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ABSTRACT 

 

 

Reactive oxygen species (ROS) play an important role in the development of many 

diseases. Common assays to test the ability of hydrophobic compounds to prevent oxidative 

stress are radical scavenging assays and cell studies. However, these radical assays often 

do not accurately reflect biological outcomes, and the use of different cell lines limits the 

ability to directly compare compound efficacy (Chapter 1). Results from DNA damage 

prevention assays can directly compare antioxidant efficacy, but these assays have been 

limited to water-soluble compounds. Chapter 2 discusses the first assay that quantifiably 

evaluates the ability of hydrophobic compounds to prevent metal-mediated DNA damage 

inhibition via gel electrophoresis. This assay allows biologically relevant evaluation of 

compounds for their effectiveness under consistent conditions. The glutathione peroxidase 

mimic ebselen and its derivatives prevent copper-mediated DNA damage (IC50 values 280-

450 µM), but do not significantly inhibit iron-mediated DNA damage. In combination with 

radical scavenging assays, these biologically relevant assays enable identification of 

structure-function relationships for hydrophobic antioxidant compounds and drugs. 

Studies presented in Chapter 3 investigate the effect of metal binding on drug 

properties. Fluconazole (FLC) binds both iron and copper, and stabilizes Cu+ and Fe2+ over 

Cu2+ and Fe3+, respectively, as measured by cyclic voltammetry. Using gel electrophoresis 

assays, the effects of FLC on copper- and iron-mediated DNA damage were determined. 

FLC does not cause DNA damage by itself, but addition of FLC lowers the concentration 

of Fe2+ or Cu+ needed to cause 50% DNA damage (EC50) by 50 and 40 %, respectively, 

increasing reactive oxygen species production. 



 

 iii 

The studies described in Chapter 4 investigate the antioxidant capabilities of a series 

of plant-derived, procyanidin-rich condensed tannins (CTs) with different structural 

features for their ability to inhibit copper (IC50 162.5 ± 0.3 µM to 27% DNA damage 

inhibition at the highest concentration) and iron-mediated (IC50 0.75 ± 0.01 to 4.96 ± 0.01 

µM) DNA damage. The activity of CTs are compared to six commercially available 

polyphenolic compounds. This is the first study to investigate structure-activity 

relationships for CTs and their abilities to prevent metal-mediated DNA damage. 
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CHAPTER ONE 

 

SHOULD AND CAN THE ORAC ANTIOXIDANT ASSAY BE REPLACED? 

 

1.1 Introduction 

 Why Do We Care About Antioxidants? Reactive oxygen species (ROS), such as 

superoxide (O2
2-) and hydroxyl radical (•OH), and reactive nitrogen species (RNS), such 

as ONOO- and NO•,1–6 control a variety of physiological responses such as changes in gene 

expression, apoptosis, and proliferation.7 ROS and RNS play an important role in the 

development of many diseases,6,8,9 including atherosclerosis,10 neurodegenerative 

diseases,6,11–15 inflammation,6,15,16 cancer,17–19 and aging.1,3,20–23 A diverse array of 

antioxidants, including polyphenols, vitamins C and E, and carotenoids, can prevent 

damage caused by ROS.24–28 Therefore, researchers have attempted to quantify and 

compare the ability of antioxidants to prevent ROS damage and to understand the 

mechanisms by which they prevent this damage.  

 Currently, there is no accepted ‘‘total antioxidant parameter’’ as a nutritional index 

available for the labeling of food and biological fluids due to the lack of standardized 

quantitation methods,29 and many reviews have been published about various issues and 

opinions about antioxidant measurement.30–38 Frankel and Meyer38 point out the difficulties 

with using one-dimensional methods to evaluate multifunctional food and biological 

antioxidants. The authors suggest a suitable protocol should fulfill several factors; (a) have 

a biologically relevant substrate, (b) be tested under various oxidation conditions, (c) 

measure initial and secondary oxidation products, (d) compare antioxidants at the same 
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molar concentrations of active components, and (e) quantify antioxidants on the basis of 

induction period, percent inhibition, rates of hydroperoxide formation or decomposition, 

or IC50 (concentration to inhibit 50% damage) values. The many assays for measuring 

antioxidant efficacy are different in terms of substrates, probes, reaction conditions, 

quantitation methods, solvents, and radical sources. Thus, it is extremely challenging to 

compare results from different assays.38 In addition, new assays claiming to measure 

antioxidant capacity are continually being introduced.39,40 

This Chapter does not discuss all antioxidant assays in their complexity and 

variations. Instead, the intent of this review is to illustrate the diversity and complexity of 

the topic and to highlight aspects that are often neglected, such as biological relevance and 

difficulty in comparison between different assays. Where possible, review articles are 

referenced for further reading about common antioxidant assays and their limitations.  

 The History of The Oxygen Radical Absorbance Capacity Assay. The oxygen 

radical absorbance capacity (ORAC) assay has found broad application for measuring the 

antioxidant capacity of botanical41 and biological36 samples. In 2007, the United States 

Department of Agriculture (USDA) released the first database of antioxidant activity for 

277 selected foods followed by 326 additional entries in 2010. The USDA published these 

tables to compare various foods and food additives using a standardized method so that 

nutraceutical companies could use them to educate consumers about the comparative 

antioxidant benefits of products.42.46 In 2012, the USDA withdrew all of their ORAC tables 

for two reasons: 1) the routine misuse by food and dietary supplement companies to 

promote products, and 2) the in vitro ORAC data for antioxidant capacity of foods did not 
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predict in vivo effects, coupled with mixed results in clinical trials to test the benefits of 

dietary antioxidants.43  

 The ORAC method does not use a biologically relevant radical, and does not 

measure prevention of ROS or RNS generation.42 However, the number of publications 

using ORAC as method for antioxidant measurement is steadily increasing every year 

(2003: 16; 2012: 182; 2019: 249 new publications).44 This assay uses a peroxyl radical 

generator, 2,2‘-azobis(2-amidinopropane) dihydrochloride (AAPH; Figure 1.1) and 

measures the decrease in fluorescence due to oxidative degradation at 510 and 700 nm. 

Radical scavengers protect the fluorescent molecule from reacting with the peroxyl radical. 

 

Scheme 1.1. Thermal decomposition to obtain the AAPH radical used in the ORAC assay. 

 

Özyürek et al.29 discuss the importance of terminology when comparing 

antioxidants, since some assays measure antioxidant activity and others antioxidant 

capacity. Antioxidant activity typically describes the kinetics of quenching reactive species 

and is usually expressed as reaction rates or scavenging percentages per unit time, whereas 

antioxidant capacity is the thermodynamic conversion efficiency of reactive species by 

antioxidants, such as the number of moles of reactive species scavenged by one mole of 

antioxidant during a fixed time period. Both are important factors in measuring antioxidant 

efficacy. Antioxidant assays can be classified with respect to their approaches: type of ROS 

response measured in vivo or in vitro or mechanism of action (Figures 1.1 and 1.2).29 
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Figure 1.1. Classification of assays to evaluate antioxidant activity in vivo and in cells by assay type. 

 

 

 

 

 

Figure 1.2. In vitro antioxidant assays classified by mechanism. 
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Antioxidant assays are often grouped by their general mechanism (Figure 1.2), such 

as hydrogen atom transfer (HAT; Reaction 1) and single electron-transfer (SET; Reaction 

2), where AH represents the antioxidant in these reactions and M represents an electron 

donor, for example a metal. HAT assays are usually competitive and measure antioxidant 

activity, whereas SET assays are usually noncompetitive, evaluate total antioxidant 

capacity, and involve a redox reaction with the probe.30,45  

ROO• + AH  →  ROOH + A•       (1) 

Mn+ + e- (from AH)  →  AH• + M(n-1)      (2) 

 In the competitive HAT assays, the oxidant reacts with a target species, leading to 

changes in its spectroscopic properties that are measured by changes in absorbance, 

fluorescence, or luminescence. Antioxidants typically compete against another molecule, 

such as fluorescein, for the oxidant. Thus, less fluorescein is oxidized by the ROS in the 

presence of an antioxidant, and quantitation is derived from the kinetic curves obtained.45 

HAT assays can involve photochemically unstable radicals or incomplete trapping of 

radicals by the antioxidant, resulting in an underestimation of antioxidant activity.  

 SET-based assays measure the capacity of an antioxidant to reduce an oxidant 

resulting in a color or fluorescence change.30,32 SET assays are quantified by the degree of 

the color change, which is proportional to antioxidant concentration.30 These assays assume 

a correlation of antioxidant capacity with reducing capacity.30 This mechanistic picture is 

complicated by the fact that antioxidants can react through multiple mechanisms rather 

than through only one predominant mechanism.46 Therefore, the division of antioxidant 
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activity into two major mechanistic classes of assays may result in neglecting to consider 

multiple possible antioxidant mechanisms that may also be dose-dependent. 

Metals Are Important But Neglected. Hydroxyl radical (•OH) is generated by the 

oxidation of primarily iron and copper in vivo and in vitro (Reaction 3).47 Iron-mediated 

formation of •OH from hydrogen peroxide (H2O2) is the primary cause of DNA damage 

and cell death under oxidative stress conditions in prokaryotes48 and eukaryotes, including 

humans.49–51 The reduced metal ions can be regenerated by cellular reductants, making 

hydroxyl radical generation catalytic in cells.51,52 Oxidative DNA damage occurs in two 

ways: damage to the phosphate backbone resulting in strand breaks and oxidation of the 

nucleotide bases. Both types of  DNA damage can be quantified.53–58 

 Fe2+/Cu+  +  H2O2  → Fe3+/Cu2+  +  •OH  +  OH-  (3) 

 Copper and iron play important roles in various diseases, including Alzheimer’s 

and Parkinson’s diseases, among others.6,11–15,59 The hydroxyl radical is likely the final 

facilitator of most radical induced tissue damage.60,61 Almost all ROS give rise to hydroxyl 

radical formation, and the hydroxyl radical is extremely short-lived, reacting with almost 

every type of molecule found in living cells including sugars, amino acids, lipids, and 

nucleotides.60 Although hydroxyl radical formation can occur in several ways, the most 

important mechanism in vivo is through transition-metal-catalyzed decomposition of 

superoxide and hydrogen peroxide.59 

Iron-mediated DNA damage is the most investigated, since it is the underlying 

cause of many diseases.16,18,23-25,29-35,47 Non-protein-bound Fe2+ concentrations are around 

10 M in E. coli and humans.63 Under oxidative stress conditions, these concentrations can 
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increase to 80–320 µM in E. coli,47,52,62,63 and Linn et al.48,64,65 have shown that iron-

mediated DNA damage is the underlying cause of cell death of E. coli under oxidative 

stress. Iron coordinates to DNA in vivo resulting in the production of the hydroxyl radical 

in close proximity.48  

Copper concentrations in human serum can range from 10 to 25 mM47,66,67 but 

increase to 0.1 mM under several metabolic processes.47,68 DNA damage can be detected 

through backbone breakage, base oxidation, inter- and intra-strand crosslinking, and DNA–

protein crosslinking.47 Cu2+ and has been shown to coordinate to the DNA double helix 

and promote double-strand breakage through the Fenton-like reaction (Reaction 3).69–71 

Halliwell et al.72,73 emphasized that oxidative DNA damage is an important biomarker for 

ROS damage. DNA is one of the most important biomolecules and target of ROS and there 

are numerous mechanisms to counteract DNA damage.72,74  

Duthie et al.75 have described the ability of antioxidants to prevent oxidation 

through different mechanisms: 1) transition metal coordination to prevent radical 

formation, 2) reducing high concentrations of O2
•-, and 3) scavenging radicals (Figure 1.3). 

Since antioxidants can prevent metal-DNA damage through several mechanisms, it is 

important to measure direct DNA damage instead of individual mechanisms to gain a 

complete picture of antioxidant activity. 

The Issue with Trolox. A common standard to measure antioxidant activity is 6-

hydroxy-2, 5, 7, 8-tetranethylchroman-2-carboxylic acid (Trolox), a water soluble Vitamin 

E derivative.76 It was first reported by Cort in 197577,78 and was quickly adopted as a 

positive control for in vitro79,80 and in vivo81 assays, with tested antioxidants compared to  
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Figure 1.3. Antioxidants can prevent metal-mediated DNA damage through different mechanisms. 

 

 

it using the Trolox equivalent (TE) metric. Trolox is a known radical scavenger, but the 

exact mechanism of its activity is not fully understood.82  

 One of the primary issues with using Trolox as a standard, which is not commonly 

discussed, is that comparing antioxidants to a compound that can only scavenge radicals 

results in the neglect of other mechanisms by which antioxidants may prevent damage. For 

example, glutathione (GSH), a naturally occurring antioxidant with intracellular 

concentrations of up to 10 mM,83 plays an important role in metal homeostasis and can 

prevent oxidative DNA damage by metal coordination.84 Perron et al.24 correlated the pKa 

of the most acidic phenolic hydrogen for polyphenols versus their iron-mediated DNA 

damage prevention ability. These results established iron binding as the mechanism of the 

observed antioxidant activity. In addition, Vacek et al.85 highlighted the importance of 

copper-chelation for the DNA damaging ability of the semi-synthetic flav-onolignan 7-O-

galloylsilybin using electrochemistry and density-functional theory (DFT) calculations.  
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1.2 Assays Measuring Antioxidant Radical Scavenging  

Oxygen Radical Absorbance Capacity Assay. The oxygen radical absorbance 

capacity (ORAC) assay combines two different factors, inhibition time and degree of 

inhibition. Initially, the intensity of the fluorescent molecule β-phycoerythrin is measured. 

Peroxyl radicals, generated through thermal decomposition, react with β-phycoerythrin, 

resulting in a decrease in fluorescence. Trolox (1.0 μM/L) is used as a standard for this 

assay, and antioxidant activity is expressed in Trolox equivalents (TE)/g. In theory, 

antioxidants react with the peroxyl radical, preventing the expected fluorescence decrease 

(Scheme 1.1).76  

Use of β-phycoerythrin has some shortcomings, including variability in its 

reactivity with peroxyl radicals, photobleaching, and interactions with polyphenols by non-

specific binding. These issues resulted in the testing of alternatives such as 3’,6’-

dihydroxyspiro[isobensofuran-1[3H],9’[9H]-xanthen]-3-one and dichlorofluirescein.76 

The most established fluorescent molecule is fluorescein since it is cheap and can be used 

with little interference from tested antioxidants.42  

The ORAC assay was first introduced by Cao et al.86 in 1993 and quickly became 

very popular due to its ease of use after Cao and Prior’s modifications.30,87,88 In 2003, the 

USDA rewarded the collaborating Brunswick and Prior a Small Business Innovation 

Research (SBIR) grant to develop ORAC assays for singlet oxygen, hydroperoxide, and 

superoxide anion.42 This panel of ORAC tests was hoped to provide a comprehensive 

antioxidant profile with applications across nutritional and human health markets. Due to 

the extended development of ORAC assays, standardized protocols for various solvent 
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systems and sample origins exist. Advantages of these ORAC assays are therefore 

flexibility in solvent choice, either aqueous or organic as well as ease of measurement.89,90 

Disadvantages of ORAC assay, including the use of non-biological relevant radical, the 

lack of measuring ROS or RNS generation, and misuse by food and dietary supplement 

companies, have been discussed previously in the History of The Oxygen Radical 

Absorbance Capacity Assay section. 

Hydroxyl Radical Averting Capacity (HORAC) Assay. The hydroxyl radical 

averting capacity (HORAC) assay is based on oxidation of fluorescein by hydroxyl radical 

via HAT. Hydroxyl radical is generated by treating H2O2 with Co2+ (Reaction 4), as first 

reported by Ou et al.89 In this assay, samples such as food items, extracts, or individual 

compounds, are dissolved in methanol and diluted with phosphate buffer (pH 7.4), and the 

antioxidant binds Co2+ to prevent hydroxyl radical formation. Antioxidant effectiveness is 

based on the inhibition of fluorescein oxidation by hydroxyl radical through a HAT 

mechanism. Although the quantification is similar to the ORAC assay, there is no 

correlation between the results of the two assays.89 

Fluorescein + Co2+ + H2O2 → oxidized fluorescein   (4) 

2,2-Diphenyl-1-picrylhydrazyl radical assay. The 2,2-diphenyl-1-picrylhydrazyl 

radical (DPPH) assay was developed by Blois91 in 1958, and it is one of the most common  

antioxidant assays. Sanchez-Moreno et al.92 suggested that the DPPH assay was an easy 

and accurate method for measuring the antioxidant capacity of fruit and vegetable juices 

or extracts. DPPH radical is a very stable, nitrogen-based radical, and it is commercially 

available. DPPH is reduced by receiving a hydrogen atom from an antioxidant to form the 



 

11 

 

corresponding hydrazine.93 This assay measures decolorization through radical quenching 

of the violet DPPH at 515 nm. DPPH assays are commonly carried out in methanol or a 

methanol/water mixture,94,95 and results are measured after a defined time period, typically 

30 minutes.94 

DPPH is sensitive to oxygen, some Lewis bases, and solvents.96 In addition, DPPH 

has very limited aqueous solubility, and the interference of antioxidant absorbances with 

DPPH absorbances can present a problem for quantitative analysis.34 An advantage of the 

DPPH assay is that the reaction time can be adjusted based on the reactivity and size of the 

antioxidant.97 Several reviews further discuss the pitfalls of this assay, including 

reproducibility among different laboratories; limited stability if the solution is not prepared 

relatively fresh, resulting in issues with long-duration experiments; its low solubility in 

aqueous solutions; and interference caused by amino acids, peptides, or proteins due to the 

ability of DPPH to deprotonate them.79,80,98 

 2,2’-Azinobis(3-ethyl-benzothiazoline-6-sulfonic acid assay. The 2,2’-azinobis(3-

ethyl-benzothiazoline-6-sulfonic acid (ABTS) assay, also sometimes called the Trolox 

equivalent antioxidant capacity (TEAC) assay, is a discoloration assay used for lipophilic 

and hydrophilic antioxidants first introduced by Re et al.99 The pre-formed radical cation 

of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, ABTS•+) is generated by ABTS 

oxidation with potassium persulfate, and it is reduced in the presence of hydrogen-donating 

antioxidants in ethanol or phosphate buffer.99 Antioxidant activity is measured by the 

depletion of the colored ABTS•+, measured at 734 nm.99 Antioxidant activity is expressed 

as the concentration of antioxidants giving the same percentage change in absorbance as 
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1mM Trolox resulting in the unit Trolox-equivalent antioxidant capacity (TEAC/mg).37 

ABTS assay results correlate better with the ORAC assay results than DPPH assay 

results.100 In addition, the ABTS radical has multiple wavelengths that allow analysis with 

less interference than DPPH. The ABTS radical (unlike DPPH) is soluble in water, 

allowing for the testing of both hydrophobic and hydrophilic compounds. The ABTS 

radical is only stable for several minutes at room temperature, significantly impacting 

reproducibility of results.101  

 Thiobarbituric-Acid-Reactive-Substance Assay. The thiobarbituric-acid-reactive-

substance assay (TBARS) has been used for the estimation of lipid peroxidation since the 

early 1950s. It is considered an index of lipid peroxidation.102 Malondialdehyde (MDA) is 

produced as a side product by autooxidation or reaction with ROS and enzymatic 

degradation of polyunsaturated fatty acids in cells. The reactive aldehyde, MDA causes 

toxic stress in cells as it reacts with proteins and DNA. In the TBARS assay, MDA reacts 

with two equivalents of thiobarbituric acid (TBA) by an acid-catalyzed, nucleophilic-

addition reaction, resulting in a pink color that can be measured at 532 nm.102–104 This 

method is sensitive to low levels of MDA in cells, but it may overestimate the amount of 

cellular MDA,102,105 since cellular carbohydrates and phenylpropanoid-type pigments can 

interfere with TBARS results. This interference can become a significant issue, since 

different plants and cells have different carbohydrate concentrations and their 

concentrations can vary depending on previously induced stress.102,104,106–108 The 

advantages of the TBARS assay is its simplicity, its inexpensiveness, and its ability to be 

used in high throughput assays and processed with minimal sample manipulation. 
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 Enhanced Chemiluminescence Assay. The enhanced chemiluminescence (ECL) 

assay, first introduced by Hirayama et al.,109 is based on the measurement of enhanced 

luminescence of the luminol radical compared to luminol, so the reaction is dependent on 

the constant production of luminol-based radicals. In the original assay, the hydroxyl 

radical was generated by the Fenton reaction (Reaction 3, using H2O2, Fe2+
, and luminol in 

a borate buffer (pH 7.4).109 More common currently is the use of horse radish peroxidase 

(HRP)-catalyzed oxidation of the chemiluminescent luminol by hydrogen peroxide.110 

Antioxidants scavenge the luminol radical, resulting in a temporary loss of emission at 425 

nm.110,111 Emission resumes after the antioxidant is consumed, and antioxidant 

effectiveness is obtained from comparison to standard calibration curves and measures time 

of depressed light emission versus the concentration of the antioxidant in µmol/L.111,112 

Once again, Trolox is commonly used as a standard.111 Advantages of the ECL assay 

include the ability to use it for high-throughput screening due to its rapid measurement 

time, typically 40 to 45 minutes.112,113 The assay can be performed using organic or 

aqueous solvents, but direct comparisons between different assays performed in different 

solvent systems is difficult.  

 

1.3. Assays Measuring the Metal Reducing Power of Antioxidants 

The Ferric Reduction Antioxidant Power Assay. The ferric reduction antioxidant 

power (FRAP) assay was first introduced by Benzie and Strain114 in 1996  for the 

evaluation of the antioxidant capacity of human plasma and was later extended for other 

uses.76 A variety of samples can be analyzed using this method, including fruits, juices, 
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tissue samples, plasma, blood, and nutritional supplements. Antioxidant activity is 

evaluated from reduction of the FeIII(TPTZ)2Cl3 (TPTZ = 2,4,6-tri(2-pyridyl)-s-triazine) 

complex to the Fe2+ complex in acetate buffer (pH 3.6). The increasing blue color of the 

Fe2+ complex can be measured at 593 nm with an extinction factor of 22,230 M-1cm-1. 

FRAP values can be obtained by the comparison of the absorbance change in the test 

mixture with those obtained from a calibration curve derived from increasing 

concentrations of Fe2+. The reference for antioxidant activity in this assay is most 

commonly Trolox and sometimes ascorbic acid or uric acid, with units typically expressed 

as Trolox equivalents (mg/100 g).  

The reduction potential of the Fe3+ salt to Fe2+ (~0.70 V) is comparable to ABTS•- 

in the Trolox equivalent antioxidant capacity (TEAC) assay (0.68 V). The difference 

between the FRAP and TEAC assays is the pH of the reaction; the TEAC assay is 

performed at a neutral pH, whereas FRAP is performed at a pH of 3.6. This is one of the 

biggest disadvantages of FRAP, since it is not performed at a physiologically relevant pH. 

The reaction is also non-specific, there can be possible iron chelation interference, and it is 

not suitable for slowly reactive polyphenol compounds. In addition, it cannot evaluate the 

antioxidant activity of species that act by hydrogen transfer, such as many natural occurring 

thiols (including glutathione or proteins).76 

The advantages of the FRAP and TEAC assays are their simplicity, since no special 

or expensive equipment is necessary, reagents are simple to prepare, and it is reproducible 

and fast (30 min or less) with a straightforward procedure that can be automated, semi-

automated or performed manually.114 
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The Cupric Reducing Antioxidant Capacity Assay. The cupric reducing antioxidant 

capacity (CUPRAC) assay is similar to the FRAP assay, since it is based on measuring an 

antioxidant’s ability to reduce copper(II)-neocuproine (Cu(II)-Nc) or copper(II)- 

bathocuproine in ammonium acetate buffer (pH 7).29 This assay was first introduced in 

2004 by Apak et al.115 and is an electron transfer assay. Cu2+ reduction is quantified by 

decreasing absorbances at 490 and 450 nm, respectively,29,76 with the degree of color 

directly correlated to the antioxidant concentration.29 The reaction is complete after 30 min 

and therefore fairly fast, similar to the FRAP and TEAC assays. Antioxidant capacity is 

reported in Trolox equivalents, defined as the reducing potency of a 1 mM Trolox 

solution.29 Unlike FRAP, CUPRAC can measure thiols such as glutathione. 

The Folin-Ciocateu Total Phenolic Assay. The Folin-Ciocateu (FC) method was 

originally developed for protein determination by taking advantage of the Folin reagent’s 

reactivity with the tyrosine residues in proteins.116 Singleton et al.30,117 adapted this assay 

to determine the polyphenol content in wine. This assay oxidizes phenol compounds 

though a semioquinone radicals into quinones117 in alkaline solution (pH 10) using the 

Folin reagent, molybdotungstophosphate heteropolyanion (3H2O-P2O5-13WO3-5MoO3-

10H2O). The resulting reduced Folin reagent has a yellow color with an absorbance 

maximum of 765 nm.118 Advantages of the FC assay are its simplicity, since it does not 

require specialized equipment, and its long wavelength for measuring activity that 

minimizes antioxidant interference.118 Reducing agents, such as ascorbic acid or certain 

amino acids, interfere with FC analyses and can result in an overestimation of phenolic 

content in the sample.118 
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1.4 Are cellular assays better than in vitro assays?  

The results of in vitro antioxidant assays, as described previously, often do not 

correlate with biological relevance due to solvent, radical source, or other issues. An 

alternative would be to assess antioxidant activity in cells, but this approach comes with an 

alternate set of concerns. For example, different cell types differ in oxidative stress 

responses, repair mechanisms, and other features that affect antioxidant behavior, making 

comparisons between cell lines extremely unreliable.119–123 Even if one cell line were to be 

selected as an exemplar, it is not clear what selection criteria would be most relevant.124 

Additionally, cells are complex systems, and even cells of the same type can differ in levels 

of glutathione, superoxide dismutase, glutathione peroxidase, and/or DNA repair enzymes 

depending on culturing conditions and the nature of the assays, differences that would alter 

the experimental results.120,121,123,125 Another challenge is establishing antioxidants cell 

permeability and therefore intracellular concentrations. Because cells take time to culture 

and assay, typically significantly more time than is required for in vitro assays, this hinders 

high-throughput screening. In addition, the cell culturing process can increase oxidative 

stress, resulting in the alteration of results.124 And lastly, the question of how to assess the 

damage caused by cellular oxidative stress is critical.72,74,126 Commonly used cellular 

assays of oxidative stress typically measure one mechanism for antioxidant activity and 

unrelated cellular conditions can alter the results. For example, the TBARS assay measures 

lipid peroxidation and, as previously discussed, the results of this assay can be influenced 

by cellular carbohydrate levels. Thus, measuring only antioxidant prevention of cell death 

using this assay are sometimes unreliable and could neglect oxidative stress that results in 
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DNA mutations rather than lipid peroxidation.  An advantage of cellular assays is that they 

account for absorption, intracellular distribution, metabolism, and excretion.127 The 

assessment of each contributor can be time intensive and difficult for high throughput 

screening, making cellular assays typically not the first choice in antioxidant evaluation. 

 This Chapter provides an overview of the vast number of antioxidant assays. The 

ORAC assay was viewed as one of the most promising of a wide variety of antioxidant 

assays prior to the USDA withdrawing ORAC assay results in 2012. Since then, no assay 

has been identified as a suitable replacement for the ORAC assay due to the variety of 

different parameters each assay encompasses, such as radical source, solvent, measurement 

technique, and mechanisms assessed, as described in this Chapter. In addition, each assay 

has different sensitivities to antioxidant interference, oxygen, light, and other issues that 

need to be accounted for when comparing assay results. All of these variances result in 

different advantages, disadvantages, and limitations of each assay. There are several 

reviews127–131 about antioxidants in clinical trials128,129,132 discussing these challenges. 

Since there are still knowledge gaps on the mechanisms of bioavailability, biotransformation, 

and action of antioxidant supplements, it is a current challenge to choose the most 

appropriate assay to obtain meaningful and comparable results.131 In addition, the number 

of antioxidants tested to date, the use of pharmacological and not dietary doses may 

produce harmful effects, and insufficient duration of the clinical trials also has made large 

scale studies a challenge.130 
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1.5 Conclusions 

 The assessment and ranking of antioxidant activity is truly complex. Most assays 

focus on one possible mechanism (e.g., SET or HAT) or use organic solvents and radicals 

that are not biologically relevant. These issues resulted in the USDA’s withdrawal of the 

prominent ORAC assay in 2012, an assay that has not been replaced. All these issues 

highlight that it is an utopic thought one assay could assess all the different aspects of 

antioxidant activity. The best approach for testing and comparing antioxidants is to 

selectively test the antioxidants for targeted purposes and carefully consider the limitations 

of each method. 

 

1.6 Dissertation overview 

 In addition to the work presented in this dissertation, I have contributed to several 

other manuscripts and publications.132-137 I conducted EPR spectroscopy experiments to 

verify the proposed reaction mechanism of Cu2+ with methimazole (MMI). I was the first 

to provide proof of thiyl radical formation upon MMI reduction of Cu2+ to Cu+.133 I also 

conducted DNA damage assays with a [Ru(MMI)6]Cl3 that showed the improved 

antioxidant properties of the complex compared to MMI in preventing iron-mediated DNA 

damage.134 Additionally, I performed copper- and iron-DNA damage assays for 

penicillamine to correlate the resulting IC50 values to the corresponding stability constants 

of selected thiol-and selone-containing amino acids,135 and I have also performed similar 

DNA damage assays to evaluate the ability of tinidazole complexes to induce DNA 

damage.136 In collaboration with Dr. Craig Goodman, I developed a protocol using H9c2, 
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RASC, and RAOSMC cell lines to evaluate polyphenol toxicity and ability to prevent cell 

death und regular and high iron-conditions.137 Furthermore, I expanded our understanding 

of thione- and selone-containing imidazoles by highlighting the importance of aromaticity, 

denticity, and the effects of various electron-donating and -withdrawing substituents.138  

 In this dissertation, Chapter 1 reviews the issues arising from in vitro antioxidant 

evaluation techniques. Although a significant number of reviews explain and compare the 

various methods for evaluating antioxidant ability, this Chapter focuses on discussing these 

techniques in light of replacing the ORAC standard for antioxidant activity after the USDA 

withdrew it in 2012. Chapter 1 also provides an overview of the issues surrounding 

antioxidant evaluation including the biological relevance of these assays. 

