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Abstract

In this thesis our goal is to solve the dual problem of the support vector machine (SVM)

problem, which is an example of convex smooth optimization problem over a polytope. To this

goal, we apply the conditional gradient (CG) method by providing explicit solution to the linear

programming (LP) subproblem. We also describe the conditional gradient sliding (CGS) method

that can be considered as an improvement of CG in terms of number of gradient evaluations. Even

though CGS performs better than CG in terms of optimal complexity bounds, it is not a practical

method because it requires the knowledge of the Lipschitz constant and also the number of iterations.

As an improvement of CGS, we designed a new method, conditional gradient sliding with line search

(CGS-ls) that resolves the issues in CGS method. CGS-ls requires O(1/
√
ε) gradient evaluations

and O(1/ε) linear optimization calls that achieves the optimal complexity bounds in CGS method.

We also compare the performance of our method with CG and CGS methods as numerical results by

experimenting them in dual problem of SVM for binary classification of two subsets of the MNIST

hand-written digits dataset.
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Chapter 1

Introduction

In this thesis our problem of interest is

min
x∈X

f(x) (1.1)

where X ⊆ Rn is a convex compact set and f : Rn → R is a smooth convex function. We assume that

the gradient function ∇f(·) is Lipschitz continuous (with respect to the norm ‖·‖) with Lipschitz

constant L > 0, namely

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , ∀x, y ∈ Rn. (1.2)

Here ‖·‖ is any norm and ‖·‖∗ is its dual norm, defined by

‖y‖∗ := sup
‖x‖≤1

〈x, y〉

for y ∈ Rn. Also, we define the diameter of the set X as

DX ≡ DX ,‖·‖ := max
x,y∈X

‖x− y‖ . (1.3)

Throughout this chapter, we describe the properties and examples of problem (1.1), and

also list several algorithms that can solve (1.1).
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1.1 Properties of convex smooth functions

In this section we describe a few properties of convex smooth functions. These properties

are necessary for analyzing the algorithms that we are going to introduce in the sequel. We start

with the definition of a convex function.

Definition 1. A function f : Rn → R is a convex function if for any x, y ∈ Rn and any λ ∈ [0, 1],

we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y. (1.4)

We say that f is concave if (−f) is convex. An important property of convex functions can

be shown by an induction through our definition in (1.4):

f

(
k∑
i=1

λixi

)
≤

k∑
i=1

λif(xi), (1.5)

for all λ1, . . . , λk ∈ [0, 1] such that
∑k
i=1 λi = 1 and all xi ∈ Rn, i = 1, · · · , k. In such case,

∑k
i=1 λixi

is called a convex combination of x1, . . . , xk. We are now ready to introduce two important properties

of convex smooth functions.

Proposition 1. Let f : Rn → R be a smooth function that satisfies (1.2), then

|f(y)− f(x)− 〈∇f(x), y − x〉 | ≤ L

2
‖y − x‖2 , ∀x, y ∈ Rn. (1.6)

Proof. Let us fix any x, y ∈ Rn and define

h(τ) := f((1− τ)x+ τy), ∀τ ∈ [0, 1].

Then we have h(0) = f(x), h(1) = f(y), and

h′(τ) = 〈∇f((1− τ)x+ τy), y − x〉.
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By the fundamental theorem of calculus, we have

h(1) = h(0) +

∫ 1

0

h′(τ)dτ,

i.e.,

f(y) =f(x) +

∫ 1

0

〈∇f((1− τ)x+ τy), y − x〉 dτ

=f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f((1− τ)x+ τy)− f(x), y − x〉 dτ.

Therefore

|f(y)− f(x)− 〈∇f(x), y − x〉| =
∣∣∣∣∫ 1

0

〈∇f((1− τ)x+ τy)− f(x), y − x〉 dτ
∣∣∣∣

≤
∫ 1

0

|〈∇f((1− τ)x+ τy)− f(x), y − x〉| dτ

≤
∫ 1

0

‖∇f((1− τ)x+ τy)− f(x)‖∗ ‖y − x‖ dτ

≤
∫ 1

0

Lτ ‖y − x‖2 dτ =
L

2
‖y − x‖2 .

Here in the second inequality we use the Cauchy-Schwartz inequality.

Theorem 1. A smooth function f : Rn → R is convex if and only if

f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ Rn. (1.7)

Proof. Let us fix any x, y ∈ Rn, and denote xλ := λx + (1 − λ)y. Suppose that (1.7) holds. Then

for any λ ∈ [0, 1] we have

f(x) ≥ f(xλ) + 〈∇f(xλ), x− xλ〉 and f(y) ≥ f(xλ) + 〈∇f(xλ), y − xλ〉.

Noting that x− xλ = (1− λ)(x− y) and y − xλ = λ(y − x), using the above relations, we have

λf(x) + (1− λ)f(y) ≥ λ [f(xλ) + (1− λ)〈∇f(xλ), x− y〉] + (1− λ) [f(xλ) + λ〈∇f(xλ), y − x〉]

3



= f(xλ), ∀λ ∈ [0, 1].

Therefore (1.4) holds and f is convex. Let us consider the other direction and suppose that (1.4)

holds. Then for any λ ∈ [0, 1) we have

f(xλ) ≤ λf(x) + (1− λ)f(y),

or

f(y) ≥ f(xλ)− λf(x)

1− λ
= f(x) +

f(xλ)− f(x)

1− λ
. (1.8)

Letting λ→ 1, we have

lim
λ→1

f(xλ)− f(x)

1− λ
= − lim

λ→1

f(y + λ(x− y))− f(x)

λ− 1
= − d

dλ

∣∣∣
λ=1

f(y + λ(x− y)) = −〈f(x), x− y〉.

(1.9)

Combining (1.9) and (1.8) we obtain (1.7) and conclude the theorem.

From Proposition 1 and Theorem 1, we can prove the following corollary immediately.

Corollary 1. Let f be a convex smooth function. We have,

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2, ∀x, y ∈ Rn. (1.10)

1.2 Support Vector Machine

In this section, we describe an example of (1.1). Suppose that we have a set of points in

Rn and we would like to classify these points into k sets. This problem is called classification in

machine learning. One classification model is the support vector machine (SVM). There are two

types of SVMs, namely hard-margin SVM and soft-margin SVM. In this section, we describe the

soft-margin SVM.

Suppose that we have k = 2 sets of data points. Let X ∈ Rn×m be the matrix corresponding

to the n points and bi denotes the binary label of ith point. Such classification problem is called

4



binary classification, namely, we are distinguishing two classes of data points. The optimization

problem of the soft-margin SVM model [4] can be expressed as

min
w∈Rm,ξ∈Rn,w0∈R

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. bi(〈w,Xi〉 − w0) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0.

(1.11)

Here ξ := (ξ1, · · · , ξn)T and XT
i denotes the ith row of X. We will formulate the dual

problem of (1.11). The Lagrangian function corresponding to (1.11) is

L(w,w0, ξ, x, λ) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

xi
[
bi(w

TXi + w0)− 1 + ξi
]
−

n∑
i=1

λiξi

=
1

2
wTw + C

n∑
i=1

ξi −
n∑
i=1

xibiw
TXi −

n∑
i=1

xibiw0 +

n∑
i=1

xi −
n∑
i=1

xiξi −
n∑
i=1

λiξi

=
1

2
wTw − wT

n∑
i=1

xibiXi −
n∑
i=1

xibiw0 + (C − xi − λi)
n∑
i=1

ξi +

n∑
i=1

xi

where x = (x1, · · · , xn)T and λ = (λ1, · · · , λn)T . So the Lagrangian dual will be

zD = sup
λ≥0,x≥0

inf
w∈Rn,ξ∈Rm,w0∈R

L(w,w0, λ)

or

zD = sup
λ≥0,x≥0

(
n∑
i=1

xi+

inf
w∈Rm,ξ∈Rn,w0∈R

(
1

2
wTw − wT

n∑
i=1

xibiXi −
n∑
i=1

xibiw0 + (C − xi − λi)
n∑
i=1

ξi

))

Calling the function inside the inf function as h(w, ξ, w0) where w, ξ ∈ Rn and w0 ∈ R, we

can observe that the function h is convex with respect to w and is affine with respect to ξ and w0.

So, by taking gradient of h with respect to w, ξ, and w0 we can find the optimal w∗, ξ∗ and w∗0 for

5



infw,w0 h(w,w0). So for w we have:

∇wh(w, ξ, w0) = w −
n∑
i=1

xibiXi = 0 ⇒ w∗ =

n∑
i=1

xibiXi (1.12)

∇ξh(w, ξ, w0) = C − xi − λi = 0, i = 1, · · · , n (1.13)

∇w0h(w, ξ, w0) =

n∑
i=1

xibi = 0. (1.14)

Having found w∗ we can find w∗0 . Since we require the intercept w∗0 to satisfy

w∗0 ≤ −1− max
i:bi=−1

w∗TXi (1.15)

w∗0 ≥ 1− min
i:bi=1

w∗TXi, (1.16)

we take w∗0 to be the average the two values (1.15) and (1.16). Hence,

w∗0 = −maxi:bi=−1 w
∗TXi + mini:bi=1 w

∗TXi

2
. (1.17)

Also, for any w and w0 we have ξi = 1− bi(〈w,Xi〉 − w0), i = 1, · · · , n. Therefore,

ξ∗i = 1− bi(〈w∗, Xi〉 − w∗0), i = 1, · · · , n. (1.18)

Substituting the optimal solution w∗, w∗0 and ξ∗ to infw,w0
h(w, ξ, w0) we obtain:

inf
w∈Rm,ξ∈Rn,w0∈R

h(w, ξ, w0) =
1

2

 m∑
j=1

xjbjXj

( n∑
i=1

xibiXi

)
−

 m∑
j=1

xjbjXj

( n∑
i=1

xibiXi

)

= −1

2

 m∑
j=1

xjbjXj

( n∑
i=1

xibiXi

)

= −1

2

m∑
j=1

n∑
i=1

xixjbibjX
T
i Xj

= −1

2

m∑
j=1

n∑
i=1

xixjbibj〈Xi, Xj〉.

Note that we must have xi, λi ≥ 0. Also, from (1.13) we have λi = C − xi. Therefore, we

must have xi ≤ C. Summarizing the above derivation, the Lagrangian dual of (1.11) can be written

as

6



sup
x∈Rn

n∑
i=1

xi −
1

2

m∑
j=1

n∑
i=1

xixjbibj〈Xi, Xj〉

s.t.

n∑
i=1

xibi = 0

0 ≤ xi ≤ C i = 1, . . . , n.

(1.19)

Note that the above is a special case of (1.1) with convex quadratic objective function

f(x) :=

n∑
i=1

xi −
1

2

m∑
j=1

n∑
i=1

xixjbibj〈Xi, Xj〉

and polytope feasible set

X :=

{
x :

n∑
i=1

xibi = 0, 0 ≤ xi ≤ C, i = 1, . . . , n

}
.

Now we are ready to introduce and analyze some types of algorithms to solve (1.1). In

general, we will discuss two types of algorithms, projection-based algorithms and projection-free

algorithms. At each part, we will discuss the advantages and also the drawbacks of each type of

algorithm.

1.3 Projection-based Algorithms

Projection-based algorithms are of the type that need projection as their subproblems. The

projections that appear in these algorithms might be different depending on the problem structure.

In this section we will describe and analyze the projected gradient and Nesterov’s accelerated gradient

descent methods [10]. After analyzing these algorithms we will have a section to provide several

examples of projection to different sets that might appear in these algorithms as a subproblem.

1.3.1 Projected gradient method

As we can see from the name of this algorithm, projected gradient method is a projection-

based algorithm. Projected gradient is one of the most straight forward projection-based algorithms.

The simplest interpretation of this algorithm is that at each step we go through the negative direction

7



of the objective; if we are out side of the feasible set then we project back the point to the feasible

set and continue with the projected point. We will describe a more general form of the projected

gradient method using prox-function.

The algorithm of projected gradient method for solving (1.1) is described bellow.

