 

for domain expertise in the creation of a gesture vocabulary. Furthermore, the novice user 

group had significantly longer reaction times for four functions compared to the expert 

group.  

There are characteristics of both the similar and different mappings that reveal 

insight into the gesture behavior of novices and anesthesia providers. For the set of 

functions that had different mappings (see functions 1-5 in Table 2), the anesthesia 

providers showed associations between the OR’s physical environment and the gesture-

function mapping. Specifically with the functions related to manipulating anesthesia gas, 

there were rotational gestures, similar to how anesthesia providers currently perform this 

task in the OR (Betza et al., 2016). Similarly, the “push hand” gesture of “Silence the 

alarm” is related to the physical interaction with the computers and monitors in the OR 

(Betza et al., 2016). Thus, the anesthesia providers’ gesture mappings of these functions 

seem to show a strong contextual relationship to the physical environment. On the other 
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hand, the gestures mappings which were the same (see functions 6-10 in Table 2) do not 

show this same level of association to the physical environment. The functions which had 

the same gesture mappings are more or less general human-computer interaction tasks 

such as cancelling, selecting, yes/no answers, and acknowledgement.  

 The differences in intuitive gesture-function mappings have design implications 

that should be considered when developing an intuitive context-specific gesture system. 

The anesthesia provider group exhibited a degree of domain expertise and contextual 

knowledge that was not inherent within the student group. Because of their expertise in 

the anesthesia domain and OR, the anesthesia providers chose gestures that were related 

to the anesthetic tasks as well as the physical and technological components in the 

anesthesia environment, such as rotational knobs and buttons. Conversely, the students 

demonstrated very few rotating gestures when the same contextual interface was 

presented to them. This suggests that in addition to context being important (Ardito et al., 

2014; Jacob & Wachs, 2014b; Jacob et al., 2013; Nielsen et al., 2004; Wigdor & Wixon, 

2011), domain expertise is also meaningful when creating the gestural vocabularies. 

However, the fact that both novices and experts chose similar gestures for half of the 

functions suggests that some functions may not necessarily depend on domain expertise. 

For gesture-function mappings that were the same across both user groups, potentially a 

more general population could be used to map gestures to functions, but a general 

population could not solely be used for all functions because of the gesture-function 

mappings which were different. The domain expertise of the anesthesia provider group 

generated about half as many gestures compared to the student group. Having a narrower 
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set of gestures reveals some homogeneity within the anesthesia providers and may 

indicate convergence in gesture mapping agreements as a user group.  

Additionally, the differences in reaction times between novices and experts for 

some of the functions further support our main finding that there is a need to consider 

domain expertise when building an intuitive gestural system. Longer reaction times may 

indicate that participants have difficulty generating a gesture-function mapping as 

previous studies have used reaction times as indicator for cognitive load (Horsky, 

Kaufman, Oppenheim, & Patel, 2003). This set of functions (7-10) all included language 

specifically related to the medical field (e.g., heart rate, pulse oximeter, attending 

anesthesiologist), and the lack of clinical knowledge in the novice group may have 

provoked longer reaction times among these functions. The longer reaction times may 

have also been due to a difficulty of generating a gesture-function mapping as reaction 

times may be used to indicate cognitive load (Horsky et al., 2003).  

There are some limitations associated with this study. We were able to recruit 30 

novices to do the study and only 16 experts, and this difference in sample size may have 

impacted the results. Specifically, the larger number of unique gestures generated in the 

novice cohort could be due to the larger sample of novices in the study. Furthermore, 

allowing participants to choose their own gestures for functions may have contributed to 

greater use of the same gesture for different functions; however, this was the most 

appropriate way to capture what gestures were intuitive to users by having participants 

perform their “first guess.” As part of our methodology the familiarization training with 

the technology may have influenced gestures chosen during the experiment. However, 
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there was a large number of unique gestures recorded among the students (40) and among 

the anesthesia providers (27) and only 14 gestures were practiced as part of the 

familiarization training. Future research should evaluate how different practice gestures 

impact participant-derived gestures. Since this study showed that domain expertise is 

influential to gesture behavior, the next steps are to investigate how gesture behavior may 

change over time. The following chapters review data from a longitudinal gesture 

elicitation study that additionally investigated workload for Clemson-affiliated 

individuals controlling a PowerPoint presentation and show a Bayesian analysis of all the 

data from this dissertation to show how intuitive gesture choice can accurately be 

predicted.   
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CHAPTER 4: A STUDY INVESTIGATING THE EFFECT OF EXPOSURE AND 

WORKLOAD ON GESTURE BEHAVIOR IN A GENERAL HCI CONTEXT 

 

Introduction 

 The work in this chapter contributes to addressing the second research question of 

this dissertation: Q2 – How does exposure influence how users gesturally respond to a 

computer system?  This chapter additionally includes an investigation of workload on 

gesture behavior. There is little known about how gesture behavior may change over time 

or how gesture behavior may change when exposed to a high or low workload situation.  

This study investigated the gesture behavior of individuals giving a PowerPoint 

presentation on the history of the University. For this preliminary work, an anesthesia 

context was not used as none of the participants had domain expertise on anesthesia; 

however, all participants were affiliated with the University and using Microsoft 

PowerPoint. A mixed design study was completed with 40 participants for controlling a 

PowerPoint presentation about Clemson University. Participants were either assigned to a 

high workload scenario or a low workload scenario, and workload was counterbalanced 

across all participants. All participants chose gestures for all nine functions across three 

days and each day incorporated three blocks of functions. 

Methods 

 This study incorporated Nielsen et al.’s (2004) human-centered approach for 

eliciting gestures, specifically for controlling a PowerPoint presentation similar to the 
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approach used in Chapter 3. This research was approved by Clemson University IRB 

(IRB#: 2019-111). 

Participants  

All participants needed to be able to move their fingers, wrists and arms without 

issue in their hands and needed to be able to read, write, and speak in English. 

Participants were recruited at Clemson University and consisted of undergraduate 

students, graduate students, faculty, or staff. All participants were familiar with 

PowerPoint and the content of the presentation about Clemson University thus can be 

considered domain experts. 

Study Design 

 This study used a mixed design to investigate differences in workload and 

exposure. Participants were assigned to either a high or low workload condition and came 

to the lab three separate times to complete the study. The participants in the low workload 

condition only had to perform gestures for the functions similar to previous work 

(Jurewicz & Neyens, 2017; Jurewicz et al., 2018) and as described in Chapter 3. The 

participants in the high workload condition had to perform an improvised speech on a 

general topic in addition to performing gestures. The speech topics differed across the 

three experimental sessions: they did a speech on themselves in the first session (e.g., 

where they are from, what are their hobbies), a speech on their daily schedule in the 

second session (e.g., what classes they are taking or discussing their work), and a speech 

on their weekend plans in the third session. The functions (N=9) were repeated across 
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three blocks in each of the session, resulting in 81 gestures for each participant. The 

functions are described in Figures 13, 14, 15, 16, and 17.The presentation order of the 

functions was randomized in every block. The function displays were placed in a 

PowerPoint presentation and randomized in every block. 
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a)  

b)  

Figure 13. Functions shown to participants in gesture elicitation experiment. (a) 
Function 1 - Go to the next slide (b) Function 2 – Go to the previous slide 

The Clemson Story
Clemson University was founded in 1889 by Thomas Green Clemson

Clemson was initially an all-male military school

In 1932, President Sikes allowed women to enroll in the university

Go to the next slide

Clemson Traditions
Clemson has many traditions that students partake in today including:

◦ Participating in Solid Orange Fridays
◦ Purchasing their Clemson rings
◦ Going to the First Friday Parade, homecoming game, and Tigerama

Go to the previous slide
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a)  

b)  

Figure 14. Functions shown to participants in gesture elicitation experiment. (a) 
Function 1 - Zoom in on the image (b) Function 4 – Zoom out on the image 

Clemson Rankings
Clemson is classified as a Carnegie R1 research university

Clemson ranks No. 24 among top national public universities according 
to the U.S. News and World Report

According to The Princeton Review in 2019, Clemson is ranked No. 1 for 
who students who love their college

Zoom in on the image

Clemson Rankings
Clemson is classified as a Carnegie R1 research university

Clemson ranks No. 24 among top national public universities according 
to the U.S. News and World Report

According to The Princeton Review in 2019, Clemson is ranked No. 1 for 
who students who love their college

Zoom out on the image
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a)  

b)  

Figure 15. Functions shown to participants in gesture elicitation experiment. (a) 
Function 5 - Increase the volume (b) Function 6 – Decrease the volume 

Why Clemson?

Increase the volume

Why Clemson?

Decrease the volume



 61 

 

a)  

b)  

Figure 16. Functions shown to participants in gesture elicitation experiment. (a) 
Function 7 - Acknowledge the message (b) Function 8 – Select "College of Business" 
from the menu 

Fike Recreation Center
Clemson students have access to fitness and exercise equipment at Fike
Recreation Center

Acknowledge the message

Clemson Colleges
Choose a major from one of Clemson’s seven colleges!

Select “College of Business” from the menu



 62 

 
 
 

  

Clemson Research
Clemson offers many opportunities for students to get involved with 
research on campus

Undo the action

Figure 17. Functions shown to participants in gesture elicitation experiment. (a) 
Function 9 - Undo the action 
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Equipment 

 The experiment was conducted at a standing desk that resembled a podium (see 

Figure 18). There were two Dell 22-inch LED monitors, an Intel RealSense F200 Camera 

gestural camera, and a PC running Windows 10. Participants primarily interacted with the 

right monitor as this monitor presented the function displays and had the 3D camera 

attached on the top. A digital clock with the computer system time and depth-feedback of 

the 3D camera view were displayed on the left monitor. 

 

Figure 18. Experimental Setup for exposure and workload gestural study 
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Procedure 

 Upon arrival at the first session, the informed consent process was completed and 

the participant filled out a demographics survey and the Complacency Potential Rating 

Scales (Singh et al., 1993). Then, the researcher and the participant discussed how the 

camera worked and gestural interactions. The participant then completed the 

experimental task. The experiment incorporated a “Wizard of Oz” technique as done in 

previous studies (Jurewicz & Neyens, 2017; Jurewicz et al., 2018) and as described in 

Chapter 3. The function display (the effect) was always presented first and then the 

participant would choose a gesture (the cause) that they believed initiated the function. 

