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Abstract

In the first chapter, we examine the performance of Chinese commercial banks before, during,

and after the 2008 global financial crisis and the 2008–2010 China’s 4 trillion Renminbi stimulus

plan. Fully nonparametric methods are used to estimate technical efficiencies. Recently-developed

statistical results are used to test for changes in efficiencies as well as productivity over time, and to

test for changes in technology over time. We also test for differences in efficiency and productivity

between big and small banks, and between domestic and foreign banks. We find evidence of the

non-convexity of banks’ production set. The data reveal that technical efficiency declined at the

start of the global financial crisis (2007–2008) and after the China’s stimulus plan (2010–2011), but

recovered in the years later (2011–2013), and declined again from 2013 to 2014, ending lower in 2014

than in 2007. We find that productivity declined during and just after the China’s stimulus plan

(2009–2011), but recovered in the years later (2013–2014), ending lower in 2014 than in 2007. We

also find that the technology shifted downward from 2012 to 2013, and then shifted upward from

2013 to 2014. Over the period 2007–2014, technology shifted upward. We provide evidence that in

general big banks were more efficient and productive than small banks. Finally, domestic banks had

higher efficiency and productivity than foreign banks over this period except in 2008.

In the second chapter, I estimate shadow price of equity for U.S. commercial banks over

2001–2018 using nonparametric estimators of the underlying cost frontier and tests the existence of

“Too-Big-to-Fail” (TBTF) banks. Evidence on the existence of TBTF banks are found. Specifically,

I find that a negative correlation exists between the shadow price of equity and the size of banks

in each year, suggesting that big banks pay less in equity than small banks. In addition, in each

year there are more banks with a negative shadow price of equity in the fourth quartile based on

total assets than in the other three quartiles. The data also reveal that for each year, the estimated

mean shadow price of equity for the top 100 largest banks is smaller than the mean price of deposits,
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even though equity is commonly viewed as a riskier asset than deposits. Finally, I find that the top

10 largest banks are willing to pay much more at the start of the global financial crisis and after

the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 than the other periods.

These results imply that these regulations are effective in reducing the implicit subsidy, at least for

the top 10 largest banks. However, it is also evident that the recapitalization has imposed significant

equity funding costs for the top 10 largest banks.

In the third chapter, we examine the performance of 144 countries in the world before,

during, and after the 2007–2012 global financial crisis. Fully nonparametric methods are used to

estimate technical efficiencies. Recently-developed statistical results are used to test for changes in

efficiencies as well as productivity over time, and to test for changes in technology over time. We

also test for these differences between developing and developed countries. We find evidence of the

non-convexity of countries’ production set. The data revealed that technical efficiency declined at

the start of the global financial crisis (2006–2008), but recovered in the years later (2008–2014),

ending higher in 2014 than in 2004. We also find that mean productivity continued decreasing from

2004 to 2010. Moreover, productivity in 2004 stochastic dominants in the first order that in 2014.

Statistical tests indicate that the frontier continued shifting downward from 2004 to 2010, and then

continued shifting upward from 2010 to 2014. Overall, the technology has shifted downward from

2004 to 2014. Finally, we provide evidence that developing economies have lower technical efficiency

but higher productivity than developed economies over this period.
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Chapter 1

Performance of Chinese Banks

over 2007–2014
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1.1 Introduction

Over the last 40 years, China’s GDP growth rate averaged 10 percent per year. China is

currently the second largest economy in the world and is projected to become the largest economy in

the coming decades. China’s banks have played an important role in this transition because China’s

economy has always relied heavily on domestic investment.

The period 2007–2014 was especially disruptive to the Chinese banking industry. In 2008,

the global financial crisis had an influential negative effect on China’s exports. To minimize the

effect of the crisis on China’s economy, China’s central government announced a plan in November

2008 to stimulate domestic demand. This plan invested 4 trillion Renminbi (RMB) (about 586

billion U.S. dollars) in rural infrastructure, transportation, disaster rebuilding, health and education,

housing, and other areas by the end of 2010.1 State-owned enterprises (SOEs) mainly undertook

the investment plans. To help China’s banks make loans to SOEs, the central bank lowered the

reserve ratio requirement, the borrowing and lending benchmark rate, and even canceled the credit

limit on commercial banks.2 With the help of the China’s stimulus, China’s GDP growth averaged

10 percent while the GDP of North America and Europe was slowing.3

China’s banking industry was undoubtedly heavily influenced by the crisis and the stimulus.

According to International Monetary Institute at Renmin University of China, by the end of 2007,

the total assets of the banking industries in China, U.S., and Germany were 7.48 trillion, 13.56

trillion, and 11.70 trillion U.S. dollars, respectively. By the end of 2016, the total assets of the

banking industries in China, U.S., and Germany were 30.32 trillion, 15.22 trillion, and 7.49 trillion

U.S. dollars, respectively.4 China’s banking industry expanded far more quickly than the other

countries over the period 2007–2016. The latest 2018 S&P Global Market Intelligence report lists the

100 largest banks in the world, of which 18 banks were from China and 11 banks were from the U.S.

Industrial and Commercial Bank of China (ICBC), China Construction Bank (CCB), Agricultural

Bank of China (ABC), and Bank of China (BOC) are the four largest banks in the world in terms

of total assets.5 Also, the latest 2018 16th Forbes Global 2000 list shows that China and the U.S.

1Renminbi is also known as Chinese yuan. All dollar amounts in the following are given in 2010 U.S. dollars and
all yuan amounts in the following are given in 2010 Chinese yuan.

2For example, the reserve ratio requirement was lowered from 17 percent on 08 October 2008 to 15.5 percent on
18 January 2010.

3GDP growth rate for China is 9.65 percent, 9.4 percent, 10.64 percent for 2008, 2009 and 2010 respectively, while
GDP growth rate for U.S. is -0.1 percent, -2.5 percent, 2.6 percent for 2008, 2009 and 2010 respectively.

4See http://bank.jrj.com.cn/2018/05/16152224548488.shtml.
5See https://www.spglobal.com/marketintelligence/en/news-insights/research/the-world-s-100-largest-banks.
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split the top 10 of the world’s largest public companies evenly this year, in which there were four

big Chinese banks and three U.S. banks.

Starting from 1978, Chinese banking industry underwent significant reforms and are now

functioning more like western banks. Nonetheless, Chinese banking industry is still very different

from U.S. and European banking industry. China’s domestic banks has remained in the government’s

hands even though they have gained more autonomy. Banks may focus on different types of loans

and hence have different business plans. Given the importance of banks in the economy and the

complexity of the world’s largest banking industry, it is reasonable to investigate the performance

of China’s banks before, during and after the 2008 global financial crisis and the 2008–2010 China’s

stimulus.

There exists a vast literature on efficiency and productivity of China’s commercial banks.

Berger et al. (2009) analyze the cost and profit efficiency of Chinese banks over 1994–2003 by

specifying translog functional form for cost and profit functions. They find that foreign banks are

most efficient and big four banks are by far the least efficient. However, Chinese banking industry

is heavily right-skewed even after taking log s, and hence the translog specification could be easily

rejected. Chen et al. (2005) examines the cost, technical and allocative efficiency of 43 Chinese banks

over the period 1993–2000 using variable returns to scale (VRS) Data Envelopment Analysis (DEA).

They specify loans, deposits, and non-interest income as outputs, and interest expenses, non-interest

expenses, the price of deposits, and the price of capital as inputs. They map prices to outputs, which

does not represent the production process of banks. They find that big four banks and smaller banks

are more efficient than medium-sized banks. Yao et al. (2008) use constant returns to scale (CRS)

Data Envelopment Analysis to estimate efficiency for the 15 largest Chinese national commercial

banks over the period 1998-2005. They specify interest income and non-interest income as outputs,

and interest expense, non-interest expense, the ratio of non-performing loans to gross loans as inputs.

They map cost to revenue, which again does not represent the typical production function. They

find that the three large state-owned banks (CCB, BOC, and ICBC) have high technical efficiency

and profitability. These two results are not surprising because the research that studies the efficiency

of China’s banks using nonparametric methods (either free-disposal hull (FDH) or DEA) has few

observations with many inputs and outputs. Thus many of the estimated efficiencies are equal to 1.

They naturally encounter the “curse of dimensionality”, which is a serious problem in nonparametric

3



efficiency estimation.6 For example, Chen et al. (2005) specify 3 outputs and 4 inputs for only 43

observations. Yao et al. (2008) specify 2 outputs and 3 inputs for only 15 observations. The effective

parametric sample size defined by Wilson (2018) is then, 43
4
8 ≈ 7 for VRS estimators in Chen et al.

(2005), and 15
4
5 ≈ 9 for CRS estimators in Yao et al. (2008). Hence, dimension reduction is needed

in the context of nonparametric efficiency estimation.7

Among the nonparametric methods, DEA estimators which impose convexity assumption,

have been widely applied to examine technical, cost and profit efficiency in the Chinese banking

sector. Recently published examples include Chen et al. (2005), Ariff and Can (2008), Laurenceson

and Yong (2008), Yao et al. (2008), Sufian and Habibullah (2009), Luo and Yao (2010), Avkiran

(2011), Barros et al. (2011), Gu and Yue (2011), Sufian and Habibullah (2011), Ji et al. (2012), Lee

and Chih (2013), Tan and Floros (2013), Dong et al. (2014), Wang et al. (2014), Dong et al. (2014),

Wang et al. (2014), An et al. (2015), Liu et al. (2015), Zha et al. (2016), Du et al. (2018). However,

they did not test the convexity of the production set, nor do they test CRS versus VRS. Some of

these studies have used a two-stage approach, in which in the first stage, efficiency is estimated, and

then the estimated efficiencies are regressed on covariates which are usually environmental variables.

Published examples are Sufian and Habibullah (2009), Luo and Yao (2010), Sufian and Habibullah

(2011), Lee and Chih (2013), Tan and Floros (2013), Du et al. (2018). As mentioned by Simar

and Wilson (2007), second-stage regression requires separability condition. However, none of these

papers test whether the separability condition holds. Moreover, some of these studies simply report

efficiency estimates without any inference and compare the mean efficiency of two groups without

correcting the bias of the estimated efficiency. Of course, point estimates without inference are

largely meaningless. Hence, the results of these studies are dubious. Recently, Kneip et al. (2016),

using the central limit theorem results from Kneip et al. (2015), develop hypotheses testing the

model structure. They provide tests of the convexity of the production set, returns to scale and

differences in mean efficiency across groups of producers. They reject the convexity assumption of

the production set using U.S. commercial banks, which casts doubt on the results of many banking

studies that have imposed convexity assumptions.

This paper provides evidence on the performance of China’s commercial banks just before,

6Curse of dimensionality means the convergence rates of nonparametric estimators decrease with increasing di-
mensions (number of inputs and outputs).

7Recently Wilson (2018) proposes a new dimension reduction technique that is advantageous in terms of reducing
estimation error. Results also suggest that FDH estimator is a viable, attractive alternative to the VRS-DEA in many
cases when dimension reduction is used.
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during and after the 2008 global financial crisis and the 2008–2010 China stimulus. The approach

is fully nonparametric and exploits recently developed theoretical results. Estimates of technical

efficiency and productivity at one-year intervals from 2007 to 2014 are examined in a statistical

paradigm permitting inference and hypothesis testing. Therefore, this paper both (i) contributes to

the banking literature by shedding light on the reaction of Chinese commercial banks to the recent

crisis and the stimulus, and (ii) fills the gap between point estimates and inference in the empirical

research on China’s commercial banks’ technical efficiency and productivity.

The rest of the paper is organized as follows. Section 1.2 provides background on the Chinese

banking industry. Estimators of technical efficiency and their properties are discussed in Section 1.3.

Section 1.4 discusses various statistical results needed for testing hypotheses about model features.

Section 1.5 describes the Chinese commercial banks data, specially the input and output variables.

Section 1.6 discusses the empirical results of the tests. Major conclusions and directions for future

works are presented in Section 1.7. Additional details on model assumptions, data, and results are

provided in separate Appendices A–C, which are available online.

1.2 Background on the Chinese Banking Industry

Before 1978, the only bank in China was the People’s Bank of China (PBC). The PBC

took on the responsibilities of central and commercial banking. After the reforms in 1978, the

banking system was expanded by establishing four big state owned commercial banks: ICBC, CCB,

ABC, and BOC. These four banks took over the role of commercial banking from the PBC and the

PBC only undertakes the role of implementing monetary policy. However, the four big state owned

commercial banks at that time mainly served as the government’s policy lending institutions. They

did not have much flexibility and there was little competition among them.8

Starting in 1986, 13 joint stock commercial banks were created. They are partially owned

by local governments and SOEs, and sometimes by the private sector. They finance small SOEs and

firms with partial private ownership, including small and medium-sized enterprises (SMEs). They

maintain much smaller branch networks than four big state owned commercial banks, typically

confined to the region of origin or to the fast-growing coastal area. However they are generally

allowed to operate at the national level.

8For example, they could not set the deposits and lending interest rates without authorization from the central
government. Even until now, the interest rates are still not totally determined by the market.
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In 1994, China’s government established three policy lending non-commercial banks: the

Export-Import Bank of China, Agricultural Development Bank of China and China Development

Bank. These three policy banks took over the policy lending roles from the four big state owned

commercial banks.

Since the mid-1990s, city commercial banks have been created by restructuring and con-

solidating urban credit cooperatives. Their capital is in the hands of urban enterprises and local

governments. They mainly lend to SMEs, collective and local residents in their municipalities.

In 1999, 1.4 trillion RMB of nonperforming loans of the four big state owned commercial

banks were sold to four newly created asset management companies. At this time there were a lot

of strict policies on the internal management of the four big state owned commercial banks. The

evaluation of their performance and the risk management have significantly improved since then.

After China joined the World Trade Organization in 2001, there was more pressure to reform of

China’s banks. After 5 years, China’s banking industry would open to foreign banks and China

promised that there would be fewer restrictions on ownership takeovers and fewer regulations on

interest rates.

In 2003, the China Banking Regulation Commission was created to achieve better monitoring

of China’s banking industry and to oversee reforms and regulations.9 At the same time, aimed to

improve the efficiency and competitiveness of the domestic banks, China government started a new

reform on the ownership of domestic banks (especially the four big state owned commercial banks)

and hope that they could all be listed in the market.

In addition, rural commercial banks are also one important part of China banking sector.

They regard SMEs as their key clients to provide them with business operations aimed at serving

the agricultural sector and other rural industries. Historically, bank lending to rural areas has not

performed on par with lending to urban areas. In order to encourage lending to rural areas, the

China Banking Regulation Commission and central government have considered and initialized some

new incentives, such as tax cuts, a lowered capital requirement for rural banks, and subsidy programs

that include infrastructure development.

Since 2006, all of the foreign banks were permitted to conduct RMB business and were

treated theoretically the same as the domestic banks. In 2010, the ABC became the last bank listed

9Starting in April 2018, the China Banking Regulation Commission merges with China Insurance Regulatory
Commission as China Banking and Insurance Regulatory Commission.
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on the market among the big four banks.

In 2014, in order to enact even more reforms on banks, reduce the financial risk, and provide

better banking services, three private banks solely owned by private companies were allowed by the

China Banking Regulation Commission to open. As of September 2018, there are already 17 private

banks, which have greatly enriched China’s banking sector.

1.3 The Statistical Model

To establish notation, let X ∈ R
p
+ and Y ∈ R

q
+ denote (random) vectors of input and output

quantities, respectively. Similarly, let x ∈ R
p
+ and y ∈ R

q
+ denote fixed, nonstochastic vectors of

input and output quantities. The production set

Ψ := {(x, y) | x can produce y} (3.1)

gives the set of feasible combinations of inputs and outputs. Several assumptions on Ψ are common

in the literature. The assumptions of Shephard (1970) and Färe (1988) are typical in microeconomic

theory of the firm and are used here.

Assumption 1.3.1. Ψ is closed.

Assumption 1.3.2. (x, y) 6∈ Ψ if x = 0, y ≥ 0, y 6= 0; i.e., all production requires use of some

inputs.

Assumption 1.3.3. Both inputs and outputs are strongly disposable, i.e., ∀ (x, y) ∈ Ψ, (i) x̃ ≥ x⇒

(x̃, y) ∈ Ψ and (ii) ỹ ≤ y ⇒ (x, ỹ) ∈ Ψ.

Here and throughout, inequalities involving vectors are defined on an element-by-element basis, as

is standard. Assumption 1.3.1 ensures that the efficient frontier (or technology) Ψ∂

Ψ∂ :=
{

(x, y) | (x, y) ∈ Ψ, (γ−1x, γy) /∈ Ψ for any α ∈ (1,∞)
}

(3.2)

is the set of extreme points of Ψ and is contained in Ψ. Assumption 1.3.2 means that production

of any output quantities greater than 0 requires use of some inputs so that there can be no free

lunches. Assumption 1.3.3 imposes weak monotonicity on the frontier.
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The Farrell (1957) input efficiency measure

θ(x, y | Ψ) := inf {θ | (θx, y) ∈ Ψ} (3.3)

gives the amount by which input levels can feasibly be scaled downward, proportionately by the

same factor, without reducing output levels. The Farrell (1957) output efficiency measure gives the

feasible, proportionate expansion of output quantities and is defined by

λ(x, y | Ψ) := sup {λ | (x, λy) ∈ Ψ} . (3.4)

Both (3.3) and (3.4) provide radial measures of efficiency since all input or output quantities are

scaled by the same factor θ or λ, holding output or input quantities fixed (respectively). Clearly,

θ(x, y | Ψ) ≤ 1 and λ(x, y | Ψ) ≥ 1 for all (x, y) ∈ Ψ.

Alternatively, Färe et al. (1985) provide a hyperbolic, graph measure of efficiency defined

by

γ(x, y | Ψ) := inf
{
γ > 0 | (γx, γ−1y) ∈ Ψ

}
. (3.5)

By construction, γ(x, y | Ψ) ≤ 1 for (x, y) ∈ Ψ. Just as the measures θ(x, y | Ψ) and λ(x, y | Ψ)

provide measures of the technical efficiency of a firm operating at a point (x, y) ∈ Ψ, so does

γ(x, y | Ψ), but along the hyperbolic path from (x, y) to the frontier of Ψ. The measure γ(x, y | Ψ)

gives the amount by which input levels can be feasibly, proportionately scaled downward while

simultaneously scaling output levels upward by the same proportion.

All of the quantities and model features defined so far are unobservable, and therefore must

be estimated. The set Ψ can be estimated using the free-disposal hull (FDH) estimator introduced

by Deprins et al. (1984) or either the variable returns to scale (VRS) or constant returns to scale

(CRS) versions of the data envelopment analysis (DEA) estimator proposed by Farrell (1957). But,

inference is needed in order to know what might be learned from data, and inference requires a

well-defined statistical model.
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1.4 Estimation and Inference

Let Sn = {(Xi, Yi)}ni=1 be a random input-output pairs sample, whereXi ∈ R
p
+ and Yi ∈ R

q
+.

Given a random sample Sn = {(Xi, Yi)}, the production set Ψ can be estimated by the free disposal

hull of the sample observations in Sn,

Ψ̂FDH,n :=
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ R

p+q
+ | x ≥ Xi, y ≤ Yi

}
, (4.1)

proposed by Deprins et al. (1984). Alternatively, Ψ can be estimated by the convex hull of Ψ̂FDH,n,

i.e., by

Ψ̂VRS,n :=
{

(x, y) ∈ Rp+q | y ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn+
}
, (4.2)

where X =

(
X1, . . . , Xn

)
and Y =

(
Y1, . . . , Yn

)
are (p× n) and (q × n) matrices of input and

output vectors, respectively; in is an (n × 1) vector of ones, and ω is a (n × 1) vector of weights.

The estimator Ψ̂VRS,n imposes convexity, but allows for VRS. This is the VRS (DEA) estimator of

Ψ proposed by Farrell (1957) and popularized by Banker et al. (1984). The CRS (DEA) estimator

Ψ̂CRS,n of Ψ is obtained by dropping the constraint i′nω = 1 in (4.2). FDH, VRS or CRS estimators

of θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) defined in Section 1.3 are obtained by substituting Ψ̂FDH,n,

Ψ̂VRS,n or Ψ̂CRS,n for Ψ in (3.3)–(3.5) (respectively). In the case of VRS estimators, this results in

θ̂VRS(x, y | Sn) = min
θ,ω

{
θ | y ≤ Y ω, θx ≥Xω, i′nω = 1, ω ∈ Rn+

}
, (4.3)

λ̂VRS(x, y | Sn) = max
λ,ω

{
λ | λy ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn+

}
(4.4)

and

γ̂VRS(x, y | Sn) = min
γ,ω

{
γ | γ−1y ≤ Y ω, γx ≥Xω, i′nω = 1, ω ∈ Rn+

}
. (4.5)

The corresponding CRS estimators θ̂CRS(x, y | Sn), λ̂CRS(x, y | Sn) and γ̂CRS(x, y | Sn) are

obtained by dropping the constraint i′nω = 1 in (4.3)–(4.5). The estimators in (4.3)–(4.4) can be

computed using linear programming methods, but the hyperbolic estimator in (4.5) is a non-linear

program. Nonetheless, estimates can be computed easily using the numerical algorithm developed

by Wilson (2011). Substituting Ψ̂FDH,n into (3.3)–(3.5) (respectively) will yield FDH estimators
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θ̂FDH(x, y | Sn), λ̂FDH(x, y | Sn) and γ̂FDH(x, y | Sn). However, this leads to integer programming

problems, but the estimators can be computed using simple numerical methods.10

The statistical properties of these efficiency estimators are well-developed. Kneip et al.

(1998) derive the rate of convergence of the input-oriented VRS estimator, while Kneip et al. (2008)

derive its limiting distribution. Park et al. (2010) derive the rate of convergence of the input-oriented

CRS estimator and establish its limiting distribution. Park et al. (2000) and Daouia et al. (2017)

derive both the rate of convergence and limiting distribution of the input-oriented FDH estimator.

These results extend trivially to the output orientation after straightforward (but perhaps tedious)

changes in notation. Wheelock and Wilson (2008) extend these results to the hyperbolic FDH

estimator, and Wilson (2011) extends the results to the hyperbolic DEA estimator.

Kneip et al. (2015) derive moment properties of both the input-oriented FDH, VRS and

CRS estimators and also establish new central limit theorem (CLT) results for mean input-oriented

efficiency after showing that the usual CLT results (e.g., the Lindeberg-Feller CLT) do not hold

unless (p + q) < 4 in the CRS case, (p + q) < 3 in the VRS case, or unless p + q < 2 in the FDH

case.11 Kneip et al. (2016) use these CLT results to establish asymptotically normal test statistics

for testing differences in mean efficiency across two groups, convexity versus non-convexity of Ψ, and

CRS versus VRS (provided Ψ is weakly convex).12 All of these results extend trivially to the output-

oriented FDH, VRS and CRS estimators. These results could also be extended to the hyperbolic

VRS and CRS estimators following Wilson (2011). The hyperbolic FDH estimator can be viewed as

an input-oriented FDH estimator in a transformed space, hence moment results for the hyperbolic

FDH estimator could also be extended trivially (but again, tediously) from the input-oriented FDH

estimator. The new CLT results of Kneip et al. (2015) as well as the results from Kneip et al. (2016)

on tests of differences in means, convexity versus non-convexity of Ψ, and CRS versus VRS carry

over to the hyperbolic FDH estimator.

To summarize, in all cases, the FDH, VRS and CRS estimators are consistent, converge at

rate nκ (where κ = 1/(p+ q), 2/(p+ q+ 1) or 2/(p+ q) for the FDH, VRS and CRS estimators) and

possess non-degenerate limiting distributions under the appropriate set of assumptions. In addition,

the bias of each of the three estimators is of order O (n−κ). Bootstrap methods proposed by Kneip

10For details, see Kneip et al. (2015) and Wilson (2011).
11In other words, standard CLT results hold in the FDH case if and only if p = 1 and output is fixed and constant,

or q = 1 and input is fixed and constant.
12If Ψ∂ is globally CRS, then the VRS estimator attains the faster convergence rate of the CRS estimator due to

the Theorem 3.1 of Kneip et al. (2016).
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et al. (2008, 2011) and Simar and Wilson (2011) provide consistent inference about θ(x, y | Ψ),

λ(x, y | Ψ) and γ(x, y | Ψ) for a fixed point (x, y) ∈ Ψ. Kneip et al. (2015) provide new CLT results

enabling inference about the expected values of these measures over the random variables (X,Y ),

and they show that the sample mean of these measures is a consistent estimator of population

mean, with a bias term of order O (n−κ). In addition, if κ ≤ 1/2, the bias term will “kill” the

variance and the bias term need to be estimated using a jackknife method. Kneip et al. (2016)

develop additional theoretical results permitting consistent tests of differences in mean efficiency

across groups of producers, convexity of the production set and returns to scale.