Algorithm 1 The gradient descent algorithm

Choose x0 ∈ X .

for k = 1, . . . , N do

xk = arg min
x∈X

〈∇f(xk−1), x〉+ ηkV (xk−1, x) (1.20)

end for

Output xN .

Here V (·, ·) is a function, called the prox function, that satisfies the following two inequalities:

1. For any x, y ∈ Rn,

V (x, y) ≥ 1

2
‖x− y‖2. (1.21)

2. For any g ∈ Rn and u ∈ Rn, if y is the solution to the problem

min
x∈X
〈g, x〉+ ηV (u, x),

then

〈g, y − x〉 ≤ η[V (u, x)− V (u, y)− V (y, x)], ∀x ∈ X . (1.22)

The simplest choice of V (·, ·) is V (x, y) := ‖y − x‖22/2, when the norms ‖ · ‖ and ‖ · ‖∗ are both

2-norms. Note also that the gradient method is a special case of Algorithm 2 with γk ≡ 1, X = Rn,

V (x, y) := ‖y − x‖22/2, and the norms ‖ · ‖ and ‖ · ‖∗ are both 2-norms. Note that if we set

8



V (xk−1, x) = ‖x− xk−1‖22 /2, then (1.20) in Algorithm 1 becomes

xk = arg min
x∈Rn

〈∇f(xk−1), x〉+
ηk
2
‖x− xk−1‖22

= arg min
x∈Rn

ηk
2

∥∥∥∥x− xk−1 +
1

ηk
∇f(xk−1)

∥∥∥∥2

= xk−1 −
1

ηk
∇f(xk−1).

(1.23)

The geometric interpretation of above is clear; the new iteration xk is computed by moving

from xk−1 along the opposite direction of ∇f(xk−1) with stepsize 1/ηk. The intuition is that the

negative direction −∇f(x) is the direction of the fastest local decrement of f at point x.

In the following theorem, we state the convergence result of the projected gradient algorithm

in Algorithm 1, assuming constant stepsize.

Theorem 2. Suppose that f : Rn → R is a smooth convex function. If the parameters ηk in

Algorithm 1 satisfy

ηk ≡ η ≥ L, (1.24)

then we have

f(x̄N )− f∗ ≤ η

N
V (x0, x

∗),

where

x̄N :=
1

N

N∑
k=1

xk.

Proof. Since f is a smooth convex function, from the Corollary 1 and Theorem 1 we have

f(xk) ≤f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖22

=f(xk−1) + 〈∇f(xk−1), x− xk−1〉+ 〈∇f(xk−1), xk − x〉+
L

2
‖xk − xk−1‖2 (1.25)

≤f(x) + 〈∇f(xk−1), xk − x〉+
η

2
‖xk − xk−1‖2 (1.26)

≤f(x) + η (V (xk−1, x)− V (xk−1, xk)− V (xk, x)) + ηV (xk, xk−1) (1.27)

9



=f(x) + η (V (xk−1, x)− V (xk, x)) ,

where the equality (1.25) is from (1.24), inequality (1.26) is from convexity of f , and inequality

(1.27) is from (1.22). Hence,

f(xk) ≤ f(x) + η (V (xk−1, x)− V (xk, x)) .

Summing the above inequality up from k = 1 to N , we obtain

N∑
k=1

f(xk) ≤ Nf(x) + η (V (xk−1, x)− V (xk, x))

≤ Nf(x) + ηV (x0, x).

Setting x = x∗ in above relation and using the convexity of f , we have

f(x̄N ) ≤ 1

N

N∑
k=1

f(xk) ≤ f(x∗) +
η

N
V (x0, x

∗).

Therefore,

f(x̄N )− f∗ ≤ η

N
V (x0, x

∗).

From the above theorem, we observe that in order to compute an approximate solution x̄N

such that f(x̄N )− f∗ ≤ ε, the number of iterations that are required is bounded by O (LV (x0,x
∗)/ε).

1.3.2 Nesterov’s accelerated gradient method

In the previous section we obtained an O(1/ε) convergence result of the projected gradient

descent method. In this section we introduce a method that has a better complexity. This algo-

rithm is called Nesterov’s accelerated gradient descent (AGD) method. Similar to projected gradient

descent, AGD is a projection-based algorithm.
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The algorithm of accelerated gradient descent method for solving (1.1) is described bellow.

Algorithm 2 Accelerated Gradient Descent Method

Choose x0 ∈ X and set y0 = x0.
for k = 1, · · · , N do

zk = (1− γk)yk−1 + γkxk−1 (1.28)

xk = arg min
x∈X

〈∇f(zk), x〉+ ηkV (xk−1, x) (1.29)

yk = (1− γk)yk−1 + γkxk (1.30)

end for
Output yN .

We present the convergence result of Algorithm 2. In Theorem 3 below we describe a general

result.

Theorem 3. Suppose that yk and zk in Algorithm 2 satisfy

f(yk) ≤ f(zk) + 〈∇f(zk), yk − zk〉+
Lk
2
‖yk − zk‖2 (1.31)

for some Lk > 0, and that the parameters in Algorithm 2 satisfy

γ1 = 1, γk ∈ [0, 1), and ηk ≥ Lkγk, ∀k ≥ 1. (1.32)

Letting Γk be a parameter that satisfies Γ1 > 0 and

Γk = (1− γk)Γk−1, ∀k > 1, (1.33)

then we have

f(yk)− f∗ ≤ Γk

k∑
i=1

γiηi
Γi

[V (xi−1, x
∗)− V (xi, x

∗)],

where x∗ is a solution to (1.1).

11



Proof. Noting (1.28) and (1.30) we have yk − zk = γk(xk − xk−1), and also

yk − zk = yk − yk−1 + yk−1 − zk
(1.30)

= γk(xk − yk−1) + yk−1 − zk

= γk [(xk − x) + (x− zk) + (zk − yk−1)] + yk−1 − zk

= (1− γk)(yk−1 − zk) + γk ((x− zk) + (xk − x))

= (1− γk)(yk−1 − zk) + γk (xk − zk) .

(1.34)

Using above the inequality, (1.31) becomes

f(yk) ≤ f(zk) + (1− γk)〈∇f(zk), yk−1 − zk〉+ γk〈∇f(zk), xk − zk〉+
Lkγ

2
k

2
‖xk − xk−1‖2

= (1− γk)[f(zk) + 〈∇f(zk), yk−1 − zk〉] + γk[f(zk) + 〈∇f(zk), x− zk〉+ 〈∇f(zk), xk − x〉]

+
Lkγ

2
k

2
‖xk − xk−1‖2, ∀x ∈ X .

Let us make three observations. First, by (1.10), we have

f(zk) + 〈∇f(zk), yk−1 − zk〉 ≤ f(yk−1),

and

f(zk) + 〈∇f(zk), x− zk〉 ≤ f(x).

Second, by (1.22) (with g = ∇f(zk), y = xk, u = xk−1, and η = ηk) we have

〈∇f(zk), xk − x〉 ≤ ηk[V (xk−1, x)− V (xk−1, xk)− V (xk, x)], ∀x ∈ X .

Third, by (1.21), we have

Lkγ
2
k

2
‖xk − xk−1‖2 ≤ Lkγ2

kV (xk−1, xk).

12



Summarizing the three observations, we have

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) + γkηk[V (xk−1, x)− V (xk−1, xk)− V (xk, x)]

+ Lkγ
2
kV (xk−1, xk)

= (1− γk)f(yk−1) + γkf(x) + γkηk[V (xk−1, x)− V (xk, x)]

− γk(ηk − Lkγk)V (xk−1, xk)

≤ (1− γk)f(yk−1) + γkf(x) + γkηk[V (xk−1, x)− V (xk, x)].

Here the last inequality is from (1.32). Summing up the above two inequalities, we have

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) + γkηk[V (xk−1, x)− V (xk, x)].

In particular, letting x = x∗ where x∗ is a solution to (1.1), we can reformulate the above to

f(yk)− f∗ ≤ (1− γk)(f(yk−1)− f∗) + γkηk[V (xk−1, x
∗)− V (xk, x

∗)].

Dividing both sides by Γk, and using (1.33) and (1.32), we have

1

Γk
(f(yk)− f∗) ≤ 1

Γk−1
(f(yk−1)− f∗) +

γkηk
Γk

[V (xk−1, x
∗)− V (xk, x

∗)], ∀k > 1.

Also, when k = 1, noting that γ1 = 1 by (1.32), we have

1

Γ1
(f(yk)− f∗) ≤ γ1η1

Γ1
[V (x0, x

∗)− V (x1, x
∗)].

Using induction on the two inequalities above, we conclude that

1

Γk
(f(yk)− f∗) ≤

k∑
i=1

γiηi
Γi

[V (xi−1, x
∗)− V (xi, x

∗)].

In the corollary below, we describe an example of parameter setting of Algorithm 2.

13



Corollary 2. If we set

γk =
2

k + 1
, ηk =

2L

k
(1.35)

in Algorithm 2, then

f(yk)− f∗ ≤ 4L

k(k + 1)
V (x0, x

∗). (1.36)

Proof. Clearly (1.31) and (1.32) hold, and Γk = 2/k(k+1) satisfies (1.33) with Γ1 = 1. Therefore, by

Theorem 3, we have

f(yk)− f∗ ≤ 2

k(k + 1)

k∑
i=1

2L[V (xi−1, x
∗)− V (xi, x

∗)] =
4L

k(k + 1)
[V (x0, x

∗)− V (xk, x
∗)]. (1.37)

From (1.21), we have V (xk, x
∗) ≥ 0. Thus

f(yk)− f∗ ≤ 4L

k(k + 1)
V (x0, x

∗). (1.38)

From Corollary 2 we can see that in order to compute an approximate solution such that

f(yk)− f∗ ≤ ε, we need

k ≥
√

4LV (x0, x∗)

ε
. (1.39)

Therefore, the iteration complexity upper bound is O(
√

1/ε). Note that the Nesterov’s accelerated

gradient method is optimal for solving smooth convex optimization with Lipschitz constant L [10].

1.4 Examples of projections

In this section we have some examples of projections of different sets. As we have seen in

previous sections these projections arise from the subproblems of the projection-based algorithms.
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1.4.1 Projection onto the standard simplex under the Euclidean prox-

function

Assume that X in (1.1) is a standard simplex ∆n. We will study the projection subproblem

(1.29) in Algorithm 2 where the prox-function is defined as

V (x, y) =
1

2
‖x− p‖2 , p ∈ Rn.

Note that similar analysis can be performed for Algorithm 1.

The subproblem (1.29) in this case can be formulates as

min
x∈Rn

〈∇f(zk), x〉+
ηk
2
‖x− p‖2 (1.40)

s.t. − x(i) ≤ 0 i = 1, · · · , n (1.41)

n∑
i=1

x(i) − 1 = 0 (1.42)

and without loss of generality we can assume that p ∈ Rn satisfies p(1) ≤ p(2) ≤ · · · ≤ p(n).

To solve the problem (1.4.1) since the Slater’s condition holds we may consider the KKT

points

a) Primal feasibility

− x(i) ≤ 0 i = 1, · · · , n
n∑
i=1

x(i) − 1 = 0

b) Complementary slackness

−u(i)x(i) = 0, ∀i = 1, · · · , n

c) Dual feasiblity

∇f(zk)(i) + x(i) − p(i) − u(i) + v = 0, ∀i = 1, · · · , n

u(i) ≥ 0, ∀i = 1, · · · , n

15



For any i = 1, · · · , n if u(i) = 0, then by dual feasibility we have

x(i) = p(i) − v −∇f(zk)(i).

Since x(i) ≥ 0, we need p(i) ≥ v+∇f(zk)(i). If u(i) > 0, then from complementary slackness we have

x(i) = 0 and by dual feasibility

u(i) = v − p(i) +∇f(zk)(i)

and since u(i) > 0, then p(i) < v +∇f(zk)(i). In summary,

x(i) =

 p(i) − v −∇f(zk)(i) if p(i) ≥ v +∇f(zk)(i)

0 otherwise.