Participants performed gestures of their choosing and whichever gesture was their “first 

guess” to complete the function.  

High workload participants were additionally instructed on performing an 

improvised speech on that session’s topic (i.e., session 1 – speech on themselves, session 

2 – speech on daily schedule, session 3 – speech on weekend plans). If these participants 

stopped their speech at any moment, the researcher would prompt them with questions in 

relation to the session’s topic.  

All participants completed an informal interview on their gesture choice at the end 

of each session and completed the User Acceptance Survey (Davis, 1989). Participants 

were asked questions in an informal interview related to the process behind generating 

gestures for particular functions and what previous experiences may have influenced their 

gesture choice. The researcher took notes during the interview and used comments as 

supportive qualitative findings to the intuitive gesture mappings. 
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Intuitive Gestures Measure 

The intuitive gesture-function mappings were analyzed separately for the high 

workload and low workload conditions to identifying differences in mappings due to 

workload. The intuitive gesture-function mappings were additionally analyzed separately 

for each session to identify differences due to exposure. Videos of the participants’ hands 

and fingers were recorded and analyzed to determine which gestures were performed for 

each function. The gestures were classified according to a gesture dictionary used in 

previous studies (Jurewicz & Neyens, 2017; Jurewicz et al., 2018) as well as Chapter 3. 

Two researchers independently classified gestures, and then consensus building was 

practiced to come to a consensus on gestures for all participants. According to Nielsen et 

al.’s (2004) approach, the intuitive gesture for a function is the gesture that is most 

frequently chosen across a group. The gesture responses for each function were compiled 

in a table, and the gesture response that was performed most frequently across the 

experimental group was chosen as the intuitive gesture-function mapping. This was done 

for each of the sessions and each workload condition.  

Reaction Time Measure 

The reaction time from presentation of the function display to completion of a 

gesture was recorded for every gesture-function pair by a Visual Basic program 

embedded in PowerPoint. The reaction time data was combined into one analysis for all 

sessions and both workload conditions. A mixed linear regression model with participant 

ID and block number as random effects was used to identify differences due to exposure 
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or workload. A mixed linear regression model was used in order to account for both fixed 

and random effects. The fixed effects in the model were function, workload level, 

session, and responses from the demographic survey (e.g., , gender, race, handedness, 

education (highest degree obtained), video game use, and experience with virtual reality 

gaming.). The responses of variable “Video Game Use” were collapsed into two 

categories: “Yes” to playing video games and “No” to not playing video games.  The 

“Yes” category included all positive responses to the video game use question from the 

demographic survey, and the “No” category included the negative response of “Do not 

play” video games.  

The same formula for the mixed linear model from Chapter 3 was used in this 

analysis. Similarly to Chapter 3, ANOVAs were performed to determine if the random 

effects model was necessary for both the “block” random effect and “participant ID” 

random effect.  Diagnostic tests were performed to ensure the assumptions for the linear 

model are met: linearity, homescedacity, normality, independence, and no 

multicollinearity issue  

Tukey contrasts were calculated to make the pairwise comparisons for variables 

which had more than two level (i.e., differences between functions and sessions).  R 

version 3.5.2 was used for all data analysis; the lmer function of the lme4 package (Bates 

et al., 2014) was used to build the mixed linear regression model, the ggplot2 package 

(Wickham, 2009) was used to plot the data, the skewness function of the e1071 package 

(Meyer et al., 2015), the lmer function of the lme4 package (Bates et al., 2014), the glht 
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function of the multcomp package (Hothorn et al., 2008), and the cooks.distance function 

of the influence.ME package (Nieuwenhuis et al., 2012).   

Results 

 The characteristics of the study participants are described in Table 4. The mean 

reaction time for all sessions and both levels of workload was 3.32 seconds (SD=1.97 

seconds). Each participant had the opportunity to make 81 gestures, thus there were 3,240 

possible gestures in this study. There were some participants that did not perform a 

gesture for a function, thus 3,222 gestures were analyzed. Overall, there were 30 unique 

gestures performed across all participants. 

 
 

Variable Name N (%) 
Age M=23.2, SD=5.06 
Gender   
  Male 10 (25) 
  Female 30 (75) 
Handedness   
  Right 37 (92.5) 
  Left 2 (5.0) 
  Ambidextrous 1 (2.5) 
Education, highest degree obtained  
  High School/GED 22 (55.0) 
  Bachelors 11 (27.5) 
  Masters 7 (17.5) 
Video Game Use  
  Yes 18 (45) 
  No 22 (55) 
Virtual Reality Gaming Experience  
  Yes 22 (55) 
  No 18 (45) 

 
  

Table 4. Characteristics of participants in exposure and workload study 
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Intuitive Gesture Mapped 

 Bar graphs for gestures chosen across all participants are shown in Appendix C. 

Appendix D shows side by side comparisons of low vs. high workload mappings 

respectively, and Appendix E, F, and G show the intuitive mappings for session 1, 2 and 

3 mappings, respectively. Pictorial representations of the gestures are provided in Figure 

19. 
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Thumbs up Swipe hand right 

 
Swipe hand left 

 
Swipe hand up 

 
Swipe hand down 

 
Push fingers 

Reverse full pinch Full pinch Circle  
 

  
Figure 19. Pictorial representation of gestures from workload/exposure experiment 
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hand to a pinch as shown 
below 

Hand goes from a pinch to 
an open hand as shown 
below 
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Table 5 shows that there are no differences to gesture-function mappings due to 

workload condition. “Swipe hand left” (n=82 for low, n=80 for high) was mapped to 

Function 1 (“Go to the next slide”), “Swipe hand left” (n=80 for low, n=69 for high) was 

mapped to Function 2 (“Go to the previous slide”), “Reverse full pinch” (n=173 for low, 

n=147 for high) was mapped to Function 3 (“Zoom in on the image”), “Full pinch” 

(n=100 for low, n=121 for high) was mapped to Function 4 (“Zoom out on the image”), 

“Swipe hand up” (n=64 for low, n=79 for high) was mapped to Function 5 (“Increase the 

volume”), “Swipe hand down” (n=81 for low, n=62 for high) was mapped to Function 6 

(“Decrease the volume”), “Push fingers” (n=148 for low, n=170 for high) was mapped to 

Function 8 (“Select ‘College of Business’ from the menu”), and “Circle” (n=78 for low, 

n=77 for high) was mapped to Function 9 (“Undo the action”).  

It was unclear for Function 7 (“Acknowledge the message”) what the intuitive 

mapping was because the top two gestures were performed almost equally as frequently. 

“Thumbs up” (n=59) and “Push fingers” (n=57) were performed most frequently for the 

low workload condition, and “Push fingers” (n=66) and “Thumbs up” (n=62) were 

performed most frequently for the high workload condition. Thus, Function 7 is shown to 

have two intuitive mappings for both the high and low workload conditions in Table 5.  
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Table 5. Intuitive gesture function mappings for workload level  

Function [#] 

Intuitive Gesture Mapped 

Low Workload High Workload 

Go to the next slide [1] Swipe hand left Swipe hand left 

Go to the previous slide [2] Swipe hand right Swipe hand right 

Zoom in on the image [3] Reverse full pinch Reverse full pinch 

Zoom out on the image [4] Full pinch Full pinch 

Increase the volume [5] Swipe hand up Swipe hand up 

Decrease the Volume [6] Swipe hand down Swipe hand down 

Acknowledge the message [7] Thumbs up/Push Fingers Push fingers/Thumbs up 

Select “College of Bus.” [8] Push fingers Push fingers 

Undo the action [9] Circle Circle 
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Table 6 shows that there are no differences to gesture-function mappings due to 

session. “Swipe hand left” (n=56, n=55, and n=51 for session 1, 2, and 3) was mapped to 

Function 1 (“Go to the next slide”), “Swipe hand left” (n=53, n=46, and n=50 for session 

1, 2, and 3) was mapped to Function 2 (“Go to the previous slide”), “Reverse full pinch” 

(n=103, n=107, and n=110 for session 1, 2, and 3) was mapped to Function 3 (“Zoom in 

on the image”), “Full pinch” (n=67, n=73, and n=81 for session 1, 2, and 3) was mapped 

to Function 4 (“Zoom out on the image”), “Swipe hand up” (n=47, n=48, and n=48 for 

session 1, 2, and 3) was mapped to Function 5 (“Increase the volume”), “Swipe hand 

down” (n=48, n=48, and n=47 for session 1, 2, and 3) was mapped to Function 6 

(“Decrease the volume”), “Push fingers” (n=104, n=106, and n=108 for session 1, 2, and 

3) was mapped to Function 8 (“Select ‘College of Business’ from the menu”), and 

“Circle” (n=44, n=58, and n=53 for session 1, 2, and 3) was mapped to Function 9 

(“Undo the action”).  

It was unclear for Function 7 (“Acknowledge the message”) what the intuitive 

mapping was because the top two gestures were performed almost equally as frequently. 