 Chapter 2 discusses development of the first antioxidant assay that enables the 

evaluation of hydrophobic compounds to prevent metal-mediated DNA damage. Most 

current antioxidant assays only focus on a specific antioxidant mechanism, such as radical 

scavenging or the ability to reduce copper and iron. Both classes of assays commonly use 

non-biologically relevant radicals and organic solvents. This new hydrophobic gel 

electrophoresis assay allows the evaluation of copper- and iron-mediated DNA damage of 

hydrophobic compounds under biologically relevant conditions.  

 In this work, we demonstrate that copper and iron produce different damaging 

species upon reaction with H2O2 that are therefore differently affected by increasing 

ethanol concentrations. EPR spectra show that high-ethanol concentrations completely 

scavenge iron-generated hydroxyl radical, whereas the damaging species produced by 

copper and H2O2 is longer-lived and not readily scavenged. A variety of iron-binding 
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polyphenol antioxidants were tested for their ability to prevent iron-mediated DNA damage 

under high-ethanol conditions, and their IC50 values correlate well with those obtained 

under low-ethanol conditions, indicating the significance of metal coordination in 

preventing iron-mediated DNA damage under these conditions.  

 This new assay enabled evaluation of hydrophobic ebselen analogs and provides 

insight into their antioxidant mechanisms. This is the first assay that enables the 

quantifiable evaluation of metal-mediated DNA damage prevention of hydrophobic 

compounds under biologically relevant conditions and allows for the direct comparison of 

a variety of antioxidants to enable development of structure-function relationships. 

 The work presented in Chapter 3 investigates the role of fluconazole (FLC) in the 

production of ROS by copper and iron.139 Electrochemical studies demonstrate that FLC-

metal binding favors Cu+ and Fe2+ over Cu2+ and Fe3+, respectively, and mass spectrometry 

studies reveal FLC-metal coordination ratios of only 2:1 with copper and iron. Plasmid 

DNA damage studies show that FLC causes no DNA damage by itself or in combination 

with H2O2 or ascorbate, but, in the presence of hydrogen peroxide, FLC significantly 

enhances the ability of copper and iron to cause DNA damage. Research to date has 

primarily focused on ergosterol depletion by FLC that results in the disruption of the cell 

membrane of C. neoformans and causes growth inhibition. However, the results in this 

Chapter indicate that the biological mechanism of action for FLC is more complex and 

likely involves metal ions. Since the FLC resistance of C. neoformans is increasing, 

exploring FLC-metal interactions may provide a pathway to enhance DNA damage to the 

pathogen and reduce the development of resistant strains. 
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In Chapter 4, four different condensed tannins (CTs) from V. macrocarpon, H. 

lupulus, V. vinifera seed, and T. inflorescentia were tested for their ability to prevent metal-

mediated DNA damage. V. macrocarpon CTs are the most effective at inhibiting both 

copper- and iron-mediated DNA damage. Although H. lupulus, V. vinifera seed, and T. 

inflorescentia CTs prevent little-to-no copper-mediated DNA damage, they prevent 

significantly more iron-mediated DNA damage at low micromolar concentrations. Only H. 

lupulus and T. inflorescentia CTs promote iron-mediated DNA damage at very low (0.1 

and 1 mg/L) concentrations in addition to antioxidant activity at higher concentrations, the 

first report of this dual activity with iron. CTs with A-type linkages, such as in V. 

macrocarpon may more effectively inhibit copper- and iron-mediated DNA damage than 

CTs with B-type linkages. In addition, higher percentages of catechin compared to 

epicatechin subunits and higher percentages of galloylation may also reduce CT 

antioxidant activity. This is the first study to investigate the ability of CTs with several 

different structural characteristics for prevention metal-mediated DNA damage. Although 

further study is required to firmly establish structure-activity trends among a variety of 

CTs, these results demonstrate the significant effects of CT structural features on 

antioxidant efficacy.  
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CHAPTER TWO 

 

DEVELOPMENT OF A NEW ASSAY TO EVALUATE ANTIOXIDANT ACTIVITY 

OF HYDROPHOBIC COMPOUNDS UNDER BIOLOGICALLY RELEVANT 

CONDITIONS 

 

2.1 Introduction 

The term “oxidative stress” is commonly used to describe the increased production 

that can be caused, for example, by inflammation or the decreased elimination of reactive 

oxygen species (ROS), such as superoxide (O2
•-) and hydroxyl radical (•OH).1–4 ROS 

control various vital physiological responses such as changes in gene expression, apoptosis, 

and cell proliferation.5 ROS also play an important role in the development of many 

diseases,6,7 such as atherosclerosis,8 neural degenerative diseases,9–13 inflammation,13,14 

cancer,15–17 and aging.1,3,18–21  

Molecular oxygen in the cell is converted to O2
•- and H2O2 by direct oxidation of 

flavoproteins, and Halliwell et al.22–25 have demonstrated that transition metals play an 

essential role in ROS production.26–28 Iron reacts with hydrogen peroxide to produce the 

hydroxyl radical29 (Reaction 1) that attacks the DNA at a deoxyribose sugar moiety,30 

abstracting a hydrogen atom at the 4’ position.  Hydroxyl radical also oxidizes lipids, small 

molecules, and proteins. The oxidized Fe3+ or Cu2+ can be regenerated by ascorbic acid 

reduction23 or reaction with the reduced form of nicotinamide adenine dinucleotide 

(NADH).2,31 H2O2 can be produced catalytically as well as nonenzymatically through the 

proportionation of superoxide,32 and from natural cellular respiration.33 
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Fe2+/Cu+ + H2O2 → Fe3+/Cu2+ + ⁻OH + ﮲OH [1] 

Duthie et al.33 have described the ability of antioxidants to prevent oxidation using 

three different mechanisms: 1) coordination to transition metals catalysts to prevent 

initiating radical formation, 2) decreasing localized O2
•- concentrations to reduce oxidation 

reactions, and 3) preventing the initiation reactions by scavenging free radicals that can 

abstract H from molecules. Common in vitro assays testing antioxidant activity primarily 

focus on their radical scavenging ability. Some of the most common radicals used in these 

assays include 2,2’-diphenyl-1-picryl-hydrazyl (DPPH)34–36 or 2,2’azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid (ABTS; Figure 2.1).36,37 Both DPPH and ABTS form 

stable organic radicals, very different from most ROS, especially hydroxyl radical.  In 

addition, these radical scavenging assays are typically performed in organic solvents.37–39 

Thus, the primary measures of antioxidant ability to scavenge radicals are not very 

biologically relevant and often do not accurately reflect antioxidant prevention of DNA 

damage.37,40 

Other assays evaluate the ability of antioxidants to reduce Fe3+ or Cu2+, including 

the ferric reduction antioxidant power (FRAP) assay41 or the cupric reducing antioxidant 

capacity (CUPRAC) assay.42  These assays only asses one possible mechanism by which 

antioxidants can prevent damage. In addition, FRAP assays are conducted at a pH of 3.6, 

a non-biological pH, whereas CUPRAP assays are conducted at biological pH 7. Since 

typical radical scavenging and metal reduction assays are not wholly biologically relevant 

and only examine one potential mechanism of action, cell survival assays are also used to  

 



 

34 

 

 

Figure 2.1. Structures of A) the radicals DPPH and ABTS commonly used in antioxidant assays, B) Trolox 

and Edaravone, known radical scavengers, C) various selones and pyridine derivatives, and D) ebselen and 

ebsulfur derivatives.  
 

establish and compare antioxidant ability.43–45 However, the use of different cell lines for 

these assays limits the ability to compare results, and antioxidant efficacy and toxicity 

issues limit the ability to screen many compounds.46–48 In addition, all these assays generate 

different distinct values as they are based on different underlying mechanisms and 

processes for antioxidant activity  

After the development of the ORAC assay for singlet oxygen, peroxynitrite, 

hydroxyl radical, and superoxide radical anion in 199349 and subsequent modifications for 

use in different solvent systems.50–53 Development of standard protocols for these ORAC 

assays, making them straightforward, adaptable to many different sample types, and able 

to be run in both aqueous and organic solvent systems.54,55 In 2007, the first ORAC assay 
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database of 277 selected foods or food additives was released by the United States 

Department of Agriculture (USDA), followed by 326 additional entries in 2010. The 

USDA published these tables to compare various foods and food additives using a 

standardized method so that nutraceutical companies could use them to educate consumers 

about the comparative antioxidant benefits of products.53,46 In 2012, the USDA withdrew 

all their ORAC tables for two reasons: 1) the routine misuse by food and dietary 

supplement companies to promote products, and 2) the fact that in vitro ORAC data for 

antioxidant capacity of foods did not predict in vivo effects, coupled with mixed results in 

clinical trials testing the benefits of dietary antioxidants.56,43,49  

Due to the lack of correlations between ORAC results and observed biological effects, 

in 2012, the USDA discontinued the use of this assay and even entirely deleted the ORAC 

database from their website.36,57,58 They stated the lack of understanding surrounding 

antioxidant metabolic pathways and mechanisms of action in addition to the lack of 

correlation between the measured antioxidant activities and biological effects as a reason 

for this decision.36,57 Due to these challenges, no other standard assay or method of 

evaluating and comparing antioxidant activity has been put into place since 2012. 

In cells, apoptosis occurs when cellular damage exceeds cellular capabilities to 

repair it. Mitochondrial dysfunction, respiratory chain inhibition, loss of inner 

mitochondrial membrane potential, and increased mitochondrial membrane permeability 

are all types of ROS damage that result in apoptosis.59 DNA fragmentation is also  

associated with late stage apoptosis.59,60 Oxidative-stress-induced apoptosis may represent 

an antimutagenic and carcinogenic defense mechanism to eradicate cells with unrepairable 
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DNA damage.60 Therefore, investigating DNA damage prevention through antioxidants is 

an important aspect to be studied.61 Often, antioxidants are studied with radical scavenging 

assays, such as DPPH or ABTS assays, and their results are directly converted to the ability 

of the compound to prevent DNA damage without direct measurements using DNA.62 

 Results from DNA damage prevention assays can directly compare antioxidant 

efficacy, but these assays are limited to testing water-soluble compounds.63–68 Sies et al.69 

tried to evaluate peroxynitrite-induced DNA damage prevention of the hydrophobic 

antioxidant ebselen, but quantification of the results was problematic because the 

scavenging of methanol was not sufficiently accounted for, only one concentration of 

Ebselen was tested, and adequate control lanes of the compound itself are missing. The 

assay presented in this work mimics the cellular environment by measuring metal-mediated 

DNA damage caused by the hydroxyl radical, the same mechanisms that cause DNA 

damage and cell death.70–75 In addition, DNA damage prevention is quantifiable and the 

limitation of water-solubility is reduced. This new assay enables the testing and comparison 

of water-insoluble compounds such as ebselen and Edaravone, among others, as described 

in this work. 

 

2.2 Results and Discussion 

These more hydrophobic DNA gel electrophoresis assays determine the ability of 

compounds to prevent copper- or iron-mediated DNA damage by hydroxyl radical 

(Reaction 1) under biologically relevant conditions.76–79 The pH and NaCl concentrations 

are adjusted to biological relevant conditions80 and ethanol is used to mimic organic radical 
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scavengers in the cell. Copper concentrations in human serum can range from 10 to 25 

mM81–83 but increase to 0.1 mM under several metabolic processes.82,84 DNA damage such 

as backbone breakage, base oxidation, inter- and intra-strand crosslinking, and DNA–

protein crosslinking, can be detected.82 In this assay, Cu+ coordinates DNA and promotes 

single-strand breakage by the Fenton-like reaction (Reaction 1),85–87 and damaged and 

undamaged DNA is separated by gel electrophoresis. Halliwell et al.23,61 emphasized that 

oxidative DNA damage is an important biomarker for cellular ROS damage, and DNA is 

one of the most important biomolecules and target of ROS damage.61,88  

In these assays, iron or copper and hydrogen peroxide are used in concentrations 

similar to those found in cells. E. coli grown in standard media have concentrations of 

labile iron iron that it is not bound in proteins and can participate in radical generation 

between 15-30 μM, depending on growth conditions.30,89 The supercoiled (undamaged) 

and nicked (damaged) plasmid DNA is separated using gel electrophoresis, allowing a 

quantitative analysis of antioxidant activity. 

Effects of increased ethanol concentrations. Linn et al.70,90–93 studied the effect of 

ethanol on DNA damage caused by the Fenton reaction (Reaction 1). In the presence of 

hydrogen peroxide, they determined three modes of DNA damage by iron-generated 

hydroxyl radical: Mode I damage is caused by loosely DNA-bound Fe2+ and is moderately 

reduced by ethanol scavenging (Reaction 2); Mode II damage results from tightly DNA-

base-coordinated Fe2+ and is very resistant to ethanol scavenging; and Mode III damage 

results from labile Fe2+ in solution, which is readily scavenged by ethanol. The ethanyl, 
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like other alkyl radicals, can lead directly or indirectly to the production of DNA-derived 

radicals and form DNA-8-alylguanine adducts.94–97  

 
[2] 

Therefore, in DNA gel electrophoresis assays similar to the one introduced in this 

Chapter, Perron et al.,98 who themselves refined the gel electrophoresis assay developed 

by Henle et al.,92 used ethanol (10 mM) to mimic naturally occurring organic compounds 

in cells that can act as radical scavengers. Ethanol is not a common additive in plasmid 

DNA gel-electrophoresis studies: less than 10 reports of ethanol or methanol addition in 

these types of assays exist,69,92,99–101 and none examine antioxidant prevention of DNA 

damage. Sies et al.69 used methanol only to dissolve hydrophobic compounds, and did not 

thoroughly investigate the effect of methanol’s radical scavenging ability on DNA damage. 

To make DNA damage prevention studies with more hydrophobic compounds 

possible in these new DNA damage assays, the ethanol concentration is increased from 10 

mM to 1.7 M. The hydrophobic antioxidant compounds are dissolved in 100% ethanol and 

1 µL of this stock solution is added to a total volume of 10 µL, resulting in the ethanol 

concentration of 1.7 M. This 1700-fold increase in ethanol has no significant effect on 

copper-mediated DNA damage by Cu+ (6 µM with 50 µM H2O2; pH 7), with 94 ± 4 % and 

93 ± 4 % DNA damage at 1.7 M and 10 mM ethanol, respectively.  

In contrast, iron-mediated DNA damage prevention by Fe2+ dependent upon ethanol 

concentration. Under low-ethanol (10 mM) conditions, 2 µM Fe2+ in the presence of 

hydrogen peroxide results in 92 ± 3% DNA damage, but under high-ethanol (1.7 M) 

conditions (both at pH 6 to prevent iron precipitation102), no DNA damage is observed at 
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this Fe2+ concentration. At constant H2O2 concentration, increasing DNA damage with 

increasing Fe2+ concentration is observed at 10 mM and 1.7 M ethanol, respectively (Figure 

2.2), but in all cases, more Fe2+ is required to damage the same percentage of DNA under 

low- and high-ethanol conditions. For these hydrophobic gel assays under high-ethanol 

conditions, a concentration of 15 µM Fe2+ was chosen because of its high percentage of 

DNA damage (~90%), similar to the DNA damage percentage under low-ethanol 

conditions with 2 µM Fe2+. This direct correlation between increased Fe2+ concentrations 

and increased DNA damage (Figure 2.2) at different ethanol concentrations has not been 

previously examined. This difference between the effects of ethanol on copper- and iron-

mediated DNA damage is likely due to the metals producing different damaging species. 

Fe2+ reacts with H2O2 to produce hydroxyl radical,103,104 as has been thoroughly established 

in vitro103,105 and in cells.106–110  The DNA-damaging species produced by Cu+ has been 

extensively studied, and many suggest generation of hydroxyl radical from the reaction of  

 
Figure 2.2: Dose-response curves for iron-mediated DNA damage with 10 mM (diamonds) and 1.7 M 

ethanol (circles) with increasing Fe2+ concentrations. 
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Cu+and H2O2.
24,111–116 Ingraham et al.117 was one of the first to suggest that hydroxyl radical 

is not the primary radical formed, followed by many studies supporting his 

hypothesis,8,67,117–122 although the exact identity of the oxidizing species has not been 

determined. It is clear, however, that compared to Fe2+ in the presence of hydrogen 

peroxide, Cu+ forms a more stable oxidant that is much less susceptible to radical 

scavengers such as ethanol.123,124  

 Electron paramagnetic spectroscopy. EPR experiments were conducted to further 

explore the influence of ethanol on copper- and iron-generated radical species. These 

studies were carried out at room temperature in the presence of the spin trap 5,5-dimethyl-

1-pyrroline-N-oxide (DMPO) to observe the radicals produced. High ethanol 

concentrations (1.7 M) completely prevent formation of the DMPO-OH adduct with Fe2+ 

(300 µM) and H2O2. When the concentration of ethanol is reduced to 425 mM, the DMPO-

OH signal starts to appear (Figure 2.7A), indicating that ethanol directly prevents hydroxyl 

radical generation. 

With Cu+ under similar conditions, the DMPO-OH adduct is observed without 

ethanol addition. With ethanol, both DMPO-OH and DMPO-ethanyl adducts are observed 

(Figure 2.3), consistent with immediate hydroxyl radical formation and subsequent ethanol 

scavenging of this radical.125–129 These results highlight that Cu+ and H2O2 form an 

oxidizing agent less readily scavenged by ethanol than the oxidizing agent formed by Fe2+ 

and H2O2.
124 This is the first study of DMPO-OH radical generation by copper and iron 

with varying ethanol concentrations (Figure 2.35-2.40). 
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Figure 2.3. EPR spectra of A) Fe2+, H2O2, and DMPO in MES buffer (10 mM, pH 6) with 1.7 M ethanol 

after 1) 5 min and 2) 30 min, with 425 mM ethanol after 3) 5 min and 4) 45 min, and without ethanol after 

5) 5 min and 6) 45 min (due to signal overload spectra without ethanol were collected with lower receiver 

gain of 103 versus 105 for all other spectra), and B) Cu2+ ascorbate, H2O2, and DMPO in MOPS buffer (10 

mM, pH 7) with 1.7 M ethanol after 1) 5 min and 2) 40 min and without ethanol after 3) 5 min and 4) 45 min. 

 

Correlating antioxidant behavior in high- and low-ethanol DNA damage 

prevention assays. To evaluate the impact high-ethanol concentrations have on antioxidant 

prevention of iron-mediated DNA damage, a set of six polyphenols (Figure 2.4) were tested 
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for their ability to prevent DNA damage under high- and low-ethanol conditions. 

Polyphenol antioxidant activity has been extensively studied, and polyphenol compounds 

are well-known iron chelators76,98,130 and radical scavengers,131–134 making them ideal for 

a comparison study. 

 

Figure 2.4.  Structures of selected polyphenols examined in this chapter. 
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Figure 2.5. Gel electrophoresis images showing tannic acid (TA) prevention of iron-mediated DNA damage. 

MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2; lane 3: p + 20 µM TA + 

H2O2 + 1.7 M ethanol; lane 4: p + Fe2+ (2 µM) + H2O2 + ethanol (10 mM); lane 5: p + Fe2+ (15 µM) + H2O2 

+ ethanol (1.7 M); lanes 6-12: Fe2+ (15 µM) + H2O2 + ethanol (1.7 M) + TA (0.1, 1, 2.5, 5, 7.5, 10, and 20 

µM , respectively).  

 

These gel assays were conducted under low- and high-ethanol conditions with 

either Fe2+ (2 and 15 M for low-ethanol and high-ethanol conditions, respectively) with 

hydrogen peroxide (50 M). Addition of polyphenol compounds prevent iron-mediated 

DNA damage as shown in the gel images for tannic acid in Figure 2.5. The DNA bands in  

Lane 3 indicate that TA does not cause DNA damage in the presence of H2O2, but Fe2+ and 

H2O2 cause over 90% damage (Figure 2.5, lane 4). The same amount of DNA damage 

occurs with Fe2+ (15 µM) and H2O2 with 1.7 M ethanol (Figure 2.5, lane 5). Increasing TA 

concentrations up to 20 µM (Figure 2.5, lanes 6-12) prevent this iron-mediated DNA 

damage. The plasmid DNA band intensities from these studies were quantified, and the 

resulting data were fit with a dose-response curve to determine the tannic acid 

concentration required to inhibit 50% DNA damage (IC50 value; Figure 2.6A); the IC50 

value for TA prevention of iron-mediated DNA damage with 1.7 M ethanol is 2.27 ± 0.01 

μM (Table 2.1). Due to the susceptibility of iron-generated hydroxyl radical to ethanol 

scavenging, iron concentrations are 7.5 times higher in the high-ethanol (15 µM Fe2+) than 

in the low-ethanol (2 µM Fe2+) assay conditions. It is therefore consistent that the 

polyphenol IC50 values for prevention of iron-mediated DNA damage under high-ethanol 
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conditions (2.27-1432 µM) are higher than those determined under low-ethanol conditions 

(0.3 to 58.9 µM; Table 2.1). 

 

 

 
Figure 2.6.  IC50 plots for prevention of iron-mediated DNA damage in the presence of 10 mM and 1.7 M 

ethanol for A) sepyMe and B) tannic acid. 
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Table 2.1. IC50 values for polyphenol prevention of iron-mediated DNA damage under high (1.7 M) and low 

(10 mM) ethanol conditions and polyphenol scavenging of DPPH. 

Compound 
Fe2+ IC50 [µM] 

high ethanol 

Fe2+ IC50 [µM] 

low ethanol 

DPPH IC50 

[µM] 

TA 2.27 ± 0.01 0.3 ± 0.1a 1.00 ± 0.01 

GA 82.0 ± 0.2 15.2 ± 0.1b 10.44 ± 0.02 

PCA 281 ± 1 34.7 ± 0.3b  124.2 ± 0.1 

EGC 723 ± 2 11.6 ± 0.2b  3.38 ± 0.01 

EGCG 14.0 ± 0.1 1.10 ± 0.01b  3.40 ± 0.01 

EC 1432 ± 3 58.9 ± 0.5b  28.97 ± 0.02 
aIC50 values from reference 135.   bIC50 values from reference 98.   

To determine whether a correlation exists between the polyphenol IC50 values from the 

low- and high-ethanol DNA assays, the log IC50 values were plotted together (Figure 2.7), 

resulting in a linear fit with a high R2 value of 0.872. The catechol or gallol groups of these 

polyphenol compounds coordinate iron, and Perron et al.76,98 established that, under low-

ethanol conditions, the polyphenol IC50 values can be predicted by their first phenolic pKa, 

highlighting the importance of iron binding for their antioxidant activity. Since 

polyphenols exhibit a range of antioxidant and prooxidant behavior in DNA damage assays 

with copper under low-ethanol conditions,76 similar DNA damage prevention correlations 

under high- and low-ethanol conditions were not explored for copper. 

 
Figure 2.7 Correlation of polyphenol IC50 values for prevention of DNA damage under high and low 

ethanol concentrations. Error bars are within symbols. 
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Metal-binding to prevent DNA damage.  DNA is one of the most important 

biomolecules and a target of damage be ROS, and there are numerous mechanisms to 

counteract DNA damage.61,88 Halliwell et al.23,61 emphasized that oxidative DNA damage 

is an important biomarker for ROS damage. As a result, antioxidant behavior often is 

studied using radical scavenging assays (such as DPPH or ABTS assays), and these results 

are then sometimes translated to the ability of the antioxidants to prevent DNA damage 

without preforming direct DNA damage measurements.62 Linn et al.70,71,136 demonstrated 

that iron-mediated DNA damage is the underlying cause of cell death of E. coli under 

oxidative stress, and others have shown similar behavior in eukaryotic cells, including 

human cells. 70,71,136 This damage arises because Fe2+ coordinates to DNA in vivo resulting 

hydroxyl radical production in close proximity to the DNA and subsequent oxidative 

damage.71 Antioxidant-metal coordination plays an important role in preventing metal-

mediated DNA damage,63,76,135,137 since the antioxidant can bind the metal ion where 

hydroxyl radical is generated and prevent its release.  Thus, directly measuring antioxidant 

prevention of DNA damage is an important and distinct aspect of understanding 

antioxidant behavior.61 

To study and compare the effect of metal chelation on DNA damage under high-

and low-ethanol conditions, four compounds that systematically differ in their metal-

coordination properties were tested under 10 mM and 1.7 M ethanol conditions. N,N’-

dimethylimazole selone (dmise) is an imidazole selone well-studied for its ability to 

coordinate copper and iron through selenium,138–140 and 2,2′-bipyridine (bipy) is also an 

extremely well-studied nitrogen chelating ligand for iron and copper (Figure 2.1C).141,142 
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These two metal-binding motifs are combined in (2-mercapto-1-methylimidazolyl)-

pyridine selone (sepyMe), a bidentate ligand that can coordinate through the selone Se and 

the pyridine nitrogen atoms.143 Ethyl-bis(imidazole) selone (ebis) is also a bidentate ligand, 

binding metals through both selenium atoms.138 Bidentate ligands coordinate more strongly 

to metal ions than monodentate ligands with similar coordination sites. 

Since the polyphenols showed the importance of metal interaction for the observed 

DNA damage prevention, we used these five compounds to compare different antioxidant 

characteristics such as denticity and different metal coordination sites to explore this role. 

Pyridine and bipy and borderline bases and are expected to coordinate more strongly to 

borderline Fe2+ than to soft Cu+. Selones, one the other hand, are soft bases and therefore 

coordinate better to Cu+ than Fe2+. In addition, bidentate ligands, such as bipy and ebis, 

should coordinate more strongly to metals than their monodentate analogs. If metal 

coordination plays a significant role in this DNA damage prevention assay, these trends 

should be reflected in the IC50 values obtained.  

Increasing ethanol concentrations increases the copper-mediated DNA damage IC50 

value of dmise from ~240 to 312.8 ± 0.7 µM (Table 2.2). With iron-mediated DNA 

damage, the dmise IC50 value increases from 3.68 ± 0.01 to 658 ± 2 µM, respectively, a 

179-fold difference (Table 2.2). For ebis, IC50 values for copper-mediated DNA damage 

decrease somewhat with increasing ethanol concentration: 8.20 ± 0.02 and 13.09 ± 0.03 

µM, respectively, for high- and low-ethanol conditions. Similar to dmise, the ebis IC50 

value for iron-mediated DNA damage prevention increases more dramatically with 

increasing ethanol concentrations (IC50 values of 3.2 ± 0.9 and 140.5 ± 0.3 µM, 
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Table 2.2. IC50 values for metal-mediated DNA damage prevention and DPPH scavenging of selones and ebselen and ebsulfur derivatives (NP = IC50 

value not obtained due to solubility issues, NA = IC50 value not tested).  
a)

 

Estimated IC50; no fit could be obtained due to concentration limitations. b) IC50 values from reference 143. 

 

Compound 
Cu+ IC50 [µM] 

high ethanol 

Cu+ IC50 [µM]  

low ethanol 

Fe2+ IC50 [µM] 

high ethanol 

Fe2+ IC50 [µM]  

low ethanol 

DPPH 

IC50 [µM] 

Dmise 312.8 ± 0.7 ~240a,b 658 ± 2 3.68 ± 0.01b 199.7 ± 0.1 

Ebis 8.20 ± 0.02 13.09 ± 0.03b 140.5 ± 0.3 3.2 ± 0.9b 1.12 ± 0.01 

SepyMe - 11.85 ± 0.01b 603 ± 1 44.7 ± 0.1b 107.4 ± 0.1 

Bipy 
2.56 ± 0.01 NP 22.18 ± 0.04 NP 

no scavenging  

0.1 – 1000 µM 

Pyridine 
NA NA 

no inhibition  

1-2000 µM 
NA 

No scavenging  

0.1 – 1000 µM 

Ebselen 
280.7 ± 0.8 NP 

no inhibition  

1-400 µM 
NP 

no scavenging  

0.1 – 500 µM 

Ebselen-N-acetic acid 581 ± 4 NP no inhibition 1-700 µM NP NA 

Ebselen-7-carboxylic acid 213.3 ± 0.6 NP 235.3 ± 0.6 NP NA 

Ebselen-7-carboxylic acid methyl ester 51.2 ± 0.1 NP no inhibition 1-700 µM NP NA 

Ebsulfur-acetic acid no inhibition 1-700 µM NP no inhibition 1-700 µM NP NA 

Ebsulfur-7-carboxylic acid methyl ester no inhibition 1-400 µM NP no inhibition 1-400 µM NP NA 

Edaravone 
no inhibition  

1-1000 µM 
NP no inhibition 1-1000 µM NP ~3.08a 

Trolox 
no inhibition  

1-1000 µM 

no inhibition  

1-1000 µM 
no inhibition 1-1000 µM 728.5 ± 2.4 6.82 ± 0.01 
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respectively). This increase in IC50 values for iron- compared to copper-mediated DNA 

damage prevention is consistent with the expected trend that favors selenium-copper over 

selenium-iron coordination.  In addition, IC50 values for the bidentate ebis compared to the 

monodentate dmise are 38- and 18-fold higher for prevention of copper-mediated DNA 

damage under high and low ethanol concentrations, respectively, and 5-fold higher for 

prevention of iron-mediated DNA damage under high ethanol concentrations.  

 The same denticity trends hold true for monodentate and bidentate nitrogen donor 

ligands: pyridine does not exhibit any iron-mediated DNA damage prevention (1 – 2000 

µM), but bipy has IC50 values of 2.56 ± 0.01 and of 22.18 ± 0.04 µM for copper- and iron- 

mediated DNA damage prevention at high-ethanol concentrations (no low-ethanol IC50 

values can be obtained  due to the poor water solubility of bipy. For the mixed-donor, 

bidentate selone sepyMe, IC50 values are 44.7 ± 0.1 and 603 ± 1 µM for iron-mediated DNA 

damage prevention under low- and high-ethanol conditions, respectively. The IC50 value 

for sepyMe is smaller than that determined for dmise, indicating that addition of the pyridine 

substituent increases iron-mediated DNA-damage prevention, consistent with metal-

binding being a mechanistic factor in these high-ethanol DNA damage assays.  

