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ABSTRACT 
 
 

Across vertebrate diversity, limb bone morphology is typically expected to reflect 

differences in the habitats and functional tasks with which species contend. Arboreal 

vertebrates are often recognized to have longer limbs than terrestrial relatives, a feature 

thought to help extend the reach of limbs across gaps between branches. Among 

terrestrial vertebrates, longer limbs can experience greater bending moments that might 

expose bones to a greater risk of failure. However, changes in habitat or behavior can 

impose changes in the forces that bones experience. If locomotion imposed lower loads in 

trees than on the ground, such a release from loading demands might have produced 

conditions under which potential constraints on the evolution of long limbs were 

removed, making it easier for them to evolve in arboreal species. We tested for such 

environmental differences in limb bone loading using the green iguana (Iguana iguana), 

a species that readily walks over ground and climbs trees. We implanted strain gauges on 

the humerus and femur, and then compared loads between treatments modeling substrate 

conditions of arboreal habitats. For hindlimbs, only surface angle indicated strain 

increases, whereas the forelimb lacked consistent evidence that treatments changed bone 

loading regimens directionally. In this system, biomechanical release seems to be an 

unlikely mechanism to have facilitated limb elongation; limb bone adaptations in arboreal 

habitats seem to be driven by selective pressures other than response to loading. 
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I. INTRODUCTION 
 
 

Many possible factors can contribute to the diversity in animal morphology 

(Gould and Lewinton 1979; Wainwright and Price 2016). Morphological diversity within 

vertebrate skeletons is often viewed as relating to differences in mechanical function 

(Wainwright et al. 2005; Aiello et al. 2017). One factor contributing to such views is the 

role of skeletons as load bearing structures (Turner 1998). Associations between bone 

shape and function are intuitive – changes in shape can impact the ability of a structure to 

bear loads (Lieberman et al. 2004; Rivera and Stayton 2011; McHenry et al. 2006), and 

changes in use have the potential to impact the loads to which a structure is exposed (e.g., 

Blob and Biewener 1999; Iriarte-Diaz 2002). For example, several studies have 

associated variation in limb bone morphology with differences in habitat and locomotor 

behaviors (Andersson 2004; Bergmann et al. 2009; Iriarte-Diaz 2002). However, 

measurements of how changes in habitat or behavior can impose changes in the forces to 

which bones are exposed are less common (Byron et al. 2011; Granatosky et al. 2018; 

Kemp et al. 2005; Young and Blob 2015).  

One perspective that has emerged among studies that have examined changes in 

skeletal loading across changes in habitat or behavior is that such differences in loading 

might facilitate change in morphology. This can occur in cases of short-term acclimation 

of bone density in martial arts practitioners (Ito et al. 2016) and tennis players’ dominant 

arms (Calbet et al. 1998), but can also extend into evolutionary timescales. For example, 

in comparisons of limb bone morphology between greyhounds (exposed to selection for 

running speed by humans) and pit bulls (exposed to selection for fighting prowess by 

humans), greyhounds showed gracile limb bones suited to produce long strides, whereas 
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pit pulls showed robust bones suited to resist high forces incurred during fighting (Kemp 

et al. 2005). Thus, particular structural features of limbs led to advantages in function that 

successfully passed through selection and contributed to changes in shape over the course 

of reproductive generations. However, an alternative perspective is that changes in 

environment may remove specific skeletal loading demands, and thus potentially open 

opportunities for morphological diversification. For example, among swimming turtles, 

the reduction of torsional strains during aquatic propulsion has been proposed to have 

removed specific advantages of tubular-shaped limb bones for resisting such loads – thus, 

greater opportunity for other shapes to evolve became possible, potentially enabling the 

eventual evolution of flattened limb bones among species that flap their limbs to swim, 

like sea turtles (Young and Blob 2015; Young et al. 2017). This specific novel 

morphological characteristic arose in a group reflecting transitions between terrestrial and 

aquatic habitats. Could changes in skeletal loading help to explain changes in limb shape 

across evolutionary transitions between other types of habitats? 