Additional technical assumptions required for moment properties and central limit theorem

results of means of FDH, VRS and CRS estimates, established by Kneip et al. (2015) and used below

are given in the separate Appendix A.

1.5 Data and Variable Specification

The sample is an unbalanced panel including data from the balance sheets and income

statements of commercial banks in China from 2007 to 2014. We have one year of data (2007)

before the crisis, 3 years of data (2008–2010) during the crisis and the stimulus, and 4 years of data

(2011–2014) after the stimulus. The main data source is BankScope database maintained by Bureau

Van Dijk.

According to China Banking Regulation Committee, in 2014, China has 4 big state owned

commercial banks, 12 joint stock commercial banks, 133 city commercial banks, 665 rural commercial

banks, and 41 foreign banks. The total assets in 2014 were 150.95 trillion RMB. In 2014, our sample

includes 4 big state owned commercial banks, 12 joint stock commercial banks, 58 city commercial

banks, 18 rural commercial banks, and 32 foreign banks. The total assets of the sample are 108.90

trillion RMB, accounting for 72 percent of the total assets of the China’s commercial banks in

population. Therefore the sample is a good representation of commercial banks in population.13

Following Wheelock and Wilson (2018), p = 3 inputs and q = 5 outputs are defined.

Specifically, the five output variables are defined as: consumer loans (Y1), real estate loans (Y2),

business and other loans (Y3), securities (Y4), and off-balance sheet items (Y5) consisting of net

non-interest income. The three input variables are defined as: total funding (X1), consisting of total

13The numbers of China’s commercial banks across years in population and sample are provided in Tables C1–C2
of the separate Appendix C.
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customer deposits, deposits from banks, repos and cash collateral, other deposits and short-term

borrowings, senior debt maturing after 1 year, subordinated borrowing, other funding, total long-

term funding, derivatives and trading liabilities; labor services, measured by the personnel expenses

(X2); and fixed asset (X3). The first input quantity X1 captures non-equity sources of investment

funds for the bank. All RMB amounts are measured in constant 2010 RMB. The input-output

specification is typical and standard, reflecting the basic production process of banks.

We assume that all commercial banks operate in the same production set Ψ defined by (3.1),

and therefore they face the same frontier in the eight-dimensional input-output space. Banks may

have different business plans and hence may operate in different areas of the production set Ψ. The

model described in Section 1.3 is fully non-parametric, and hence quite flexible. The assumptions

listed in Section 1.3 impose only minimal restrictions involving free-disposability, continuity, and

some smoothness of the frontier, etc. Note that there is no assumption of convexity of Ψ, which is

tested below in Section 1.6.

The flexibility of the non-parametric model specified in Section 1.3 comes with a price, how-

ever, in terms of the well-known “curse of dimensionality.” The convergence rate of non-parametric

efficiency estimators decreases with increasing inputs and outputs. The number of observations in

each period that we consider ranges from 24 to 124. The effective parametric sample size defined by

Wilson (2018) is then, in the worst case, 24
2
8 ≈ 2 for FDH estimators, 24

4
9 ≈ 4 for VRS estimators,

and 24
4
8 ≈ 5 for CRS estimators; and in the best case, 124

2
8 ≈ 3 for FDH estimators, 124

4
9 ≈ 9 for

VRS estimators and 124
4
8 ≈ 11 for CRS estimators. With the maximum sample size of 124 and the

highest converge rate of n
2
8 , nonparametric estimators should be expected to result in estimation

error of order no better than that one would achieve with only 11 observations in a typical paramet-

ric estimator. Given the relatively small sample size and the high dimensions, it is not surprising

that the estimated efficiency for many banks is equal to 1 and hence is not reliable.

To address this, the dimension reduction technique proposed by Wilson (2018) is applied.

Considering the (n×p) and (n× q) matrices X and Y of observed non-negative inputs and outputs,

we compute the (n× 1) vectors of principle components X∗ = XΛx and Y ∗ = Y Λy, where Λx and

Λy are the (p×1) and (q×1) eigenvectors corresponding to the largest eigenvalues of X′X and Y′Y,

respectively. The dimensions of both X and Y are then reduced to only one dimension. However, we

need to examine Rx and Ry, which are the ratios of the largest eigenvalue of the moment matrices

X′X and Y′Y to the corresponding sums of the eigenvalues for these moment matrices. Wilson
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(2018) mentions that Rx and Ry provide measures of how close the corresponding moment matrices

are to rank-one, regardless of the joint distributions of inputs and outputs.

The eigensystem analysis on the full data yields Rx ≥ 98.25% and Ry ≥ 95.87% for all

years.14 It is clear that X∗ and Y ∗ contain most of the independent information of X and Y .

Wilson (2018) shows that in many cases, but not in general, this dimension reduction method is

advantageous in terms of reducing efficiency estimation error. In addition, dimension reduction

could significantly increase the convergence rate of non-parametric efficiency estimators and lead to

a more accurate estimation of efficiency. Now the convergence rates for FDH, VRS, and CRS are

n
1
2 , n

2
3 and n respectively.15 The tradeoff is that a small amount of information may be lost, but

the mean squared error is reduced. All estimation in the following is done using X∗ and Y ∗.

Figure 1.1 shows kernel density estimates of the log of total assets of Chinese banks over the

years 2007, 2011, and 2014. The estimates displayed in Figure 1.1 illustrate the evolution of bank

sizes over the period covered by our sample. The distribution of bank sizes has shifted rightward over

time, suggesting that the Chinese banking sector is expanding over time. This density distribution

is right-skewed, reflecting some banks have very large sizes. Similar phenomenon has been observed

in the U.S. banking industry.16

Table 1.1 shows the summary statistics for year 2014. After removing the data with 0 values

in any of the three inputs defined above, we have 124 observations in 2014, of which 32 observations

are foreign banks. Comparing differences between the median and Q1 and between Q3 and the

median for the input and output variables reveals that the marginal distributions are heavily skewed

to the right, again reflecting the skewness of the distribution of bank sizes.

1.6 Empirical Results

1.6.1 Efficiency and Productivity Evolution

As a robustness check to the need for dimension reduction, we estimate the hyperbolic

efficiency for each year first using full data with eight dimensions, and then using reduced data

with only two dimensions. The FDH, VRS and CRS estimators are applied for both cases. For

14The details about eigensystem analysis of input and output moment matrices are shown in Table C3 of the
separate Appendix C.

15The slowest rate is the root-n parametric rate after dimension reduction.
16See Wheelock and Wilson (2018).
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each year, the FDH estimator produces more estimates equal to 1 than the VRS estimator, which

produces more estimates equal to 1 than the CRS estimator.17 This is expected since there are

more restrictions for the CRS estimator than the VRS estimator, which has more restrictions than

the FDH estimator. More importantly, when using the full data, the FDH estimator results in all

the observations with estimates equal to one in any given year. The proportions for the VRS are

between 61 percent and 92 percent, and for the CRS are between 31 percent and 54 percent. This is

clear evidence of too many dimensions for the given sample size. With dimension reduction, when

using either estimator for any given year, the number of observations with estimates equal to 1

is much smaller than that without dimension reduction. In addition, the numbers using the FDH

estimator are at least 5 times those using the VRS estimator, suggesting that the production set Ψ

may be non-convex. In addition to large values of Rx and Ry discussed in Section 1.5, we provide

another piece of evidence that dimension reduction likely reduces estimation error relative to what

would be obtained when using the full data without dimension reduction. Therefore, the principal

components X∗ and Y ∗ described in Section 1.5 are used for obtaining all the following results.

The next question is to determine which estimator we should use. As discussed in Section 1.3,

in decreasing order of restrictions and rates of convergence lies the CRS, VRS, and FDH estimators.

Kneip et al. (2016) and Daraio et al. (2018) develop a test to test the null hypothesis of convexity

of the production set Ψ versus the alternative hypothesis that Ψ is non-convex. Two randomly split

subsamples for a given year are needed for this test. The first subsample of size n1 = bn/2c is used

for computing VRS estimates, and the second subsample of size n2 = n− n1 is used for computing

FDH estimates for a given sample size n. The test statistic given in equation (50) of Kneip et al.

(2016) involves the difference of the means of these two sets of estimates, with generalized jackknife

estimates of biases and corresponding sample variances, and is asymptotically normally distributed

with mean zero and unit variance. The test is a one-sided test since under the null the two means

should be roughly similar, but should diverge with increasing departures from the null. The statistic

given in equation (50) of Kneip et al. (2016) is defined in terms of input-oriented estimators but

extends trivially to output-oriented and hyperbolic estimators. The tests are one-sided and we

define the statistics so that “large” positive values indicate rejection of the null hypothesis. While

the results of Kneip et al. (2016) and Daraio et al. (2018) hold for a single split of the original sample,

17Additional details about the number of observations with estimates equal to one are given in the Table C5 of the
separate Appendix C.
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some have noticed that p-values resulting from the tests vary across different random splits of the

original sample. Simar and Wilson (2020) develop a method that eliminates much of this ambiguity

by repeating the random splits a large number of times and then use a bootstrap algorithm to exploit

the information from the multiple sample-splits and enable inference-making from multiple sample-

splits. Using the test developed by Simar and Wilson (2020), we use the principal components of

X∗ and Y ∗ to test the null hypothesis of convexity of the production set Ψ versus the alternative

hypothesis that Ψ is non-convex. 18

The results of the convexity tests for each year are shown in Table 1.2. Cells in columns 3, 5

and 7 are shaded whenever p-value is less than 0.10. Over 2007–2008, none of the six statistics reject

convexity. It could be due to the fact that we have a small sample size for the first two years and it

is hard to find the evidence of non-convexity. However, it is evident that over 2009–2014 convexity is

rejected for all cases at the 10 percent significance level except two cases (output-oriented, 2010 and

output-orientation, 2011), and rejected at the 1 percent significance level for most cases. Hence, the

results in Table 1.2 provide strong evidence of the non-convexity of the production set Ψ.19 When

the production set is convex, both FDH and DEA estimators remain consistent. However, when the

production set is non-convex, FDH estimators remain consistent, whereas DEA estimators do not.

Consequently, the FDH estimators are applied for the remainder of the analysis. 20

Table 1.3 presents summary statistics of the FDH technical efficiency estimates in the input,

output, and hyperbolic orientations. To compare with the input-oriented and hyperbolic-oriented

estimates, we report the statistics of the reciprocals of the output-oriented estimates. For each

orientation, the closer the estimates are to 1, the more technically efficient the banks and the closer

to the true frontier the banks. As might be expected, the hyperbolic estimates are more conservative

on average, with mean efficiencies ranging from 0.9595 to 0.9951. By contrast, the means of the input-

oriented estimates range from 0.9215 to 0.9905, while the means of the output-oriented estimates

range from 0.9174 to 0.9890. These differences are due to the geometry of the efficiency measures as

discussed by Wilson (2011). The mean efficiency in hyperbolic orientation first decreased from 2007

to 2008, then slightly increased from 2008 to 2009, and then continued declining until 2012, after

18We randomly split the samples for a given year by 1000 times and we bootstrap 1000 times.
19As a robustness check, we also consider convexity tests with unevenly split subsamples of the sample. The results

of these convexity tests are shown in Table C6 of the separate Appendix C. The results in Table C6 are consistent
with that in Table 1.2.

20We also use the KS-statistics developed in Simar and Wilson (2020). Even though KS-statistics are less likely to
reject convexity, it does not mean the null of convexity is true. As mentioned previously, when the production set is
non-convex, FDH estimators still remain consistent, whereas DEA estimators do not. Therefore, the FDH estimators
are applied for the remainder of the analysis.
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which the means rose again until 2014. The pattern of mean efficiency in the output orientation

appears to be the same, while the pattern in the input orientation is a little mixed. Mean efficiency

in the input orientation first declined from 2007 to 2009, then increased from 2009 to 2010, and then

declined until 2012, after which the mean rose and declined alternately from 2013 to 2014.

We use the test described by Kneip et al. (2016, Section 3.1.1) to test for significant differ-

ences between the means reported in Table 1.3 from one year to the next, as well as from the first

year to the last year. As discussed in Kneip et al. (2015, 2016), even with the reduced dimensionality

so that p + q = 2, the usual CLT results (e.g., the Lindeberg-Feller CLT) do not hold for means

of FDH efficiency estimates. As with the convexity test discussed above, the test statistic given by

equation (18) of Kneip et al. (2016) involves not only the difference in sample means of efficiency

estimates in a pair of years, but also the corresponding difference in generalized jackknife estimates

of bias. The test extends trivially to the output-orientation, and the hyperbolic orientation. In each

case, the statistic used here is defined so that a positive value indicates that efficiency increases from

year 1 to year 2, while a negative value indicates that efficiency decreases from year 1 to year 2.21 As

shown by Kneip et al. (2016), the test statistics are asymptotically normal with zero mean and unit

variance. Since our data is unbalanced panel, there may exist time correlation, which violates the

independent assumption of the test for differences of mean efficiency. The technical details dealing

with time correlations are given in the separate Appendix B Section B.1.

Table 1.4 gives the results of the tests of significant differences in mean efficiency over time.

Cells in columns 3, 5 and 7 are shaded whenever p-value is less than 0.10. The tests provide clear

evidence that the mean efficiency decreased from 2007 to 2008. As Table 1.3 shows that mean

efficiency in output orientation decreased from 0.9890 to 0.9581 over 2007–2008, it suggests that

given the same input, Chinese commercial banks averagely produced about 3 percent less output

in 2008 compared to that in 2007. This possibly reflects the negative effect of the crisis. However,

mean efficiency increased from 2008 to 2009 without any significant statistic. The result from 2009

to 2010 is mixed, where one statistic is positive but insignificant and the other two statistics are

negative with only one significant. This is not surprising since the crisis and stimulus happened at

the same time, which disrupted the Chinese banking system. Mean efficiency declined significantly

from 2010 to 2011. This decline could be the reversal effect of the stimulus. Mean efficiency then

21Consequently, the statistic we use for the output orientation is the negative of the statistic appearing in equation
(18) of Kneip et al. (2016).
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increased from 2011 to 2013 with only two insignificant statistics and then decreased from 2013

to 2014 with only one insignificant statistics. Overall, from 2007 to 2014, mean efficiency declined

significantly.

Taken together, we find strong evidence that mean efficiency decreased at the start of the

crisis. This suggests that banks were on average farther away from the frontier in 2008 than in

2007. Moreover, the crisis and the stimulus heavily disrupted Chinese banking industry, making

the change of mean efficiency from 2008 to 2010 unclear. However, it is apparent that there was a

reversal effect from the stimulus. Banks moved far away from the frontier from 2010 to 2011. Even

though banks seemed to recover from 2011 to 2013, overall, banks actually lied much farther away

from the frontier in 2014 compared with 2007.

In order to measure productivity, note that with the dimension reduction to (p + q) = 2

dimensions using the principal components X∗i , Y
∗
i as described in Section 1.5, productivity can be

measured by Y ∗i /X
∗
i for bank i. Summary statistics for this measure is displayed in Table 1.5. Mean

productivity first increased from 2007 to 2009, then decreased continuously from 2009 to 2013, after

which, it rose again from 2013 to 2014. Since productivity is measured by a simple ratio that does

not involve estimators of efficiency, standard CLT results can be used to test for significant changes

in means over time. However, we need to deal with time correlation, see the separate Appendix B

Section B.2 for technical details. The results of these tests are shown in Table 1.6. Cells in columns

7 are shaded whenever p-value is less than 0.10. Note that there are only three one-year intervals

in which the change of mean productivity is significant at the 10 percent level. Mean productivity

significantly declined from 2009 to 2010 and from 2010 to 2011, and significantly increased from

2013 to 2014. These results show that the productivity did not change at the start of the crisis.

However, it is evident that during or just after the stimulus, the mean productivity declined from

2009 to 2011 and banks finally recovered from 2013 to 2014. Overall, it appears that there was a

significant decrease in mean productivity from 2007 to 2014.

The results presented so far provide clear evidence of changes in mean technical efficiency

and productivity over the years represented in the sample. To gain further insight, we test whether

the frontiers change over time. This involves the test of “separability” developed by Daraio et al.

(2018), in which time is treated as a binary “environmental” variable. We examine it using pairs of

years 2007–2008, . . . , 2013–2014 as well as 2007–2014.

Implementation of the separability test of Daraio et al. (2018) involves pooling the data
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for two periods and then randomly shuffling the observations using the randomization algorithm

presented by Daraio et al.. Then the pooled, randomly shuffled observations are split into two

subsamples of equal size (or, if the combined number of observations is odd, one subsample will have

one more observation than the other). Using the first subsample, efficiency is estimated as usual for

each observation, ignoring which period a particular observation comes from, and the sample mean

of the efficiency estimate is computed. The second subsample is split into the set of observations

from period 1 and the set of observations from period 2. Efficiency is estimated for the period 1

observations using only the observations from period 1, while efficiency for the period 2 observations

is estimated using only those observations from period 2. Then the sample mean of these two sets

of efficiency estimates from the two sub-subsamples (of the second subsample) is computed. The

resulting test statistic involves differences in the two subsample means as well as differences in the

corresponding generalized jackknife estimates of bias. See Daraio et al. (2018) for discussion and

details.

Results of the separability tests are shown in Table 1.7. Cells in columns 3, 5 and 7 are

shaded whenever p-value is less than 0.10. From 2007 to 2008 and from 2009 to 2010, none of the

six statistics are significant, showing that technology did not change over these two periods. Two

statistics from the period 2008–2009 are significant at the 10 percent level, while the remaining

statistic is significant at the 1 percent level. Therefore, the technology changed from 2008 to 2009,

but, the evidence is not strong. It is evident that technology changed for the remaining five periods

from 2010 to 2014, even though during this period one statistic (hyperbolic-oriented, period 2010–

2011) is only significant at the 10 percent level. Overall, for the entire period 2007–2014, separability

is rejected with a p-value less than .05. The separability tests provide clear evidence of changes in

the technology during the crisis and the stimulus (2008–2009). They also suggest changes in the

technology after the stimulus (2010–2014), as well as over the full period 2007–2014.

In order to learn something about the direction in which technology may have shifted,

we use new results from Simar and Wilson (2018) who provide CLT results for components of

productivity changed measured by Malmquist indices. Simar and Wilson define the Malmquist

index in terms of hyperbolic distances, and then consider various decompositions that can be used

to identify components of productivity change. In particular, let Ψt represent the production set at

time t ∈ {1, 2} and let Zti = (Xt
i , Y

t
i ) denote the i-th firm’s observed input-output pair at time t.
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Then technical change relative to firm i’s position at times 1 and 2 is measured by

Ti =

[
γ(Z2

i | Ψ1)

γ(Z2
i | Ψ2)

× γ(Z1
i | Ψ1)

γ(Z1
i | Ψ2)

]1/2

. (6.1)

This is the hyperbolic analog of the output-oriented technical-change index that appears in the

decompositions of Ray and Desli (1997), Gilbert and Wilson (1998), Simar and Wilson (1998) and

Wheelock and Wilson (1999). The first ratio inside the brackets in (6.1) measures technical change

relative to firm i’s position at time 2, while the second ratio measures technical change relative to the

firm’s position at time 1. The measure Ti is the geometric mean of these two ratios. Values greater

than 1 indicate an upward shift in the technology, while values less than 1 indicate a downward shift

(a value of 1 indicates no change from time 1 to time 2).

Estimates T̂i are obtained by substituting the hyperbolic FDH estimator for each term in

(6.1). Simar and Wilson (2018) develop CLT results for geometric means T̂ 1,2 of Ti over firms

i = 1, . . . , n, for periods 1 and 2, and these results can be used to test significant differences of the

geometric means from 1. Table 1.8 shows the results of tests of technology change for each one-year

interval as well as for the entire period 2007–2014. Cells in columns 7 are shaded whenever p-value is

less than 0.10. The geometric mean T̂ 1,2 is less than 1 for each one-year interval from 2009 to 2013.

This suggests continuing downward shifts of the technology from 2009 to 2013 and upward shifts for

the remaining periods. However, the p-value is well less than 0.01 only for 2012–2013 and 2013–2014.

Consequently, the data only provide evidence that the technology shifted downward from 2012 to

2013 and then shifted upward from 2013 to 2014. Overall, the technology shifted upward over the

full period 2007–2014.

1.6.2 Big Versus Small

In China, big banks (especially the four big state owned commercial banks) take some

government orders explicitly and implicitly and thus they face more political pressures than small

banks. Therefore, big banks could not be more efficient and productive than small banks, which are

often considered to be more market-based. Our test could also be used to answer this question.

We split our sample into two subsamples in terms of the median total assets for each year.

The big banks are then defined as those with total assets larger than the median total assets for

each year, and the remaining are defined as small banks. Table 1.9 shows the results of tests on
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the difference of technical efficiency between big and small banks for each year. Cells in columns

5, 7 and 9 are shaded whenever p-value is less than 0.10. Note that all of the statistics except one

(output-oriented, 2009) are negative, suggesting that small banks were more technically inefficient.

Moreover, out of 24 total statistics (three orientations and eight years), only one statistic (output-

oriented, 2009) is insignificant, two statistics (output-oriented, 2008; hyperbolic-oriented 2008) are

only significant at the 10 percent level and all the remaining statistics are significant at the 5 percent

level.

Table 1.10 shows the results of tests on the difference of productivity. Cells in columns 7

are shaded whenever p-value is less than 0.10. The statistics are positive only for each year over the

period 2007–2010, suggesting that small banks were more productive than big banks at the early

periods, while big banks performed better in terms of productivity after 2010. However, the p-values

are significant at the 5 percent level only for 2012, 2013 and 2014. There is no evidence in our sample

showing that big banks had lower productivity. Big banks actually had higher productivity than

small banks in 2012, 2013, 2014.

Our results refute criticisms of the low efficiency and low productivity of big banks. As

a robustness check, we also consider different definitions of big banks and small banks based on

different quantiles of total assets for each year. The results of these tests are shown in Tables

C7–C10 of the separate Appendix C. The results are quite consistent with our baseline estimates.

1.6.3 Domestic Versus Foreign

Foreign banks are typically considered as having more advanced technology and more expe-

rienced managers. Therefore they are usually more efficient and productive than domestic banks in

China. Our tests could also be used to examine this outcome.

Table 1.11 shows the results of tests of the difference in mean technical efficiency between

domestic and foreign banks. Cells in columns 5, 7 and 9 are shaded whenever p-value is less than

0.10. In the first three years 2007–2009, all p-values are less than 0.05. However, the sign of the

statistics alternates, first negative for 2007, then positive for 2008, and negative again for 2009. This

suggests that foreign banks only had higher technical efficiency than domestic banks in 2008. From

2010 to 2014, most statistics are negative and seven statistics are significant at the 10 percent level.

In contrast, two statistics (input-oriented, 2011; input-oriented, 2013) are positive and insignificant.

Combining together, the data show that in general domestic banks performed better in terms of

20



technical efficiency than foreign banks over 2007–2014, while foreign banks only performed better in

2008.

Table 1.12 provides the results of tests of the difference in productivity between domestic

banks and foreign banks. Cells in columns 7 are shaded whenever p-value is less than 0.10. The

statistics are positive only for the first three years, of which only the one in 2008 is significant at

the 5 percent level. From 2010 to 2014, all statistics are negative and most are also significant at

the 5 percent level (except the one in 2010). This result suggests that foreign banks had higher

productivity only in 2008. However, domestic banks were more productive than foreign banks over

the period 2011–2014.

Our results refute criticisms of the low efficiency and low productivity of domestic banks.

However, the low efficiency and productivity of foreign banks could be due to more regulations

compared with domestic banks.

1.7 Summary and Conclusions

Among studies that use either FDH or DEA estimators to estimate efficiency and benchmark

the performances of firms, the vast majority use VRS (DEA) estimators which impose convexity

on the production set. The test of convexity versus non-convexity of Ψ developed by Kneip et al.

(2016) allows researchers to let the data tell them whether DEA estimators are appropriate in a given

setting. Here, in the context of Chinese commercial banks, convexity is strongly rejected. This is

consistent with the results of Wheelock and Wilson (2012, 2018), who find evidence of increasing

returns to scale among even the largest banks operating in the U.S.