Note that from primal feasibility and dual feasibility we have

1−
n∑
i=1

(p(i) + u(i) −∇f(zk)(i)) + nv = 0,

which implies that

v =
1

n

(
n∑
i=1

(p(i) + u(i) −∇f(zk)(i))

)
− 1

n

=
1

n

 ∑
i:p(i)≥v+∇f(zk)(i)

(p(i) −∇f(zk)(i)) +
∑

i:p(i)<v+∇f(zk)(i)

v

− 1

n

or

∑
i:p(i)≥v+∇f(zk)(i)

v =
∑

i:p(i)≥v+∇f(zk)(i)

(p(i) −∇f(zk)(i))− 1.

Therefore, we have the following cases:

i) v ≤ p(1) −∇f(zk)(1). In this case

nv =

n∑
i=1

(p(i) −∇f(zk)(i))− 1 or v =
1

n

n∑
i=1

(p(i) −∇f(zk)(i))− 1

n
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ii) p(j) −∇f(zk)(j) < v ≤ p(j+1) −∇f(zk)(j+1). In this case

(n+ j)v =

n∑
i=j+1

(p(i) −∇f(zk)(i))− 1

iii) v > p(n) −∇f(zk)(n) which is infeasible.

Hence, we have n possible choices of v as

v =


1
n

∑n
i=1(p(i) −∇f(zk)(i))− 1

n if np(1) ≥
∑n
i=1(p(i) −∇f(zk)(i))− 1

1
n+j

∑n
i=j+1(p(i) −∇f(zk)(i))− 1

n+j if (n+ j)p(j) ≥
∑n
i=1(p(i) −∇f(zk)(i))− 1 ≤ (n+ j)p(j+1)

where j = 1, · · · , n− 1. The optimal solution is of the form

(x∗)(i) =

 p(i) − v −∇f(zk)(i) if p(i) ≥ v +∇f(zk)(i)

0 otherwise.

1.4.2 Projection onto the standard simplex under entropy prox-function

Assume that X in (1.1) is a standard simplex ∆n. We will study the projection subproblem

(1.29) in Algorithm 2.

If we define the prox-function in (1.29) as

V (x, y) = ω(x)− ω(y)− 〈∇ω(y), x− y〉 , (1.43)

where ω(x) =
∑n
i=1 x

(i) log x(i), then we have

arg min
x∈∆n

〈∇f(zk), x〉+ ηk (ω(x)− ω(xk−1)− 〈∇ω(xk−1), x− xk−1〉)

= arg min
x∈∆n

〈∇f(zk), x〉

+ ηk

(
n∑
i=1

x(i) log x(i) −
n∑
i=1

(xk−1)(i) log x
(i)
k−1 −

n∑
i=1

(log x
(i)
k−1 + 1)(x(i) − x(i)

k−1)

)

= arg min
x∈∆n

〈∇f(zk), x〉+ ηk

(
n∑
i=1

x(i) log
x(i)

x
(i)
k−1

−
n∑
i=1

x(i) +

n∑
i=1

x
(i)
k−1

)

= arg min
x∈∆n

〈∇f(zk), x〉+ ηk

n∑
i=1

x(i) log
x(i)

x
(i)
k−1
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= arg min
x∈∆n

〈∇f(zk), x〉+ ηk

n∑
i=1

x(i) log x(i) − ηk
n∑
i=1

x(i) log x
(i)
k−1

= arg min
x∈∆n

〈
1

ηk
∇f(zk)−


log x

(1)
k−1

...

log x
(n)
k−1

 , x
〉

+

n∑
i=1

x(i) log x(i).

Now we rewrite the subproblem (1.29) as

min
x∈Rn

〈∇f(zk), x〉+ ηk

n∑
i=1

x(i) log
x(i)

x
(i)
k−1

s.t. − x(i) ≤ 0

n∑
i=1

x(i) − 1 = 0

Or equivalently

min
x∈Rn

〈g, x〉+

n∑
i=1

x(i) log x(i)

s.t. − x(i) ≤ 0

n∑
i=1

x(i) − 1 = 0

(1.44)

where g = 1
ηk
∇f(zk) −


log x

(1)
k−1

...

log x
(n)
k−1

. The optimization problem (1.44) is the subproblem of the

accelerated gradient descent method with prox-function defined in (1.43). Proposition 2 gives the

solution to the above.

Proposition 2. Let X in subproblem of Algorithm 2 be the standard simplex defined as

∆n = {x ∈ Rn :

n∑
i=1

x(i) = 1, x(i) ≥ 0, i = 1, · · · , n}.

and the prox-function V (·, ·) be of the form (1.43), where ω(x) :=
∑n
i=1 x

(i) log x(i). Then the i-th
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element of the optimal solution x∗ to the subproblem (1.44) is

(x∗)(i) =
e−g

(i)∑n
i=1 e

−g(i) .

Proof. To solve the problem (1.44) since the Slater’s conditions hold we check the KKT points

a) Primal feasibility:

n∑
i=1

x(i) = 1

x(i) ≥ 0

b) Complementary slackness:

−u(i)x(i) = 0, ∀i = 1, · · · , n

c) Dual feasibility:

g(i) + log x(i) + 1− u(i) + v = 0, ∀i = 1, · · · , n

u(i) ≥ 0, ∀i = 1, · · · , n

Since for any i, x(i) > 0, then we must have u(i) = 0, ∀i = 1, · · · , n. This implies that

log x(i) = −g(i) − 1− v and so

x(i) =
1

e1+v × eg(i)
.

Since
∑n
i=1 x

(i) = 1 we conclude that

1 =
1

e1+v

n∑
i=1

e−g
(i)

Taking log from both sides and writing the equality with respect to v we get

v = log

(
n∑
i=1

e−g
(i)

)
− 1
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Therefore

(x∗)(i) =
1

exp
(
log
∑n
i=1 e

−g(i)
)
eg(i)

=
e−g

(i)∑n
i=1 e

−g(i) .

Note that the choice of V (·, ·) in Proposition 2 is also called the entropy prox-function.

1.5 Projection-free Algorithms

In previous section we mentioned projected gradient and accelerated gradient descent as ex-

amples of projection-based methods. These methods require projection as subproblems and specially

the AGD with complexity O(
√

1/ε) is an efficient algorithm. However, the projection in subproblems

of these algorithms are sometimes problematic. They are not always efficiently solvable. Algorithms

called projection-free algorithms are useful in such expensive cases.

Similar to previous section, we mention some of the projection free algorithms and discuss

their complexities. The methods that we are going describe are conditional gradient and conditional

gradient sliding. We will compare their complexity with themselves and also with projection-based

algorithm that we had in the last section.

1.5.1 Conditional Gradient Algorithm

Conditional gradient (CG) algorithm, also known as Frank-Wolfe method, is one of the

earliest projection-free first-order algorithms for solving convex programming problems. It was

initially developed by Frank and Wolfe in 1956 [5]. The algorithm of CG is described in Algorithm

3.

As we can observe in Algorithm 3, the CG method solves the projection subproblem (1.29)

of AG approximately over the feasible set X . Regarding the CG algorithm we should mention a few

remarks. First, in CG method the assumption of compactness of X is important, because otherwise

the subproblem (1.46) might become unbounded. Second, the solution to (1.46) is not necessarily

unique and there might exist multiple solutions. Third, it is better to avoid setting γk ≡ 1. As an
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example, consider the problem with f(x) = x2 and X = [−1, 1]. Setting x0 = z0 = 1 where γk ≡ 1

imply that the CG method has x1 = x3 = · · · = 1 and x0 = x2 = · · · = −1 as its outputs.

Algorithm 3 Conditional Gradient Algorithm

Choose z0 ∈ X and set x0 = z0.
for k = 1, · · · , N do

zk = (1− γk)yk−1 + γkxk−1 (1.45)

xk ∈ Argmin
x∈X

〈∇f(zk), x〉 (1.46)

yk = (1− γk)yk−1 + γkxk (1.47)

end for
Output xN .

We describe the convergence result [5] of the CG method in Algorithm 3. We first state a

simple technical result that will be used in the analysis of the algorithm.

Lemma 1. Let wt ∈ (0, 1], t = 1, 2, · · · , be given. Also let us denote

Wt :=

 1, t = 1,

(1− wt)Wt−1, t ≥ 2.
(1.48)

Suppose that Wt > 0 for all t ≥ 2 and that the sequence {δt}t≥0 satisfies

δt ≤ (1− wt)δt−1 +Bt, t = 1, 2, · · · . (1.49)

Then for any 1 ≤ l ≤ k, we have

δk ≤Wk

(
1− wl
Wl

δl−1 +

k∑
i=l

Bi
Wi

)
. (1.50)

Proof. Dividing both sides of (1.49) by Wt, we obtain

δ1
W1
≤ (1− w1)δ0

W1
+
B1

W1
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and

δi
Wi
≤ (1− wi)δi−1

Wi
+
Bi
Wi

=
δi−1

Wi−1
+
Bi
Wi

∀i ≥ 2.

The result then immediately follows by summing up the above inequalities for i = 1 · · · , k and

rearranging the terms.

In the following theorem and corollary the notation below will be used:

Γk =

 1 if k = 1

(1− γk)Γk−1 if k ≥ 2.
(1.51)

Theorem 4. For parameters γk ∈ (0, 1) in Algorithm we have

f(yk)− f∗ ≤ LD2Γk
2

k∑
i=1

γ2
i

Γi
. (1.52)

Proof. Fist, we can write (1.47) as yk = yk−1 + γk(xk − yk−1), so

yk − yk−1 = γk(xk − yk−1). (1.53)

Also, from (1.45) and (1.45) we observe that

yk − zk = yk − yk−1 + yk−1 − zk
(1.53)

= γk(xk − yk−1) + yk−1 − zk

= γk [(xk − x) + (x− zk) + (zk − yk−1)] + yk−1 − zk

= γk ((x− zk) + (xk − x)) + (1− γk)(yk−1 − zk).

(1.54)

Since f is a smooth convex function from Corollary (1) and also from (1.47) we have

f(yk) ≤ f(zk) + 〈∇f(zk), yk − zk〉+
L

2
‖yk − zk‖2 . (1.55)

Now from (1.54), for any x ∈ X we have

f(yk) ≤ (1− γk) [f(zk) + 〈∇f(zk), yk−1 − zk〉]
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+ γk [f(zk) + 〈∇f(zk), x− zk〉+ 〈∇f(zk), xk − x〉]

+
L

2
‖yk − zk‖2

= (1− γk)(f(zk) + 〈∇f(zk), yk−1 − zk〉)

+ γk(f(zk) + 〈∇f(zk), x− zk〉)

+ γk 〈∇f(zk), xk − x〉+
L

2
‖yk − zk‖2 .

Here we note that since xk is an optimal solution to the subproblem (1.46), then by optimality

condition we have

〈∇f(zk), xk − x〉 ≤ 0,

and also since f is a convex function we have

f(zk) + 〈∇f(zk), yk−1 − zk〉 ≤ f(yk−1)

and

f(zk) + 〈∇f(zk), x− zk〉 ≤ f(x).

In addition, from (1.45) and (1.47) we have yk− zk = γk(xk−xk−1). Summarizing all these

and using (1.3) we obtain

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) +
Lγ2

k

2
D2,

or equivalently,

f(yk)− f(x) ≤ (1− γk)(f(yk−1)− f(x)) +
Lγ2

k

2
D2.

Dividing both sides of the above inequality by Γk for k ≥ 2 we obtain

f(yk)− f(x)

Γk
≤ (1− γk)

Γk
(f(yk−1)− f(x)) +

Lγ2
k

2Γk
D2.
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Also, for k = 1 we have

f(y1)− f(x) ≤ LD2γ2
1

2
.

Summing up from 1 to k we conclude that

1

Γk
(f(yk)− f(x)) ≤ LD2

2

k∑
i=1

γ2
i

Γi
.

Note that the sequence of parameters γk in CG is conceptual and clearly there might be

many choices to set these parameters properly to get the best convergence result for this algo-

rithm. In Corollary 3 below we provide a setting for this parameter and prove the convergence rate

corresponding to our setting.