“Push fingers” (n=41) and “Thumbs up” (n=41) were performed most frequently during 

the first session, “Push fingers” (n=40) and “Thumbs up” (n=40) were performed most 

frequently during the second session, and “Push fingers” (n=42) and “Thumbs up” (n=40) 

were performed most frequently during the third session. Thus, Function 7 is shown to 

have two intuitive mappings for both the high and low workload conditions in Table 6.  
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Table 6. Intuitive gesture function mappings for each session 

Function [#] 

Intuitive Gesture Mapped 

Session 1 Session 2 Session 3 

Go to the next slide [1] Swipe hand left Swipe hand left Swipe hand left 

Go to the previous slide [2] Swipe hand right Swipe hand right Swipe hand right 

Zoom in on the image [3] Reverse full pinch Reverse full pinch Reverse full pinch 

Zoom out on the image [4] Full pinch Full pinch Full pinch 

Increase the volume [5] Swipe hand up Swipe hand up Swipe hand up 

Decrease the Volume [6] Swipe hand down Swipe hand down Swipe hand down 

Acknowledge the message [7] 
Push 

fingers/Thumbs up 
Push 

fingers/Thumbs up 
Push 

fingers/Thumbs up 

Select “College of Bus.” [8] Push fingers Push fingers Push fingers 

Undo the action [9] Circle Circle Circle 
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Reaction Times 

 The mean reaction time for the high and low workload conditions were 3.36 

seconds (SD=1.96 seconds) and 3.29 seconds (SD=1.97 seconds), respectively. The mean 

reaction times for session 1, session 2, and session 3 were 4.11 seconds (SD=2.60 

seconds), 3.12 seconds (SD=1.57 seconds), and 2.76 seconds (SD=1.20 seconds). Figures 

20 and 21 show side by side histograms of reaction time data by workload level and 

session, respectively.  
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Figure 20. Histogram of reaction times for high and low workload conditions 
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 Figure 21. Histograms of reaction times for sessions 1-3 
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There were several assumptions that needed to be met before moving forward 

with the mixed model regression analysis, including normality, testing random effects vs. 

fixed effects model, linearity, independence, homoscedasticity, and no multicollinearity 

issues.  The skew of response times exhibited a positive skew with a value of 4.15, so the 

data was transformed by taking the natural logarithm of response times. After the 

transformation, the skew was 0.86. The ANOVA of the model comparison showed that 

the linear regression model with “Participant ID” and “Block” as the random effects 

performed significantly better than the regression model with only the fixed intercept 

(P<0.0001), the regression model with only “”Participant ID” as a random effect 

(P<0.0001), and the regression model with only “Block” as a random effect (P<0.0001); 

therefore, the mixed model with two random effects, “Participant ID” and “Block” was 

used for the analysis.   

None of the demographic variables were found to be significantly associated with 

reaction time, thus the final model only included function, workload, and session as 

predictor variables. The assumption of independence of the data was met in the final 

model because the within-subjects variability is removed as each participant is treated as 

a random effect and blocks are treated as a random effect. The VIF values of this model 

were calculated and all VIF values were less than 5 indicating that there were no severe 

multicollinearity issues. There were no influential points in the data set as calculated by 

Cook’s distance. The assumptions of linearity and homoscedasticity were met as 

confirmed by the residuals plot. The normal Q-Q plot confirmed normality of the 

response time data.  
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 Table 7 shows that there is not a significant difference in reaction time with 

respect to workload. For function and session, Tukey’s contrasts were calculated to 

perform pairwise comparisons among all levels of function and session. Table 8 shows 

the results for function contrasts and Table 9 shows the results for session contrasts. None 

of the functions were significantly different. However, all of the session days were 

significantly different in all pairwise comparisons (p<0.0001). The last session (session 

3) was significantly faster than session 2 and session 1. Session 2 was significantly faster 

than session 1.   

 

 

 

  

Table 7. Regression output of mixed effects linear model with exposure and workload 

 β SE t P >| t | 
(Intercept) 1.272 0.077 16.438 <0.001* 
Go to the previous slide [2] 0.016 0.024 0.661 0.509 
Zoom in on the image [3] 0.041 0.024 1.676 0.094 
Zoom out on the image [4] 0.014 0.024 0.570 0.569 
Increase the volume [5] 0.074 0.024 3.035 0.002* 
Decrease the Volume [6] 0.041 0.024 1.676 0.094 
Acknowledge the message [7] 0.030 0.024 1.214 0.225 
Select “College of Bus.” [8] 0.008 0.024 0.334 0.738 
Undo the action [9] 0.022 0.024 0.912 0.362 
Session 2 -0.237 0.014 -16.815 <0.001* 
Session 3 -0.346 0.014 -24.579 <0.001* 
Low Workload -0.016 0.011 -1.378 0.168 
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Function 
Comparison β SE z P >| z | 

2-1 0.0161 0.0243 0.6610 0.9992 

3-1 0.0408 0.0243 1.6760 0.7613 

4-1 0.0139 0.0243 0.5700 0.9997 

5-1 0.0738 0.0243 3.0350 0.0607 

6-1 0.0408 0.0243 1.6760 0.7613 

7-1 0.0295 0.0243 1.2140 0.9536 

8-1 0.0081 0.0243 0.3340 1.0000 

9-1 0.0222 0.0243 0.9120 0.9924 

3-2 0.0247 0.0243 1.0160 0.9845 

4-2 -0.0022 0.0243 -0.0910 1.0000 

5-2 0.0578 0.0243 2.3740 0.2982 

6-2 0.0247 0.0243 1.0150 0.9845 

7-2 0.0135 0.0243 0.5540 0.9998 

8-2 -0.0079 0.0243 -0.3260 1.0000 

9-2 0.0061 0.0243 0.2510 1.0000 

4-3 -0.0270 0.0243 -1.1080 0.9733 

5-3 0.0330 0.0244 1.3560 0.9140 

6-3 0.0000 0.0243 -0.0010 1.0000 

Table 8. Tukey contrasts for all function levels 
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7-3 -0.0113 0.0244 -0.4630 0.9999 

8-3 -0.0327 0.0244 -1.3410 0.9188 

9-3 -0.0186 0.0243 -0.7650 0.9977 

5-4 0.0600 0.0243 2.4680 0.2479 

6-4 0.0269 0.0243 1.1070 0.9734 

7-4 0.0157 0.0243 0.6460 0.9993 

8-4 -0.0057 0.0243 -0.2350 1.0000 

9-4 0.0083 0.0243 0.3430 1.0000 

6-5 -0.0331 0.0243 -1.3590 0.9132 

7-5 -0.0443 0.0243 -1.8210 0.6687 

8-5 -0.0657 0.0243 -2.7010 0.1470 

9-5 -0.0517 0.0243 -2.1230 0.4573 

7-6 -0.0112 0.0243 -0.4620 0.9999 

8-6 -0.0326 0.0243 -1.3410 0.9191 

9-6 -0.0186 0.0243 -0.7640 0.9978 

8-7 -0.0214 0.0243 -0.8800 0.9940 

9-7 -0.0074 0.0243 -0.3020 1.0000 

9-8 0.0141 0.0243 0.5780 0.9997 
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Session 
Comparison β SE z P >| z | 

2-1 -0.236 0.0141 -16.82 <0.001* 

3-1 -0.345 0.0141 -24.58 <0.001* 

3-2 -0.109 0.0140 -7.8 <0.001* 

 

Discussion 

 The objective of this study was to examine the effect of workload and exposure 

on intuitive gesture-function mappings.  There were 30 unique gestures generated in this 

study for Clemson-affiliated individuals controlling a PowerPoint presentation about 

Clemson with 3D gestures. Both high and low workload participants generated the same 

gesture-function mappings, and there was no significant difference in reaction times to 

generate an intuitive mapping between workload levels. All sessions generated generally 

the same gesture-function mappings; however, there were significant differences in 

reaction times between all pairwise comparisons of sessions with session 3 being the 

fastest and session 1 being the slowest to generate intuitive mappings.  

Most of the functions that contrasted generated opposing gestures. For example, 

“Go to the next slide” and “Go to the previous slide” were mapped to “Swipe hand left” 

and “Swipe hand right,” respectively. The top four gestures for these two functions were 

“Swipe hand right,” “Swipe hand left,” “Swipe fingers right,” and “Swipe fingers left” 

showing that regardless of direction and hand posture (e.g., just fingers or whole hand), it 

Table 9. Tukey contrasts for all session levels 
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was intuitive to participants to perform a lateral dynamic movement for going to the next 

and previous slides. Similarly, “Zoom in on the image” and “Zoom out on the image” 

were mapped to “Reverse full pinch” and “Full pinch;” and these gestures were the top 

two gestures performed for both functions indicating that regardless of direction, it was 

intuitive to the participant to perform a pinching motion. For “increase the volume” and 

“decrease the volume,” the top two gestures were “Swipe hand up”, ”Swipe fingers up” 

for increase and “Swipe hand down”, “Swipe fingers down” for decrease. This finding 

indicates that regardless of hand posture, it is intuitive to the participant to make a 

swiping motion either up or down for increase and decrease. It only happened once out of 

3,222 times that a participant did an upward motion for decrease, and there were no 

downward motions generated for increase strongly suggesting the connection of increase 

to “up” and decrease to “down.” Many participants indicated in their qualitative 

responses that they found it easier to generate gestures for opposing functions. 

The three remaining functions did not have contrasting actions in the function set, 

thus did not have opposing gesture mappings. “Acknowledge the message” did not 

necessarily have an intuitive mapping; however, a majority of participants either 

performed the dynamic gesture of “push fingers” or the static gesture of “thumbs up.” 

The two mappings may suggest that there may be multiple intuitive mappings for 

acknowledgement. “Select ‘College of Business’ from the menu” was intuitively mapped 

to “push fingers.” The second top gesture for this function, “push hand” only happened 

11 times out of 3,222 opportunities, thus showing that the pushing motion was intuitive to 

the user. Function 9, “Undo the action,” was mapped to “Circle,” and participants 
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verbally indicated that they were trying to imitate the “undo” icon on a computer by 

creating an in-air circle with their hand and fingers. 

All participants were considered domain experts having used PowerPoint 

regularly and being familiar with Clemson University, so the result of exposure and 

workload not influencing intuitive gesture-function mappings shows that domain experts 

generate intuitive mappings at the first exposure to gestural control of a presentation even 

when in a high workload scenario.  Workload also did not influence reaction times to 

generate an intuitive mapping potentially indicating that it was not more difficult in the 

higher workload scenario. However, there was an effect of exposure on reaction time. 

This potentially shows the learning effect of gestural interactions as the participants 

performed gestures faster and faster each session.  

Although an effect of workload was not found in this study, it cannot be 

definitively concluded that there is not an effect of workload for gestural interactions. 