Because we reject convexity of the production set, we use FDH estimators which remain

consistent when Ψ is not convex, whereas DEA estimators do not. We exploit collinearity in the

data to reduce inputs and outputs to their first principle components, resulting in a two-dimensional

problem. Results from Wilson (2018) indicate that this substantially reduces mean square error of

efficiency estimates. Moreover, the simulation evidence provided by Wilson (2018) suggests that

when production sets are convex, FDH estimates often have less mean square error than DEA

estimators after dimension reduction.

By rigorously comparing estimates and testing differences across the years represented in our

data, we find that technical efficiency declined at the start of the global financial crisis (2007–2008),
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and also after the China stimulus (2010–2011). However, technical efficiency finally recovered from

2011 to 2013 but declined again from 2013 to 2014. Overall, banks lied much farther away from the

frontier in 2014 compared to 2007. We find similar results for productivity. Productivity declined

during or just after the stimulus (2009–2011), but recovered from 2013 to 2014. Overall, there was

a decrease in mean productivity from 2007 to 2014. We also find that the frontier shifted downward

from 2012 to 2013 and shifted upward from 2013 to 2014. Over the period 2007–2014, technology

shifted upward. Our results show that in general big banks were more efficient and productive than

small banks. Domestic banks had higher efficiency and productivity than foreign banks over this

period except in 2008.

In terms of policy implications, recently the higher efficiency and productivity of big banks

compared to small banks suggests that there is a benefit for big banks to become even larger since

they could produce more output given the same input. If the government restricts the size of

big banks in case of “Too Big To Fail”, it will also restrict the total output of society given the

same input, and hence reduce the total welfare of the society. The higher technical efficiency of

domestic banks compared to foreign banks suggests that the domestic banks in China should be

more confident about their efficiency. These banks could operate in the international market and

compete with foreign banks in this market.
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Table 1.2: Results of Convexity Tests, Average over 1000 splits, Bootstrap 1000 times ( Even Split,
with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year Statistic p-value Statistic p-value Statistic p-value

2007 -4.5343 0.1370 3.8204 0.4500 -4.3650 0.3310
2008 -4.3240 0.2820 3.0105 0.4230 -4.8880 0.1920
2009 -6.1165 0.0130 6.6732 0.0030 -7.0909 0.0020
2010 -8.1269 0.0040 6.1395 0.1380 -7.1028 0.0310
2011 -5.5079 0.0070 1.6444 0.3830 -4.1084 0.0770
2012 -6.0398 0.0050 4.0242 0.0520 -5.7870 0.0060
2013 -7.2708 0.0000 5.4913 0.0060 -10.2836 0.0010
2014 -5.2326 0.0040 4.7402 0.0030 -6.1213 0.0010
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Table 1.3: Summary Statistics for FDH Technical Efficiency Estimates (with Dimension Reduction,
p = q = 1)

Year Min Q1 Median Mean Q3 Max

— Input Orientation —
2007 0.7727 1.0000 1.0000 0.9905 1.0000 1.0000
2008 0.3429 0.9876 1.0000 0.9616 1.0000 1.0000
2009 0.6075 0.9819 1.0000 0.9596 1.0000 1.0000
2010 0.7320 0.9873 1.0000 0.9743 1.0000 1.0000
2011 0.5644 0.9260 1.0000 0.9427 1.0000 1.0000
2012 0.3427 0.8879 1.0000 0.9232 1.0000 1.0000
2013 0.6089 0.8986 1.0000 0.9363 1.0000 1.0000
2014 0.2600 0.8716 0.9978 0.9215 1.0000 1.0000

— Output Orientation —
2007 0.7367 1.0000 1.0000 0.9890 1.0000 1.0000
2008 0.4934 0.9682 1.0000 0.9581 1.0000 1.0000
2009 0.7062 0.9810 1.0000 0.9756 1.0000 1.0000
2010 0.6951 0.9608 1.0000 0.9624 1.0000 1.0000
2011 0.1630 0.8848 1.0000 0.9219 1.0000 1.0000
2012 0.4068 0.8414 1.0000 0.9174 1.0000 1.0000
2013 0.5505 0.8725 1.0000 0.9285 1.0000 1.0000
2014 0.6376 0.8887 0.9951 0.9314 1.0000 1.0000

— Hyperbolic Orientation —
2007 0.8831 1.0000 1.0000 0.9951 1.0000 1.0000
2008 0.8205 0.9903 1.0000 0.9826 1.0000 1.0000
2009 0.8762 0.9897 1.0000 0.9865 1.0000 1.0000
2010 0.8071 0.9913 1.0000 0.9836 1.0000 1.0000
2011 0.7233 0.9435 1.0000 0.9601 1.0000 1.0000
2012 0.7343 0.9330 1.0000 0.9595 1.0000 1.0000
2013 0.6798 0.9429 1.0000 0.9622 1.0000 1.0000
2014 0.7266 0.9451 0.9994 0.9623 1.0000 1.0000

NOTE: Statistics for the reciprocals of the output efficiency estimates are given to facilitate com-
parison with the input-oriented and hyperbolic estimates.
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Table 1.4: Tests of Differences in Means for FDH Technical Efficiency Estimates with Respect to
Time (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Period Statistic p-value Statistic p-value Statistic p-value

2007–2008 −3.2015 1.37× 10−03 −4.2474 2.16× 10−05 −4.0501 5.12× 10−05

2008–2009 1.0134 3.11× 10−01 1.3244 1.85× 10−01 0.8801 3.79× 10−01

2009–2010 0.6543 5.13× 10−01 −0.2108 8.33× 10−01 −2.3697 1.78× 10−02

2010–2011 −2.2646 2.35× 10−02 −2.6639 7.72× 10−03 −2.3636 1.81× 10−02

2011–2012 0.6169 5.37× 10−01 2.3769 1.75× 10−02 1.8283 6.75× 10−02

2012–2013 1.2657 2.06× 10−01 3.1364 1.71× 10−03 3.8639 1.12× 10−04

2013–2014 −1.8348 6.65× 10−02 −2.1342 3.28× 10−02 −0.5801 5.62× 10−01

2007–2014 −11.4955 1.39× 10−30 −13.4240 4.37× 10−41 −12.0046 3.36× 10−33

NOTE: The numerator of statistics for each period is the difference of estimated mean efficiency of
the second year minus the first year.
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Table 1.5: Summary Statistics for Productivity (with Dimension Reduction, p = q = 1)

Year Min Q1 Median Mean Q3 Max

2007 0.4586 0.5898 0.6352 0.6575 0.6781 1.3950
2008 0.3066 0.6225 0.6509 0.6640 0.6923 1.0507
2009 0.4831 0.6016 0.6410 0.6822 0.6943 2.0020
2010 0.4756 0.5808 0.6333 0.6259 0.6684 0.7827
2011 0.1085 0.5131 0.5884 0.5665 0.6320 0.7430
2012 0.1621 0.5089 0.5842 0.5622 0.6327 0.7637
2013 0.1502 0.5121 0.5788 0.5556 0.6212 0.7166
2014 0.2019 0.5292 0.5925 0.5759 0.6425 1.0687

NOTE: Productivity for bank i is defined as Y ∗i /X
∗
i .
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Table 1.6: Tests of Differences in Means for Productivity Estimates with Respect to Time (with
Dimension Reduction, p = q = 1)

Period n1 n2 Mean1 Mean2 Statistic p-value

2007–2008 24 41 0.6575 0.6640 0.2201 8.26× 10−01

2008–2009 41 45 0.6640 0.6822 0.7273 4.67× 10−01

2009–2010 45 65 0.6822 0.6259 −1.7409 8.17× 10−02

2010–2011 65 82 0.6259 0.5665 −4.9801 6.36× 10−07

2011–2012 82 108 0.5665 0.5622 −0.4428 6.58× 10−01

2012–2013 108 123 0.5622 0.5556 −0.8445 3.98× 10−01

2013–2014 123 124 0.5556 0.5759 2.4747 1.33× 10−02

2007–2014 24 124 0.6575 0.5759 −2.2556 2.41× 10−02

NOTE: The numerator of statistics for each period is the difference of estimated mean productivity
of the second year minus the first year.
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Table 1.7: Tests for Separability with Respect to Time (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Period Statistic p-value Statistic p-value Statistic p-value

2007–2008 −0.9241 8.22× 10−01 −2.2895 9.89× 10−01 −0.2231 5.88× 10−01

2008–2009 2.7892 2.64× 10−03 1.2855 9.93× 10−02 1.4563 7.26× 10−02

2009–2010 0.3538 3.62× 10−01 −0.5795 7.19× 10−01 −0.2364 5.93× 10−01

2010–2011 2.8456 2.22× 10−03 1.8413 3.28× 10−02 1.6287 5.17× 10−02

2011–2012 5.9338 1.48× 10−09 4.1313 1.80× 10−05 5.3978 3.37× 10−08

2012–2013 3.7983 7.28× 10−05 4.9201 4.32× 10−07 4.3795 5.95× 10−06

2013–2014 5.0238 2.53× 10−07 5.1497 1.30× 10−07 4.4403 4.49× 10−06

2007–2014 3.3405 4.18× 10−04 4.0621 2.43× 10−05 3.6674 1.23× 10−04

NOTE: The numerator of the statistics is the difference of the conditional mean estimates minus
the unconditional mean estimates.
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Table 1.8: Tests for Technology Change with Respect to Time (with Dimension Reduction, p =
q = 1)

Period n1 n2 n T̂ 1,2 Var p-value

2007–2008 24 41 23 1.0080 0.0033 7.55× 10−01

2008–2009 41 45 33 1.0105 0.0085 8.05× 10−01

2009–2010 45 65 42 0.9925 0.0041 3.87× 10−01

2010–2011 65 82 60 0.9771 0.0033 3.73× 10−01

2011–2012 82 108 79 0.9962 0.0047 1.99× 10−01

2012–2013 108 123 101 0.9910 0.0031 8.60× 10−04

2013–2014 123 124 111 1.0138 0.0048 6.78× 10−03

2007–2014 24 124 22 1.0437 0.0091 9.24× 10−03

NOTE: For each period, the number of banks in the first year is n1, while the number of banks in
the second year is n2. The number of banks existing in both years is n. Mean of the technology
ratio T̂ 1,2 is greater than 1 if and only if the technology shifts upward.
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Table 1.9: Tests of Differences in Means for FDH Technical Efficiency Estimates with Respect to
Size (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year n1 n2 Statistic p-value Statistic p-value Statistic p-value

2007 12 12 −2.1830 2.90× 10−02 −2.1830 2.90× 10−02 −2.1830 2.90× 10−02

2008 21 20 −2.8359 4.57× 10−03 −1.6860 9.18× 10−02 −1.8349 6.65× 10−02

2009 23 22 −4.9276 8.33× 10−07 0.5838 5.59× 10−01 −3.5620 3.68× 10−04

2010 33 32 −2.9834 2.85× 10−03 −2.2602 2.38× 10−02 −2.3524 1.87× 10−02

2011 41 41 −5.1218 3.03× 10−07 −2.9776 2.90× 10−03 −5.1261 2.96× 10−07

2012 54 54 −4.2521 2.12× 10−05 −4.3841 1.16× 10−05 −3.6539 2.58× 10−04

2013 62 61 −3.0905 2.00× 10−03 −2.2699 2.32× 10−02 −3.3622 7.73× 10−04

2014 62 62 −5.7251 1.03× 10−08 −5.6388 1.71× 10−08 −6.3183 2.64× 10−10

NOTE: We split the total observations of each year into two even subsamples by the median total
assets in that year. The number of big banks is n1, while the number of small banks is n2. The
numerator of statistics is the difference of estimated mean efficiency of small banks minus big banks.
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Table 1.10: Tests of Differences in Means for Productivity Estimates with Respect to Size (with
Dimension Reduction, p = q = 1)

Year n1 n2 Mean1 Mean2 Statistic p-value

2007 12 12 0.6301 0.6848 0.7758 4.38× 10−01

2008 21 20 0.6356 0.6938 1.5655 1.17× 10−01

2009 23 22 0.6394 0.7270 1.3274 1.84× 10−01

2010 33 32 0.6188 0.6333 0.8462 3.97× 10−01

2011 41 41 0.5838 0.5491 −1.5846 1.13× 10−01

2012 54 54 0.5839 0.5405 −2.3468 1.89× 10−02

2013 62 61 0.5819 0.5288 −3.0986 1.94× 10−03

2014 62 62 0.6025 0.5493 −2.8746 4.05× 10−03

NOTE: We split the total observations of each year into two even subsamples by the median total
assets in that year. The number of big banks is n1, while the number of small banks is n2. The
numerator of statistics is the difference of estimated mean productivity of small banks minus big
banks.
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Table 1.11: Tests of Differences in Means for FDH Technical Efficiency Estimates with Respect to
Type (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year n1 n2 Statistic p-value Statistic p-value Statistic p-value

2007 18 6 −2.5210 1.17× 10−02 −2.5210 1.17× 10−02 −2.5210 1.17× 10−02

2008 27 14 4.9225 8.54× 10−07 4.0976 4.17× 10−05 4.5152 6.33× 10−06

2009 29 16 −2.2062 2.74× 10−02 −2.0177 4.36× 10−02 −2.5641 1.03× 10−02

2010 46 19 −1.0914 2.75× 10−01 −1.7238 8.47× 10−02 −1.0063 3.14× 10−01

2011 62 20 0.6964 4.86× 10−01 −2.2187 2.65× 10−02 −0.4654 6.42× 10−01

2012 81 27 −2.0105 4.44× 10−02 −2.9061 3.66× 10−03 −1.5096 1.31× 10−01

2013 93 30 0.2699 7.87× 10−01 −0.7012 4.83× 10−01 −0.9955 3.20× 10−01

2014 92 32 −2.9846 2.84× 10−03 −1.8352 6.65× 10−02 −2.6650 7.70× 10−03

NOTE: The number of domestic banks is n1, while the number of foreign banks is n2. The nu-
merator of statistics is the difference of estimated mean efficiency of foreign banks minus domestic
banks.
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Table 1.12: Tests of Differences in Means for Productivity Estimates with Respect to Type (with
Dimension Reduction, p = q = 1)

Year n1 n2 Mean1 Mean2 Statistic p-value

2007 18 6 0.6220 0.7640 1.0614 2.89× 10−01

2008 27 14 0.6272 0.7349 2.5058 1.22× 10−02

2009 29 16 0.6374 0.7634 1.4312 1.52× 10−01

2010 46 19 0.6276 0.6219 −0.2598 7.95× 10−01

2011 62 20 0.5821 0.5180 −2.0464 4.07× 10−02

2012 81 27 0.5892 0.4814 −4.4668 7.94× 10−06

2013 93 30 0.5806 0.4782 −4.3776 1.20× 10−05

2014 92 32 0.6040 0.4951 −3.8912 9.98× 10−05

NOTE: The number of domestic banks is n1, while the number of foreign banks is n2. The numer-
ator of statistics is the difference of estimated mean productivity of foreign banks minus domestic
banks.
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Figure 1.1: Density of (log) Total Assets of China’s Commercial Banks in 2007, 2011 and 2014
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NOTE: Solid red line shows density for 2007; dashed green line shows density for 2011; dotted
blue line shows density for 2014.
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Chapter 2

Evidence from Shadow Price of

Equity on “Too-Big-to-Fail” Banks

2.1 Introduction

The global financial crisis of 2007–2012 may have started in the U.S. banking sector and

was the worst U.S. economic disaster since the 1929 Great Depression. After Lehman’s failure, the

U.S. Congress passed the Troubled Asset Relief Program (TARP) to funnel hundreds of billions of

dollars to support banks in a period of extraordinary financial turbulence. In addition, the Federal

Reserve Board lent hundreds of billions of dollars to the banks through a series of newly created

special lending facilities.

As a result of this recent global financial crisis, “Too-Big-To-Fail” (TBTF) is now a virtually

official “policy”. TBTF “policy” means that since some banks are so big and so important that their

failure would be disastrous to the whole economic system, they must be protected by the government

whenever they face potential failure. Access to the federal government’s safety net allows TBTF

banks to operate with a lower funding cost relative to non-TBTF banks since the public believe that

the government would protect the TBTF banks again whenever there is another crisis, hence their

uninsured creditors (e.g., the equity investors) do not charge as high a price for the use of their funds

as they would in the absence of this perception. Therefore, there may exist an implicit subsidy for

TBTF banks. On the other hand, the Dodd-Frank Wall Street Reform and Consumer Protection

36



Act of 2010 were intended to remove TBTF “policy” by establishing a formal process for resolving

failures of large financial institutions, as well as by imposing a tighter financial regulatory regime.

All in all, TBTF has become a heated topic after the recent global financial crisis. However,

until now there lack enough evidence on the existence of TBTF banks. If TBTF banks do exist,

then it is rational for the government to remove the implicit subsidy. Moreover, we need to know

whether the implicit subsidy has decreased after the tighter regulations. In other words, we need

to know whether the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 are

effective in removing the implicit subsidy for TBTF.

There exists some literature providing evidence on the existence of TBTF banks. Santos

and Santos (2014) use information from bonds issued to find that the largest banks have a relatively

larger cost advantage over their smaller peers, compared with the largest nonbanks over their smaller

peers. This difference supports investors’ beliefs of TBTF banks. Brewer and Jagtiani (2013), using

data from the merger boom of 1991–2004, find that banking organizations were willing to pay an

added premium for mergers that would put them over the asset sizes that are commonly viewed

as the thresholds for being TBTF. Ueda and Weder di Mauro (2013) use the level of government

support embedded in the credit rating and its impact on the overall credit rating to provide estimates

for the structural subsidy values. They found a significant funding cost advantage for Systemically

Important Financial Institutions (SIFIs), about 60 basis points as of the end of 2007, before the

crisis and 80 basis points by the end of 2009. Baker and Mcarthur (2009) use data from the Federal

Deposit Insurance Corporation (FDIC) on the relative cost of funds for TBTF banks and other

banks, before and after the crisis, to quantify the value of the government protection provided by

the TBTF “policy”. They find that the spread between the average cost of funds for smaller banks

and the cost of funds for institutions with assets in excess of $100 billion averaged 0.29 percentage

points in the period from the first quarter of 2000 through the fourth quarter of 2007, the last

quarter before the collapse of Bear Steams. In the period from the fourth quarter of 2008 through

the second quarter of 2009, after the government bailouts had largely established TBTF, the gap had

widened to an average of 0.78 percentage points. If this gap is attributable to the TBTF “policy”,

it implies a substantial taxpayer subsidy for the TBTF banks. As a conclusion, previous research

uses different methods to show that TBTF banks indeed do exist in U.S. banking sector and they

enjoy the benefit of the implicit guarantee from government.

This paper estimates shadow price of equity for U.S. commercial banks over 2001–2018 using
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nonparametric estimators of the underlying cost function and then tests the existence of “Too-Big-to-

Fail” (TBTF) banks. Since TBTF banks are believed to be implicitly protected by the government,

they are considered safer and are willing to pay a lower price of equity than non-TBTF banks. If

a bank is public, the price of equity can be derived from the bank’s price of stock. However, most

U.S. commercial banks are not public, and the price of equity is also not directly observed from

the banks’ balance sheets and income statement information. Hence the price of equity needs to

be estimated for private banks. Following previous literature, the estimated price of equity using

balance sheet and income statement information is called the “shadow price of equity” in this paper,

to be differentiated from the price of equity measured using the price of stocks. An important

advantage of this approach is that the shadow price of equity can be estimated for both listed and

non-listed banks without using the market information. The shadow price of equity will equal the

market price of equity when banks’ cost is minimized at the current used amount of equity. Even if

the current amount of equity does not minimize the cost, the shadow price of equity still provides a

measure of opportunity cost of using the current amount of equity.

There exists some literature providing estimates of the shadow price of equity. Hughes

(1999) explicitly derives the shadow price of equity capital, however, he does not show the estimates

of shadow price of equity. Hughes et al. (2001) may be the first one to estimate the shadow price

of equity capital using translog specification for the cost function. They find that there a positive

relationship exists between asset size and the estimated shadow price of equity for the bank holding

companies in 1994. Fethi et al. (2012) estimate the shadow price equity for 22 banks from Turkey

over the period 2006–2009. They find that the shadow price on equity is negative in the post-financial

crisis period, suggesting that the massive recapitalization of the banks during the recovery from the

financial crisis drove them a long way from the equilibrium, and thus the involved deleveraging has

imposed significant costs. Boucinha et al. (2013) estimate the shadow price of equity for Portuguese

banks between 1992–2006 through the estimation of a translog cost frontier. The obtained measure

of the shadow price of equity is in general higher than the short-term money market interest rate,

however, it is lower than what is generally acknowledged to be a reasonable value for the actual

price of equity. Restrepo et al. (2013) present new nonparametric measures of scale economies and

total factor productivity growth for U.S. commercial banks over 2001–2010. Their results show

that the sign of shadow price of equity depends on the models they used and also on the bank

size. Duygun et al. (2015) use the same methods to estimate the shadow price of equity for 485
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banks from emerging economies over period 2005–2008. They find a very consistent and statistically

significant positive shadow price of equity capital of 4.1% to 4.9% on the capital constraint at the

sample mean. Consequently the regulatory requirement to hold equity capital as a proportion of

total assets is a strongly binding constraint at the sample mean. They also find that, at some

sample points, the estimated shadow price of equity is negative, indicating that they have identified

an ”Excessive Capitalizer” operating in the uneconomic region of the banking production function

because it is having to achieve a much higher equity capital to assets ratio. Radić (2015) estimates

the shadow price of equity for the Japanese banking system over 1999–2011. Radić finds that at

the sample mean, the shadow price on equity is between 2.8% and 6.1%. For the city banks, the

cost of equity over time is significantly negative. Dong et al. (2016) estimate the shadow price of

equity for Chinese commercial banks over the period 2002–2013. They find that there is a decreasing

trend in the shadow price of equity over this period. They also find that the sign on the shadow

price of equity is positive initially, but becomes negative by the end of the period. This may be

because, during or after a severe recapitalization period, banks tend to deviate from their long-run

equilibrium, which can cause the shadow price of equity to become negative. Fiordelisi et al. (2018)

estimate the shadow price of equity using the data from commercial banks in Japan over the period

2000 to 2010. They find that at the sample mean the shadow price on equity is between 2.8 percent

and 3.4 percent. They also find that for part of the period, the asset-weighted mean of the estimated

shadow prices of equity capital did turn negative for both listed and unlisted banks indicating strong

efforts at deleveraging and recapitalization. Hasannasab et al. (2019) use quadratic functional form

of directional distance functions to obtain shadow prices of bank equity capital for listed and unlisted

banks. They find that shadow prices for equity capital had reached abnormally high levels in the

years leading up to the subprime crisis in the US indicative of excessive risk-taking behavior.

Instead of using the standard translog cost function approach, this paper uses nonparmatric

methods initially developed by Simar et al. (2017) to estimate the cost frontier and thereby derive

the shadow price of equity. The translog cost function is not flexible enough in estimating the cost

function for U.S. commercial banks, where the size distribution is heavily right-skewed (Wheelock

and Wilson, 2018). I also control for cost inefficiency when estimating the shadow price of equity.

I use an almost fully-nonparametric specification of the noise and inefficiency processes, as opposed

to estimating the more typical parametric stochastic frontier model where the noise and inefficiency

distributions do not vary. The approach only requires symmetry of the two-sided noise process
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and that inefficiency be distributed half-normal. However, I allow the inefficiency to depend on

the same covariates in the response function. The method is along the line of Simar et al. (2017)

and Wheelock and Wilson (2019). Specifically, in the first regression, a nonparametric local-linear

estimator is used to estimate the conditional mean cost function. In the second regression, I regress

the cubed residuals from the first regression on the same covariates in the first regression. Using

the information in the second regression, I can adjust the original estimates of the conditional mean

cost function to estimate the cost frontier as well as the estimates of derivatives by exploiting the

right skewness of the estimated residuals. Consequently, the approach is almost fully nonparametric.

Although nonparametric estimators face the “curse of dimensionality”, I take two steps to mitigate

this problem.1 Specially, I estimate my model using a large dataset consisting of over 119,000

observations on all U.S. commercial banks over the period 2001–2018. I also use an eigensystem

decomposition of the correlation matrix of the right-hand-side variables to reduce the dimensions

of the empirical model. My estimation methodology follows that of Wheelock and Wilson (2018,

2019). However, Wheelock and Wilson (2018) focus exclusively on the estimation of return to scale

for U.S. banks for 1986–2015, and Wheelock and Wilson (2019) focus exclusively on the estimation

of Lerner indices for U.S. bank holding companies for 2001–2018. Here, I focus on the estimation of

the shadow price of equity for U.S. commercial banks for 2001–2018.