Since bipy, sepyMe, dmise, and ebis are established metal chelators,138,144,145 a well-

known radical scavenger Edaravone, a substituted 2-pyrazolin-5-one (Figure 2.1B), was 

tested to establish the importance of metal coordination in this assay. Edaravone was 

approved by the Federal Drug Administration (FDA) in 2017 as the first drug for the 

treatment of amyotrophic lateral sclerosis (ALS),146–149 a fatal degenerative disease that 

affects the motor neurons connecting the brain and spinal cord, leading to paralysis and 
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death.150 ALS results from mutations in the gene encoding the ubiquitous antioxidant 

enzyme Cu,Zn-superoxide dismutase (SOD1). This enzyme scavenges superoxide radical, 

decomposing it into oxygen and hydrogen peroxide, to maintain cellular redox 

balance.151,152  SOD1 is also a major copper-binding protein that regulates cellular copper 

homeostasis,152,153and SOD1 mutations may cause disruption of copper homeostasis and 

increased copper levels in the spinal cord.153 In addition, Homma et al.148 observed that 

Edaravone effectively prevents ferroptosis in Hepa 1–6 cells, a process triggered by iron-

generated hydroxyl radical (Reaction 1) that results in lipid peroxidation and cell death.148 

 The exact mechanism of action of Edaravone in the treatment of ALS is unknown, 

but it is thought to be a radical scavenger in vivo,150 and Edaravone is soluble in acetic acid, 

methanol, or ethanol, but poorly soluble in water.150 In contrast, Trolox (Figure 2.1B), is a 

fairly water-soluble vitamin E derivative that is also a well-studied radical scavenger.154–

157 It is commonly used as a standard against which antioxidant activity is compared in 

ROS scavenging assays, expressed as Trolox equivalents (TE).51 Because of the established 

radical scavenging abilities of Trolox and Edaravone, we wanted to compare results of our 

high-ethanol DNA gel electrophoresis assays to those of the DPPH radical scavenging 

assay for these compounds. Antioxidants such as Edaravone and Trolox that do not 

coordinate metals but act as radical scavengers should not prevent metal-mediated DNA 

damage under high-ethanol conditions. 

In these assays, Edaravone does not prevent copper- or iron-mediated DNA damage 

but scavenges DPPH with an IC50 value of 3.08 µM (Table 2.2), consistent with other 

studies.158–160 Trolox also does not prevent copper- or iron-mediated DNA damage under 
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high-ethanol conditions, but it does have a very high IC50 value of 728 µM for iron-

mediated DNA damage under low-ethanol conditions. These results highlight a 

shortcoming with the use of Trolox as a gold standard for antioxidant assays: comparing 

every antioxidant to a compound that can only scavenge radicals likely results in the 

neglect of other potential antioxidant mechanisms. As highlighted by the use of known 

metal chelators, metal chelation plays an important role in antioxidant prevention of metal-

mediated DNA damage under high-ethanol conditions.  

Examining DNA damage prevention abilities for hydrophobic compounds. 

Hydrophobic antioxidants have a lot of potential, especially in the area of 

neuropharmaceuticals, where biodistribution of drugs is limited by the blood-brain barrier 

(BBB) that prevents transit of >98% of small molecules.161 Water-soluble drugs can be 

structurally modified to become lipid-soluble drugs that can cross the BBB, but issues arise 

with in vitro screening since current models vary greatly in cost, technical demands, and 

intended applications.161,162   

The hydrophobic antioxidant drug ebselen is another example of how an assay to 

evaluate hydrophobic compounds for their abilities to prevent biologically relevant DNA 

damage could greatly benefit development of more potent antioxidant drugs. Ebselen 

(Figure 2.1D) was developed in the early 1980s by Helmut Sies et al.163 as a glutathione 

peroxidase (GPx) mimic to prevent oxidative damage by hydrogen peroxide, 

measurements performed in organic solvents due to ebselen’s insolubility in water.164–167 

Ebselen also prevents oxidative stress in cultured cells as well as in Se-deficient mice, an 

effect independent of endogenous GPx expression.168 In the 1980s and 1990s, ebselen was 
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examined in clinical trials for treatment of brain ischemia during stroke, and approved in 

Japan for this purpose,169 but in the U.S., it failed in clinical trials for treatment of asthma, 

atherosclerosis, cerebral infarction, myocardial ischemia, peptic ulcer, and rheumatic 

disorder due to insufficient efficacy compared to placebo and concerns regarding its 

toxicity.14,111 Ebselen is currently in Phase II clinical trials for hearing loss and tinnitus and 

in phase I/II trials for Meniere’s disease, tobramycin-induced ototoxicity, chemotherapy-

induced hearing loss, and as a treatment for bipolar disorder.166,170,171  

Despite its setbacks in clinical trials, ebselen continues to be the standard for 

measuring small-molecule GPx-like activity, and it is a well-established ROS 

scavenger,172–175 although its biological mechanisms are not firmly established. One major 

issue preventing more biologically relevant studies of the antioxidant activity of ebselen 

and ebselen derivatives is its very limited water solubility (13.6µg/mL or 50 µM). Our 

high-ethanol DNA damage prevention assay is capable of testing DNA damage even for 

hydrophobic compounds such as ebselen with water-solubilities of as little as 25 µM. 

Sies et al.69 tested the ability of ebselen to inhibit peroxynitrite-induced DNA 

damage in a 1% methanol system (0.2 M). Since methanol scavenges radicals similarly to 

ethanol,69,176 the DNA damage control lane exhibited only 25% damage in this study. 

Although it was reported that 50 µM ebselen inhibits 43% of DNA damage caused by 

peroxynitrite (100 µM),69 this translates to prevention of only 14% DNA damage. Due to 

this small difference in DNA damage inhibition, and since the experiment was only 

performed once, not in triplicate, it is not clear that the observed inhibition is significantly 

different from the control.  
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Figure 2.8. Gel electrophoresis images showing ebselen prevention of copper- and iron-mediated DNA 

damage. MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 and A) lane 3: p + 

400 µM ebselen + H2O2 + 1.7 M ethanol; lane 4: p + Cu2+ (6 µM) + ascorbate (7.5 µM) + H2O2 + ethanol 

(10 mM); lane 5: p + Cu2+ (6 µM) + ascorbate (7.5 µM) + H2O2 + ethanol (1.7 M); lanes 6-13: Cu2+ (6 µM) 

+ ascorbate (7.5 µM) + H2O2 + ethanol (1.7 M) + ebselen (1, 10, 50, 100, 200, 300, and 400 µM , 

respectively). B) lane 3: p + 400 µM ebselen + H2O2 + 1.7 M ethanol; lane 4: p + Fe2+ (2 µM) + H2O2 + 

ethanol (10 mM); lane 5: p + Fe2+ (15 µM) + H2O2 + ethanol (1.7 M); lanes 6-12: Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) + ebselen (1, 10, 50, 100, 200, 300, and 400 µM, respectively). 

 

In contrast, we tested ebselen for prevention of copper-mediated DNA damage in 

our high-ethanol assay. As shown in Figure 2.8A, Cu+/H2O2 causes over 86 ± 4% DNA 

damage (Figure 2.8A, lane 5; 1.25 equiv ascorbate is added to reduce Cu2+ to the DNA-

damaging Cu+ 23), comparable to DNA damage prevention observed under low-ethanol 

conditions 85 ± 2%, lane 4). A similar amount of DNA damage occurs under high- (on 

average 90 ± 5%) and low- (on average 89 ± 3%) ethanol conditions in the presence of Fe2+ 

and H2O2 (Figure 2.8B, lanes 4 and 5). 

Ebselen alone does not cause DNA damage in the presence of H2O2 (lane 3), but 

increasing ebselen concentrations up to 400 µM (Figures 2.8A and B, lanes 6-13) prevents 

copper-mediated DNA damage. Even under these more hydrophobic conditions, the upper 

concentration range is limited by ebselen’s solubility in aqueous 1.7 M ethanol solution. 

At the same concentrations, ebselen prevents no iron-mediated DNA damage.   
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Figure 2.9. Dose-response curve for ebselen prevention of copper-mediated DNA damage under high-

ethanol conditions. 

 

These gel data were fit with a dose-response curve (Figure 2.9), and the IC50 value 

for ebselen prevention of copper-mediated DNA damage is 280.7 ± 0.8 μM. Due to 

ebselen’s limited water solubility, our method is the first to determine an IC50 value for its 

ability to prevent DNA damage, a biologically relevant endpoint. Although it is an 

excellent radical scavenger (Table 2.2), ebselen shows only modest ability to prevent 

metal-mediated DNA damage, a primary cause of cell death under oxidative stress 

conditions.70,71,90,92,93,177 

The ability to test hydrophobic compounds such as ebselen for their ability to 

prevent metal-mediated DNA damage opens up a new area of antioxidant investigations, 

including development of more effective ebselen derivatives to prevent this DNA damage. 

Ebselen derivatives178 were selected for testing using our high-ethanol DNA damage 

prevention studies based on the presence of structural features that might enhance metal 

coordination.  Similar to ebselen itself, these ebselen derivatives were examined for their 
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ability to prevent metal-mediated DNA damage under high-ethanol conditions, the first 

study to examine the ability of ebselen derivatives to prevent DNA damage. 

Similar to ebselen, all the tested ebselen derivatives more effectively prevent 

copper-mediated DNA damage than iron-mediated damage, with only ebselen-7-

carboxylic acid (Figure 2.1) able to prevent iron-mediated DNA damage (IC50 of 235.3 ± 

0.6 µM; Table 2.2). In addition, the selenium-containing ebeselen derivatives are more 

effective than their sulfur analogs, highlighting the importance of selenium for antioxidant 

activity of these compounds. This is unsurprising, since ebsulfur is a less-effective GPx 

mimic compared to ebselen.101 

 Carboxylic acid moieties are known metal coordination sites,179,180 and addition of 

a carboxylate group to ebselen to form ebselen-7-carboxylic acid lowers the IC50 value for 

copper-mediated DNA damage prevention from 280.7 ± 0.8 to 213.3 ± 0.6 µM. The methyl 

ester of this compound is the most effective at preventing copper-mediated DNA damage, 

with an over-four-fold increase in activity compared to ebselen-7-carboxylic acid. Moving 

the carboxylate group to the para-position of the phenyl ring in ebselen-N-acetic acid 

decreases its ability to prevent copper-mediated DNA damage relative to ebselen. 

 Ebselen-7-carboxylic acid is also the only ebselen derivative that prevents iron-

mediated DNA damage, likely due to the potential chelating site of the carboxylate oxygen 

and the selenium.  Blocking this carboxylate oxygen with a methyl group in ebselen-7-

carboxylic acid methyl ester, prevents all activity, further suggesting that antioxidant 

activity ebselen-7-carboxylic acid results from iron binding at this site. Ebselen and its 

derivatives more effectively prevent copper- over iron-mediated DNA damage, a results 



 

56 

 

that likely arises because of the soft selenium more strongly interacting with the soft Cu+ 

than the borderline Fe2+, although adding a hard oxygen donor near the selenium site with 

the potential for bidentate binding makes ebselen-7-carboxylic acid nearly equivalent in its 

ability to prevent copper- and irom-mediated DNA damage. 

 We have demonstrated that this DNA damage prevention assay permits assessment 

of hydrophobic compounds that cannot otherwise be investigated using DNA damage 

methods, including Edaravone, ebselen, and ebselen derivatives. Since we are examining 

DNA damage prevention directly, this assay is more biologically relevant than typical 

radical scavenging assays, and avoids the need to dubiously extend radical scavenging 

results to the more complex system of DNA damage prevention. This more hydrophobic 

DNA damage prevention assay is a significant step forward that will allow development of 

more effective hydrophobic antioxidants for the treatment and prevention of diseases 

caused by oxidative stress.  

 

2.3 Conclusions 

Most antioxidant assays only focus on specific antioxidant mechanism, such as 

radical scavenging or the reduction potential of copper and iron. Both classes of assays 

commonly use long-lived radicals, organic solvents, or other non-biologically relevant 

conditions. This resulted in the USDA distancing itself from ORAC results in 2012. In 

addition, DNA damage assays have been limited to hydrophobic compounds, and DPPH 

and ABTS assays, among others, have been translated into DNA damage prevention results 

without actually testing the compounds directly with DNA. We present the first gel 
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electrophoresis assay that allows the evaluation of copper- and iron-mediated DNA damage 

of hydrophobic compounds under biologically relevant conditions.  

Iron-mediated DNA damage is more susceptible to increased ethanol 

concentrations than copper. This is reflected in the decade-long discussion of the actual 

oxidizing species produced by the Fenton- and Fenton-like reactions. This study 

demonstrates the differential susceptibility of the Fenton and Fenton-like reaction to 

ethanol through EPR spectroscopy experiments. Metal interactions play a major role in this 

assay, highlighted by the trends observed for polyphenol prevention of iron-mediated DNA 

damage, since iron binding is an establishe antioxidant mechanism for these compounds. 

In addition, the importance of metal coordination was also demonstrated by examining the 

IC50 value trends of a group of ligands with nitrogen- and selone moieties for prevention 

of copper- and iron-mediated DNA damage. Edaravone and Trolox, radical scavengers that 

do not coordinate to metals, show no activity in this assay. Although Edaravone is used to 

treat ALS that has been associated with elevated copper concentrations, our results suggest 

that Edaravone’s mechanism of action likely does not involve significant copper 

interaction.  

For the first time, this assay allowed biologically relevant DNA damage prevention 

testing for ebselen and ebselen derivatives. Ebselen prevents only copper-mediated DNA 

damage, but addition of a carboxylate group to form a potential metal chelating site allows 

ebselen-7-carboxylic acid to prevent both copper- andiron-mediated DNA damage.  By 

testing a variety of potential antioxidants using this hydrophobic DNA damage assay, we 

showed that this new assay can be used to evaluate and compare new classes of compounds, 
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such as drugs that might cross the BBB, and can give insight into mechanisms for 

antioxidant behavior. This assay could potentially be used for the screening of new drugs 

to slow the process of Alzheimer’s, Parkinson’s and other diseases caused by oxidative 

stress. 

 

2.4 Experimental Methods 

Materials. Water was deionized (diH2O) using a Nano Pure DIamond Ultrapure 

H2O system (Barnstead International). 3-(N-morpholino)propanesulfonic acid (MOPS; 

Sigma), 2-(N-morpholino)ethanesulfonic acid (MES; BDH), NaCl (99.999% Alfa Aesar), 

CuSO4 (Fisher), FeSO4 (Acros), H2O2 (Fisher), DMPO (Cayman Chemicals), ascorbic acid 

(Alfa Aesar), DPPH (Alfa Aesar), Edaravone (Acros), Trolox (Acros), methanol (Sigma-

Aldrich), pyridine (Alfa Aesar), bipy (Chem-Implex), GA (Acros), EC (Sigma), TA (Sigma 

Aldrich), PCA (Frontier Scientific), EGC (TCI), EGCG (Enzo), agarose (Sigma), Chelex 

(Sigma), and ebselen (Acros) were used as received. The ebselen derivatives (Figure 1D) 

were provided by Dr. Daniel Whitehead and Dr. Heeren Gordhan in the Department of 

Chemistry at Clemson University. 

EPR spectroscopy. To prepare EPR samples, Cu(SO4)2∙3H2O (300 µM), ascorbic 

acid (375 µM), and H2O2 (2.5 mM), and indicated ethanol concentrations was added to an 

aqueous solution of MOPS (pH 7, 10 mM). DMPO (30 mM) was added to all the samples 

as a spin trap. Iron-containing samples were prepared with FeSO4 (300 µM), H2O2 (2.5 

mM) and DMPO (30 mM) with indicated ethanol concentrations in MES (pH 6, 10 mM). 

Deionized water was added to a final volume of 500 µL. EPR spectra were measured on a 
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Bruker EMX spectrometer at room temperature in a quartz flat cell. Spectra centered at 

3431.24 G were acquired with a sweep width of 100 G. The modulation amplitude was 

2.00 G with time and conversion constants of 81.92 s, and microwave power and frequency 

were 1.99 mW and 9.756 GHz, respectively.  

DPPH assay. DPPH solutions (1.2 mg in 30 mL methanol, 100 µM) were prepared 

fresh before each experiment: 0.5 mL of sample with indicated concentrations in methanol 

were combined with 1 mL of DPPH solution (100 µM) with a final concentration of 67 µM 

DPPH in methanol. The samples were incubated for 30 min in the dark, and spectra were 

taken at 515 nm on a Thermo Electron Corporation BioMate3 UV-visible spectrometer. 

Percentages of DPPH scavenging were calculated using the equation %DPPH scavenged 

= ((A-A0)/(AT-A0))*100, where A is the absorbance of the incubated sample and DPPH, 

A0 is the absorbance of DPPH in methanol, and AT is the absorbance of DPPH incubated 

with 50 µM Trolox. 

Plasmid DNA transfection, amplification, and purification. Plasmid DNA (pBSSK) 

was purified from DH1 E. coli competent cells using a ZyppyTM Plasmid Miniprep Kit 

(400 count, Zymo Research). Tris-EDTA buffer (pH 8.01) was used to elute the plasmid 

DNA from the spin columns. Plasmid was dialyzed against 130 mM NaCl for 24 h at 4°C 

to ensure all Tris-EDTA buffer and metal contaminates were removed, and plasmid 

concentration was determined by UV-vis spectroscopy at a wavelength of 260 nm. 

Absorbance ratios of A250/A260   0.95 and A260/A280  1.8 were determined for DNA used 

in all experiments. Plasmid purity was determined through digestion of plasmid (0.1 pmol) 

with Sac 1 and KpN1 in a mixture of NEB buffer and bovine serum albumin at 37°C for 
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90 min. Digested plasmids were compared to an undigested plasmid sample and a 1 kb 

molecular weight marker using gel electrophoresis. 

DNA damage gel electrophoresis experiments. Samples were prepped at room 

temperature by adding MOPS (10 mM, pH 7.0) or MES (10 mM, pH 6), NaCl (130 mM) 

and enough Deionized water to have a final volume of 10 µL at the end. In a cold room at 

4 ºC, the compounds were dissolves in ethanol (100% proof), added to the indicated lanes 

and mixed. This step was performed below room temperature to minimize ethanol 

evaporation and reduce deviation between experiments. After the mixture warmed up to 

room temperature, the indicated concentrations of CuSO4∙5H2O, ascorbate (7.5 µM, to 

reduce Cu2+ to Cu+), and indicated compound were combined in an acid-washed (1 M HCl 

for ~ 1 h) microcentrifuge tubes and allowed to stand for 5 min at room temperature. 

Plasmid (pBSSK, 0.1 pmol in 130 mmol NaCl) was then added to the reaction mixtures 

and they were allowed to stand for 5 min at room temperature. H2O2 (50 µM) was added 

and allowed to react at room temperature for 30 min. EDTA (50 µM) was added after 30 

min to quench the reactions. For the Fe2+ DNA damage experiments, the indicated 

concentrations of FeSO4∙7H2O and MES (10 mM, pH 6.0) were used, and no ascorbate 

was added. All concentrations are final concentrations in a 10 µM volume.  

Samples were loaded into a 1% agarose gel in a TAE running buffer (50); damaged 

and undamaged plasmid was separated by electrophoresis (140 V for 60 min). Gels were 

stained using ethidium bromide and imaged using UV light. The amounts of nicked 

(damaged) and circular (undamaged) were analyzed using UViProMW (Jencons Scientific 

Inc., 2007). Intensity of circular plasmid was multiplied by 1.24, due to the lower binding 
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affinity of ethidium bromide to supercoiled plasmid.63,181 Intensities of the nicked and 

supercoiled bands were normalized for each lane so that % nicked + % supercoiled = 100%. 

All percentages were corrected for residual nicked DNA prior to calculation. Results were 

obtained in triplicate for all experiments, and standard deviations are represented as error 

bars. The plots of percent DNA damage versus log concentration of copper or iron were fit 

to a variable-slope sigmoidal dose-response curve using SigmaPlot (v. 11.0, Systat 

Software, Inc.).  

IC50 Determination. Plots of percent inhibition of DNA damage versus log 

concentration of the indicated compound were fit to a variable slope sigmoidal dose-

response curve using SigmaPlot, version 11 (Systat Software, Inc.). IC50 value errors were 

calculated from error propagation of the gel electrophoresis measurements. Statistical 

significance was determined by calculating p values at 95% confidence (p < 0.05 indicates 

significance) as described by Perkowski et al.182 Data from DNA damage assays are 

provided in Tables 2.3-2.10. 
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2.5. Supporting Information 

 

 
Figure 2.10. Gel image of iron-mediated DNA damage prevention by EC, GA, PCA, EGC, and EGCG. For 

all gel images MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 (50 μM); A) 

lane 3: p + H2O2 + EC (2000 μM); lane 4: p + Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + Fe2+ (15 

μM) + H2O2 + ethanol (1.7 M); lanes 6-14: p + H2O2 + FeSO4 (15 μM) +EC (1, 10, 50, 100, 250, 500, 750, 

1000, and 2000 μM, respectively); B) lane 3: p + H2O2 + GA (1000 μM); lane 4: p + Fe2+ (2 μM) + H2O2 + 

ethanol (10 mM); lane 5: p + Fe2+ (15 μM) + H2O2 + ethanol (1.7 M); lanes 6-14: p + H2O2 + FeSO4 (15 μM) 

+GA (1, 10, 50, 75, 100, 250, 500, 750, and 1000 μM, respectively); C) lane 3: p + H2O2 + PCA (2000 μM); 

lane 4: p + Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + Fe2+ (15 μM) + H2O2 + ethanol (1.7 M); lanes 

6-14: p + H2O2 + FeSO4 (15 μM) +PCA (1, 10, 50, 100, 250, 500, 750, 1000, and 2000 μM, respectively); 

D) lane 3: p + H2O2 + EGC (2000 μM); lane 4: p + Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + Fe2+ 

(15 μM) + H2O2 + ethanol (1.7 M); lanes 6-14: p + H2O2 + FeSO4 (15 μM) + EGC (1, 10, 50, 100, 250, 500, 

750, 1000, and 2000 μM, respectively); E) lane 3: p + H2O2 + EGCC (500 μM); lane 4: p + Fe2+ (2 μM) + 

H2O2 + ethanol (10 mM); lane 5: p + Fe2+ (15 μM) + H2O2 + ethanol (1.7 M); lanes 6-14: p + H2O2 + FeSO4 

(15 μM) +EGCG (0.1, 1, 5, 10, 25, 50, 100, 250, and 500 μM, respectively). 
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Figure 2.11. Gel image of copper- and iron-mediated DNA damage prevention by Trolox. For all gel images 

MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); A) lane 3: p + 

H2O2 + Trolox (2000 μM); lane 4: p +Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lanes 5-

13: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) +Trolox (0.1, 1, 5, 10, 50, 100, 500, 1000, and 2000 μM, 

respectively); B) lane 3: p + H2O2 + Trolox (1000 μM); lane 4: p +Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 

+ ethanol (10 mM); lane 5: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (1.7 M); lanes 6-13: p + 

H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) +Trolox (0.1, 1, 5, 10, 50, 100, 500, and 1000 μM, respectively); 

C) lane 3: p + H2O2 + Trolox (2000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + Fe2+ 

(15 μM) + H2O2 + ethanol (1.7 M); lanes 6-10: p + H2O2 + Fe2+ (15 μM) +Trolox (10, 50, 100, 500, and 1000 

μM, respectively); D) lane 3:p + H2O2 + Trolox (2000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 

mM); lanes 5-13: p + H2O2 + FeSO4 (2 μM) +Trolox (0.1, 1, 5, 10, 50, 100, 500, 1000, and 2000 μM, 

respectively). 
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Figure 2.12. Gel image of iron-mediated DNA damage prevention by dmise, ebis, bipy, pyridine, sepyMe, 

and Edaravone. For all gel images MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p 

+ H2O2. (50 μM); A) lane 3: p + H2O2 + dmise (4000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 

mM); lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-15: p + H2O2 + Fe2+ (15 μM) +dmise (0.5, 

1, 10, 50, 100, 400, 1000, 2000, and 4000 μM, respectively); B) lane 3: p + H2O2 + ebis (400 μM); lane 4: p 

+Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-14: p 

+ H2O2 + Fe2+ (15 μM) +ebis (0.1, 0.5, 1, 5, 10, 50, 100, 200 and 400 μM, respectively); C) lane 3: p + H2O2 

+ bipy (1000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Fe2+ (15 μM) + 

ethanol (1.7 M); lanes 6-12: p + H2O2 + Fe2+ (15 μM) +bipy (0.5, 1, 10, 50, 100, 400, and 1000 μM, 

respectively); D) lane 3: p + H2O2 + pyridine (2000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); 

lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-14: p + H2O2 + Fe2+ (15 μM) +pyridine (1, 10, 

50, 100, 250, 500, 750, 1000, and 2000 μM, respectively); E) lane 3: p + H2O2 + sepyMe (2000 μM); lane 4: 

p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-14: 

p + H2O2 + Fe2+ (15 μM) + sepyMe (1, 10, 50, 100, 250, 500, 750, 1000 and 2000 μM, respectively); F) lane 

3: p + H2O2 + Edaravone (1000 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + 

Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-14: p + H2O2 + Fe2+ (15 μM) + Edaravone (0.1, 1, 5, 10, 50, 100, 

500, and 1000 μM, respectively).  
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Figure 2.13. Gel image of copper-mediated DNA damage prevention by dmise, ebis, bipy, and Edaravone. 