There were 20 participants in each workload condition, so sample size could be increased 

to generate more power in the study. However, 1,610 gestures were analyzed per 

workload condition, so the lack of a workload effect may actually suggest that the high 

workload condition was not difficult enough or there really is not an effect of workload in 

this context. Future work could investigate more difficult high workload conditions by 

having participants perform more difficult tasks while generating gestures.  
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CHAPTER 5: BAYESIAN STATISTICAL ANALYSIS OF EXPERTISE AND 

EXPOSURE IN 3D GESTURAL INPUT SYSTEMS 

Introduction 

 The work in this chapter addresses the third research question of this dissertation: 

Q3 – How accurately can gestures be statistically predicted? A Bayesian analysis was 

performed for the expertise data from Chapter 3 as well as the exposure data from 

Chapter 4. The analyses are performed separately due to the differences in context. In 

Bayesian methods, Bayes theorem is utilized to obtain a posterior distribution by 

identifying the prior distribution, which represents prior beliefs, and the likelihood 

function that is based on the data structure. The posterior distribution is an update of the 

prior beliefs after seeing new data. If the complete posterior distribution is obtainable, 

then it provides all the information needed to make posterior inferences. However, it is 

often the case that the posterior distribution is unrecognizable and does not have a form 

that is easily sampled from. This chapter shows how a Bayesian analysis is performed on 

intuitive gestural input data (i.e., gesture choice) by first explaining the structure of the 

data and its impacts on the Bayesian analysis, showing results from two multinomial 

Bayesian logistic regression models, and discusses insights into the advantages of using 

Bayesian statistics for understanding human behavior. For simplicity and ease of 

understanding, the expertise Bayesian model will be known as Model 1 and exposure 

Bayesian model will be known as Model 2. 
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Data Structure and Approach 

 The exposure and expertise data are used in the Bayesian model to predict 

intuitive gesture choice based on the context and either expertise or exposure. Thus, the 

observed data, or the output of each model, is gesture choice as described by y1,…,yn. 

Gesture choice is categorical with many categories, so the observed data is distributed as 

multinomial: 

𝑦! , … , 𝑦#~	𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑛, 𝑝) 

 

Where 𝑝 is a vector representing the probabilities of each gesture category and 𝑛 is the 

sample size. Suppose k represents the total number of gesture categories, so the p vector 

is represented as 𝑝 = (𝑝$, … , 𝑝%). The joint probability mass function (pmf) of the 

observed multinomial data, 𝑦! , … , 𝑦#, with probabilities, 𝑝 = (𝑝$, … , 𝑝%), and a sample 

size of 𝑛 is given by: 

 

𝑃(𝑦|𝑝) =
𝑛!

∏ 𝑦!%
!&$

J𝑝!'!
%

!&$

=
𝑛!

𝑦$! 𝑦"! … 𝑦%!
𝑝$'"𝑝"'# … , 𝑝%'$ 

 

Where ∑ 𝑦!%
!&$ = 𝑛 and ∑ 𝑝!%

!&$ = 1 

 

The purpose of Bayesian methods is to obtain the posterior distribution. In both Model 1 

and Model 2, form of the data (i.e., the likelihood function) for gesture choice is known, 

so the only thing missing is the prior distribution. It is of interest to identify a Bayesian 
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posterior which is friendly to work with and sample from. Looking at the general 

Bayesian posterior, 𝑃(𝜃|𝑦), one way to obtain a friendly posterior distribution is by using 

conjugate priors. The concept of conjugacy ensures that given the form of the data, the 

prior and posterior distributions come from the same distribution family. If conjugate 

priors are used, then all of the information about the posterior is known and integrals can 

be directly computed to obtain posterior estimates.  

To identify the conjugate prior for the multinomial data in this dissertation, the 

form of the data (i.e., the likelihood) is used. The likelihood function refers to the pmf, 

therefore: 

𝐿(𝑦|𝑝) = 𝑝(𝑦|𝑝) =
𝑛!

∏ 𝑦!%
!&$

J𝑝!'!
%

!&$

 

 

Since 𝑛	is fixed, we really only care about 𝑝 therefore we can simplify to:  

𝐿(𝑦|𝑝) ∝J𝑝!'!
%

!&$

 

 

We recognize this to follow the form of a kernel of the Dirichlet distribution: 

 

𝑃(𝑝|𝛼) ∝J𝑝!(!)$
%

!&$
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Aside: the probability density function of the Dirichlet distribution is: 

𝑃(𝑦|𝑝) =
Γ(𝛼$ +⋯+ 𝛼%)
∏ Γ(𝛼!)%
!&$

J𝑝!(!)$
%

!&$

 

 

Therefore, the conjugate prior of a multinomial distribution is a Dirichlet distribution. 

That is,  

𝑝	~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎$, … , 𝑎%) 

 

Since we are using a conjugate prior, the posterior distribution will also be Dirichlet: 

 

𝑃(𝑝|𝑦) ∝ 𝑃(𝑦|𝑝)𝑃(𝑝) = S #!
∏ '!$
!%"

∏ 𝑝!'!%
!&$ T S,(."/⋯/.$)

∏ ,(.!)$
!%"

∏ 𝑝!(!)$%
!&$ T ∝ ∏ 𝑝!(!/'!)$%

!&$  

 

Therefore, the conjugate posterior of a multinomial distribution is Dirichlet: 

 

𝑝|𝑦	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎$ + 𝑦$, … , 𝑎% + 𝑦%) 

 

A friendly posterior distribution can be obtained for multinomial data, but given 

the complexity behind direct integration of multinomial data, it is generally not preferred 

to perform integration. Instead, simulated draws can be taken from the posterior 

distribution, most popularly done by using Monte Carlo Markov Chains (MCMCs). In 

MCMC, a sampling strategy is setup that generates a markov chain in which the 

stationary distribution equals the posterior distribution of interest. However, deriving a 
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posterior distribution that is easily sampled from is not always straightforward especially 

given multivariate problems with multiple covariates. One way that posterior estimates 

can still be obtained in complex problems is through the Metropolis-Hastings Algorithm 

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). Metropolis-Hastings is a 

general way of constructing a markov chain in which individual draws are proposed and 

the draws converge to the target distribution by using an acceptance/rejection rule. The 

Metropolis-Hastings algorithm performs the following: 

Let:    𝑝(𝜃|𝑦) be the target distribution 

𝜃(2) be the current draw from 𝑝(𝜃|𝑦) 

𝑔V𝜃W𝜃(2)X be the proposal distribution 

Metropolis-Hastings Steps: 

1. Propose 𝜃∗	~𝑔V𝜃W𝜃(2)X  

2. Calculate Metropolis-Hastings ratio 

𝛼 = 𝑚𝑖𝑛 Y1,
𝑝(𝜃∗	|𝑦)𝑔V𝜃(2)W𝜃∗	X
𝑝V𝜃(2)W𝑦X𝑔V𝜃∗	W𝜃(2)X

Z 

3. Accept 𝜃(2/$) = 𝜃∗	 with probability 𝛼. Otherwise, set 𝜃(2/$) = 𝜃(2) 

The ratio in Step 2 is the Metropolis-Hastings ratio and essentially calculates whether a 

proposed draw, 𝜃∗	, is more likely (i.e., has a higher density) than the current draw, 𝜃(2). 

The proposed draw is accepted as the new draw with a probability of 𝛼, and if the 

proposed draw is not accepted, then the new draw remains the current draw. This process 

is repeated until enough iterations of the algorithm have completed such that the chain 

has converged.  
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Metropolis-Hastings is highly versatile and is used widely in Bayesian statistics so that 

accurate posterior estimates can still be obtained even when a posterior distribution is 

unrecognizable. 

Bayesian Multinomial Logistic Regression 

 Overall, the goal of this dissertation is to accurately predict intuitive gesture 

choice, thus, it is a classification problem. The data is multinomial, and simple Bayesian 

analyses could be performed on the expertise and exposure data sets with the 

Multinomial-Dirichlet conjugate priors. If conjugate priors are used to perform Bayesian 

classification for gesture choice, no other information could be included in the analysis 

such as the contextual task (i.e., the function), expertise, or exposure. The Bayesian 

classification results with conjugate priors would be relatively uninformative as it would 

only provide overall information on the likelihood of each gesture choice. Instead, it is of 

interest to understand how individual or contextual factors influence the probability of 

particular gesture choices.  

 This dissertation seeks to model the probability that an observation, 𝑦!, takes a 

certain gesture category where: 

  K is the set of all possible gesture choices 

 𝑃(𝑦! = 𝑘), ∀𝑘 ∈ 𝐾 

𝒙 represents a covariate vector 

The covariates in this case are contextual task, expertise level, and exposure time. Thus, 

this data can be modelled as a general regression problem where 𝜷 represents the 

unknown regression coefficients: 
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𝒚𝒊 = 𝒙𝜷 + 𝜺 

Given that the multinomial data is to be modelled as a regression problem, the general 

regression model translates to the Bayesian format as a Bayesian Multinomial Logistic 

Regression: 

𝑃(𝑦! = 𝑘|𝜷) =
exp	(𝒙%!𝜷)

1 + ∑ exp	(𝒙%!𝜷)6
7&$

 

Where 𝑝(𝜷|𝒚) is the posterior distribution. Thus, the aim is to obtain posterior estimates 

from 𝑝(𝜷|𝒚) given some covariate information. The regression coefficients, 𝜷 , depend 

on the contextual task and the user group or exposure time, so there is not friendly way to 

sample from the posterior directly. Therefore, other sampling variations must be used to 

obtain posterior estimates, such as variations of the Metropolis-Hasting algorithm.  