The nonparametric estimates of the shadow price of equity show that there indeed exist

implicit subsidies for the TBTF banks. Specifically, I find that in each year, the estimated median

value of shadow prices of equity for the banks in the fourth quartile based on total assets is much

smaller than the banks in the other three quartiles. Moreover, for any given year, there exists a

negative correlation between the shadow prices of equity and the sizes of banks, suggesting that

big banks pay less in equity than small banks. In addition, there are more banks with a negative

shadow price of equity in the fourth quartile than the other three quartiles in each year. The data

reveal that for any given year in the sample, the estimated mean shadow price of equity for the

top 100 largest banks is smaller than the mean price of deposits, even though equity is commonly

viewed as a riskier asset than deposits. Finally, I find that the top 10 largest banks are willing to

pay much more in equity at the start of the global financial crisis and after 2010. Therefore, the

Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 are effective in removing the

1“Curse of dimensionality” means the convergence rate of nonparametric estimators will decrease with the number
of dimensions. In this paper, the number of dimensions are the number of independent variables included.
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implicit subsidy, at least for the top 10 largest banks, and the deleveraging has imposed significant

costs on the top 10 largest banks.

In the next section, a microeconomic model is presented for commercial banks, and the

components needed to compute shadow price of equity are defined. In Section 2.3 the data used to

define variables described in Section 2.2 are discussed. Section 2.4 presents the statistical model and

gives details for estimation and inference. Empirical results are presented in Section 2.5. Summary

and conclusions are given in Section 2.6.

2.2 The Economic Model

2.2.1 Deriving the Shadow Price of Equity

In this section, following Braeutigam and Daughety (1983), Duygun et al. (2015) and

Weyman-Jones (2016), I employ a model of a representative bank’s cost function that takes ac-

count of the requirement for the equity-asset ratio. Specifically, banks are required to hold the

equity fixed in the short run, or to maintain a fixed equity-asset ratio to satisfy the government

regulations. However, in the long run, the equity is allowed to be variable.

A representative bank’s production function has p variable inputs x = (x1, . . . , xp), q outputs

y = (y1, . . . , yq), input prices w = (w1, . . . , wp), and an additional quasi-fixed input, equity q1, i.e.,

an input which may be a fixed input in the short run but is variable in the long run. Assume

the tranformation function F (y,x, q1, t) = 0 for banks has the properties of convexity and weak

disposability, where t is time. Weak disposability means Fxi
= ∂F

∂xi
, Fyj = ∂F

∂yj
, Fq1 = ∂F

∂q1
are not

restricted in sign. Therefore, banks are allowed to operate in the uneconomic region, and hence the

shadow price of equity is not restricted in sign.

The long run cost function, with all inputs including q1 treated as variables, takes the form

cl(y,w, w0, t) = min
x,q1
{w′x + w0q1 : F (y,x, q1, t) = 0}, (2.1)

where cl(y,w, w0, t) is the long run cost function and w0 is the shadow price of equity. Following

Duygun et al. (2015), the regulated short run cost function, modeled by specifying a fixed equity-
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asset ratio, r0 = q1/q2, has the form

cs(y,w, r0, t) =c(y,w, r0, t) + w0q1

= min
x
{w′x + w0q1 : F (y,x, q1, t) = 0, q1 = r0q2},

(2.2)

where cs(y,w, r0, t) is the short run cost function, q2 is assets for the bank and c(y,w, r0, t) is the

short run variable cost. The envelope theorem confirms that the long run cost function defines the

envelope of the short run cost function

cl(y,w, w0, t) = min
r0
{c(y,w, r0, t) + w0q1, q1 = r0q2}. (2.3)

Consequently, the envelope theorem gives

∂cl(y,w, w0, t)

∂r0
= 0 =

∂c(y,w, r0, t)

∂r0
+ w0q2, (2.4)

and rearranging this equation leads to

w0 = −∂c(y,w, r0, t)

∂r0

1

q2
= −∂c(y,w, r0, t)

∂q1
, (2.5)

where w0 is the shadow price of equity, q1. Rearranging equation (2.5) and expressing it in

elasticity form gives

w0q1

c
= −∂ log c(y,w, r0, t)

∂ log r0
= −εq1 , (2.6)

where εq1 is the elasticity of short run variable cost with respect to equity-asset ratio. Therefore,

the shadow share of equity expenses to total expenses could be estimated by the negative of the

elasticity of short run variable cost with respect to equity-asset ratio.

2.2.2 Interpreting the Shadow Price of Equity

The shadow price of equity is derived in the previous subsection, and it is shown in equation

(2.5). This equation is particularly relevant, since there is no explicit information on the price of

equity, except that equity is an input fixed in the short run. Given fixed total outputs, when the

bank has one more dollar increase in equity, some amount of deposits must be freed up since deposits
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and equity are substitutes. Expenses on deposits will surely decrease. Consequently, the variable

cost, which is the sum of deposit expenses, labor expenses, and physical capital expenses, will also

decrease. Therefore, the negative value of the derivative of the variable cost function with respect

to equity is the shadow price for equity, as shown in equation (2.5). The rationale underlying the

computation of the shadow price of equity is to provide a measure of how much banks are willing to

pay for one more dollar increase in the level of equity, since it indicates the amount that they would

save in the variable cost as a result of one more dollar increase in the level of equity. Consequently

given the price of outputs, the shadow price of equity also indicates the amount that they would

increase in the profit as a result of one more dollar increase in the level of equity. Even though

equity is fixed, and hence “free” in the short run, there still exits a price for equity in the long run.

In this paper, I use year-end balance sheet and income statement information to estimate

the cost function for banks. Therefore all dollar amounts are measured in book values rather than

market values. Expenses on deposits are measured as the total deposits times the average annual

interest rate on total deposits. Since all the other expenses are also measured annually, the estimated

shadow price of equity could be interpreted as the “annual interest rate” on equity, if equity is treated

the same as deposits. Therefore, the estimated shadow price of equity is directly comparable to the

average price of deposits and the average price of loans and leases.

2.3 Data and Variable Specification

To obtain estimates of the shadow price of equity in equation (2.5), I must specify the

variable cost function c(y,w, r0, t). My specification of right-hand-side (RHS) explanatory variables

closely follows much of the banking literature. I use year-end data on U.S. commercial banks for

2001–2018 from the FFIEC (The Federal Financial Institutions Examination Council) call reports.2

The widely used intermediation method of Sealey and Lindley (1977) is used to model a bank’s

technology as using deposits, labor, and physical capital (consisting of premises and fixed assets) to

produce loans and leases, investments and off-balance items.

For the model, I specify three output quantities: total loans and leases (y1), total securities

(y2), and off-balance sheet items consisting of non-interest income (y3). Further, I specify three

input prices: price of deposits (w1), price of labor (w2), and price of physical capital (w3). The input

2See https://cdr.ffiec.gov/public/PWS/DownloadBulkData.aspx
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price variables are measured by dividing expenditures on inputs by the corresponding quantities of

inputs. Equity-asset ratio is also included to reflect that equity (q1) is a quasi-fixed input. As an

additional control for banks’ differences in risk, I also include a measure of non-performing loans

(npl), consisting of total loans and lease financing receivables past due 30 days or more and still

accruing. As a final control variable, I index the years 2001–2018 by t = 1, 2, . . . , 18. Although t

is an ordered, categorical variable, it is treated as a continuous variable since its range is relatively

large. Including t as an explanatory variable controls for changes in regulation, the global financial

crisis, and all other changes by allowing the functional form of cost function to change over time.

The summary statistics for the variables over 2001–2018 are shown in Table 2.1. All mon-

etary values are reported in constant 2018 U.S. dollars. Comparing differences between the first

quartile and the median, and between the median and the third quartile for the input and output

variables reveals that the marginal densities for both input and output variables are all skewed to

the right. This implies that the translog specification for the cost function is not likely to be well

specified. The translog specification for the cost function in U.S. banks is rejected in Wheelock and

Wilson (2012, 2018, 2019).

Figure 2.1 shows the kernel density estimates of the log of total assets for U.S. commercial

banks in 2001, 2009, and 2018. The estimates displayed in Figure 2.1 illustrate the evolution of

commercial banks’ sizes over the period covered by the sample. The distribution of U.S. commercial

banks’ sizes has shifted rightward over time, suggesting that U.S. commercial banks are expanding

and some commercial banks have very large sizes. The nonparametric local estimator is more suitable

than parametric estimators when the right skewness exists.

The medians and means for equity-asset ratio for each year are shown in Table 2.2. The

mean and median values of the equity-asset ratio across years are around 10 percent, and the mean

value is slightly larger than the median value for each year. The median value continuously increases

from 2001 to 2007, and then continuously decreases from 2007 to 2009, after which, it continuously

increases until 2012, where it maintains a much higher level than before. The pattern of the mean

value of the equity-asset ratio appears to be the same. The decrease of the equity-asset ratio from

2007 to 2009 reflects the negative effect of the global financial crisis on U.S. commercial banks. In

contrast, the increase of the equity-asset ratio after 2009 reflects the recapitalization process after

the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010.

The medians of the equity-asset ratio for each size quartile based on total assets are reported
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in Table 2.3. In general, for each year the median value of the equity-asset ratio decreases when

the size of banks increases. The correlations between the equity-asset ratio and size for each year in

2001–2018 are reported in Table 2.4. It is clear that there exists a negative correlation between the

equity-asset ratio and the size of banks, suggesting that big banks tend to hold less equity, given

total assets, compared with small banks. This indicates that small banks lack other resources, except

increasing the equity-asset ratio to mitigate the potential market risk. However, big banks may get

an implicit guarantee of bailout from the government when there is another crisis, and hence there

is no need for them to hold too much equity than the level required by the government. Table 2.5

shows the weights for the assets of the top 10 largest commercial banks in the U.S. for each year. As

shown in the table, the asset weight for the top 10 largest banks takes more than 50 percent after

2005, reflecting that the top 10 largest banks indeed have very large bank sizes and dominate the

U.S. banking sector.

The relatively larger sizes of big banks may give them some market power in pricing the

deposits and loans and leases. The results of the tests of differences in means for price of deposits

between big and small banks for each year are shown in Table 2.6. For each year I split the sample

into two subsamples based on the median value of total assets. The small banks are then defined as

those with total assets smaller than the median value of total assets in each year, and the remaining

are defined as big banks. Table 2.6 shows that the mean price of deposits for big banks is significantly

smaller than that for small banks before 2003, while it is significantly larger for most cases after

2003. This reflects the demand effect since big banks usually need larger amount of deposits than

small banks, and hence they are willing to pay a higher price for deposits than small banks. The

results of the tests of differences in means for price of loans and leases between small and big banks

for each year are shown in Table 2.7. Table 2.7 shows that the mean price of loans and leases for big

banks is significantly smaller than that for small banks in each year. This reflects the supply effect

since big banks usually provide a larger amount of loans and leases, and hence they will charge a

lower price than small banks. As a robustness check, I also consider a different definition of small

banks and big banks based on the bottom and top 25th percentile of total assets in each year. The

results of the tests of the differences in means for price of deposits and price of loans and leases are

shown in Tables 2.8 and 2.9, respectively. The results are quite consistent with my baseline results

in Tables 2.6 and 2.7.
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2.4 The Econometric Model

Simar et al. (2017) propose an almost fully-nonparametric framework for stochastic frontier

models. This method involves less assumptions on the cost function and is more general than

the translog or other parametric specifications of the cost function. A number of papers have

rejected the translog specifications of the cost function.3 Therefore, I use nonparametric least

squares methods for stochastic frontier models to estimate the cost function for the U.S. commercial

banks and thereby derive the shadow price of equity. The nonparametric estimation strategy avoids

specification error that might be obtained when using a mis-specified model. A disadvantage of

nonparametric estimators, however, is that they suffer from the “curse of dimensionality”, i.e., the

convergence rates fall as the number of dimensions in the model increases. However, the slow

convergence of nonparametric estimators is mitigated by using a large dataset and an eigensystem

decomposition of the correlation among the right-hand-side variables to reduce dimensions.

The variable cost function c(y,w, r0, t) must be homogeneous of degree one with respect to

input prices w since the cost minimization problem implies that factor demand equations must be

homogeneous of degree zero in input prices. Consequently I divide the input prices and the variable

cost by the price of physical capital (w3). Following Wheelock and Wilson (2012, 2018), I define the

vector of covariates

zi = [
wi1
wi3

wi1
wi3

yi1 yi2 yi3 ri0 npli exp(ti)]

for the right-hand-side variables (RHS) of the cost function. In order to estimate cost frontiers and

to allow for inefficiency, I employ the moment-based method of Simar et al. (2017) and eigensystem

decomposition of Wheelock and Wilson (2019) as described below.

I first take logs of each RHS variable, then standardize the logs by subtracting means and

dividing by standard deviations of the logs. This will transform zi to z̃i. The RHS variables are

usually highly correlated. Following Wheelock and Wilson (2019), I use eigensystem decomposition

of the correlation matrix of z̃i to reduce dimensions. Let E denote the matrix of eigenvectors of the

correlation matrix of z̃i. The eigenvectors in the columns of E are ordered so that the first column

corresponds to the largest eigenvalue and the last column corresponds to the smallest eigenvalue.

3See Wheelock and Wilson (2012, 2018, 2019)
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Then I compute the (n× 8) matrix

Ψfull = [Ψ Ψdel] = z̃iE (4.7)

of principal components, where Ψ contains the desired principal components and Ψdel

contains the removed components. Let ej denote the eigenvalues, sorted in decreasing order, and let

ẽj =
∑j
k=1 ek/

∑8
k=1 ek for j = 1, 2, . . . , 8. Then ẽj gives the proportion of the independent linear

transformation in z̃i contained in the first j principal components, i.e., the first j columns of Ψfull.

These values are 0.3986, 0.6122, 0.7610, 0.8742, 0.9341, 0.9708, 0.9870, and 1.0000. Consequently,

I define the partition in equation (4.7) so that Ψ is an (n × 5) matrix, and I use these first d = 5

principal components to estimate the cost function. By construction, Ψ contains more than 93

percent of the independent linear information in z̃i for the period 2001–2018, and consequently the

number of dimensions are reduced from 8 to 5.

Now let Ψi = (Ψi1,Ψi2, . . . ,Ψid) denote the ith row of Ψ. I use the local-linear estimator

to estimate the following cost function

log(
ci
wi3

) = m(Ψi1,Ψi2, . . . ,Ψid) + Vi + Ui, (4.8)

where m(Ψi) = m(Ψi1,Ψi2, . . . ,Ψid) is a conditional mean function measuring the cost func-

tion frontier, and Vi is the statistical noise term, for which I assume that E(Vi|Ψi) = 0 and

Var(Vi|Ψi) ∈ (0,∞) for all i and that Ui is a nonnegative random variable, capturing the individual

cost inefficiency. Moreover, Ui is assumed to be independent from Vi. Conditionally on Ψi, Ui|Ψi

is assumed to follow half-normal distribution |N(0, σ2
U (Ψi))|, and hence µU (Ψi) =

√
2
πσU (Ψi).

In addition, I make no functional form assumptions regarding m(Ψi) and only make the regular

assumptions to ensure the consistency of nonparametric estimators.

Following Simar et al. (2017) and Wheelock and Wilson (2019), let εi = Vi + Ui − µU (Ψi),

and r1(Ψi) = m(Ψi) + µU (Ψi). Using the local-linear estimator I estimate the following equation

log(
ci
wi3

) = r1(Ψi) + εi, (4.9)

where r1(Ψi) is the estimated individual cost function. Denote r3(Ψi) = E(ε3
i |Ψi). It can be easily
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shown that

E(εi|Ψi) = 0 (4.10)

and

E(ε3
i |Ψi) = E[(Ui − µU (Ψi))

3|Ψi], (4.11)

where the distribution of inefficiency Ui|Ψi has a positive skewness and therefore r3(Ψi) ≥ 0.

After estimating the cost function, I now have

ε̂i = log(
ci
wi3

)− r̂1(Ψi), (4.12)

and I can get the local linear estimate of r3(Ψi) from the data points {ε̂3
i ,Ψi|i = 1, . . . , n}. After

some algebra, it can be shown that the variance function for Ui can be consistently estimated by

σ̂2
U (Ψi) = max

{
0,
[√π

2

( π

4− π

)
r̂3(Ψi)

] 2
3

}
, (4.13)

and

ĉi = wi3 exp(m̂(Ψi)) = wi3 exp(r̂1(Ψi)− µ̂U (Ψi)). (4.14)

Therefore according to (2.5) in Section 2.2, the shadow price of equity is equal to

wi0 = − ∂ci
∂ri0

1

qi2
= −ci(

∂r1(Ψi)

∂ri0
− ∂µU (Ψi)

∂ri0
)

1

qi2
, (4.15)

where for zil, the l-th element of zi, I have

∂r1(Ψi)

∂zil
= s−1

l z−1
il

d∑
j=1

β̂1ijElj , (4.16)
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and

∂µU (Ψi)

∂zil
=


21/3

3 (4− π)−1/3r̂3(Ψi)
−2/3s−1

l z−1
il

∑d
j=1 β̂3ijElj , ∀r̂3(Ψi) > 0

0 otherwise,

(4.17)

where Elj is the (l, j)-th element of the matrix E of eigenvectors, and sl is the standard deviation

of the logged l-th variable, i.e., the standard deviation of the l-th column of z̃. The slope terms

are β̂1ij = ∂r1(Ψi)
∂Ψij

and β̂3ij = ∂r3(Ψi)
∂Ψij

, j = 1, 2, . . . , 5. Moreover, the β̂1ijs and β̂3ijs are computed

at each observation i in each regression due to the local nature of the local-linear estimator. The

estimation approach described here is almost fully nonparametric. Although I assume that ineffi-

ciency is distributed half-normal, the shape parameter is estimated locally and is allowed to vary

continuously across observations. A fully nonparametric approach does not seem possible, as some

structures are needed in order to identify expected inefficiency.

To implement the local-linear estimator a bandwidth parameter must be selected to control

the smoothing over the continuous dimensions in the data. Following Wheelock and Wilson (2011,

2012, 2018, 2019), I use least-squares cross-validation to optimize an adaptive, κ-nearest-neighbor

bandwidth. In addition, I employ a second-order Epanechnikov kernel function. I use the bandwidth

inside the kernel function. This means that when estimating cost at any fixed point of interest in

the space of the RHS variables, only the κ observations closet to that point can influence estimated

cost. In addition, among these κ observations, the influence that a particular observation has on

estimated cost diminishes with distance from the point at which the response is being estimated.

The estimator here is thus a local estimator and is very different from typical, parametric, global

estimation strategies (e.g. ordinary least squares, maximum likelihood, etc.) where all observations

in the sample influence (with equal weights) estimation at any given point in the data space. More-

over, because I use adaptive nearest-neighbor bandwidths, the bandwidths automatically adapt to

variation in the sparseness of data throughout the support of the RHS variables. This results in

relatively larger values for the bandwidths where the data are sparse (and where more smoothing

is required), and smaller values for the bandwidths where the data are relatively dense (where less

smoothing is needed).

For making inference about the shadow prices of equity or differences in these across different
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years or groups based on the nonparametric estimates, I use the wild bootstrap introduced by Härdle

(1990) and Härdle and Mammen (1993), which avoids making specific distributional assumptions.

Although the estimators are asymptotically normal, the bootstrap avoids the needs to estimate those

unknown parameters in an asymptotically normal distribution. I estimate confidence intervals using

methods described in Wheelock and Wilson (2011, 2012, 2018, 2019).

First, I obtain bootstrap estimates {ŵ∗0b}Bb=1 (set B = 1, 000), then sort the values in

{ŵ∗0b − ŵ0}Bb=1 by algebraic value, delete (α2 × 100)% of the elements at either end of this sorted

array, and denote the lower and upper end points of the remaining, sorted array as −b∗α and −a∗α,

respectively. Then a bootstrap estimate of a (1− α)% confidence interval for ŵ0 is

ŵ0 + a∗α ≤ w0 ≤ ŵ0 + b∗α. (4.18)

The idea underlying equation (4.18) is that the empirical distribution of the bootstrap values

(ŵ∗0b − ŵ0) mimics the unknown distribution of (ŵ0 − w0), with the approximation improving as

n −→ ∞. As B −→ ∞, the choices of −b∗α and −a∗α become increasingly accruate estimates of the

percentiles of the distribution of (ŵ∗0b − ŵ0). Any bias in ŵ0 relative to w0 is reflected in the bias of

ŵ∗ relative to ŵ. The estimated confidence interval may not contain the original estimates of ŵ if

the bias is large because the estimated confidence interval corrects for the bias in ŵ.

2.5 Empirical Results

I use nonparametric local linear methods and some moment conditions to estimate the

frontier, from which I derive the shadow price of equity for each commercial bank over 2001–2018.

However, there are some unreasonable estimates of the shadow prices of equity, therefore, I first

remove the outliers in the estimates before analyzing the results. If the estimated shadow price of

equity is smaller than Q1− 3× IQR or larger than Q3 + 3× IQR, then this estimate is defined as

an outlier, where Q1 is the first quartile, Q3 is the third quartile, and IQR is the interquartile range

(i.e., IQR = Q3−Q1). In total there are 1443 outliers out of 119, 028 observations. After removing

the outliers, I do not lose much information, and the estimates, after removing the outliers, still

capture the changes in the trend of quartiles of the estimates.

The summary statistics for the estimated shadow prices of equity are reported in Table 2.10.

The mean value of the estimated shadow prices of equity is 0.0875 in 2001. This means that for a
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typical U.S. commercial bank in the beginning of 2001, if it borrows one more dollar of equity from

an investor for just one year, then it is estimated to pay back 1.0875 dollars by the end of 2001.

In other words, the “interest rate” on equity is 0.0875 in 2001. The median value of the estimated

shadow prices of equity continuously decreases from 2001 to 2005, and then increases from 2005

to 2006, after which, it decreases again from 2006 to 2008. The median value increases from 2008

to 2010, and then decreases from 2010 to 2014, after which it increases from 2014 to 2016. The

median value then decreases from 2016 to 2017 and increases from 2017 to 2018. The mean values

of the estimated shadow prices of equity have similar trend over the period 2001–2018. I find that

the median values before 2008 are, in general, higher than that after 2008, thus implying that the

recapitalization process in U.S. commercial banks leads to a decrease in the shadow price of equity.

The lower median values after 2008 may also reflect the relatively low funding costs, low potential

market risk, and the increased competition in the U.S. banking sector. The increase in shadow

price of equity from 2008 to 2010 implies that banks are willing to pay more to increase their equity

capital during the global financial crisis since the market risk during this time is perceived to be very

high. Specifically, the larger median value (0.0324) in 2010 may be due to the tighter regulations

of the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 that require banks to

hold a much higher level of equity than before. Banks are willing to pay more in 2010 to raise their

equity capital to satisfy the government’s regulations. This result is consistent with Dong et al.

(2016), who find that there is an increase in the shadow price of equity for Chinese banks from 2008

to 2009. Surprisingly, some amount of banks with negative estimates of shadow prices of equity

show up across years. This suggests that for any given year, these banks actually operate in an

uneconomic region of the production function. These banks may hold a much higher equity level

than their efficient level, causing their shadow prices of equity to be negative.

Stated previously, the estimated shadow price of equity is directly comparable to the price

of deposits and the price of loans and leases. The comparisons among the median values of these

three prices are reported in Table 2.11. Equity is commonly considered more risky than deposits

because equity holders are the last to receive any distribution of assets as a result of bankruptcy

proceedings. Therefore, equity holders expect greater returns from their investment in the firm’s

stock than depositors. Table 2.11 shows that for most years, the estimated shadow price of equity

is larger than the price of deposits and smaller than the price of loans. However, over the period

2006–2008, the estimated shadow price of equity is smaller than the price of deposits. Moreover,
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over the period 2006–2008, the price of loans and leases is very high. The potential profits for banks

over 2006–2008 may lead banks to be willing to pay an unreasonable price for deposits.

Table 2.12 reports the summary statistics for the estimated shadow shares of equity costs

to total variable expenses in each year. The median values of the estimated shadow shares of equity

costs have a decreasing trend from 2001 to 2008, and then have an increasing trend from 2008 to

2018. The mean values have a similar pattern. Even though Table 2.10 shows that the median

values of the estimated prices of equity before 2008 are in general higher than that after 2008, Table

2.12 shows that the median values of estimated shadow shares of equity costs increase in general

after 2008, reflecting that banks use much more equity than before, and U.S. banking systems have

been undergoing recapitalization since the global financial crisis.

