
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

May 2020

Flexible Congestion Management for Error Reduction in Wireless Flexible Congestion Management for Error Reduction in Wireless

Sensor Networks Sensor Networks

William Kolodzey
Clemson University, bill.kolodzey@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Kolodzey, William, "Flexible Congestion Management for Error Reduction in Wireless Sensor Networks"
(2020). All Dissertations. 2594.
https://tigerprints.clemson.edu/all_dissertations/2594

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/328149862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2594?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Flexible Congestion Management for Error
Reduction in Wireless Sensor Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

William Kolodzey

May 2020

Accepted by:

Dr. Daniel Noneaker, Committee Chair

Dr. Brian C. Dean

Dr. Yongqiang Wang

Dr. William Harrell

Abstract

The dissertation is concerned with the efficient resolution of data congestion

on wireless sensor networks (WSNs). WSNs are of increasing relevance due to their

applications in automation, industrial processes, natural-disaster detection, weather

prediction, and climate monitoring. In large WSNs where measurements are peri-

odically made at each node in the network and sent in a multi-hop fashion via the

network tree to a single base-station node, the volume of data at a node may exceed

the transmission capabilities of the node. This type of congestion can negatively

impact data accuracy when packets are lost in transmission. We propose flexible

congestion management for sensor networks (FCM) as a data-collection scheme to

reduce network traffic and minimize the error resulting from data-volume reduction.

FCM alleviates all congestion by lossy data fusion, encourages opportunistic fusion

with an application-specific distortion tolerance, and balances network traffic. We

consider several data-fusion methods including the k-means algorithm and two forms

of adaptive summarization. Additional fusion is allowed when like data may be fused

with low error up to some limit set by the user of the data-collection application

on the network. Increasing the error limit tends to reduce the overall traffic on the

network at the cost of data accuracy. When a node fuses more data than is required

to alleviate congestion, its siblings are notified that they may increase the sizes of

their transmissions accordingly. FCM is further improved to re-balance the network

ii

traffic of subtrees such that subtrees whose measurements have lower variance may

decrease their output rates while subtrees whose measurements have higher variance

may increase their output rates, while still addressing all congestion in the network.

We verify the effectiveness of FCM with extensive simulations.

iii

Table of Contents

Title Page . i

Abstract . ii

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Study Motivation . 1
1.2 Model of the Sensor Network . 5
1.3 Problem . 6
1.4 Simulation and Performance Evaluation 11
1.5 Related Work . 19

2 Fusion Methods . 23
2.1 The K-means Algorithm . 23
2.2 Adaptive Summarization . 27
2.3 Comparison of the Fusion Techniques 28
2.4 Fusion up to a Given Distortion . 31
2.5 The Effect of Fusion on Data Accuracy 32

3 Data Collection with Pure Elimination 34
3.1 Variables and Terminology . 35
3.2 Initialization . 35
3.3 Congestion-Control Mechanism . 35
3.4 Priority Case . 36
3.5 Performance Evaluation . 38

4 Spatio-Temporal Data Collection . 39
4.1 Initialization . 39
4.2 Congestion-Control Mechanism . 40
4.3 Priority Case . 41
4.4 Performance Evaluation . 42

iv

5 Congestion-Adaptive Data Collection 43
5.1 Variables and Terminology . 44
5.2 Initialization . 44
5.3 Congestion-Control Mechanism . 45
5.4 Adaptation to Changes in Network Topology 49
5.5 Priority Case . 50
5.6 Performance Evaluation . 51

6 Flexible Congestion Management for Sensor Networks 52
6.1 Variables and Terminology . 52
6.2 Congestion-Control Mechanism . 55
6.3 Adaptation to Changes in Network Topology 59
6.4 Performance in the Priority Case . 60
6.5 Results and Analysis . 61

7 Conclusion . 67
7.1 Advantages of FCM . 69
7.2 Fusion Method Choice with FCM . 70
7.3 Variations on Adaptive Summarization 70
7.4 Future Work . 71

Appendices . 73

A Random Motion . 74

B Proof that Sequential Distortions Sum to Total SSE 77

C Data-Tracking Structure for Sensor-Network Simulation 80

D Abbreviations . 84

Bibliography . 84

v

List of Tables

1.1 Tree Notation . 6
1.2 Data and Error Notation . 7

vi

List of Figures

1.1 Squared error is compared to Huber loss with δ = 30. 9
1.2 Example of a network tree generated with our method. 12
1.3 The data flow through an intermediate node in the network. 13
1.4 The mean error for experiments of varied duration. 18
1.5 The standard deviation in error for experiments of varied duration. . 19

2.1 K-means demonstration. 25
2.2 Illustration of fusion results: (a) fusion in one-step, (b) fusion in two-

steps, and (c) fusion in partitions. 26
2.3 Example of data fusion using the three methods: (a) adpSum, (b)

adpSum-sort, and (c) k-means. 28
2.4 Comparison of the fusion methods under the pureElim data-collection

method. 30
2.5 Comparison of the fusion methods under FCM in the non-priority case. 31
2.6 Comparison of the fusion methods under FCM in the priority case. . 31

3.1 Experimental error by priority class. 37
3.2 Difference in experimental error with and without prioritization. . . . 38
3.3 Difference in the experimental error for each of the fusion methods

with pureElim data collection. 38

4.1 The experimental error per priority class with k-means fusion. 42
4.2 Difference in experimental error per priority class with k-means fusion. 42

5.1 The experimental error per priority class with k-means fusion. 50
5.2 Difference in experimental error per priority class with k-means fusion. 50

6.1 Data flow at a node labeled with sizes and capacities. 55
6.2 Experimental error by priority class. 60
6.3 Difference in experimental error with and without prioritization. . . . 60
6.4 Difference in experimental error for each data-collection method using

k-means fusion. 61
6.5 Experimental error versus network size with each fusion method. . . . 62
6.6 Experimental error versus network size with each data-collection scheme. 63
6.7 Data-delivery ratio comparison. 64

vii

6.8 Performance comparison in the non-priority case. 65
6.9 Performance comparison in the priority case. 65
6.10 Experimental error sensitivity to allowable application error. 66
6.11 Network overhead sensitivity to allowable application error. 66

A.1 Two random-motion sequences with t = 500 steps. 76

C.1 The general form of the data-tracking structure. 82

viii

Chapter 1

Introduction

We begin with a discussion of the importance of congestion mitigation on wire-

less sensor networks (WSNs) and a survey of the relevant background. We then define

the model of the sensor network and the problem addressed by our data-collection

scheme, flexible congestion management for sensor networks (FCM). We continue

by providing details about the simulation and performance metrics used to evaluate

data-collection methods. Next, we discuss work related to congestion mitigation in

WSNs, including the three alternative data-collection methods we compare to our

proposed method.

1.1 Study Motivation

Congestion alleviation and error mitigation are key problems in the study of

data collection on WSNs, especially as the network size and the volume of data in-

crease. Networks deployed to monitor physical conditions may help to avoid property

loss and improve overall safety. Consider a network of sensor nodes deployed to mon-

itor a physical phenomenon. E.g., a wildfire detection network. Each sensor node has

1

the capability of local measurement of the phenomenon, data processing, and wire-

less communication with nearby nodes in the network. The dissertation focuses on

a convergecast data-collection scenario, where measurements are taken at each node

and forwarded to a unique sink node in the network (such as a cellular-network base

station). It explores effective data-collection methods on networks with data bot-

tlenecks, which are expected in inexpensive networks where the nodes have limited

transmission and data-storage capabilities.

A given node in the network is able to achieve viable point-to-point commu-

nication links with only a subset of the other nodes in the network, in general, which

may not include the sink node. Consequently, multi-hop routing through the net-

work is necessary to deliver data measurements from an arbitrary sensor node to the

sink. For purposes of the multi-hop convergecast, the network is organized into a

spanning tree called the routing tree, with the sink serving as the root of the tree.

Measurements travel as packets over multiple point-to-point links (hops) to reach the

sink. Each node has a finite memory, and each communication link of the node has a

finite achievable data rate (capacity). If the aggregate data rate into a node exceeds

the capacity of either its input buffer or outgoing link, congestion occurs, which can

be resolved in any of three ways: data summarization, a decrease in the frequency

of sensor measurements, and the dropping (loss) of packets due to buffer overflow

in the node. As such, data-collection methods with congestion-control mechanisms

that seek to reduce or eliminate congestion need to consider both a node’s input and

output.

Data summarization is the representation of a data set, given as a number of

packets of the same size, by a smaller number of packets of that size. A packet of data,

for our purposes, is represented by the tuple (val, count), where val is a measurement

(or the current approximation of one or more measurements) and count is the number

2

of measurements represented by the tuple. We mostly consider one-dimensional val-

ues, but, for the most part, the fusion methods, data-collection schemes, and results

mentioned in the dissertation extend to data tuples with multi-dimensional values.

As an example of summarization, we can fuse two packets (6, 1) and (4, 1) together

and represent them by a single packet (5, 2), where the new val is the mean of the two

original values, and the new count is the total number of measurements represented

by the fused packets. The tuple can be augmented with a node ID or location, as in

(val, count, loc), so that some sense of the physical (or network) location of a mea-

surement is maintained even after data fusion. If, as in a wildfire detection network,

the high temperature values are more important, we could have the new loc set to

the loc of the tuple with the highest val among the fused tuples. Alternatively, the

new loc could be set to the average loc of the fused tuples or the loc of the node at

which the fusion occurs. In this work, we do not consider the case in which location

information is retained.

Wildfire detection is used as an illustrative example in the dissertation. Cli-

mate change, including global warming, increases the risk of wildfires in many regions

in the world [3]. Recent wildfires in California and Australia are among the extreme

events that may be related to climate change, which may exacerbate extreme weather

events such as drought, high temperature, and the late onset of a rainy season. The

likelihood, intensity, and at-risk regions are expected to increase, which poses greater

threat to life, infrastructure, and natural resources. Early detection of wildfires or

high-risk conditions could be important factors in mitigation of wildfire damage, and

WSNs could help detect such conditions.

There is, in general, an error between an original measurement and its repre-

sentation by a summarized value at the sink. We refer to this representation as the

estimate of the measurement at the sink. In contrast to summarization, a decrease in

3

the measurement frequency at each sensor node may result in less error between an

original measurement and its estimate at the sink, but the timeliness of observation

of the phenomenon of interest is degraded. The effect of a reduced measurement

frequency may be well understood and predictable for some physical phenomena. On

the other hand, packet loss due to buffer overflow has a random effect on the error at

the sink for individual measurements; as a result, it has potentially the most adverse

effect on the error between an original measurement and its estimate at the sink.

We consider several data-collection schemes which seek to resolve congestion

by data summarization. Our proposed data-collection scheme, FCM, is compared to

pure elimination (pureElim), spatio-temporal data collection (ST), and congestion-

adaptive data collection (CADC). Each data-collection method is considered with

data summarization that employs one of three fusion methods: the k-means algorithm

[1] or either of two forms of adaptive summarization [2].

FCM is a set of management rules for data collection in a WSN, which may in

principle use any fusion method to resolve congestion. It contains congestion-control

variable management to balance the fusion requirements on subtrees of differing size

and with different rates of variability in the data measurement values within the

subtree. FCM utilizes the fusion ratio at each node, which is given by

γ =
m2

m1

, (1.1)

where m1 is the number of data tuples available in the input buffer and m2 is the

number of data tuples after fusion at the node. At any given time, the fusion ratio

at a node lies between 0 and 1, where γ = 1 represents no summarization and γ � 1

represents aggressive summarization. FCM exploits the fact that a subtree with

low data variability may incur low error even if its fusion ratio γ is low (that is,

4

data is fused aggressively), and it can reduce the total error incurred by allowing

parallel subtrees to use different fusion ratios. Since conditions can change on the

tree, the management rules facilitate adaptation to changes in local data variability

and network topology.

There are a number of network applications that call for efficient data col-

lection, either as a primary or secondary function. Some examples of network ap-

plications with data collection as a primary function include wildfire detection, me-

teorology, industrial control, and sea-level monitoring. Some examples of network

applications where data collection has a secondary role include autonomous-vehicle

fleets and smart cities. Wireless networks are becoming increasingly pervasive with

the internet of things, and many include sensor-data collection as a function.

For the purposes of simulation and performance evaluation, we adopt the

example of a temperature sensor network for wildfire detection. In this example,

measurements are one-dimensional, which simplifies the discussion, but most of the

methods discussed, including FCM, extend to higher-dimensional data applications

as well (such as wind-speed and direction measurements). We also show that FCM

is scalable with respect to the size and dynamics of the network.

1.2 Model of the Sensor Network

In this section, we discuss the models used for the data-collection network in

the dissertation. The network is composed of N sensor nodes that monitor some phe-

nomenon in the environment (such as the temperature at different points in a forest)

and send their periodic sensor readings to the sink via a routing tree. Our discussion

includes the network topology, individual node capabilities, data flow, terminology,

and assumptions used for our implementation.

5

1.2.1 The network tree

The network we consider is organized as a tree, where the root node alone is

in layer one, its children are in layer two, their children are in layer three, and so on.

A subtree rooted at node u is denoted Tu and the node’s subtree size is |Tu|. For the

Table 1.1: Tree Notation

Symbol Description
N The number of nodes in the network
r Sink node

u, v, i Sensor nodes in the network
Tu Subtree of the routing tree rooted at node u
|Tu| Size of the subtree rooted at node u
µ The mean number of a children assigned to a node
σ The standard deviation in the number of a children assigned

to a node
Cu The set of node u’s children
C−u The set of node u’s non-leaf children

simulation in this dissertation, the number of nodes N is chosen and a pseudo-random

tree is generated according to the parameters average number of children per node

µ = 3 and standard deviation in number of children per node σ = 1.2.