Arboreal vertebrates have been described as having limb bones that are typically 

longer than those of closely related species that live mainly on the ground (Cartmill 1985; 

Kilbourne and Hoffman 2015; Rooney 2018; Herrel et al. 2013). Black-and-white ruffed 

lemurs (Varecia variegata) exemplify morphological changes that, when contrasted with 

more terrestrial taxa, would be advantageous for arboreal locomotor patterns (Meldrum et 

al. 1997). Although elongate limbs are considered advantageous during climbing to 

extend reach between grips, longer limbs also have greater moment arms for applied 

bending forces and would be expected to incur elevated bending loads during terrestrial 

locomotion (Biewener et al., 1983). The limbs of arboreal taxa are also known to have 
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significantly different loading patterns than those of terrestrial relatives (Demes et al. 

2009; Lammers and Gauntner 2008). An arboreal species from which skeletal loads have 

been evaluated is the gibbon (Hylobates lar), in which recordings have been made from 

strain gauges implanted on the ulna, radius, and humerus during brachiation (Swartz et al. 

1989). These data showed that the elongated limb bones of H. lar experienced high 

tensile (pulling or stretching) loads, which are unusual among vertebrate limb bones. 

Because brachiation is an unusual mode of locomotion among vertebrates, in which the 

body is suspended from the limbs rather than supported by them, it is unclear whether 

tensile loading might be expected among elongated limb bones of arboreal vertebrates 

more generally. However, it is also possible that, rather than elevation of specific types of 

loads promoting particular skeletal morphologies in arboreal taxa, a decrease in dominant 

loading regimes could open opportunities for a diversification of limb bone shapes 

(Young and Blob 2015). For example, animals climbing vertical surfaces might actually 

be pulled off of those surfaces by gravity (Maie et al. 2012), which could reduce the 

standard compressive or bending loads that such animals would experience during the 

support of body weight on level ground. Gravity might also pull climbing animals off of 

steep inclines, changing strain profiles in a similar fashion. Thus, either an increase in 

tensile loads or a reduction in compressive loads might contribute to conditions suitable 

for the evolution of bone elongation. In addition, compliance of arboreal substrates like 

branches might also reduce overall load magnitudes to which limb bones are exposed, 

such that elongated limb bones might not incur disadvantageous levels of bending and, 

therefore, have an increased potential to persist through the course of evolution, were 

they to appear.  
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This study tested for differences in limb bone loading during climbing compared 

to level locomotion, using bone strain measurements from the forelimbs and hindlimbs of 

green iguanas as a model. Through these measurements, I tested whether climbing 

produces patterns of skeletal loading consistent with expectations based on differences in 

limb morphology between arboreal and more terrestrial taxa, and whether biomechanical 

release from loading might have been a viable mechanism to have contributed to such 

changes. 
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II. MATERIALS AND METHODS 
 
 

Animal collection and husbandry 

Eleven I. iguana (SVL 28 – 37 cm) were collected from Palm Beach County, FL, 

USA using pole and noose, and were transported by car to our home lab facility in 

Clemson, SC, USA. Housing and husbandry followed published standards (Hatfield 

1996) and Clemson IACUC requirements (AUP 2017-071 and 2018-041). Animals were 

housed in a greenhouse within large plastic enclosures (147L x 100W x 52H cm) fitted 

with climbing surfaces, basking areas, and hides to promote activity and enrichment. 

Temperatures were kept between 27 and 37°C with an ambient light:dark cycle and full 

spectrum lighting via direct sunlight provided by moveable panels in the greenhouse roof. 

Animals were supplied with water ad libitum, and were fed daily with a mix of collard 

greens, carrots, and mangoes, supplemented with a vitamin/mineral powder.  