Corollary 3. In Algorithm 3, if we set the parameter γk = 2/(k+1), then

f(yk)− f∗ ≤ 2LD2

k + 1
. (1.56)

Proof. With γk defined in assumption we have

Γk =
2

k(k + 1)
. (1.57)

Using (1.57) we obtain

k∑
i=1

γ2
i

Γi
=

k∑
i=1

4

(i+ 1)2
× i(i+ 1)

2
=

k∑
i=1

2i

i+ 1
= 2(

k∑
i=1

1−
k∑
i=1

1

i+ 1
) ≤ 2k.

Therefore,

f(yk)− f∗ ≤ LD2

2
× 2

k(k + 1)
× 2k

=
2LD2

k + 1
.
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Corollary 3 shows that the CG method computes an ε-solution to the problem (1.1) in

O(LD
2
/ε) iterations. This means that in order to compute an ε solution, CG requires more evaluations

of ∇f than AGD method, which only requires O(
√

1/ε) evaluations. This drawback is resolved in

conditional gradient sliding method [8]. In particular, conditional gradient sliding method requires

O(
√

1/ε) evaluations of ∇f(·) and O(1/ε) evaluations for linear optimization problems of form (1.46).

we will discuss the conditional gradient sliding method in later sections.

According to [6, 9] the number of evaluations of linear optimization problems of form (1.46)

can not be improved from the lower complexity bound O(1/ε). Also, it should be noted that the CG

does not require knowledge on the Lipschitz constant L, the norm ‖.‖, and diameter D. In particular,

if there exists a norm ‖.‖ that yields the smallest possible value of LD2, then the convergence result

(1.56) will follow such smallest value. In other words, the CG is a first-order method that would

automatically adapt to the best possible geometric properties of the problem.

1.5.2 Conditional Gradient Sliding Algorithm

In this section we describe an algorithm and its analysis by [8]. The goal of the conditional

gradient sliding (CGS) [8] method is to present a new linear optimization based convex programming

method which can skip the computation for the gradient of f from time to time when performing

Linear optimization over the feasible region X . The basic scheme of this method is obtained by

applying the CG method to solve the projection subproblems existing in the AGD approximately.

By properly specifying the accuracy for solving these subproblems, we will show that the resulting

CGS method can achieve the optimal bounds on the number of calls to the first-order and linear

optimization oracles for solving problem (1.1). The development of CGS method, in spirit, is similar

to the gradient sliding algorithm developed by Lan in [7] for solving a class of composite optimization

problems. However, the gradient sliding algorithm in [7] requires us to perform projection over the

feasible set X and targets to solve convex programming problems with a general nonsmooth term

in objective function. The CGS method is formally described in Algorithm 4.
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Algorithm 4 The Conditional Gradient Sliding Algorithm

Initial point x0 ∈ X and iteration limit N .

Let βk ∈ Rn++, γk ∈ [0, 1], and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.

for k = 1, . . . , N do

zk = (1− γk)yk−1 − γkxk−1 (1.58)

xk = CndG(f ′(zk), xk−1, βk, ηk), (1.59)

yk = (1− γk)yk−1 + γkxk (1.60)

end for

procedure u+ = CndG(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let vt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
〈g + β(ut − u), ut − x〉 (1.61)

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− αt)ut + αtvt, with

αt = min

{
1,
〈β(u− ut)− g, vt − ut〉

β ‖vt − ut‖2

}
(1.62)

5. Set t← t+ 1 and go to step 2.

end procedure

Clearly, the most crucial step of the CGS method is to update the search point xk by calling

the CndG procedure in (1.59). Denoting f(x) := 〈g, x〉 + β ‖x− u‖2 /2, the CndG can be viewed

as a specialized version of the classical CndG method applied to minx∈X f(x). In particular, it can

be easily seen that Vg,u,β(ut) in (1.61) is equivalent to maxx∈X 〈f ′(ut), ut − x〉, which is often called

the Wolfe gap, and the CndG procedure terminates whenever Vg,u,β(ut) is smaller than the specified

tolerance η. In fact, this procedure is slightly simpler than the generic CndG method in that the
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selection of αt in (1.62) explicitly solves

αt = arg min
α∈[0,1]

f((1− α)ut + αvt). (1.63)

It should be pointed out that (1.62) was initially suggested by Frank and Wolfe to specify the

stepsizes for the CndG method through the minimization of an upper quadratic approximation of

f(·) at xk [5, 3, 2]. In view of above discussion, we can easily see that xk obtained in (1.59) is an

approximate solution for the projection subproblem

min
x∈X

{
f(x) := 〈f ′(zk), x〉+

βk
2
‖x− xk−1‖2

}
(1.64)

such that

〈f ′(xk), xk − x〉 = 〈f ′(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk, ∀x ∈ X (1.65)

for some ηk ≥ 0.

Clearly, problem (1.64) is equivalent to minx∈X βk/2 ‖x− xk−1 + f ′(zk)/βk‖2, after com-

pleting the square, and it admits explicit solutions in some special cases, e.g., when X is standard

Euclidean ball. However, here the focus is on the case where (1.64) is solved iteratively by calling

the linear optimization oracle.

Before analyzing the convergence rate of CGS we add a few comments about this method.

First, as an special case of CGS if we limit the number of inner iterations in CndG procedure of

CGS we get the Algorithm 5. Note that (1.68) in Algorithm 5 is equivalent to

xk ∈ Argmin
x∈X

〈∇f(zk), x〉 (1.66)

and (1.66) is exactly the subprobem of CG algorithm. Therefore, limiting the number of inner

iterations of CGS leads to the CG algorithm.
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Algorithm 5 The Conditional Gradient Sliding Algorithm with One Inner Iteration

Initial point x0 ∈ X and iteration limit N .

Let βk ∈ Rn++, γk ∈ [0, 1], and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.

for k = 1, . . . , N do

zk = (1− γk)yk−1 − γkxk−1 (1.67)

xk ∈ Argmax
x∈X

〈∇f(zk), xk−1 − x〉, (1.68)

yk = (1− γk)yk−1 + γkxk (1.69)

end for

Output yN .

Second, similarly to the AGD method, the above CGS method maintains the updating of

three intertwined sequences, namely, {xk}, {yk}, and {zk}, in each iteration. The main difference

between CGS and the original AGD exists in the computation of xk. More specifically, xk in the

original AG method is set to the exact solution of (1.64) (i.e., ηk = 0 in (1.65)), while the subproblem

in (1.64) is only solved approximately for the CGS method (i.e., ηk > 0 in (1.65)).

Third, we say that an inner iteration of the CGS method occurs whenever the index t in the

CndG procedure increments by 1. Accordingly, an outer iteration of CGS occurs whenever k increases

by 1. While we need to call the first-order oracle to compute the gradient f ′(zk) in each outer

iteration, the gradient f ′k(pt) used in the CndG subroutine is given explicitly by f ′(zk)+βk(p−xk−1).

Hence, the main cost per each inner iteration of the CGS method is to call the linear optimization

oracle to solve the linear optimization problem in (1.61). As a result, the total number of outer and

inner iterations performed by the CGS algorithm is equivalent to the total number of calls to the

first order and linear optimization oracles, respectively.

Fourth, observe that the above CGS method is conceptual only since we have not yet

specified a few parameters, including {βk}, {γk}, and ηk, used in this algorithm. We will come back

to this issue after establishing some important convergence properties for the above generic CGS

algorithm.

We describe the convergence analysis of CGS method in [8]. For the sake of convergence

analysis of CGS we need to mention the following lemma.
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Lemma 2. Let {λi} and {ai} be sequences of nonnegative real numbers. Then for a fixed k,

1- If the sequence {λi} is a decreasing sequence, then

k∑
i=1

λi(ai−1 − ai) ≤ λ0a0.

2- If the sequence {λi} is an increasing sequence, then

k∑
i=1

λi(ai−1 − ai) ≤ λk max
0≤t≤k

at.

Proof. In order to prove part 1 we have

k∑
i=1

λi(ai−1 − ai) = −
k∑
i=1

λi(ai − ai−1)

= −
k∑
i=1

λiai +

k∑
i=1

(λi − λi−1)ai−1 +

k∑
i=1

λi−1ai−1

= −λkak −
k−1∑
i=1

λiai +

k∑
i=1

(λi − λi−1)ai−1 + λ0a0 +

k−1∑
i=1

λiai

= λ0a0 − λkak −
k∑
i=1

(λi−1 − λi)ai−1

≤ λ0a0.

Where the last inequality holds because {λi} is decreasing.

To prove the second part we have

k∑
i=1

λi(ai−1 − ai) = −λkal + λ0a0 +

k∑
i=1

(λi − λi−1)ai−1

≤ λ0a0 +

k∑
i=1

(λi − λi−1) max
0≤t≤k

at

= λ0a0 + (λk − λ0) max
0≤t≤k

at

≤ λk max
0≤t≤k

at.
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Theorem 5 describes the main convergence properties of the above CGS method. More

specifically, Theorem 5(a) and (b) show the convergence of the AG method when the projection

subproblem is approximately solved according to (1.65), while Theorem 5(c) states the convergence

of the CndG procedure by using the Wolfe gap as the termination criterion. Hence, part (c) is

included here mainly for the sake of completeness. It should be noted, however, that the analysis

provided in part (c) is more specialized to problem (1.64).

Observe that the following quantity will be used in the convergence analysis of the CGS

algorithm:

Γk :=

 1, k = 1,

Γk−1(1− γk), k ≥ 2.
(1.70)

Theorem 5. Let Γk be defined in (1.70). Suppose that {βk} and {γk} in the CGS algorithm satisfy

γ1 = 1 and Lγk ≤ βk, k ≥ 1. (1.71)

(a) If

βkγk
Γk
≥ βk−1γk−1

Γk−1
, k ≥ 2, (1.72)

then for any x ∈ Xand k ≥ 1,

f(yk)− f(x∗) ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

, (1.73)

where x∗ is an arbitrary optimal solution of (1.1) and DX is defined in (1.3).

(b) If

βkγk
Γk
≤ βk−1γk−1

Γk−1
, k ≥ 2, (1.74)

then for any x ∈ Xand k ≥ 1,

f(yk)− f(x∗) ≤ β1Γk
2
‖x0 − x∗‖2 + Γk

k∑
i=1

ηiγi
Γi

, (1.75)
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(c) Under the assumptions either in part (a) or (b), the number of inner iterations performed at

the kth outer iteration can be bounded by

T :=

⌈
6βkD

2
X

ηk

⌉
∀k ≥ 1. (1.76)

Proof. To prove part (a) note that by (1.58) and (1.60) we have yk − zk = γk(xk − xk−1). Also,

from (1.60) we have

yk − zk = (1− γk)yk−1 + γkxk − zk

= (yk−1 − zk) + γk(xk − yk−1)

= (1− γk)(yk−1 − zk) + γk(xk − zk)

(1.77)

Using this and also (1.10) we have

f(yk) ≤ f(zk) + 〈∇f(zk), yk − zk〉+
L

2
‖yk − zk‖2

= (1− γk)(f(zk) + 〈∇f(zk), yk−1 − zk〉)

+ γk(f(zk) + 〈∇f(zk), xk − zk〉) +
Lγ2

k

2
‖xk − xk−1‖2

≤ (1− γk)f(yk−1) + γk(f(zk) + 〈∇f(zk), xk − zk〉) +
βkγk

2
‖xk − xk−1‖2

(1.78)

where the last inequality follows from convexity of f and (1.71). Also note that from the optimality

condition (1.65) we have

〈∇f(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk ∀x ∈ X ,

and so

〈xk − xk−1, xk − x〉 ≤
ηk
βk

+
1

βk
〈f ′(zk), x− xk〉 ∀x ∈ X . (1.79)

Also, note that

1

2
‖xk−1 − x‖2 =

1

2
‖(xk−1 − xk) + (xk − x)‖2

=
1

2
‖xk − xk−1‖2 + 〈xk−1 − xk, xk − x〉+

1

2
‖xk − x‖2 ,
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which implies that

1

2
‖xk − xk−1‖2 =

1

2
‖xk−1 − x‖2 − 〈xk−1 − x, xk − x〉 −

1

2
‖xk − x‖2

≤ 1

2
‖xk−1 − x‖2 +

1

βk
〈f ′(zk), x− xk〉 −

1

2
‖xk − x‖2 +

ηk
βk
.