1.3 Problem

In this section, the congestion-control problem is defined for convergecast data

collection in a WSN. It is important to understand the impact congestion control has

on data quality. Data accuracy is critical for an application running on the WSN

to estimate the state of the monitored phenomenon. Congestion-control methods

are used to reduce packet loss and the estimation error associated with it. How-

ever, the congestion-control methods are lossy and thus contribute to an increase in

the error. Generally, an increase in error due to data summarization [2, 4] or mea-

6

surement frequency reduction at the sensor nodes [5, 6, 7, 8, 9] is preferable to an

increase in error due to packet loss, and the overall estimation error on the network

is reduced when congestion control is implemented. The dissertation compares sev-

eral congestion-control data-collection schemes which rely on data summarization for

congestion control.

1.3.1 Error definitions

In each data-collection scheme, when congestion occurs at a node, the node’s

children are ordered to perform data summarization to reduce their transmission

rates. The local measurement obtained at sensor node i in round t is denoted by

xi(t), and the value of xi(t) is estimated by i’s ancestor u in round t based on the

received summarized data as x̂ui (t). The error is the difference between x̂ui (t) and xi(t).

Table 1.2 contains terms related to the data and error in the network. The estimation

Table 1.2: Data and Error Notation

xi Measurement from node i
x̂ui Estimate of xi at node u
eu Estimation error at node u
εu Maximum tolerable error at node u
du Distortion at node u
ηu Maximum tolerable distortion at node u
cu Error contribution from node u
wi Priority coefficient of xi generated by node i
E Square root of average Huber error
E Per-experiment estimation error

error and data distortion are defined as follows. (We omit the parenthetical argument

indicating the round in the remainder of the dissertation, except where it is needed

to remove ambiguity in the discussion.)

7

Definition 1.3.1 (Estimation error) The estimation error at node u in round t

represents the sum of squared errors between the data values u receives from its subtree

Tu and their actual values, in that round. I.e.,

eu(t) =
∑
i∈Tu

(x̂ui (t)− xi(t))2. (1.2)

Definition 1.3.2 (Distortion) The data distortion at node u in round t is the sum

of squared errors between the data values u receives from its subtree Tu and their

corresponding values after fusion that are sent to its parent node v. I.e.,

du(t) =
∑
i∈Tu

(x̂vi (t)− x̂ui (t))2. (1.3)

Definition 1.3.3 (Error contribution) The error contribution cu of a node u in

round t measures the sum of squared errors between each measurement on u’s subtree,

Tu and the estimates of those measurements sent by u to its parent node v. I.e.,

cu =
∑
i∈Tu

(x̂vi (t)− xi(t))2. (1.4)

Numerical results in the dissertation are based on experiments, each of which

is the operation of the network over NR consecutive rounds. As we simulate the

network, an experiment consists of many rounds of data collection given a fixed tree

topology, data-collection scheme, and fusion method. We define the per-experiment

estimation error over an experiment as follows.

Definition 1.3.4 (Per-experiment estimation error) The per-experiment estima-

tion error for an experiment is the square-root of the mean of the estimation error at

the sink over the number of rounds in the experiment and the number of nodes in the

8

network. I.e.,

E =

√√√√ 1

N ·NR

NR∑
t=1

er(t). (1.5)

In addition to the sum-squared error, we use the Huber-loss function [10] to

evaluate the total error imposed on the network in our experiments. The Huber-loss

function is defined for residual a as

Lδ(a) =

a2

2
, |a| ≤ δ

δ(|a| − δ
2
), |a| > δ.

(1.6)

A residual is the difference between an original measurement and the estimate of the

measurement that reaches the sink. The function increases linearly with residuals

greater than δ, while it increases quadratically with residuals less than δ. Figure 1.1

compares Huber loss and squared error. We see that for residual magnitudes less

than the chosen value of δ, the Huber loss is half the squared error, while for residual

magnitudes greater than δ, the Huber loss is linear. Here, δ is chosen to be a value

−60 −30 0 30 60
0

500

1000

1500

2000

2500

3000

residual

er
ro

r

squared error

Huber loss

Figure 1.1: Squared error is compared to Huber loss with δ = 30.

that signifies a “large” difference in measurements. For residuals smaller than δ, the

Huber loss is equal to one half of the sum-squared error. The Huber-loss function

9

is less sensitive to the impact of outliers on the total error compared with the sum-

squared error. We use Huber error to determine the experimental error associated

with an experiment, which is defined as follows.

Definition 1.3.5 (Experimental error) The experimental error E is defined as

the square-root of the average Huber loss of all residuals on the network for the dura-

tion of the experiment. I.e.,

E =

√√√√ 1

N ·NR

NR∑
t=1

∑
i∈Tr

Lδ(xi(t)− x̂ri (t)). (1.7)

Since δ is chosen to be large compared to the expected measurement values, the

square root in the definition of experimental error acts as a proxy for the inverse of

the Huber-loss function. If the value of δ were raised to be greater than all of the

residuals in the experiment, the experimental error would be equivalent to 1√
2

times

the per-experiment estimation error.

Experimental error is used to measure the total error incurred in a simulated

network data-collection experiment to compare the effectiveness of the various fusion

methods and data-collection schemes. In comparison with the estimation error at the

sink, the experimental error places less emphasis on a few large errors relative to a

large number of small-to-moderate sized errors. In each of the numerical results in

the dissertation, the Huber loss is considered to be δ = 30.

The experimental error determined for all measurements in an experiment

can be generalized to a separate value of experimental error for the measurements

associated with each of several disjoint subsets of the overall measurements. This is

denoted Ebin, where bin is the label for the subset of measurements in a particular

priority class. To compute Ebin in contrast to E, instead of taking the square-root

10

of the average Huber loss for the residuals associated with every measurement in the

experiment, we use only the residuals associated with measurements in a particular

priority-class bin. This allows us to characterize the error that results for each of

multiple priority classes of data. In a portion of the dissertation, we consider a WSN

that assigns a priority to each measurement based on its magnitude.

Each node estimates the priority of each data point it receives, based on its

current estimated value, for the purposes of fusion. The weight a data point is

given in k-means fusion is based on both the estimated priority and the number

of measurements represented by a data point. The prioritized-data system used for

our simulation is discussed in Section 1.4.3.

1.3.2 Objective

Simply stated, our objective is to avoid congestion while minimizing the result-

ing experimental error. With this objective in mind, the FCM scheme is proposed,

which addresses congestion by reducing transmission rates via the use of lossy sum-

marization while reducing network traffic according to the allowable distortion and

reducing the experimental error.

1.4 Simulation and Performance Evaluation

This section describes the experimental design we use to evaluate the perfor-

mance of each data-collection scheme in simulation. The model and experimental

framework are implemented in the Matlab programming language.

11

1.4.1 Simulation details

An experiment begins with a fixed tree, data-collection scheme, and param-

eter initialization. The experiment continues for a predetermined number of data-

collection rounds determined according to Section 1.4.4. The network tree is initial-

ized beginning with the desired sink as its root. From the root, nodes are inserted

up to the desired network size. Each node is assigned a random number of children

from a discretized normal distribution with a mean of 3 and a standard deviation of

1.2. A sample network is visualized in Figure 1.2. The figure shows a 100-node tree

with five layers. To ensure connectedness in the tree, each layer except for the last

nodes: 100 , mu: 3.0 , sigma: 1.2

5

Network tree

Figure 1.2: Example of a network tree generated with our method.

must contain at least one node with a child.

Measurement data at each node is one dimensional (as in temperature mea-

surements) and is generated pseudo-randomly. Most measurements lie in the range

[0, 300]. To mimic the time dependencies in real-world processes, the data gener-

ated at a given node varies smoothly over a sequence of data-collection rounds. With

smoothly varying data measurements, we expect the variance of a set of data measure-

ments on a given subtree in the network to vary smoothly as well. The data-collection

method, FCM, takes advantage of the smoothly varying data with its slack-and-

12

surplus mechanism described in Section 6.2.3. Details of the data-generation model

are given in Appendix A.

In a round of data collection, each node receives data from its children, packets

are dropped if buffer overflow results, the node summarizes the data according to its

data-collection scheme and fusion method, the node prepares to send the data to its

parent, and the node engages in an exchange of control packets with its children (and,

in one data-collection scheme, with its parent). The node includes an input buffer

and an output buffer with respective buffer capacities of mbs data tuples and mss

data tuples. (We assume that the node capabilities, including mbs and mss, are the

same for every node in the network.) A packet containing data that is received at

a node is susceptible to loss due to buffer overflow in the node, but it is assumed

that neither packets containing data nor packets containing control information are

lost due to errors in the communication channel. The process for a typical node u is

illustrated in Figure 1.3.

v

u

31 2

incoming from 1,2, and 3

output buffer

input buffer
dropped

fusion

m2

m1

m0

mss

mbs

Figure 1.3: The data flow through an intermediate node in the network.

Within a round, during the phase in which data tuples are transmitted to

node u from its children, a total of m0 data tuples arrive at the node from its children

and one data tuple is derived from a local measurement at node u. (The transmitted

13

data tuples from the children are those stored in the output buffers of the children

at the end of the previous phase.) The single data tuple corresponding to the local

measurement is written into a memory location in the input buffer, and the data tuples

received from the children are written into the remaining locations in the input buffer

in the order in which they are detected at node u until all data is received or the input

buffer is full. The order in which data tuples are detected is modeled as random, and

all data tuples are assumed to be detected even if they are dropped due to buffer

overflow.

If any additional data tuples are detected at node u after its input buffer

is full, the last data tuple that was placed in the buffer is removed, and it and all

subsequently detected data tuples are dropped due to buffer overflow and represented

by a single proxy data tuple in that memory location in the buffer. (Consequently,

either no data tuples are dropped or a minimum of two data tuples are dropped.) The

resulting number m1 of data tuples stored in the input buffer during the round is equal

to at most mbs. They include the locally generated data tuple, either zero or one

proxy data tuple for the received data tuples which were dropped, and either at most

mbs − 1 received data tuples from the children (if no data tuples were dropped) or

exactly mbs− 2 received data tuples from the children (if data tuples were dropped).

Once the data transmissions to node u from its children have been received,

node u summarizes its input-buffer contents and stores the results in its output buffer.

The number of data tuples stored in the output buffer and the data summarization of

the input-buffer contents used to obtain them are determined by the fusion method

employed, the capacities of the two buffers, and dynamic constraints placed on the

node’s transmission size to its parent. The constraints are determined prior to the

current phase by the adaptive control of local congestion-control variables that is

specific to the data-collection scheme. The resulting number m2 of data tuples stored

14

in the output buffer of node u during the round is equal to at most mss. The phase

concludes with an exchange of control packets between node u and its children (and,

in one data-collection scheme, with its parent) containing information which is used

in determining the values of the congestion-control variables at the nodes in the next

round.

The network includes two special cases of node data flow. A leaf node has

no children, so it allocates only sufficient buffer memory for the single data tuple

corresponding to its locally-generated measurement in the round. The root node has

no parent, so it does not perform summarization or require a memory allocation for

an output buffer.

If there were no packet loss, it would be possible to determine the per-experiment

estimation error imposed on the network by having each node u report its error con-

tribution cu up through the network to the sink (along with the data transmissions).

A proof of this fact is given in Appendix B. Each node computes its error contribution

by adding its local calculation of distortion to its estimation error. The estimation

error at a node is the sum of error contributions reported to it by its children. In the

case of packet loss, the accuracy of the estimation error is not guaranteed.

Even in the realistic network scenario in which packet losses occur, each node

may still employ an analogous mechanism to estimate the error in the local estimates

of data measurements associated with its subtree. The three data-collection schemes

in the dissertation besides pureElim rely on congestion-control variables initialized

and maintained on each node in the network that attempt to limit the sum-squared

error introduced at the nodes. The update of congestion-control variables is motivated

by the fact that the total error in a node’s estimates of all data measurements in the

subtree rooted at the node can be approximated as the sum of errors introduced

at the nodes in the subtree. If we wish to limit the maximum tolerable error for an

15

application, we divide that value and allocate it to the nodes throughout the network,

often in proportion to the node subtree size, |Tu|. Further details of congestion-

control variable initialization is detailed for the relevant data-collection schemes in

Chapters 4-6.

Since there may be packet loss, a centralized view by the simulation is required

to keep track of estimates and compute the experimental error. A data structure

designed for this purpose is used here and described in Appendix C. It is used to track

the original measurements and their estimates throughout the network during data

collection. Data tuples in the simulation are augmented with a third element, head

(that is, (val, count, head)), to facilitate the update of the data-tracking structure.

The error on subsets of measurements can be analyzed and compared using the data-

tracking structure, which is especially useful in determining the error incurred on

data of a specific priority.

1.4.2 Evaluation metrics

We evaluate the various data-collection schemes by experimental error, net-

work overhead (nov), update overhead (uov), data-delivery ratio (ddr), and perfor-

mance in the priority case. Experimental error is defined in Definition 1.3.5. The

network overhead is the average number of data packets sent on the network per

round of data collection. The update overhead is the average number of transmis-

sions per round sent on the network for the purposes of variable update, such as each

request a node sends for one of its children to reduce its transmission rate. Typically,

the nov is much greater than the uov, but if a data-collection scheme requires a large

number of updates, the uov could degrade network performance. Generally, there is a

trade-off between error and network traffic. We also consider the data-delivery ratio,

16

as defined in equation (1.8),

ddr = 1− ndrop

N
, (1.8)

where ndrop is the number of sensor measurements for which no corresponding data

tuple is received at the sink (due to packet loss), and N is the total number of

measurements on the network.