Surgical procedures 

To conduct strain recordings, one rosette (FRA-1-11) and two single element 

(FLK-1-11) strain gauges (Tokyo Sokki Kenkyujo Co., Ltd., Japan) were surgically 

implanted onto the midshaft of each iguana’s right femur or humerus, using aseptic 

technique. Techniques were based on procedures detailed in Blob and Biewener (1999). 

Anesthesia was induced by intramuscular injections of 60-100 mg/kg ketamine and 1 

mg/kg xylazine into the left M. triceps brachii (Romer 1922), with analgesia provided 

through an injection of 1 mg/kg butorphanol at the same site. For animals with lower 

initial doses of ketamine, booster injections of up to 40mg/kg were given if a surgical 

plane of anesthesia was not achieved.  
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To implant the strain gauges, a longitudinal incision was made along the medial 

surface of the thigh or arm. For individuals in which femoral strains were measured, M. 

iliotibialis, M. femorotibialis, and M. ambiens were gently separated and retracted to 

expose the surface of the femur; for individuals in which humeral strains were measured, 

M. biceps humerus and M. brachialis inferior were separated and retracted to expose the 

humerus (Romer 1922). At sites selected for implantation, periosteum was removed by 

gentle scraping with a periosteal elevator, and the bone surface was swabbed clean with 

diethyl ether and allowed to dry for several seconds. Gauges were attached to the bone 

using self-catalyzing cyanoacrylate adhesive (DuroTM Superglue; Henkel Loctite Corp., 

Avon, OH, USA). Rosette gauges (FRA-1-11, Tokyo Sokki, Japan) were attached to the 

femur midshaft on the dorsal surface, and two single elements (FLK-1-11, Tokyo Sokki, 

Japan) were attached to the femur midshaft on the anterior and ventral surfaces, 

respectively. Gauges were attached to the humerus midshaft in a similar distribution, with 

the rosette placed on the anterior surface and two single elements placed in ventral and  

posteroventral positions. After the gauges were attached, lead wires (336 FTE, etched 

Teflon; Measurements Group, Raleigh, NC, USA) were passed subcutaneously to an 

incision made dorsal to the hip (femur) or the glenohumeral joint (humerus), where they 

exited the limb. Incisions were then sutured closed, and gauge wire contacts were 

soldered into a microconnector and secured with epoxy adhesive. Self-adhesive bandage 

was then wrapped around the exposed length of the lead wires to protect them and allow 

them to be secured as a cable to either the hip or shoulder region.  Individuals were given 

24 h to recover from surgery. 
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Strain data collection and analysis 

The day following surgery, locomotor trials were conducted with each iguana in a 

wooden trackway (243L x 56W x 49H cm) with a clear Plexiglas panel on one side that 

allowed filming of trials. The trackway could be adjusted to simulate five environmental 

conditions, each of which was assigned an abbreviation as a naming convention: (1) a 

level trackway with a flat, non-compliant surface, simulating standard terrestrial 

substrates (FL-LEV); (2) a flat, non-compliant trackway angled at a 65° incline, 

simulating vertically inclined tree trunks common in arboreal habitats, particularly those 

growing over riverbanks common in the natural habitat of iguanas in Florida (FL-INC); 

(3) a level trackway with a compliant surface, formed by inserting a flexible (0.3 cm 

thick) plywood sheet into the trackway that could flex 7.5 cm at its midpoint between end 

supports that were 8.9 cm tall, simulating the compliance of branches found in many 

arboreal habitats (FL-COMP); (4) a level trackway with a curved surface, constructed 

from 30 cm diameter PVC pipe that was bisected longitudinally and laid along the length 

of the flat trackway, simulating the curvature of tree trunks (CRV-LEV); and (5) a 

trackway inclined at 65°, with the curved surface inserted (CRV-INC). For all trackway 

conditions, 0.7 cm-thick foam exercise mat was attached over all of the contact surfaces 

to improve grip of the iguanas’ feet and limit slipping or sliding during locomotion. 