Table 2.13 shows the summary statistics for the estimated cost inefficiency in each year.

Even though the changes of median and mean values of the cost inefficiency over this period are

mixed, it is evident that the cost inefficiency before 2008 is lower in general than that after 2008.

This suggests that banks became less cost efficient after 2008, and on average they are much farther

away from the cost frontier. The increase in inefficiency may be caused by the tighter regulations

from the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010, suggesting that

the deleveraging has imposed significant costs on banks.

The difference in medians for the estimated shadow prices of equity by size quartile based

on log of total assets are reported in Table 2.14. It is evident that the median values of estimated

shadow prices of equity for the fourth quartile are much smaller than the other three quartiles for

any given year. Moreover, the median values of shadow prices of equity for the fourth quartile are

negative over 2005–2008 and 2015–2016. Specifically the median values for the banks in the fourth

quartile have the lowest negative value in 2008, suggesting that these banks do not pay anything

to equity investors at the start of the global financial crisis, and instead they get paid implicitly

by the equity investors. This fact implies that big banks indeed get an implicit guarantee from

the government during the upheaval global financial crisis. To further understand the relationship

between the estimated shadow price of equity and the size of banks, I report their correlation in

Table 2.15. For any given year, there is a negative correlation between the shadow price of equity

and the size of banks, suggesting that big banks indeed consistently pay less in equity than small

banks over the sample period. Our results are different from Hughes et al. (2001) who find that a

positive relationship exists between the size and the estimated shadow price of equity for the bank
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holding companies in 1994. This is not surprising since I use nonparametric methods instead of

translog cost function and also here I focus on commercial banks over 2001–2018 rather than bank

holding companies in 1994.

The results of tests about whether the estimated shadow prices of equity are different from

0 are reported in Table 2.16. The table reports the number of banks for which I reject that the

shadow price of equity is significantly different from 0 (at .05 significance) in favor of a positive

shadow price of equity or a negative shadow price of equity, or for which I cannot reject that the

shadow price of equity is equal to 0 in each quartile of total assets in each year. In each quartile, I

find that a small number of banks have a negative shadow price of equity in each year, suggesting

that only a small number of banks operate in an uneconomic region of production. However, among

banks in the fourth quartile (the largest 25 percent of banks by assets), I find that there are more

banks having negative shadow price of equity than the other three quartiles in each year. Therefore,

the results suggest that more banks in the fourth quartile get paid implicitly by equity investors

than the other three quartiles, providing evidence of TBTF banks.

Table 2.17 reports the correlations between the equity-asset ratios and the shadow prices

of equity across years. Economic theory predicts that in a free market, if a bank uses more equity

given fixed outputs (or assets), the price (or opportunity cost) of equity should be lower. Table 2.17

shows that the correlations are only negative for 2001, 2002, and 2006. This means that if a bank

uses more equity given fixed assets, the shadow price of equity will be lower over these three years.

However, for most years, the correlations are positive. This result is not surprising and supports

the choice of treating equity capital as a quasi-fixed input rather than a variable input. In the short

run, equity is not variable due to government’s regulations and constraints.

Turning to differences in the means of estimated shadow price of equity between the top

100 largest banks and the other banks in Table 2.19, the data reveal that for any given year in the

sample, the estimated mean shadow price of equity for the top 100 largest banks is smaller than the

mean price of deposits, which is smaller than the mean price of loans and leases. This result thus

provides evidence that, on average, the top 100 largest banks get the implicit guarantee from the

government, so they are able to pay a much lower price on equity than on deposits, even though

equity is commonly viewed as a much riskier asset than deposits. Also, for most years, the mean

shadow price of equity for the top 100 largest banks is negative, again implying that they get paid

implicitly by the equity investors. In addition, the mean shadow price of equity for the top 100
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largest banks in 2007 has the largest positive value (0.0148), suggesting that on average they would

like to pay more to get equity capital at the start of the global financial crisis, even though this value

is still much smaller than the price of deposits. Comparing the difference in the mean shadow prices

of equity between the top 100 largest banks and the other banks, I find that the mean value for the

top 100 largest banks is much smaller than that for the other banks, again providing evidence that

the top 100 largest banks get paid implicitly by the equity investors.

I further check differences in the means of the estimated shadow prices of equity for the top

10 largest banks and the other banks with results reported in Table 2.20. The data reveal that in

2001–2005, 2007, and 2009–2011, the estimated mean shadow prices of equity for the top 10 largest

banks are smaller than the mean prices of deposits, which is smaller than the mean price of loans and

leases. This is evidence that there exits an implicit subsidy for the top 10 largest banks. However,

for the remaining periods, the estimated mean shadow price of equity for the top 10 largest banks

is larger than the mean price of deposits and even larger than the mean price of loans and leases in

some cases. In addition, the mean shadow price of equity for the top 10 largest banks in 2007 has

a very large positive value (0.133), suggesting that on average they would like to pay much more to

get equity capital to mitigate the market risk at the start of the global financial crisis. Moreover,

the mean shadow price of equity for the top 10 largest banks maintains a very high level after 2010.

Comparing the difference in mean shadow prices of equity between the top 10 largest banks and the

other banks, I find that the mean values for the top 10 largest banks are larger than for the other

banks at the start of the global financial crisis and after the Dodd-Frank Wall Street Reform and

Consumer Protection Act of 2010. Comparing these results with those in Table 2.19, I find that

even though on average the top 100 largest banks pay less in equity for each year, the top 10 largest

banks actually pay more for some years, especially at the start of the global financial crisis and after

the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010. These results imply that

the regulations are effective in reducing the implicit subsidy at least for the top 10 largest banks.

However, it is also evident that the recapitalization has imposed significant equity funding costs on

the top 10 largest banks.
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2.6 Summary and Conclusions

After the global financial crisis, TBTF has become a heated topic. However, until now there

was little evidence of the existence of TBTF banks. This paper contributes to the literature on the

existence of TBTF banks by providing a new piece of evidence.

By estimating the shadow price of equity, using nonparametric local-linear method for

stochastic frontier models initially introduced by Simar et al. (2017), I find that there are indeed

implicit subsidies for the TBTF banks. Specifically, I find that the estimated median values of

shadow prices of equity for the banks in the fourth quartile based on total assets are much smaller

than the banks in the other three quartiles. Moreover, for any given year there exists a negative

correlation between the shadow prices of equity and the sizes of banks, suggesting that big banks

pay less in equity than small banks. In addition, there are more banks with a negative shadow price

of equity in the fourth quartile than the other three quartiles in each year. The data reveal that

for any given year in the sample, the estimated mean shadow price of equity for the top 100 largest

banks is smaller than the mean price of deposits, even though equity is commonly viewed as a riskier

asset than deposit. Finally, I find that the top 10 largest banks are willing to pay much more at

the start of the global financial crisis and after the Dodd-Frank Wall Street Reform and Consumer

Protection Act of 2010. Therefore, the Dodd-Frank Wall Street Reform and Consumer Protection

Act of 2010 is effective in removing the implicit subsidy for the top 10 largest banks. However, it

is also evident that the recapitalization has imposed significant equity funding costs on the top 10

largest banks.

My results are consistent with the evidence of the existence of TBTF banks, provided by

Baker and Mcarthur (2009), Brewer and Jagtiani (2013), Ueda and Weder di Mauro (2013), and

Santos and Santos (2014). Given the importance of TBTF in the U.S., the policies trying to remove

the implicit subsidy on TBTF have significant impacts on the U.S. banking market. Policy makers

should be cautious of the fact that the increased safety of banks may be offset by the adjustment

costs (decreased efficiency and increased shadow price of equity) imposed by the recapitalization

process. This is a critical question for both policy makers and banking regulators.
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Table 2.2: Medians and Means for Equity-Asset Ratio

Year N Median Mean

2001 8111 0.0932 0.1028
2002 7905 0.0955 0.1050
2003 7782 0.0954 0.1044
2004 7550 0.0961 0.1062
2005 7371 0.0961 0.1059
2006 7168 0.0977 0.1085
2007 7065 0.1002 0.1114
2008 6878 0.0977 0.1068
2009 6578 0.0975 0.1051
2010 6293 0.0987 0.1058
2011 6109 0.1033 0.1098
2012 6468 0.1046 0.1110
2013 6301 0.1024 0.1089
2014 6025 0.1064 0.1132
2015 5724 0.1069 0.1140
2016 5491 0.1061 0.1129
2017 5234 0.1075 0.1150
2018 4975 0.1092 0.1168
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Table 2.3: Medians of Equity-Asset Ratio by Size Quartile Based

Year 1st Quartile 2nd Quartile 3nd Quartile 4th Quartile

2001 0.1049 0.0953 0.0909 0.0863
2002 0.1069 0.0974 0.0926 0.0890
2003 0.1058 0.0971 0.0922 0.0889
2004 0.1065 0.0980 0.0925 0.0906
2005 0.1070 0.0979 0.0929 0.0898
2006 0.1090 0.0998 0.0941 0.0919
2007 0.1117 0.1022 0.0961 0.0938
2008 0.1104 0.1002 0.0932 0.0906
2009 0.1059 0.0995 0.0939 0.0931
2010 0.1041 0.0994 0.0967 0.0967
2011 0.1067 0.1046 0.1010 0.1023
2012 0.1078 0.1045 0.1024 0.1045
2013 0.1043 0.1028 0.1004 0.1036
2014 0.1075 0.1070 0.1045 0.1068
2015 0.1101 0.1071 0.1050 0.1063
2016 0.1104 0.1067 0.1034 0.1054
2017 0.1118 0.1082 0.1045 0.1068
2018 0.1138 0.1093 0.1051 0.1091

Note: The size quartiles are defined in terms of total assets for each year.
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Table 2.4: Correlation Between Equity-Asset Ratios and Sizes of Banks

Year Correlation

2001 -0.1960
2002 -0.1856
2003 -0.1594
2004 -0.1394
2005 -0.1455
2006 -0.1512
2007 -0.1497
2008 -0.2007
2009 -0.1423
2010 -0.0803
2011 -0.0555
2012 -0.0411
2013 -0.0131
2014 -0.0446
2015 -0.0637
2016 -0.0658
2017 -0.0645
2018 -0.0687
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Table 2.5: The Weight of Assets for Top 10 Largest Banks

Year Weight

2001 0.3862
2002 0.4077
2003 0.4221
2004 0.4651
2005 0.4817
2006 0.5127
2007 0.5343
2008 0.5552
2009 0.5495
2010 0.5613
2011 0.5753
2012 0.5437
2013 0.5467
2014 0.5566
2015 0.5465
2016 0.5376
2017 0.5380
2018 0.5438
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Table 2.6: Tests of Differences in Means for Price of Deposits Between Big and Small Banks

Year n1 n2 Mean1 Mean2 Statistic p-value

2001 4055 4056 0.0497 0.0485 -4.5192 6.21× 10−06

2002 3952 3953 0.0326 0.0313 -6.2582 3.90× 10−10

2003 3891 3891 0.0237 0.0231 -3.5160 4.38× 10−04

2004 3775 3775 0.0194 0.0197 1.9707 4.88× 10−02

2005 3685 3686 0.0231 0.0249 11.0570 2.03× 10−28

2006 3584 3584 0.0313 0.0346 12.3775 3.46× 10−35

2007 3532 3533 0.0357 0.0393 4.5629 5.04× 10−06

2008 3439 3439 0.0281 0.0294 7.3395 2.14× 10−13

2009 3289 3289 0.0208 0.0210 0.1990 8.42× 10−01

2010 3146 3147 0.0148 0.0152 3.0753 2.10× 10−03

2011 3054 3055 0.0107 0.0109 1.6835 9.23× 10−02

2012 3234 3234 0.0081 0.0082 1.2454 2.13× 10−01

2013 3150 3151 0.0062 0.0062 0.5783 5.63× 10−01

2014 3012 3013 0.0052 0.0052 0.5788 5.63× 10−01

2015 2862 2862 0.0048 0.0048 -0.1576 8.75× 10−01

2016 2745 2746 0.0047 0.0048 0.5972 5.50× 10−01

2017 2617 2617 0.0049 0.0052 3.4847 4.93× 10−04

2018 2487 2488 0.0061 0.0070 9.4219 4.43× 10−21

Note: I split the total observations of each year into two even subsamples by the median total assets
in that year. The number of small banks is n1, while the number of big banks is n2.

61



Table 2.7: Tests of Differences in Means for Price of Loans and Leases Between Big and Small
Banks

Year n1 n2 Mean1 Mean2 Statistic p-value

2001 4055 4056 0.0887 0.0843 -11.2364 2.70× 10−29

2002 3952 3953 0.0788 0.0733 -13.0674 5.05× 10−39

2003 3891 3891 0.0730 0.0665 -18.3902 1.58× 10−75

2004 3775 3775 0.0681 0.0626 -6.1035 1.04× 10−09

2005 3685 3686 0.0710 0.0666 -14.2099 7.96× 10−46

2006 3584 3584 0.0771 0.0743 -9.2144 3.13× 10−20

2007 3532 3533 0.0796 0.0759 -9.5987 8.09× 10−22

2008 3439 3439 0.0716 0.0667 -14.8066 1.33× 10−49

2009 3289 3289 0.0673 0.0624 -10.7416 6.49× 10−27

2010 3146 3147 0.0666 0.0618 -12.3055 8.46× 10−35

2011 3054 3055 0.0643 0.0596 -14.9504 1.55× 10−50

2012 3234 3234 0.0612 0.0566 -11.8717 1.66× 10−32

2013 3150 3151 0.0576 0.0526 -15.2305 2.22× 10−52

2014 3012 3013 0.0549 0.0500 -15.5815 9.73× 10−55

2015 2862 2862 0.0538 0.0486 -15.8820 8.44× 10−57

2016 2745 2746 0.0535 0.0479 -18.0996 3.21× 10−73

2017 2617 2617 0.0531 0.0485 -11.2615 2.03× 10−29

2018 2487 2488 0.0546 0.0506 -12.1416 6.36× 10−34

Note: I split the total observations of each year into two even subsamples by the median total assets
in that year. The number of small banks is n1, while the number of big banks is n2.
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Table 2.8: Tests of Differences in Means for Price of Deposits Between Big and Small Banks

Year n1 n2 Mean1 Mean2 Statistic p-value

2001 2028 2028 0.0494 0.0479 -3.5437 3.95× 10−04

2002 1976 1977 0.0326 0.0306 -6.1715 6.76× 10−10

2003 1946 1946 0.0235 0.0226 -3.5992 3.19× 10−04

2004 1888 1888 0.0189 0.0195 2.6699 7.59× 10−03

2005 1843 1843 0.0222 0.0253 13.1272 2.30× 10−39

2006 1792 1792 0.0300 0.0353 17.9959 2.10× 10−72

2007 1766 1767 0.0344 0.0391 8.8235 1.11× 10−18

2008 1720 1720 0.0272 0.0294 8.2329 1.83× 10−16

2009 1645 1645 0.0208 0.0209 0.0710 9.43× 10−01

2010 1573 1574 0.0141 0.0150 4.2883 1.80× 10−05

2011 1527 1528 0.0104 0.0108 2.4803 1.31× 10−02

2012 1617 1617 0.0078 0.0081 2.3653 1.80× 10−02

2013 1575 1576 0.0060 0.0061 1.0969 2.73× 10−01

2014 1506 1507 0.0050 0.0051 0.7422 4.58× 10−01

2015 1431 1431 0.0047 0.0047 0.2447 8.07× 10−01

2016 1373 1373 0.0046 0.0047 0.9334 3.51× 10−01

2017 1309 1309 0.0048 0.0052 3.9932 6.52× 10−05

2018 1244 1244 0.0059 0.0072 9.2318 2.66× 10−20

Note: I split the total observations of each year into the top 25% quantile group and the bottom
25% quantile group in terms of total assets. The number for small banks is n1, while the number of
big banks is n2.
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Table 2.9: Tests of Differences in Means for Price of Loans and Leases Between Big and Small
Banks

Year n1 n2 Mean1 Mean2 Statistic p-value

2001 2028 2028 0.0897 0.0831 -11.3313 9.18× 10−30

2002 1976 1977 0.0807 0.0718 -13.9986 1.59× 10−44

2003 1946 1946 0.0752 0.0646 -19.7196 1.46× 10−86

2004 1888 1888 0.0699 0.0598 -15.9104 5.37× 10−57

2005 1843 1843 0.0721 0.0656 -13.2573 4.10× 10−40

2006 1792 1792 0.0777 0.0734 -9.5689 1.08× 10−21

2007 1766 1767 0.0804 0.0750 -8.3365 7.66× 10−17

2008 1720 1720 0.0733 0.0656 -14.0755 5.37× 10−45

2009 1645 1645 0.0688 0.0616 -8.5787 9.60× 10−18

2010 1573 1574 0.0678 0.0609 -11.3459 7.77× 10−30

2011 1527 1528 0.0655 0.0585 -13.1973 9.10× 10−40

2012 1617 1617 0.0624 0.0555 -10.7737 4.58× 10−27

2013 1575 1576 0.0589 0.0513 -13.6655 1.63× 10−42

2014 1506 1507 0.0563 0.0485 -14.9686 1.18× 10−50

2015 1431 1431 0.0552 0.0469 -15.3249 5.21× 10−53

2016 1373 1373 0.0551 0.0465 -16.2377 2.73× 10−59

2017 1309 1309 0.0545 0.0476 -9.2036 3.46× 10−20

2018 1244 1244 0.0557 0.0498 -10.3783 3.11× 10−25

Note: I split the total observations of each year into the top 25% quantile group and the bottom
25% quantile group in terms of total assets. The number for small banks is n1, while the number of
big banks is n2.
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Table 2.10: Summary Statistics for Estimated Shadow Prices of Equity

Year N Min Q1 Median Mean Q3 Max

2001 7907 -0.7965 -0.0646 0.0830*** 0.0875*** 0.2437 0.8760
2002 7793 -0.7991 -0.0559 0.0647*** 0.0759*** 0.2048 0.8757
2003 7694 -0.7863 -0.0746 0.0466*** 0.0526** 0.1840 0.8726
2004 7458 -0.7973 -0.0930 0.0366*** 0.0402** 0.1740 0.8747
2005 7234 -0.7989 -0.1156 0.0304*** 0.0299 0.1816 0.8711
2006 6945 -0.7974 -0.1267 0.0310*** 0.0368** 0.2029 0.8768
2007 6843 -0.7894 -0.1287 0.0307*** 0.0345* 0.2072 0.8754
2008 6761 -0.7937 -0.1148 0.0229** 0.0232 0.1640 0.8671
2009 6526 -0.7791 -0.0846 0.0276*** 0.0299* 0.1460 0.8715
2010 6255 -0.7953 -0.0739 0.0324*** 0.0328** 0.1415 0.8766
2011 6087 -0.7904 -0.0622 0.0286*** 0.0333** 0.1292 0.8632
2012 6452 -0.7822 -0.0565 0.0275*** 0.0333** 0.1222 0.8262
2013 6281 -0.7924 -0.0681 0.0226*** 0.0198 0.1148 0.8236
2014 6014 -0.7804 -0.0599 0.0223*** 0.0235* 0.1086 0.8463
2015 5700 -0.7972 -0.0668 0.0237*** 0.0243* 0.1164 0.8600
2016 5468 -0.7808 -0.0666 0.0255*** 0.0290** 0.1261 0.8760
2017 5215 -0.7787 -0.0681 0.0245*** 0.0278** 0.1278 0.8739
2018 4952 -0.7992 -0.0788 0.0267*** 0.0256* 0.1311 0.8695

Note: Statistical significance (difference from 0) for the median and mean values at the ten, five,
or one percent levels is denoted by one, two, or three asterisks, respectively.
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Table 2.11: Differences in Medians for Estimated Shadow Prices of Equity, Prices of Deposits and
Prices of Loans and Leases

Year Equity Deposits Loans

2001 0.0830 0.0496 0.0860
2002 0.0647 0.0321 0.0753
2003 0.0466 0.0234 0.0687
2004 0.0366 0.0195 0.0636
2005 0.0304 0.0242 0.0679
2006 0.0310 0.0331 0.0749
2007 0.0307 0.0374 0.0771
2008 0.0229 0.0289 0.0683
2009 0.0276 0.0204 0.0640
2010 0.0324 0.0148 0.0632
2011 0.0286 0.0106 0.0610
2012 0.0275 0.0077 0.0576
2013 0.0226 0.0057 0.0536
2014 0.0223 0.0048 0.0509
2015 0.0237 0.0044 0.0499
2016 0.0255 0.0043 0.0494
2017 0.0245 0.0046 0.0494
2018 0.0267 0.0062 0.0511
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Table 2.12: Summary Statistics for Estimated Shadow Shares of Equity Costs to Total Expenses

Year N Min Q1 Median Mean Q3 Max

2001 7907 -2.1198 -0.1431 0.2027 0.1955 0.5460 2.2585
2002 7793 -2.6517 -0.1762 0.2070 0.2161 0.6035 2.5181
2003 7694 -2.8934 -0.2569 0.1744 0.1816 0.6150 3.0163
2004 7458 -2.7709 -0.3392 0.1577 0.1534 0.6329 3.1989
2005 7234 -3.4110 -0.3800 0.1174 0.1142 0.6111 3.7346
2006 6945 -2.9897 -0.3886 0.1073 0.1205 0.6114 3.0056
2007 6843 -3.5348 -0.3682 0.1038 0.1085 0.5880 3.1385
2008 6761 -3.6798 -0.3398 0.0735 0.0931 0.5189 2.9500
2009 6526 -4.5818 -0.2869 0.1086 0.1252 0.5328 2.9416
2010 6255 -2.9489 -0.2910 0.1396 0.1444 0.5866 2.8939
2011 6087 -2.7813 -0.2939 0.1472 0.1617 0.6162 3.0730
2012 6452 -3.5784 -0.2961 0.1609 0.1748 0.6389 3.5406
2013 6281 -3.2565 -0.3653 0.1343 0.1357 0.6383 3.7433
2014 6014 -4.0487 -0.3614 0.1449 0.1551 0.6586 5.3166
2015 5700 -3.8380 -0.4031 0.1575 0.1678 0.7358 4.7627
2016 5468 -6.2755 -0.3878 0.1733 0.1806 0.7470 5.5381
2017 5215 -5.1794 -0.3943 0.1630 0.1797 0.7419 4.1570
2018 4952 -4.2895 -0.4272 0.1540 0.1550 0.7191 3.3417
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Table 2.13: Summary Statistics for Estimated Mean Cost Inefficiency

Year N Min Q1 Median Mean Q3 Max

2001 7907 1.0000 1.0603 1.1684 1.1641 1.2510 1.6734
2002 7793 1.0000 1.1194 1.1955 1.1896 1.2695 1.6526
2003 7694 1.0000 1.1346 1.2116 1.2014 1.2820 1.6786
2004 7458 1.0000 1.1444 1.2210 1.2093 1.2893 1.6842
2005 7234 1.0000 1.1451 1.2204 1.2086 1.2901 1.6692
2006 6945 1.0000 1.1400 1.2171 1.2059 1.2888 1.6837
2007 6843 1.0000 1.1404 1.2188 1.2087 1.2914 1.6498
2008 6761 1.0000 1.1493 1.2238 1.2190 1.3004 1.6558
2009 6526 1.0000 1.1488 1.2263 1.2232 1.3084 1.6851
2010 6255 1.0000 1.1499 1.2272 1.2236 1.3079 1.6553
2011 6087 1.0000 1.1495 1.2269 1.2215 1.3089 1.6497
2012 6452 1.0000 1.1474 1.2245 1.2213 1.3116 1.6582
2013 6281 1.0000 1.1505 1.2294 1.2225 1.3116 1.6361
2014 6014 1.0000 1.1539 1.2320 1.2231 1.3131 1.6637
2015 5700 1.0000 1.1498 1.2301 1.2214 1.3110 1.6538
2016 5468 1.0000 1.1456 1.2286 1.2188 1.3117 1.6451
2017 5215 1.0000 1.1411 1.2238 1.2140 1.3071 1.6169
2018 4952 1.0000 1.1250 1.2121 1.2036 1.2976 1.5906

68



Table 2.14: Difference in Medians for Shadow Prices of Equity by Size Quartile

Year 1st Quartile 2nd Quartile 3nd Quartile 4th Quartile

2001 0.0761 0.0975 0.1064 0.0498
2002 0.0673 0.0858 0.0729 0.0317
2003 0.0460 0.0640 0.0596 0.0142
2004 0.0358 0.0630 0.0425 0.0123
2005 0.0291 0.0536 0.0434 -0.0010
2006 0.0344 0.0556 0.0534 -0.0093
2007 0.0285 0.0662 0.0380 -0.0040
2008 0.0291 0.0460 0.0295 -0.0164
2009 0.0310 0.0470 0.0313 0.0006
2010 0.0319 0.0468 0.0410 0.0093
2011 0.0313 0.0444 0.0334 0.0046
2012 0.0292 0.0395 0.0326 0.0079
2013 0.0255 0.0320 0.0282 0.0044
2014 0.0231 0.0321 0.0307 0.0050
2015 0.0313 0.0382 0.0275 -0.0040
2016 0.0347 0.0478 0.0276 -0.0088
2017 0.0386 0.0323 0.0307 0.0021
2018 0.0316 0.0359 0.0376 0.0019
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Table 2.15: Correlation Between the Estimated Shadow Prices of Equity and Sizes of Banks

Year Correlation

2001 -0.0682
2002 -0.0856
2003 -0.0862
2004 -0.0884
2005 -0.0635
2006 -0.0738
2007 -0.0741
2008 -0.0946
2009 -0.0806
2010 -0.0630
2011 -0.0783
2012 -0.0801
2013 -0.0526
2014 -0.0643
2015 -0.1010
2016 -0.1153
2017 -0.0888
2018 -0.0817
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Table 2.16: Counts of Banks Having Negative, 0, and Positive Shadow Prices of Equity by Size
Quartile (.05 significance)

— 1st quartile — — 2nd quartile — — 3rd quartile — — 4th quartile —
Year Neg. 0 Pos. Neg. 0 Pos. Neg. 0 Pos. Neg. 0 Pos.