For all gel images MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); 

A) lane 3: p + H2O2 + dmise (4000 μM); lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 

mM); lane 5: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ethanol (1.7 M); lanes 6-14: p + H2O2 + Cu2+ 

(6 μM) + ascorbate (7.5 μM) +dmise (1, 10, 50, 100, 400, 750, 1000, 2000, and 4000 μM, respectively); B) 

lane 3: p + H2O2 + ebis (100 μM); lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); 

lane 5: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ethanol (1.7 M); lanes 6-11: p + H2O2 + Cu2+ (6 μM) 

+ ascorbate (7.5 μM) +ebis (0.5, 1, 5, 10, 50, and 100 μM, respectively); C) lane 3: p + H2O2 + bipy (1000 

μM); lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 

μM) + ascorbate (7.5 μM) + ethanol (1.7 M); lanes 6-14: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) +bipy 

(0.5, 1, 5, 10, 50, 100, 500, and 1000 μM, respectively); D) lane 3: p + H2O2 + Edaravone (1000 μM); lane 

4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 μM) + 

ascorbate (7.5 μM) + ethanol (1.7 M); lanes 6-13: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + Edaravone 

(0.1, 1, 5, 10, 50, 100, 500, and 1000 μM, respectively). 
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Figure 2.14. Gel image of iron-mediated DNA damage prevention by ebselen-N-acetic acid, ebselen-7-

carboxylic acid, ebsulfur-N-acetic acid, and ebsulfur-7-carboxylic acid methyl ester. For all gel images MW: 

1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); A) lane 3: p + H2O2 + 

ebselen-N-acetic acid (700 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Fe2+ 

(15 μM) + ethanol (1.7 M); lanes 6-15: p + H2O2 + Fe2+ (15 μM) + ebselen-N-acetic acid (1, 10, 50, 100, 200, 

300, 400, 500, 600, and 700 µM, respectively); B) lane 3: p + H2O2 + ebselen-7-carboxylic acid (700 μM); 

lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 

6-14: p + H2O2 + Fe2+ (15 μM) + ebselen-7-carboxylic acid (1, 10, 50, 100, 200, 300, 400, 500, 600, and 700 

µM, respectively); C) lane 3: p + H2O2 + ebsulfur-N-acetic acid (400 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + 

ethanol (10 mM); lane 5: p + H2O2 + Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-12: p + H2O2 + Fe2+ (15 μM) 

+ ebsulfur-N-acetic acid (1, 50, 100, 200, 300, and 400 µM, respectively); D) lane 3: p + H2O2 + ebsulfur-7-

carboxylic acid methyl ester (400 μM); lane 4: p +Fe2+ (2 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 

+ Fe2+ (15 μM) + ethanol (1.7 M); lanes 6-13: p + H2O2 + Fe2+ (15 μM) + ebsulfur-7-carboxylic acid methyl 

ester (1, 50, 100, 200, 300 and 400 µM). 
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Figure 2.15. Gel image of copper-mediated DNA damage prevention ebselen-N-acetic acid, ebselen-7-

carboxylic acid, ebsulfur-7-carboxylic acid methyl ester, ebsulfur-N-acetic acid, ebsulfur-7-carboxylic acid 

methyl ester. For all gel images MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + 

H2O2. (50 μM); A) lane 3: p + H2O2 + ebselen-N-acetic acid (700 μM); lane 4: p + Cu2+ (6 μM) + ascorbate 

(7.5 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ethanol (1.7 

M); lanes 7-13: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) +ebselen-N-acetic acid (1, 10, 50, 100, 200, 

300, 400, 500, 600, and 700 μM, respectively); B) lane 3: p + H2O2 + ebselen-7-carboxylic acid (700 μM); 

lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 μM) + 

ascorbate (7.5 μM) + ethanol (1.7 M); lanes 7-16: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) ebselen-7-

carboxylic acid (1, 10, 50, 100, 200, 300, 400, 500, 600 and 700 µM, respectively); C) lane 3: p + H2O2 + 

ebsulfur-7-carboxylic acid methyl ester (700 μM); lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + 

ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ethanol (1.7 M); lanes 7-15: p + 

H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ebsulfur-7-carboxylic acid methyl ester (1, 10, 50, 100, 200, 

300, 400, 500, 600 and 700 µM, respectively); D) lane 3: p + H2O2 + ebsulfur-N-acetic acid (400 μM); lane 

4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lane 5: p + H2O2 + Cu2+ (6 μM) + 

ascorbate (7.5 μM) + ethanol (1.7 M); lanes 7-13: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ebsulfur-

N-acetic acid (1, 50, 100, 200, 300 and 400 µM, respectively); E) lane 3: p + H2O2 + ebsulfur-7-carboxylic 

acid methyl ester (400 μM); lane 4: p + Cu2+ (6 μM) + ascorbate (7.5 μM) + H2O2 + ethanol (10 mM); lane 

5: p + H2O2 + Cu2+ (6 μM) + ascorbate (7.5 μM) + ethanol (1.7 M); lanes 7-13: p + H2O2 + Cu2+ (6 μM) + 

ascorbate (7.5 μM) + ebsulfur-7-carboxylic acid methyl ester (1, 50, 100, 200, 300 and 400 µM, respectively). 
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Figure 2.16.  Dose-response curves for iron-mediated DNA damage prevention under high-ethanol (1.7 M) 

conditions for A) tannic acid, B) protocatechuic acid, C) gallic acid, D) epicatechin, E) epigallocatechin 

gallate, and F) epigallocatechin. 
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Figure 2.17. Dose-response curves for A) copper-mediated DNA damage prevention by Trolox under high-

ethanol conditions (1.7 M), B) iron-mediated DNA damage prevention by Trolox and 1.7 M ethanol, C) 

copper-mediated DNA damage with Trolox and 10 mM ethanol, and D) iron-mediated DNA damage with 

Trolox and 10 mM ethanol. 
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Figure 2.18. Dose-response curves for iron-mediated DNA damage prevention under ethanol (1.7 M) 

conditions for A) dmise, B) ebis, C) bipy, D) Edaravone, E) pyridine, and F) sepyMe. 
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Figure 2.19. Dose-response curves for copper-mediated DNA damage prevention under ethanol (1.7 M) 

conditions for A) dmise, B) ebis, C) bipy, and D) Edaravone. 
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Figure 2.20. Dose-response curves for iron-mediated DNA damage prevention under high-ethanol (1.7 M) 

conditions for A) ebselen, B) ebselen-N-acetic acid, C) ebsulfur-7-carboxylic acid, and D) ebulfur-7-

carboxylic acid methyl ester. 
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Figure 2.21. Dose-response curves for copper-mediated DNA damage prevention under high-ethanol 

conditions (1.7 M) for A) ebselen B) ebselen-N-acetic acid C) ebsulfur-N-acetic acid, D) ebsulfur-7-

carboxylic acid, E) ebulfur-7-carboxylic acid methyl ester, and F) ebselen-7-carboxylic acid methyl ester. 
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Table 2.3. Gel electrophoresis results for EC DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[EC], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) - 99.99 ± 0.02 0.01 - - 

2: p + H2O2 (50 µM) - 99.99 ± 0.02 0.01 - - 

3: p + EC+ H2O2 + ethanol (1.7 M) 2000 99.82 ± 0.31 0.18 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol (10 

mM) 
- 20.01 ± 4.89 

79.99 
- - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol (1.7 

M) 
- 4.19 ± 0.12 

95.81 
0 - 

6: p + Fe2+ (15 µM) + H2O2 + EC + ethanol 

(1.7 M) 
1 4.28 ± 1.44 

95.72 
0.09 ± 1.44 0.924 

7: 10 2.83 ± 2.36 97.17 -1.41 ± 2.36 0.409 

8:  50 1.05 ± 1.22 98.95 -3.28 ± 1.22 0.043 

9:  100 1.12 ± 1.09 98.88 -3.21 ± 1.09 0.036 

10:  250 4.09 ± 4.51 95.91 -0.10 ± 4.51 0.973 

11:  500 22.20 ± 3.01 77.80 18.80 ± 3.01 0.008 

12: 750 20.80 ± 5.99 79.20 17.34 ± 5.99 0.036 

13: 1000 37.41 ± 2.82 62.59 34.67 ± 2.82 0.002 

14:  2000 68.99 ± 1.20 31.01 67.63 ± 1.20 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 2.4. Gel electrophoresis results for GA DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[GA], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) - 100 ± 0.00 - - 

2: p + H2O2 (50 µM) - 100 ± 0.00 - - 

3: p + GA+ H2O2 + ethanol (1.7 M) 1000 100 ± 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol (10 mM) - 20.01 ± 4.89 79.99 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol (1.7 M) - 14.55 ± 2.04 85.45 0 - 

6: p + Fe2+ (15 µM) + H2O2 + GA + ethanol 

(1.7 M) 
1 10.99 ± 3.16 

89.01 
-4.01 ± 3.13 0.157 

7: 10 11.11 ± 6.31 88.89 -3.90 ± 6.29 0.395 

8:  50 36.36 ± 0.15 63.64 25.63 ± 0.15 < 0.001 

9:  75 57.51 ± 2.41 42.49 50.33 ± 2.42 < 0.001 

10:  100 66.59 ± 4.24 33.41 60.92 ± 4.25 < 0.001 

11:  250 82.06 ± 4.43 17.94 79.04 ± 4.45 < 0.001 

12: 500 93.36 ± 3.24 6.64 92.21 ±3.24 < 0.001 

13: 750 98.73 ± 1.96 1.27 98.52 ± 1.94 < 0.001 

14:  1000 98.57 ± 0.36 1.43 98.29 ± 0.35 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.5. Gel electrophoresis results for PCA DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[PCA], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) - 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) - 100 ± 0 0.00 - - 

3: p + PCA+ H2O2 + ethanol (1.7 M) 2000 100 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol (10 mM) - 20.01 ± 4.89 79.99 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol (1.7 M) - 12.94 ± 2.12 87.06 0 - 

6: p + Fe2+ (15 µM) + H2O2 + PCA + ethanol 

(1.7 M) 
1 11.56 ± 3.68 

88.44 
-1.58 ± 3.68 0.535 

7: 10 7.63 ± 4.56 92.37 -6.10 ± 4.56 0.146 

8:  50 20.51 ± 2.37 79.49 8.70 ± 2.37 0.239 

9:  100 42.17 ± 3.99 57.83 33.58 ± 3.99 0.005 

10:  250 48.37 ± 2.01 51.63 40.70 ± 2.01 < 0.001 

11:  500 68.40 ± 1.18 31.60 63.70 ± 1.18 < 0.001 

12: 750 73.01 ± 5.30 26.99 69.00 ± 5.30 < 0.001 

13: 1000 76.50 ±3.01 23.50 73.01 ± 3.01 < 0.001 

14:  2000 79.46 ± 4.95 20.54 76.40 ± 4.95 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 2.6. Gel electrophoresis results for TA DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[TA], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  100 ± 0 0.00 - - 

3: p + TA+ H2O2 + ethanol (1.7 M) 20 99.99 ± 0.02 0.01 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol (10 

mM) 
 10.61 ± 4.89 80.39 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol (1.7 

M) 
 13.53 ± 3.15 86.47 0 - 

6: p + Fe2+ (15 µM) + H2O2 + TA + ethanol 

(1.7 M) 
0.1 9.42 ± 1.69 90.58 -3.05 ± 1.69 0.089 

7: 1 27.56 ± 3.84 72.44 17.60 ± 3.84 0.015 

8:  2.5 57.11 ± 5.54 42.89 51.20 ± 5.54 0.004 

9:  5 97.41 ± 1.50 2.59 97.06 ± 1.50 < 0.001 

10:  7.5 99.76 ± 0.41 0.24 99.73 ± 0.41 < 0.001 

11:  10 100 ± 0 0.00 100 ± 0 < 0.001 

12: 20 100 ± 0 0.00 100 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.7. Gel electrophoresis results for EGC DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[EGC], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  0.00 ± 0 0.00 - - 

3: p + EGC+ H2O2 + ethanol (1.7 M) 2000 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
 20.94 ± 8.87 79.06 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
 5.44 ± 2.92 94.56 0 - 

6: p + Fe2+ (15 µM) + H2O2 + EGC + 

ethanol (1.7 M) 
1 4.43 ± 2.31 95.57 -0.69 ± 2.28 0.652 

7: 10 0.33 ± 0.40 99.67 -5.40 ± 0.40 0.002 

8:  50 2.02 ± 2.91 97.98 -3.61 ± 2.91 0.165 

9:  100 6.20 ± 4.03 93.80 0.81 ± 4.03 0.761 

10:  250 15.19 ± 5.65 84.81 10.31 ± 5.65 0.087 

11:  500 37.53 ± 5.93 62.47 33.94 ± 5.93 0.010 

12: 750 46.66 ± 1.78 53.34 43.59 ± 1.78 < 0.001 

13: 1000 73.59 ± 3.25 26.41 72.08 ± 3.25 < 0.001 

14:  2000 92.84 ± 1.66 7.16 92.43 ± 1.66 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table2.8. Gel electrophoresis results for EGCG DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[EGCG], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  99.96 ± 0.06 0.04 - - 

3: p + EGCG+ H2O2 + ethanol (1.7 M) 500 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
 12.86 ± 3.56 87.14 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
 13.25 ± 3.96 86.75 0 - 

6: p + Fe2+ (15 µM) + H2O2 + EGCG 

+ ethanol (1.7 M) 0.1 
18.26 ± 4.61 81.74 5.83 ± 4.61 0.160 

7: 1 11.57 ± 4.01 88.43 -1.89 ± 4.01 0.500 

8:  5 3.15 ± 4.10 96.85 -11.59 ± 4.10 0.038 

9:  10 43.98 ± 3.02 56.02 35.47 ± 3.02 0.002 

10:  25 82.10 ± 5.48 17.90 79.41 ± 5.48 0.002 

11:  50 84.80 ± 2.23 15.20 82.53 ± 2.23 < 0.001 

12: 100 98.79 ± 0.91 1.21 98.65 ± 0.91 < 0.001 

13: 250 99.98 ± 0.1 0.02 100.03 ± 0.01 < 0.001 

14:  500 99.96 ± 0.7 0.04 100.00 ± 0.07 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.9. Gel electrophoresis results for sepyMe DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[sepyMe], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  99.99 ± 0.02 0.01 - - 

2: p + H2O2 (50 µM)  99.98 ± 0.04 0.02 - - 

3: p + sepyMe+ H2O2 + ethanol (1.7 M) 2000 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
 23.49 ± 3.90 76.51 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
 4.53 ± 2.26 95.47 0 - 

6: p + Fe2+ (15 µM) + H2O2 + sepyMe 

+ ethanol (1.7 M) 
1 6.40 ± 2.57 93.60 1.97 ± 2.57 0.316 

7: 10 10.56 ± 2.18 89.44 6.33 ± 2.19 0.038 

8:  50 13.60 ± 3.90 86.40 9.51 ± 3.90 0.052 

9:  100 23.63 ± 2.37 76.37 20.01 ± 2.37 0.005 

10:  250 23.86 ± 1.75 76.14 20.25 ± 1.75 0.005 

11:  500 42.51 ± 1.48 57.49 39.79 ± 1.48 < 0.001 

12: 750 61.65 ± 2.75 38.35 59.84 ± 2.75 < 0.001 

13: 1000 69.15 ± 3.33 30.85 67.70 ± 3.33 < 0.001 

14:  2000 77.31 ± 1.42 22.69 76.24 ± 1.42 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 2.10. Gel electrophoresis results for pyridine DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane [pyr], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  100.00 ± 0 0.00 - - 

3: p + pyr+ H2O2 + ethanol (1.7 M) 2000 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + 

ethanol (10 mM) 
 6.46 ± 5.17 93.54 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
 2.45± 1.63 97.55 0 - 

6: p + Fe2+ (15 µM) + H2O2 + pyr + 

ethanol (1.7 M) 
1 1.57 ± 1.39 98.43 -0.90 ± 1.39 0.379 

7: 10 1.13 ± 1.05 98.87 -1.35 ± 1.05 0.156 

8:  50 3.11 ±3.53 96.89 0.68 ± 3.53 0.770 

9:  100 0.94 ± 0.65 99.06 -1.55 ± 0.65 0.054 

10:  250 1.46 ± 2.53 98.54 -1.02 ± 2.53 0.557 

11:  500 0.30 ± 0.52 99.70 -2.21 ± 0.52 0.018 

12: 750 1.84 ± 0.11 98.16 -0.63 ± 0.11 0.010 

13: 1000 1.41 ± 1.33 98.59 -1.07 ± 1.33 0.298 

14:  2000 0.34 ± 0.33 99.66 -2.16 ± 0.33 0.008 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.11. Gel electrophoresis results for bipy DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane [bipy], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 99.37 ± 1.08 0.6 - - 

3: p + bipy+ H2O2 + ethanol (1.7 M) 1000 100 ± 0 0 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
0 16.96 ± 5.20 83.04 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
0 30.45 ± 6.49 69.55 0 - 

6: p + Fe2+ (15 µM) + H2O2 + bipy + 

ethanol (1.7 M) 
0.5 27.46 ± 4.92 72.54 -2.79 ± 4.92 0.427 

7: 1 23.17 ± 4.82 76.83 -8.92 ± 4.89 0.085 

8:  10 26.94 ± 0.15 73.06 -3.51 ± 0.15 0.001 

9:  50 98.49 ± 2.62 1.51 99.40 ± 2.60 <0.001 

10:  100 100 ± 0 0 101.55 ± 0 <0.001 

11:  400 100 ± 0 0 101.55 ± 0 <0.001 

12: 1000 100 ± 0 0 101.55 ±0 <0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table 2.12. Gel electrophoresis results for bipy DNA damage assays with Cu+, and 50 µM H2O2.a 

Gel lane [bipy], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0.00 - - 

3: p + bipy+ H2O2 + ethanol (1.7 M) 1000 100 ± 0 0.00 - - 

4: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) H2O2 + ethanol (10 mM) 
0 12.30 ± 3.47 87.70 - - 

5: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
0 21.20 ± 2.62 78.80 0 - 

6: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + bipy + ethanol (1.7 

M) 

0.5 23.57 ± 1.19 76.43 3.00 ± 1.44 0.069 

7: 1 35.81 ± 1.70 64.19 18.53 ± 2.07 0.004 

8:  5 77.89 ± 2.55 22.11 71.95 ± 3.12 < 0.001 

9:  10 87.37 ± 2.37 12.63 83.97 ± 2.90 < 0.001 

10:  50 98.08 ± 1.27 1.92 97.55 ± 1.55 < 0.001 

11:  100 99.04 ± 0.44 0.96 98.77 ± 0.55 < 0.001 

12: 500 98.25 ± 0.75 1.65 97.93 ± 0.91 < 0.001 

13: 1000 95.41 ± 1.33 4.59 94.16 ± 1.66 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.13. Gel electrophoresis results for dmise DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[dmise], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100.0 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100.0 ± 0 0.0 - - 

3: p + dmise+ H2O2 + ethanol (1.7 M) 4000 100.0 ± 0 0.0 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
0 13.7 ± 4.8 86.3 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
0 36.9 ± 4.6 63.1 0 - 

6: p + Fe2+ (15 µM) + H2O2 + dmise + 

ethanol (1.7 M) 
0.5 44.3 ± 4.7 55.7 11.7 ± 4.7 0.050 

7: 1 50.6 ± 3.8 49.4 21.7 ± 3.8 0.010 

8:  10 58.3 ± 2.9 41.7 33.9 ± 2.9 0.002 

9:  50 53.8 ± 3.4 46.2 26.7 ± 3.4 0.005 

10:  100 55.1 ± 5.2 44.9 28.7 ± 5.2 0.011 

11:  400 63.2 ± 5.8 36.8 41.6 ± 5.9 0.007 

12: 1000 72.1 ± 5.8 27.9 55.8 ± 5.9 0.004 

13: 2000 76.7 ± 4.4 23.3 63.1 ± 4.3 0.002 

14: 4000 77.0 ± 7.6 23.0 63.5 ± 7.6 0.005 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 2.14. Gel electrophoresis results for dmise DNA damage assays with Cu+, and 50 µM H2O2.a 

Gel lane 
[dmise], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.98 ± 0.03 0.02 - - 

2: p + H2O2 (50 µM) 0 99.97 ± 0.04 0.03 - - 

3: p + dmise+ H2O2 + ethanol (1.7 M) 4000 99.94 ± 0.11 0.06 - - 

4: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) H2O2 + ethanol (10 mM) 
0 15.97 ± 3.01 84.03 - - 

5: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
0 20.65 ± 5.37 79.35 0 - 

6: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + dmise + ethanol (1.7 

M) 

1 32.39 ± 4.59 64.71 18.51 ± 4.59 0.020 

7: 10 44.79 ± 0.42 55.21 30.44 ± 0.42 < 0.001 

8:  50 53.10 ± 4.02 46.90 40.99 ± 4.02 0.003 

9:  100 65.28 ± 4.57 34.72 56.32 ± 4.53 0.002 

10:  400 59.66 ± 5.55 40.34 49.22 ± 5.60 0.004 

11:  750 67.02 ± 3.43 32.98 62.71 ± 2.40 < 0.001 

12: 1000 67.44 ± 4.72 32.56 59.01 ± 4.70 < 0.001 

13: 2000 76.52 ± 5.18 23.48 70.48 ± 5.19 0.002 

14: 4000 88.06 ± 5.55 11.94 85.01 ± 5.55 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

  



 

80 

 

Table 2.15. Gel electrophoresis results for ebis DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane [ebis], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0.0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0.0 - - 

3: p + ebis+ H2O2 + ethanol (1.7 M) 400 100 ± 0 0.0 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
0 9.6 ± 5.4 90.4 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
0 31.0 ± 0.7 69.0 0 - 

6: p + Fe2+ (15 µM) + H2O2 + ebis + 

ethanol (1.7 M) 
0.1 29.1 ± 2.4 70.9 -2.8 ± 2.4 0.181 

7: 0.5 35.8 ± 5.6 64.2 6.9 ± 5.6 0.166 

8:  1 34.6 ± 0.8 65.4 5.2 ± 0.8 0.008 

9:  5 37.6 ± 2.7 62.4 9.6 ± 2.7 0.025 

10:  10 38.5 ±5.0 61.5 11.0 ± 5.0 0.062 

11:  50 50.9 ± 1.8 49.1 28.8 ± 1.8 0.001 

12: 100 66.4 ± 2.8 33.6 51.4 ± 2.8 <0.001 

13: 200 66.2 ± 2.6 33.8 51.0 ± 2.6 <0.001 

14: 400 73.5 ±3.9 26.5 61.6 ± 3.9 <0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table 2.16. Gel electrophoresis results for ebis DNA damage assays with Cu+, and 50 µM H2O2.a 

Gel lane [ebis], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.95 ± 0.04 0.05 - - 

3: p + ebis+ H2O2 + ethanol (1.7 M) 100 100 ± 0.01 0.00 - - 

4: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) H2O2 + ethanol (10 mM) 
0 26.51 ± 3.74 73.49 - - 

5: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
0 14.54± 1.95 85.46 - - 

6: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ebis + ethanol (1.7 M) 
0.5 23.77 ± 4.09 76.23 7.89 ± 1.99 0.021 

7: 1 32.45 ± 1.63 67.55 21.04 ± 1.60 0.002 

8:  5 37.61 ± 2.70 62.39 27.04 ± 2.69 0.003 

9:  10 67.78 ± 6.82 32.22 62.34 ± 6.83 0.004 

10:  50 99.81 ± 0.23 0.19 99.82 ± 0.26 < 0.001 

11:  100 99.62 ± 0.41 0.38 99.63 ± 0.38 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table2.17. Gel electrophoresis results for Trolox DNA damage assays with Fe2+, and 50 µM H2O2 and 1.7 

M ethanol.a 

Gel lane 
[Trolox], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  99.69 ± 0.53 0.31 - - 

3: p + Trolox+ H2O2 + ethanol (1.7 M) 1000 99.90 ± 0.10 0.10 
- - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
 

9.55 ± 0.42 90.45 

- - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
 

22.74 ± 6.79 77.26 
0 - 

6: p + Fe2+ (15 µM) + H2O2 + Trolox 

+ ethanol (1.7 M) 
10 

12.79 ± 4.11 87.21 
3.51 ± 4.11 0.277 

7: 50 0.96 ± 1.25 99.04 -9.61 ± 1.25 0.006 

8:  100 0.13 ± 0.23 99.87 -10.52 ± 0.23 < 0.001 

9:  500 0.00 ± 0.01 100.00 -10.67 ± 0.01 < 0.001 

10: 1000 0.00 ± 0.01 100.00 -10.67 ± 0.01 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table 2.18. Gel electrophoresis results for Trolox DNA damage assays with Fe2+, and 50 µM H2O2 and 10 

mM ethanol.a 

Gel lane 
[Trolox], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  100.00 ± 0 0.00 - - 

3: p + Trolox+ H2O2 + ethanol (10 mM) 2000 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
 12.30 ± 3.47 87.70 0 - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(10 mM) 
0.1 21.20 ± 2.62 78.80 0.21 ± 4.51 0.943 

6:  1 23.57 ±1.19 76.43 -6.62 ± 4.87 0.143 

7: 5 35.81 ± 1.70 64.19 -0.26 ± 0.69 0.581 

8:  10 77.89 ± 2.55 22.11 3.74 ± 1.49 0.049 

9:  50 87.37 ± 2.37 12.63 7.08 ± 5.82 0.170 

10:  100 98.08 ± 1.27 1.92 23.47 ± 5.75 0.019 

11:  500 99.04 ± 0.44 0.96 33.33± 5.16 0.008 

12: 1000 98.35 ± 0.75 1.65 66.27 ± 7.88 0.005 

13: 2000 95.41 ± 1.33 4.59 99.90± 0.12 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.19. Gel electrophoresis results for Trolox DNA damage assays with Cu+, 1.7M ethanol and 50 µM 

H2O2.a 

Gel lane 
[Trolox], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ±0 0.00 - - 

2: p + H2O2 (50 µM)  100.00 ± 0 0.00 - - 

3: p + Trolox+ H2O2 + ethanol (1.7 M) 1000 99.07 ± 1.61 0.93 - - 

4: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (10 mM) 
 7.73 ± 4.47 92.27 

- - 

5: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
 22.74 ± 6.79 77.26 0 

- 

6: p + Cu2+ (6 µM) + ascorbate (7.5 

µM) + H2O2 + Trolox + ethanol (1.7 M) 
0.1 15.62 ± 1.41 84.38 -4.87 ± 1.81 0.043 

7: 1 6.15 ± 2.86 93.85 -17.09 ± 2.86 0.009 

8:  5 0.18 ± 0.29 99.82 -24.26 ± 0.35 < 0.001 

9:  10 0.00 ± 0.01 100.00 -24.76 ± 0.01 < 0.001 

10:  50 0.01 ± 0.02 99.99 -24.74 ± 0.02 < 0.001 

11:  100 2.65 ± 4.60 97.35 -21.45 ± 4.60 < 0.001 

12: 500 0.38 ± 0.67 99.62 -24.28 ± 0.66 < 0.001 

13: 1000 0.35 ±0.61 99.65 -24.32 ± 0.61 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table2.20. Gel electrophoresis results for Trolox DNA damage assays with Cu+, and 50 µM H2O2 and 10 

mM ethanol.a 

Gel lane [Trolox], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.99 ± 0.02 0.01 - - 

3: p + Trolox+ H2O2 + ethanol (10 

mM) 
2000 99.98 ± 0.02 0.02 - - 

4: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

0 4.33 ± 0.73 95.67 0 - 

5: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

0.1 5.69 ± 2.27 94.31 1.45 ± 2.27 0.384 

6:  1 2.94 ± 2.00 97.06 -1.44 ± 2.00 0.339 

7: 5 1.11 ± 0.92 98.89 -3.35 ± 0.92 0.024 

8:  10 0.21 ± 0.36 99.79 -4.29 ± 0.36 0.002 

9:  50 0.00 ± 0 100.00 -4.51 ± 0 < 0.001 

10:  100 0.02 ± 0.03 99.98 -4.49 ± 0.03 < 0.001 

11:  500 0.99 ± 1.72 99.01 -3.47 ± 1.72 0.073 

12: 1000 0.26 ± 0.39 99.74 -4.23 ± 0.39 0.003 

13: 2000 0.00 ± 0 100.00 -4.51 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.21. Gel electrophoresis results for Edaravone DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[Edaravone], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM)  100.00 ± 0 0.00 - - 

3: p + Edaravone+ H2O2 + ethanol 

(1.7 M) 
1000 100.00 ±0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 + 

ethanol (10 mM) 
 15.35 ±1.31 84.65 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
 10.00 ± 4.12 90.00 0 - 

6: p + Fe2+ (15 µM) + H2O2 + 

Edaravone + ethanol (1.7 M) 
0.1 14.26 ± 3.11 85.74 -1.29 ± 3.81 0.616 

7: 1 11.13 ± 1.64 88.87 -4.99 ± 2.01 0.050 

8:  5 6.43 ± 0.56 93.57 -10.54 ± 0.68 0.001 

9:  10 6.04 ± 3.86 93.96 -11.00 ± 4.72 0.056 

10:  50 7.43 ± 5.20 92.57 -9.36± 6.36 0.126 

11:  100 7.42 ± 4.87 92.58 -9.37 ± 5.97 0.114 

12: 500 5.71 ± 2.86 94.29 -11.39 ± 3.50 0.030 

13: 1000 14.70 ±0.30 85.30 -0.77 ± 0.37 0.069 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table 2.22. Gel electrophoresis results for Edaravone DNA damage assays with Cu+, and 50 µM H2O2.a 

Gel lane 
[Edaravone], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p)  99.97 ± 0.05 0.03 - - 

2: p + H2O2 (50 µM)  100.00 ±0 0.00 - - 

3: p + Edaravone+ H2O2 + ethanol 

(1.7 M) 
1000 99.98 ±0.03 0.02 - - 

4: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

 2.75 ± 1.41 97.25 - - 

5: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (1.7 M) 
 6.01 ±3.28 93.99 0 - 

6: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM)+ H2O2 + Edaravone + 

ethanol (1.7 M) 

0.1 5.25 ± 2.57 94.75 0.23 ± 2.57 0.891 

7: 1 11.35 ± 4.06 88.65 6.66 ± 4.06 0.105 

8:  5 3.37 ± 1.91 96.63 -1.74 ± 1.91 0.255 

9:  10 6.68 ± 1.74 93.32 1.74 ±1.74 0.225 

10:  50 4.81 ± 2.77 95.19 -0.23 ± 2.77 0.899 

11:  100 2.87 ± 2.33 97.13 -2.28 ± 2.33 0.232 

12: 500 3.50 ± 3.68 96.50 -1.61 ± 3.68 0.528 

13: 1000 14.18 ± 2.35 85.82 9.17 ± 2.64 0.894 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.23. Gel electrophoresis results for Ebselen DNA damage assays with Fe2+, and 50 µM H2O2.a 

Gel lane 
[Ebselen], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100.0 ± 0 0.0 - - 

2: p + H2O2 (50 µM) 0 98.7 ± 2.2 1.3 - - 

3: p + Ebselen + H2O2 + ethanol 

(1.7 M) 
400 100.0 ± 0 0.0 - - 

4: p + Fe2+ (2 µM) + H2O2 + 

ethanol (10 mM) 
0 7.6 ± 2.3 92.4 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
0 25.1 ± 3.0 74.9 0 - 

6: p + Fe2+ (15 µM) + H2O2 + 

Ebselen + ethanol (1.7 M) 
1 27.0 ± 2.6 73.0 4.3 ± 2.7 0.110 

7: 5 30.7 ± 1.2 69.3 9.2 ± 1.3 0.007 

8:  10 28.6 ± 5.5 71.4 6.4 ± 5.5 0.181 

9:  50 26.8 ± 3.5 73.2 3.9 ± 3.5 0.193 

10:  100 26.4 ± 2.8 73.6 3.5 ± 2.9 0.172 

11:  200 31.4 ± 3.2 68.6 10.0 ± 3.2 0.032 

12: 400 28.4 ± 4.5 71.6 6.0 ± 4.5 0.147 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table 2.24. Gel electrophoresis results for ebselen DNA damage assays with Cu+, and 50 µM H2O2.a 

Gel lane 
[Ebselen], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.8 ± 0.2 0.2 -  

2: p + H2O2 (50 µM) 0 98.9 ± 0.8 1.1 - - 

3: p + ebselen + H2O2 + ethanol 

(1.7 M) 
400 98.8 ± 1.6 1.2 - - 

4: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

0 14.9 ± 1.9 85.1 - - 

5: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (1.7 M) 
0 13.7 ± 3.6 86.3 0 - 

6: p Cu2+ (2 µM) + ascorbate (7.5 

µM) + ebselen + ethanol (1.7 M) 
1 12.1 ± 2.4 87.9 -0.5 ± 2.4 0.753 

7: 10 13.1 ± 4.8 86.9 0.7 ± 4.8 0.824 

8:  50 18.1 ± 2.0 81.9 6.4 ± 2.0 0.310 

9:  100 34.4 ± 3.4 65.6 25.3 ± 3.5 0.006 

10:  200 50.0 ± 3.5 50.0 43.3 ± 3.5 0.002 

11 300 56.5 ± 4.4 43.5 50.9 ± 4.5 0.003 

12:  400 58.6 ± 8.5 41.4 53.4 ± 8.5 0.008 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.25. Gel electrophoresis results for ebselen-N-acetic acid DNA damage assays with Fe2+, and 50 

µM H2O2.a 

Gel lane 

[ebselen-

N-acetic 

acid], μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100.0 ± 0 0.0 - - 

2: p + H2O2 (50 µM) 0 99.9 ± 0.1 0.1 - - 

3: p + ebselen-N-acetic acid + H2O2 + 

ethanol (1.7 M) 
700 100.0 ± 0 0.0 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
0 18.8 ± 3.1 81.2 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
0 29.3 ± 2.9 70.7 0 - 

6: p + Fe2+ (15 µM) + H2O2 + ebselen-

N-acetic acid + ethanol (1.7 M) 
1 31.1 ± 2.5 68.9 2.7 ± 2.5 0.202 

7: 10 34.8 ± 4.5 65.2 7.9 ± 4.4 0.090 

8:  50 32.8 ± 3.7 67.2 5.6 ± 4.2 0.147 

9:  100 34.1 ± 3.8 65.9 6.9 ± 3.9 0.092 

10:  200 26.4 ± 2.8 73.6 -4.0 ± 2.9 0.139 

11:  300 28.7 ± 3.6 71.3 -0.8 ± 3.6 0.385 

12: 400 24.9 ± 1.7 75.1 -6.1 ± 1.7 0.025 

13: 500 22.8 ± 1.1 77.2 -9.0 ± 1.1 0.005 

14: 600 26.8 ± 2.2 73.2 -3.4 ± 2.2 0.116 

15: 700 32.2 ± 5.6 67.8 4.2 ± 5.6 0.324 
aData are reported as the average of three trials with calculated standard deviations shown. 