Trials across these different conditions allowed distinct consideration of the effects of 

different features of arboreal habitats on limb bone loading, including surface inclination, 

compliance, and geometry. Each animal was tested in each condition until ~20 step 

cycles were collected. However, the order of test conditions was randomized across 

animals. 
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To collect strain signals, the microconnectors were connected to Vishay 

conditioning bridge amplifiers (model 2120B; Measurements Group) via a shielded 

cable. Raw voltage signals were sampled through an A/D converter (PCI-6031E; 

National Instruments Corp., Austin, TX, USA) at 2500Hz, saved to computer using data 

acquisition code written in LabVIEWTM (v. 6.1, National Instruments) and calibrated to 

microstrain (µε=strain x 10–6). Trials were conducted to encourage a consistent speed for 

1-4 step cycles. Although speeds may not have been strictly dynamically equivalent 

across different conditions (e.g. level versus inclined), they still provide data with 

comparable ecological relevance for understanding selection pressures on skeletal 

morphology. Strain trials were filmed from lateral perspective (120fps; GoPro Hero 3, 

GoPro, San Mateo, CA, USA). Video data were synchronized with strain recordings 

using a trigger connected to an LED visible in the camera frames that simultaneously 

produced 1.5 V pulses visible in strain records. Video frames marking the start and end of 

footfalls, as well as the time of the light pulse, were determined using Adobe Premiere 

Pro™ (Adobe, CC 2020 (14.0) / November 4, 2019). At the completion of all trials for an 

individual, each iguana was euthanized (Beuthanasia®-D pentobarbital sodium solution; 

Merck Animal Health, Millsboro, DE, USA; 200 mg/kg intraperitoneal injection) and 

frozen for later dissection of limb elements. 

Conventions for the analysis and interpretation of strain data closely followed 

previous studies of skeletal loading in reptiles (Blob and Biewener 1999; Butcher et al. 

2008; Sheffield et al. 2011). For each step, peak strain values for each axially aligned 

recording channel were extracted. In addition, magnitudes and orientations of peak 

principal strains (i.e. maximum and minimum strains at each site, regardless of alignment 
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with the femoral long axis), and shear strain magnitudes, were calculated from the output 

of the three rosette gauge channels following published methods (Carter 1978; Dally and 

Riley 1978; Biewener and Dial 1995). Values of principal strain orientations and shear 

strain magnitudes provided insight into the importance of torsional loading: with the long 

axis of each bone defined as 0°, pure torsional loads would show principal strain 

orientations of 45° or -45°, depending on whether the bone was twisted in a clockwise or 

counterclockwise direction. Data for the steps in each strain gauge metric for each 

trackway condition (referred to as “cases”) were compared using Mann-Whitney U-tests 

conducted in R Statistical Software Version 3.6.1 (R Core Team, 2019). 
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III. RESULTS 
 
 

In each animal, the implanted gauges allowed a potential for six strain magnitude 

cases to be compared across substrate conditions: one longitudinal strain magnitude value 

from each of the two single element gauges, and four strain magnitudes associated with 

the rosette gauge (longitudinal, principal tensile, principal compressive, and shear). The 

angle of principal tension to the long axis of the bone (ft) was also calculated for each 

step from rosette data, although these were not formally compared between conditions 

because this angle is included in the calculation of shear strains (Carter 1978; Biewener 

and Dial 1995), and it was deemed preferable to limit comparisons to variables directly 

related to strain magnitudes that could be connected to hypotheses about mechanisms of 

changes in bone shape. Representative strain traces for different substrate conditions are 

depicted for the femur in Figure 1, and for the humerus in Figure 2. 

General patterns of limb bone strain in iguanas during locomotion 

Strain patterns in the iguana femur for FL-LEV surfaces generally match those 

reported previously (Biewener and Blob 1999), although our new data include an 

additional recording location on the ventral aspect of the femur. Longitudinal strains 

increased as foot contact with the ground was made, reaching peak values near midstep, 

though there is some variability across recording locations and substrate types (Fig. 1). 