1.4.3 Data collection with prioritized data

We also consider the priority case of data collection, where some measurements

are more critical to the goals of the application. For example, in the wildfire-detection

network, high-temperature measurements have higher priority than low-temperature

measurements, and so we prefer lower error associated with the high-temperature

measurements. Different data-collection methods and fusion techniques facilitate the

goals of data prioritization to different degrees.

The typical range of measurements used in the examples is 0 to 300. In the

examples employing prioritization, the data is partitioned by its magnitude into ten

priority classes with boundaries at integer multiples of 30 between 30 and 270. In this

way, the first priority bin includes original measurements less than or equal to 30,

the second bin includes original measurements greater than 30 and less than or equal

to 60, and so on until the tenth priority bin, which includes original measurements

greater than 270. The priority level assigned to each measurement in a priority class

increases from 1 to 10 for each of the classes.

1.4.4 Experiment duration

An appropriate duration for each experiment is determined to be at least

1000 rounds of data collection. The number of rounds of data collection should be

17

0

10

20

30

40

20 200 2000 20000

M
ea

n
 E

rr
o

r

Number of Rounds

Ɛ (Per-experiment estimation error)

E (Experimental error)

400-node network

Figure 1.4: The mean error for experiments of varied duration.

sufficient to ensure result repeatability; that is, the standard deviation in a result,

such as experimental error, between similar experiments should be low compared to

its mean value. We consider experiments to be similar when they are performed with

the same data-collection scheme, fusion method, network topology, and number of

rounds. The standard deviation of the experimental error is observed to diminish up

to approximately 5000 rounds of data collection for the network sizes we consider.

Figure 1.4 illustrates how the mean experimental error E and the mean per-

experiment estimation error E vary with experiment duration. Figure 1.5 illustrates

how the standard deviation between experiments decreases with the number of rounds

in each experiment. In Figure 1.4 and Figure 1.5, results are shown for 20 experiments

in each of which, the experimental error and the per-experiment estimation error

are determined for that experiment. The mean and standard deviation of the 20

corresponding values are shown as functions of the number of rounds of data collection

in Figure 1.4 and Figure 1.5, respectively. Each experiment uses the CADC scheme

with k-means fusion, the same 400-node network topology, and the same experimental

parameters, including experiment duration. The set of measurement values is allowed

to vary between experiments. The number of rounds is plotted on a logarithmic scale

to help show the decrease.

18

0

0.5

1

1.5

2

20 200 2000 20000

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Er

ro
r

Number of Rounds

Ɛ (Per-experiment estimation error)

E (Experimental error)

400-node network

Figure 1.5: The standard deviation in error for experiments of varied duration.

1.5 Related Work

To address the problem of congestion on WSNs, many data-collection schemes

have been developed. The approaches are varied, and some are better suited to

a specific type of network or data-collection application. For example, centralized

control may perform better for small networks and distributed control may perform

better for large networks. To address bandwidth limitations, which cause congestion,

most schemes control the routing of network traffic, the measurement rate at the

sensor nodes, or the degree to which data is summarized at relay nodes. All three of

the approaches to congestion-control are lossy, and a focus of this line of research is

to minimize the estimation error associated with the physical phenomenon monitored

by the sensor network.

1.5.1 Routing

Some data-collection schemes make routing, the decision of network topology

and data traffic, central to the congestion-control problem. In these schemes, some

routes are prioritized while others are deactivated to avoid congestion and ensure

data integrity. Chang and Tassiulas [11] proposed a distributed algorithm to max-

19

imize network lifetime by solving a routing problem. Cristescu et al. [12] used a

Slepian-Wolf coding model and a joint-entropy coding model to optimize the net-

work topology and reduce transmission costs. Gupta et al. [13] attempted to mini-

mize network-communication costs by selecting a subset of sensor nodes to represent

the entire network. Han et al. [14] applied approximation algorithms to achieve

energy-efficiency and reliability in the case of variable-power nodes in a WSN. Lee

and Keshavarzian [15] proposed a multi-faceted approach including load balancing,

scheduling and network-topology design to improve energy efficiency and data relia-

bility. Park and Sahni [16] considers the routing of each message to maximize net-

work lifetime using shortest-path computations. Wang et al. [17] proposed adaptive

approximate data collection (ADC), which divides the network into unfixed spatially-

correlated sub-clusters to reduce error and communication costs.

1.5.2 Sample-rate reduction

Several methods rely on reduction of the rate at which measurements are made

at the sensor nodes. Bian et al. [6] proposed centralized-control protocols based on

the network topology to adjust the measurement rates of the nodes in a small net-

work. Paek and Govindan [8] proposed rate-controlled reliable transport (RCRT), a

light-weight protocol, to avoid congestion on the network. Sankarasubramaniam et

al. [5] proposed the centralized data-collection scheme, event-to-sink reliable trans-

port (ESRT), to conserve energy expenditure on the network. Silberstein et al. [18]

proposed the constraint-chaining (CONCH) algorithm using suppression to reduce

energy costs on the network while maintaining a global view of data values. Su et

al. [19] considered an approximate problem and its dual to find a near-optimal-

performance solution to the rate-allocation problem in sensor networks. Wan et al.

20

[9] proposed congestion detection and avoidance (CODA), a data-collection scheme

which seeks to mitigate congestion and reduce energy usage by congestion detection

and targeted transmission-rate reduction. Zhou and Lyu [7] proposed price-oriented

reliable transport protocol (PORT), which considers local and global approaches to

reduce energy consumption and improve data fidelity on WSNs.

1.5.3 Data summarization

Several congestion-control approaches use data summarization to reduce the

size of transmissions on the network. Ahmadi et al. [2] introduced the spatio-

temporal data-collection scheme and considers the notion of contextual priority levels

for data. Luo et al. [20] applied compressive-sampling theory to extend network

lifetime on large sensor networks with spatially-correlated data. Wan et al. [21]

proposed minimum-latency aggregation schedule (MLAS), which considers network

topology and node-communication capabilities to reduce latency in networks sub-

ject to interference. Iri et al. [4] introduced the congestion-adaptive data collection

(CADC) scheme, which regulates network traffic with limits on the data distortion

allowed at each node.

Our work uses data summarization in a distributed data-collection scheme.

We assume a pre-determined network topology and a constant sampling rate. We

intend for our method to be scalable, so we use distributed congestion control, and

we compare our data-collectoin scheme to schemes with similar approaches.

The rest of the dissertation is organized as follows. Chapter 2 discusses the

fusion methods for data summarization, which are key components to the data collec-

tion methods. Chapters 3-6 concern the data-collection schemes. Chapter 3 is about

pure elimination; Chapter 4 is about spatio-temporal data collection; Chapter 5 is

21

about congestion-adaptive data collection; and Chapter 6 is about flexible congestion

management for sensor networks. The conclusion is given in Chapter 7. The appen-

dices include details on smooth data generation (Appendix A), a proof about error

contributions summing in a network (Appendix B), a data structure to keep track

of data estimates (Appendix C), and a list of abbreviations used in the dissertation

(Appendix D).

22

Chapter 2

Fusion Methods

Data fusion is used to summarize data and resolve congestion without packet

loss. It allows a node to reduce the number of available data tuples to satisfy the

output rate constraints of a node or the input rate constraints of a node’s parent.

Additionally, a reduction in the number of data tuples frees up bandwidth on the

communication links. If there is low variability in a set of data, fusion can help

reduce the network traffic with low distortion by representing the data set by a smaller

number of tuples. We consider three methods of data fusion: the k-means algorithm

and two versions of adaptive summarization.

2.1 The K-means Algorithm

K-means is a clustering problem where, given a set of n data points and a

number k of clusters of the points, we seek the data-point cluster membership that

minimizes the sum of squared distances from each point to its cluster center [1]. Each

cluster center is the mean of the points belonging to the cluster. Each point lies

in the cluster whose center is closest to the point. Consequently, the problem of

23

k-means clustering is typically posed in terms of the equivalent problem of selecting

k cluster centers which achieve the optimal clustering. In general, determining the

optimal clustering for 1 < k < n is an NP-hard problem [22]. The k-means algo-

rithm introduced in [1] is an iterative search for a locally optimal k-means solution,

which converges quickly in practice. Starting with an initial guess for the location of

the center of each of the k clusters, the membership of the clusters is determined by

assigning each point to the cluster with the nearest center to the point. The initializa-

tion method we consider equates each of the k centers to a different point in the data

set, randomly. Then, each of the n points in the data set is assigned to the cluster

with the closest center, and the center of each cluster is updated to the mean of the

points in the cluster. This process is repeated until the cluster memberships converge

(that is, they are unaltered by an iteration of the updates). Figure 2.1 illustrates

the algorithm on a 2D set of points with n = 14 and k = 4. While the algorithm

is not guaranteed to converge to the optimal clustering for the given data points, it

converges to a cluster membership that is locally optimal with respect to a change in

the cluster membership of any single point. In this way, the cluster center represents

all of the data points belonging to the given cluster. The number of iterations can

be limited a priori to avoid the worst-case run time possible on certain input cases.

Since k can be chosen between one and n inclusive, we can use the k-means algorithm

to fuse data to precisely the size of data set that is needed.

There are some daunting worst-case bounds for run time discussed in [23].

Additionally, the k-means algorithm can perform much worse than optimally [24].

However, for typical data sets encountered in a data-collection scenario, the run-time

and the error do not approach the worst-case values. With one-dimensional data, a

k-means algorithm exists that guarantees optimal convergence with a worst-case time

complexity O(nk) using dynamic programming [25], where n is the number of points

24

Iteration 0

cluster head

data point
membership

cluster mean

Iteration 1

cluster head

data point
membership

cluster mean

Iteration 2

cluster head

data point
membership

cluster mean

Iteration 3 (converged)

cluster head

data point
membership

cluster mean

Figure 2.1: K-means demonstration.

and k is the number of cluster centers. To avoid rare cases of long convergence time

with multi-variate data, a maximum number of iterations can be enforced. Even if

the clusters determined by the k-means algorithm are sub-optimal, the summary is

still preferable to the case of dropped packets.

In the WSN we consider, each node has a subset of the entire data set available

for summarization. There are two interesting results regarding multi-stage k-means

applications. If k-means fusion is performed successively as shown in Figure 2.2b,

with an intermediate number of centers greater than the final number of centers, the

sum of squared errors on the data after the two steps of fusion is bounded by five

times the optimal sum of squared errors solution to k-means in one step [26] as shown

25

k2

k1 k2k2 nn n

(a) (b) (c)

Figure 2.2: Illustration of fusion results: (a) fusion in one-step, (b) fusion in two-steps,
and (c) fusion in partitions.

in equation (2.1),

S ≤ 5OPT, (2.1)

where S is the sum of squared errors for both optimal k-means solutions in the two-

step case, and OPT is the sum squared error for the optimal solution to k-means in

the one-step case (that is, the case in Figure 2.2a). The second interesting result is

that when the data is split into two or more subsets, the case illustrated in Figure 2.2c,

the sum of squared errors on the data in the split case may be arbitrarily worse than

in the case of the whole. To illustrate this, consider the data set with eight values,

{1, 1, 2, 2, 3, 3, 4, 4}, where the number of elements must be reduced by a factor of

2, we would choose k = 4, and the optimal center locations are {1, 2, 3, 4}, each

representing two of the original elements. This summarization imposes zero error.

If we instead separate the data set into the two worst-case subsets, each {1, 2, 3, 4},

we would use k = 2 for fusion on each set, and the final center locations become

{1.5, 1.5, 3.5, 3.5}, clearly imposing some error. This is similar to the problem we face

when we fuse data to resolve congestion throughout a network, and it demonstrates

the possible impact of fragmented data on summarization error.

When data is prioritized (as described in Section 1.4.3), the points in k-means

26

are given weight according to their priority, so that the cluster centers become the

weighted average position of the points.

2.2 Adaptive Summarization

Adaptive summarization, outlined in [2], works by fusing each pair of adjacent

data points in the buffer into a single data point. The value of the new data point is

the average value of the two adjacent data points. In the priority case, the new value

is the weighted average of the two adjacent data points, where the weights are the

data priorities of the two points. Thus, a set of n data points stored in the buffer is

reduced to n
2

data points (n even) or n−1
2

+1 data points (n odd) after fusion through

the sequential application of pairwise fusion of distinct pairs of points in the original

set. We assume the final data point in the original set is unaltered if n is odd. A

significant reduction in the error incurred with this fusion method can be achieved

by first sorting the data, so this should be the first step, where possible. Adaptive

summarization reduces the number of data tuples by powers of two, since it cuts the

number of tuples in half (rounded up) on each iteration. If one iteration does not

reduce the size of the data set sufficiently, it is reduced again, in another iteration,

by half. This can be repeated as many times as required until the data set is reduced

to as few as a single tuple. Adaptive summarization does not provide the degree of

control of the size of the post-fusion data set that is provided by k-means, but it

is faster and less computationally intensive, so it is a good option for low-energy or

low-budget applications.