2001 173 1432 372 121 1485 371 114 1469 393 229 1359 389
2002 171 1385 393 133 1406 409 123 1464 361 239 1354 355
2003 179 1391 354 164 1354 405 169 1414 340 262 1323 339
2004 203 1310 352 196 1277 391 211 1324 329 274 1279 312
2005 225 1262 322 208 1250 350 183 1322 303 280 1259 270
2006 227 1212 298 163 1247 326 161 1286 289 236 1223 277
2007 203 1241 267 153 1234 324 158 1246 306 281 1155 275
2008 166 1229 296 164 1204 322 193 1228 269 261 1188 241
2009 178 1165 289 135 1174 322 165 1193 273 228 1139 265
2010 160 1091 313 157 1104 303 165 1098 300 227 1032 305
2011 155 1085 282 143 1059 320 156 1058 307 226 1007 289
2012 179 1112 323 169 1092 351 161 1110 342 228 1100 285
2013 183 1091 297 203 1063 304 207 1058 305 247 1013 310
2014 161 1057 286 155 1066 282 175 1018 310 243 988 273
2015 166 962 297 139 972 314 159 977 289 295 866 264
2016 160 930 277 124 967 276 169 925 273 268 839 260
2017 132 864 308 146 907 251 156 871 276 236 805 263
2018 125 850 263 141 828 269 130 848 260 230 751 257
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Table 2.17: Correlation Between the Estimated Shadow Prices of Equity and Equity-Asset Ratios

Year Correlation

2001 -0.0206
2002 -0.0285
2003 0.0084
2004 0.0138
2005 0.0286
2006 -0.0021
2007 0.0039
2008 0.0626
2009 0.0477
2010 0.0296
2011 0.0104
2012 0.0050
2013 0.0632
2014 0.0453
2015 0.0455
2016 0.0399
2017 0.0472
2018 0.0438
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Table 2.18: Correlation Between the Ratio of Shadow Prices of Equity over Price of Deposits and
the Ratio of Equity over Deposits

Year Correlation

2001 -0.0159
2002 -0.0191
2003 -0.0040
2004 -0.0053
2005 0.0036
2006 -0.0167
2007 -0.0015
2008 0.0467
2009 -0.0041
2010 0.0013
2011 -0.0080
2012 -0.0022
2013 0.0017
2014 0.0005
2015 -0.0003
2016 0.0274
2017 0.0026
2018 0.0027
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Table 2.19: Differences in Means for Shadow Prices of Equity, Prices of Deposits, and Prices of
Loans and Leases for the Top 100 Largest Banks and the Other Banks

— Top 100 Largest Banks — — The Other Banks —
Year Equity Deposits Loans Equity Deposits Loans

2001 -0.0126 0.0452 0.0834 0.0888 0.0490 0.0863
2002 -0.0206 0.0276 0.0693 0.0772 0.0320 0.0761
2003 -0.0117 0.0205 0.0607 0.0535 0.0234 0.0699
2004 -0.0211 0.0182 0.0555 0.0410 0.0195 0.0654
2005 -0.0127 0.0273 0.0622 0.0305 0.0239 0.0689
2006 -0.0139 0.0366 0.0692 0.0376 0.0328 0.0757
2007 0.0148 0.0386 0.0707 0.0348 0.0374 0.0778
2008 -0.0076 0.0269 0.0639 0.0237 0.0287 0.0691
2009 -0.0305 0.0162 0.0586 0.0308 0.0209 0.0649
2010 -0.0045 0.0122 0.0589 0.0334 0.0150 0.0643
2011 -0.0218 0.0087 0.0539 0.0342 0.0109 0.0621
2012 -0.0166 0.0071 0.0515 0.0341 0.0081 0.0591
2013 0.0023 0.0055 0.0484 0.0201 0.0062 0.0552
2014 -0.0222 0.0048 0.0454 0.0243 0.0052 0.0526
2015 -0.0193 0.0046 0.0461 0.0251 0.0048 0.0513
2016 -0.0077 0.0047 0.0448 0.0297 0.0047 0.0508
2017 -0.0019 0.0054 0.0456 0.0283 0.0050 0.0509
2018 0.0031 0.0082 0.0516 0.0261 0.0065 0.0526
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Table 2.20: Differences in Means for Shadow Prices of Equity, Prices of Deposits, and Prices of
Loans and Leases for the Top 10 Largest Banks and the Other Banks

— Top 10 Largest Banks — — The Other Banks —
Year Equity Deposits Loans Equity Deposits Loans

2001 -0.0619 0.0434 0.0773 0.0877 0.0490 0.0863
2002 -0.0628 0.0236 0.0614 0.0761 0.0319 0.0760
2003 -0.0898 0.0164 0.0543 0.0528 0.0234 0.0698
2004 -0.0721 0.0148 0.0474 0.0404 0.0195 0.0653
2005 -0.1212 0.0253 0.0567 0.0301 0.0239 0.0688
2006 0.0583 0.0370 0.0738 0.0368 0.0329 0.0757
2007 0.1325 0.0393 0.0740 0.0343 0.0374 0.0777
2008 0.0327 0.0236 0.0643 0.0232 0.0287 0.0691
2009 -0.0632 0.0109 0.0533 0.0301 0.0209 0.0649
2010 -0.0242 0.0074 0.0573 0.0329 0.0150 0.0642
2011 0.0147 0.0053 0.0414 0.0333 0.0108 0.0620
2012 0.0462 0.0041 0.0419 0.0333 0.0081 0.0590
2013 0.0593 0.0033 0.0400 0.0197 0.0062 0.0551
2014 0.0383 0.0027 0.0379 0.0235 0.0052 0.0525
2015 0.0633 0.0027 0.0359 0.0242 0.0048 0.0512
2016 0.0650 0.0031 0.0374 0.0289 0.0047 0.0507
2017 0.0968 0.0043 0.0400 0.0276 0.0050 0.0508
2018 0.1546 0.0074 0.0447 0.0253 0.0066 0.0526
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Figure 2.1: Density of (log) Total Assets of U.S. Commercial Banks in 2001, 2009, and 2018
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NOTE: Solid line shows density for 2001; dashed line shows density for 2009; dotted line shows
density for 2018.
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Chapter 3

Performance of Countries in the

Post-Crisis Era

3.1 Introduction

The global financial crisis of 2007–2012 was the worst economic disaster since the 1929 great

depression. It began with the subprime crisis of the housing mortgage markets in the U.S. Since

securities linked to subprime loans were accumulated in all the banks and all the global financial

market, the subprime crisis quickly caused inter-banking crisis. As early as on 14 September 2007,

Britain’s Northern Rock Bank received a liquidity support facility from the Bank of England, which

led to the UK’s first bank run in 150 years. In 2008, several other depressed financial institutions

were purchased by others (Bear Stearns by JP Morgan Chase, Merrill Lynch by Bank of Amer-

ica), nationalized (Fannie Mae, Freddie Mac, and American International Group), or bankrupted

(Washington Mutual, Lehman Brothers). Even though the governments of many countries provided

liquidity and enacted large fiscal programs, bank failures led to a credit shortage and blocked the

investment, plunging the global economy into a deep recession. Given this disruptive period 2004–

2014, it is reasonable to ask what happened to the global economy following 2004, some years before

the global financial crisis. Especially, we are interested in the evolution of productivity, efficiency,

and technology of the countries during this period.

The traditional approach to the analysis of productivity using non-frontier analysis assumes
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that all the countries lie in the frontier and are perfectly efficient so that the growth of productivity is

purely interpreted as the movement of the frontier or technology. However, the non-frontier analysis

does not incorporate the inefficiency part resulting from the constraints or low efficient management,

hence the estimation of productivity and technical progress would be biased. On the other hand,

the frontier analysis could directly model the inefficiency behavior of the countries when estimating

productivity, efficiency, and technical progress.

There exist some literature using parametric and nonparametric frontier methods to estimate

technical efficiency and productivity of the countries in the world. Färe et al. (1994) may be the first

to use nonparametric frontier method to analyze productivity growth in 17 OECD countries over

the period 1979–1988. They decompose Malmquist productivity growth into changes in technical

efficiency which measures catching-up effect, and shifts in technology which measures the innovation.

They find that U.S. productivity growth is slightly higher than average. Ray and Desli (1997)

propose an alternative decomposition of Malmquist productivity growth. Maudos et al. (1999)

add human capital as another input to estimate Malmquist productivity and they find that the

inclusion of human capital has a significant effect on the accurate measurement of total factor

productivity. Chang and Luh (1999) use the same method as in Färe et al. (1994) to check for

Asian countries and they find that the United States is not the sole innovator among the 19 APEC

member economies. Rather, Hong Kong and Singapore have shown their capability to shift the

grand frontier of the APEC economies. Arcelus and Arocena (2000) use nonparametric frontier

method to estimate technical efficiency and scale efficiency for 14 OECD countries over 1970–1990

period. They find evidence of convergence, even if at quite different speeds, for total industry,

manufacturing, and services. Emrouznejad (2003) proposes a dynamic nonparametric efficiency

model to estimate efficiency, and compare the results with the static efficiency model proposed by

Färe et al. (1994). They find that dynamic models capture efficiency better than static models. Han

et al. (2004) use a varying coefficients frontier production (parametric method) to estimate total

factor productivity, and then decompose it into technical efficiency change and technical change

for a sample of 45 developed and developing countries over the period 1970–1990. They find that

East Asian economies are not outliers in terms of total factor productivity growth. Salinas-Jiménez

and Salinas-Jiménez (2007) use nonparametric frontier approach to estimate productivity, technical

efficiency and then check the effects of corruption on these two measures for OECD countries.

They find that corruption negatively influences the possibilities of growth. Wang et al. (2012)
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estimate Malmquist productivity index with and without defense expenditure, and then compare

the difference of Malmquist productivity over time to check the effects of defense expenditure on

economic productivity in OECD countries. They find that average Malmquist productivity with

defense expenditure is higher than that without defense expenditure.

Among the nonparametric methods, Data Envelopment Analysis (DEA) estimators which

impose convexity assumption of the production set, have been widely applied to estimate produc-

tivity and efficiency in these literature. However, they did not test the convexity of the production

set, nor do they test constant returns to scale (CRS) versus variable returns to scale (VRS). More-

over, some of these studies simply report efficiency estimates without any inference and compare

the mean efficiency of two groups without correcting the bias of the estimated efficiency. Of course,

point estimates without inference are largely meaningless. Hence, the results of these studies are

dubious. In addition, these studies only have a few observations and hence they naturally encounter

the “curse of dimensionality”, which is a serious problem in nonparametric efficiency estimation.1

Hence, dimension reduction is needed in the context of nonparametric efficiency estimation. Re-

cently, Kneip et al. (2016), using the central limit theorem results from Kneip et al. (2015), develop

hypotheses testing the model structure. They provide tests of the convexity of the production set,

returns to scale and differences in mean efficiency across groups of producers. Also, Wilson (2018)

proposes a new dimension reduction technique that is advantageous in terms of reducing estimation

error. Results suggest that Free Disposal Hull (FDH) estimator which does not impose convexity

assumption is a viable, attractive alternative to the VRS-DEA in many cases when dimension re-

duction is used. We are the first to use recently-developed statistical methods to assess what can be

learned about efficiency change, productivity growth and technical progress of the countries in the

world from the data.

This paper provides evidence on the performance of the countries in the world before, during

and after the 2007–2012 global financial crisis. The approach is fully non-parametric and exploits

recently developed theoretical results. Estimates of technical efficiency and productivity at two-

year intervals from 2004 to 2014 are examined in a statistical paradigm permitting inference and

hypothesis testing. Therefore, this paper both (i) contributes to the literature by shedding light on

the evolution of efficiency and productivity of the countries in the world before, during and after

1Curse of dimensionality means the convergence rates of nonparametric estimators decrease with increasing di-
mensions (number of inputs and outputs).
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the 2007–2012 global financial crisis, and (ii) fills the gap between point estimates and inference in

the empirical research on countries’ technical efficiency and productivity.

The rest of paper is organized as follows. Estimators of technical efficiency and their prop-

erties are discussed in Section 3.2. Section 3.3 discusses various statistical results needed for testing

hypotheses about model features. Section 3.4 describes the data we used. Section 3.5 discusses the

empirical results of the tests. Major conclusions and directions for future works are presented in

Section 3.6.

3.2 The Statistical Model

To establish notation, let X ∈ R
p
+ and Y ∈ R

q
+ denote (random) vectors of input and output

quantities, respectively. Similarly, let x ∈ R
p
+ and y ∈ R

q
+ denote fixed, nonstochastic vectors of

input and output quantities. The production set

Ψ := {(x, y) | x can produce y} (2.1)

gives the set of feasible combinations of inputs and outputs. Several assumptions on Ψ are common

in the literature. The assumptions of Shephard (1970) and Färe (1988) are typical in microeconomic

theory of the firm and are used here.

Assumption 3.2.1. Ψ is closed.

Assumption 3.2.2. (x, y) 6∈ Ψ if x = 0, y ≥ 0, y 6= 0; i.e., all production requires use of some

inputs.

Assumption 3.2.3. Both inputs and outputs are strongly disposable, i.e., ∀ (x, y) ∈ Ψ, (i) x̃ ≥ x⇒

(x̃, y) ∈ Ψ and (ii) ỹ ≤ y ⇒ (x, ỹ) ∈ Ψ.

Here and throughout, inequalities involving vectors are defined on an element-by-element basis, as

is standard. Assumption 3.2.1 ensures that the efficient frontier (or technology) Ψ∂

Ψ∂ :=
{

(x, y) | (x, y) ∈ Ψ, (γ−1x, γy) /∈ Ψ for any α ∈ (1,∞)
}

(2.2)

is the set of extreme points of Ψ and is contained in Ψ. Assumption 3.2.2 means that production
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of any output quantities greater than 0 requires use of some inputs so that there can be no free

lunches. Assumption 3.2.3 imposes weak monotonicity on the frontier.

The Farrell (1957) input efficiency measure

θ(x, y | Ψ) := inf {θ | (θx, y) ∈ Ψ} (2.3)

gives the amount by which input levels can feasibly be scaled downward, proportionately by the

same factor, without reducing output levels. The Farrell (1957) output efficiency measure gives the

feasible, proportionate expansion of output quantities and is defined by

λ(x, y | Ψ) := sup {λ | (x, λy) ∈ Ψ} . (2.4)

Both (2.3) and (2.4) provide radial measures of efficiency since all input or output quantities are

scaled by the same factor θ or λ, holding output or input quantities fixed (respectively). Clearly,

θ(x, y | Ψ) ≤ 1 and λ(x, y | Ψ) ≥ 1 for all (x, y) ∈ Ψ.

Alternatively, Färe et al. (1985) provide a hyperbolic, graph measure of efficiency defined

by

γ(x, y | Ψ) := inf
{
γ > 0 | (γx, γ−1y) ∈ Ψ

}
. (2.5)

By construction, γ(x, y | Ψ) ≤ 1 for (x, y) ∈ Ψ. Just as the measures θ(x, y | Ψ) and λ(x, y | Ψ)

provide measures of the technical efficiency of a firm operating at a point (x, y) ∈ Ψ, so does

γ(x, y | Ψ), but along the hyperbolic path from (x, y) to the frontier of Ψ. The measure γ(x, y | Ψ)

gives the amount by which input levels can be feasibly, proportionately scaled downward while

simultaneously scaling output levels upward by the same proportion.

All of the quantities and model features defined so far are unobservable, and therefore must

be estimated. The set Ψ can be estimated using the free-disposal hull (FDH) estimator introduced

by Deprins et al. (1984) or either the variable returns to scale (VRS) or constant returns to scale

(CRS) versions of the data envelopment analysis (DEA) estimator proposed by Farrell (1957). But,

inference is needed in order to know what might be learned from data, and inference requires a

well-defined statistical model.
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3.3 Estimation and Inference

Let Sn = {(Xi, Yi)}ni=1 be a random input-output pairs sample drawn from the density f

introduced in Assumption A.1. Given a random sample Sn = {(Xi, Yi)}, the production set Ψ can

be estimated by the free disposal hull of the sample observations in Sn,

Ψ̂FDH,n :=
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ R

p+q
+ | x ≥ Xi, y ≤ Yi

}
, (3.1)

proposed by Deprins et al. (1984). Alternatively, Ψ can be estimated by the convex hull of Ψ̂FDH,n,

i.e., by

Ψ̂VRS,n :=
{

(x, y) ∈ Rp+q | y ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn+
}
, (3.2)

where X =

(
X1, . . . , Xn

)
and Y =

(
Y1, . . . , Yn

)
are (p× n) and (q × n) matrices of input and

output vectors, respectively; in is an (n × 1) vector of ones, and ω is a (n × 1) vector of weights.

The estimator Ψ̂VRS,n imposes convexity, but allows for VRS. This is the VRS (DEA) estimator of

Ψ proposed by Farrell (1957) and popularized by Banker et al. (1984). The CRS (DEA) estimator

Ψ̂CRS,n of Ψ is obtained by dropping the constraint i′nω = 1 in (3.2). FDH, VRS or CRS estimators

of θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) defined in Section 3.2 are obtained by substituting Ψ̂FDH,n,

Ψ̂VRS,n or Ψ̂CRS,n for Ψ in (2.3)–(2.5) (respectively). In the case of VRS estimators, this results in

θ̂VRS(x, y | Sn) = min
θ,ω

{
θ | y ≤ Y ω, θx ≥Xω, i′nω = 1, ω ∈ Rn+

}
, (3.3)

λ̂VRS(x, y | Sn) = max
λ,ω

{
λ | λy ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn+

}
(3.4)

and

γ̂VRS(x, y | Sn) = min
γ,ω

{
γ | γ−1y ≤ Y ω, γx ≥Xω, i′nω = 1, ω ∈ Rn+

}
. (3.5)

The corresponding CRS estimators θ̂CRS(x, y | Sn), λ̂CRS(x, y | Sn) and γ̂CRS(x, y | Sn) are

obtained by dropping the constraint i′nω = 1 in (3.3)–(3.5). The estimators in (3.3)–(3.4) can be

computed using linear programming methods, but the hyperbolic estimator in (3.5) is a non-linear

program. Nonetheless, estimates can be computed easily using the numerical algorithm developed

by Wilson (2011). Substituting Ψ̂FDH,n into (2.3)–(2.5) (respectively) will yield FDH estimators

82



θ̂FDH(x, y | Sn), λ̂FDH(x, y | Sn) and γ̂FDH(x, y | Sn). However, this leads to integer programming

problems, but the estimators can be computed using simple numerical methods.2

The statistical properties of these efficiency estimators are well-developed. Kneip et al.

(1998) derive the rate of convergence of the input-oriented VRS estimator, while Kneip et al. (2008)

derive its limiting distribution. Park et al. (2010) derive the rate of convergence of the input-oriented

CRS estimator and establish its limiting distribution. Park et al. (2000) and Daouia et al. (2017)

derive both the rate of convergence and limiting distribution of the input-oriented FDH estimator.

These results extend trivially to the output orientation after straightforward (but perhaps tedious)

changes in notation. Wheelock and Wilson (2008) extend these results to the hyperbolic FDH

estimator, and Wilson (2011) extends the results to the hyperbolic DEA estimator.

Kneip et al. (2015) derive moment properties of both the input-oriented FDH, VRS and CRS

estimators and establish central limit theorem (CLT) results for mean input-oriented efficiency after

showing that the usual CLT results (e.g., the Lindeberg-Feller CLT) do not hold unless (p+q) < 4 in

the CRS case, (p+ q) < 3 in the VRS case, or unless p+ q < 2 in the FDH case.3 Kneip et al. (2016)

use these CLT results to establish asymptotically normal test statistics for testing differences in mean

efficiency across two groups, convexity versus non-convexity of Ψ, and CRS versus VRS (provided

Ψ is weakly convex).4 All of these results extend trivially (but again, tediously) to the output-

oriented FDH, VRS and CRS estimators. These results could also be extended to the hyperbolic

VRS and CRS estimators following Wilson (2011). The hyperbolic FDH estimator can be viewed as

an input-oriented FDH estimator in a transformed space, hence moment results for the hyperbolic

FDH estimator could also be extended trivially (but again, tediously) from the input-oriented FDH

estimator. The new CLT results of Kneip et al. (2015) as well as the results from Kneip et al. (2016)

on tests of differences in means, convexity versus non-convexity of Ψ, and CRS versus VRS carry

over to the hyperbolic FDH estimator.

To summarize, in all cases, the FDH, VRS and CRS estimators are consistent, converge at

rate nκ (where κ = 1/(p + q) for the FDH estimators, κ = 2/(p + q + 1) for the VRS estimators

and κ = 2/(p+ q) for the CRS estimators) and possess non-degenerate limiting distributions under

the appropriate set of assumptions. In addition, the bias of each of the three estimators is of order

2For details, see Kneip et al. (2015) and Wilson (2011).
3In other words, standard CLT results hold in the FDH case if and only if p = 1 and output is fixed and constant,

or q = 1 and input is fixed and constant.
4If Ψ∂ is globally CRS, then the VRS estimator attains the faster convergence rate of the CRS estimator due to

the Theorem 3.1 of Kneip et al. (2016).
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O (n−κ). Bootstrap methods proposed by Kneip et al. (2008, 2011) and Simar and Wilson (2011)

provide consistent inference about θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) for a fixed point (x, y) ∈ Ψ,

and Kneip et al. (2015) provide new CLT results enabling inference about the expected values of

these measures over the random variables (X,Y ).

Additional technical assumptions required for moment properties and central limit theorem

results of means of FDH, VRS and CRS estimates, established by Kneip et al. (2015) and used below

are given in Appendix A.

3.4 Data and Variable Specification

We calculate the efficiency and productivity for 144 countries over 2004–2014 using data

from version 9.0 of the Penn World Table, PWT9.0 (Feenstra et al. (2015)).5 Following Glass et al.

(2016), the output Y is output-side real GDP at chained PPPs (in million 2011 US$, rgdpo). As

recommended in the documentation, we use rgdpo to measure productive capacity across coun-

tries rather than expenditure-side real GDP (rgdpe) or real GDP at constant 2011 national prices

(rgdpna). The first input X1 is the labor input, measured by the number of persons engaged (in

millions, emp). The second input X2 is the capital stock at current PPPs (in million 2011 US$, ck).

Maudos et al. (1999) mentioned that the inclusion of human capital has a significant effect on the

accurate measurement of productivity. Therefore, the third input X3 is human capital stock (hc),

one index based on years of schooling and returns to education (see Human capital in PWT9.0). The

input-output specification is standard (Färe et al. (1994)), reflecting the basic production process of

countries. Table 3.1 shows the summary statistics for year 2014.

We assume that all countries operate in the same production set Ψ defined by (2.1), and

therefore they face the same frontier in the four-dimensional input-output space. The model de-

scribed in Section 3.2 is fully non-parametric, and hence quite flexible. The assumptions listed

in Section 3.2 impose only minimal restrictions involving free-disposability, continuity, and some

smoothness of the frontier, etc. Note that there is no assumption of convexity of Ψ, which is tested

below in Section 3.5.