Model 1: Expertise Data 

Model Fitting and Diagnostics 

 The expertise data from Chapter 3 is fit to a Bayesian Multinomial Logistic 

Regression model using the Metropolis-Hastings algorithm. Gesture choice is modeled 

based on the contextual task and expertise (i.e., function and user type). A function was 

developed in R 3.6.1 adapted from the MCMCpack package (Martin, Quinn, & Park, 

2011). A Random Walk Metropolis-Hastings algorithm was used, and the algorithm is 

exactly the same as the original but the proposal distribution is assumed to be symmetric 

(Robert, Elvira, Tawn, & Wu, 2018). The alternative is to perform an independent chain 

Metropolis-Hastings, but this approach is rarely used as it requires some amount of prior 

knowledge to build a proposal distribution that is relevant to the problem (Robert et al., 
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2018). The algorithm went through 1,000,000 iterations with a burn-in of 10,000 and a 

thinning parameter of 10. The thinning parameter reduces autocorrelations in the data, 

and in this case, every 10th iteration of the chain is returned. The prior distribution for the 

regression coefficients, 𝜷, was set to be distributed as a multivariate normal distribution 

(i.e., ~𝑀𝑉𝑁(𝒃8, 𝑩8)$)). The hyperparameters of the MVN distribution were centered at 

zero with a very large variance so that the prior distribution is a non-informative, 

relatively flat prior that still has the integrity and characteristics of a MVN distribution. A 

tuning parameter was manipulated in the Metropolis-Hastings algorithm such that the 

acceptance rate was between 20% and 50% (Gelman et al., 2013). 

 Model 1 had an acceptance ratio of 26.502% with the tuning parameter set to 

0.17. In all regression analysis, diagnostics need to performed to ensure that the model is 

a good fit to the data. In Bayesian regression analysis, trace plots and autocorrelation 

plots are two ways to identify a good model fit. A sample of the trace plots for the β are 

shown in Figure 22 and indicate that the chains converged and the chain has explored the 

full parameter space.  
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A sample of the autocorrelations of β is shown in Figure 23. If there are large 

autocorrelations, then it would indicate that the chain is not mixing well and the chain has 

not explored the full space of the posterior distribution. Figure 23 shows that 

autocorrelation decreases rapidly as a function of lag until it is nearly zero.  

Figure 22. Sample of trace plots for regression coefficients for Model 1 
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Posterior Predictive Probabilities 

 The Bayesian Multinomial Model was fit for the expertise data and the 

diagnostics showed that the Metropolis-Hastings algorithm converged to the posterior 

distribution. The Bayesian model can be used to explain what someone has done, and 

with any regression problem, it can predict what the next person will do. Thus, 

predictions of future system use can be performed and a probability for the predictions 

are directly calculated. The results of the predictive probabilities for Model 1 is 

summarized in Table 10. The predicted gesture choice (i.e., the gesture with the highest 

Figure 23. Sample of autocorrelations of regression coefficients for Model 1 
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probability) is provided for all combinations of functions and user type where the user 

type is either unspecified, anesthesia provider, or student. 

 

 

Function [#] Predicted Gesture Choice  

 User Type 
Unspecified  Novices  Experts  

Start the flow [1] Swipe hand up 
(0.148) 

Thumbs up 
(0.349) 

Rotate right 
(0.348) 

Stop the flow [2] Swipe hand down 
(0.137) 

Five up  
(0.164) 

Rotate left  
(0.239) 

Inc. the flow [3] Swipe hand up 
(0.182) 

Swipe hand up 
(0.182) 

Rotate right  
(0.298) 

Dec. the flow [4] Swipe hand down 
(0.217) 

Swipe hand down 
(0.208) 

Rotate left  
(0.389) 

Silence alarm [5] Push hand  
(0.240) 

Swipe hand left 
(0.223) 

Push hand  
(0.255) 

Ack. the message [6] Thumbs up  
(0.251) 

Thumbs up  
(0.226) 

Thumbs up  
(0.302) 

Heart rate normal? [7] Thumbs up  
(0.248) 

Thumbs up  
(0.219) 

Thumbs up  
(0.326) 

Pulse ox normal? [8] Thumbs up  
(0.237) 

Thumbs up  
(0.202) 

Thumbs up  
(0.327) 

Select heart rate [9] Thumbs up  
(0.216) 

Push fingers 
(0.176) 

Push fingers 
(0.304) 

Cancel the message [10] Thumbs up  
(0.184) 

Swipe hand left 
(0.137) 

Swipe hand left 
(0.236) 

Note: All values in the table represent the probability that yn+1 takes on a gesture, k, given 
the type of user 
 
 The predicted gesture choice is the same for all three user types for functions 6-10 

and the predicted gesture choice is different for functions 1-5, similarly to the results 

from Chapter 3 which showed the same intuitive gesture choice differences via the 

Table 10. Posterior predictive probabilities of intuitive gesture choice based on 
expertise and the contextual task for Model 1 
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frequency analysis. The Bayesian model not only provides the most probable gesture 

choice as in Table 10 but also gives the posterior predictive probabilities for all possible 

gesture choices. Figures 24-26 show an example of the plots of posterior predictive 

probabilities for “Function 1 – Start the Flow of Anesthesia Gas” for unspecified user 

type, anesthesia providers, and students, respectively.  

 

Figure 24. Predictive probabilities for all gesture choices for function 1 and user type 
unspecified. 
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Figure 25. Predictive probabilities for all gesture choices for function 1 and user type 
specified as anesthesia provider 
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Figures 24 shows that when no information is known about the user, the best 

prediction that can be made for starting the flow of anesthesia gas is a “swipe hand up” 

gesture with a probability of 0.148. The next most probable predicted gesture is “rotate 

right” with a probability of 0.122. In Figure 25, it is shown that when it is known that the 

user is an anesthesia provider, the best prediction for starting the flow of anesthesia gas is 

a “rotate right” gesture with a probability of 0.348, an increase from when the user type is 

not specified. Additionally, the next most probable gesture is “rotate left” with less than a 

Figure 26. Predictive probabilities for all gesture choices for function 1 and user type 
specified as student 
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0.15 probability. In Figure 26, it is shown that when the user is a student, the best 

prediction for starting the flow of anesthesia gas is a “thumbs up” gesture with a 

probability of 0.349, also an increase from when the user type is unspecified. The second 

most probable gesture for students is “swipe hand up” with a probability of about 0.15. 

The plots show similar patterns for the other functions which had differing predictive 

probabilities. 

 Some functions had the same predicted gestures despite specification of user type. 

Figures 27-29 show an example of the plots of posterior predictive probabilities for 

“Function 7 – Is heart rate normal?” for unspecified user type, anesthesia providers, and 

students, respectively. 
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Figure 27. Predictive probabilities for all gesture choices for function 7 and user type 
unspecified. 
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Figure 28. Predictive probabilities for all gesture choices for function 7 and user type 
specified as anesthesia provider 
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 Figures 27-29 show that the most probable gesture to be performed by the next 

user is “thumbs up” with a probability of 0.248 for user type unspecified, 0.326 for 

anesthesia providers, and 0.219 for students. Students had the lowest predictive 

probability among all user types; however, the second most probable gesture is “thumbs 

down” with a probability of about 0.10. The correct assessment of “Function 7-Is heart 

rate normal?” was a “Yes” that the heart rate was normal, thus the predicted gesture may 

Figure 29. Predictive probabilities for all gesture choices for function 7 and user type 
specified as student 
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not be accurate due to lack of experience in the students understanding the heart rate 

parameter explaining why the student predictions were the lowest. 

Model 2: Exposure Data 

Model Fitting and Diagnostics 

 The exposure data from Chapter 4 is fit to a Bayesian Multinomial Logistic 

Regression model using the Metropolis-Hastings algorithm as previously done with 

Model 1. Gesture choice is modeled based on the contextual task and exposure (i.e., 

function and session number). The same R function from Model 1 was used to fit Model 

2, and the same variations applied including the Random Walk Metropolis-Hastings 

algorithm, 1,000,000 iterations, a burn-in of 10,000, thinning parameter set to 10, and the 

tuning parameter set such that the acceptance rate was between 20% and 50% (Gelman et 

al., 2013). The prior distribution for the regression coefficients, 𝜷, was also set to be 

distributed as a multivariate normal distribution (i.e., ~𝑀𝑉𝑁(𝒃8, 𝑩8)$)) centered at zero 

with a very large variance so as to set the prior to be non-informative and relatively flat  

 Model 2 had an acceptance rate of 21.792% with the tuning parameter set to 0.31, 

and trace plots and autocorrelation plots were constructed to perform model diagnostics. 

A sample of the trace plots for the β are shown in Figure 30 and indicate that the chains 

converged and the chain explored the full parameter space.  
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Figure 30. Sample of trace plots for regression coefficients for Model 2 
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A sample of the autocorrelations of β is shown in Figure 31 and shows that 

autocorrelation decreases rapidly as a function of lag until it is nearly zero.  

 
 

Posterior Predictive Probabilities 

The Bayesian Multinomial Model was fit for the exposure data and the 

diagnostics showed that the Metropolis-Hastings algorithm converged to the posterior 

distribution. The results of the predictive probabilities for Model 2 is summarized in 

Figure 31. Sample of autocorrelations of regression coefficients for Model 2 
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Table 11. The predicted gesture choice (i.e., the gesture with the highest probability) is 

provided for all combinations of functions and exposure where the exposure is either 

session 1, 2, or 3. 

 

Note: All values in the table represent the probability that yn+1 takes on a gesture, k, given 
the type of user 
 

All combinations of exposure to the respective contextual task was mapped to the 

same gesture, consistent with the results from Chapter 4 in the frequency analysis.  