We consider two methods of adaptive summarization. The first method ap-

plies pairwise fusion to data tuples in the order in which they occur in the node’s

buffer. It is referred to as adaptive summarization without sort (adpSum). The sec-

27

ond method first sorts the data tuples in order of increasing value and then applies

pairwise fusion to data tuples in the sorted order. This method is referred to as

adaptive summarization with sort (adpSum-sort).

2.3 Comparison of the Fusion Techniques

The fusion method has a significant impact on both the representation of each

measurement as it flows through the network and the computational workload at each

node; consequently, the different fusion methods can result in significantly different

network performance. This is illustrated in Figure 2.3 for an example of one round

of summarization at a single node. In the example, the received set of data values is

11

3

2

4

12

1

24

13

7

3

6.5

18.5

5

12.5

1

2

3

4

11

12

13

24

1.5

3.5

11.5

18.5

2.5

15

2.5

12

24

(a) (b) (c)

11

3

2

4

12

1

24

13

11

3

2

4

12

1

24

13

sort

Figure 2.3: Example of data fusion using the three methods: (a) adpSum, (b)
adpSum-sort, and (c) k-means.

given by {11, 3, 2, 4, 12, 1, 24, 13}. The use of adpSum, adpSum-sort, and k-means is

shown in parts a, b, and c of the figure, respectively. For each case, the received data

set is illustrated in the left-most column and the final summary is illustrated in the

rightmost column. A shading gradient is used to highlight the difference in values.

In the scenario of Figure 2.3, it is required that the eight elements of the data

set are summarized by a maximum of three elements. Adaptive summarization re-

quires two steps of fusion, and the data must be fused down to two elements to satisfy

the size requirement of the summary. K-means allows the data to be summarized by

three elements. Adaptive summarization without sort incurs a sum-squared error of

28

315 with errors of 155 and 160 introduced in two consecutive steps. Adaptive sum-

marization with sort incurs a sum-squared error of 115 with errors of 62 and 53 in

the two steps. K-means incurs a sum-squared error of 7 in one step.

The simplest technique, adaptive summarization without sorting, has a lower

computational requirement than adaptive summarization with sorting, since the latter

includes the additional task of sorting. Adaptive summarization without sorting also

has the benefit of only requiring two points at a time to begin summarization, so it

is appropriate for applications where memory resources are limited and nodes must

send data transmissions with low delay from when they receive data transmissions

from their children. Both impose less computational burden on the node than does

the k-means algorithm, though they offer less flexibility with regard to the size of

the data set after fusion. Adaptive summarization reduces the number of tuples by

powers of two by averaging adjacent tuples. As in the basic adaptive-summarization

method, the number of tuples is reduced by factors of two. The most sophisticated

technique, the k-means algorithm, tends to fuse data tuples close in value while not

fusing outliers. Additionally, the number of data centers k can be chosen to fuse the

data to any extent.

K-means has an additional advantage over adaptive summarization in the pri-

ority case, where isolated, high-priority measurements can be preserved while lower-

priority data points are fused. As shown in Figure 2.3, k-means preserves the outlier

value, 24, in its summary. The advantage comes at a cost, as k-means is significantly

more computationally intensive than either adaptive-summarization technique, which

could also contribute to delay in the data received at the sink.

The difference in outcomes in a single round at each node is reflected in dif-

fering performance at the network level depending on the fusion method. There is a

trade-off between the performance, on the one hand, and the required computation

29

and input-output delay, on the other hand, among the three fusion methods: adap-

tive summarization, adaptive summarization with sort, and the k-means algorithm.

The performance difference is illustrated in Figure 2.4, which shows the experimental

error for experiments with each of the network sizes: 200, 400, 600, 800, and 1000

nodes. The data-collection scheme, pure elimination without data-priority classes, is

used for the experiments. Performance is shown for each of the three fusion methods.

(The pureElim method is not designed with any inherent bias towards one of the

fusion methods.)

K-means requires more processing power than adpSum and adpSum-sort, but

it accommodates precise fusion ratios and almost always results in lower summariza-

tion error as seen in the example of Figure 2.4. Adaptive summarization reduces the

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, pureElim

adpSum

adpSum-sort

k-means

Figure 2.4: Comparison of the fusion methods under the pureElim data-collection
method.

available data by powers of two, and it only considers fusing adjacent data tuples,

before or after sort. A significant reduction in error in adaptive summarization is ob-

served if the data tuples are sorted first, but k-means still provides significantly lower

error. We observe that k-means is the best fusion method at reducing experimental

error, followed by adpSum-sort. AdpSum incurs the highest experimental error of the

fusion methods.

30

We repeat this analysis with the FCM method detailed in Chapter 6. The

results, pictured in Figure 2.5, reinforce what is observed in the case of the pureElim

method without data-priority classes. Figure 2.6 shows that the same ordering in

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, FCM

adpSum

adpSum-sort

k-means

Figure 2.5: Comparison of the fusion methods under FCM in the non-priority case.

performance among networks using the three summarization methods occurs if data

with multiple priority classes is used.

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, FCM

adpSum

adpSum-sort

k-means

Figure 2.6: Comparison of the fusion methods under FCM in the priority case.

2.4 Fusion up to a Given Distortion

In three of the four data-collection schemes in the dissertation, we use summa-

rization of the available data up to a given maximum distortion. To accomplish this,

31

a node applies successive instances of the fusion method to the available data set. In

each instance, the number of tuples in the summary is decreased by the minimum

amount from the last instance. With k-means, we reduce the number of tuples by one

in each instance. With adaptive summarization, we reduce the number of tuples by

a factor of two (rounded up) in each instance. By comparing the tuples in the sum-

mary to the tuples in the available data, we determine the distortion (sum-squared

error) incurred in a given instance. In general, the first instance whose distortion

exceeds the given maximum distortion is rejected, and the summary of the previous

instance is kept as the final summarization by fusion up to the given distortion. This

summary may be used for transmission to the node’s parent. However, additional

fusion beyond this summary may be necessary to satisfy the output-buffer capacity.

Further implementation details specific to each data-collection scheme are given in

their corresponding chapters.

2.5 The Effect of Fusion on Data Accuracy

A simple example shows the effect of fusion on data accuracy. Two child nodes

u1 and u2 transmit data packets to their shared parent node v. We assume each node

is able to reduce its data output rate using adaptive summarization. Suppose that

during a time slot, node u1 has the set of data {1, 4}, and u2 has the set {2, 3}, ready

to transmit to node v, and each data item has count = 1. I.e., each node stores

two tuples of the form (val, 1). The shared parent node’s input-buffer capacity can

accommodate up to three tuples. To avoid congestion at node v, the child nodes need

to reduce the total number of tuples they send this round, through data fusion. The

adaptive-summarization fusion method computes the average of consecutive pairs of

values, so there are two options to reduce the total number of tuples sent to node

32

v by a single tuple: one where node u1 summarizes data tuples (1,1) and (4,1) to

(2.5,2); and two where node u2 summarizes data tuples (2,1) and (3,1) to (2.5,2).

The data distortion (defined in equation (1.3)) is 4.5 in case one and 0.5 in case two.

In both cases, congestion is avoided at the input to node v to the same extent (that

is, the input queue length is decreased to three tuples). However, the two options

incur different levels of data distortion and thus different levels of estimation error at

node v.

In the above example, it is clear that we would prefer the child with greater

data variability to employ less severe fusion. The mechanism used to accomplish

this includes a congestion-control variable called maximum tolerable distortion and

is discussed in Chapters 4-6. The idea is to decrease the fusion ratios of the children

indirectly by increasing their maximum tolerable distortions. For instance, if the

children u1 and u2 were only allowed to fuse such that the sum-squared error resulting

from the fusion is less than 4, then only node u2 would fuse its data. In this case, the

congestion is resolved with the smallest possible resulting error.

33

Chapter 3

Data Collection with Pure

Elimination

This chapter outlines the pureElim scheme [27] for data collection in wireless

sensor networks (WSNs). PureElim uses simple rules to eliminate all congestion in

the network by using data fusion to reduce the data rates to and from congested

nodes in the network. The premise of pureElim is to fuse data as late as possible in

transit through the network to the sink by fusing only as much as necessary at each

node to avoid all packet loss. A node fuses incoming data to satisfy the transmission

rate constraint of its output link, and a node requests that its children reduce their

transmission rate until the incoming packets are manageable by the node’s buffer.

PureElim can be a good choice for a network with a static topology and only a single

application generating data traffic in the network, but it is not appropriate for more

sophisticated applications where nodes may join, exit, or move within the network, or

in networks where we expect significant differences in data variance between subtrees

over time. In spite of these limitations, the pureElim method provides a performance

baseline for the alternative data-collection methods considered in the dissertation.

34

3.1 Variables and Terminology

PureElim uses the fusion-ratio limit Γu as the only per-node congestion-control

variable. The fusion-ratio limit Γu at node u determines the extent of fusion at u,

and thus the fusion ratio γu may not exceed Γu. However, a node is incentivized to

send as much data as possible, so γu is as high as possible, given the fusion method

and available data, without exceeding Γu. Each node u fuses data so that the number

of outgoing tuples m2 is the floor of Γu times the number of available tuples m1 at

the node. I.e., m2 = bΓum1c.

3.2 Initialization

The network topology is initialized according to Section 1.4, and each node u

has its fusion-ratio limit Γu set to 1. With fusion-ratio limit Γu = 1, node u sends as

much data as it has at each time step, up to its output-buffer capacity, mss.

3.3 Congestion-Control Mechanism

In pureElim, there are two means by which the fusion-ratio limit Γ is decreased

at a congested node. First, if the number of data tuples at a node exceeds its output

capacity, and its current value of Γ is too large to decrease the number of tuples in the

input buffer to within the node’s output capacity, the node decreases its fusion-ratio

limit to reduce the number of tuples so that it satisfies the output-buffer capacity.

Second, if congestion is detected at the input to the node, the node makes a request

to each of its children to reduce their output rates by the factor FR equal to the

total size of the incoming data divided by the maximum input buffer size. Each child

reduces its fusion-ratio limit to accommodate the parent node’s input requirement.

35

The child node i establishes its fusion-ratio limit for the next time step, Γi(t + 1),

based on equation (3.1),

Γi(t+ 1) = FR(t) · Γi(t), (3.1)

where Γi(t) is its fusion-ratio limit in the current time step.

There is no relaxation mechanism for the congestion-control variables in pure

elimination; that is, the fusion-ratio limit never increases at a node. On a static

network using pureElim, there is no need for relaxation, but the lack of a relaxation

mechanism makes the method unsuitable for a network with a dynamic topology.

If there are significant changes to the network topology, the congestion-control

variables set in pureElim may no longer be appropriate. To avoid inappropriate

congestion-control variables, the network could be reinitialized periodically or when

major changes to the network are detected. The reset of the fusion-ratio limit to one

at each node requires some network traffic (update overhead), and we would expect

to observe an increase in the number of lost packets and a corresponding decrease

in data accuracy for one round of data collection after the reset. Alternative data-

collection schemes, including FCM, use dynamic adjustments of per-node variables

which avoid network-wide resets of the variables. They are discussed in Chapters 4-6.

3.4 Priority Case

To quantify performance in the case of prioritized-data collection in a WSN,

we compare the experimental error in each of the ten priority bins in the priority case

(as described in Section 1.3.1) to the experimental error in the non-priority case. To

motivate the example, we consider an experiment of 5000 rounds of data collection

with pureElim using the k-means fusion method on a network of 400 nodes. The

36

experimental error for each priority bin is shown in Figure 3.1a with prioritization

and in Figure 3.1b without prioritization. The difference in the experimental error ∆E

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

priority pureElim with k-means
400 nodes

(a)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

non-priority pureElim with k-means
400 nodes

(b)

Figure 3.1: Experimental error by priority class.

between the two cases is normalized to account for differences in total experimental

error between the two cases. It is given by

∆Ebin =

(
Ep
bin

Ep
− En

bin

En

)(
Ep + En

2

)
, (3.2)

where the superscript n denotes the non-priority case, p denotes the priority case, and

the subscript bin indicates the priority-bin data subset on which the experimental

error is calculated. The first term in the product is a normalized difference in the

experimental error for each priority bin between the priority case and the non-priority

case. The second term in the product is the average of the two total experimental

errors and it serves to re-scale the normalized difference to the units of experimental

error. The result is shown in Figure 3.2.

Since pureElim does not have a mechanism to reduce error on higher priority

data, the differences in experimental error observed are due to the fusion methods

themselves. Figure 3.3 shows ∆E for each of the three fusion methods. The value

of ∆E is small for each of the fusion methods under pureElim. We return to this

method in Chapter 6 as we compare the performance with multiple priority classes

37

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority Level

pureElim with k-means
400 nodes

Figure 3.2: Difference in experimental error with and without prioritization.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority level

pureElim data-collection
400 nodes

k-means

adpSum-sort

adpSum

Figure 3.3: Difference in the experimental error for each of the fusion methods with
pureElim data collection.

for all of the data-collection methods considered in the dissertation.

3.5 Performance Evaluation

In Chapter 6, we compare pureElim to the other data-collection schemes.

38

Chapter 4

Spatio-Temporal Data Collection

The spatio-temporal data-collection scheme (ST) is introduced in [2]. Each

node u employs the local congestion-control variable, maximum tolerable distortion

ηu (referred to as the “error” in [2]), which provides an upper bound on the distortion

du at the node. If congestion is detected at a node, the maximum tolerable distortion

at each node in the subtree rooted at the node is increased, which allows for more

fusion at the nodes. If a node experiences no congestion, it reduces the maximum

tolerable distortion at each node in the subtree.