Table2.26. Gel electrophoresis results for ebselen-N-acetic acid DNA damage assays with Cu+, and 50 µM 

H2O2.a 

Gel lane 

[ebselen-N-

acetic acid], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + ebselen-N-acetic acid + 

H2O2 + ethanol (1.7 M) 
700 100 ± 0 0 - - 

4: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

0 13.50 ± 1.11 86.50 - - 

5: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (1.7 M) 
0 12.22 ± 4.94 87.78 0 - 

6: p Cu2+ (2 µM) + ascorbate (7.5 

µM) + ebselen-N-acetic acid + 

ethanol (1.7 M) 

10 16.36 ± 1.03 83.64 4.72 ± 1.07 0.017 

7: 100 16.75 ± 2.11 83.25 5.14 ± 2.12 0.052 

8:  200 33.29 ± 3.20 66.71 24.91 ± 3.18 0.005 

9:  300 33.59 ± 3.44 66.41 24.36 ± 3.44 0.007 

10:  500 54.05 ± 2.33 45.95 47.67 ± 2.30 0.002 

11:  700 60.01 ± 1.12 39.99 54.43 ± 1.10 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.27. Gel electrophoresis results for ebselen-7-carboxylic acid DNA damage assays with Fe2+, and 

50 µM H2O2.a 

Gel lane 

[ebselen-7-

carboxylic 

acid], μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.96 ± 0.06 0.04 - - 

2: p + H2O2 (50 µM) 0 98.01 ± 1.8 1.99 - - 

3: p + ebselen-7-carboxylic acid + 

H2O2 + ethanol (1.7 M) 
700 100 ± 0 0 - - 

4: p + Fe2+ (2 µM) + H2O2 + 

ethanol (10 mM) 
700 100 ± 0 0 - - 

5: p + Fe2+ (15 µM) + H2O2 + 

ethanol (1.7 M) 
0 15.85 ± 3.45 84.15 - - 

6: p + Fe2+ (15 µM) + H2O2 + 

ebselen-7-carboxylic acid + 

ethanol (1.7 M) 

0 23.44 ± 4.05 76.56 0 - 

7: 1 21.31 ± 1.70 78.69 -0.20 ± 2.10 0.884 

8:  10 21.65 ± 4.28 78.35 0.28 ± 5.26 0.935 

9:  50 23.44 ± 3.19 76.56 2.63 ± 3.91 0.364 

10:  100 39.14 ± 0.25 60.86 23.14 ± 0.31 < 0.001 

11:  200 56.42 ± 3.76 43.58 45.69 ± 4.62 0.003 

12: 300 60.76 ± 5.03 39.24 51.53 ± 6.18 0.005 

13: 400 84.10 ± 1.71 15.90 81.83 ± 2.08 < 0.001 

14: 500 95.42 ± 1.47 4.58 96.63 ± 1.81 < 0.001 

15 600 95.71 ± 3.04 4.29 96.98 ± 3.74 < 0.001 

16: 700 97.38 ± 2.00 2.62 99.20 ± 2.42 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.28. Gel electrophoresis results for ebselen-7-carboxylic acid methyl ester DNA damage assays 

with Fe2+, and 50 µM H2O2.a 

Gel lane 

[ebselen-7-

carboxylic 

acid methyl 

ester], μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0.00 - - 

3: p + ebselen-7-carboxylic acid 

methyl ester + H2O2 + ethanol (1.7 M) 
400 99.76 ± 0.42 0.24 - - 

4: p + Fe2+ (2 µM) + H2O2 + ethanol 

(10 mM) 
400 100 ± 0 0.00 - - 

5: p + Fe2+ (15 µM) + H2O2 + ethanol 

(1.7 M) 
0 11.00 ± 1.70 89.00 - - 

6: p + Fe2+ (15 µM) + H2O2 + ebselen-

7-carboxylic acid methyl ester + 

ethanol (1.7 M) 

0 18.51 ± 5.45 81.49 0 - 

7: 1 15.46 ± 2.96 84.54 -3.73 ± 2.99 0.163 

8: 10 3.75 ± 2.88 96.25 -18.13± 2.90 0.008 

9: 50 7.75 ± 3.47 92.25 -13.18 ± 3.50 0.023 

10: 100 13.78 ± 1.95 86.22 -5.78 ± 1.93 0.035 

11: 200 7.88 ± 3.82 92.12 -13.06 ± 3.84 0.028 

12: 300 12.10 ± 3.46 87.90 -7.87 ± 3.48 0.059 

13: 400 10.96 ± 2.10 89.04 -9.26 ± 2.12 0.017 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.29. Gel electrophoresis results for ebsulfur-7-carboxylic acid DNA damage assays with Cu+, and 

50 µM H2O2.a 

Gel lane 

[ebsulfur-7-

carboxylic 

acid], μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0.00 - - 

3: p + ebselen-7-carboxylic acid 

methyl ester + H2O2 + ethanol (1.7 M) 
700 99.77 ± 0.29 0.23 - - 

4: p + Cu2+ (2 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (10 mM) 
0 8.52 ± 5.60 91.48 - - 

5: p + Cu2+ (2 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
0 11.17 ± 3.58 88.83 0 - 

6: p Cu2+ (2 µM) + ascorbate (7.5 

µM) + ebselen-7-carboxylic acid 

methyl ester + ethanol (1.7 M) 

0.001 13.42 ±3.25 86.58 2.54 ± 3.25 0.309 

7: 0.1 15.19 ± 1.76 84.81 4.53 ± 1.73 0.045 

8:  1 20.82 ± 3.63 79.18 10.84 ± 3.61 0.035 

9:  10 16.31 ± 3.93 83.69 5.81 ± 3.91 0.124 

10:  100 62.96 ± 1.27 37.04 58.31 ± 1.27 < 0.001 

11: 300 67.58 ± 1.91 32.42 63.52 ± 1.93 0.001 

12: 500 67.36 ± 5.03 32.64 63.22 ± 5.04 0.002 

13: 700 71.20 ± 3.88 28.80 67.58 ± 3.84 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.30. Gel electrophoresis results for ebsulfur-7-carboxylic acid DNA damage assays with Cu+, and 

50 µM H2O2.a 

Gel lane 

[ebsulfur-7-

carboxylic 

acid], μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0 ± 0 - - 

2: p + H2O2 (50 µM) 0  100 ± 0 0 ± 0 - - 

3: p + ebsulfur-7-carboxylic acid + 

H2O2 + ethanol (1.7 M) 
700  100 ± 0 0 ± 0 - - 

4: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (10 

mM) 

700  2.03 ± 1.40 97.97 - - 

5: p + Cu2+ (2 µM) + ascorbate 

(7.5 µM) + H2O2 + ethanol (1.7 M) 
0 1.78 ± 1.80 98.22 0 - 

6: p Cu2+ (2 µM) + ascorbate (7.5 

µM) + ebsulfur-7-carboxylic acid 

+ ethanol (1.7 M) 

1 4.43 ± 2.33 95.57 2.70 ± 2.37 0.187 

7: 10 1.65 ± 0.96 98.35 -0.51 ± 0.97 0.459 

8:  50 3.95 ± 0.90 96.05 2.23 ± 0.87 0.047 

9:  100 6.42 ± 0.89 93.58 4.71 ± 0.85 0.011 

10:  200 6.19 ± 1.74 93.81 4.50 ± 1.74 0.011 

11: 300 7.56 ± 3.78 92.44 5.89 ± 3.81 0.116 

12: 400 8.62 ± 3.94 91.38 6.98 ± 3.96 0.093 

13: 500 3.06 ± 2.62 96.94 1.31 ± 2.64 0.481 

14: 600 3.95 ± 2.37 96.05 2.20 ± 2.41 0.255 

15: 700 7.45 ± 2.33 92.55 5.79 ± 2.31 0.049 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.31. Gel electrophoresis results for ebsulfur-7-carboxylic acid methyl ester DNA damage assays 

with Cu+, and 50 µM H2O2.a 

Gel lane 

[ebsulfur-7- 

carboxylic 

acid methyl 

ester], μM 

% Supercoiled 
% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.99 ± 0.02 0.01 - - 

2: p + H2O2 (50 µM) 0 99.98± 0.03 0.02 - - 

3: p + ebsulfur-7- carboxylic acid 

methyl ester + H2O2 + ethanol (1.7 M) 
400 99.96 ± 0.04 0.04 - - 

4: p + Cu2+ (2 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (10 mM) 
400 99.96 ±0.07 0.04 - - 

5: p + Cu2+ (2 µM) + ascorbate (7.5 

µM) + H2O2 + ethanol (1.7 M) 
0 1.11 ± 1.09 97.78 - - 

6: p Cu2+ (2 µM) + ascorbate (7.5 µM) 

+ ebsulfur-7- carboxylic acid methyl 

ester + ethanol (1.7 M) 

0 4.42 ± 1.97 95.58 0 - 

7: 1 2.22 ± 1.63 97.78 -2.27 ± 1.63 0.137 

8:  10 4.69 ± 3.98 95.31 0.31 ± 3.98 0.905 

9:  50 2.88 ± 0.47 97.12 -1.60 ± 0.45 0.025 

10:  100 3.67 ± 1.71 96.33 -0.77 ± 1.68 0.511 

11: 200 2.51 ± 2.42 97.49 -1.95 ± 2.42 0.298 

12: 300 0.78 ± 0.40 99.22 -3.80 ± 0.38 0.003 

13:  400 2.01 ± 0.89 97.99 -2.51 ± 0.92 0.042 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 2.32. DPPH scavenging assay results for EC.a 

[EC], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.2 4.71 ± 1.23 0.022 

2 9.81 ± 0.70 0.002 

10 27.20 ± 1.04 < 0.001 

20 40.03 ± 0.86 < 0.001 

40 60.20 ± 0.12 < 0.001 

100 76.67 ± 1.65 < 0.001 

250 95.09 ± 0.06 < 0.001 

500 98.70 ± 0.06 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
 

Figure 2.22. Dose-response plot for EC in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.33. DPPH scavenging assay results for GA.a 

[GA], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.01 -2.02 ± 5.30 0.577 

0.1 2.31 ± 5.51 0.543 

1 12.51 ± 0.76 0.001 

5 38.02 ± 1.01 < 0.001 

10 50.54 ± 1.71  < 0.001 

20 63.68 ± 0.40 < 0.001 

50 73.98 ± 0.23 < 0.001 

100 82.31 ± 1.19 < 0.001 

250 96.57 ± 0.38 < 0.001 

500 98.84 ± 0.06 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Figure 2.23. Dose-response plot for GA in the DPPH-scavenging assay.   
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Table 2.34. DPPH scavenging assay results for PCA.a 

[PCA], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.1 4.86 ± 1.37 0.025 

1 7.95 ± 1.83 0.017 

5 14.75 ± 0.23 < 0.001 

10 22.17 ± 0.89 < 0.001 

15 27.35 ± 0.55 < 0.001 

25 30.21 ± 0.56 < 0.001 

1000 55.18 ± 1.05 < 0.001 

2000 65.28 ± 0.05 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Figure 2.24. Dose-response plot for PCA in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.35. DPPH scavenging assay results for TA.a 

[TA], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.001 18.52 ± 0.06 < 0.001 

0.01 51.39 ± 0.06 < 0.001 

0.1 77.41 ± 0.80 < 0.001 

1 91.76 ± 0.17 < 0.001 

10 98.98 ± 0.15 < 0.001 

25 99.54 ± 0.06 < 0.001 

50 99.72 ± 0.06 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Figure 2.25. Dose-response plot for TA in the DPPH-scavenging assay. Error bars are smaller than the data 

point symbols. 
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Table 2.36. DPPH scavenging assay results for EGCG.a 

[EGCG], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.01 4.09 ± 0.01 < 0.001 

0.1 4.01 ± 0.05 < 0.001 

1 61.28 ± 0.01 < 0.001 

5 79.75 ± 0.01 < 0.001 

20 98.89 ± 0.01 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Figure2.26. Dose-response plot for EGCG in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.37. DPPH scavenging assay results for sepyMe.a 

[sepyMe], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.01 9.25 ± 0.40 < 0.001 

1 10.53 ± 0.26 < 0.001 

10 33.99 ± 0.32 < 0.001 

25 43.70 ± 0.75 < 0.001 

50 49.02 ± 0.20 < 0.001 

100 53.70 ± 0.36 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 
 

Figure 2.27. Dose-response plot for sepyMe in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.38. DPPH scavenging assay results for pyridine.a 

[pyridine], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.1 4.57 ± 0.40 0.003 

1 2.09 ± 2.28 0.253 

10 0.53 ± 1.02 0.463 

50 -1.67 ± 1.36 0.015 

100 -0.75 ± 0.61 0.167 

500 0.18 ± 0.40 0.517 

1000 9.37 ± 0.06 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Figure 2.28. Dose-response plot for pyridine in the DPPH-scavenging assay. Error bars are smaller than 

the data point symbols. 
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Table 2.39. DPPH scavenging assay results for bipy.a 

[bipy], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.1 1.65 ± 0.56 0.036 

1 -3.41 ± 0.15 < 0.001 

10 -0.55 ± 0.35 0.113 

50 -1.54 ± 0.80 0.079 

100 -3.74 ± 0.58 0.008 

1000 3.30 ± 1.65 0.074 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
Figure 2.29. Dose-response plot for bipy in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.40. DPPH scavenging assay results for dmise.a 

[dmise], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.01 0.00 ± 0.10 0.878 

0.1 0.99 ± 0.20 0.013 

1 5.39 ± 0.12 < 0.001 

10 17.38 ± 0.67 < 0.001 

50 36.74 ± 0.21 < 0.001 

100 49.62 ± 0.21 < 0.001 

250 51.20 ± 0.15 < 0.001 

500 59.35 ± 0.15 < 0.001 

1000 75.15 ± 0.12 < 0.001 

2000 94.51 ± 0.06 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Figure 2.30. Dose-response plot for dmise in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.41. DPPH scavenging assay results for ebis.a 

[ebis], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.01 9.07 ± 0.15 < 0.001 

0.1 45.74 ± 0.01 < 0.001 

1 98.61 ± 0.25 < 0.001 

10 100 ± 0.35 < 0.001 

25 99.26 ± 0.01 < 0.001 

50 100 ± 0.38 < 0.001 

100 100 ± 0.01 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Figure 2.31. Dose-response plot for ebis in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.42. DPPH scavenging assay results for Trolox.a 

[Trolox], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.001 0.00 ± 0.17 0.928 

0.1 0.44 ± 0.06 0.006 

1 8.25 ± 0.17 < 0.001 

5 31.24 ± 0.15 < 0.001 

10 72.05 ± 0.15 < 0.001 

50 100 ± 0.01 < 0.001 

100 100 ± 0.01 < 0.001 

150 100± 0.01 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 
 

Figure 2.32. Dose-response plot for Trolox in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Table 2.43. DPPH scavenging assay results for Edaravone.a 

[Edaravone], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.001 -4.72 ± 0.1 < 0.001 

0.1 13.19 ± 0.20 < 0.001 

1 23.65 ± 0.15 < 0.001 

5 60.51 ± 0.15 < 0.001 

10 90.10 ± 0.20 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
 

Figure 2.33. Dose-response plot for Edaravone in the DPPH-scavenging assay. Error bars are smaller than 

the data point symbols. 
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Table 2.44. DPPH scavenging assay results for ebselen.a 

[Ebselen], μM % Scavenged p Value 

DPPH 0 ± - 

Trolox (50 µM) 100 ± 0 - 

0.1 11.66 ± 0.31 < 0.001 

1 10.34 ± 0.15 < 0.001 

10 5.28 ± 0.70 0.006 

50 5.39 ± 0.45 0.002 

100 3.74 ± 0.06 < 0.001 

500 4.84 ± 0.25 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Figure 2.34. Dose-response plot for ebselen in the DPPH-scavenging assay. Error bars are smaller than the 

data point symbols. 
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Figure 2.35. EPR spectra of Cu2+ (300 µM), ascorbic acid (375 µM), H2O2 (2.5 mM) and DMPO (30 mM) 

at the indicated time points. 
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Figure 2.36. EPR spectra of Cu2+ (300 µM), ascorbic acid (375 µM), H2O2 (2.5 mM), DMPO (30 mM), 

and ethanol (1.7 M) at the indicated time points. 
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Figure 2.37. EPR spectra of Fe2+ (300 µM), H2O2 (2.5 mM), and DMPO (30 mM) at the indicated time 

points. 

 

Figure 2.38. EPR spectra of Fe2+ (300 µM), H2O2 (2.5 mM), DMPO (30 mM), and ethanol (1.7 M) at the 

indicated time points. 
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Figure 2.39. EPR spectra of Fe2+ (300 µM), H2O2 (2.5 mM), DMPO (30 mM), and ethanol (875 mM) at 

the indicated time points. 

 

 

Figure 2.40. EPR spectra of Fe2+ (300 µM), H2O2 (2.5 mM), DMPO (30 mM), and ethanol (425 mM) at 

the indicated time points. 
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CHAPTER THREE 

 

FLUCONAZOLE PRODUCES REACTIVE OXYGEN SPECIES IN THE PRESENCE 

OF COPPER AND IRON TO CAUSE DNA DAMAGE 

 

3.1 Introduction 

Cryptococcus neoformans is a basidiomycetous yeast that causes pneumonia and 

meningitis primarily in immunocompromised patients, and is responsible for 

approximately 620,000 deaths per year.1–3 Global prevalence of cryptococcal disease is 5–

10% in the Americas and Europe and exceeds 15% in South East Asia and Sub-Saharan 

Africa.4,5 Azoles are a class of five-membered heterocyclic compounds containing at least 

one nitrogen atom and drugs containing azoles are commonly used to treat various fungal 

infections. Complexes of three FDA-approved antifungal drugs were tested in the 

Brumaghim group6,7 for their ability to facilitate DNA damage in combination with 

transition metals. In this study, fluconazole (FLC; Figure 3.1), a triazole-containing drug 

that accumulates in the cerebrospinal fluid that has been used as an antifungal agent since 

1990,8,9 is evaluated for its ability to cause DNA damage with copper and iron. FLC and 

clotrimazole (CTZ)7 are being used to treat ectopic as well as systemic fungal infections, 

whereas tinidazole (TNZ) is only approved for topical treatments.6,10 

 FLC is used as an antifungal drug due to its metabolic stability, relatively high 

water-solubility, and good tolerability when used to treat cryptococcosis;11–14,14,15 however, 

due to the fungistatic rather than fungicidal effects of FLC, emergence of FLC resistance 

to the drug complicates treatments.7,16,17 Thus, there is a need to understand mechanisms 
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Figure 3.1. Structures of fluconazole (FLC) and deferoxamine (DFO)  

for FLC drug resistance to develop more effective therapies for cryptococcal meningitis.   

The mechanisms that attribute to the increasing C. neoformans azole drug 

resistance include lanosterol 14α demethylase (ERG11) gene mutation,18 gene 

duplication,19 and drug efflux pump Afr1 upregulation.20,21 In addition, a number of kinases 

involved in TOR signaling (Ypk1, Ipk1, Gsk3), related to vacuole transport (Vps15) and 

involved in the pathogenicity-related kinase cell cycle (Cdc7), are associated with FLC 

resistance.22 FLC inhibits (ERG11), a conserved enzyme that catalyzes the conversion of 

lanosterol to ergosterol.23 Fungal growth arrest upon exposure to FLC is attributed to the 

reduction of ergosterol in the plasma membrane combined with an accumulation of 

potentially toxic sterols.24  

In addition, depletion of ergosterol has been associated with the disruption of V-

ATPase function.25 Only a single copy of the ERG11 gene was mapped to C. neoformans 

chromosome #1 (Chr1).23 However, in FLC resistant strains, Chr1 was found to possess 

disomic duplication.19 Integrity of the endoplasmic reticulum is a major factor in the 

emergence of disomy of Chr1 and Chr4, leading to FLC resistance by overcoming the drug 

stress.26,27 Chr1 contains two genes that are important involved with drug resistance, AFR1, 
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the drug transporter, and ERG11, the target of FLC. Recent findings suggest that 

decoupling of cellular growth and nuclear division during FLC treatment leads to increased 

DNA content, which may be a conserved way to acquire azole resistance in fungal 

pathogens;28,29 however, the exact mechanisms underlying chromosomal changes in cells 

treated with FLC remain unknown.  

Chromosomal instability is associated with chronic oxidative stress mediated by 

elevated reactive oxygen species (ROS), and it is well established that ROS can damage 

DNA. For example, human-hamster hybrid GM10115 cells acquire 22% chromosomal 

instability after exposure to H2O2.
30 In the model organism Saccharomyces cerevisiae, 

mutant strains with impaired DNA repair and reduced ROS scavenging enzymes show 

increased frequency of chromosomal rearrangement upon H2O2 challenge.31 One ROS, 

hydroxyl radical, is generated by the oxidation of metal ions in vivo and in vitro (Reaction 

1).32 

 Fe2+/Cu+  +  H2O2  → Fe3+/Cu2+  +  •OH  + OH-  (1) 

Metallothioneins (MTs) are cysteine-rich, metal-chelating proteins that help to 

maintain physiological ROS concentrations.33,34 Two copper-detoxifying MTs were 

identified in the C. neoformans proteome: CMT1 (13.4 kDa) and CMT2 (20.1 kDa), both 

of which are upregulated in the presence of copper.35 Metal-chelating domains in C. 

neoformans MTs provide high capacity MT-Cu+ binding, which is critical for 

counteracting the first line of copper-based immunity of the host.36,37 Impaired MT proteins 

result in ROS accumulation and cell cycle arrest in mice embryonic fibroblast cells.38 Thus, 

accumulated evidence suggests that FLC leads to an increase of ROS in C. neoformans, 
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and such a response may lead to chromosomal instability. However, no direct study has 

addressed this possibility. 

Peng et al.39 have determined that FLC induces accumulation of intracellular ROS, 

which correlates with plasma membrane damage in C. neoformans, and caused 

transcription changes of oxidative-stress-related genes encoding superoxide dismutase 

(SOD1), catalase (CAT3), and thioredoxin reductase (TRR1). FLC also increases DNA 

damage in vitro, suggesting that FLC treatment leads to increase of ROS concurrently with 

plasma membrane damage. FLC also triggers adverse transcription of genes encoding 

primary antioxidant defense genes: copper/zinc superoxide dismutase (SOD1)40 and 

catalase (CAT3).39 Consistent with FLC affecting DNA integrity, FLC treatment of C. 

neoformans leads to transcription changes of genes associated with DNA repair and 

chromosome segregation (RAD54 and SCC1).39 These findings suggest that FLC treatment 

results in increase of ROS in C. neoformans and this effect may lead to chromosomal 

instability.41 To evaluate the importance of metal coordination of FLC to iron, 

deferoxamine (DFO), a hexadentate iron chelator produced by soil bacteria to obtain iron 

from their environment,42,43 was tested for its ability to cause or prevent DNA damage 

cause by FLC and iron. Iron chelators have been shown to be effective in killing fungi44,44 

but it has not been fully determined whether iron depletion or another mechanism causes 

the observed fungal killing. 

This work was carried out in collaboration with Prof. Lukasz Kozubowski, 

Department of Genetics and Biochemistry at Clemson University, but this Chapter 

highlights only the in vitro DNA damage assay results performed by the author and does 
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not include the work performed by the collaborators. The majority of this work was 

published in PLOS One (doi: 10.1371/journal.pone.0208471)39 reproduced with 

permission of the publisher (Appendix A), but this Chapter also includes additional studies 

of the effects of ascorbic acid treatment as well as an investigation into the effect of DFO 

addition on FLC’s ability to damage DNA.  

 

3.2 Results and Discussion 

Metal Coordination of FLC and Change to Metal Redox Potential. Since results 

reported by Peng et al.39 suggest an increase of ROS in FLC-treated cells, we hypothesized 

that treatment with FLC leads to chromosomal instability through the mechanism that 

involves ROS. Previous studies by Betanzos-Lara et al.7 and Castro-Ramirez et al.6 have 

indicated that antimicrobial drugs bind metals to potentiate DNA damage. Our hypothesis 

is that most azole containing antifungal drugs coordinate to redox-active transition metals, 

iron and /or copper to change the redox potential resulting in enhanced DNA damage 

abilities and potentially reduced development of drug resistance. 

Most crystal structures of FLC with transition metals have been obtaining using 

hydrothermal growth conditions and therefore may not be biologically relevant. 

Coordination of FLC to copper and iron in aqueous solution was confirmed using MALDI-

TOF mass spectrometry (Table 3.3 and Figure 3.6) and is consistent with the findings of 

Ali et al.45 who synthesized FLC complexes with Cu2+, Fe2+, Cd2+, Co2+, Ni2+, and Mn2+ 

verified the structures of these complexes by further characterization with infrared 

spectroscopy, elemental analysis, UV-vis and NMR spectroscopy. In our mass 
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spectrometry studies, two equivalents of FLC bound per metal ion (Fe2+ and Cu2+). Even 

when metal:FLC ratios were increased to 1:4 or 1:6, only complexes with a 1:2 ratio of 

metal to FLC were observed (Table 3.2 and Figure 3.5). Although Nagaj et al.46 observed 

pH/pD-dependent metal-FLC complexes with a variety of metal:FLC ratios using NMR 

spectroscopy, we chose a ratio of 1:2 metal:FLC for our subsequent electrochemical and 

DNA damage studies since this was the only complex ratio we observed. 

Cyclic voltammetry (CV) experiments were performed on FLC in the presence of 

metal ions to evaluate how FLC binding alters the redox activity of copper and iron. All 

experiments were performed in aqueous solutions at physiologically relevant pH with 

potassium nitrate as supporting electrolyte. FLC alone does not exhibit electrochemical 

activity. Upon addition of FLC to copper, the Cu+/0 and Cu2+/+ redox potentials shift to 

more positive potentials relative to aqueous CuSO4 (E1/2 values of 250 vs. 11 mV, 

respectively), indicating that FLC binding stabilizes hydroxyl-radical-generating Cu+ over 

Cu2+. Similar stabilization of Fe2+ over Fe3+ is observed upon iron-FLC binding (Fe3+/2+ 

E1/2 values shift from 65 mV for aqueous FeSO4 to 98 mV for FeSO4 with FLC). In both 

cases, the redox potentials of the FLC-metal complexes are well within the potential 

window for biological hydroxyl radical generation (-320 to 460 mV).47  

FLC Coordination to Metals Causes DNA Damage in Vitro. The ability of FLC to 

promote DNA damage in the presence of iron and copper was investigated using gel 

electrophoresis studies under physiologically relevant conditions. DNA damage caused by 

increasing concentrations of FLC and iron (in a 2:1 ratio) is shown in Figure 3.2; complete 

data tables for these studies are provided in Tables 3.4 - 3.19. DNA damage is defined as 
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percentage of shift between the fluorescent band corresponding to intact (circular) DNA 

and the band corresponding to the nicked (damaged) DNA. 

Lane 2 in Figures 3.2A and B shows that hydrogen peroxide alone does not cause 

DNA damage. Similarly, FLC in the presence or absence of hydrogen peroxide does not 

cause DNA damage (Figure 3.2A, lanes 3 and 4). Quantification of the band intensities in 

lane 5 (Figure 3.2A) shows that Fe2+ (FeSO4, 2 μM) and hydrogen peroxide cause ~90% 

DNA damage. Increasing concentrations of FLC and Fe2+ in the presence of hydrogen 

peroxide cause DNA damage in a dose-dependent manner (Figure 3.2A, lanes 6–13; Table 

3.1). Addition of FLC (2 μM) and Fe2+ (1 μM) with hydrogen peroxide causes ~90% DNA 

damage but it takes 2 μM Fe2+ and hydrogen peroxide to cause the same damage without 

FLC. 

 

 
Figure 3.2. Gel electrophoresis images showing FLC-metal-mediated DNA damage for MW: 1 kb molecular 

weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 and A) lane 3: p + FLC (50 μM) + H2O2; lane 4: 

p + FLC (50 μM); lane 5: p + FeSO4 (2 μM) + H2O2; lanes 6-13: p + H2O2 + FLC (0.01, 0.1, 0.5, 1, 2, 4, 10, 

50 μM, respectively) and FeSO4 (0.005, 0.05, 0.25, 0.5, 1, 2, 5, and 25 μM, respectively) or B) lane 3: p + 

H2O2 + FLC (25 μM); lane 4: p + FLC (25 μM); lane 5: p + H2O2 + CuSO4 (6 μM) + ascorbate (7.5 μM); 

lane 6: p + H2O2 + CuSO4 (12.5 μM); lanes 7-12: p + H2O2 + FLC (0.1, 1, 5, 10, 18, 25 μM, respectively) + 

CuSO4 (0.05, 0.5, 2.5, 5, 9, and 12.5 μM, respectively).  
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Similar DNA damage assays were conducted to evaluate the effects of FLC with Cu2+ on 

DNA damage. 

The plasmid DNA band intensities from these studies were quantified to obtain 

EC50 plots (Figure 3.3), showing the Fe2+ or Cu+ concentrations needed to cause 50% DNA 

damage in the presence of FLC and hydrogen peroxide. An EC50 value of 0.46 ± 0.01 μM 

(p < 0.001) was determined for Fe2+ and FLC with H2O2. The EC50 plots in Figure 3.3A 

illustrate that addition of FLC shifts the iron-mediated DNA damage curve so that lower 

concentrations of iron in combination with FLC cause the same damage. Statistical 

analyses indicate that this enhancement of iron-mediated DNA damage in the presence of 

FLC is significant (Figure 3.3A, Table 3.19). 