Table 11. Posterior predictive probabilities of intuitive gesture choice based on 
exposure and the contextual task for Model 2 

Function [#] 

 
Intuitive Gesture Mapped 

Unspecified Session 1 Session 2 Session 3 

Go to the next slide [1] 
Swipe hand left 

(0.296) 
Swipe hand left 

(0.379) 
Swipe hand left 

(0.317) 
Swipe hand left 

(0.246) 

Go to the previous slide 
[2] 

Swipe hand 
right (0.220) 

Swipe hand 
right (0.205) 

Swipe hand 
right (0.214) 

Swipe hand 
right (0.233) 

Zoom in on the image [3] 
Reverse full 

pinch (0.232) 
Reverse full 

pinch (0.227) 
Reverse full 

pinch (0.216) 
Reverse full 

pinch (0.249) 

Zoom out on the image 
[4] 

Full pinch 
(0.211) 

Full pinch 
(0.214) 

Full pinch 
(0.191) 

Full pinch 
(0.202) 

Increase the volume [5] 
Swipe hand up 

(0.155) 
Swipe hand up 

(0.167) 
Swipe hand up 

(0.125) 
Swipe hand up 

(0.124) 

Decrease the Volume [6] 
Swipe hand 

down (0.149) 
Swipe hand 

down (0.134) 
Swipe hand 

down (0.178) 
Swipe hand 

down (0.156) 

Acknowledge the 
message [7] 

Push fingers 
(0.318) 

Push fingers 
(0.287) 

Push fingers 
(0.345) 

Push fingers 
(0.332) 

Select “College of Bus.” 
[8] 

Push fingers 
(0.504) 

Push fingers 
(0.470) 

Push fingers 
(0.503) 

Push fingers 
(0.524) 

Undo the action [9] Circle (0.425) Circle (0.384) Circle (0.490) Circle (0.410) 
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Discussion 

 The objective of this chapter was to address the third research question of this 

dissertation: Q3 – How accurately can gestures be statistically predicted? Intuitive 

gesture choice is highly individualized thus making predictive analytics a difficult 

problem. Bayesian methods were used to model intuitive gesture choice because of the 

complexity of the multivariate data set. Both the expertise and exposure data were 

modelled, and posterior predictive probabilities were calculated for every combination of 

contextual task and user type as well as for every contextual task and session number. 

Intuitive gesture choice is multinomial data, and straightforward Bayesian analyses, such 

as using Multinomial-Dirichlet conjugate priors, are not capable of factoring in individual 

information such as expertise level or exposure level. Thus, two Bayesian multinomial 

logistic regression models were built using Metropolis-Hastings algorithms to model 

intuitive gesture choice based on expertise (Model 1) and exposure (Model 2). 

 The human-based gestural data was modelled successfully through a Bayesian 

approach to define posterior predictive probabilities for gesture choice. Overall, the 

results show that even when a human-based gesture development approach is taken and 

users are not forced to learn a predefined gestural language, it is possible to anticipate 

intuitive gesture choice depending on the contextual task and individual factors. Model 1 

showed that when no individual factors are considered (i.e., user type not specified), the 

predictions are relatively non-informative. However, the predictions improve when 

specifying the expertise level. Model 2 showed that the predictions were consistent across 
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exposure levels. The most notable predictions in Model 2 were for “Function 8 – Select 

College of Business from the Menu” and “Function 9 – Undo the action” as the predicted 

gesture choice was predicted with a probability around 0.50. 

 Both Model 1 and Model 2 had similar results with the frequency data from 

Chapters 3 and 4. The predictions were consistent with the intuitive gestures mapped via 

the frequency analysis. Future work should explore additional individual factors to 

increase the probability of predicted intuitive gesture choice, such as combining expertise 

and exposure into one analysis under one context as well as extending the exposure time 

to more than three experimental sessions. 

 There are some limitations with the Bayesian approach used in this chapter. 

Model 1 and Model 2 both used uninformative priors for the regression coefficients, and 

informative priors could have been used in the analysis. However, there was no previous 

data to generate an accurate prior distribution for the regression coefficients. Future work 

in the anesthesia context or general HCI context can utilize the results of this dissertation 

to build informative priors to be used in future Bayesian predictions for intuitive gesture 

choice. Furthermore, other covariates could be included such as trust and acceptance of 

the technology. Future work should also explore other sampling methods such as hybrid 

Metropolis-Hastings approaches with both independent and random-walk samplers as 

well as Gibbs sampling by deriving full conditional distributions. Furthermore, college 

students were used to some degree in both models, so generalizability of the predictions 

is confined to the population for the data. Future work should investigate more diverse 

populations in building the Bayesian models. 
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CHAPTER 6: USING A BOTTOM-UP APPROACH TO DEFINE AND CLASSIFY 

GESTURES TO IMPROVE GESTURE-FUNCTION MAPPINGS  

Introduction 

 This chapter discusses ongoing work that supplements this dissertation. This work 

does not directly relate to a specific research question but overall adds value to the study 

of gestural control. The purpose behind this dissertation was to better understand the 

human factors issues related to gestural human-computer interaction, specifically the 

effect of exposure and expertise, and to understand how accurately gestures can be 

predicted within a particular context. There is currently a tradeoff between usability and 

accuracy from human-based and technology-based development approaches. This 

dissertation contributed to improving the human-based methodologies and understanding 

humans’ gestural behavior. The results of this dissertation suggest that the human is an 

important piece to consider in gestural development.  

Although the work in this dissertation took steps towards understanding the 

human side of gestural systems, there is still opportunity to further bridge the gap 

between the human-centered and technology-centered worlds in coming to a compromise 

between recognition accuracy and usability. If it is necessary to take a human-based 

approach, then the question remains of how recognition accuracy can be increased. One 

way that developers and programmers have combated the negative effects on recognition 

accuracy is by improving the recognition capabilities of the software, and there is 

considerable interest in the research community to develop methods which ensure a high 

recognition accuracy. One means is through deep neural networks which learn particular 
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features for gesture recognition from the raw data from the camera (Huang et al., 2015). 

The deep neural network recognition approach has been shown to increase recognition 

accuracy to about 99% (Huang et al., 2015). Other methods have shown equal success 

such as hidden markov models, support vector machines, Eigenspace-based methods, and 

dynamic programming (Pisharady & Saerbeck, 2015). 

Despite the progress in recognition software, there continues to be little research 

on the human factors side in reducing the impacts of the usability/accuracy tradeoff 

outside of this dissertation. In all human-based approaches, once the gesture-function 

mappings are defined then the mappings are programmed through the hand tracking 

algorithms. The camera reads XYZ coordinates of the hand gesture, and the XYZ 

coordinates are then translated into features of gestures (e.g., palm is facing camera, 

angles between fingers) then the features combine into one gesture – the original gesture-

function mapping from user-elicitation studies. Thus, the gestures are recognized from an 

entirely bottom-up approach: starting with the raw XYZ data, to feature recognition, to 

identifying the entire gesture. Therefore, it may be advantageous to define a gesture by its 

features rather than as a holistic unit creating consistency with the capabilities of 

recognition software.  

Despite the bottom-up characteristic of hand tracking algorithms, human-based 

approaches to eliciting and defining gestures take a rather top-down approach to 

classifying and describing the gestures. Researchers typically classify and describe the 

gesture as a single holistic unit  in a top-down fashion (Aigner et al., 2012; Choi, 2012; 

Dong et al., 2015; Epps, Lichman, & Wu, 2006; Freeman et al., 2009; Henze, Löcken, 
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Boll, Hesselmann, & Pielot, 2010; Höysniemi et al., 2004; Jacob et al., 2013; Kühnel et 

al., 2011; Mauney, Howarth, Wirtanen, & Capra, 2010; Morris et al., 2010; Pereira et al., 

2015; Stern et al., 2006; Wobbrock et al., 2009). There are several disadvantages to the 

top-down approach of classifying gestures as a single unit. Gestures are highly 

individualized (Stern et al., 2008), so when classifying gestures as a unit and then 

analyzing for frequency of use under the consensus approach, the gesture-function 

mapping results may not show a clear consensus in the gestures, just a group of highly 

individualized gestures. It has also been shown that this individualization, specifically the 

interpretation of a gesture, is highly dependent on an individual’s culture and past 

experiences (Mauney et al., 2010; Rautaray & Agrawal, 2015). Furthermore, it has been 

shown that both context (Ardito et al., 2014; Jacob & Wachs, 2014a; Jacob et al., 2013; 

Nielsen et al., 2004; Wigdor & Wixon, 2011) and domain expertise influence gesture-

function mappings (Jurewicz & Neyens, 2017; Jurewicz et al., 2018). However, a top-

down classification approach may not account for contextual, expertise, and other 

individual differences. 

The alternative to the top-down, unit-based classification is to take a bottom-up 

approach and decompose a gesture into its features. If a gesture is broken down into 

lower level elements, there may be less cultural, context, and domain dependency as 

objective features of gestures (e.g., how many fingers are used) are independent from the 

semantics and the context of the application. Additionally, the features of gestures may 

translate better into recognition software since gesture recognition software uses the 

lowest level element of a gesture (e.g., XYZ coordinates) to calculate features (e.g., 
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angles between fingers) of gestures (Huang et al., 2015). Some frameworks for designing 

midair gesture interfaces have been proposed that seek to define gestures by more than 

one feature such as Wobbrock, Morris, & Wilson’s (2009) taxonomy of 2D, surface 

gestures which defined the gesture’s form (e.g., static pose), nature, binding, and flow. 

Additionally, Uva et al. (2019) proposed a framework for 3D midair gestures which 

included end user analysis, gesture elicitation, vocabularies definition, and a validation 

procedure. These approaches are unique in that they seek to define a singular gesture in 

more than one way. However, there is little work investigating the advantages of bottom-

up gestural classification based on a gesture’s features compared to more traditional top-

down approaches of unit classification. The overall objective of this study was to propose 

a strategy for decomposing gestures into features from a human-based gesture study and 

to compare the results of the bottom-up, feature extraction approach to the top-down, unit 

based approach. It is anticipated that the bottom-up classification approach would offer 

several advantages from both a technical and human factors perspective.   

Methods 

A top-down, unit-based taxonomy and a bottom-up, feature extraction taxonomy 

for classification were developed by the research team based on previous work (Jurewicz 

& Neyens, 2017; Jurewicz et al., 2018). The gestures classified by the taxonomies were 

from the novice data from Chapter 3. All gestures were classified via the top-down 

taxonomy and the bottom-up taxonomy. The two approaches were compared by the 

consensus of the gesture vocabulary sets as defined by Nielsen et al.’s (2004) method for 

identifying intuitive gesture-function mappings.  
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Top-Down Gesture Taxonomy 

The top-down, unit based taxonomy was built to classify gestures as a unit 

according to the gesture’s posture, pose, or movement direction. This classification 

method is similar to other approaches used in the literature (Choi, 2012; D. Freeman et 

al., 2009; Henze, Löcken, Boll, Hesselmann, & Pielot, 2010; Jacob et al., 2013; Pereira et 

al., 2015; Stern, Wachs, & Edan, 2006). The top-down gesture taxonomy consisted of a 

list of gesture names (e.g., “thumbs up”) and operational definitions (e.g., “a static 

position of the thumb pointed up and all other fingers tucked into the palm”). The gesture 

dictionary was the same classification method used in Chapter 3-5.  