Hence,

βkγk
2
‖xk − xk−1‖2 ≤

βkγk
2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ γk 〈∇f(zk), x− xk〉+ ηkγk. (1.80)

Combining (1.78), (1.80) and (1.79) we obtain

f(yk) ≤ (1− γk)f(yk−1) + γk(f(zk) + 〈∇f(zk), xk − zk〉+ 〈∇f(zk), x− xk〉)

+
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk

= (1− γk)f(yk−1) + γk(f(zk) + 〈∇f(zk), x− zk〉)

+
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk

≤ (1− γk)f(yk−1) + γkf(x) +
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk,

(1.81)

where the last inequality is from convexity of f . Subtracting f(x) from both sides of above inequality

gives

f(yk)− f(x) ≤ (1− γk)(f(yk−1)− f(x)) +
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk ∀x ∈ X .

Now using Lemma 1,

f(yk)− f(x) ≤ Γk(1− γ1)

Γ1
[f(y0)− f(x)]

+ Γk

k∑
i=1

βiγi
2Γi

(
‖xi−1 − x‖2 − ‖xi − x‖2

)
+ Γk

k∑
i=1

ηiγi
Γi

.

(1.82)

Note that γ1 = 1 and since from the assumption {βkγk/Γk} is increasing; then from Lemma 2

k∑
i=1

βiγi
2Γi

(
‖xi−1 − x‖2 − ‖xi − x‖2

)
≤ βkγk

Γk
D2
X . (1.83)
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Hence, we have

f(yk)− f(x) ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

.

which completes the proof of part (a).

To prove part (b), from (1.83) and Lemma 2 the assumption we have

k∑
i=1

βiγi
2Γi

(
‖xi−1 − x‖2 − ‖xi − x‖2

)
≤ β1 ‖x0 − x‖2

Therefore, by (1.82) for any x ∈ X we have

f(yk)− f(x) ≤ Γk
2
β1 ‖x0 − x‖2 + Γk

k∑
i=1

ηiγi
Γi

,

Which is true for x = x∗, and this completes the proof of part (b).

To prove part (c) let us denote φ ≡ φk := 〈f ′(zk), x〉 + βk/2 ‖x− xk−1‖2 and φ∗ ≡

minx∈X φ(x). Also let us denote

λt :=
2

t
and Λt =

2

t(t− 1)
, (1.84)

which implies that

Λt+1 = Λt(1− λt+1) ∀t ≥ 2. (1.85)

Let us define ūt+1 := (1 − λt+1)ut + λt+1vt. Clearly we have ūt+1 − ut + λt+1(vt − ut). Observe

that ut+1 = (1− αt)ut + αtvt and αt is an optimal solution to (1.63) and hence φ(ut+1) ≤ φ(ūt+1).
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Using this observation, (1.10), and the fact that φ has Lipschitz continuous gradients, we have

φ(ut+1) ≤ φ(ūt+1)

≤ φ(ut) + 〈φ′(ut), ūt+1 − ut〉+
β

2
‖ūt+1 − ut‖2

= φ(ut) + λt+1 〈φ′(ut), vt − ut〉+
β

2
λ2
t+1 ‖vt − ut‖

2

= φ(ut)− λt+1φ(ut) + λt+1 (φ(ut) + 〈φ′(ut), vt − ut〉) +
β

2
λ2
t+1 ‖vt − ut‖

2

≤ (1− λt+1)φ(ut) + λt+1 (φ(ut) + 〈φ′(ut), x− ut〉) +
β

2
λ2
t+1 ‖vt − ut‖

2

≤ (1− λt+1)φ(ut) + λt+1φ(x) +
β

2
λ2
t+1 ‖vt − ut‖

2
.

(1.86)

Subtracting φ(x) from both sides implies that

φ(ut+1)− φ(x) ≤ (1− λt+1)(φ(ut)− φ(x)) +
β

2
λ2
t+1 ‖vt − ut‖

2 ∀x ∈ X .

By Lemma 1, for any x ∈ X and t ≥ 1

φ(ut+1)− φ(x) ≤ Λt+1

(
1− λ2

Λ1
(φ(1)− φ(x))

)
+

t+1∑
i=2

βλ2
i

2Λi
‖vi−1 − ui−1‖2

= Λt+1β

t∑
i=1

i

i+ 1
‖vi − ui‖2

≤ 2βD2
X

t+ 1

(1.87)

Now, let the gap function Vg,u,β be defined in (1.61). Also let us denote ∆j = φ(uj) − φ∗.

It then follow from (1.61), and (1.86) that for any j = 1, · · · , t,

φ(uj+1) ≤ φ(uj) + λj+1 〈φ′(uj), vj − uj〉+
βλ2

j+1

2
‖vj − uj‖2 .

Hence,

λj+1 〈φ′(uj), uj − vj〉 ≤ φ(uj)− φ(uj+1) +
βλ2

j+1

2
‖vj − uj‖2 ,

which implies that

λj+1Vg,u,β(uj) ≤ φ(uj)− φ(uj+1) +
βλ2

j+1

2
‖vj − uj‖2
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= ∆j −∆j+1 +
βλ2

j+1

2
‖vj − uj‖2 .

Dividing both sides of above inequality by Λj+1 and summing up the resulting inequalities, we obtain

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤

t∑
j=1

∆j −∆j+1

Λj+1
+

t∑
j=1

βλ2
j+1

2Λj+1
‖vj − uj‖2

= − 1

Λt+1
∆t+1 +

t∑
j=2

(
1

Λj+1
− 1

Λj

)
∆j + ∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
‖vj − uj‖2

≤
t∑

j=2

(
1

Λj+1
− 1

Λj

)
∆j + ∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
‖vj − uj‖2

≤
t∑

j=1

j∆j + β
t∑

j=1

j

j + 1
D2
X

≤
t∑

j=1

j∆j + tβD2
X ,

where the last inequality follow from the definition of λt and Λt in (1.84). Using the above inequality

and the bound on ∆j given in (1.87), we conclude that

min
j=1,...,t

Vg,u,β(uj)

t∑
j=1

λj+1

Λj+1
≤

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤

t∑
j=1

j
2βD2

X
j

+ tβD2
X = 3tβD2

X .

Since
∑t
j=1 λj+1/Λj+1 = t(t+ 1)/2, then

min
j=1,...,t

Vg,u,β(uj)

(
t(t+ 1)

2

)
≤ 3tβD2

X ,

Therefore,

min
j=1,...,t

Vg,u,β(uj) ≤
6βD2

X
t+ 1

,

which implies part (c).

Clearly, there exist various options to specify the parameters {βk}, {γk}, and {ηk} so as to

guarantee the convergence of the CGS method. In the following corollaries, we provide two different

parameter settings for {βk}, {γk}, and {ηk}, which lead to optimal complexity bounds on the total

number of calls to the first-order and linear optimization oracles for smooth convex optimization.
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Corollary 4. If {βk}, {γk}, and {ηk} in the CGS method are set to

βk =
3L

k + 1
, γk =

3

k + 2
and ηk =

LD2
X

k(k + 1)
, ∀k ≥ 1, (1.88)

then for any k ≥ 1,

f(yk)− f(x∗) ≤ 15LD2
X

(k + 1)(k + 2)
. (1.89)

As a consequence, the total number of calls to the first-order and linear optimization oracles per-

formed by the CGS method for finding an ε-solution of (1.1) can be bounded by O(
√
LD2
X/ε) and

O(LD
2
X/ε), respectively.

Proof. It can be easily seen from (1.88) and (1.71) holds. Also note that by (1.88), we have

Γk =
6

k(k + 1)(k + 2)
(1.90)

and

βγk
Γk

=
9L

(k + 1)(k + 2)
· k(k + 1)(k + 2)

6
=

3Lk

2
,

which implies that (1.72) is satisfied. It then follows from Theorem 5(a), (1.88), and (1.90) that

f(yk)− f(x∗) ≤ 9LD2
X

2(k + 1)(k + 2)
+

6

k(k + 1)(k + 2)

k∑
i=1

ηiγi
Γi

=
15LD2

X
2(k + 1)(k + 2)

,

which implies that the total number of outer iterations performed by the CGS method for finding

an ε-solution can be bounded by N =
√

15LD2
X/2ε. Moreover, it follows from the bound in (1.76)

and (1.88) that the total number of inner iterations can be bounded by

N∑
k=1

Tk ≤
N∑
k=1

(
6βD2

X
ηk

+ 1

)
= 18

N∑
k=1

k +N = 9N2 + 10N,

which implies that the total number of inner iterations is bounded by O(LD
2
X/ε).

Observe that in the above result, the number of calls to the linear optimization oracle is
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not improvable in terms of their dependence on ε, L and DX for linear optimization-based convex

programming methods [6]. Similarly, the number of calls to the FO oracle is also optimal in terms

of its dependence on ε and L [10]. It should be noted, however, that we can potentially improve the

latter bound in terms of its dependence on DX . Indeed, by using a different parameter setting, we

show in Corollary 5 a slightly improved bound on the number of calls to the first-order oracle which

only depends on the distance from the initial point to the set of optimal solutions, rather than the

diameter DX . This result will play an important role for the analysis of the CGS method for solving

strongly convex problems. The disadvantage of using this parameter setting is that we need to fix

the number of iterations N in advance.

Corollary 5. Suppose that there exist an estimate D0 ≥ ‖x0 − x∗‖ and that the outer iteration limit

N ≥ 1 is given. If

βk =
2L

k
, γk =

2

k + 1
, ηk =

2LD2
0

Nk
(1.91)

for any k ≥ 1, then

f(yN )− f(x∗) ≤ 6LD2
0

N(N + 1)
. (1.92)

As a consequence, the total number of calls to the first-order and linear optimization oracles per-

formed by the CGS method for finding an ε-solution of (1.1), respectively, can be bound by

O

(
D0

√
L

ε

)
(1.93)

and

O

(
LD2

X

ε
+D0

√
L

ε

)
. (1.94)

Proof. It can be easily seen from the definition of k in (1.91) and γk in (1.70) that

Γk =
2

k(k + 1)
. (1.95)

Using the previous identity and (1.91), we have βkγk/Γk = 2L, which implies that (1.74) holds. It
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then follows from (1.75), (1.91), and (1.95) that

f(yN )− f(x∗) ≤ ΓN

(
LD2

0 +

N∑
i=1

ηiγi
Γi

)
= ΓN

(
LD2

0 +

N∑
i=1

iηi

)
=

6LD0

N(N + 1)
.

Moreover, it follows from the bound in (1.76) and (1.91) that the total number of inner iterations

can be bounded by

N∑
k=1

Tk ≤
N∑
k=1

(
6βkD

2
X

ηk
+ 1

)
=

6N2D2
X

D2
0

+N.

The complexity bounds in (1.93) and (1.94) then immediately follow from the previous two inequal-

ities.

We end this section by summarizing and comparing the convergence result and also require-

ments of AGD, CG and CGS. As we proved in previous sections, in order to compute an ε-solution

AGD requires O(
√
L∗(D∗X )2/ε) gradient evaluations where L∗ and D∗X are the true values of Lip-

schitz constant and the diameter of X , respectively. This number of evaluations is significantly

smaller than the O(LD2/ε) evaluations of CG. However, AGD requires the solution to the projec-

tion subproblem in each iteration of its algorithm which is not always efficiently solvable. This can

be a drawback for AGD method. CGS, on the other hand, resolves the requirement of projection

calculation in AGD and also the complexity of total number of gradient evaluations in CG. This

observation is summarized in Table 1.1. Note that ΠX (·) in Table 1.1 is the projection function

where (1.29) and (1.20) the subproblem of AGD and GD, respectively, are examples of this function.