4.1 Initialization

Each node is initialized with its maximum tolerable distortion equal to zero.

With zero maximum tolerable distortion, no fusion occurs at the node, except to

reduce the number of tuples to be at most the output-buffer capacity.

39

4.2 Congestion-Control Mechanism

As in the other data-collection methods, data is summarized using fusion to

alleviate congestion. While any fusion method can be used to reduce the number

of data tuples at a node with ST, its congestion-control variable update is based

on adaptive summarization (adpSum and adpSum-sort). That is, the change to the

maximum tolerable distortion at a node is based on power-of-two reductions in the

number of data tuples.

When congestion is detected at a node u, the maximum tolerable distortion

is increased to resolve the congestion based on where the congestion occurs. If con-

gestion is detected at the input, the node sends a request to each child to increase

the child’s maximum tolerable distortion. If congestion is detected at the output, the

node increases its own maximum tolerable distortion. In either case, the maximum

tolerable distortion at node u in round t+ 1 is given by

ηu(t+ 1) = max(2ηu(t), η
′
u), (4.1)

where ηu(t) is the maximum tolerable distortion in round t and η′u is the distortion that

would be introduced in the available data due to a single-step adaptive summarization

at node u.

Data is fused at a node as much as possible by the selected fusion method

(k-means, adpSum-sort, or adpSum) without exceeding the maximum tolerable dis-

tortion at the node. Generally, the fusion ratio γ decreases as the maximum tolerable

distortion increases, but the fusion ratio also depends on the data variability. If there

is a low variance in the data values at the node, the fusion ratio can be lower while

still satisfying the maximum tolerable distortion. As the variance in the data in-

40

creases, it may be necessary to increase the maximum tolerable distortion to reduce

the congestion. Since we expect the variability in the data to change with time in

many instances, corresponding adjustments to the maximum tolerable distortion are

made, including both increases and decreases.

4.2.1 Variable relaxation

In the absence of congestion, the maximum tolerable distortion is reduced via

relaxation. If the number of incoming packets to a node is less than the input-buffer

capacity, then the node informs its children that they may increase their fusion ratios

via maximum tolerable distortion according to

ηu(t+ 1) =

(
1

ηu(t) + ρ

)−1
, (4.2)

where ρ is a constant relaxation parameter set for the application. The relaxation

accounts for both changes in data variability and changes to network topology. When

a node’s subtree size decreases, it is likely the value of ηu at the node can be decreased

while still avoiding congestion. In our simulation, ρ is set to 0.001.

4.3 Priority Case

Though ST is designed to work with adaptive summarization (adpSum and

adpSum-sort), it can use any fusion method, including k-means. Figure 4.1 shows

the experimental error for each priority class with ST data collection and k-means

fusion, in both the non-priority and priority cases. The difference, computed by

formula (3.2), is shown in Figure 4.2.

41

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

non-priority ST with k-means
400 nodes

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

priority ST with k-means
400 nodes

Figure 4.1: The experimental error per priority class with k-means fusion.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority Level

ST with k-means
400 nodes

Figure 4.2: Difference in experimental error per priority class with k-means fusion.

4.4 Performance Evaluation

In Chapter 6, we compare ST to the other data-collection methods.

42

Chapter 5

Congestion-Adaptive Data

Collection

The congestion-adaptive data-collection (CADC) scheme was introduced in [4].

CADC reduces the congestion on the network by data fusion which is regulated by

using the maximum tolerable distortion at each node as the node’s congestion-control

variable. In CADC, as in the ST data-collection scheme described in Chapter 4, each

node attempts to fuse data up to its maximum tolerable distortion. The maximum

tolerable error χ at the sink is specified for the application as a static configuration

parameter. The congestion-control mechanism is designed to keep the estimation error

at the sink lower than the maximum tolerable error specified for the application. Each

node keeps track of its contribution to the total estimation error in the network as

described in Section 5.3. In cases in which the estimation error at the sink is not

guaranteed to be within the maximum tolerable error specified for the application,

the user of the application is notified.

43

5.1 Variables and Terminology

The two per-node congestion-control variables for CADC are the maximum

tolerable error εu and the maximum tolerable distortion ηu, at node u. The maximum

tolerable error εu is a limit on the total estimation error from the subtree Tu while the

maximum tolerable distortion ηu is a limit on the distortion that can be introduced

at node u. The maximum tolerable error at the sink is held constant throughout an

experiment.

Auxiliary variables are stored in the memory of each node to facilitate the

congestion-control mechanisms. These auxiliary variables include the variable η∗u and

the array variable ηhist. Their meaning and use are discussed in Section 5.3.

CADC uses several constant parameters including the maximum tolerable er-

ror at the sink χ, the historical window size w, and the relaxation constant ρ. The

parameters should be chosen appropriately for the network size, the node capabilities,

and the anticipated distribution of measurements made at the nodes.

5.2 Initialization

At the start of data collection on a WSN using CADC, each node u is initialized

with ηu = 0. The w entries in the auxiliary array variable ηhist at each node are set

to 0.

The maximum tolerable error εu is set according to the network topology and

the value of χ specified for the application. A breadth-first search is initiated from

the root with εr = χ. Each parent node v sets the maximum tolerable error for each

of its children. We let u denote a child of v and have

εu = αuεv, (5.1)

44

where αu is the relative weight of u’s subtree size,

αu =
|Tu|
|Tv| − 1

. (5.2)

In this way, the maximum tolerable error of a node equals the sum of the maximum

tolerable errors of its children.

5.3 Congestion-Control Mechanism

Congestion control occurs at a node u in two sequential steps: the summa-

rization step and the update step. In the summarization step, the node summarizes

the available data based on its number of available data tuples m1, the output-buffer

capacity mss, and its maximum tolerable distortion ηu. In the update step, the node

determines the congestion status and makes update requests to its neighbors to tune

their congestion-control variables appropriately.

The enforcement of a maximum tolerable error at each node (and, ultimately,

at the sink) is based on the idea of the error contribution cu as defined in equa-

tion (1.4). As shown in [4] and repeated here, the Cauchy-Schwartz inequality is used

to obtain an upper bound on the error contribution of u based on values accessible

45

to the node,

cu =
∑
i∈Tu

(x̂vi − xi)2

=
∑
i∈Tu

((x̂vi − x̂ui) + (x̂ui − xi))2

=
∑
i∈Tu

(x̂vi − x̂ui)2 +
∑
i∈Tu

(x̂ui − xi)2

+2
∑
i∈Tu

(x̂vi − x̂ui)(x̂ui − xi)

≤
∑
i∈Tu

(x̂vi − x̂ui)2 +
∑
i∈Tu

(x̂ui − xi)2

+2

√∑
i∈Tu

(x̂vi − x̂ui)2.
∑
i∈Tu

(x̂ui − xi)2

= du + eu + 2
√
du · eu (5.3)

where eu is the estimation error at node u and du is the data distortion due to data

fusion at u. The bound is valid if there are no dropped packets in the subtree of node

u or in the transmissions from node u to its parent node v. The inequality serves as a

guiding approximation even if there are dropped packets (which cannot be accounted

for in the distortion at the node).

5.3.1 Summarization step

In CADC, data flow at node u is regulated directly by ηu. After receiving

the data tuples from its children in round t of data collection and adding its own

measurement, the node applies the chosen fusion method to the available data to

create a summary. As described in Section 2.4, the summary is made after successive

applications of the fusion method are applied, which result in incrementally fewer

tuples in the summary. The final summary is the last summary which incurs a

46

distortion less than ηu or is comprised of no more than mss tuples, whichever is

smaller.

5.3.2 Update step

In the update step of round t at node u, congestion is detected at the node if

mbs
m0

< 1, where mbs is the input-buffer capacity and m0 is the number of incoming

packets (as shown in Figure 1.3). If node u is congested, each child is informed that

it must increase its maximum tolerable distortion to decrease the total number of

tuples incoming to node u in the next round. If node u is not congested, each child

is allowed to relax its fusion requirement.

Congested case: If congestion is detected at node u, it determines the factor F

required to alleviate congestion promptly at the output of its children. The factor F

is based on the level of congestion at node u’s input and is given by

F = min

(
1,
mbs

m0

)
. (5.4)

Each child i of u uses its available pre-summary data from round t to determine

a quantity denoted by η∗i (t+ 1), the desired maximum tolerable distortion for round

t + 1. Test-summarization fusion is applied to that data until the fusion ratio is at

most F ·γi(t), where γi(t) is the fusion ratio for the summarization in round t at node

i. A test summary is a summary made using the current set of data tuples in the

node’s input buffer for the purposes of congestion-control parameter update rather

than for transmission to the node’s parent. The resultant distortion is η∗i (t + 1). A

history of the values of η∗i is stored in ηhist for the last w time steps. The required

value of η∗i is stored as the most recent historical value in ηhist, and the oldest entry

47

in ηhist is dropped to avoid more than w historical values as given by

ηhist = {η∗i (t+ 1), η∗i (t), ..., η
∗
i (t− w + 2)}. (5.5)

To avoid frequent rounds in which congestion occurs at node i, the maximum tolerable

distortion for the next time step ηi(t+ 1) is set to the maximum value in ηhist.

An increase in the maximum tolerable distortion ηi of the child node i may

cause the estimation error at its parent node u to exceed the maximum tolerable

error εu, so εu is re-calculated. To alleviate all congestion, node u sets its maximum

tolerable error according to equation (5.6). The value of the maximum tolerable error

for the next time step, εu(t+ 1), is determined by node u according to

εu(t+ 1) =
∑
i∈Cu

(ηi(t+ 1) + εi(t+ 1) + 2
√
ηi(t+ 1) · εi(t+ 1)), (5.6)

which is the sum of the upper bounds on the error contributions from u’s children as

described in equation (5.3). Each time εu is calculated at a node u, the node requests

the most recent values of ηi and εi from each of its children. If the updated maximum

tolerable error εu(t + 1) is greater than the previous maximum tolerable error εu(t),

the node makes a request to its parent v to accommodate the change.

When node u makes a request to its parent node v to accommodate a change

in u’s possible error contribution (due to an increase in εu or ηu), node v updates

the maximum tolerable error εv(t + 1) needed to satisfy the changes according to

equation (5.6). Each time the new value εv(t + 1) exceeds the previous value εv(t),

the recursive call continues to propagate from node to parent. If a request of this

type reaches the root, and the sum of the error contributions from the root’s children

could exceed χ (that is εr(t + 1) > χ), then we say that there is a χ-breach, and the

48

application is informed that the accuracy of the data may be less than the desired

accuracy. Even in the case of a χ-breach, the updated values of ε are used for the

purposes of congestion alleviation, since error due to fusion is preferable to error due

to packet loss.

Uncongested case: If congestion is not detected at node u, each of node u’s chil-

dren is informed that it may relax its congestion control for the next time step.

Specifically, the maximum tolerable distortion for the next time step ηi(t+ 1) at each

child i is set to the distortion resulting from the test summary made on the available

input-buffer data. In the test summary, the data is fused with a fusion ratio of at

most min(γi(t) + ρ, 1), where ρ is the relaxation constant. The choice of the relax-

ation constant ρ should be tuned for the application so that the network can adjust to

changes while not quickly returning to a congested state. We find experimentally that

ρ should be in the range 0.01 − 0.1. In the numerical experiments, ρ = w−1, where

w = 10 is the historical window size (that is, the length of the array variable ηhist).

Given the relaxed value of γi, node i determines the appropriate level of maximum

tolerable distortion η∗i in the same way as in the case of congestion. The maximum

tolerable distortion for the next round ηi(t+ 1) and the most recent entry in ηhist are

both set to η∗i .

5.4 Adaptation to Changes in Network Topology

The data-collection schemes with relaxation mechanisms for their congestion-

control variables, including CADC, are well suited to handle changes in the network

topology. For instance, if the subtree size of a previously congested node decreases

dramatically, it need not require the same fusion ratios of itself or its children to

49

alleviate congestion. After such a change in the network, the node determines that it

is not congested and allows its children to increase their fusion ratios, by means of a

relaxation mechanism, until the appropriate level of congestion control is reached.

Similarly, when the subtree size of a node increases, the additional data vol-

ume increases the likelihood of congestion. The network using CADC adjusts to

the congestion by decreasing the fusion ratios of nodes on the subtree according to

Section 5.3.2.

5.5 Priority Case

The priority case, the case of measurement values weighted by importance, is

defined in Section 1.4.3.

Figure 5.1 and Figure 5.2 show the experimental error for each priority bin

with CADC data collection and k-means fusion.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

non-priority CADC with k-means
400 nodes

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

priority CADC with k-means
400 nodes

Figure 5.1: The experimental error per priority class with k-means fusion.

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority Level

CADC with k-means
400 nodes

Figure 5.2: Difference in experimental error per priority class with k-means fusion.

50

5.6 Performance Evaluation

In Chapter 6, we compare CADC to the other data-collection methods.

51

Chapter 6

Flexible Congestion Management

for Sensor Networks

This chapter details flexible congestion management for sensor networks (FCM),

a data-collection scheme for error reduction on congested WSNs. FCM is a set of rules

that manage the data summarization on a WSN using a fusion method such as one

of those discussed in Section 1.2. FCM often outperforms the other methods consid-

ered in the dissertation by the metrics of experimental error and network overhead,

or it incurs a slightly greater experimental error while requiring much less network

overhead.

6.1 Variables and Terminology

The per-node congestion-control variables used in FCM are desired output size

(dss), maximum tolerable distortion ηu, and slack σ. With careful adjustment of

these variables, congestion is alleviated, opportunistic fusion is promoted, and traffic

is balanced in a way to reduce overall error on the network.