In similar studies with Cu2+ and FLC, DNA damage is observed in the presence of 

hydrogen peroxide upon increasing concentrations of FLC and Cu2+ concentrations ranging 

from 5 to 12.5 μM (Figure 3.2, lanes 7–12 and Fig 3.11B), suggesting that the observed 

DNA damage results from copper-FLC binding. A maximum of 40% DNA damage is 

 

Figure 3.3. Dose-response curves of DNA damage by A) Fe2+, H2O2 with and without FLC and B) Cu2+, 

H2O2, and ascorbate (AA) with and without FLC (1.25 equiv ascorbate was added to reduce Cu2+ to Cu+) 
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Table 3.1. EC50 table of iron or copper with and without FLC and the effect of ascorbate (AA). 

DNA Assay Conditions EC50 FLC [μM Cu] EC50 [μM Cu] 

Cu2+ No damage (0.05-300 μM) No damage (0.05-300 μM) 

Cu2+ + H2O2 40% DNA damage @12.5 μM No damage (0.05-12.5 μM) 

Cu2+ + AA 17.74 ± 0.03 25.61 ± 0.05 

Cu2+ + AA + H2O2 4.62 ± 0.01 2.45 ± 0.01 

 EC50 FLC [μM Fe] EC50 [μM Fe] 

Fe2+ No damage (0.05-300 μM) No damage (0.05-300 μM) 

Fe2+ + H2O2 0.46 ± 0.01 1.04 ± 0.01 

Fe2+ + AA 180.8 ± 0.3 187.7 ± 0.4 

Fe2+ + AA + H2O2 0.68 ± 0.01 0.76 ± 0.01 

 

observed with 25 μM FLC and 12.5 μM Cu2+ (Figure 4.2B, lane 12), whereas Cu2+ at the 

same concentration without FLC addition does not cause any DNA damage. Since FLC 

alone does not damage DNA, these results highlight the importance of metal binding for 

FLC-mediated DNA damage. These plasmid damage assay results indicate that FLC 

binding to iron or copper significantly increases the metal’s ability to generate ROS 

generation and DNA damage (Table 3.1). 

To evaluate whether addition of ascorbic acid changes the effectiveness of FLC in 

causing DNA damage in the presence of Cu2+ or Fe2+, 1.25 equiv. of ascorbic acid was 

added per metal ion. In the Fe2+ system, added ascorbate with and without FLC addition 

results in EC50 values of 187.8 ± 0.4 μM and 180.8 ± 0.3 μM, respectively. When Cu2+ is 

reduced to DNA-damaging Cu+ by ascorbate addition prior to hydrogen peroxide, DNA 

damage is observed (Figure 4.2B, lane 5), and the EC50 value under these conditions is 2.45 

± 0.01 μM. 

 In general, FLC increases copper and irons ability to cause DNA damage. The most 

significant effect is observed when the copper and ascorbate or iron and H2O2 are combined 
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with FLC. FLC halves the EC50 for iron-mediated DNA damage and, in the case of copper, 

changes the stabilizes the more reactive Cu+ resulting in DNA damage.  

FLC-Iron-mediated DNA Damage with DFO Treatment. To evaluate whether FLC 

has similar DNA damaging effects if iron is chelated, one equivalent of the hexadentate 

chelator deferoxamine (DFO), a siderophore produced by soil bacteria and FDA-approved 

drug to treat iron overload,48,49 was added to the Fe2+ solution (prepared with FeSO4) prior 

to addition of DNA. DFO has a low dissociation constant with iron (Kd = 10-31 M),50 so it 

will completely coordinates Fe2+ under the gel conditions. Upon DFO addition, an EC50 of 

7.84 μM ± 0.03 is measured for iron-mediated DNA damage in the presence of hydrogen 

peroxide (Figure 4.13F). For similar DNA damage studies with DFO, constant 

concentrations of 9 μM each for Fe2+ and DFO were chosen because this concentration 

range close to the EC50 for iron-coordinated DFO in the presence of hydrogen peroxide, 

allowing both increased and decreased DNA damage to be readily quantified. FLC in 

various concentrations was added with Fe2+/DFO under these conditions at 1/3:1, 1:1, 3:1 

and 9:1 ratios of FLC to Fe2+/DFO. No change in DNA damage upon addition of FLC 

relative to the Fe:DFO control lanes is observed (Figure 3.4), indicating that direct FLC-

iron coordination is responsible for its enhancement of iron-mediated DNA damage. In 

addition, these results strengthen the observation that FLC-metal coordination is essential 

for DNA damage promotion.  
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Figure 3.4. Percent DNA damage caused by Fe2+ (2 µM) + H2O2 and Fe2+ (9 µM) + DFO (9 µM) + H2O2 

with and without FLC addition (3 µM, 9 µM, 27 µM, and 81 µM, respectively). 

 

3.3 Conclusion 

 Electrochemical studies demonstrate that FLC-metal binding favors Cu+ and Fe2+ 

over Cu2+ and Fe3+, respectively, and mass spectrometry studies indicate FLC-metal 

coordination ratios of only 2:1. Plasmid DNA damage studies show that FLC causes no 

DNA damage by itself or in combination with H2O2 or ascorbate. However, FLC enhancs 

the ability of copper and iron to cause DNA damage, halving the EC50 for iron-mediated 

DNA damage. These experiments highlight the impact of metals for FLC mediated DNA 

damage. Research to date has primarily focused on the impact FLC has on the cell 

membrane of C. neoformans, but these studies show that FLC mechanism of action is more 

complex and could be modulated through the addition of different drugs resulting in drug 

synergism. Since the FLC resistance of C. neoformans is increasing, the use of FLC-metal 

complexes would be worth exploring to enhance DNA damage to the pathogen and reduce 

the development of resistant strains. 
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3.4 Experimental and Methods 

Materials. Water was deionized (diH2O) using a Nano Pure DIamond Ultrapure 

H2O system (Barnstead International). CuSO4 and H2O2 were purchased from Fisher. 3-

(N-morpholino)propanesulfonic acid (MOPS), were attained from Sigma Aldrich. 2-(N-

morpholino)ethanesulfonic acid (MES) was obtained from BDH. FeSO4 was purchased 

from Acros. Ascorbic acid, 99% fluconazole, and NaCl were obtained from Alfa Aesar. 

Mass spectrometry. Matrix assisted laser desorption/ionization time of flight 

(MALDI-TOF) mass spectrometry experiments were performed using a Bruker Microflex 

mass spectrometer with trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyldiene (250.34 

m/z) as the matrix. Samples with 1:1 and 1:4 Cu2+: FLC ratios were prepared by combining 

aqueous solutions of CuSO4 (100 µL; 300 µM) and fluconazole (100 µL; 300 or 1200 µM, 

respectively). Samples with 1:1 and 1:6 Fe2+: FLC ratios were made by combining aqueous 

solutions of FeSO4 (100 µL; 300 µM) and fluconazole (100 µL; 300 or 1800 µM, 

respectively). 

Electrochemical studies of FLC and FLC-metal complexes. Cyclic voltammetry 

(CV) was conducted with a CH Electrochemical Analyzer (CH Instruments, Inc.) at a 

sweep rate of 100 mV/s using a glassy carbon working electrode, a Pt counter electrode, 

and a Ag/AgCl (+0.197 V vs. NHE).51 All experiments were externally referenced to 

potassium ferricyanide (0.361 V vs. NHE).51 Studies were conducted in degassed MOPS 

buffer (10 mM, pH 7.0) for FLC and copper studies or MES buffer (10 mM, pH 6.0) for 

iron studies, with KNO3 (100 mM) as a supporting electrolyte. For iron binding studies, a 

solution of 1:2 iron-FLC ratio was made by adding aqueous solutions of FeSO4 (3 mL; 900 
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µM) and FLC (3 mL; 1800 µM), then diluting with the MES buffer (3 mL; 30 mM). For 

the copper study, a 1:2 solution was made by adding CuSO4 (3 mL; 300 µM) to FLC (3 

mL; 900 µM), then diluting with the MOPS buffer (3 mL; 30 mM). All samples were 

deaerated for 10 minutes with N2 before each experiment. Samples were cycled between  

-0.6 and 1.0 V for copper and -1.0 and 1.0 V for iron complexes. 

Plasmid DNA transfection, amplification, and purification. Plasmid DNA (pBSSK) 

was purified from DH1 E. coli competent cells using a ZyppyTM Plasmid Miniprep Kit 

(400 count, Zymo Research). Tris-EDTA buffer (pH 8.01) was used to elude the plasmid 

from the spin columns. Plasmid was dialyzed against 130 mM NaCl for 24 hours at 4°C to 

ensure all Tris-EDTA buffer and metal contaminates were removed, and plasmid 

concentration was determined by UV-vis spectroscopy at a wavelength of 260 nm. 

Absorbance ratios of A250/A260   0.95 and A260/A280  1.8 were determined for DNA used 

in all experiments. Plasmid purity was determined through digestion of plasmid (0.1 pmol) 

with Sac 1 and KpN1 in a mixture of NEB buffer and BSA (bovine serum albumin) at 37°C 

for 90 minutes. Digested plasmids were compared to an undigested plasmid sample and a 

1 kb molecular weight marker using gel electrophoresis. 

DNA damage gel electrophoresis experiments. Deionized water, MOPS buffer (10 

mM, pH 7.0), NaCl (130 mM), ethanol (100% metal free, 10 mM), as well as the indicated 

concentrations of CuSO4∙5H2O, AA (7.5 µM, to reduce Cu2+ to Cu+), and FLC were 

combined in an acid-washed (1 M HCl for ~ 1 h) microcentrifuge tube and allowed to stand 

for 5 min at room temperature. Plasmid (pBSSK, 0.1 pmol in 130 mmol NaCl) was then 

added to the reaction mixture and allowed to stand for 5 min at room temperature. H2O2 
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(50 µM) was added and allowed to react at room temperature for 30 min. EDTA (50 µM) 

was added after 30 min to quench the reaction. For the Fe2+ DNA damage experiments, the 

indicated FeSO4∙7H2O concentrations and MES (10 mM, pH 6.0) were used. All 

concentrations are final concentrations in a 10 µM volume. Samples were loaded into a 1% 

agarose gel in a TAE running buffer (50); damaged and undamaged plasmid was 

separated by electrophoresis (140 V for 60 min). Gels were stained using ethidium bromide 

and imaged using UV light. The amounts of nicked (damaged) and circular (undamaged) 

were analyzed using UViProMW (Jencons Scientific Inc., 2007). Intensity of circular 

plasmid was multiplied by 1.24, due to the lower binding affinity of ethidium bromide to 

supercoiled plasmid.52,53 Intensities of the nicked and supercoiled bands were normalized 

for each lane so that % nicked + % supercoiled = 100%. All percentages were corrected 

for residual nicked DNA prior to calculation. Results were obtained in triplicate for all 

experiments, and standard deviations are represented as error bars. The plots of percent 

DNA damage versus log concentration of copper or iron were fit to a variable-slope 

sigmoidal dose-response curve using SigmaPlot (v. 11.0, Systat Software, Inc.). 

EC50 Determination. Plots of percent DNA damage versus log concentration of 

FLC or the respective metal were fit to a variable slope sigmoidal dose-response curve 

using SigmaPlot, version 11 (Systat Software, Inc.). EC50 value errors were calculated from 

error propagation of the gel electrophoresis measurements. Statistical significance was 

determined by calculating p values at 95% confidence (p < 0.05 indicates significance) as 

described by Perkowski et al.;54 calculated values can be found in Tables 3.4-3.19. 
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3.5. Supporting Information 
 

Table 3.2. MALDI mass spectrometry data for FLC with Fe2+ and Cu2+ prepared in H2O. 

Metal m/z (Da) Metal:Ligand Ratio 

Copper 693.1 1:2 

Iron 666.7 1:2 

 

 

 
Figure 3.5. MALDI-TOF spectra of the identified A) [Cu(FLC)2(OH)]+ and B) [Fe(FLC)2]+ complexes. 

  

A 

B 
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Table 3.3. CV data for FLC with Fe2+ and Cu2+. 

Metal Epa (mV) Epc (mV) ΔE (mV) E1/2 (mV) 

FLC - - - - 

Copper -83a, 121b -796a, -100b 713a, 212b -440a, 11b 

Copper: FLC (1:2) -73a, 342b -124a, 157b 51a, 499b -99a, 250b 

Iron 263 -133 396 65 

Iron: FLC (1:2) 324 -128 452 98 
a Cu+/0 potential. b Cu2+/+ potential. 

  

  

Figure 3.6. Cyclic voltammograms for A) CuSO4 (100 μM), B) 1:2 Cu2+:FLC (100 μM:200 μM) in MOPS 

buffer (10 mM, pH 7.0), C) FeSO4 (300 μM), and D) 1:2 Fe2+:FLC (300 μM:600 μM) in MES buffer (10 

mM, pH 6.0). All contain KNO3 (10 mM) as a supporting electrolyte. All samples were cycled at a scan 

rate of 100 mV/s.  
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Figure 3.7: Cyclic voltammograms for FLC (300 μM) in MES buffer (10 mM, pH 6.0) with KNO3 (10 

mM) as a supporting electrolyte. The solution was cycled at a scan rate of 100 mV/s. 

 

 
 
Figure 3.8. Gel image of DNA damage by iron with and without H2O2 and FLC. For all gel images, MW: 1 

kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); A) lane 3: p + FeSO4 (2 

μM) + H2O2; lanes 4-12: p + FeSO4 (0.05, 0.5, 5, 25, 37.5, 50, 75, 100, and 150 μM, respectively); B) lanes 

3-10: p + H2O2 + FeSO4, (0.005, 0.5, 0.25, 0.5, 1, 2, 5, and 12.5 μM, respectively); C) lane 3: p + FLC (200 

μM); lane 4: p + FeSO4 (2 μM) + H2O2; lanes 5-10: p + FLC (0.1, 1, 10, 50, 100, and 200 μM, respectively) 

+ FeSO4 (0.05, 0.5, 5, 25, 50, and 100 μM, respectively). 
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Figure 3.9. Gel image of DNA damage by iron with and without H2O2 and FLC and ascorbate. For all gel 

images, MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); A) lane 

3: p +ascorbate (375 μM); lane 4: p + FeSO4 (2 μM) + H2O2; lane 5-11: p + FeSO4 (2, 10, 25, 50, 100, 150, 

500 μM, respectively) + ascorbate (2.5, 12.5, 31.25, 62.5, 125, 187.5, and 375 μM, respectively); B) lane 3: 

p + FLC (600 μM); lane 4: p + H2O2 + FeSO4 (2 μM); lanes 5-11: p + FeSO4 (2, 10, 25, 50, 100, 150, and 

300 μM, respectively) + ascorbate (3.5, 12.5, 31.25, 62.5, 125, 187.5, and 375 μM, respectively) + FLC (4, 

20, 50, 100, 200, 300, and 600 μM, respectively); C) lane 3: p + H2O2 + FeSO4 (2 μM); lanes 4-12: p + FeSO4 

(0.005, 0.5, 0.25, 0.5, 0.75, 1, 1.5, 2 and 5 μM, respectively) + ascorbate (0.00625, 0.0625, 0.3125, 0.625, 

0.9375, 1.25, 1.875, 2.5 and 6.25 μM, respectively); D) lane 3: p + H2O2+ FLC (20 μM) + ascorbate (12.5 

μM); lane 4: p + H2O2 + FeSO4 (2 μM); lanes 5-13: p + H2O2 + FeSO4 (0.005, 0.5, 0.25, 0.5, 0.75, 1, 1.5, 2 

and 5 μM, respectively) + FLC (0.01, 0.1, 0.5, 1, 1.5, 2, 3, 4,and 10 μM, respectively) + ascorbate (0.00625, 

0.0625, 0.3125, 0.625, 0.9375, 1.25, 1.875, 2.5 and 6.25 μM, respectively). 
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Figure 3.10. Gel image of DNA damage by copper FLC, H2O2 and, where indicated, ascorbate. For all gel 

images, MW: 1 kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 (50 μM); A) lanes 

3-15: p + H2O2 + CuSO4 (0.05, 0.5, 2, 3, 4, 5, 6, 7, 8 and 12.5 μM, respectively) + ascorbate (0.0625, 0.625, 

2.5, 3.75, 5, 6.25, 7.5, 8.75, 10 and 15.625 μM, respectively); B) lane 3: p + FLC (600 μM); lane 4: p + H2O2 

+ CuSO4 (6 μM) + ascorbate (7.5 μM); lane 5: p + CuSO4 (300 μM); lanes 6-11: p + FLC (0.1, 1, 10, 100, 

300, and 600 μM, respectively) + CuSO4 (0.05, 0.5, 5, 50, 150, and 300 μM, respectively); C) lane 3: p + 

FLC (600 μM); lane 4: p + H2O2 + CuSO4 (6 μM) + ascorbate (7.5 μM); lanes 5-12: p + CuSO4 (0.05, 0.5, 5, 

12.5, 25, 50, 150, and 300 μM, respectively) + ascorbate (0.0625, 0.625, 6.25, 15.625, 31.25, 62.5, 187.5, 

and 375 μM, respectively) + FLC (0.1, 1, 10, 25, 50, 100, 300, and 600 μM, respectively); D) lane 3: p + 

H2O2 + FLC (25 μM); lane 4: p + FLC (25 μM); lane 5: p + H2O2+ CuSO4 (6 μM) + ascorbate (7.5 μM); lane 

6: p + H2O2 + CuSO4 (12.5 μM); lanes 7-12: p + H2O2 + FLC (0.1, 1, 5, 10, 18, and 25 μM, respectively) + 

CuSO4 (0.05, 0.5, 2.5, 5, 9, and 12.5 μM, respectively); E) lane 3: p + H2O2 + FLC (600 μM); lane 4: p + 

FLC (600 μM); lane 5: p + H2O2 + FLC (600 μM) + ascorbate (375 μM); lane 6: p + FLC (600 μM) + 

ascorbate (375 μM); lane 7: p + H2O2 + CuSO4 (6 μM) + ascorbate (7.5 μM); lanes 8-15: p + H2O2 + CuSO4 

(0.05, 0.5, 5, 12.5, 25, 50, 150, and 300 μM, respectively) + ascorbate (0.0625, 0.625, 6.25, 15.625, 31.25, 

62.5, 87.5, and 375 μM, respectively) + FLC (0.1, 1, 10, 25, 50, 100, 300, and 600 μM, respectively). 
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Figure 3.11. Gel image of DNA damage by copper or iron FLC, H2O2, and DFO. For all gel images, MW: 1 

kb molecular weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2. (50 μM); A) lane 3:p + H2O2 + 

DFO (50 μM); lane 4: p + DFO (50 μM); lane 5: p + FeSO4 (50 μM) + DFO (50 μM); lane 6: p + H2O2 + 

FeSO4 (2 μM); lanes 7-8: p + H2O2 +FeSO4 (0.1, 1, 2, 5, 7.5, 10, 25, and 50 μM, respectively) + DFO (0.1, 

1, 2, 5, 7.5, 10, 25, and 50 μM, respectively, respectively); B) lane 3: p + FeSO4 (9 μM); lane 4: p + H2O2 + 

FLC (9 μM); lane 5: p + H2O2+ FeSO4 (9 μM) + DFO (9 μM); lane 6: p + FeSO4 (9 μM) + DFO (9 μM); lane 

7: p + H2O2 + FeSO4 (2 μM); lanes 8-10: p + H2O2 + FeSO4 (9 μM) + DFO (9 μM) + FLC (3 μM); lanes 11-

13: p + H2O2 + FeSO4 (9 μM) + DFO (9 μM) + FLC (9 μM); lanes 14-16: p + H2O2 + FeSO4 (9 μM) + DFO 

(9 μM) + FLC (27 μM); lanes 17-19: p + H2O2 +FeSO4 (9 μM),+ DFO (9 μM) + FLC (81 μM).  
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Figure 3.12. Dose-response curves for DNA damage by A) Cu2+ and FLC, B) Cu2+, FLC, and H2O2, and C) 

Cu2+and ascorbate with and without FLC. 
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Figure 3.13. Dose-response curves for DNA damage by A) Fe2+; B) Fe2+ and FLC; C) Fe2+ and ascorbate 

(AA) with and without FLC; D) Fe2+, ascorbate, and H2O2 with and without FLC; and E) Fe2+, DFO, and 

H2O2. 
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Table 3.4. Gel electrophoresis results for FLC DNA damage assays with Cu2+ and H2O2.a 

Gel lane [FLC], μM 
% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.87 ± 0.19 0.13 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + FLC + H2O2 25 100 ± 0 0 - - 

4: p + FLC 25 100 ± 0 0 - - 

5: p + Cu2+ (6 µM) + AA (7.5 µM) 

+ H2O2 
0 4.42 ± 0.05 95.58 - - 

6: p + Cu2+ (12.5 µM) + H2O2 0 100 ±0 0 -1 ± 0 < 0.001 

7: p + Cu2+ (0.05 μM) + FLC + 

H2O2 
0.5 99.91 ± 0.12 0.09 -0.91 ± 0 < 0.001 

8: p + Cu2+ (0.5 μM) + FLC + 

H2O2 
1 100 ± 0 0 -1 ± 0 < 0.001 

9: p + Cu2+ (2.5 μM) + FLC + 

H2O2 
5 100 ± 0 0 -1 ± 0 < 0.001 

10: p + Cu2+ (5 μM) + FLC + H2O2 10 96.68 ± 2.54 3.32 2.32 ± 2.54 0.254 

11: p + Cu2+ (9 μM) + FLC + H2O2 18 81.57 ± 2.49 18.43 17.43 ±2.49 0.007 

12: p + Cu2+ (12.5 μM) + FLC + 

H2O2 
25 63.33 ± 5.6 36.67 35.67 ± 5.6 0.008 

aData are reported as the average of three trials with calculated standard deviations shown. 

Table 3.5. Gel electrophoresis results for FLC DNA damage assays with Cu2+, ascorbate (AA) and H2O2.a 

Gel lane 
[FLC], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + FLC + H2O2 600 100 ± 0 0 - - 

4: p + FLC 600 100 ± 0 0 - - 

5: p + Cu2+ (6 µM) + AA (7.5 µM) + 

H2O2 
0 18.40 ± 3.29 81.60 - - 

6: p + Cu2+ (0.05 µM) + AA (0.0625 

µM) + FLC + H2O2 
0.1 99.97 ± 0.03 0.03 -0.97 ± 0.03 < 0.001 

7: p + Cu2+ (0.5 μM) + AA (0.625 µM) 

+ FLC + H2O2 
1 100 ± 0 0 -1 ± 0 < 0.001 

8: p + Cu2+ (5 μM) + AA (6.25 µM) + 

FLC + H2O2 
10 71.44 ± 3.11 28.56 27.56 ± 3.11 0.004 

9: p + Cu2+ (12.5 μM) + AA (15.625 

µM) + FLC + H2O2 
25 0.12 ± 0.17 99.88 98.88 ± 0.17 < 0.001 

10: p + Cu2+ (25 μM) + AA (31.25 µM) 

+ FLC + H2O2 
50 0 ± 0 100 99.00 ± 0 < 0.001 

11: p + Cu2+ (50 μM) + AA (62.5 µM) + 

FLC + H2O2 
100 0.24 ± 0.34 99.76 98.76 ±0.34 < 0.001 

12: p + Cu2+ (150 μM) + AA (187.5 

µM) + FLC + H2O2 
300 0.65 ± 0.92 99.35 98.35 ±0.92 < 0.001 

13: p + Cu2+ (300 μM) + AA (375 µM) 

+ FLC + H2O2 
600 0 ± 0 100.00 99.00 ± 0 < 0.001 

aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.6. Gel electrophoresis results for FLC DNA damage assays with Cu2+ and ascorbate (AA).a 

Gel lane 
[FLC], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0.00 - - 

3: p + FLC + H2O2 600 99.97 ± 0.03 0.03 - - 

4: p + Cu2+ (6 µM) + AA (7.5 µM) 0 18.40 ± 3.29 81.60 - - 

5: p + Cu2+ (0.05 µM) + AA (0.0625 

µM) + FLC 
0.1 100 ± 0 0.00 -1 ± 0 < 0.001 

6: p + Cu2+ (0.5 µM) + AA (0.625 µM) + 

FLC 
1 99.93 ± 0.13 0.07 -0.97 ± 0.13 0.006 

7: p + Cu2+ (5 μM) + AA (6.25 µM) + 

FLC 
10 100 ± 0 0.00 -1 ± 0 < 0.001 

8: p + Cu2+ (12.5 μM) + AA (15.625 µM) 

+ FLC 
25 93.10 ± 5.99 6.90 5.90 ± 5.99 0.230 

9: p + Cu2+ (25 μM) + AA (31.25 µM) + 

FLC 
50 7.36 ± 5.29 92.64 91.64 ± 5.29 0.001 

10: p + Cu2+ (75 μM) + AA (91.75 µM) 

+ FLC 
150 0.40 ± 0.70 99.60 98.60 ± 0.70 < 0.001 

11: p + Cu2+ (150 μM) + AA (187.5 µM) 

+ FLC 
300 0 ± 0 100.00 99.00 ± 0 < 0.001 

12: p + Cu2+ (300 μM) + AA (375 µM) + 

FLC 
600 0 ± 0 100.00 99.00 ± 0 < 0.001 

aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.7. Gel electrophoresis results for FLC DNA damage assays with Cu2+.a 

Gel lane 
[FLC] 

µM 
% Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + FLC 600 100 ± 0 0 - - 

4: p + Cu2+ (6 µM) + AA (7.5 µM) + 

H2O2 
0 18.40 ± 3.29 81.60 - - 

5: p + Cu2+ (300 μM) 0 100 ± 0 0 -1 ± 0 < 0.001 

6: p + Cu2+ (0.05 μM) + FLC 0.1 100 ± 0 0 -1 ± 0 < 0.001 

7: p + Cu2+ (0.5 μM) + FLC 1 100 ± 0 0 -1 ± 0 < 0.001 

8: p + Cu2+ (5 μM) + FLC 10 100 ± 0 0 -1 ± 0 < 0.001 

9: p + Cu2+ (50 μM) + FLC 100 100 ± 0 0 -1 ± 0 < 0.001 

10: p + Cu2+ (150 μM) + FLC 300 100 ± 0 0 -1 ± 0 < 0.001 

11: p + Cu2+ (300 μM) + FLC 600 100 ± 0 0 -1 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.8. Gel electrophoresis results for CuSO4 DNA damage assays with ascorbate (AA).a 

Gel lane 
[Cu2+], 

μM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 99.94 ± 0.09 0.06 – – 

2: p + H2O2 0 99.85 ± 0.27 0.15 – – 

3: p + Cu2+ + AA (7.5 μM) + H2O2 6 12.44 ± 3.47 87.56 - – 

4: p + Cu2+ + AA (1.25 μM) 1 100 ± 0 0 -1.15 ± 0.27 < 0.001 

5: p + Cu2+ + AA (7.5 μM) 6 97.03 ± 1.18 2.97 1.82 ± 1.09 0.102 

6: p + Cu2+ + AA (11.25 μM) 9 96.57 ± 0.57 3.43 2.28 ± 0.70 0.030 

7: p + Cu2+ + AA (18.75 μM) 15 93.10 ± 1.45 6.90 5.74 ± 1.63 0.026 

8: p + Cu2+ + AA (31.25 μM) 25 46.72 ± 3.87 53.28 52.13 ± 4.14 0.002 

9: p + Cu2+ + AA (43.75 μM) 35 28.03 ± 0.62 71.97 70.82 ± 0.86 < 0.001 

10: p + Cu2+ + AA (62.5 μM) 50 15.39 ± 7.00 84.61 83.45 ± 6.82 0.002 

11: p + Cu2+ + AA (93.75 μM) 75 2.50 ± 2.71 97.50 96.34 ± 2.50 < 0.001 

12: p + Cu2+ + AA (125 μM) 100 0.00 ± 0 100.00 98.85 ± 0.27 < 0.001 

13: p + Cu2+ + AA (625 μM) 500 0.14 ± 0.24 99.86 98.71 ± 0.51 < 0.001 

14: p + Cu2+ + AA (1250 μM) 1000 0.49 ± 0.69 99.51 98.36 ± 0.64 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.9. Gel electrophoresis results for DNA damage assays with Cu2+, ascorbate (AA) and H2O2.a 

Gel lane 
[Cu2+], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ±0 0 - - 

3: p + Cu2+ + AA (0.0625 µM) + H2O2 0.05 100 ± 0 0 ± 0 0 ± 0  

4: p + Cu2+ + AA (0.625 µM) + H2O2 0.5 100 ± 0 0 ± 0 0 ±0  

5: p + Cu2+ + AA (2.5 µM) + H2O2 2 60.86 ± 2.73 39.14 38.14 ± 2.73 0.002 

6: p + Cu2+ + AA (3.75 µM) + H2O2 3 35.39± 7.79 64.61 63.61 ± 7.79 0.005 

7: p + Cu2+ + AA (5 µM) + H2O2 4 22.99 ±5.44 77.01 76.01 ± 5.44 0.002 

8: p + Cu2+ + AA (6.25 µM) + H2O2 5 9.86 ± 3.96 90.14 89.14 ± 3.96 < 0.001 

9: p + Cu2+ + AA (7.5 µM) + H2O2 6 7.42 ± 2.17 92.58 92.58 ± 2.17 < 0.001 

10: p + Cu2+ + AA (8.75µM) + H2O2 7 2.28 ± 3.52 97.72 96.72 ± 3.52 < 0.001 

11: p + Cu2+ + AA (10 µM) + H2O2 8 0.00 ± 0 100.00 99.0 ± 0 < 0.001 

12: p + Cu2+ + AA (15.625 µM) + 

H2O2 
12.5 

0.00 ± 0 100.00 

100 ± 0 
< 0.001 

aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.10. Gel electrophoresis results for FLC DNA damage assays with Fe2+, and H2O2.a 

Gel lane 
[FLC], 

µM 
% Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ±0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + FLC + H2O2 50 100 ± 0 0 - - 