Bottom-Up Gesture Taxonomy 

The bottom-up, feature extraction taxonomy was built to classify the different 

possible features of gestures (Figure 32). The taxonomy consisted of a multilevel 

classification with 9 potential classifications for one gesture.  
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Figure 32. Bottom-up gesture classification taxonomy 
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The first feature of a gesture analyzed was the movement group (Level 1 in Figure 

32), and gestures were classified as either static or dynamic. Gestures labelled as static 

were then broken down into the primary palm orientation feature (i.e., Level 2 in Figure 

32, which direction is the palm facing) and primary finger orientation feature (i.e., Level 

3 in Figure 32, how many and which fingers were used in the gesture). There were no 

other features extracted for static gestures.  

After identifying the movement group, dynamic gestures were classified for 

primary palm and finger orientation features. Then, dynamic gestures were broken down 

into the movement type feature (Level 4 in Figure 32). The movement types could either 

be a posture change, a position change, or a posture and position change. For gestures 

with posture changes, the additional features extracted were the secondary palm 

orientation feature (Level 6 in Figure 32, which direction is the palm facing in the second 

part of the gesture) and the secondary finger orientation feature (Level 7 in Figure 32, 

how many and which fingers were used in the second part of the gesture).  

For gestures with position changes, the next feature extracted was movement 

class. The movement class (Level 5 in Figure 32) could either be unidirectional, where 

the movement occurred in only one direction, or multidirectional, where multiple position 

changes occurred (e.g., waving the hand). Therefore, the additional features extracted for 

position changes were the primary movement direction (Level 8 in Figure 32, which 

direction did the hand move) and if applicable, the secondary movement direction for 

multidirectional gestures (Level 9 in Figure 32). As for the last dynamic gesture 

movement type, position and posture change, the additional features extracted were 
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secondary palm orientation and secondary finger orientation, movement class, primary 

movement direction, and if applicable, secondary movement direction.   

Results 

 Top-Down Gesture Classification 

 The gesture-function mappings from the top-down approach are summarized in 

Table 12. This table shows the intuitive gesture mapped as well as the gesture that was 

performed second most frequently. These findings are described in detail in Chapter 3.  

Function [#] Intuitive Gesture 
Mapped (n) 

2nd top gesture (n) 

Start the flow [1] Thumbs up (29) Swipe hand up (14) 
Stop the flow [2] Five up (17) Push hand (14) 
Inc. the flow [3] Swipe hand up (33) Thumbs up (16) 
Dec. the flow [4] Swipe hand down (33) Thumbs down (17) 
Silence alarm [5] Swipe hand left (15) Swipe hand right (16) 
Ack. the message [6] Thumbs up (46) Okay (16) 
Heart rate normal? [7] Thumbs up (54) Okay (7) 
Pulse ox normal? [8] Thumbs up (25) Thumbs down (23) 
Select heart rate [9] Push finger (25) Three up (19) 
Cancel the request [10] Swipe hand left (25) Thumbs down (13) 

 

Bottom-Up Gesture Classification 

For feature extraction, it was important that all gestures were from the perspective 

of the same hand, whether left or right handed gestures, in order to ensure consistency in 

the feature mappings. Only three participants did the experiment with their right hand, so 

this data was transformed into left handed data so that the analysis would be consistent 

Table 12. Gesture-function mappings generated from the top-down classification 
approach 
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for palm orientations. For example, when right-handed gestures had a palm orientation of 

“left,” this mirrored a left-handed gesture with a palm orientation of “right;” therefore, 

the right handed palm orientation would translate to “right.”  

 The feature extraction results are summarized in Table 13. All functions mapped 

to intuitive features. “Select heart rate” (Function 9) was the only function where it was 

unclear if there was an intuitive feature mapping in the “gesture type” feature. 

Regardless, other features for Function 9 had intuitive mappings. Three functions 

(“acknowledge the message”, “is heart rate normal?”, “is pulse oximeter normal?”) were 

mapped to static gestures, so these functions did not map further to features related to 

movement. The rest of the gesture mappings were dynamic, but none were categorized as 

posture changes or multiple position changes; therefore, no functions were mapped to 

features related to a secondary posture or secondary movement direction. The finger 

orientations are listed as a five-digit number representing the how many and which 

fingers were used, as shown in Figure 33. The order of digits represents the thumb, index, 

middle, ring, and pinky finger, a 0 corresponds to that finger not being extended, and a 1 

means the finger was extended in the function. For example, “thumbs up” would classify 

as “10000” as only the thumb is activated in the gesture (See Figure 33).  
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Table 13. Gesture-function mappings generated from the bottom-up classification 
approach 

 Function 
 1  

(n) 
2 

(n) 
3 

(n) 
4 

(n) 
5 

(n) 
6 

(n) 
7 

(n) 
8 

(n) 
9 

(n) 
10 
(n) 

Level 1 – 
Gesture 
Type 

Dynamic 
(49) 

Dynamic 
(53) 

Dynamic 
(67) 

Dynamic 
(60) 

Dynamic 
(66) 

Static 
(72) 

Static 
(75) 

Static 
(74) 

Static 
(46)/Dynamic 

(44) 

Dynamic 
(59) 

Level 2 – 
Primary 
Palm 
Orientation 

Right 
(38) 

Forward 
(64) 

Forward 
(41) 

Forward 
(36) 

Forward 
(56) 

Right 
(49) 

Right 
(55) 

Forward 
(34) 

Forward (57) Forward 
(47) 

Level 3 – 
Primary 
Finger 
Orientation 

10000 
(36) 

11111 
(60) 

11111 
(44) 

11111 
(46) 

11111 
(69) 

10000 
(48) 

10000 
(56) 

10000 
(51) 

01000 (29)/ 
01110 (19) 

11111 
(60) 

Level 4 – 
Movement 
Type 

Position 
(47) 

Position 
(47) 

Position 
(63) 

Position 
(57) 

Position 
(55) 

   None (46)/ 
Position (34) 

Position 
(52) 

Level 5 – 
Movement 
Class 

Single 
(47) 

Single 
(44) 

Single 
(63) 

Single 
(57) 

Single 
(46) 

   Single (34) Single 
(46) 

Level 6 – 
Secondary 
Palm 
Orientation 

          

Level 7 – 
Secondary 
Finger 
Orientation 

          

Level 8 – 
Primary 
Movement 
Direction 

Up (26) Forward 
(19) 

Up (50) Down 
(43) 

Left (26)    Forward (28) Left (30) 

Level 9 – 
Secondary 
Movement 
Direction 
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10000 11111 00000 10001 
  
Figure 33. Examples of five digit number translations for a gesture’s finger 
orientation feature 
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Comparison of Approaches 

 The results for “decrease the flow of anesthesia gas [2]”, “increase the flow of 

anesthesia gas [3]”, “acknowledge the message [4]”, “is heart rate normal? [7]”, and 

“cancel the request [10]” are consistent between the top-down and bottom-up 

classification approaches in that the features extracted in the bottom-up approach match 

the gesture mapped in the top-down approach. For example, “is heart rate normal?” was 

mapped to three features: static, palm orientation to the right, and a finger orientation of 

10000 (see Figure 33). These features reflect the features of “thumbs up,” which was the 

intuitive mapping for “is heart rate normal?”.  

There were four functions which did not have clear gesture-function mappings 

from the top-down approach as shown by the similarity in frequency between the top two 

performed gestures. These were “start the flow of anesthesia gas [1]”, “stop the flow of 

anesthesia gas [2]”, “silence the alarm [5]”, and “select heart rate [9].” However, the 

bottom-up classification approach showed that these functions had intuitive features. For 

example, with “increase the flow of anesthesia gas [3]”, there appears to be a consensus 

that the intuitive features are dynamic and single position movement with the movement 

direction as up. The participants may have differed in terms of posture but agreed on a 

dynamic upward movement.  

Discussion 

The objective of this study was to propose a strategy for decomposing gestures 

into features from a human-based gesture study via a bottom-up approach and to compare 
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the results to the gesture-function mappings from a traditional top-down approach. The 

results of this study showed that there appears to be consensus across the group for 

particular features despite the lack of agreement across participants for one intuitive 

gesture. The bottom-up approach uncovers agreements that are not present in the top-

down approach. Thus, the bottom-up approach proposed can maintain the intuitive 

benefits associated with human-centered gesture classification while also supporting 

bottom-up driven recognition accuracy.  

Utilizing intuitive features has several design advantages including facilitating the 

use of having multiple gestures that have the same underlying features for one function, 

avoiding overlapping gestures across functions, and removing the dependency of 

mappings to semantics, culture, or past experiences. 

In the feature extraction approach, there is a group of intuitive features which can 

potentially be used in the design of a gesture or set of gestures. For example, with the 

function “silence the alarm” the top gestures were swipe hand left and swipe hand right, 

but the features extracted were dynamic, forward, all fingers used, and a position change 

in one direction. A gestural interface designer could take these features and map the 

function to a gesture that is a dynamic movement of the hand in one direction, whether 

that direction is left or right, and the users could then have some flexibility in performing 

a gesture. Therefore, feature extraction classification approach facilitates the use of 

multiple gesture-function mappings. 

Three functions in this study were mapped to “thumbs up” under the top-down 

approach. When a single gesture is mapped to multiple functions, the gestural system 
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needs to be capable of understanding the context in which the gesture was performed to 

know which function is being done (Nielsen et al., 2004; Pereira et al., 2015). If the 

results from the top-down classification approach were the final gesture-function 

mappings, context sensitivity would be a concern in the gestural system with overlapping 

mapping. Using the feature extraction approach potentially avoids this issue. With the 

group of features extracted, gestural interface designers can take specific features to 

design gestures that do not overlap across tasks. For “start the flow of anesthesia gas,” the 

intuitive gesture mapped in the top-down approach was “thumbs up,” but under the 

feature extraction approach, the features were inconsistent with the static gesture of 

“thumbs up.” The features were actually more consistent with a dynamic gesture of 

“thumbs up” as in a swiping motion with a thumbs up posture where the position change 

was in the upwards direction. Therefore, under the feature extraction approach, gestural 

interface designers have the opportunity to utilize the group of features to design gestures 

that do not overlap between functions.   