AGD CG CGS

Subproblem ΠX (·) minx∈X 〈·, x〉 minx∈X 〈·, x〉

Number of subproblem computations
√
LD2
X /ε L∗(D∗X )2/ε L∗(D∗X )2/ε

Number of gradient evaluations
√
LD2
X /ε L∗(D∗X )2/ε

√
L∗(D∗X )2/ε

Table 1.1: Comparing the complexity of algorithms AGD, CG and CGS

However, CGS still requires L∗(D∗X )2/ε number of solutions to linear optimization problem

that cannot be improved according to [6, 9]. Another drawback of CGS is its requirement to the

parameter L∗. This drawback is resolved in CGS with line search (CGS-ls) method that we will
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propose it in next chapter.

1.5.3 Examples of LP subproblems

As we can see in previous section, projection-free algorithms such as CG and CGS have

a linear programming problem (LP) over the feasible set of the main problem that are needed to

be solved on each iteration or each inner iteration. It is reasonable to have an analytic and closed

form solution for such subproblems instead of directly asking solvers to find the optimal solution or

optimal value. In this section we have a few examples of closed form solutions for some LPs over

common feasible regions.

1.5.3.1 LP over simplex

In this example we find a closed form solution for the LP over the simplex.

Proposition 3. The optimal objective to the problem

min
x∈Rn

cTx

s.t

n∑
i=1

x(i) = 1

x ≥ 0

(1.96)

is min{c(1), · · · , c(n)}, where c(i), i = 1, · · · , n are the elements of cost vector c.

Proof. If we write the dual of the problem (1.96), we have

D = max
y∈R

y

s.t. y ≤ c(1)

...
y ≤ c(n)

y free

The solution to the dual D is clearly y∗ = min{c(1), · · · , c(n)}, and by LP strong duality we have

cTx = y. Then the primal optimal solution is given by x∗ = ey∗ , where ey∗ is the vector of zeros

except for y∗-th element.
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Proposition 3 states that, to find the LP solution over a simplex, we just need to find index

k such that c(k) = min{c(1), · · · , c(n)} and then the optimal solutions will be x∗ = ek. Note that

this can also be observed from that fact that all extreme points of a simplex are ei, i = 1, · · · , n.

1.5.3.2 LP over SVM dual constraints

In this example we find a closed form solution for the LP over the feasible set in (1.19).

This problem is discussed in Section 1.2.

Proposition 4. Consider the linear programming problem

min
u,v∈Rk

aTu+ bT v

s.t. eTu− eT v = 0

0 ≤ u(i) ≤ σ i = 1, · · · , k

0 ≤ v(i) ≤ σ i = 1, · · · , k

(1.97)

where a, b ∈ Rk, σ ∈ R, e is vector of ones in Rk and a(1) ≤ a(2) ≤ · · · ≤ a(k) and

b(1) ≤ b(2) ≤ · · · ≤ b(k). Then (1.97) has an optimal solution w∗ = (u∗, v∗)T ∈ R2k so that

w∗ ∈ {0, σ}2k. Also, if there exist a number, 0 < m ≤ k, so that
∑m
i=1(a(i) + b(i)) < 0 and

m∑
i=1

(a(i) + b(i)) = min

{
j∑
i=1

(a(i) + b(i)) : j = 1, · · · , k

}
,

then the optimal solution is w∗ = (u∗, v∗)T ∈ R2k where u∗ and v∗ are as u(i) = v(i) = σ for

i = 1, · · · ,m and u(j) = v(j) = 0 for j = m + 1, · · · , k. If no such m exists then 0 ∈ R2k is the

optimal solution.

Proof. Let S be the feasible set of the (1.97). Then S is clearly a polytope and there exists an

optimal solution w∗ = (u∗, v∗)T so that w∗ ∈ ext{S}. Also, (1.97) has 4k + 1 constraints in which

2k of them are active at w∗. Since the equality constraint is already active then 2k − 1 constraints

out of 2k remaining inequality constraints should be active. This implies that w∗ ∈ {0, σ}2k−1 × R.

Without loss of generality, suppose that u∗ ∈ {0, σ}k and v∗ ∈ {0, σ}k−1 × R. Then there exists a
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positive integer value, t, so that

k∑
i=1

(u∗)(i) = tσ.

However, in order to stay feasible from the equality constraint of (1.97) we have
∑k
i=1(u∗)(i) =∑k

i=1(v∗)(i) or
∑k
i=1(v∗)(i) = tσ. But since v ∈ {0, σ}k−1 ×R we must have v ∈ {0, σ}k. Therefore,

the optimal solution w∗ ∈ {0, σ}2k.

Now let I = {i : u(i) = σ} and J = {j : v(j) = σ}. Then |I| = |J | = t for some t ∈ Z+ and

from the objective function we have

aTu+ bT v =

k∑
i=1

a(i)u(i) +

k∑
j=1

b(j)v(j)

= σ
∑
i∈I

a(i) + σ
∑
j∈J

b(i)

= σ(
∑
i∈I

a(i) +
∑
j∈J

b(i))

≥ σ
t∑
i=1

(a(i) + b(i)).

This implies that if for any t = 1, · · · , k we have
∑t
i=1(a(i)+b(i)) > 0 then t = 0 or zero is the optimal

solution and w∗ = 0. If otherwise there exist a number m ∈ {1, · · · , k} so that
∑m
i=1(a(i) + b(i)) < 0

and

m∑
i=1

(a(i) + b(i)) = min

{
j∑
i=1

(a(i) + b(i)) : j = 1, · · · , k

}

then σ
∑m
i=1(a(i) + b(i)) is the optimal value. In this case w∗ = (u∗, v∗)T where (u∗)(i) = (v∗)(i) = σ

for i = 1, · · · ,m and (u∗)(j) = (v∗)(j) = 0 for j = m+ 1, · · · , k

Note that the feasible set of (1.97) looks different from that in (1.19). However, if the SVM

problem associated to (1.19) is balanced, namely, the samples belonging to the two sets are the

same, then the feasible set of (1.97) and (1.19) are the same (with k = m/2 and σ = C).
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1.5.3.3 LP over spectrahedron

As we mentioned before, a spectrahedron is the set of all positive semi-definite matrices

with trace one. First of all, note that if A ∈ Rn×n, then the solution to the problem

min xTAx

s.t xTx = 1

(1.98)

is the smallest eigenvalue of A. The reason is that if using spectral theorem we decompose A as

A = UTΛU , where U is the orthogonal matrix of eigen vectors of A, and Λ is the diagonal matrix

of eigenvalues of A, then we have

xTUTΛUx = (Ux)Tλ(Ux) = yTΛy.

Here y = Ux, and since yT y = (Ux)T (Ux) = xTUTUx = xTx = 1, then the problem (1.98) will

change to

min yTΛy

s.t yT y = 1

and the solution to this problem is the smallest value on the diagonal of Λ which is the smallest

eigenvalue of A. Now, let us define X = xxT . Then the objective function in (1.98) can be written

as xTAx = trace(AxxT ) = ‖AX‖2F . Also, xTx = trace(xxT ) = trace(X) = 1, where X = xTx

implies that X has rank 1 and is positive semidefinite. So, as a relaxation of (1.98) to rank one

matrices, we have the following problem

min ‖AX‖2F

s.t trace(X) = 1

X < 0.

(1.99)

Here we show that (1.98) and (1.99) have the same solution.
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Theorem 6. Let S = {xxT : x ∈ Rn, xTx = 1}, then

Conv(S) = {X : X ∈ Sn, trace(X) = 1, X < 0}.

Moreover, if v ∈ S then v is an extreme point of Conv(S).

Proof. Let us denote S̄ = {X : X ∈ Sn, trace(X) = 1, X < 0}. First, we show that Conv(S) ⊂ S̄.

To show this let X ∈ Conv(S). Then X =
∑n
i=1 λix

(i)(x(i))T , where λ(i) ≥ 0, i = 1 · · · , k and∑n
i=1 λ

(i) = 1. Since λ(i) ≥ 0, and x(i)(x(i))T are rank one positive semidefinite matrices for all

i = 1 · · · , n, then X is positive semidefinite too. Also,

trace(X) = trace(

k∑
i=1

λ(i)x(i)(x(i))T ) =

k∑
i=1

λ(i)(x(i))Tx(i) =

k∑
i=1

λ(i) = 1.

This implies that X ∈ S̄ and so Conv(S) ⊂ S̄.

Now let X ∈ S̄. Then X being positive semidefinite implies that using spectral theorem

and eigenvalue decomposition, we get

X = UTΛU =

n∑
i=1

λ(i)v(i)(v(i))T ,

where λ(i) ≥ 0, i = 1, · · · , n are the eigenvalues of X and v(i) is normalized eigen vector cor-

responding to λ(i) for i = 1, · · · , n. Since trace(X) = 1 we have
∑n
i=1 λ

(i) = 1. This means

that
∑n
i=1 λ

(i)v(i)(v(i))T is a convex combination of v(i)(v(i))T where by definition v(i)(v(i))T ∈ S.

Therefore, X ∈ Conv(S) and then S̄ ⊂ Conv(S).

First part of this theorem clearly implies that any point of set S is an extreme point of

Conv(S). Also note that any element of Conv(S) with rank higher than one can be written as a

nontrivial convex combination elements in S and so is no longer an extreme point.

Observe that Theorem 6 show that even though we relaxed he problem (1.98) to (1.99) they

will have the same optimal solutions. This means that the solution to (1.99) which is a LP over

Spectrahedron is the smallest eigenvalue of matrix A, say λ, and the optimal value is vvT where v

is the eigen vector corresponding to λ.
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1.5.3.4 LP over Birkhoff Polytope

The Birkhoff polytope is defined as

B = {X ∈ Rm×n : X is doubly stochastic with non-negative elements}.

In other words, the Birkhoff is the set of all m× n matrices such that both columns and rows sum

to one. The LP over Birkhoff polytope is define as

min

m∑
i=1

n∑
j=1

c(ij)x(ij)

s.t.
m∑
i=1

x(ij) = 1 j = 1, · · · , n

n∑
j=1

x(ij) = 1 i = 1, · · · ,m

0 ≤ x(ij) ≤ 1 i = 1, · · · ,m, j = 1, · · · , n

and this is the relaxed LP assignment problem and can be solved with special LP techniques.

1.5.3.5 LP over the set of Hamiltonian cycles on degree n

The LP over the set of Hamiltonian cycles on degree n can be formulated as traveling

salesman problem.

min

m∑
i=1

n∑
j=1

c(ij)x(ij)

s.t.

m∑
i=1
i 6=j

x(ij) = 1 j = 1, · · · , n

n∑
j=1
i 6=j

x(ij) = 1 i = 1, · · · ,m

u(i) − u(j) + nxij ≤ n− 1 2 ≤ i 6= j ≤ n

0 ≤ x(ij) ≤ 1 1 ≤ i ≤ m, 1 ≤ j ≤ n
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where the last inequality constraint eliminates the subtours which are cycles but not Hamiltonian.
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Chapter 2

CGS With Line Search

In Chapter 1 we introduced the CGS algorithm (see Algorithm 4) and also mentioned the

complexity and convergence results under different parameter set up. In the kth outer iteration

(kth gradient evaluation) of CGS the parameters βk and ηk depend on other constants such as the

Lipschitz constant L, the diameter DX of the feasible set X and also the maximum number of outer

iteration N . Although in theory these constants do not change the convergence rate of the algorithm

with proper setting up of parameters, in practice we might have issue in finding these constants. For

example, for large X finding the the Lipschitz constant L might be expensive in terms of computing

and CPU-time consuming. This is a draw back of CGS in practice.

One of the most common methods in optimization is the back tracking line search [1]. Line

search involves starting with an estimate of the corresponding constant and continue the iterations

of the algorithm while some conditions are satisfied. This guessed value of constant will be increased

iteratively if the specific condition is violated.