The flexibility of the non-parametric model specified in Section 3.2 comes with a price, how-

ever, in terms of the well-known “curse of dimensionality”. The convergence rate of non-parametric

5For more information about this data, see https://www.rug.nl/ggdc/productivity/pwt/.
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efficiency estimators decreases with increasing inputs and outputs. The number of observations in

each period that we consider is 144. With p = 3 and q = 1, the effective parametric sample size

defined by Wilson (2018) is 144
2
4 ≈ 12 for FDH estimators, 144

4
5 ≈ 53 for VRS estimators and

144
4
4 ≈ 144 for CRS estimators. With the sample size of 144 and the highest converge rate of n

2
4 ,

non-parametric estimators should be expected to result in estimation error of order no better than

that one would achieve with 144 observations in a typical parametric estimator. Given the relatively

small sample size and the four dimensions, it is not surprising that the estimated efficiency for many

countries is equal to 1 and hence is not reliable.

To address this, the dimension reduction technique proposed by Wilson (2018) is applied.

Considering the (n×p) and (n× q) matrices X and Y of observed non-negative inputs and outputs,

we compute the (n× 1) vectors of principle components X∗ = XΛx and Y ∗ = Y Λy, where Λx and

Λy are the (p×1) and (q×1) eigenvectors corresponding to the largest eigenvalues of X′X and Y′Y,

respectively. The dimensions of both X and Y are then reduced to only one dimension. However, we

need to examine Rx and Ry, which are the ratios of the largest eigenvalue of the moment matrices

X′X and Y′Y to the corresponding sums of the eigenvalues for these moment matrices. Wilson

(2018) mentions that Rx and Ry provide measures of how close the corresponding moment matrices

are to rank-one, regardless of the joint distributions of inputs and outputs.

The eigensystem analysis of input moment matrix is shown in Table 3.2. Since we only have

one output, there is no need of dimension reduction for output Y. The columns give the values of

Rx from 2004 to 2014. The results are quite similar across years. An eigensystem analysis on the full

data yields Rx ≥ 87.43 percent for all years. It is clear that X∗ contains most of the independent

information of X. Wilson (2018) shows that in many cases, but not in general, this dimension

reduction method is advantageous in terms of reducing efficiency estimation error. In addition,

dimension reduction could significantly increase the convergence rate of non-parametric efficiency

estimators and lead to a more accurate estimation of efficiency. After dimension reduction applied,

the convergence rates for FDH, VRS, and CRS are n
1
2 , n

2
3 and n respectively. The tradeoff is that

a small amount of information may be lost, but the mean squared error is reduced. All estimation

in the following is done using X∗ and Y .
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3.5 Empirical Results

3.5.1 Efficiency and Productivity Evolution

As a robustness check to the need for dimension reduction, we estimate the hyperbolic

efficiency for each year first using full data with four dimensions, and then using reduced data with

only two dimensions. The FDH, VRS and CRS estimators are applied for both cases. Table 3.3 shows

the number of observations with estimates equal to one. For each year, the FDH estimator produces

more estimates equal to 1 than the VRS estimator, which produces more estimates equal to 1 than

the CRS estimator. This is expected since there are more restrictions for the CRS estimator than the

VRS estimator, which has more restrictions than the FDH estimator. More importantly, when using

the full data, the FDH estimator results in 70.14 percent to 77.08 percent of the observations in a

given year with estimates equal to one. The proportions for the VRS are between 15.28 percent and

17.36 percent and for the CRS are between 6.94 percent and 10.42 percent. This is clear evidence

of too many dimensions for the given sample size. With dimension reduction, Table 3.3 shows that

when using either estimator for any given year, the number of observations with estimates equal to

1 is much smaller than that without dimension reduction. In addition, the numbers using the FDH

estimator are at least 3 times those using the VRS estimator, suggesting that the production set Ψ

may be non-convex. In addition to large values of Rx discussed in Section 3.4, Table 3.3 provides

another piece of evidence that dimension reduction likely reduces estimation error relative to what

would be obtained when using the full data without dimension reduction. Therefore, the principal

component for the three inputs X∗ and the single output Y described in Section 3.4 are used for

obtaining all the following results.

The next question is to determine which estimator we should use. As discussed in Section 3.2,

in decreasing order of restrictions and rates of convergence lies the CRS, VRS, and FDH estimators.

Using the test developed by Kneip et al. (2016), we use the principal component X∗ and Y to test

the null hypothesis of convexity of the production set Ψ versus the alternative hypothesis that Ψ is

non-convex. Two randomly splitted subsamples for a given year are needed for this test. The first

subsample of size n1 = bn/2c is used for computing VRS estimates, and the second subsample of size

n2 = n−n1 is used for computing FDH estimates. As Daraio et al. (2018) suggest, we first randomly

shuffle the data using their randomization algorithm, and then take the first n1 observations as the

first subsample for computing VRS estimates, and the remaining n2 observations as the second
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subsample for computing FDH estimates. The test statistic given in equation (50) of Kneip et al.

(2016) involves the difference of the means of these two sets of estimates, with generalized jackknife

estimates of biases and corresponding sample variances, and is asymptotically normally distributed

with mean zero and unit variance. The test is a one-sided test since under the null the two means

should be roughly similar, but should diverge with increasing departures from the null resulting in

the mean of the FDH estimates exceeding the mean of the VRS estimates. The statistic given in

equation (50) of Kneip et al. (2016) is defined in terms of input-oriented estimators but extends

trivially to output-oriented and hyperbolic estimators. The tests are one-sided and we define the

statistics so that “large” positive values indicate rejection of the null hypothesis.

The results of the convexity tests for each year are shown in Table 3.4. Cells in columns

3, 5 and 7 are shaded whenever p-value is less than 0.01. The results reveal that convexity is

overwhelmingly rejected except the one in the input direction of 2004. Hence, the results in Table

3.4 provide strong evidence of the non-convexity of the production set Ψ. Also, even if the production

set is convex, FDH estimator is still consistent. However, if the production set is non-convex, the

VRS estimator is not consistent anymore. Consequently, the FDH estimators are applied for the

remainder of the analysis. Our results cast doubts on the results of previous literature, which use

DEA estimators to estimate the Malmquist productivity and technical efficiency.

Table 3.5 presents summary statistics of the FDH technical efficiency estimates in the input,

output, and hyperbolic orientations. To compare with the input-oriented and hyperbolic-oriented

estimates, we report the statistics of the reciprocals of the output-oriented estimates. For each

orientation, the closer the estimates are to 1, the more technically efficient the countries. As might

be expected, the hyperbolic estimates are more conservative on average, with mean efficiencies

ranging from 0.7799 to 0.8252. By contrast, the means of the input-oriented estimates range from

0.6113 to 0.7139, while the means of the output-oriented estimates range from 0.6499 to 0.7146.

These differences are due to the geometry of the efficiency measures as discussed by Wilson (2011).

The mean efficiency in hyperbolic orientation increased from 2004 to 2010 and then decreased from

2010 to 2014. The pattern of mean efficiency in the input orientation appears to be the same,

while the pattern in the output orientation is a little different. The mean efficiency in the output

orientation increased from 2004 to 2008 and then decreased from 2008 to 2014.

We use the test described by Kneip et al. (2016, Section 3.1.1) to test for significant differ-

ences between the means reported in Table 3.5 from one year to the next, as well as from the first
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year to the last year. As discussed in Kneip et al. (2015, 2016), even with the reduced dimensionality

so that p + q = 2, the usual CLT results (e.g., the Lindeberg-Feller CLT) do not hold for means

of FDH efficiency estimates. As with the convexity test discussed above, the test statistic given by

equation (18) of Kneip et al. (2016) involves not only the difference in sample means of efficiency

estimates in a pair of years, but also the corresponding difference in generalized jackknife estimates

of bias. The test extends trivially to the output-orientation and the hyperbolic orientation. In each

case, the statistic used here is defined so that a positive value indicates that efficiency increases from

year 1 to year 2, while a negative value indicates that efficiency decreases from year 1 to year 2.6

As shown by Kneip et al. (2016), the test statistics are asymptotically normal with zero mean and

unit variance. Since our data is balanced panel, there may exist time correlation, which violates the

independent assumption of the test for differences of mean efficiency. The technical details dealing

with time correlations is given in Appendix B Section B.1.

Table 3.6 gives the results of the tests of significant differences in mean efficiency over time.

Cells in columns 3, 5 and 7 are shaded whenever p-value is less than 0.10. The result from 2004 to

2006 is mixed, where one case (input-oriented) shows that mean efficiency increased, while another

case (output-oriented) shows that mean efficiency decreased. From 2006 to 2008, while there was no

change of mean efficiency in the input and output orientation, mean efficiency declined significantly

in the hyperbolic orientation. This possibly reflects the negative effect of the global financial crisis.

The tests provide clear evidence that mean efficiency increased from 2008 to 2010 while there was no

change of mean efficiency from 2010 to 2012. From 2012 to 2014, we see that mean efficiency started

increasing again, showing that the global economy finally recovered from the global financial crisis.

Overall, from 2004 to 2014, even though the statistic in the hyperbolic orientation is not significant,

mean efficiency increased significantly in the other two orientations. Therefore, we find that the

technical efficiency declined at the start of the global financial crisis (2006–2008), but recovered in

the years later (2008–2014), ending higher in 2014 than in 2004.

In order to measure productivity, note that with the dimension reduction to (p + q) = 2

dimensions using the principal components X∗i , Yi as described in Section 3.4, productivity can

be measured by Yi/X
∗
i for country i. Summary statistics for this measure is displayed in Table

3.7. Mean productivity continuously decreased from 2004 to 2010, then continuously increased from

6Consequently, the statistic we use for the output orientation is the negative of the statistic appearing in equation
(18) of Kneip et al. (2016).
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2010 to 2014. The results show that the pattern of mean productivity is similar to the pattern of

mean efficiency. Since productivity is measured by a simple ratio that does not involve estimators

of efficiency, standard CLT results can be used to test for significant changes in means over time.7

The results of these tests are shown in Table 3.8. Cells in column 7 are shaded whenever p-value is

less than 0.01. It shows that mean productivity continued decreasing significantly from 2004 to 2010

and there was no change from 2010 to 2012 and from 2012 to 2014. Overall, from 2004 to 2014, the

data reveals that there was a significant decrease in mean productivity.

To learn more about the difference of distributions of productivity in the two years interval,

we use the stochastic dominance tests developed by Linton et al. (2005). Their method is based on

subsampling and allows for the observations to be serially dependent. The outcome for the first-

order stochastic dominance test is shown in Table 3.9. Cells in columns 3 and 5 are shaded whenever

we could not reject the null hypothesis. Denote stochastic dominance in the first and second-order

as SD1 and SD2, respectively. The p-value for the null hypothesis that productivity in 2004 SD1

that in 2006, is 0.999, which suggests that 2004 SD1 2006. The p-value for the null hypothesis that

productivity in 2006 SD1 that in 2004, is close to 0, which suggests that 2006 does not SD1 2004

and hence the possibility that 2004 and 2006 have the same distribution is ruled out. Combining

these two tests, we find that 2004 SD1 2006. Similarly, we also find that 2006 SD1 2008, 2008

SD1 2010 and 2004 SD1 2014. However, we do not find any SD1 over the periods 2010–2012 and

2012–2014. We also test whether there exists any SD2 in the two years interval. The outcome for

the second-order stochastic dominance test is shown in Table 3.10. Cells in columns 3 and 5 are

shaded whenever we could not reject the null hypothesis. Since SD1 implies SD2, it is not surprising

that 2004 SD2 2006, 2006 SD2 2008, 2008 SD2 2010, and 2004 SD2 2014. Moreover, there did not

exist SD2 over the periods 2010–2012 and 2012–2014.

The results presented so far provide clear evidence of changes in mean technical efficiency

and productivity over the years represented in the sample. To gain further insight, we test whether

the frontiers change over time. This involves the test of “separability” developed by Daraio et al.

(2018), in which time is treated as a binary “environmental” variable. We examine it using pairs of

years 2004–2006, 2006–2008, . . . , 2012–2014 as well as 2004–2014.

Implementation of the separability test of Daraio et al. (2018) involves pooling the data

for two periods and then randomly shuffling the observations using the randomization algorithm

7However, we need to deal with time correlation. Please see Appendix B Section B.2 for technical details.
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presented by Daraio et al.. Then the pooled, randomly shuffled observations are split into two

subsamples of equal size (or, if the combined number of observations is odd, one subsample will have

one more observation than the other). Using the first subsample, efficiency is estimated as usual for

each observation, ignoring which period a particular observation comes from, and the sample mean

of the efficiency estimate is computed. The second subsample is split into the set of observations

from period 1 and the set of observations from period 2. Efficiency is estimated for the period 1

observations using only the observations from period 1, while efficiency for the period 2 observations

is estimated using only those observations from period 2. Then the sample mean of these two sets

of efficiency estimates from the two sub-subsamples (of the second subsample) is computed. The

resulting test statistic involves differences in the two subsample means as well as differences in the

corresponding generalized jackknife estimates of bias. See Daraio et al. (2018) for discussion and

details.

Results of the separability tests are shown in Table 3.11. Cells in columns 3, 5 and 7 are

shaded whenever p-value is less than 0.10. In every case of periods 2004–2006, 2008–2010, 2010–2012

and 2012–2014, separability is rejected with p-value less than 0.01, and in most cases well less than

0.01. From 2006 to 2008, two statistics are significant at the 1 percent level, while the remaining

statistic is not significant at the 10 percent level. Therefore the data provides moderate evidence that

the technology changed from 2006 to 2008. Overall, from 2004 to 2014, two statistics are significant

at the 10 percent level, while the remaining statistic is not significant at all. Therefore the evidence

shows that the technology changed from 2004 to 2014.

In order to learn something about the direction in which technology may have shifted,

we use new results from Simar and Wilson (2018) who provide CLT results for components of

productivity changed measured by Malmquist indices. Simar and Wilson define the Malmquist

index in terms of hyperbolic distances, and then consider various decompositions that can be used

to identify components of productivity change. In particular, let Ψt represent the production set at

time t ∈ {1, 2} and let Zti = (Xt
i , Y

t
i ) denote the i-th firm’s observed input-output pair at time t.

Then technical change relative to firm i’s position at times 1 and 2 is measured by

Ti =

[
γ(Z2

i | Ψ1)

γ(Z2
i | Ψ2)

× γ(Z1
i | Ψ1)

γ(Z1
i | Ψ2)

]1/2

. (5.1)

This is the hyperbolic analog of the output-oriented technical-change index that appears in the

90



decompositions of Ray and Desli (1997), Gilbert and Wilson (1998), Simar and Wilson (1998) and

Wheelock and Wilson (1999). The first ratio inside the brackets in (5.1) measures technical change

relative to firm i’s position at time 2, while the second ratio measures technical change relative to the

firm’s position at time 1. The measure Ti is the geometric mean of these two ratios. Values greater

than 1 indicate an upward shift in the technology, while values less than 1 indicate a downward shift

(a value of 1 indicates no change from time 1 to time 2).

Estimates T̂i are obtained by substituting the hyperbolic FDH estimator for each term in

(5.1). Simar and Wilson (2018) develop CLT results for geometric means T̂ 1,2 of Ti over firms

i = 1, . . . , n, for periods 1 and 2, and these results can be used to test significant differences of the

geometric means from 1. Table 3.12 shows the results of tests of technology change for each two-year

interval as well as for the entire period 2004–2014. Cells in column 7 are shaded whenever p-value

is less than 0.01. All the statistics are significant at the 1 percent level. The geometric mean T̂ 1,2

is smaller than 1 for each two-year interval from 2004 to 2010, and greater than 1 for each two-year

interval from 2010 to 2014. This suggests continuing downward shifts of the technology from 2004

to 2010 and continuing upward shifts of the technology from 2010 to 2014. Over the full period

2004–2014, T̂ 1,2 is less than 1 significantly at the 1 percent level, suggesting that the technology

shifted downward over this period.

3.5.2 Developing Versus Developed Countries

The convergence theory, also known as the catch-up effect, implies that developing countries

will tend to grow at faster rates than developed countries. Therefore, developing countries should

have higher productivity and efficiency. Our tests developed in Section 3.2 and 3.3 could be used to

examine this hypothesis.

According to the International Monetary Fund’s World Economic Outlook Database, Oc-

tober 2018, the following are considered as developed economies (or advanced economies): United

States, Japan, Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy,

Latvia, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovak Republic, Slovenia, Spain,

Canada, United Kindom, Australia, Korea, Singapore, Czech Republic, Macao SAR, Sweden, Den-

mark, New Zealand, Switzerland, Hongkong SAR, Norway,Taiwan Province of China, Iceland, Puerto

Rico, Israel, San Marino. However, our data do not cover Puerto Rico and San Marino. All the other

remaining countries are considered as developing economies (or emerging markets and developing
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economies). Our sample covers 37 developed economies and 107 developing economies. Table 3.13

shows the summary statistics of developing and developed economies for the year 2014. As it is

expected, developing economies averagely have lower GDP, capital and human capital but higher

labor than developed economies. The annual growth rates of labor, capital, human capital, and

GDP are shown in Table 3.14. During the global financial crisis (2008–2009), the total output of the

world economy decreased by about 1.12 percent, which mainly caused by developed countries (de-

creased 4 percent). Over each period from 2004 to 2014, the developing countries almost always had

higher annual growth rates of labor, capital, human capital, and GDP. Overall, from 2004 to 2014,

developing economies doubled their GDP, while the GDP of developed economies only increased by

about 41 percent.

Table 3.15 shows the results of tests of the difference in mean technical efficiency between

developing and developed economies. Cells in columns 5, 7 and 9 are shaded whenever p-value is

less than 0.01. All the statistics are negative and significant at the 1 percent significance level. This

suggests that developing economies had lower technical efficiency than developed economies over each

period covered by our data. Table 3.16 provides the results of tests of the difference in productivity

between developing and developed economies. Cells in column 7 are shaded whenever p-value is

less than 0.01. All the statistics are positive and significant at the 1 percent significance level. This

result shows that developing economies had higher productivity than developed economies over each

period. Taken together, we find that over 2004–2014, even though developing economies had lower

technical efficiency, they had higher productivity than developed economies. This suggests that

some developing economies have not fully adopted the current technologies. Our results confirms

the convergence theory.

3.6 Summary and Conclusions

Among studies that use either FDH or DEA estimators to estimate efficiency and benchmark

the performances of countries, the vast majority use VRS (DEA) estimators which impose convexity

on the production set. The test of convexity versus non-convexity of Ψ developed by Kneip et al.

(2016) allows researchers to let the data tell them whether DEA estimators are appropriate in a

given setting. Here, in the context of countries, convexity is strongly rejected.

Because we reject convexity of the production set, we use FDH estimators which remain
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consistent when Ψ is not convex, whereas DEA estimators do not. We exploit collinearity in the data

to reduce inputs to their first principle components, resulting in a two-dimensional problem. Results

from Wilson (2018) indicate that this substantially reduces mean square error of efficiency estimates.

Moreover, the simulation evidence provided by Wilson (2018) suggests that when production sets

are convex, FDH estimates often have less mean square error than DEA estimators after dimension

reduction.

By rigorously comparing estimates and testing differences across the years represented in

our data, we find that technical efficiency of 144 countries in the world declined at the start of the

global financial crisis (2006–2008) but recovered in the years later (2008–2014). Overall, there was

an increase in mean efficiency from 2004 to 2014. The data revealed that productivity continued

decreasing from 2004 to 2010. Overall, there was a significant decrease in mean productivity from

2004 to 2014. We also find that the frontier continued shifting downward from 2004 to 2010, and then

continued shifting upward from 2010 to 2014. However, the technology had shifted downward from

2004 to 2014. Finally, the data revealed that developing economies had lower technical efficiency

but higher productivity than developed economies over this period.

The 2008 global financial crisis indeed had an influential negative effect on efficiency, pro-

ductivity, and technology of the global economy. Even though the global economy recovered in

the years later, however, until 2014, 6 years after the crisis, our results show that the productivity

and technology of the global economy had not fully recovered yet. Over this period, developing

economies performed better than developed economies in terms of productivity, however, they need

to improve their technical efficiency.
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Table 3.2: Eigensystem Analysis by Year

Year Rx(%)

2004 87.43
2006 87.70
2008 88.02
2010 88.24
2012 88.53
2014 88.76
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Table 3.3: Numbers of Observations With Estimated Hyperbolic Technical Efficiency Equal to 1
in Each Year

Without With
— Dimension Reduction — — Dimension Reduction —

Year n FDH VRS CRS FDH VRS CRS

2004 144 105 24 15 27 7 1
2006 144 105 23 11 29 8 1
2008 144 105 22 13 32 8 1
2010 144 111 25 13 36 6 1
2012 144 101 22 10 29 6 1
2014 144 109 25 11 27 6 1
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Table 3.4: Results of Convexity Tests (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year Statistic p-value Statistic p-value Statistic p-value

2004 1.4720 7.05× 10−02 5.0490 2.22× 10−07 3.7056 1.05× 10−04

2006 6.2603 1.92× 10−10 9.0609 6.47× 10−20 7.0398 9.62× 10−13

2008 3.5480 1.94× 10−04 4.8906 5.03× 10−07 3.5020 2.31× 10−04

2010 8.4456 1.51× 10−17 9.6505 2.45× 10−22 9.1008 4.48× 10−20

2012 7.5268 2.60× 10−14 8.2257 9.71× 10−17 8.8921 3.00× 10−19

2014 3.0405 1.18× 10−03 3.1071 9.45× 10−04 3.8103 6.94× 10−05

NOTE: The numerator of statistics is the difference of estimated mean VRS estimates minus mean
FDH estimates.
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Table 3.5: Summary Statistics for FDH Technical Efficiency Estimates (with Dimension Reduction,
p = q = 1)

Year Min Q1 Median Mean Q3 Max

— Input Orientation —
2004 0.1139 0.3785 0.6303 0.6113 0.8899 1.0000
2006 0.1972 0.4616 0.6438 0.6609 0.9033 1.0000
2008 0.2097 0.5135 0.6727 0.6975 0.9557 1.0000
2010 0.2084 0.5239 0.6984 0.7139 0.9953 1.0000
2012 0.2150 0.5038 0.6624 0.6742 0.9218 1.0000
2014 0.1858 0.4150 0.5896 0.6338 0.8684 1.0000

— Output Orientation —
2004 0.1284 0.4391 0.6477 0.6499 0.9217 1.0000
2006 0.1245 0.5108 0.6970 0.6917 0.9323 1.0000
2008 0.1705 0.5104 0.7415 0.7146 0.9623 1.0000
2010 0.2009 0.5088 0.6706 0.7014 0.9815 1.0000
2012 0.2255 0.4649 0.6501 0.6802 0.9297 1.0000
2014 0.1859 0.4158 0.6589 0.6500 0.8961 1.0000

— Hyperbolic Orientation —
2004 0.3516 0.6371 0.7840 0.7799 0.9437 1.0000
2006 0.4053 0.6863 0.8300 0.8079 0.9470 1.0000
2008 0.4781 0.6930 0.8312 0.8211 0.9819 1.0000
2010 0.4919 0.6914 0.8278 0.8252 0.9953 1.0000
2012 0.4539 0.6633 0.8129 0.8051 0.9670 1.0000
2014 0.4082 0.6783 0.7840 0.7923 0.9403 1.0000

NOTE: Statistics for the reciprocals of the output efficiency estimates are given to facilitate com-
parison with the input-oriented and hyperbolic estimates.
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Table 3.6: Tests of Differences in Means for FDH Technical Efficiency Estimates with Respect to
Time (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Period Statistic p-value Statistic p-value Statistic p-value

2004–2006 2.0874 3.69× 10−02 −2.6490 8.07× 10−03 −0.6728 5.01× 10−01

2006–2008 0.1634 8.70× 10−01 0.6564 5.12× 10−01 −2.5097 1.21× 10−02

2008–2010 2.2908 2.20× 10−02 1.5509 1.21× 10−01 2.3430 1.91× 10−02

2010–2012 −0.4524 6.51× 10−01 −0.7692 4.42× 10−01 −0.1788 8.58× 10−01

2012–2014 2.8697 4.11× 10−03 3.5162 4.38× 10−04 3.9343 8.34× 10−05

2004–2014 1.8283 6.75× 10−02 2.4703 1.35× 10−02 1.3329 1.83× 10−01

NOTE: The numerator of statistics for each period is the difference of estimated mean efficiency of
the second year minus the first year.
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Table 3.7: Summary Statistics for Productivity (with Dimension Reduction, p = q = 1)