4: p + FLC 50 100 ± 0 0 - - 

5: p + Fe2+ (2 μM) + H2O2 0 6.35 ±5.53 93.65 - - 

6: p + Fe2+ (0.005 μM) + FLC + H2O2 0.01 100 ± 0 0 -1 ± 0 < 0.001 

7: p + Fe2+ (0.05 μM) + FLC + H2O2 0.1 90.20 ± 0.10 9.8 8.8 ± 0.01 < 0.001 

8: p + Fe2+ (0.25 μM) + FLC + H2O2 0.5 60.46 ± 0.58 39.54 38.54 ± 0.58 < 0.001 

9: p + Fe2+ (0.5 μM) + FLC + H2O2 1 61.65 ±1.22 38.35 37.35 ± 1.22 < 0.001 

10: p + Fe2+ (1 μM) + FLC + H2O2 2 11.95 ± 5.69 88.05 87.05 ± 5.69 0.001 

11: p + Fe2+ (2.5 μM) + FLC + H2O2 5 3.03 ± 4.28 96.97 95.97 ± 4.28 < 0.001 

12: p + Fe2+ (5 μM) + FLC + H2O2 10 3.79 ± 0.76 96.21 95.21 ± 0.76 < 0.001 

13: p + Fe2+ (25 μM) + FLC + H2O2 50 4.43 ± 2.02 95.57 94.57 ± 2.02 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.11. Gel electrophoresis results for Fe2+ DNA damage assays with H2O2.a 

Gel lane 
[Fe2+]

, µM 
% Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + Fe2+ + H2O2 0.005 100 ± 0 0 -1 ± 0 < 0.001 

4: p + Fe2+ + H2O2 0.05 100 ± 0 0 -1 ± 0 < 0.001 

5: p + Fe2+ + H2O2 0.25 100 ± 0 0 -1 ± 0 < 0.001 

6: p + Fe2+ + H2O2 0.5 100 ± 0 0 -1 ± 0 < 0.001 

7: p + Fe2+ + H2O2 1 53.49 ± 5.0 46.51 45.51 ± 5.0 0.004 

8: p + Fe2+ + H2O2 2 9.51 ± 5.88 90.49 89.49 ± 5.88 0.001 

9: p + Fe2+ + H2O2 5 0.73 ± 1.03 99.27 98.27 ± 1.03 < 0.001 

10: p + Fe2+ + H2O2 12.5 1.51 ± 2.14 98.49 97.49 ± 2.14 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.12. Gel electrophoresis results for FLC DNA damage assays with Fe2+.a 

Gel lane 
[FLC], 

µM 
% Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + FLC + H2O2 200 100 ± 0 0 - - 

4: p + Fe2+ (2 μM) + H2O2 0 16.35 ± 5.53 83.65 - - 

5: p + Fe2+ (0.05 μM) + FLC 0.1 100 ± 0 0 -1 ± 0 < 0.001 

6: p + Fe2+ (0.5 μM) + FLC 1 100 ±0 0 -1 ± 0 < 0.001 

7: p + Fe2+ (5 μM) + FLC 10 100 ±0 0 -1 ± 0 < 0.001 

8: p + Fe2+ (25 μM) + FLC 50 100 ±0 0 -1 ± 0 < 0.001 

9: p + Fe2+ (50 μM) + FLC 100 100 ±0 0 -1 ± 0 < 0.001 

10: p + Fe2+ (100 μM) + FLC 200 100 ±0 0 -1 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.13. Gel electrophoresis results for Fe2+ DNA damage assays.a 

Gel lane 
[Fe2+], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage p Value 

1: plasmid DNA (p) 0 100 ± 0 0 - - 

2: p + H2O2 (50 µM) 0 100 ± 0 0 - - 

3: p + Fe2+ + H2O2 0 6.35 ± 5.53 93.65 - - 

4: p + Fe2+ 0.005 100 ±0 0 -1 ± 0 < 0.001 

5: p + Fe2+ 0.5 100 ± 0 0 -1 ± 0 < 0.001 

6: p + Fe2+ 5 100 ± 0 0 -1 ± 0 < 0.001 

7: p + Fe2+ 25 100 ± 0 0 -1 ± 0 < 0.001 

8: p + Fe2+ 37.5 100 ± 0 0 -1 ± 0 < 0.001 

9: p + Fe2+ 50 100 ± 0 0 -1 ± 0 < 0.001 

10: p + Fe2+ 75 100 ± 0 0 -1 ± 0 < 0.001 

11: p + Fe2+ 100 100 ± 0 0 -1 ± 0 < 0.001 

12: p + Fe2+ 150 100 ± 0 0 -1 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.14. Gel electrophoresis results for Fe2+ DNA damage assays with ascorbate (AA).a 

Gel lane 
[Fe2+], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.77 ± 0.21 0.23 - - 

3: p + AA (375 µM)  97.36 ± 4.57 2.64 - - 

4: p + Fe2+ + H2O2 2 13.62 ± 4.56 86.38 - - 

5: p + Fe2+ + AA (2.5 µM) 2 100.00 ± 0 0.00 -0.23 ± 0 
< 

0.001 

6: p + Fe2+ + AA (12.5 µM) 10 99.97 ± 0.06 0.03 -0.20 ± 0.06 0.029 

7: p + Fe2+ + AA (31.25 µM) 25 99.93 ± 0.13 0.07 -0.16 ± 0.13 0.167 

8: p + Fe2+ + AA (62.5 µM) 50 99.95 ± 0.08 0.05 -0.18 ± 0.08 0.060 

9: p + Fe2+ + AA (125 µM) 100 91.94 ± 2.96 8.06 7.83 ± 2.96 0.045 

10: p + Fe2+ + AA (187.5 µM) 150 68.66 ± 2.77 31.34 31.11 ± 2.77 0.003 

11: p + Fe2+ + AA (375 µM) 300 26.24 ± 5.73 73.76 73.53 ± 5.73 0.002 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.15. Gel electrophoresis results for Fe2+ DNA damage assays with ascorbate (AA), FLC, and H2O2.a 

Gel lane 
[FLC], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 98.49 ± 2.07 1.51 - - 

3: p + FLC + AA (12.5 µM) + H2O2 20 98.46 ± 2.66 1.54 - - 

4: p + Fe2+ (µM) + H2O2 0 10.17 ± 8.90 89.83 - - 

5: p + FLC + Fe2+ (0.005 µM) + AA 

(0.00625 µM) + H2O2 
0.01 99.89 ± 0.26 0.11 -1.40 ± 0.26 0.011 

6: p + FLC + Fe2+ (0.05 µM) + AA 

(0.0625 µM) + H2O2 
0.1 99.89 ± 0.23 0.11 0.11 ± 0.23 0.495 

7: p + FLC + Fe2+ (0.25 µM) + AA 

(0.3125 µM) + H2O2 
0.5 55.41 ± 4.75 44.59 43.08 ± 4.75 0.004 

8: p + FLC + Fe2+ (0.5 µM) + AA 

(0.625 µM) + H2O2 
1 53.56 ± 4.75 46.44 44.93 ± 4.75 0.004 

9: p + FLC + Fe2+ (0.75 µM) + AA 

(0.9375 µM) + H2O2 
1.5 34.53 ± 8.93 65.47 63.96 ± 8.93 0.006 

10: p + FLC + Fe2+ (1 µM) + AA (1.25 

µM) + H2O2 
2 6.46 ± 6.69 93.54 92.03 ± 6.69 0.002 

11: p + FLC + Fe2+ (1.5 µM) + AA 

(1.875 µM) + H2O2 
3 1.53 ± 3.27 98.47 96.96 ±3.27 

< 

0.001 

12: p + FLC + Fe2+ (2 µM) + AA (2.5 

µM) + H2O2 
4 0.29 ± 0.51 99.71 98.20 ± 0.51 

< 

0.001 

13: p + FLC + Fe2+ (5 µM) + AA (6.25 

µM) + H2O2 
10 0.01 ± 0.01 99.99 98.48 ± 0.01 

< 

0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.16. Gel electrophoresis results for Fe2+ DNA damage assays with ascorbate (AA) and FLC.a 

Gel lane 
[FLC]

, µM 

% 

Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.95 ± 0.09 0.05 - - 

3: p + FLC 600 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) 0 6.72 ± 3.60 93.28 - - 

5: p + Fe2+ (2 µM) + AA (1.5 µM) + FLC 4 97.05 ± 4.96 2.95 2.90 ± 4.96 0.418 

6: p + Fe2+ (10 µM) + AA (12.5 µM) + 

FLC 
20 

97.15 ± 4.76 2.85 2.80 ± 4.76 
0.415 

7: p + Fe2+ (25 µM) + AA (31.25 µM) + 

FLC 
50 

96.80 ± 4.93 3.20 3.15 ± 4.93 
0.384 

8: p + Fe2+ (50 µM) + AA (62.5 µM) + 

FLC 
100 

95.27 ± 3.27 4.73 4.68 ± 3.27 
0.131 

9: p + Fe2+ (100 µM) + AA (125 µM) + 

FLC 
200 

81.35 ± 4.15 18.65 18.60 ± 4.15 
0.016 

10: p + Fe2+ (150 µM) + AA (187.5 µM) + 

FLC 
300 

59.31 ± 3.03 40.69 40.64 ± 3.03 
0.002 

11: p + Fe2+ (300 µM) + AA (375 µM) + 

FLC 
600 

37.11 ± 1.00 62.89 62.84 ±1.00 
< 0.001 

aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 3.17. Gel electrophoresis results for Fe2+ DNA damage assays with ascorbate (AA) and H2O2.a 

Gel lane 
[Fe2+], 

µM 

% 

Supercoiled 

% 

Nicke

d 

% Damage  p Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.39 ± 1.05 0.61 - - 

3: p + Fe2+ + H2O2 2 4.59 ± 2.49 95.41 - - 

3: p + Fe2+ + AA (0.00625 µM) + H2O2 0.005 98.58 ± 1.92 1.42 0.81 ± 1.92 0.541 

3: p + Fe2+ + AA (0.0625 µM) + H2O2 0.05 98.01 ± 3.44  1.99 1.38 ± 3.44 0.559 

3: p + Fe2+ + AA (0.625 µM) + H2O2 0.5 76.07 ± 4.20 23.93 23.33 ± 4.20 0.011 

3: p + Fe2+ + AA (0.9375 µM) + H2O2 0.75 58.97 ± 4.46 41.03 40.42 ± 4.46 0.004 

3: p + Fe2+ + AA (1.25 µM) + H2O2 1 19.71 ± 4.64 80.29 79.69 ± 4.64 0.001 

3: p + Fe2+ + AA (1.875 µM) + H2O2 1.5 12.92 ± 5.21 87.08 86.47 ± 5.21 0.001 

3: p + Fe2+ + AA (2.5 µM) + H2O2 2 2.34 ± 2.34 97.66 97.05 ± 2.34 < 0.001 

3: p + Fe2+ + AA (5 µM) + H2O2 5 0.03 ± 0.06 99.97 99.36 ± 0.06 < 0.001 

3: p + Fe2+ + AA (10 µM) + H2O2 10 0.33 ±0.57 99.67 99.07 ± 0.57 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 3.18. Gel electrophoresis results for Fe2+ DNA damage assays with H2O2 and DFO.a 

Gel lane 
[DFO], 

µM 

% 

Supercoiled 

% 

Nicked 
% Damage  p Value 

1: plasmid DNA (p) 0 99.95 ± 0.08 0.08 - - 

2: p + H2O2 (50 µM) 0 98.55 ± 1.25 01.45 - - 

3: p + DFO + H2O2 50 98.87 ± 1.34 1.13 - - 

4: p + DFO 50 93.62 ± 2.65 6.38 - - 

5: p + Fe2+ (50 µM) + DFO 50 92.34 ± 2.23 7.66 - - 

6: p + Fe2+ (2 µM) + H2O2 0 12.43 ± 6.92 87.57 - - 

7: p + Fe2+ (0.1 µM) + H2O2 + DFO 0.1 97.54 ± 1.62 2.46 1.01 ± 1.62 0.393 

8: p + Fe2+ (1 µM) + H2O2 + DFO 1 93.23 ± 5.81 6.77 5.32 ± 5.81 0.254 

9: p + Fe2+ (2 µM) + H2O2 + DFO 2 61.33 ± 8.42 38.67 37.22 ± 8.42 0.166 

10: p + Fe2+ (5 µM) + H2O2 + DFO 5 62.31 ± 9.05 37.69 36.52 ± 9.05 0.199 

11: p + Fe2+ (7.5 µM) + H2O2 + DFO 7.5 38.41 ± 6.28 61.59 60.15 ± 6.28 0.004 

12: p + Fe2+ (10 µM) + H2O2 + DFO 10 31.94 ± 9.72 68.06 66.61 ± 9.72 0.007 

13: p + Fe2+ (25 µM) + H2O2 + DFO 25 16.65 ± 4.69 83.35 81.90 ± 4.69 0.001 

14: p + Fe2+ (50 µM) + H2O2 + DFO 50 1.40 ± 2.43 98.60 97.15 ± 2.43 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

 

Table 3.19. Statistical analysis of Fe2+ and Fe2+ FLC DNA damage through one-tailed t-test analysis. 

[Fe2+], µM % DNA Damage Fe2+ % DNA Damage Fe2+ + FLC p Value 

0.005 -1 ± 0 -1 ± 0 < 0.001 

0.05 -1 ± 0 8.8 ± 0.01 < 0.001 

0.25 -1 ± 0 38.54 ± 0.58 < 0.001 

0.5 -1 ± 0 37.35 ± 1.22 < 0.001 

1 45.51 ± 5.00 87.05 ± 5.69 0.006 

2 89.49 ± 1.03 95.97 ± 4.28 0.120 

5 98.27 ± 2.14 95.21 ± 0.76 0.002 
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CHAPTER FOUR 

INVESTIGATION OF PROCYANIDIN-RICH CONDENSED TANNINS FOR 

PREVENTION OF COPPER- AND IRON-MEDIATED DNA DAMAGE 

 

 

4.1 Introduction 

 Condensed tannins occur in a variety of common fruits and vegetables1 and are 

noted for a variety of effects on human health,2–4 often attributed to their antioxidant 

activity.5–8 Cranberry (Vaccinium macrocarpon) consumption is associated with many 

health benefits,9 including prevention of urinary tract infections.10,11 V. macrocarpon 

extract has been reported to have anti-virulence,12 anti-bacterial,13 and anti-microbal8,14 

activities as well as antioxidant and anticancer activities in vitro and in vivo.11,15–18 

Cranberry extract consumption may also protect against diet-induced obesity,19,20 and 

cranberry juice exhibits cardioprotective effects due to its antioxidant abilities; however, 

the cause of these effects must be further investigated to exploit these applications.21 

 Many of the health benefits of cranberry consumption are attributed to polyphenol 

compounds in V. macrocarpon. These polyphenols protect liver cells from oxidative stress 

through observed modulation of glutathione concentration, prevention of reactive oxygen 

species generation and lipid peroxidation, antioxidant enzyme activity, and cell signaling 

pathways.22 Condensed tannins (CTs), also known as proanthocyanidins (PCs), are a group 

of plant secondary metabolite polyphenols that are comprised of oligomers and polymers 

of flavan-3-ol subunits.23–26 In V. macrocarpon, these tannins are comprised of a group of 

heterogeneous structures, with the polyphenol (-)-epicatechin being the predominant  
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Figure 4.1. In box: Structures of catechol and gallol groups and their metal coordination modes. Outside 

box: an example condensed tannin structure showing A-type and B-type linkages, selected polyphenol 

structures, and the structure of 2,2-diphenyl-1-picrylhydrazyl (DPPH). 

 

constitutive unit with trace amounts of (+)-catechin and (epi)gallocatechin (EGCG).21,25,26 

Proanthrocyanin concentrations in cranberries are observed from 13.6 to 419 mg/100 g 

depending on fruit size, ripeness, variety and other factors, making it a potentially 

significant dietary source of proanthrocyanins.27,27  

Polyphenol concentrations of 80 μg/mL in human blood plasma after consumption 

of 1800 mL cranberry juice are reported,22,27,28 but the number of studies evaluating the 

bioavailability of proanthrocyanins is limited, since the interest in their health benefits is 

recent and purification of sufficient amounts for testing has been a significant challenge.8 

The distribution of the subunits catechin, EC, EGC, and EGCG (Figure 5.1) in CTs 

can vary depending on the source of the CTs. Additionally, these subunits can be connected 
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via a number of interflavan-3-ol linkages but the most commonly isolated CTs contain 

three types of bond connectivity. Two of these types have single bonds from either the C-

4 carbon to the C-8 carbon (4,8-B-type interflavan-3-ol linkage; Figure 5.1) or the C-4 

carbon to the C-6 carbon (4,6-B-type interflavan-3-ol linkage; Figure 5.1) of adjacent 

flavan-3-ol subunits. One additional common type of interflavan-3-ol linkage involves 

formation of two single bonds between adjacent flavan-3-ol subunits, involving both C-C 

and C-O bonds and is referred to as an A-type interflavan-3-ol linkage (Figure 4.1). 

Condensed tannins possess catechol or gallol substituents (Figure 4.1; inside box) 

on the B-ring of the constituent flavan-3-ol subunits. These phenolic moieties have been 

shown to prevent oxidative DNA damage caused by the Fenton reaction (Reaction 1).29,30 

Overproduction of hydroxyl radical can result in oxidative damage and other biomolecules 

and is an underlying cause of neurodegenerative diseases, cancer, and many other 

conditions.31 In vitro and in cells, polyphenols can prevent iron-mediated DNA damage 

from hydroxyl radical by coordinating Fe2+.29,30,32–34 Polyphenol binding to Fe2+ promotes 

autooxidation to non-hydroxyl-generating Fe3+ in the presence of O2.
30  

 Fe2+/Cu+  +  H2O2  → Fe3+/Cu2+  +  •OH  + OH-  (1) 

In this study, we investigated the antioxidant capabilities of a series of procyanidin-

rich CTs with different structural features for their ability to inhibit copper and iron-

mediated DNA damage, including purified CTs from V. macrocarpon (cranberry), 

Humulus lupulus (hops), Vitis vinifera (grapeseed) and Tilia inflorescentia (lime tree) 

flowers. The activity of these CTs was also compared to the activity of six commercially 

available polyphenolic compounds (Figure 4.1): epigallocatechin (EGC), 
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(-)-epigallocatechin-3-gallate (EGCG), gallic acid (GA), epicatechin (EC), epicatechin 

gallate (ECG), and tannic acid (TA). No study has investigated the effect of the different 

CT linkages and degree of galloylation and the resulting 3-dimensional structural changes, 

but Brumaghim et al.29,30,35,36 highlighted the importance of metal interaction for the 

antioxidant activity of proanthocyanidins.  This is the first study to investigate CTs with 

structural differences and their ability to prevent metal-mediated DNA damage. 

CTs from cranberry (V. macrocarpon), hops (H. lupulus), grapeseed (V. vinifera 

seed), and lime tree (T. inflorescentia flowers) were extracted and purified by Dr. Wayne 

Zeller, Research Chemist at the United States Department of Agriculture, U.S. Dairy 

Forage Research Center in Madison, Wisconsin.  This research was supported by National 

Science Foundation grants CHE 1213912 and 1807709. 

 

4.2 Results and Discussion 

Compositional Analysis of Purified Condensed Tannins. The aim of this project is to 

overcome the difficulty of purifying CTs with specific structural characteristics, therefore 

enabling the investigation in their ability to prevent metal-mediated DNA damage in vitro 

in comparison to their subunits. Zeller et al.37,38 have previously shown that volume 

integration ratios of appropriate cross-peak signals in 1H-13C HSQC NMR spectra provide 

a strong correlation with thiolysis data in determination of procyanidin/prodelphinidin 

(PC/PD) and cis/trans ratios, mean degree of polymerization (mDP), percent galloylation, 

and A-type interflavan linkages (Table 4.1). The mDP for the purified CTs were similar as 

were the PC/PD and cis/trans ratios. V. vinifera seed CTs were included in this study to  
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Table 4.1. Classification of condensed tannin flavan-3-ol subunits and interflavan-3-ol linkages (ND = not 

detected). 

CT Source 
mDP 

NMR/thio 

PC/PD 

NMR/thio 

cis/trans 

NMR/thio 

%galloyl 

NMR/thio 

%A-

type 
Method 

V. macrocarpon 

(cranberry) 
7.4 95/5 90/10 ND 28 NMR 

H. lupulus (hops) 6.4 92/8 72/28 ND 2.6 NMR 

V. vinifera 

(grapeseed) 

4.2 (NMR) 

5.6 (thio) 

>99/1 (NMR) 

100/0 (thio) 

73/27 (NMR) 

81/19 (thio) 

16.5 (NMR) 

18 (thio) 
2.5 

NMR/ 

thiolysis 

T. inflorescentia 
(lime tree) 

5.4 (NMR) 

9.4 (thio) 

>99/1 (NMR) 

99/1 (thio) 
91/9 ND ND 

NMR/ 

thiolysis 

 

examine the effect of C-3 galloylation. A-type linkages were prevalent in the V. 

macrocarpon CTs but were also present, to a small degree (~3%), in the CTs purified from 

H. lupulus. 

CTs from cranberry (V. macrocarpon), hops (H. lupulus), grapeseed (V. vinifera 

seed), and lime tree (T. inflorescentia flowers) were chosen for their similar mean degree 

of polymerization and similar average molecular weights, on average 4.2-6.5 flavan-3-ol 

subunits on average (Table 4.1). The mean degree of polymerization can affect antioxidant 

activity as highlighted by Gaulejac et al.,39 who reported an up to 2-fold increase in 

antioxidant activity as measured by scavenging of superoxide anion radical by 

proanthocyanidins from grape extracts with mDP of 1 to 4.  

Jerez et al.40 also observed an increase in the ability to scavenge 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radicals (Figure 4.1) up to by proanthocyanidins with mDP of 6-7 

from barks. V. macrocarpon condensed CTs contain mostly A-type linkages (C2-C7 and 

O7-C2; Figure 4.1),21 whereas T. inflorescentia has primarily B-type linkages (C4-C8 or 
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C4-C6; Figure 4.1).41 In addition, H. lupulus CTs have a relatively high number of trans 

flavan-3-ol subunits containing a higher catechin concentration than epicatechin. V. 

vinifera seed CTs has a high percentage of galloylation at C3 subunits such as EGCG 

(Figure 4.1). 

Metal-mediated DNA Damage Prevention by CTs. Plasmid DNA gel 

electrophoresis assays were conducted to determine the ability of predominantly 

proanthocyanidin (PC) CTs from V. macrocarpon, H. luupulus, V. vinifera and T. 

inflorescentia, varying in distinct structural features, to prevent copper- or iron-mediated 

DNA damage. Both Fe2+ and Cu+ can produce DNA-damaging hydroxyl radical (Reaction 

1),29,42–44 and the polyphenol substituents in CTs are known to bind both iron and 

copper.29,34,45–47 This DNA assay evaluates the ability of antioxidants to prevent metal-

mediated DNA damage under biological relevant conditions. The naturally supercoiled 

(undamaged) and damaged (nicked) plasmid DNA can be separated using gel 

electrophoresis, therefore allowing a quantitative analysis of antioxidant activity. 

In the DNA assay gel images (Figure 4.2A and 4.2B), lane 3 shows that V. 

macrocarpon CTs do not cause DNA damage in the presence of H2O2, but Cu+ and H2O2 

cause over 90% damage (Figure 4.2A, lane 4). The same amount of DNA damage occurs 

with Fe2+ and H2O2 (Figure 4.2B, lane 4). Increasing V. macrocarpon CT concentrations 

up to 5 or 200 mg/mL (Figures 4.2A and 4.2B, lanes 5-12) prevent this iron- or copper-

mediated DNA damage, respectively. Similar plasmid DNA damage assays were  
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Figure 4.2. Agarose gel electrophoresis images of DNA treated with various concentrations of V. 

macrocarpon CTs with A) Cu2+ (6 µM) and ascorbate (7.5 µM) or B) Fe2+ (2 µM) and H2O2. Damaged 

(nicked) plasmid DNA (p) is the top band and undamaged (supercoiled) DNA is in the bottom band. Lanes 

are MW: 1 kb DNA ladder; 1: p; 2: p + H2O2 (50 µM); A) 3: p + H2O2 + V. macrocarpon CTs (200 mg/L); 

4: p + H2O2 + Cu2+ (6 µM) + ascorbate (7.5 µM); 5-14: p + H2O2 + Cu2+ (6 µM) + ascorbate + V. macrocarpon 

CTs (0.1, 1, 5, 15, 25, 50, 100, and 200 mg/L respectively). B) 3: p + H2O2 + V. macrocarpon CTs (5 mg/L); 

4: p + H2O2 + Fe2+ (2 µM); 5-13: p + H2O2 + Fe2+ (2 µM) + V. macrocarpon CTs (0.001, 0.01, 0.1, 0.5, 1, 

2.5, and 5 mg/L respectively).  
 

performed for CTs from V. vinifera seed, H. lupulus, and T. inflorescentia (data provided 

in Figures 4.4 and 4.5 and Tables 4.4 to 4.9). 

From analysis of the intensities of the gel bands, best-fit dose-response curves for 

copper- and iron-mediated DNA damage prevention were obtained for V. macrocarpon, V. 

vinifera seed, H. lupulus, and T. inflorescentia CTs (Figure 4.3). From these plots, the 

concentrations of each of the CTs required to inhibit 50% of DNA damage (IC50 values) 

were quantified (Table 4.2). V. macrocarpon CTs has IC50 values of 162.6 ± 0.3 and 0.75 

± 0.01 mg/L for copper- and iron- mediated DNA damage prevention, respectively. 

 Compared to V. macrocarpon CTs, V. vinifera seed and H. lupulus CTs exhibit 

much less inhibition of copper-mediated DNA damage, with 27 and 28% inhibition at 200 

mg/L, respectively (Table 4.2), insufficient DNA damage prevention to determine an IC50 

value. T. inflorescentia CTs prevent no copper-mediated DNA damage at the highest  
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Figure 4.3. Dose-response curves for copper- and iron-mediated DNA damage prevention by A) V. 

macrocarpon CTs, B) V. vinifera seed CTs, C) H. lupulus CTs (the data point at 0.01 mg/L was excluded 

from the iron-mediated DNA damage fit due to its negative value), and D) T. inflorescentia CTs (the data 

points at 0.1 and 0.5 mg/L were excluded from the iron-mediated DNA damage due to their negative values). 

 

tested concentration of 50 mg/L. At concentrations greater than 50 mg/L, T. inflorescentia 

CTs alone and with copper interacted with the DNA so that the DNA no longer moved out 

of the wells of the agarose gel (Figure 4.4C). 

 Condensed tannins are polymers of the polyphenol subunits EGCG, EC, gallic 

acid (GA) and epigallogatechin (EGC; Figure 4.1). EGCG is a catechin formed from 

condensation of gallic acid with an epigallocatechin ester. It is the most abundant green 

tea flavan-3-ol and is found in many dietary supplements due to its potential beneficial 
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Table 4.2. IC50 values for metal-mediated DNA damage prevention by CTs of the indicated foods. 

Compound IC50 Cu+ [mg/L] IC50 Fe2+ [mg/L] IC50 Fe2+ [M] a) Ref. 

V. macrocarpon CTs IC50 162.5 ± 0.3 IC50 0.75 ± 0.01 0.40  

H. lupulus 27% Damage inhibition at 200 mg/L Prooxidant 0.001-1 mg/L 

Antioxidant 1-50 mg/L 

IC50 3.60 ± 0.01 

2.3  

V. vinifera seed CTs 28% Damage inhibition at 200 mg/L IC50 4.96 ± 0.01 3.4  

T. inflorescentia CTs No DNA damage inhibition 0.1-50 mg/L Prooxidant 0.001-1 mg/L 

Antioxidant 1-50 mg/L 

IC50 4.41 ± 0.01 

2.8  

Tannic acid (TA) IC50 9 ± 1 IC50 0.51 ± 0.01 0.30 [48] 

Epigallocatechin (EGC) Prooxidant 0.12–306 mg/L IC50 3.00 ± 0.31 9.8 [36] 

Gallic acid (GA) Prooxidant 0.68–1.70 mg/L 

Antioxidant 16 % at 85.06 mg/L 

IC50 2.38 ± 0.17 14 [36,35] 

Epicatechin (EC) Prooxidant 0.06–145 mg/L IC50 17.16 ± 0.29 59 [36,35] 

Epicatechin gallate (EGCG) Prooxidant 0.04–1.77 mg/L 

Antioxidant 4.42–442 mg/L 

IC50 23.5 ± 0.9 

IC50 1.02 ± 0.44 1.1 [36,35] 

a) IC50s were calculated based upon average molecular weight. 
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effects on human health.49 EC is an antioxidant flavonoid, occurring especially in woody 

plants as both (+)-catechin and (-)-epicatechin. In human plasma, EGCG, and EC are found 

at concentrations of 5-150 ng/mL.50,51  

 Tannic acid (TA; Figure 4.1) is a commercially available tannin with multiple 

phenolic groups.52 It is used as an aroma compound in soft drinks and juices and as a 

clarifying agent, color stabilizer, and taste enhancer in the wine industry.49 TA 

concentrations in red wine have been shown to increase from 250.5 to 524.4 mg/mL upon 

aging, correlating with increased DPPH radical scavenging activity.53 TA is a 

representative of the hydrolysable tannins group of polyphenols, consisting of sets of gallic 

acid esters protruding from a glucose core molecule, and inhibits growth of many fungi, 

yeast, bacteria, and viruses.30,52 TA is also an antioxidant, and its antioxidant behavior may 

be linked to its anti-carcinogenic and anti-mutagenic properties.30,52,54  

Under copper-mediated DNA damage conditions, GA, EGC, and EC show 

prooxidant activity. ECG prevention of copper-mediated DNA damage shows prooxidant 

activity at low concentrations but shows antioxidant activity at concentrations greater than 

4.42 mg/L with an IC50 of 23.5 mg/L. Interestingly, the CTs of V. vinifera seed and T. 

inflorescentia show no prooxidant activity in the tested concentration range with copper 

even though its constituent monomers do. 