52

6.1.1 Allowable distortion

As noted in Chapter 2, summarization incurs less error in general if it is

applied to an entire data set than if it is applied separately to subsets of the data.

This provides the motivation for each node to utilize its full output capacity, thereby

delaying the summarization until it can be applied to a larger data set at a higher-

level node in the tree, resulting in summaries that introduce less error. (With more

data tuples available from the network, it is more likely that low-error fusions of two

or more tuples are possible.) On the other hand, if low-error fusions are available at a

node even when they are not necessitated by the node’s output capacity, performing

the fusion reduces the network overhead with a negligible increase in the total error.

For this purpose, an allowable distortion is assigned to the set of measurements

obtained during a round of data collection for each application on the network. The

allowable distortion is allocated across the network such that
∑

u∈Tr ηu = φ, where

the variable ηu is the allowable incremental increase in the data distortion due to

summarization at node u and φ is the allowable distortion for the data-collection

application on the network tree rooted at node r. No summarization occurs at the

root, so ηr = 0. Even when a node is not required to fuse its available data to satisfy

the constraint of its output capacity or the output size requested by its parent, it

still reduces the number of data tuples as much as possible with fusion as long as the

resultant distortion, du, does not exceed ηu.

The allowable distortion is initialized throughout the network prior to the first

round of data collection, starting at the nodes closest to the root, by dividing φ

among the root’s non-leaf children, where the root’s non-leaf child w is assigned the

53

temporary allowable distortion

η′w =
|Tw|

|Tr| − nF − 1
εr, (6.1)

where nF is the number of leaf nodes among the root’s children. Each leaf node f is

assigned ηf = 0 since it takes one measurement and sends that value in each round

of data collection with no fusion or distortion. Then, in a breadth-first search across

the network, each non-root node v divides η′v among itself and each non-leaf child u

by

ηv =
min(mbs, |Tv|)

Dv

η′v,

η′u =
min(mbs, |Tu|)

Dv

η′v, (6.2)

where ηv is the initialized value of allowable distortion at the node, η′u is the temporary

allowable distortion assigned to child u, and the denominator Dv is based on the

subtree sizes of the node and its non-leaf children. We let C−v denote the set of v’s

non-leaf children and compute the denominator,

Dv = min(mbs, |Tv|) +
∑
i∈C−v

min(mbs, |Ti|). (6.3)

The input-buffer capacity mbs is used in formula (6.3) to limit the weight of a subtree

when the subtree-size exceeds mbs, which helps to distribute the allowable distortion

more evenly throughout the network than if subtree size was used in each case. Ac-

cordingly, each node u without any non-leaf children has ηu = η′u. In this way, we

ensure that greater allowed distortion is allocated to nodes that are expected to have

a greater number of available data tuples.

54

6.2 Congestion-Control Mechanism

The number of transmissions in the network used to update the congestion-

control variables is the update overhead uov. In a network with a static topology,

FCM is able to keep uov low since the congestion-control variables set after a single

round of data collection alleviate all congestion. In a network with a dynamic topol-

ogy, additional update messages may be needed to alleviate congestion, as we would

expect when new nodes enter the network and contribute to network traffic. Further

update messages may be sent on the network to re-balance the congestion-control

variables on a node’s children in the case of a change in the degree of data variability

from the subtree rooted at each of the children. The additional update messages on

the network are used to manage each node’s slack, as is discussed in Section 6.2.3.

6.2.1 Requested output size

The desired output size dss helps regulate the output rate of each node. Fig-

ure 6.1 illustrates the use of the dss in the data flow at a node. Initially, each node’s

v

u

31 2

incoming from 1,2, and 3

output buffer

input buffer
dropped

fusion

m2

m1

m0

mss

mbsdss

Figure 6.1: Data flow at a node labeled with sizes and capacities.

desired output size is set to the output capacity mss. When congestion is detected at

55

the input to a node, the node requests that its children reduce their output sizes to

satisfy the node’s input-buffer capacity mbs. I.e., the sum of the desired output sizes

of the children should not exceed the mbs. A larger subtree should be allowed to send

proportionally more tuples to help minimize error; therefore, the dss allocated to each

child is based on its subtree size. The allocation of the total input-buffer capacity

of the congested parent across its children is managed by the algorithm described in

Section 6.2.2.

6.2.2 Allocation algorithm

A parent node congested at its input updates the requested output size dss

of each of its children using an algorithm that allocates its input-buffer capacity mbs

in units of data tuples. We reserve at least one data tuple for each child, which is

possible as long as mbs is greater than the number of children. (We assume a node’s

input-buffer capacity is much greater than the number of its children.) The tuples

are distributed to the children according to a greedy algorithm in the order of their

subtree sizes.

Algorithm inputs: The inputs to the algorithm include the number of tuples to

be allocated N , and three M × 1 arrays regarding the M children. The three arrays

are the subtree size of each child csize, the minimum number of tuples to be assigned

to each child cmin, and the maximum number of tuples that can be assigned to each

child cmax. We assume that the sum of the children’s maximum number of assigned

tuples is greater than N .

From the inputs, we initialize the number of tuples that remain to be allocated

pot and the number of tuples reserved for allocation to the remaining children res.

We normalize the array csize, so that its elements sum to one. The number of tuples

56

allocated to each child calloc is initialized to all zeros. The set of formulas (6.4) define

the initialization of these variables.

pot := min

(
N,

M∑
i=1

cmax(i)

)

res :=
M∑
i=1

cmin(i)

csize :=
csize∑M

i=1 csize(i)

calloc := 0 (6.4)

First pass: For each child i in descending order of subtree size, we adjust res,

determine the number of tuples to allocate the child, add that number to the total

number of tuples allocated to the child, and update the number tuples remaining to

be allocated. The updates are shown in the list of formulas (6.5).

res := res− cmin(i)

alloc := min (pot− res, cmax(i),max(nint(Ncsize(i)), cmin(i), 1))

calloc(i) := calloc(i) + alloc

pot := pot− alloc (6.5)

The nearest-integer operation, nint(·), rounds its argument to the nearest integer.

Subsequent passes: If any tuples remain to be allocated (that is, if pot > 0)

after the first pass, one-or-more subsequent passes of allocation are used to distribute

the remaining tuples. In a subsequent pass of the algorithm, we set the number

of unallocated tuples Ns = pot. The remaining tuples are then assigned to the child

nodes in nearly the same process as in the first pass. In each subsequent pass, there are

57

no tuples reserved for allocation (that is, we have res = 0) and the maximum number

of tuples that can be assigned to child i now takes into account how many tuples

have already been assigned, cmax(i) − calloc(i). The nodes are again visited in order

of descending subtree size, and the updates are shown in the list of formulas (6.6).

alloc := min (pot, cmax(i)− calloc(i),max(nint(Nscsize(i)), 1))

calloc(i) := calloc(i) + alloc

pot := pot− alloc (6.6)

This process continues until there are no unallocated tuples in pot.

When we use this algorithm to set the dss of each child node, we ensure that

the total number of incoming tuples in the next round of data collection does not

exceed the input-buffer capacity mbs. The discrete nature of the allocation algorithm

allows for tighter control and higher average output rates for the children than the

multiplicative rate reductions used in the other data-collection methods. The alloca-

tion algorithm is particularly advantageous in the case where a small number of data

tuples are transmitted, and therefore, each data tuple has greater significance.

6.2.3 Surplus and slack

Another per-node congestion-control variable, slack σ, is introduced for use in

conjunction with dss. When the number of data tuples at a node after summarization

is smaller than its value of dss, the node has a transmission rate surplus that can be

distributed as slack to its siblings. This allows one or more of the siblings to transmit

more tuples than the dss without reintroducing congestion at the parent. When slack

is assigned to a node, that node may transmit a greater number of tuples than the

58

value of dss by the amount of slack, up to the output capacity of the node.

If there is a surplus, a notification is sent to the parent, which distributes

the slack to any children without surplus according to the same algorithm used to

distribute dss. We allow the slack to be negative, where negative slack corresponds

to a surplus, and we have that the sum of the slack associated with all of a node’s

children is never more (but sometimes less) than zero. With slack σ, we have the

output of a node limited by m2 ≤ max(dss, dss + σ) ≤ mss. As network conditions

change, a node’s surplus may decrease, in which case the corresponding slack on its

siblings is removed with another call to the slack balancing algorithm.

6.3 Adaptation to Changes in Network Topology

An important feature of a versatile data-collection scheme is adaptability to

changes in network topology, such as nodes entering or leaving the network and con-

nections changing. These changes in network topology are expected in a wide range

of circumstances such as robot networks, hazardous conditions, network expansion,

and aging infrastructure. The data-collection scheme should be able to support un-

interrupted service in the case of node failure, and there should not be a lengthy

reinitialization process or a drop in performance after network reorganization, there-

fore, the scalability is also an important feature of the data-collection scheme.

FCM supports changes in the network topology, since it scales well and has

lightweight, distributed variable maintenance. After a change in the topology, each

affected node reassesses its subtree size. The congestion-control variables dss and σ

re-balance naturally as rounds of data collection continue on the network.

59

6.4 Performance in the Priority Case

The experimental error for each priority bin is shown in Figure 6.2a with prior-

itization and in Figure 6.2b without prioritization. The measurements are generated

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

priority FCM with k-means
400 nodes

(a)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Priority Level

non-priority FCM with k-means
400 nodes

(b)

Figure 6.2: Experimental error by priority class.

pseudo-randomly in the approximate range 0 to 300 according to the method de-

scribed in Appendix A. The priority bin divisions range from 30 to 270 in increments

of 30. In the non-priority case, the curve is symmetric about the midpoint, 150. In

the priority case, the error for the higher-priority bins decreases relative to the non-

priority case, as shown in Figure 6.3. The difference between experimental errors ∆E

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority Level

FCM with k-means
400 nodes

Figure 6.3: Difference in experimental error with and without prioritization.

is determined according to formula (3.2).

The high average error observed on the outer-priority levels 1 and 10 is ex-

plained by the average distance to other data points from points in these priority

groups. Therefore, when data points from priority levels 1 or 10 are fused, they tend

60

to be fused with other points further away than when points from inner-priority levels

are fused. The average measurement value in our simulation is 150, so values further

from 150 tend to incur more error when fused, that is, it is more likely that the value

150 can be fused with a value near to it (say, a value within a radius of 5) than it is

for the value 300. Data tuples tend to fuse with values close to one another, when

available, except in the case of adaptive summarization without sort.

We compare the priority case performance for the four data-collection methods

in Figure 6.4.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

Δ
E

Priority Level

k-means
400 nodes

ST

CADC

pureElim

FCM

Figure 6.4: Difference in experimental error for each data-collection method using
k-means fusion.

6.5 Results and Analysis

This section presents, with analysis, the key findings of the dissertation.

6.5.1 Experimental error

In Figure 6.5, we show how the experimental error E is affected by the fusion

method for each data-collection scheme in both cases of data without prioritization

and with prioritization. We note that for each data-collection scheme, the order of

61

lowest to highest experimental error between the fusion methods is k-means, adpSum-

sort, and adpSum. While every data-collection scheme performs better with k-means,

pureElim has the least increase in experimental error when it uses adpSum-sort.

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, FCM

adpSum

adpSum-sort

k-means

(a)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, FCM

adpSum

adpSum-sort

k-means

(b)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, CADC

adpSum

adpSum-sort

k-means

(c)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, CADC

adpSum

adpSum-sort

k-means

(d)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, ST

adpSum

adpSum-sort

k-means

(e)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, ST

adpSum

adpSum-sort

k-means

(f)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, pureElim

adpSum

adpSum-sort

k-means

(g)

0

10

20

30

40

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, pureElim

adpSum

adpSum-sort

k-means

(h)

Figure 6.5: Experimental error versus network size with each fusion method.

62

The same experimental-error results are given in Figure 6.6, where in each

sub-figure, the fusion method and the choice between unprioritized and prioritized

data are fixed.

0

10

20

30

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, k-means
ST

CADC

FCM

pureElim

(a)

0

10

20

30

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, k-means
ST

CADC

FCM

pureElim

(b)

0

10

20

30

40

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, adpSum-sort

ST

CADC

FCM

pureElim

(c)

0

10

20

30

40

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, adpSum-sort

ST

CADC

FCM

pureElim

(d)

40

42

44

46

48

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

non-priority, adpSum
CADC

ST

FCM

pureElim

(e)

40

42

44

46

48

50

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority, adpSum
CADC

ST

FCM

pureElim

(f)

Figure 6.6: Experimental error versus network size with each data-collection scheme.

6.5.2 Data-delivery ratio

Figure 6.7 shows the data-delivery ratio ddr versus network size for several

data-collection schemes and fusion methods. A low ddr is indicative of more dropped

63

packets in the network and is a source of experimental error. While there is some

99.988

99.99

99.992

99.994

99.996

99.998

100

100.002

200 400 600 800 1000

D
at

a
D

el
iv

er
y

R
at

io
 %

Network Size

non-priority

CADC (adpSum-sort)

ST (adpSum-sort)

pureElim (adpSum-sort)

FCM (k-means)

pureElim (k-means)

Figure 6.7: Data-delivery ratio comparison.

variation between the methods shown, ddr is very close to one in each case. The

ddr is significantly lower, around 91%, for CADC paired with k-means fusion. In

the CADC scheme, a node’s output is regulated solely by the maximum tolerable

distortion. As a consequence, when the variability in the data available to the node

decreases, it may send a greater number of data tuples and cause buffer overflow at

its parent’s input.