Year Min Q1 Median Mean Q3 Max

2004 1.5300 2.7583 3.3940 4.0248 4.5488 18.3875
2006 1.4066 2.5806 3.0827 3.6276 4.2816 13.5363
2008 1.3057 2.3642 2.9638 3.3147 3.7893 9.4944
2010 1.2835 2.2572 2.7112 3.0851 3.7210 8.7854
2012 1.2213 2.1914 2.8185 3.1122 3.7039 7.9003
2014 1.2955 2.2069 2.7949 3.1541 3.7377 11.2910

NOTE: Productivity for observation i is defined as Yi/X
∗
i .
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Table 3.8: Tests of Differences in Means for Productivity Estimates with Respect to Time (with
Dimension Reduction, p = q = 1)

Period n1 n2 Mean1 Mean2 Statistic p-value

2004–2006 144 144 4.0248 3.6276 −5.2576 1.46× 10−07

2006–2008 144 144 3.6276 3.3147 −5.0137 5.34× 10−07

2008–2010 144 144 3.3147 3.0851 −4.6205 3.83× 10−06

2010–2012 144 144 3.0851 3.1122 0.5699 5.69× 10−01

2012–2014 144 144 3.1122 3.1541 1.0478 2.95× 10−01

2004–2014 144 144 4.0248 3.1541 −4.6766 2.92× 10−06

NOTE: The numerator of statistics for each period is the difference of estimated mean productivity
of the second year minus the first year.
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Table 3.9: First Order Stochastic Dominance Test for Productivity with Respect to Time

— Year 1 SD1 Year 2 — — Year 2 SD1 Year 1 —
Period Statistic p-value Statistic p-value

2004–2006 0.0000 9.99× 10−01 0.1250 9.99× 10−04

2006–2008 −0.0069 9.99× 10−01 0.0972 6.99× 10−03

2008–2010 0.0000 9.99× 10−01 0.1250 0.00× 10+00

2010–2012 0.0625 9.19× 10−02 0.0417 5.54× 10−01

2012–2014 0.0417 2.76× 10−01 0.0278 7.60× 10−01

2004–2014 −0.0208 9.99× 10−01 0.2361 0.00× 10+00

NOTE: The null hypothesis is that there exists first order stochastic dominance.
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Table 3.10: Second Order Stochastic Dominance Test for Productivity with Respect to Time

— Year 1 SD2 Year 2 — — Year 2 SD2 Year 1 —
Period Statistic p-value Statistic p-value

2004–2006 −0.0013 9.84× 10−01 0.3105 0.00× 10+00

2006–2008 −0.0010 9.92× 10−01 0.2490 0.00× 10+00

2008–2010 −0.0002 9.80× 10−01 0.1937 0.00× 10+00

2010–2012 0.0229 4.10× 10−01 0.0195 4.21× 10−01

2012–2014 0.0130 4.35× 10−01 0.0017 7.77× 10−01

2004–2014 −0.0018 9.86× 10−01 0.7166 0.00× 10+00

NOTE: The null hypothesis is that there exists second order stochastic dominance.
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Table 3.11: Tests for Separability with Respect to Time (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Period Statistic p-value Statistic p-value Statistic p-value

2004–2006 5.0232 2.54× 10−07 2.4078 8.03× 10−03 5.4435 2.61× 10−08

2006–2008 1.2211 1.11× 10−01 5.5903 1.13× 10−08 2.9588 1.54× 10−03

2008–2010 3.3544 3.98× 10−04 4.8669 5.67× 10−07 3.7419 9.13× 10−05

2010–2012 4.3189 7.84× 10−06 5.9273 1.54× 10−09 3.1343 8.61× 10−04

2012–2014 2.8978 1.88× 10−03 4.2091 1.28× 10−05 2.7058 3.41× 10−03

2004–2014 1.4604 7.21× 10−02 −2.0830 9.81× 10−01 1.3939 8.17× 10−02

NOTE: The numerator of the statistics is the difference of the conditional mean estimates minus
the unconditional mean estimates.
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Table 3.12: Tests for Technology Change with Respect to Time (with Dimension Reduction, p =
q = 1)

Period n1 n2 n T̂ 1,2 Var p-value

2004–2006 144 144 144 0.9348 0.0247 1.69× 10−07

2006–2008 144 144 144 0.9508 0.0148 1.49× 10−09

2008–2010 144 144 144 0.9670 0.0158 8.99× 10−03

2010–2012 144 144 144 1.0349 0.0174 9.18× 10−11

2012–2014 144 144 144 1.0283 0.0188 1.07× 10−06

2004–2014 144 144 144 0.9162 0.0216 4.78× 10−10

NOTE: For each period, the number of observations in the first year is n1, while the number of
observations in the second year is n2. The number of observations existing in both years is n. Mean
of the technology ratio T̂ 1,2 is greater than 1 if and only if the technology shifts upward.
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Table 3.14: Annual Growth Rate of Labor, Capital, Human Capital and GDP over 2004-2014

Period L K H Y

— All Economies —
2004–2005 0.0289 0.1354 0.0082 0.1053
2005–2006 0.0296 0.1300 0.0082 0.0744
2006–2007 0.0315 0.1063 0.0082 0.0737
2007–2008 0.0250 0.0987 0.0081 0.0753
2008–2009 0.0112 0.0661 0.0080 -0.0112
2009–2010 0.0181 0.0877 0.0078 0.0944
2010–2011 0.0213 0.1214 0.0091 0.0939
2011–2012 0.0179 0.0535 0.0090 0.0462
2012–2013 0.0179 0.0594 0.0089 0.0360
2013–2014 0.0182 0.0608 0.0089 0.0342
2004–2014 0.2639 1.5658 0.0897 0.8618

— Developed Economies —
2004–2005 0.0178 0.0975 0.0061 0.0752
2005–2006 0.0252 0.1338 0.0063 0.0303
2006–2007 0.0273 0.1069 0.0063 0.0638
2007–2008 0.0175 0.0816 0.0063 0.0352
2008–2009 -0.0180 0.0328 0.0063 -0.0400
2009–2010 -0.0014 0.0458 0.0062 0.0498
2010–2011 0.0111 0.0600 0.0062 0.0416
2011–2012 0.0055 0.0502 0.0063 0.0283
2012–2013 0.0049 0.0429 0.0063 0.0232
2013–2014 0.0112 0.0319 0.0064 0.0278
2004–2014 0.1154 0.9737 0.0656 0.4145

— Developing Economies —
2004–2005 0.0327 0.1485 0.0090 0.1157
2005–2006 0.0312 0.1287 0.0089 0.0896
2006–2007 0.0330 0.1061 0.0088 0.0771
2007–2008 0.0276 0.1046 0.0088 0.0892
2008–2009 0.0213 0.0776 0.0086 -0.0013
2009–2010 0.0248 0.1022 0.0084 0.1098
2010–2011 0.0248 0.1427 0.0101 0.1120
2011–2012 0.0222 0.0547 0.0099 0.0524
2012–2013 0.0225 0.0652 0.0099 0.0404
2013–2014 0.0206 0.0707 0.0098 0.0364
2004–2014 0.3153 1.7706 0.0980 1.0165

Note: GDP is output-side real GDP at chained PPPs (in million 2011 US$); Labor is number
of persons engaged (in millions); Capital is capital stock at current PPPs (in million 2011 US$);
Human Capital is one index based on years of schooling and returns to education. The growth rate
over 2004–2014 is the accumulated annual growth rate.
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Table 3.15: Tests of Differences in Means for FDH Technical Efficiency Estimates with Respect to
Type (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year n1 n2 Statistic p-value Statistic p-value Statistic p-value

2004 37 107 −8.1521 3.58× 10−16 −11.4682 1.91× 10−30 −11.7834 4.75× 10−32

2006 37 107 −7.3594 1.85× 10−13 −8.2827 1.20× 10−16 −8.8034 1.33× 10−18

2008 37 107 −4.3511 1.35× 10−05 −8.0633 7.43× 10−16 −4.9163 8.82× 10−07

2010 37 107 −4.5157 6.31× 10−06 −7.1762 7.17× 10−13 −4.3040 1.68× 10−05

2012 37 107 −3.7759 1.59× 10−04 −5.0038 5.62× 10−07 −4.0607 4.89× 10−05

2014 37 107 −8.1837 2.75× 10−16 −10.3579 3.85× 10−25 −7.5720 3.67× 10−14

NOTE: The number of developed economies is n1, while the number of developing economies is n2.
The numerator of statistics is the difference of estimated mean efficiency of developing economies
minus developed economies.
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Table 3.16: Tests of Differences in Means for Productivity Estimates with Respect to Type (with
Dimension Reduction, p = q = 1)

Year n1 n2 Mean1 Mean2 Statistic p-value

2004 37 107 2.9420 4.3993 5.1180 3.09× 10−07

2006 37 107 2.5810 3.9895 6.3903 1.66× 10−10

2008 37 107 2.3264 3.6565 7.8422 4.43× 10−15

2010 37 107 2.1908 3.3944 7.5544 4.21× 10−14

2012 37 107 2.2020 3.4269 6.8688 6.48× 10−12

2014 37 107 2.2701 3.4598 6.3503 2.15× 10−10

NOTE: The number of developed economies is n1, while the number of developing economies is n2.
The numerator of statistics is the difference of estimated mean productivity of developing economies
minus developed economies.
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Appendix A Additional Assumptions

The assumptions that follow are similar to Assumptions 3.1–3.4 of Kneip et al. (2015) and
complete the statistical model. The first two assumptions that follow are needed for both FDH and
VRS estimators.

Assumption A.1. (i) The random variables (X,Y ) possess a joint density f with support D ⊂ Ψ;
and (ii) f is continuously differentiable on D.

Assumption A.2. (i) D∗ := {(θ(x, y | Ψ)x, y) | (x, y) ∈ D} = {(x, λ(x, y | Ψ)y) | (x, y) ∈ D} ={
(γ(x, y | Ψ)x, γ(x, y | Ψ)−1y) | (x, y) ∈ D

}
⊂ D; (ii) D∗ is compact; and (iii) f(θ(x, y | Ψ)x, y) > 0

for all (x, y) ∈ D.

The next two assumptions are needed when VRS estimators are used. Assumption A.3
imposes some smoothness on the frontier. Kneip et al. (2008) required only two-times differentiability
to establish the existence of a limiting distribution for VRS estimators, by the stronger assumption
that follows is needed to establish results on moments of the VRS estimators.

Assumption A.3. θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) are three times continuously differentiable
on D.

Recalling that the strong (i.e., free) disposability assumed in Assumption 1.3.3 implies that
the frontier is weakly monotone, the next assumption strengthens this by requiring the frontier to be
strictly monotone with no constant segments. This is also needed to establish properties of moments
of the VRS estimators.

Assumption A.4. D is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈ D with ( x
‖x‖ , y) 6=

( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((x̃, ỹ) − (x, y)) for some 0 < α < 1} is a subset of

the interior of D.

Alternatively, when FDH estimators are used, Assumptions A.3 and A.4 can be replaced by
the following assumption.

Assumption A.5. (i) θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) are twice continuously differentiable
on D; and (ii) all the first-order partial derivatives of θ(x, y | Ψ), λ(x, y | Ψ) and γ(x, y | Ψ) with
respect to x and y are nonzero at any point (x, y) ∈ D.

Assumption A.5 strengthens strong disposability in the assumption 1.3.3 by requiring that
the frontier is strictly monotone and does not possess constant segments (which might be the case,
for example, if outputs are discrete as opposed to continuous, as in the case of ships produced by
shipyards). Finally, part (i) of Assumption A.5 is weaker than Assumption A.3; here the frontier is
required to be smooth, but not as smooth as required by Assumption A.3.8 Assumptions 1.3.1–A.2
and Assumption A.5 comprise a statistical model appropriate for use of FDH estimators of technical
efficiency, while Assumptions 1.3.1–A.4 comprise a statistical model appropriate for use of VRS
estimators of technical efficiency.9 These assumptions are sufficient for establishing consistency of
the corresponding estimators. The stronger assumptions here are needed for results on moments
and central limit theorems of the corresponding estimators.

8Assumption A.5 is slightly stronger, but much simpler than assumptions AII–AIII in Park et al. (2000).
9Additional assumptions are needed for CRS efficiency estimators. See Kneip et al. (2015) for additional discussion.
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Appendix B Time Correlation in Testing Means

B.1 Correlation in Efficiency

Notice that there may exist time correlation when we testing the differences in mean effi-
ciency over time, which violates the independent assumption of test for differences of mean efficiency
in Kneip et al. (2016). Hence we take the following method to deal with time correlation.

let n0 be the number of observations existing in both periods, n1 be the number of obser-
vations existing in period 1 but not in period 2 and n2 be the number of observations existing in
period 2 but not in period 1. We then use the randomization algorithm in Daraio et al. (2018) to
randomly shuffle these n0 observations. For period 1, we combine the first half n01 = bn0/2c of n0

observations with these n1 observations to form the sample, denoted as S1. Similarly, for period 2,
we combine the second half n02 = n0−bn0/2c of n0 observations with these n2 observations to form
the sample, denoted as S2. By construction, S1 and S2 are independent, and now we can use the
tests for differences in mean efficiency in Kneip et al. (2016).

B.2 Correlation in Productivity

let n0 be the number of observations existing in both periods, n1 be the number of obser-
vations existing in period 1 but not in period 2 and n2 be the number of observations existing in
period 2 but not in period 1. Productivity is calculated by the ratio of output over input.

Then to test H0: µ1 = µ2, versus H1: µ1 6= µ2, we can use statistics

T̂ =
µ̂2 − µ̂1

σ̂2
1

(n1+n0) +
σ̂2
2

(n2+n0) − 2n0
σ̂12

(n1+n0)(n2+n0)

∼ N(0, 1) (2.2)

Where µ̂i, i ∈ {1, 2}, is the sample mean for all the observations in period i, σ̂2
i is the

sample variance for all the observations in period i and σ̂12 is the sample covariance for all the n0

observations exsting in both periods.
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Appendix C Additional Results

Table C1–C2 list the numbers of China’s commercial banks over the sample period in pop-
ulation and in sample, respectively. Table C3 shows the eigensystem analysis of input and output
moment matrices.

Table C4 shows the total assets of the five largest commercial banks over the period 2007–
2014 in the data. Total assets of the largest banks increased over the whole period. They amount to
about 33.04 quadrillion RMB in 2007 and about 65.57 quadrillion RMB in 2014, for an increase of
about 1 time. Moreover, the growth rate from 2008 to 2009 is at least 20 percent and is the highest
for each of the five big banks among all the one-year intervals, reflecting the expansion effect of the
stimulus.

Table C5 provides the numbers of observations with estimated hyperbolic technical efficiency
equal to 1 in each year.

Table C6 shows the robustness check of results of convexity tests when the sample is split
unevenly.

Table C7–C10 show the robustness check for the tests of differences in means for FDH
technical efficiency and productivity estimates when we use two different definitions for the big and
small banks.
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Table C3: Eigensystem Analysis by Year

Year Rx(%) Ry(%)

2007 98.25 95.87
2008 98.61 97.10
2009 98.81 97.83
2010 98.75 97.46
2011 98.59 97.15
2012 98.65 97.26
2013 98.95 96.92
2014 98.96 96.47
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Table C5: Numbers of Observations With Estimated Hyperbolic Technical Efficiency Equal to 1
in Each Year

Without With
— Dimension Reduction — — Dimension Reduction —

Year n FDH VRS CRS FDH VRS CRS

2007 24 24 22 13 23 4 1
2008 41 41 34 16 29 5 1
2009 45 45 31 14 32 6 1
2010 65 65 46 34 47 7 1
2011 82 82 50 42 47 8 1
2012 108 108 73 59 58 5 1
2013 123 123 76 56 67 6 1
2014 124 124 77 58 64 9 1
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Table C6: Results of Convexity Tests, Average over 1000 splits, Bootstrap 1000 times (Uneven
Split, with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year Statistic p-value Statistic p-value Statistic p-value

2007 -3.6389 0.1550 3.1170 0.4820 -3.5848 0.4270
2008 -2.3565 0.4100 1.2186 0.5870 -2.8590 0.2580
2009 -3.4031 0.0920 4.3980 0.0010 -4.4576 0.0050
2010 -5.1630 0.0080 3.6780 0.2440 -4.4724 0.0460
2011 -3.2804 0.0490 0.3984 0.6110 -2.1660 0.2050
2012 -3.0409 0.0810 1.7431 0.2470 -2.9384 0.0650
2013 -5.0122 0.0000 3.7484 0.0030 -6.1833 0.0020
2014 -2.7546 0.0500 3.1398 0.0020 -3.7721 0.0020
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Table C7: Robustness Check: Tests of Differences in Means for FDH Technical Efficiency Estimates
with Respect to Size (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year n1 n2 Statistic p-value Statistic p-value Statistic p-value

2007 6 18 −2.3383 1.94× 10−02 −2.1641 3.05× 10−02 −2.2798 2.26× 10−02

2008 11 30 −3.7841 1.54× 10−04 −4.0663 4.78× 10−05 −4.0089 6.10× 10−05

2009 12 33 −5.4692 4.52× 10−08 −5.4176 6.04× 10−08 −6.5292 6.61× 10−11

2010 17 48 −4.9000 9.58× 10−07 −3.7321 1.90× 10−04 −3.5207 4.30× 10−04

2011 21 61 −6.0628 1.34× 10−09 −3.9386 8.20× 10−05 −6.5101 7.51× 10−11

2012 27 81 −8.7340 2.46× 10−18 −6.5111 7.46× 10−11 −7.2261 4.97× 10−13

2013 31 92 −4.3180 1.57× 10−05 −1.6459 9.98× 10−02 −3.2212 1.28× 10−03

2014 31 93 −6.2219 4.91× 10−10 −5.2614 1.43× 10−07 −4.7034 2.56× 10−06

NOTE: We split the total observations of each year into two uneven subsamples by the 75% quantile
of total assets in that year. The number of big banks is n1, while the number of small banks is n2.
The numerator of statistics is the difference of estimated mean efficiency of small banks minus big
banks.
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Table C8: Robustness Check: Tests of Differences in Means for Productivity Estimates with Re-
spect to Size (with Dimension Reduction, p = q = 1)

Year n1 n2 Mean1 Mean2 Statistic p-value

2007 6 18 0.6444 0.6618 0.3500 7.26× 10−01

2008 11 30 0.6245 0.6785 2.0410 4.13× 10−02

2009 12 33 0.6241 0.7034 1.7481 8.05× 10−02

2010 17 48 0.6065 0.6328 1.3590 1.74× 10−01

2011 21 61 0.5870 0.5594 −1.3852 1.66× 10−01

2012 27 81 0.5860 0.5543 −1.7786 7.53× 10−02

2013 31 92 0.5876 0.5448 −2.4880 1.28× 10−02

2014 31 93 0.5987 0.5683 −1.8466 6.48× 10−02

NOTE: We split the total observations of each year into two uneven subsamples by the 75% quantile
of total assets in that year. The number of big banks is n1, while the number of small banks is n2.
The numerator of statistics is the difference of estimated mean productivity of small banks minus
big banks.
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Table C9: Robustness Check: Tests of Differences in Means for FDH Technical Efficiency Estimates
with Respect to Size (with Dimension Reduction, p = q = 1)

— Input — — Output — — Hyperbolic —
Year n1 n2 Statistic p-value Statistic p-value Statistic p-value

2007 8 8 — — — — — —
2008 14 14 −3.3509 8.05× 10−04 −2.9847 2.84× 10−03 −3.6668 2.46× 10−04

2009 15 15 −4.9624 6.96× 10−07 −1.3183 1.87× 10−01 −3.8646 1.11× 10−04

2010 22 22 −4.2734 1.93× 10−05 −2.2921 2.19× 10−02 −2.7055 6.82× 10−03

2011 28 28 −5.0868 3.64× 10−07 −2.9354 3.33× 10−03 −6.1081 1.01× 10−09

2012 36 36 −5.0359 4.75× 10−07 −4.9898 6.05× 10−07 −4.2668 1.98× 10−05

2013 41 41 −2.4495 1.43× 10−02 −1.2766 2.02× 10−01 −3.0377 2.38× 10−03

2014 42 42 −4.3523 1.35× 10−05 −4.2584 2.06× 10−05 −4.4456 8.77× 10−06

NOTE: We split the total observations of each year into the top one third quantile group and the
bottom one third quantile group in that year. The number of big banks is n1, while the number of
small banks is n2. The numerator of statistics is the difference of estimated mean efficiency of small
banks minus big banks. For 2007, there are too few observations for each group, making all of the
efficiency estimates in group 1 or 2 equal to 1.
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Table C10: Robustness Check: Tests of Differences in Means for Productivity Estimates with
Respect to Size (with Dimension Reduction, p = q = 1)

Year n1 n2 Mean1 Mean2 Statistic p-value

2007 8 8 0.6431 0.7385 0.9623 3.36× 10−01

2008 14 14 0.6243 0.7022 1.5142 1.30× 10−01

2009 15 15 0.6324 0.7487 1.2144 2.25× 10−01

2010 22 22 0.6133 0.6434 1.4837 1.38× 10−01

2011 28 28 0.5863 0.5470 −1.4343 1.51× 10−01

2012 36 36 0.5791 0.5287 −2.1039 3.54× 10−02

2013 41 41 0.5893 0.5144 −3.4066 6.58× 10−04

2014 42 42 0.6026 0.5436 −2.3099 2.09× 10−02

NOTE: We split the total observations of each year into the top one third quantile group and the
bottom one third quantile group in that year. The number of big banks is n1, where the number of
small banks is n2. The numerator of statistics is the difference of estimated mean productivity of
small banks minus big banks.
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Härdle, W. and E. Mammen (1993), Comparing nonparametric versus parametric regression fits,
Annals of Statistics 21, 1926–1947.

Hasannasab, M., D. Margaritis, and C. Staikouras (2019), The financial crisis and the shadow price
of bank capital, Annals of Operations Research 282, 131–154.

Hughes, J. P. (1999), Incorporating risk into the analysis of production, Atlantic Economic Journal
27, 1–23.

Hughes, J. P., L. J. Mester, and C.-G. Moon (2001), Are scale economies in banking elusive or
illusive? Evidence obtained by incorporating capital structure and risk-taking into models of
bank production q, Journal of Banking & Finance , 40.

Ji, K., W. Song, and R. Wang (2012), Research on China’s Commercial Banks Rating and Ranking
Based on DEA, American Journal of Operations Research 02, 122–125.

Kneip, A., B. Park, and L. Simar (1998), A note on the convergence of nonparametric DEA efficiency
measures, Econometric Theory 14, 783–793.

Kneip, A., L. Simar, and P. W. Wilson (2008), Asymptotics and consistent bootstraps for DEA
estimators in non-parametric frontier models, Econometric Theory 24, 1663–1697.

— (2011), A computationally efficient, consistent bootstrap for inference with non-parametric DEA
estimators, Computational Economics 38, 483–515.

— (2015), When bias kills the variance: Central limit theorems for DEA and FDH efficiency scores,
Econometric Theory 31, 394–422.

— (2016), Testing hypotheses in nonparametric models of production, Journal of Business and
Economic Statistics 34, 435–456.

Laurenceson, J. and Z. Yong (2008), Efficiency amongst China’s banks: a DEA analysis five years
after WTO entry, China Economic Journal 1, 275–285.

Lee, T.-H. and S.-H. Chih (2013), Does financial regulation affect the profit efficiency and risk of
banks? Evidence from China’s commercial banks, The North American Journal of Economics
and Finance 26, 705–724.

Linton, O., E. Maasoumi, and Y.-J. Whang (2005), Consistent Testing for Stochastic Dominance
under General Sampling Schemes, Review of Economic Studies 72, 735–765.

Liu, W., Z. Zhou, C. Ma, D. Liu, and W. Shen (2015), Two-stage DEA models with undesirable
input-intermediate-outputs, Omega 56, 74–87.

Luo, D. and S. Yao (2010), World financial crisis and the rise of Chinese commercial banks: an
efficiency analysis using DEA, Applied Financial Economics 20, 1515–1530.

Maudos, J., J. M. Pastor, and L. Serrano (1999), Total factor productivity measurement and human
capital in OECD countries, Economics Letters 63, 39–44.

Park, B. U., S.-O. Jeong, and L. Simar (2010), Asymptotic distribution of conical-hull estimators of
directional edges, Annals of Statistics 38, 1320–1340.

126



Park, B. U., L. Simar, and C. Weiner (2000), FDH efficiency scores from a stochastic point of view,
Econometric Theory 16, 855–877.
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