Under iron-mediated DNA damage conditions, V. vinifera seed CTs showed only 

antioxidant activity at all concentrations examined. Its IC50 value is higher than the IC50 of 

its monomers EGC, GA, and EGCG but lower than EC. The IC50 value for T. inflorescentia 

CT prevention of iron-mediated DNA damage is 4.41 mg/L. Similar to H. lupulus CTs, T. 
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inflorescentia CTs exhibit prooxidant activity with iron at low concentrations (0.1 and 1 

mg/L). Such concentration-dependent prooxidant/antioxidant activity has not been 

previously observed for polyphenol inhibition of iron-mediated DNA damage, except 

when chelated iron is used as the iron source.35,36 

V. vinifera seed, H. lupulus, and T. inflorescentia prevented iron-mediated DNA 

damage with IC50 values of 4.96, 3.60, and 4.41 mg/L, respectively. Although these IC50 

values are substantially lower than their corresponding IC50 values for prevention of 

copper-mediated damage (Table 4.2), they are 5-6 fold higher than that of V. macrocarpon 

CTs. The IC50 values for DNA damage inhibition by H. lupulus CTs falls between those of 

its constituent monomers: 3-fold higher than EGCG, but 5-fold lower than EC. Under these 

conditions, we observed slight prooxidant activity at 0.1 mg/L concentration (p = 0.017), 

similar to the prooxidant results observed for EC and ECGC. 

V. macrocarpon and T. inflorescentia CTs have different interflavan linkages 

(Table 4.1); V. macrocarpon CTs have a more rigid structure due to the two interflavan A-

type linkages55 compared to T. inflorescentia’s B-type linkages. The significantly lower 

IC50 values for V. macrocarpon may suggest that CTs with A-type linkages are more 

effective antioxidants than those with more B-type linkages, although more extensive 

testing of a variety of CT samples are needed to fully explore this relationship. It is likely 

that these different linkage patterns affect CT structure and metal coordination, leading to 

observed antioxidant behaviors. 

Mackenzie et al.56 showed through Monte Carlo simulation that in a dimer of EC 

subunits connected by B-linkages, subunits are stacked through formation of internal 
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hydrogen bonds. Based on this work, Verstraeten et al.57 argued that a dimer with EC or 

catechin monomers connected by A-type linkages should not be able to fold over 

themselves due to the two covalent bonds and may not be able stack, and should therefore 

exhibit a more elongated structure than condensed polyphenols with B-type linkages. This 

could result in A-type linkages having a greater number of accessible metal coordination 

sites. The presence of these accessible binding sites, may, in turn, result in greater 

antioxidant efficacy, since polyphenol-iron binding typically results in antioxidant rather 

than prooxidant effects.29,58,59 Thus, the greater percentage of A-type linkages found in V. 

macrocarpon CTs may correlate with greater efficacy in preventing both iron- and copper-

mediated DNA damage, although additional studies are needed to elucidate the structures 

of condensed polyphenols as well as their metal binding properties to confirm this result.  

Dong et al.41 tested A- and B-type dimers of either EC, EGC, or EGCG for their 

ability to scavenge DPPH (Figure 5.1) and observed the opposite trend as discussed in this 

Chapter of A-type linkages being better antioxidants than B-type linkages. DPPH is a long-

lived, sterically-hindered, nitrogen-based radical with significantly different properties60,61 

compared to the short-lived, more reactive hydroxyl and superoxide radicals.62 In addition, 

the steric bulk of the phenyl rings in DPPH may hinder reactivity at the radical site but still 

allow H-atom donors to donate their H-atom to form DPPH−H.61 Additionally, Gaulejac 

et al.39 reported that B-type linked dimers of either two (+)-catechin or one (+)-catechin 

and one (-)-epicatechin are more effective at scavenging superoxide radical anion, a 

variance from the results presented here could be due to the different origin and reactivity 

these radical species. Although superoxide radical can react with iron, resulting in hydroxyl 
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radical formation,63 metal coordination could play a more significant role in the antioxidant 

activity in our assay since the CTs could affect the redox potential of the metals as seen by 

some CTs having prooxidant activity at low concentrations (Table 5.1). It is likely that 

chemical differences between the radicals, such as size, stability, and charge, also alter the 

antioxidant abilities of CTs in addition to the type of linkages present between the 

polyphenol subunits.  

V. macrocarpon CTs have a higher EC fraction than H. lupulus CTs (Table 4.1); H. 

lupulus CTs have more catechin subunits. Catechin and EC are isomers since that they 

differ in the stereochemical position of the phenolic OH group on the C-ring (Figure 4.1), 

resulting in EC and catechin having R- and S-confirmations at this site, respectively. From 

the DNA damage studies, CTs with a higher epicatechin content are 2- and 7-fold more 

effective in preventing copper- and iron-mediated DNA damage compared to catechin CTs, 

respectively (Table 4.2). This difference in activity between EC and catechin was also 

observed by Gaulejac et al.39 who reported that EC as monomer was almost 2-fold more 

effective at scavenging the superoxide anion radical, and Vivas et al.64 who reported that 

epicatechin monomers are more quickly oxidized during potentiometric titrations.39,64 

V. macrocarpon CTs are 7-fold more effective at preventing iron- and 2-fold more 

effective for copper-mediated DNA damage than CTs from V. Vinifera seed. This 

difference may result from V. vinifera seed CTs having a higher percentage of galloylation 

compared to V. macrocarpon CTs. Gaulejac et al.39 report that galloyl groups in CTs have 

increased intramolecular π-π or σ-π interactions compared to CTs without galloylation, 

potentially increasing CT astringency and constraining proanthrocyanidin conformations 
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within these compounds. These intramolecular interactions result in a very compact 

molecule, with some of the molecule being protected from external influences,39 potentially 

shielding the inner functional groups from metal interactions. 

Interestingly, all monomer polyphenols in Table 4.2 show prooxidant activity at 

low concentrations only for copper-mediated DNA damage but not for iron-mediated DNA 

damage; however, the condensed CTs exhibit the opposite trend. Prooxidant activity is 

observed for CTs with more B-type linkages or higher catechin content. Polyphenol 

prooxidant activity can arise from polyphenol compounds that can be readily oxidized after 

coordinating Cu2+ or Fe3+, and reducing these ions to hydroxyl-radical-generating Cu+ or 

Fe2+.29,59  

Although metal coordination ability has not been well studied with regard to 

differences in CT structures, a study of grapeseed proanthocyanins showed that they 

strongly sequester metals with stoichometric ratios of 2:1 and 4:1 for Fe2+- and Cu2+-

proanthocyanin complexes, respectively.65 Yoneda et al.66 tested the relative stability of an 

aluminum-proanthocyanin complex, concluding that the catechol functionality of the B-

ring is important for metal coordination. They also determined that at CT concentrations 

above 400 μM, increasing degree of polymerization generally increases the relative 

stability of the aluminum complex, but at lower concentrations, no significant difference 

in complex stability is observed. Powell et al.51 and Yoneda et al. 52 describe the importance 

of the three-dimensional structure of CTs for metal binding, due to the potential new 

coordination sites that can arise from spatially adjacent functional groups, but little work 

has investigated the impact of various conformations on the number, availability, and 
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location of metal coordination sites. These scattered results highlight the need to 

independently understand the effects of different CT linkages, galloylation percentages, 

monomer compositions, and polymer lengths on metal coordination to better predict 

antioxidant activity of CTs from various sources. 

 

5.3 Conclusions 

V. macrocarpon CTs are the most effective at inhibiting both copper- and iron-

mediated DNA damage compared to H. lupulus, V. vinifera seed, and T. inflorescentia CTs. 

Although H. lupulus, V. vinifera seed, and T. inflorescentia CTs prevent little-to-no copper-

mediated DNA damage, they prevent significantly more iron-mediated DNA damage at 

low micromolar concentrations. Only H. lupulus and T. inflorescentia CTs promote iron-

mediated DNA damage at very low (0.1 and 1 mg/L) concentrations in addition to 

antioxidant activity at higher concentrations, the first report of this dual activity with iron.  

This is the first study to investigate the ability of CTs with several different 

structural characteristics for prevention metal-mediated DNA damage. CTs with A-type 

linkages, such as in V. macrocarpon may more effectively inhibit copper- and iron-

mediated DNA damage than CTs with B-type linkages. In addition, higher percentages of 

catechin compared to epicatechin subunits and higher percentages of galloylation may also 

reduce CT antioxidant activity. Although these results require further study to establish 

trends among a variety of CTs, these results demonstrate the significant effects of CT 

structural features on antioxidant efficacy.  
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4.4 Experimental Methods 

Materials. Water was deionized (diH2O) using a Nano Pure DIamond Ultrapure 

H2O system (Barnstead International). CuSO4 and H2O2 were purchased from Fisher. 3-

(N-morpholino)propanesulfonic acid (MOPS), was purchased from Sigma Aldrich, 2-(N-

morpholino)ethanesulfonic acid (MES) was purchased from BDH, FeSO4 was purchased 

from Acros and ascorbic acid and NaCl were purchased from Alfa Aesar. The condensed 

CTs were provided by Dr. Wayne Zeller at the USDA (Madison, WI). 

Isolation and Purification of Condensed Tannins. Condensed tannins were purified 

from H. lupulus (hops), V. vinifera (grapeseed) and T. inflorescentia flowers using methods 

previously described.33 V. macrocarpon (cranberry) CTs were obtained through 

purification of commercially available fresh frozen cranberries obtained from a local 

grocer. Thawed cranberries were placed in a blender, diluted and homogenized. The 

homogenate was vacuum filtered with a Buchner funnel equipped with a filter paper. The 

resulting press cake was lyophilized and ground in a cyclone mill (UDY Corporation, For 

Collins, CO) to ≤ 1 mm. Portions of the ground cranberry press cake were extracted with 

acetone/water (7:3, 5 ml/g of cake), and the combined extracts were concentrated under 

reduced pressure and lyophilized. The lyophilized cranberry CT extract was subjected to 

the batch method of purification using Sephadex LH-20 as previously described using the 

methanol/water (1:1) washes followed by consecutive elution of the CT-laden Sephadex 

LH-20 gel with acetone/water mixtures of (3:7), (1:1) and (7:3) v/v.  Fractions eluting with 

7:3 acetone/water portion were combined and lyophilized. Lyophilized powders were 

examined by 1H-13C HSQC NMR spectroscopy. The fractions containing high CT content 
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were pooled and the lipid impurities present in these fractions were removed by 

centrifugation of their aqueous suspensions. dissolved in water (at 4 mg/mL), 

centrifugation at 10,000 X g for 20 min. The supernatant was decanted and lyophilized to 

provide the target V. macrocarpon CT preparation. Structural composition (PC/PD and 

cis/trans ratios, determination of mean degrees of polymerization, mDP) of CTs isolated 

were determined through a combination of thiolytic degradation and analysis of their 

respective 1H-13C HSQC NMR spectra.37,38 The percent A-type linkage present in the 

cranberry CT was estimated through relative integration of the H/C-4 cross-peak arising 

from A-type linked subunit to sum of the normal internal and terminal B-type linked 

subunits cross-peaks. 

NMR Analysis. 1H, 13C and 1H-13C HSQC NMR spectra were recorded at 27 °C on 

a BrukerBiospin DMX-500 (1H 500.13 MHz, 13C 125.76 MHz) instrument equipped with 

TopSpin 3.5 software and a cryogenically cooled 5-mm TXI 1H/13C/15N gradient probe 

in inverse geometry. Spectra were recorded in DMSO-d6 and were referenced to the 

residual signals of DMSO-d6 (2.49 ppm for 1H and 39.5 ppm for 13C spectra). 13C NMR 

spectra were obtained using 1K scans (acquisition time 56 min). For 1H−13C HSQC 

experiments, spectra were obtained using between 200 and 620 scans (depending on 

sample size and instrument availability) obtained using the standard Bruker pulse program 

(hsqcetgpsisp.2) with the following parameters: Acquisition: TD 1024 (F2), 256 (F1); 

SW 16.0 ppm (F2), 165 ppm (F1); O1 2350.61 Hz; O2 9431.83 Hz; D1 = 1.50 s; CNST2 

= 145. Acquisition time: F2 channel, 64 ms, F1 channel 6.17 ms. Processing: SI =1024 

(F2, F1), WDW = QSINE, LB = 1.00 Hz (F2), 0.30 Hz (F1); PH_mod = pk; baseline 
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correction ABSG =5 (F2, F1), BCFW = 1.00 ppm, BC mod = quad (F2), no (F1); linear 

prediction = no (F2), LPfr (F1). Sample sizes used for these spectra ranged from 5-10 mg 

providing NMR sample solutions with concentrations of 10-20 mg/mL. 

Plasmid Transfection, Amplification, and Purification: 2.5-3 μL (1 pmol) of 

plasmid DNA (pBSSK) was purified from DH1 E. coli competent cells using ZyppyTM 

Plasmid Miniprep Kit (400 count, Zymo Research). Tris-EDTA buffer (pH 8.01) was used 

to elude the plasmid from the spin columns. Plasmid was dialyzed against 130 mM NaCl 

for 24 hours at 4°C to ensure all Tris-EDTA buffer and metal contaminates were removed. 

Plasmid concentration was determined by UV-vis spectroscopy at a wavelength of 260 nm. 

Organic and protein contents were also determined using UV-vis spectroscopy from ratios 

of A250/A260 ≤ 0.95 and A260/A280≥ 1.8 respectively. Plasmid purity was determined through 

digestion of plasmid with Sac 1 and KpN1 in a mixture of NEB buffer and BSA (bovine 

serum albumin) was conducted at 37°C for 90 min. Comparison to an undigested plasmid 

sample and a 1 kb molecular-weight marker was conducted by gel electrophoresis. 

Plasmid DNA damage inhibition assays. Gel electrophoresis samples were prepared 

in deionized H2O, MOPS buffer (10 mM, pH 7) for copper or MES buffer (10 mM, pH 6) 

for iron, NaCl (130 mM), 100% ethanol (10 mM), ascorbate (7.25 µM) and CuSO4 (6 µM) 

or FeSO4 (2 µM) and indicated concentrations of the CTs were combined in a 

microcentrifuge tube and allowed to stand for 5 min at room temperature. Since Cu+ is 

unstable in aqueous solution, ascorbic acid was added to reduce Cu2+ to Cu+ before the 

addition of H2O2 in these studies. Plasmid (pBSSK; 0.1 pmol in 130 mmol NaCl solution) 

was then added to the reaction mixture and allowed to stand for 5 min at room temperature. 
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Hydrogen peroxide (50 μM) was added to the indicated lanes and allowed to react at room 

temperature for 30 min, then EDTA (50 μM) was added to quench the reaction and loading 

dye (2 μL) was added. All given concentrations are final concentrations in a 12 μL volume. 

Samples were loaded into a 1% agarose gel in TAE running buffer; and damaged and 

undamaged plasmid DNA was separated by electrophoresis (140 V for 30 min). Gels were 

then stained using ethidium bromide and washed with diH2O before being imaged under 

UV light. The amounts of nicked (damaged) and circular (undamaged) DNA were 

quantified using UViProMW (Jencons Scientific Inc.). The intensity of the circular plasmid 

band was multiplied by 1.24, due to the different binding abilities of ethidium bromide to 

supercoiled and nicked plasmid DNA.67,68 Intensities of the nicked and supercoiled bands 

were normalized for each lane so that % nicked + % supercoiled = 100%. All percentages 

were corrected for residual nicked DNA prior to calculation. Results were obtained in 

triplicate for all experiments, and standard deviations are represented as error bars. 

Calculation of percent DNA damage inhibition. The formula 1-[%N-%B]*100 was 

used to calculate percent DNA damage inhibition; %N = percent of nicked DNA in lanes 

4, and %B = the percent of nicked DNA in the Cu2+/H2O2 or Fe2+/H2O2 control lanes. 

Percentages were corrected for residual nicked DNA (lane 2) prior to calculations. Results 

were obtained from an average of three trials, with indicated standard deviations. 

IC50 Determination. Plots of percent inhibition of DNA damage versus log 

concentration of CTs were fit to a variable slope sigmoidal dose-response curve using 

SigmaPlot, version 11 (Systat Software, Inc.). DNA damage inhibition were omitted 

(concentrations 0.1 mg/L for H. lupulus CTs and 0.5 and 1 mg/L for T. inflorescentia CTs). 
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IC50 value errors were calculated from error propagation of the gel electrophoresis 

measurements. Statistical significance was determined by calculating p values at 95% 

confidence (p < 0.05 indicates significance) as described by Perkowski et al.69 Data from 

DNA damage assays are provided in Tables 4.5-4.10. 
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4.5. Supporting Information 

 
Figure 4.4. Agarose gel electrophoresis images of copper-mediated DNA damage prevention with Vitis 

vinifera seed, Humulus lupulus, or Tilia inflorescentia condensed tannins. Lanes are: MW: 1 kb molecular 

weight marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 (50 µM); A) lane 3: p + 200 mg/L V. vinifera 

seed + H2O2, lane 4: p + Cu2+ (6 µM) + ascorbate (7.5 µM) + H2O2; lanes 5-13: p + Cu2+ + ascorbate + 

H2O2 + 0.1, 1, 5, 10, 15, 25, 50, 100, and 200 mg/L V. vinifera seed, respectively; B) lane 3: p + 200 mg/L 

H. lupulus + H2O2, lane 4: p + Cu2+ (6 µM) + ascorbate (7.5 µM) + H2O2; lanes 5-13: p + Cu2+ + ascorbate 

+ H2O2 + 0.1, 1, 5, 10, 15, 25, 50, 100, and 200 mg/L H. lupulus, respectively; C) lane 3: p + 200 mg/L T. 

inflorescentia + H2O2, lane 4: p + Cu2+ (6 µM) + ascorbate (7.5 µM) + H2O2; lanes 5-13: p + Cu2+ + 

ascorbate + H2O2 + 0.1, 1, 5, 10, 15, 25, 50, 100, and 200 mg/L T. inflorescentia, respectively. 
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Figure 4.5. Agarose gel electrophoresis images of iron-mediated DNA damage prevention with Vitis vinifera 

seed, Humulus lupulus, or Tilia inflorescentia condensed tannins. Lanes are: MW: 1kb molecular weight 

marker; lane 1: plasmid DNA (p); lane 2: p + H2O2 (50 µM); A) lane 3: p + 200 mg/L V. vinifera seed + 

H2O2, lane 4: p + Fe2+ (2 µM) + H2O2; lane 5-14: p + Fe2+ + H2O2 + 0.001, 0.01, 0.1, 0.5, 1, 2.5, 5, 10, 25, 

and 50 mg/L V. vinifera seed, respectively); B) lane 3: p + 200 mg/L H. lupulus + H2O2, lane 4: p + Fe2+ (2 

µM) + H2O2; lane 5-14: p + Fe2+ + H2O2 + 0.001, 0.01, 0.1, 0.5, 1, 2.5, 5, 10, 25, and 50 mg/L H. lupulus, 

respectively; C) lane 3: p + 200 mg/L T. inflorescentia + H2O2, lane 4: p + Fe2+ (2 µM) + H2O2; lane 5-14: p 

+ Fe2+ + H2O2 + 0.001, 0.01, 0.1, 0.5, 1, 2.5, 5, 10, 25, and 50 mg/L T. inflorescentia, respectively. 
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Table 4.3. Gel electrophoresis results for Cu+ DNA damage prevention assays with Vaccinium. 

macrocarpon condensed tannins.a 

Gel lane 
[V. macrocarpon] 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 
p Value 

1: plasmid DNA (p) 0 100 ± 0 0 – – 

2: p + H2O2 (50 µM) 0 99.96 ± 0.07 0.04 – – 

3: p + V. macrocarpon + H2O2 0.1 99.99 ± 0.01 0.01 – – 

4: p + Cu2+ (6 µM) + 

ascorbate (7.5 µM) + H2O2 0 5.13 ± 0.59 94.87 0 – 

5: p + Cu2+ + ascorbate + 

H2O2 + V. macrocarpon 0.1 1.63 ± 0.15 98.37 -3.64 ± 0.15 < 0.001 

6: 1 0.13 ± 0.12 99.87 -5.26 ± 0.10 < 0.001 

7: 5 0.79 ± 0.24 99.21 -4.52 ± 0.26 0.001 

8: 15 6.31 ± 1.12 93.69 1.31 ± 1.12 0.180 

9: 25 13.71 ± 5.51 86.29 9.08 ± 5.48 0.103 

10: 50 20.99 ± 1.62 79.01 16.77 ± 1.59 0.003 

11: 100 32.31 ± 5.30 67.69 28.68 ± 5.31 0.011 

12: 200 60.73 ± 3.92 39.27 58.72 ± 3.82 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 

 

Table 4.4. Gel electrophoresis results for Fe2+ DNA damage prevention assays with Vaccinium 

macrocarpon condensed tannins.a 

Gel lane 
[V. macrocarpon] 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 
p Value 

1: plasmid DNA (p) 0 100 ± 0  0 – – 

2: p + H2O2 (50 µM) 0 100 ± 0  0 – – 

3: p + V. macrocarpon + H2O2 0.001 99.96 ± 0.07 0.04 – – 

4: p + Fe2+ (2 µM) + H2O2 0 5.69 ± 3.81 94.31 0 – 

5: p + Fe2+ + H2O2 + V. 

macrocarpon 0.001 8.27 ± 1.54 91.73 2.73 ± 1.56 0.938 

6: 0.01 1.95 ± 1.16 98.05 -3.95 ± 1.17 0.280 

7: 0.1 7.01 ± 2.01 92.99 1.42 ± 2.02 0.348 

8: 0.5 9.25 ± 1.31 90.75 3.76 ± 1.30 0.376 

9: 0.7 38.20 ± 0.70 61.80 34.47 ± 0.50 < 0.001 

10: 1 92.02 ±3.88 7.98 91.55 ± 3.90 < 0.001 

11: 2.5 97.90 ± 1.99 2.10 97.77 ± 1.99 < 0.001 

12: 5 99.99 ± 0.01 0.01 100 ± 0 < 0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 4.5. Gel electrophoresis results for Cu+ DNA damage prevention assays with Vitis vinifera seed 

condensed tannins.a 

Gel lane 
[V. vinifera 

seed]mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.94 ± 0.05 0.06 - - 

3: p + V. vinifera seed + H2O2 200 100.00 ± 0 0.00 - - 

4: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 
0 5.26 ± 3.94 94.74 - - 

5: p + Cu2+ + ascorbate + H2O2 

+ V. Vinifera seed 
0.1 1.95 ± 2.21 98.05 -3.45 ± 2.23 0.116 

6: 1 1.18 ± 1.86 98.82 -4.26 ± 1.85 0.057 

7: 5 1.04 ± 1.81 98.96 -4.40 ± 1.79 0.051 

8: 10 0.27 ± 0.33 99.73 -5.21 ± 0.31 0.001 

9: 15 1.74 ± 2.95 98.26 -3.63 ± 2.97 0.168 

10: 25 1.75 ± 2.90 98.25 -3.63 ± 2.89 0.162 

11: 50 9.06 ± 5.95 90.94 4.08 ± 5.99 0.359 

12: 100 8.75 ± 1.48 91.25 3.73 1.53 0.052 

13: 200 32.00 ± 4.51 68.00 28.28 ± 4.55 0.009 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
Table 4.6. Gel electrophoresis results for Fe2+ DNA damage prevention assays with Vitis vinifera seed 

condensed tannins.a 

Gel lane 
[V. vinifera 

seed] mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.99 ± 0.02 0.01 - - 

3: p + V. vinifera seed + H2O2 50 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 0 8.58 ± 4.81 91.42 - - 

5: p + Fe2+ + H2O2 + V. vinifera 

seed 
0.001 

5.91 ± 2.96 94.09 -2.87 ± 2.94 
0.233 

6: 0.01 10.00 ± 1.30 90.00 1.58 ± 1.30 0.170 

7: 0.1 6.75 ± 2.71 93.25 -2.00 ± 2.75 0.335 

8: 0.5 6.07 ± 5.18 93.93 -2.73 ± 5.18 0.458 

9: 1 1.39 ± 1.54 98.61 -7.87 ± 1.53 0.124 

10: 2.5 0.80 ± 0.45 99.20 -8.49 ± 0.44 >0.001 

11: 5 54.73 ± 3.63 45.27 50.47 ± 3.64 0.002 

12: 10 94.37 ± 2.49 5.63 93.86 ± 2.48 >0.001 

13: 25 100.00 ± 0 0.00 100.02 ± 0 >0.001 

14: 50 99.95 ± 0.09 0.05 99.95 ± 0.12 >0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 4.7. Gel electrophoresis results for Cu+ DNA damage prevention assays with Humulus lupulus 

condensed tannins.a 

Gel lane 
[H. lupulus], 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 98.71 ± 2.23 1.29 - - 

3: p + H. lupulus + H2O2 200 100.00 ± 0 0.00 - - 

4: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 
0 

3.20 ± 3.22 96.80 
- - 

5: p + Cu2+ + ascorbate + H2O2 

+ H. lupulus 
0.1 

3.75 ± 2.33 96.25 -1.52 ± 2.33 
0.376 

6: 1 0.13 ± 0.17 99.87 -5.35 ± 0.15 >0.001 

7: 5 0.07 ± 0.12 99.93 -5.42 ± 0.12 >0.001 

8: 10 0.72 ± 1.25 99.28 -4.72 ± 1.27 0.023 

9: 15 0.36 ± 0.52 99.64 -5.10 ± 0.55 0.004 

10: 25 0.74 ± 1.15 99.26 -4.68 ± 1.16 0.020 

11: 50 3.43 ± 3.06 96.57 -1.87 ± 3.03 0.397 

12: 100 14.68 ± 6.11 85.32 10.02 ± 6.09 0.104 

13: 200 31.45 ± 5.26 68.55 27.69 ± 5.27 0.012 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
Table 4.8. Gel electrophoresis results for Fe2+ DNA damage prevention assays with Humulus lupulus 

condensed tannins.a 

Gel lane 
[H. lupulus], 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 99.83 ± 0.29 0.17 - - 

2: p + H2O2 (50 µM) 0 99.95 ± 0.09 0.05 - - 

3: p + H. lupulus + H2O2 50 99.99 ± 0.02 0.01 - - 

4: p + Fe2+ (2 µM) + H2O2 0 25.20 ± 3.99 74.80 - - 

5: p + Fe2+ + H2O2 + H. lupulus 0.001 30.88 ± 4.53 69.12 7.74 ± 4.52 0.097 

6: 0.01 28.49 ± 2.41 71.51 4.53 ± 2.39 0.082 

7: 0.1 14.53 ± 3.29 85.47 -14.18 ± 3.27 0.017 

8: 0.5 20.49 ± 3.20 79.51 -6.16 ± 3.21 0.939 

9: 1 19.24 ± 2.04 80.76 -7.86 ± 2.06 0.022 

10: 2.5 50.65 ± 1.13 49.35 34.17 ± 1.11 >0.001 

11: 5 75.09 ± 1.37 24.91 66.79 ± 1.34 >0.001 

12: 10 91.71 ± 3.33 8.29 89.02 ± 3.38 >0.001 

13: 25 97.94 ± 3.43 2.06 97.40 ± 3.44 >0.001 

14: 50 99.89 ± 0.19 0.11 99.99 ± 0.17 >0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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Table 4.9. Gel electrophoresis results for Cu+ DNA damage prevention assays with Tilia inflorescentia 

condensed tannins.a 

Gel lane 

[T. 

inflorescentia], 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 100.00 ± 0 0.00 - - 

3: p + T. inflorescentia + H2O2 200 99.99 ± 0.02 0.01 - - 

4: p + Cu2+ (6 µM) + ascorbate 

(7.5 µM) + H2O2 
0 3.68 ± 2.47 96.32 - - 

5: p + Cu2+ + ascorbate + H2O2 

+ T. inflorescentia 
0.1 3.62 ± 0.10 96.38 -1.66 ± 0.06 >0.001 

6: 1 2.34 ± 1.72 97.66 -3.03 ± 1.71 0.092 

7: 5 0.50 ± 0.09 99.50 -4.96 ± 0.10 >0.001 

8: 10 0.46 ± 0.44 99.54 -5.00 ± 0.45 0.003 

9: 15 0.25 ± 0.19 99.75 -5.25 ± 0.21 >0.001 

10: 25 1.01 ± 1.07 98.99 -4.40 ± 1.07 0.019 

11: 50 11.16 ± 5.66 88.84 6.26 ± 5.66 0.195 
aData are reported as the average of three trials with calculated standard deviations shown. 

 
Table 4.10. Gel electrophoresis results for Fe2+ DNA damage prevention assays with Tilia inflorescentia 

condensed tannins.a 

Gel lane 

[T. 

inflorescentia], 

mg/L 

% 

Supercoiled 

% 

Nicked 

% Damage 

Inhibition 

p 

Value 

1: plasmid DNA (p) 0 100.00 ± 0 0.00 - - 

2: p + H2O2 (50 µM) 0 99.96 ± 0.06 0.04 - - 

3: p + T. inflorescentia + H2O2 50 100.00 ± 0 0.00 - - 

4: p + Fe2+ (2 µM) + H2O2 0 26.22 ± 1.84 73.78 - - 

5: p + Fe2+ + H2O2 + T. 

inflorescentia 
0.001 23.40 ± 1.21 76.60 -3.77 ± 1.22 0.033 

6: 0.01 22.47 ± 1.26 77.53 -5.03 ± 1.31 0.022 

7: 0.1 21.30 ± 4.38 78.70 -6.61 ± 4.36 0.120 

8: 0.5 14.56 ± 0.95 85.44 -15.74 ±0.95 0.001 

9: 1 14.12 ± 1.31 85.88 -16.33 ± 1.32 0.002 

10: 2.5 45.10 ± 1.99 54.90 25.64 ± 1.95 0.002 

11: 5 63.36 ± 3.28 36.64 50.40 ± 3.31 0.001 

12: 10 93.85 ± 4.53 6.15 92.15 ±4.95 >0.001 

13: 25 96.52 ± 4.83 3.48 95.36 ± 4.84 >0.001 

14: 50 100 ± 0 0 100.05 ± 0 >0.001 
aData are reported as the average of three trials with calculated standard deviations shown. 
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