In this chapter we utilize the line search approach for the Lipschitz constant L. Algorithm

6 is the generic procedure of CGS with line search (CGS-ls). It starts with a first guess of L, that is

L0 in the algorithm and while the condition (2.1) is satisfied the algorithm iterates with the same

value of Lk at iteration k; once (2.1) is violated this value will be increased by a multiple of 2 until

the condition holds.
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Algorithm 6 A CGS-ls algorithm

Initial point y0 ∈ X . Set x0 = y0.

for k = 1, 2, . . . do

Find Lk > 0 such that

f(yk) ≤ f(zk) + 〈f ′(zk), yk − zk〉+
Lk
2
‖yk − zk‖2 +

ε

2
γk (2.1)

where

γk =

 1 k = 1

Positive solution to Γk = Γk−1(1− γk) k ≥ 2
(2.2)

where Γk depends on Lk and γk.

zk = (1− γk)yk−1 − γkxk−1 (2.3)

xk ≈ arg min
x∈X

〈f ′(zk), x〉+
βk
2
‖x− xk−1‖2 (2.4)

yk = (1− γk)yk−1 + γkxk (2.5)

Set

`k(x) := Γk

k∑
i=1

γi
Γi

[f(yi) + 〈f(zi), x− zi〉] . (2.6)

Stop if

f(yk)−min
x∈X

`k(x) ≤ ε, (2.7)

or equivalently,

max
x∈X

f(yk)− `k(x) ≤ ε. (2.8)

end for

Output yN .

Note that the approximate solution to xk in (2.4), the approximate solution to the projection

problem, is given by the same inner iterations as CGS Algorithm 4 inner iterations depending on

parameters {βk} and {ηk}. Namely, xk = CndG(f ′(zk), xk−1, βk, ηk). Indeed, if we consider the
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optimality condition

〈∇f(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk,

for ηk = 0 we have the exact solution to the projection subproblem which leads to the Nesterov’s

AG method and for ηk > 0, xk is solved with accuracy ηk. Also, the Lk in Algorithm 6 can be

the Lipschitz constant or any other amount that (2.1) hold. In addition, we can observe that the

above method is conceptual only since we have not yet specified the parameters {βk}, {γk} and ηk

that are used in the algorithm. Before setting these parameters we first establish some convergence

properties for the Algorithm 6.

We begin the proof of the convergence of the above algorithm by first showing some technical

results that will be used in the analysis of the Algorithm 6.

Lemma 3. For a given k we have

Γk

k∑
i=1

γi
Γi

= 1. (2.9)

Proof. Let 1 ≤ i ≤ k then by (2.2) we have

1

Γi
=

1− γi
Γi

+
γi
Γi

=
1

Γi−1
+
γi
Γi
.

Now summing up both sides of above inequality for i = 2, · · · , k we get

k∑
i=2

1

Γi
− 1

Γi−1
=

k∑
i=2

γi
Γi
.

Hence,

1

Γk
− 1 =

k∑
i=2

γi
Γi
.

This and also the fact that γ1 = 1 imply the (2.9).
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Lemma 4. If (2.7) or (2.8) hold, then

f(yk)− f∗ ≤ ε.

Proof. From the definition of `k(x) in (2.6), Lemma 3 and also the convexity of f for any x ∈ X we

have

`k(x) = Γk

k∑
i=1

γi
Γi

[f(yi) + 〈f(zi), x− zi〉]

≤ Γk

k∑
i=1

γi
Γi
f(x)

= f(x).

This implies that minx∈X `k(x) ≤ f∗ and therefore,

f(yk)− f∗ ≤ f(yk)−min
x∈X

`k(x) ≤ ε.

Theorem 7 below describes the main convergence property of the Algorithm 6.

Theorem 7. In Algorithm 6 if βk ≥ Lkγk, then

f(yk)− `k(x) ≤ ε

2
+ Γk

k∑
i=1

γiβi
2Γi

(
‖x− xi−1‖2 − ‖x− x)i‖2

)
+ Γk

k∑
i=1

γiηi
Γi
−

k∑
i=1

γi
2Γi

(βi − Liγi) ‖xi − xi−1‖2 .

Proof. We have

`k(x)

Γk

(2.6)
=

k∑
i=1

γi
Γi

[f(zi) + 〈∇f(zi), x− xi〉+ 〈∇f(zi), xi − zi〉]

=

k∑
i=1

1

Γi
[γif(zi) + γi 〈∇f(zi), x− xi〉+ 〈∇f(zi), γi(xi − zi)〉] .

49



Here

γi(xi − zi)
(2.5)
= yi − (1− γi)yi−1 − γizi

= (yi − zi)− (1− γi)(yi−1 − zi).

So,

`k(x)

Γk
=

k∑
i=1

1

Γi
[γif(zi) + 〈∇f(zi), yi − zi〉

− (1− γi) (f(zi) + 〈∇f(zi), yi−1 − zi〉) + γi 〈∇f(zi), x− xi〉].

Note that from (2.3) and (2.5) we have yi − zi = γi(xi − xi−1) and

f(zi) + 〈∇f(zi), yi − zi〉 ≥ f(yi)−
Li
2
‖yi − zi‖2 −

ε

2
γi.

Also, from convexity of f we have

− (f(zi) + 〈∇f(zi), yi−1 − zi〉) ≥ −f(yi−1),

and from (2.1) we have

γi 〈∇f(zi), x− xi〉 ≥ −
γiβi

2

(
‖x− xi−1‖2 − ‖xi − xi−1‖2 − ‖x− xi‖2

)
− γiηi.

Therefore,

`k(x)

Γk
≥

k∑
i=1

1

Γi

[
f(yi)−

Liγ
2
i

2
‖xi − xi−1‖2 −

ε

2
γi − (1− γi)f(yi−1)

−γiβi
2

(
‖x− xi−1‖2 − ‖xi − xi−1‖2 − ‖x− xi‖2

)
− γiηi

]
=

k∑
i=1

1

Γi
f(yi)−

1− γi
Γi

f(yi−1)−
k∑
i=1

γiβi
2Γi

(
‖x− xi−1‖2 − ‖x− xi‖2

)
− ε

2

k∑
i=1

γi
Γi
−

k∑
i=1

γi
2Γi

(Liγi − βi) ‖xi − xi−1‖2 −
k∑
i=1

γiηi
Γi

.
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Noting that

k∑
i=1

1

Γi
f(yi)−

1− γi
Γi

f(yi−1)
(2.2)
=

f(yk)

Γk
,

and also using Lemma 3 we have

`k(x)

Γk
≥ f(yk)

Γk
−

k∑
i=1

γβi
2Γi

(
‖x− xi−1‖2 − ‖x− xi‖2

)
− ε

2Γk
−

k∑
i=1

γi
2Γi

(Liγi − βi) ‖xi − xi−1‖2 −
k∑
i=1

γiηi
Γi

,

which implies that

f(yk)− `k(x) ≤ ε

2
+ Γk

2Γi∑
γiβi

(
‖x− xi−1‖2 − ‖x− x)i‖2

)

+ Γk

k∑
i=1

γiηi
Γi
−

k∑
i=1

γi
2Γi

(βi − Liγi) ‖xi − xi−1‖2 .

As we can see in Theorem 7 and the Algorithm 6 the parameters {βk}, {γk} and {ηk} are

needed to be specified in a proper way to have the desired convergence result. Clearly, there are

many options to choose these parameters to guarantee the convergence of CGS-ls. In our next step

we and in corollaries 6 and 7 we provide two different parameter settings for {βk}, {γk} and {ηk}

which lead to optimal complexity bounds on total number of gradient evaluations and also the total

number of calls to the linear optimizations oracle.

Corollary 6. If we set

βk =
2Lk
k
, γk =

2

k + 1
, Γk =

2

k(k + 1)
, ηk =

2LkD
2
X

Nk
,

where N is the max number of iteration and is bounded by

N ≥
√

2MD2
X

ε
,
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where M is the true value of Lipschitz constant, then for all x ∈ X

f(yk)− `k(x) ≤ ε

2
+ 3ΓkMD2

X .

In particular, the total number of ∇f(·) evaluations and linear objective optimization computations

are bounded by

√
12MD2

X
ε

and

(
72MD2

X
ε

+

√
12MD2

X
ε

)
,

respectively.

Proof. Applying the parameter setting to Theorem 7 we have

f(yk)− `k(x) ≤ ε

2
+ Γk

(
MD2

X + 2MD2
X
)

=
ε

2
+ 3ΓkMD2

X .

In particular, (2.7) is satisfied if

3ΓkMD2
X ≤

ε

2
,

i.e.

6MD2
X

k(k + 1)
≤ ε

2
, or k ≥

√
12MD2

X
ε

.

Now by Proposition 5 part (c),

N∑
k=1

Tk ≤
N∑
k=1

6βkD
2
X

ηk
+ 1

= 6N2 +N

≤ 72MD2
X

ε
+

√
12MD2

X
ε

.
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Corollary 7. As we set of the parameters in the Algorithm 6 as

βk = Lkγk, Γk = Lkγ
2
k and ηk =

LkγkD
2
X

N
, (2.10)

where N is the number of outer iterations, we have,

f(yk)− f∗ ≤ 12L

(k − 1)2
D2
X . (2.11)

In other words, the number of gradient evaluations in Algorithm 6 is bounded by

O

(√
LD2
X
ε

)
. (2.12)

In addition, the number of LP evaluations in the Algorithm 6 is bounded by

O
(
LD2
X
ε

)
. (2.13)

Proof. Clearly, with parameter set up in (2.10) all conditions (1.71) of Theorem 5 are satisfied and

from part (a) of this theorem with K the total number of iterations we have

f(yk)− f∗ ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

≤ Lkγ
2
kD

2
X

2
+ Lkγ

2
k

k∑
i=1

Liγ
2
iD

2
X

KLiγ2
i

=
1

2
Lkγ

2
kD

2
X + lkγ

2
kD

2
X

=
3

2
ΓkD

2
X .

(2.14)

But for k > 1 we have Γk = Γk−1(1− γk). This implies that

1

Γk−1
=

1

Γk
− γk

Γk
∀k > 1.

Therefore,

√
1

Γk
−

√
1

Γk−1
=

1
Γk
− 1

Γk−1√
1

Γk
+
√

1
Γk−1

=

γk
Γk√

1
Γk

+
√

1
Γk−1

.
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Note that Γk = (1− γk)Γk−1 ≤ Γk−1 and Γk = Lkγ
2
k. Hence,

√
1

Γk
−

√
1

Γk−1
≥

γk
Γk√

1
Γk

+
√

1
Γk

=
γk

2
√

Γk
=

1

2
√
Lk
≥ 1

2
√

2L
.

So performing inductively we get

√
1

Γk
−

√
1

Γk−1
≥ k − 1

2
√

2L
,

then

√
1

Γk
≥ k − 1

2
√

2L
,

which implies that

Γk ≤
8L

(k − 1)2
.

Therefore, from (2.14) we have

f(yk)− f∗ ≤ 3

2
· 8L

(k − 1)2
·D2
X

=
12L

(k − 1)2
D2
X .

(2.15)

Also, from part (c) of Theorem 5 and definition of ηk we have

N∑
k=1

Tk =

N∑
k=1

6βkD
2
X

ηk

=

N∑
k=1

6NLkγkD
2
X

LkγkD2
X

= 6N2.

(2.16)

Therefore from (2.15) and (2.16) w get that the total number of iterations it takes for the CGS

algorithm with line search to get an ε-certificate is bounded by O
(√

LD2
X/ε
)

and the number of

linear programming evaluations is bounded by O
(
LD2
X/ε
)
.

An observation that we can have from corollaries 6 and 7 is that in both type of settings
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of parameter we require the knowledge of N , the maximum number of outer iterations or the total

number of gradient evaluations. However, we can improve the bound on number of calls to linear

optimization oracle or the number of inner iterations in terms of its dependence on N . In corollary

8 we have a new setting for {βk}, {γk} and {ηk} that lead to our desired improvement.