6.5.3 Comparison of select methods

The pureElim and FCM methods have the lowest observed error incurred

at the sink. CADC outperforms ST. The experimental error also depends on the

fusion method paired with the data-collection scheme, so we compare the experimental

error across several combinations of data-collection scheme and fusion methods. The

results are visualized in the non-priority case in Figure 6.8 and in the priority case in

Figure 6.9.

6.5.4 Sensitivity to allowable application error

The data-collection schemes CADC and FCM use constant parameters for data

collection on a network to regulate the extent of allowable distortion on each node.

64

0

10

20

30

40

200 400 600 800 1000
Ex

p
er

im
en

ta
l E

rr
o

r,
 E

Network Size

non-priority

CADC (adpSum-sort)

ST (adpSum-sort)

CADC (k-means)

pureElim (adpSum-sort)

FCM (k-means)

pureElim (k-means)

Figure 6.8: Performance comparison in the non-priority case.

0

10

20

30

40

200 400 600 800 1000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Network Size

priority

CADC (adpSum-sort)

ST (adpSum-sort)

CADC (k-means)

pureElim (adpSum-sort)

FCM (k-means)

pureElim (k-means)

Figure 6.9: Performance comparison in the priority case.

The parameters are maximum tolerable error χ for CADC and allowable distortion φ

for FCM. While their usage is slightly different, both parameters are comparable, in

terms of scale, to the estimation error at the sink. These parameters encourage fusion

on the network when the resulting distortion is within some tolerable bound given

by ηu for each node u. In FCM, the allowable distortion at a node, ηu, is initialized

based on φ according to the protocols of FCM, and it is constant for the duration of an

experiment. In CADC, ηu is the congestion-control variable whose value is adjusted

based on the network conditions and the value of maximum tolerable error εu and the

protocols described in Chapter 5. Figure 6.10 shows the experimental error versus φ

for FCM and χ for CADC using k-means fusion given a 600-node network with 2000

time-step experiments, which illustrates the sensitivity of the error incurred to the

allowable application error (that is, χ or φ), and Figure 6.11 shows how the network

overhead nov varies with the allowable application error for the same experiment.

65

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

Ex
p

er
im

en
ta

l E
rr

o
r,

 E

Tolerable Application Error (x1000)

non,priority, k-means
400 nodes

CADC

FCM

Figure 6.10: Experimental error sensitivity to allowable application error.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000

N
et

w
o

rk
 O

ve
rh

ea
d

Tolerable Application Error (x1000)

non,priority, k-means
400 nodes

CADC

FCM

Figure 6.11: Network overhead sensitivity to allowable application error.

As expected, the network overhead decreases significantly with increasing εr

in the FCM case. The experimental error is lower in the network using FCM even as

the network overhead is significantly lower than in the network using CADC.

66

Chapter 7

Conclusion

In cyber-physical systems, estimation accuracy is critical to the monitoring of

environmental phenomena, whether in wildfire detection or industrial control appli-

cations. Wireless sensor networks have many important cyber-physical system appli-

cations. We highlight wildfire detection since the threat from wildfire disasters is of

increasing relevance with rising global average temperatures [3]. Early detection and

accurate condition monitoring may help mitigate the loss of life and property caused

by wildfires and other natural disasters. Data collection is a key feature of WSNs,

but the quality of data may be compromised by poor network conditions, includ-

ing congestion. Our investigation considers several data-collection schemes that use

congestion control including our proposed flexible congestion management for sensor

networks (FCM). We conclude the dissertation with some key insights and discussions

from the development of FCM and from the other data-collection schemes.

FCM implemented on a congested WSN has advantages over the other three

data-collection schemes considered in the dissertation: pureElim, ST, and CADC.

Its advantages include scalability, low experimental error, low network overhead, and

robustness to changes in network conditions such as network size, topology, and data

67

variability.

We see that k-means fusion has advantages over the alternative fusion methods,

adpSum-sort and adpSum. The advantages include low experimental error, better

control of transmission sizes, and the ability to introduce less error for higher-priority

data points. The k-means fusion method is more computationally intensive, but it is

still viable in a wide range of network applications.

Each data-collection scheme discussed in the dissertation provides some valu-

able insight into congestion mitigation. PureElim (Chapter 3), due to its simplic-

ity, provides a baseline performance especially suitable for static-topology networks.

PureElim excels at minimizing error by fusing as little as possible at each node in

the network so that better summaries can be made closer to the root. ST (Chap-

ter 4) introduces distortion-based fusion, which allows similar data values to be fused

in early phases of a round of data collection, which reduces overall network traffic.

CADC (Chapter 5) provides insight into the estimation error at the sink by tracking

estimated upper bounds for estimation error at each node over the course of data col-

lection. (The bounds on estimation error are estimates because the values of dropped

packets are not accounted for.)

FCM (Chapter 6) balances the advantages of delayed fusion (as in pureElim)

and fusion up to a tolerable distortion (as in ST and CADC) to reduce both error

and traffic on the network. The extent of early fusion can be controlled for the FCM

application through the allowable-distortion parameter φ. In a single network with

multiple concurrent data-collection applications, the relative traffic can be controlled

with adjustment to the allowable distortion for each application. A decrease in the

allowable distortion tends to reduce early fusion and experimental error at the cost

of additional network overhead. FCM also introduces a discrete output management

system (similar to a “cap and trade” system) for the packets sent from a node’s

68

children. This system, described in Section 6.2, is more appropriate for small numbers

of packets than the ratio-based output limits in pureElim and the other data-collection

schemes. The system is especially appropriate when the variance in the data is

different from one subtree to another, since one feature of the system is to allow

a child of high data variability to send more than it’s initial requested limit when one

or more of its siblings are able to send less than their requested limit as a result of

their opportunistic low-distortion fusions.

7.1 Advantages of FCM

FCM has several features that make it a better choice than alternative data-

collection schemes. The goals of our data-collection scheme are for it to eliminate

congestion and minimize the experimental error incurred by data summarization.

FCM accomplishes these goals while also reducing network traffic where possible

to save energy or accommodate multiple applications vying for bandwidth on the

network. The congestion-control mechanisms in FCM account for changes in data

variability, network topology, and data priority.

The results in Section 6.5 show that FCM consistently outperforms ST and

CADC in terms of experimental error. CADC’s performance may suffer as network

size increases since some updates require multi-hop communication sequences that

reach the sink from arbitrary nodes in the network giving a worst-case O(logN)

time complexity to any given update step, as compared to worst-case constant time

updates in the other data-collection schemes. The relatively simple data-collection

scheme PureElim results in low experimental error on static-topology networks. FCM

often boasts similarly low experimental error, but, unlike pureElim, FCM is designed

to account for local changes to data variability and to adjust to changes in the network

69

topology, allowing FCM to outperform pureElim in a range of network conditions,

both in reducing experimental error and in reducing network traffic.

In the case of multiple applications running on the same network, it may

be appropriate to adjust the tolerable errors for the individual applications so that

the less important application uses less bandwidth. An an increase in the tolerable

application error tends to reduce the network overhead of the data collection for that

application.

7.2 Fusion Method Choice with FCM

K-means fusion is most suitable for use with the FCM data-collection scheme.

The mechanics of FCM are designed to take advantage of the precise fusion ratios

allowed by k-means, as opposed to the power-of-two reductions inherent to adpSum

and adpSum-sort. We observe that pureElim outperforms FCM with lower experi-

mental error and less update overhead when the fusion method used is adpSum or

adpSum-sort. Since k-means has greater requirements on node memory and process-

ing, FCM may also be most suitable as the data-collection scheme where the nodes

have enough resources to support k-means fusion.

7.3 Variations on Adaptive Summarization

In applications where k-means is unfeasible, such as when the memory or com-

putational power of the individual nodes is limited, adaptive summarization without

sort and adaptive summarization with sort are good alternative fusion-method op-

tions. These methods can be extended or modified in a few simple ways to accom-

modate the requirements of the application.

70

One way to modify adaptive summarization is to average every three points

instead of every two points. This results in power-of-three reductions in the number of

tuples instead of power-of-two reductions. It is possible to achieve other fixed factors

of reduction with the adaptive summarization method, even fractional factors. If the

reduction factor were variable, it would accommodate the precise fusion requirement

of each node. Adaptive summarization with a variable reduction factor would help

reduce error on the network while keeping the nodes’ demands on computational

resources low compared to k-means fusion.

While both adaptive-summarization methods simply average adjacent pairs of

data tuple values, before or after sort, a weighted average could be taken, instead. The

average could be weighted by one or both of the number of measurements represented

and priority level. Weighting the average in this way helps to further reduce the

estimation error resulting from the fusion.

7.4 Future Work

Future work for FCM could include the consideration of field testing, simul-

taneous applications, increased data dimensionality, greater network size, dynamic

network topology, mobile agents, multiple sinks in the network, and unequal node

capabilities. Simultaneous applications further limits the bandwidth available for

transmissions, but FCM can help reduce the traffic on the less important application

to free up bandwidth for the more important data, while mitigating the error signifi-

cantly in both cases. Topology changes could include node failure, network expansion,

and network reorganization. In our work, all nodes have the same capabilities, how-

ever, nodes closer to the sink would benefit more from increased data-storage and

transmission capabilities. In mobile-node networks, the nodes could reorganize them-

71

selves to facilitate better network performance, including lower total error between

measurements and their final estimates.

Another problem of interest is modeling the physical phenomenon based on

the estimates that reach the sink. Each estimated value can be associated with a

level of confidence. Modeling techniques such as Kalman filter [28] estimation could

provide better estimates of the original measurements than the reported estimates

alone.

The method of η initialization, that is, the precise allocation of φ throughout

the network, was chosen in a way that made sense to the author, but may not be

optimal. A more appropriate distribution of φ throughout the network may result in

better performance. One alternate initialization is given here,

ηu = φ
|Tu|
S
, (7.1)

where S is the sum of subtree sizes on the network discounting the root and leaf

nodes,

S =
∑

i∈Tr\{r,L}

|Ti|, (7.2)

and where L is the set of all leaf nodes in the network.

The choice of data-collection scheme and fusion method are highly application-

dependent; however, the dissertation suggests that FCM paired with k-means fusion

is an excellent choice for congestion control in a wide variety of WSN applications.

72

Appendices

73

Appendix A

Random Motion

This appendix presents a method for the generation of random 1D motion

using state-transition equations with Gaussian noise.

The model used to generate the random 1D motion has two parts. The first

part is the state, defined by

x =

r

v

a

m

k

=

position

velocity

acceleration

mass

time step

. (A.1)

The second part is the set of state-transition equations with Gaussian noises added.

The state-transition equations are defined in equations (A.2)-(A.6).

rt+1 = rt + vt (A.2)

74

vt+1 = vt + at (A.3)

at+1 =
1

m

(
2− 2

1 + e−r
− 2

1 + e−v
+N (0, 1)

)
(A.4)

mt+1 = 5 + 3 sin(0.1k) (A.5)

kt+1 = kt + 1 + 0.1N (0, 1) (A.6)

The position is updated according to the last known velocity. The velocity is up-

dated according to the last known acceleration. The mass oscillates as a sinusoid

between 2 and 8 with a frequency dependent on the time-step variable, k. Gaussian

noise is introduced to the acceleration and to the time step. The Gaussian noise in

equation (A.4) is the only source of acceleration when both position and velocity are

zero. The sigmoid terms in the acceleration update equation (A.4) tend to force the

object’s position back to zero and to slow the object down. Without the sigmoid

terms, the object’s path behavior would vary wildly with time and would tend not to

stay near its original position. The noise in the time step corresponds to changes in

the frequency with which the mass oscillates.

Figure A.1.1 shows sample output from the implementation of the random-

1D-motion generator.

75

0 100 200 300 400 500
−30

−20

−10

0

10

20

30

0 100 200 300 400 500
−30

−20

−10

0

10

20

30

Figure A.1: Two random-motion sequences with t = 500 steps.

76

Appendix B

Proof that Sequential Distortions

Sum to Total SSE

We show that the sum of successive distortions (sum of squared errors imposed

by fusing points to their means) equals the total error (sum of squared errors between

initial and final data). Consider an initial set of N points (in one or several dimen-

sions) denoted by xi for each i ∈ (1, N). Let us assume that there are M intermediate

means and x̄′i is the intermediate mean that represents xi, and x̄i is the final mean

that represents xi. For simplicity, and without loss of generality, we assume that all

points are represented by the same final mean. I.e., x̄i = x̄ is a constant.

We wish to show:

N∑
i=1

(xi − x̄′i)2 +
N∑
i=1

(x̄′i − x̄i)2 =
N∑
i=1

(xi − x̄i)2

so, we begin by expanding terms, and we continue by canceling terms from

77

each side.

N∑
i=1

(x2i − 2xix̄
′
i + x̄′2i + x̄′2i − 2x̄′ix̄i + x̄2i) =

N∑
i=1

(x2i − 2xix̄i + x̄2i)

N∑
i=1

(−2xix̄
′
i + 2x̄′2i − 2x̄′ix̄i) =

N∑
i=1

(−2xix̄i)

N∑
i=1

(−2xix̄
′
i + 2x̄′2i − 2x̄′ix̄i) = −2Nx̄

N∑
i=1

xi

N∑
i=1

(xix̄
′
i − x̄′2i + x̄′ix̄i) = Nx̄

N∑
i=1

xi

N∑
i=1

(xix̄
′
i − x̄′2i) +Nx̄

N∑
i=1

(x̄′i) = N2x̄2

We use the fact that the weighted average of intermediate means equals the

mean,
∑N

i=1(x̄
′
i) = x̄, to evaluate the second summation term, which cancels with the

right-hand side.