Looking specifically at the “Select heart rate” function, this display had four 

buttons and the third button down from the top was listed as “Heart Rate.” One of the top 

gestures under the unit-based approach was “push fingers” where the user pushed their 

finger towards the screen as if physically pushing that button. The other top gesture under 

the top-down approach was “three up” which was the pointer finger, middle finger, and 

ring finger pointed up and the rest of the fingers closed into the palm, as if the user was 

telling the system to choose the third option. In some context and cultures, choosing the 

number “three” would resemble the middle, ring, and pinky fingers pointed up. This 
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gesture would classify as “okay” and would not capture the meaning of “three” under the 

top-down approach. However, both the “okay” and “three up” gestures would be 

classified as static gestures using three fingers under the bottom-up approach. This 

classification avoids any semantics that are dependent on the user’s culture as the 

mapping could be static with three fingers activated. Gestures, as a unit, are dependent on 

an individual’s past experiences and culture (Mauney et al., 2010; Rautaray & Agrawal, 

2015); however, there is no evidence in the literature suggesting that features of gestures 

are dependent upon a culture or past experiences. 

In addition to the several design advantages of the bottom-up approach, the 

features of gestures may translate better into system integration since gesture recognition 

software uses the lowest level element of a gesture (e.g., XYZ coordinates) to calculate 

features (e.g., angles between fingers) of gestures (Huang et al., 2015). Gestural systems 

should ideally have high accuracy and high usability. The bottom-up approach 

demonstrated in the current study maintains the intuitive benefits associated with human-

centered gesture classification. Additionally, the bottom-up classification does not 

conflict with the bottom-up hand tracking algorithms as features as extracted instead of 

one gesture. Future work in gesture development research should continue to develop 

methods that yield both highly accurate and highly usable systems in order to guarantee 

reliability and overall success of the gestural system. 

The taxonomy in the current study was able to capture features for the set of 

gestures performed in the experiment, but there are potentially additional features of 

gestures which were not captured in this study. Future work should fine tune and expand 
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the classification of gestural features so as to be generalized to all potential gestures. 

Additionally, the feature extraction classification approach only accounted for single 

hand gestures since only single hand gestures were performed in the experiment;  
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CHAPTER 7: CONCLUSIONS 
 

The overall objective of this dissertation was to understand and model how humans 

behave in 3D gestural input systems. Specifically, this dissertation investigated the 

influence of the anesthesia context, domain expertise, and exposure on gesture behavior. 

This work has shown the importance of considering individual factors when developing 

3D gestural input systems such as domain expertise and exposure. This work also 

investigated a Bayesian approach to modeling human behavior, specifically for predicting 

intuitive gesture choice based on contextual task, expertise, and exposure. The Bayesian 

models showed that even when taking a human-based development approach, intuitive 

gesture choice can be predicted based off of expected natural responses and certain 

individual factors.  

Limitations 

This dissertation is a small step towards gestural systems which are highly accurate 

and highly usable, and there are some limitations in this work. College students were the 

primary population used to recruit participants, thus the results may not generalize to a 

larger, more diverse population. In investigating the effect of exposure, the participants 

completed the experiment three times with about 48 hours in between each session. 

Behavioral adaptations may continue to evolve over time, and three times may not be 

sufficient enough to investigate the effect of exposure. Furthermore, behavior may adapt 

as the entire work system changes such as technological changes in the anesthesia 

workstation, so system vulnerabilities and reliance to gestural control needs to be 

monitored for long-term use. Additionally, expertise was studied for domain novices and 
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domain experts, and there may be further differences between novices and experts within 

a domain. All studies incorporated a Wizard-of-Oz approach to eliciting gestures, and it 

was necessary to do so to allow the participant flexibility in choosing gestures without the 

influence of technological limitations.  

Future Work 

Future work of this dissertation includes continuing to explore the individual factors 

which influence gesture behavior, especially within specific contexts such as anesthetic 

care in the OR. Future work should investigate other levels of expertise within anesthesia, 

and other domains, and over an extended period of time. The sample population should 

also extend beyond college students in order to ensure interpretations and predictions are 

reflective of actual system dynamics. Future work should also investigate how the 3D 

gestural technology actually integrates into the work system and explore variables such as 

user frustrations, reliance, and trust when the Wizard-of-Oz component is removed. 

Future data collection should continue to be tested in a Bayesian model for identifying 

accurate intuitive gesture choice based on factors which influence gesture behavior. 

Gestural input technology can potentially be very impactful for the healthcare 

industry, especially anesthetic care. It is already known that there is widespread bacterial 

contamination in the anesthesia workstation (Birnbach et al., 2015; Loftus et al., 2011) 

but current anesthetic work does not support the addition of more hand hygiene steps 

(Jurewicz et al., Under Review). 3D gestural control in anesthesia is novel and 

innovative, and future work in this area should see how human behavior adapts when 

fully implemented into the work system. There are often multiple anesthesia providers 
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present in the anesthesia workstation, and more providers may impact gesture behavior. 

There also may be safety critical concerns relative to particular functions in which 

gestural technology may not be appropriate. The variables explored in this dissertation, as 

well as other individual factors, should be studying in a larger anesthesia study.  

Overall, this work provides insights into how natural user interfaces (NUIs) may be 

designed in the form of 3D gestural HCI. Gestures are already a natural form of 

communication, so gestures could be used for HCI instead of traditional input devices 

such as keyboard and mouse. There exists little work from the human factors side in 

investigating gestural displays despite the fact that 3D gestural systems already exist in 

homes and cars. NUIs and 3D gestural displays could potentially transform how humans 

interact with machines and technology and could be impactful for not just anesthesia but 

the healthcare industry at large as well as other complex human-machine systems. 

This dissertation provides insights into how Bayesian statistics can be utilized in 

human factors research. There is little work in human factors and HCI in incorporating 

Bayesian methods despite the many advantages to using a Bayesian approach. Human-

based data is complicated, messy, and many assumptions and translations of the data 

have to be made just to perform traditional frequentist statistics whereas a Bayesian 

approach embraces the mess of human data. This dissertation work shows how real data 

can be modelled without making assumptions or transformations and provides insights 

into how Bayesian statistics can be used more broadly in human factors applications. 

There are limitations to using a Bayesian approach, especially in terms of computation. 

The data in this dissertation were multivariate with multiple covariates, thus the 
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computations of the Bayesian models are highly expensive to run in terms of 

computational power and time. Future work should develop packages and functions in R 

that facilitate efficient coding practices. Human-machine systems will continue to grow 

in complexity especially with the rapid release of new and innovative technologies, and it 

will be important to ensure that the modeling and design of the systems are reflective of 

true human-machine dynamics potentially through Bayesian modeling. 

Broader Impacts and Intellectual Merit 

Computers are an integral part of people’s lives; however, traditional input devices 

such as keyboard and mouse still dominate the technical market. This dissertation sought 

to explore 3D gestural control and supported the investigation and understanding of 

gesture behavior. The future of human-computer interaction and human-machine systems 

is to have new and natural interaction methods. Leaders and pioneers in HCI, such as Bill 

Gates, believe in the future of natural user interfaces (NUIs): 

“Until now, we have always had to adapt to the limits of technology and conform the 

way we work with computers to a set of arbitrary conventions and procedures. With 

NUI, computing devices will adapt to our needs and preferences for the first time and 

humans will begin to use technology in whatever way is most comfortable and natural 

for us.”  (Mortensen, 2017) 

The current reality of the development of NUIs, specifically 3D gestural interfaces, is 

shown in Figure 2 where there are technology-based systems with high accuracy but low 

usability, or there are human-based systems that are highly usable but have low 

recognition accuracy. It is important for the future of 3D gestural interfaces, and NUIs 
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broadly, to alleviate the accuracy/usability tradeoff so that systems are highly accurate 

and highly usable to ensure long-term reliability and use the system. HCI researchers, 

both on the technical and human sides, need to continue future work in refining methods 

to develop reliable NUIs. Human factors engineers and researchers need to continue to 

understand how humans behave in a gestural system and to identify advanced ways to 

model real human behavior. If gesture behavior can be explained and predicted, then 

motion tracking and gesture recognition software can be improved by including 

predictive analytics based on human data. The system may further be improved by 

incorporating human-based methods which are consistent with hand tracking algorithms, 

such as the novel bottom-up approach to classification presented in this dissertation. 

Eventually, adaptive 3D gestural interfaces can be developed that are based on the 

predictive analytics of intuitive gestural features of multiple user groups and across 

contexts and applications. 

 The human-technology frontier is dynamic, and the methodology demonstrated as 

well as the findings within this dissertation can be adapted to larger human-machine 

systems that include more than just 3D gestural control. The future of human-machine 

systems will incorporate more natural and comfortable means of interaction, and 

development of such systems will require an understanding of human behavior (e.g., 

Chapters 3 and 4 - the factors that influence gesture behavior), useful translations of 

human behavior to computer language (e.g., Chapter 6 – feature extraction, bottom-up 

approaches vs. higher level, top-down approaches to analyzing human behavior), and 

advanced statistical computations (e.g., Chapter 5 – Bayesian predictive analytics).   
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Appendix A – Domain novices bar graphs for intuitive gestures in anesthesia 
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Appendix B - Domain experts bar graphs for intuitive gestures in anesthesia 
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Appendix C – Low workload bar graphs for intuitive gestures for controlling a 
presentation 
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Appendix D -High workload bar graphs for intuitive gestures for controlling a 
presentation  
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Appendix E – Day 1 bar graphs for intuitive gestures for controlling a presentation 
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Appendix F – Day 2 bar graphs for intuitive gestures for controlling a presentation  
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Appendix G – Day 3 bar graphs for intuitive gestures for controlling a presentation  
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