Corollary 8. Let

βk = Lkγk, Γk = Lkγ
3
k, and ηk =

cLkγkD
2
X

k

for constant c > 0 and L1 = tM , where t ∈ (0, 1).Then (2.7) is satisfied when

k ≥ 17DX
6
√
t

√
(c+ 1)M

ε
.

Proof. Since Γk = Lkγ
3
k = (1− γk)γk−1 and L1 ≤ Lk ≤ 2M we have

1

Γk
− 1

Γk−1
=
γk
Γk
.

Then

3

√
1

Γk
− 3

√
1

Γk−1
=

1
Γk
− 1

Γk−1

3

√
1

Γ2
k

+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

≥
γk
Γk

3 3

√
1

Γ2
k

=
γk

3 3
√

Γk

≥ γk

3 3
√
Lkγ3

k

≥ 1

3 3
√

2M

Summing up both sides of above inequality we obtain

1
3
√

Γk
− 1

3
√

Γ1

≥ k − 1

3 3
√

2M
,
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which implies that

Γk ≤
54M

(k − 1)3
. (2.17)

In addition, since Γk = Lkγ
3
k we have

1

Lk
=
γ3
k

Γk
,

and since L1 ≤ Lk ≤ 2M we have

1

2M
≤ 1

Lk
≤ 1

L1
.

Combining these two inequalities give that

1
3
√

2M
≤ γk

3
√

Γk
≤ 1

3
√
L1

.

So,

1
3
√

Γk
− 1

3
√

Γk−1

=

γk
Γk

3

√
1

Γ2
k

+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

=

3

√
1

Γ2
k

γk
3
√

Γk

3

√
1

Γ2
k

+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

≤ γk
3
√

Γk

≤ 1
3
√
L1

.

We have L1 = Γ1. Summing up above inequality we get

1
3
√

Γk
≤ k − 1

3
√
L1

+
1

3
√
L1

=
k

3
√
L1

Therefore,

Γk ≥
L1

k3
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or

Lkγ
3
k ≥

L1

K3

which implies that

1

γ3
k

≤ Lkk
3

L1

or

1

γk
≤ k 3

√
2M

L1
. (2.18)

Hence, using (2.17), (2.18) and Theorem 7 we have

f(yk)− `k(x) ≤ ε

2
+ Γk

k∑
i=1

γiβi
2Γi

(
‖x− xi−1‖2 − ‖x− x)i‖2

)
+ Γk

k∑
i=1

γiηi
Γi
−

k∑
i=1

γi
2Γi

(βi − Liγi) ‖xi − xi−1‖2

=
ε

2
+ Γk

(
k∑
i=1

γiβi
2Γi

(
‖x− xi−1‖2 − ‖x− x)i‖2

)
+

k∑
i=1

γiηi
Γi

)

≤ ε

2
+ Γk

(
D2
X
γk

+ c

k∑
i=1

D2
X
iγi

)

≤ ε

2
+D2

XΓk

(
1

γk
+ c

k∑
i=1

3

√
2M

L1

)

=
ε

2
+D2

X

(
Γk
γk

+ ck 3

√
2M

L1
Γk

)

≤ ε

2
+D2

X

(
54M

(k − 1)3
k 3

√
2M

L1
+ ck 3

√
2M

L1

54M

(k − 1)3

)

=
ε

2
+D2

X

(c+ 1)108Mk 3

√
2M
L1

(k − 1)3

So, to have

(c+ 1)108D2
XMk 3

√
2M
L1

(k − 1)3
≤ ε

2
(2.19)

57



we need

1

k2
≤ k

(k − 1)3
≤ ε

2

3

√
L1

2M

108D2
XM

=
ε 3
√
L1

(c+ 1)216D2
X

3
√

2M4

or

k ≥

√
(c+ 1)216D2

X
3
√

2M4

ε 3
√
L1

=
DX

√
216 3
√

2
3
√
M2
√
c+ 1

√
ε 6
√
L1

. (2.20)

Therefore, if L1 = cM for some c ∈ (0, 1) and

k ≥ 17DX
6
√
c

√
(c+ 1)M

ε
.

then (2.20) and therefore (2.19) will also hold.

Note that even when L1 is significantly smaller than the true Lipschitz constant M , in order

to get an epsilon solution, the increase in number of iterations is not significant. For example, for

t = 0.01 the number of outer iterations is approximately bounded by

17
√
c+ 1DX

√
5M

ε
.

We finish this chapter by mentioning the fact that the constant c in Corollary 8 needs to be

tuned for best practical performance.
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Chapter 3

Experimental results

In this chapter we present the experimental results showing the performance of CGS-ls

compared to CG and CGS. To this goal we are interested in approximately solving the dual problem

of the SVM. Recall that, the dual of the soft-margin SVM is a quadratic programming problem of

the form

f∗ := −min
x∈X

f(x) :=
1

2

m∑
j=1

n∑
i=1

xixjbibj〈Xi, Xj〉 −
n∑
i=1

xi (3.1)

where

X =

{
x ∈ Rn :

n∑
i=1

xibi = 0, 0 ≤ xi ≤ C, bj , C ∈ R, i = 1, . . . , n, j = 1, . . . ,m

}
. (3.2)

Here C ∈ R is the regularization parameter and must be chosen properly.

As we mentioned in previous chapters the algorithms CG, CGS, and CGS-ls derive linear

approximate solutions to the quadratic programming problem (3.1) iteratively until an ε-solution is

provided. The linear approximations that appear in these algorithms as subproblem is the following

LP:
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max
x∈Rn

−
m∑
j=1

n∑
i=1

bibj〈Xi, Xj〉xj + e

s.t.

n∑
i=1

xibi = 0

0 ≤ xi ≤ C i = 1, . . . , n.

(3.3)

This problem is equivalent to

− min
x∈Rn

m∑
j=1

n∑
i=1

bibj〈Xi, Xj〉xj − e

s.t.

n∑
i=1

xibi = 0

0 ≤ xi ≤ C i = 1, . . . , n.

(3.4)

For balanced SVM (the two classes in the training dataset have the same number of samples),

the above LP has explicit solution (see our derivation in Section 1.5.3.2).

In next two sections we experiment the SVM classification on two different data sets. The

first data set is the set of uniformly chosen random points in some subsets of R2, and the second is

the MNIST hand-written digits data set. The goal is to examine and compare the performance of

algorithms, in terms of both objective function value and accuracy. The accuracy is basically the

percentage of test data points that are classified correctly.

3.1 Binary classification of 2D data set

In this section to have a better intuition of the classification we try to classify two types

of subsets in R2 to be able to visualize the line that separates the two data set. The first type of

subsets of R2 is the first and third orthants and the second type is two unit balls.

3.1.1 Boxes in first and third Orthants

As an example we consider two simple sets of uniformly chosen random points in boxes of

length 10 in first and third orthants of R2 as training data sets in which there are 500 random points

60



in each box and 1000 points in total. While the data sets are relatively small the three algorithms

CG, CGS, and CGS-ls have similar performance and after a few iterations they have an accuracy

more than 98 percent in classifying the data sets. In Figures 3.1, 3.2, 3.3, 3.4 and 3.5 we can see the

results of classification and the accuracy over iterations using these three algorithms. Note that the

parameter C = 1 is used for these data sets as the regularization parameter in (3.2).

Figure 3.1: Classifying 2D data sets in two or-
thants

Figure 3.2: accuracy of algorithms classifying
data sets in two orthants

Figure 3.3: iteration versus objective value in clas-
sifying data sets in two orthants

Figure 3.4: CPU-time versus objective value
in classifying data sets in two orthants
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Figure 3.5: CPU-time versus accuracy in classifying data sets in two orthants

3.1.2 Two unit balls

As another example we consider two sets of uniformly chosen random points in two 1-balls

of radius one with centers (0, 0) and (1, 1) for the training data sets in which there are 500 points in

each disc and 1000 random points in total. In a same way but with different seed the two test set

with 1000 random points are chosen. After a very small number of iteration all three algorithms CG,

CGS, and CGS-ls give a classification with more than 89 percent accuracy. Although this accuracy

is 10 percent lower than the accuracy we get in binary classification of two boxes, but we should

consider that higher intersection of the two discs in comparison with the two boxes. Note that the

parameter C = 0.01 is used for these data sets as regularization parameter. In figures 3.6, 3.7, 3.8,

3.9 and 3.10 we can see the results of classification and the accuracy over iterations using these three

algorithms.
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Figure 3.6: Classifying 2D data sets Figure 3.7: accuracy of algorithms

Figure 3.8: iteration versus objective value in clas-
sifying data sets in two unit balls

Figure 3.9: CPU-time versus objective value
in classifying data sets in two unit balls

Figure 3.10: CPU-time versus accuracy in classifying data sets in two unit balls
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3.2 Binary classification of MNIST hand-written digits

The data that we use here is from the MNIST database that is a large database of hand-

written digits 0 through 9. The image of these digits are vectorized and the representation of each

single image is a row vector of length 784. Each digit has different number of sample images and

row vectors corresponding to images are stacked on each other creating a matrix with fixed number

of columns and various number of rows. The whole database contains 60,000 training images and

10,000 testing images.

Figure 3.11: a sample of converted MNIST data set to images.

In this work we specifically separate the train set “train3” of size 6131 × 484 from train

set ”train8” of size 5851 × 784. Here “train3” and “train8” are hand-written digits of 3 and 8,

respectively. The objective matrix of training data set is then of size 11982 × 784. Consequently,

the test sets are “test3” of size 1010 × 784 and “test8” of size 974 × 784. The parameter C = 1 is

used for these data sets as regularization parameter. As we mentioned in previous chapters CG is a

parameter free algorithm but CGS and CGS-ls require the value of parameter diameter which based

on the regularization parameter C the diameter approximately equals 1.5. The CGS algorithm also

requires the parameter Lipschitz constatnt which approximately equals 2× 105. For the CGS with

linesearch, on the other hand, instead of the Lipschitz constant we have the first guess of 5000 as

L0.

We run the three algorithms for binary classification of the MNIST dataset without fixing
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the CPU-time. The stopping criteria for the algorithms is the Wolfe gap, which is a lower bound of

the objective value difference f(x)− f∗ for any feasible approximate solution x. In better words, we

iterate the algorithms until the Wolfe gap becomes smaller than a tolerance that we already defined.

The primary tolerance that is defined for this case is 10−3.

In Figure 3.12 we compare the value of the objective value of (3.1) per iteration. We can

observe that CGS-ls shows higher decrease in objective value per iteration in comparison with CG

and CGS.

Figure 3.12: Iterations versus objective value.
Figure 3.13: CPU time versus Objective
value.

On the other hand, unlike CG, per outer iteration of CGS and CGS-ls there are various

number of inner iterations. This leads these algorithms to consume higher CPU-time per gradient

evaluation in comparison with CG. In addition, since the value of parameter L might change per

outer iteration in CGS-ls we expected a weaker performance in this algorithm in terms of CPU time

in comparison with CGS. Figure 3.13 illustrates this drawback in CPU-time clearly.

3.2.0.1 Iteration and CPU-time v.s Wolfe Gap and Accuracy

In Figures 3.14 and 3.16 we can see the performance of three algorithms in terms of Wolfe

gap. Because of lower number of gradient evaluations and the existence of inner iterations we expect

a faster decrease in Wolfe gap per iteration from CGS-ls in comparison with CG.
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Figure 3.14: Iterations versus Wolfe gap. Figure 3.15: Iterations versus accuracy.

Figure 3.16: CPU-time versus Wolfe gap. Figure 3.17: CPU-time versus accuracy.

In terms of accuracy per iteration and CPU-time, however, from Figures 3.15 and 3.17 we

can see that the algorithm CGS-ls shows a weaker performance in first 60 iterations and after that

the maximum accuracy of CG, CGS and CGS-ls after 60 iteration is around 97%.

To end this chapter we provide in Figure 3.18 of a few converted points in test sets test3

and test8 that are note classified correctly via the three algorithms. The first row of Figure 3.18 are

points in test set test3 and the second row are points in test set test8 of MNIST data set.
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Figure 3.18: A sample of points that are not successfully classified with CG.
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