N∑
i=1

(xix̄
′
i − x̄′2i) +N2x̄2 = N2x̄2

N∑
i=1

(xix̄
′
i) =

N∑
i=1

(x̄′2i)

We expand the sums on each side to include one intermediate mean at a time.

We let x̄′k represent the kth intermediate mean with kε{a, b, ...,M}. (Note that this

is a change in the meaning of the intermediate-mean subscript for the remaining lines

of the proof.) We define the set Sk as the indices of the points that belong to the kth

intermediate mean and let nk be the cardinality of the set Sk.

78

nax̄
′
a

∑
iεSa

xi + nbx̄
′
b

∑
iεSb

xi + ...+ nM x̄
′
M

∑
iεSM

xi = n2
ax̄
′2
a + n2

b x̄
′2
b + ...+ n2

M x̄
′2
M

We use the fact that
∑

iεSk
(xi) = nkx̄

′
k to simplify the left-hand side.

n2
ax̄
′2
a + n2

b x̄
′2
b + ...+ n2

M x̄
′2
M = n2

ax̄
′2
a + n2

b x̄
′2
b + ...+ n2

M x̄
′2
M

The two sides are equal. Q.E.D.

Note that there are simpler proofs of this fact. One simplification that does

not diminish the generality of the result is to allow the overall mean x̄ to equal zero.

79

Appendix C

Data-Tracking Structure for

Sensor-Network Simulation

This appendix details the data structure developed for WSN simulation to

track the estimates of each measurement value generated in the network. When-

ever there is data summarization or packet loss in the network, the data estimates

change, and the structure is updated. Given the original measurement values and

their estimates, it is possible to calculate error on the data set or on subsets of that

data set defined by properties of interest such as initial value, origin, and data pri-

ority. The data-tracking structure is an important and powerful tool that helps us

to compare and evaluate data-collection scheme performance in WSN simulation and

to help make important decisions prior to network deployment, such as the hardware

and software requirements of the nodes.

In simulation, we have access to a centralized view of a WSN that would be

unavailable to us in the real-world deployment of the network, where we rely on the

information transmission between adjacent nodes. With the communication limita-

tion of a real-world application, it is possible to calculate estimation error by summing

80

the errors introduced at each node, a result demonstrated in Appendix B, but this

result only holds if, firstly, there is no packet loss, and secondly, the summarization of

multiple data points is by their mean value. Even in the case where this result holds,

it is difficult to track the error on subsets of the data (such as data sharing a partic-

ular origin or initial value). The data-tracking structure addresses these limitations

during a network simulation by keeping a centralized account of all data across the

network including current value and origin.

The structure contains each original measurement value and its current esti-

mate in the network. As data points are fused, and multiple original measurements are

estimated by a single value, the structure keeps track of which measurements belong

to which summary group. Essentially, the data-tracking structure acts a disjoint-

set data structure, where each row begins in a separate subset, and the subsets are

joined as summary groups merge. Data fusion performed at a node prompts summary

groups to merge. The data-tracking structure is designed for quick updates any time

there is a change to the data estimates and summary-group membership.

The data-tracking structure is organized in a 2D or 3D array with three funda-

mental columns of information: the original data, the current estimates of the data,

and the pointers that form cycles of grouped data. Additional columns may be added

to keep track of other features of the data, such as whether a packet containing the

data was dropped (in which case, the current estimate is independent of its original

measurement value). The third temporal dimension to the array may be added when

it is convenient to distinguish between the data-tracking which occurs in different

time-steps of the simulation. The general structure is shown in Figure C.1.1.

Data is generated over time, so it is often convenient to consider the third

dimension to represent the time step at which a certain batch of data is generated and

collected. This gives an intuitive indexing option to distinguish data temporally. Each

81

(a.) (b.) (c.) (d.)
o

ri
gi

n
al

 m
ea

su
re

m
en

t
va

lu
es

cu
rr

en
t

es
ti

m
at

es

m
em

b
er

sh
ip

-c
yc

le
 p

o
in

te
rs

su
p

p
le

m
en

ta
l-

d
at

a
co

lu
m

n
s

Figure C.1: The general form of the data-tracking structure.

row in a given time step represents a measurement and may be referenced uniquely

by its index (row number) and time step. Error incurred by fusion is calculated by

comparing the original data to the current estimates, and this can be done for any

subset of data.

During the simulation, we maintain the structure after each change to the

data. Upon initialization, the original data and current estimates match, and each

point is its own predecessor (that is, its pointer goes to itself). In a simple round of

summarization where only two points are fused, their current estimates are updated,

and the pointer of the lower-index element is set to the higher-index element and the

pointer of the higher-index element is set to the lower-index element to form a cycle.

When two or more summary groups are merged, the pointers of the resulting summary

group form a cycle. The pointer of the element with the smallest index points to the

element of the next-smallest index and so on until the point of the element with the

largest index points to the element with the smallest index. Merging the cycles in

this way keeps elements sorted by index within their summary group and takes O(n)

time where n is the number of elements in the merging cycles. While it is possible to

82

maintain cycles with unsorted indices, sorted indices facilitate the merger of two or

more groups at once and can be helpful for error detection.

When two or more summary groups merge, the current estimate for each

element in those summary groups is set to the new summary value and the pointers

in the third column of the data-tracking structure are updated to form a single cycle.

The cycle merger begins with a temporary pointer at the head of each cycle. The new

cycle head is the element of lowest index among those pointed to by the temporary

pointers. The temporary pointer for this element is incremented to the next in its

original summary group. The next element in the new cycle is pointed to by the

most recently added element to the new cycle. In each step of the merger, the next

element is the lowest index among those pointed to by the temporary pointers, and

that temporary pointer moves to that element’s successor in the pre-merged summary

group, until the cycle is exhausted (that is, the pointer would return to the first

element). Once all indices in the merged group have been visited, the final pointer is

set to the summary-group head to complete the merged cycle.

The data-tracking structure is useful in the simulation of WSNs to make error

calculations on data subsets. Error calculations are an important metric for the evalu-

ation of data-collection schemes, such as FCM. The data-tracking structure proposed

here is a light-weight and useful tool for performance evaluation, taking advantage of

the global information available in simulation. Once deployed, it is cumbersome and

expensive to evaluate network data-collection schemes in the same way, so the results

in simulation are important to understand the real-world network operation.

83

Appendix D

Abbreviations

AdpSum adaptive summarization

AdpSum-sort adaptive summarization with sort

CADC congestion-adaptive data collection

ddr data-delivery ratio

dss desired output size

FCM flexible congestion management for sensor networks

K-means k-means algorithm

mbs input-buffer capacity

mss output-buffer capacity

nov network overhead

PureElim pure elimination

ST spatio-temporal data collection

uov update overhead

WSN wireless sensor network

84

Bibliography

[1] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Informa-
tion Theory, vol. 28, no. 2, pp. 129–137, March 1982.

[2] H. Ahmadi, T. F. Abdelzaher, and I. Gupta, “Congestion control for spatio-
temporal data in cyber-physical systems.” in Proc. of ICCPS, 2010.

[3] J. T. Abatzoglou and A. P. Williams, “Impact of anthropogenic climate change
on wildfire across western us forests,” Proceedings of the National Academy
of Sciences, vol. 113, no. 42, pp. 11 770–11 775, 2016. [Online]. Available:
https://www.pnas.org/content/113/42/11770

[4] N. Iri, L. Yu, H. Shen, and G. Caulfield, “Congestion-adaptive data collec-
tion with accuracy guarantee in cyber-physical systems,” in 2015 12th Annual
IEEE International Conference on Sensing, Communication, and Networking
(SECON), June 2015, pp. 82–90.

[5] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, “Esrt: event-to-sink
reliable transport in wireless sensor networks.” in Proc. of MobiHoc, 2003.

[6] F. Bian, S. Rangwala, and R. Govindan, “Quasi-static centralized rate allocation
for sensor networks,” in Proc. of SECON, 2007, pp. 361–370.

[7] Y. Zhou, M. R. Lyu, J. Liu, and H. Wang, “Port: A price-oriented reliable
transport protocol for wireless sensor networks.” in Proc. of ISSRE, 2005.

[8] J. Paek and R. Govindan, “Rcrt: Rate-controlled reliable transport protocol for
wireless sensor networks.” TOSN, vol. 7, no. 3, 2010.

[9] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, “Coda: congestion detection
and avoidance in sensor networks.” in Proc. of SenSys, 2003.

[10] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, 03 1964. [Online]. Available:
https://doi.org/10.1214/aoms/1177703732

[11] J. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor net-
works.” TON, vol. 12, no. 4, pp. 609–619, 2004.

85

https://www.pnas.org/content/113/42/11770
https://doi.org/10.1214/aoms/1177703732

[12] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network correlated data
gathering.” in Proc. of Infocom, 2004.

[13] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, “Efficient gathering of
correlated data in sensor networks.” TOSN, vol. 4, no. 1, 2008.

[14] K. Han, L. Xiang, J.Luo, M. Xiao, and L. Huang, “Energy-Efficient Reliable Data
Dissemination in Duty-Cycled Wireless Sensor Networks,” in Proc. of MobiHoc,
2013.

[15] H. Lee and A. Keshavarzian, “Towards energy-optimal and reliable data collec-
tion via collision-free scheduling in wireless sensor networks,” in IEEE INFO-
COM, 2008.

[16] J. Park and S. Sahni, “An online heuristic for maximum lifetime routing in
wireless sensor networks,” IEEE TOC, vol. 55, no. 8, pp. 1048–1056, 2006.

[17] C. Wang, H. Ma, Y. He, and S. Xiong, “Adaptive approximate data collection
for wireless sensor networks.” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 6,
pp. 1004–1016, 2012.

[18] A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: on energy-
efficient continuous monitoring in sensor networks.” in Proc. of SIGMOD, 2006.

[19] L. Su, Y. Gao, Y. Yang, and G. Cao, “Towards Optimal Rate Allocation for
Data Aggregation in Wireless Sensor Networks,” in Proc. of MobiHoc, 2011.

[20] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-
scale wireless sensor networks.” in Proc. of MobiCom, 2009.

[21] P. J. Wan, S. C. H. Huang, L. Wang, Z. Wan, and X. Jia, “Minimum-Latency
Aggregation Scheduling in Multihop Wireless Networks,” in Proc. of MobiHoc,
2009.

[22] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering large
graphs via the singular value decomposition,” Machine Learning, vol. 56, no. 1,
pp. 9–33, Jul 2004.

[23] S. Har-Peled and B. Sadri, “How fast is the k-means method?” Algorithmica,
vol. 41, no. 3, pp. 185–202, Mar 2005. [Online]. Available: https:
//doi.org/10.1007/s00453-004-1127-9

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “A local search approximation algorithm for k-means
clustering,” Computational Geometry, vol. 28, no. 2, pp. 89 – 112, 2004,
special Issue on the 18th Annual Symposium on Computational Geometry -

86

https://doi.org/10.1007/s00453-004-1127-9
https://doi.org/10.1007/s00453-004-1127-9

SoCG2002. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0925772104000215

[25] H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-means clustering in one
dimension by dynamic programming,” The R journal, vol. 3, no. 2, pp. 29–33,
December 2011.

[26] B. C. Dean, “Successive k-means,” Jun 2018, unpublished.

[27] Y. Zhuang, L. Yu, H. Shen, W. Kolodzey, N. Iri, G. Caulfield, and S. He, “Data
collection with accuracy-aware congestion control in sensor networks,” IEEE
Transactions on Mobile Computing, vol. 18, no. 5, pp. 1068–1082, May 2019.

[28] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D,
pp. 35–45, 1960.

87

http://www.sciencedirect.com/science/article/pii/S0925772104000215
http://www.sciencedirect.com/science/article/pii/S0925772104000215

	Flexible Congestion Management for Error Reduction in Wireless Sensor Networks
	Recommended Citation

	Title Page
	Abstract
	List of Tables
	List of Figures
	Introduction
	Study Motivation
	Model of the Sensor Network
	Problem
	Simulation and Performance Evaluation
	Related Work

	Fusion Methods
	The K-means Algorithm
	Adaptive Summarization
	Comparison of the Fusion Techniques
	Fusion up to a Given Distortion
	The Effect of Fusion on Data Accuracy

	Data Collection with Pure Elimination
	Variables and Terminology
	Initialization
	Congestion-Control Mechanism
	Priority Case
	Performance Evaluation

	Spatio-Temporal Data Collection
	Initialization
	Congestion-Control Mechanism
	Priority Case
	Performance Evaluation

	Congestion-Adaptive Data Collection
	Variables and Terminology
	Initialization
	Congestion-Control Mechanism
	Adaptation to Changes in Network Topology
	Priority Case
	Performance Evaluation

	Flexible Congestion Management for Sensor Networks
	Variables and Terminology
	Congestion-Control Mechanism
	Adaptation to Changes in Network Topology
	Performance in the Priority Case
	Results and Analysis

	Conclusion
	Advantages of FCM
	Fusion Method Choice with FCM
	Variations on Adaptive Summarization
	Future Work

	Appendices
	Random Motion
	Proof that Sequential Distortions Sum to Total SSE
	Data-Tracking Structure for Sensor-Network Simulation
	Abbreviations
	Bibliography