For three of the four iguanas from which we collected FL-LEV strains for the femur, 

strains were tensile on the dorsal surface, and compressive on the anterior surface (Table 

S1), reflecting loading of the femur in bending with a neutral axis running between these 

two gauge locations. These data resemble those collected by Blob and Biewener (1999) 
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specifically for the dorsal and anterior recording locations. Strains on the new, third, 

ventral location showed low levels of either tensile or compressive strain in the three 

iguanas with successful recordings, reflecting minor individual variation in loading 

across the animals. Principal strains for the dorsal recording location were considerably 

greater in magnitude than longitudinal strains, with magnitudes of ft averaging 49, 57, 

and 63° in the three iguanas with successful femoral rosette recordings.  These values of 

near 45°, as well as shear strain magnitudes similar to those of principal strains, reflect 

the presence of torsional loading in the femur as well as bending during FL-LEV 

locomotion. Within each animal, strain patterns at a particular location typically were 

consistent across the different locomotor cases (e.g., gauges that showed tensile strains 

during FL-LEV also showed tensile strains in other loading conditions), though strain 

magnitudes sometimes differed (see below). 

Strains in the iguana humerus for FL-LEV surfaces were similar among the 

individual iguanas, but show some differences from comparable humeral measurements 

reported previously in the American alligator, Alligator mississippiensis (Blob et al. 

2014). Longitudinal strains increased as hand contact with the ground was made, 

reaching single maximum peak values near midstep, though there is some variability 

across recording locations and substrate types (Fig. 2). For three of the four iguanas from 

which we collected FL-LEV strains for the humerus, strains were tensile on the 

posteroventral and ventral surfaces. Both animals in which we were able to collect data 

from the anterior strain gauge indicated compressive strains on that surface (Table S1), 

reflecting loading of the humerus in bending with a neutral axis running between the 

ventral and anterior gauge locations. These specific data differ from patterns in Alligator 
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(Blob et al. 2014). Anteriorly placed gauges measured largely compressive strains in 

iguana humeri, whereas those measured in the alligator humerus were tensile. Similarly, 

ventrally placed gauges measured tensile strains in iguana humeri, and compressive 

strains in alligators. Strains on the new, third, posteroventral location showed similar 

tensile measurements as seen in the ventrally-located gauge. There is not a clear 

relationship between strain magnitude and gauge location. Principal strain orientations 

for the anterior recording location averaged ft of 47 and 53° in two iguanas, reflecting 

torsional loads superimposed on bending in the humerus during FL-LEV locomotion. 

Strain magnitude comparisons across substrates 

For the femur, the greatest directional effects of substrate type on strain 

magnitudes resulted from inclining the surface (Table 1). Twelve of 19 comparisons 

between FL-LEV and FL-INC substrates showed significant differences in strain, with 10 

cases showing greater strains in inclined surfaces, and only two showing greater strains 

on level surfaces. However, seven of the 19 comparisons yielded no significant 

differences. Other comparisons across substrate types showed even fewer significant 

differences. Compliant substrates had little impact on the load magnitudes imposed on 

iguana femora, with 18 of 22 (82%) FL-LEV vs FL-COMP comparisons for the femur 

showing no significant differences. For cases that did show significant differences, three 

of four showed greater strains on compliant surfaces. Surface geometry, in comparisons 

of both level and inclined surfaces, also had little impact on load magnitudes. Fourteen of 

19 comparisons (74%) between FL-LEV and CRV-LEV surfaces, and 23 of 28 

comparisons (82%) between FL-INC and CRV-INC surfaces showed no significant 

differences. For cases that did show significant differences, the directionality of effects 
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was not consistent, with two of five cases showing greater strains on curved surfaces for 

level substrates, and one of five cases showing greater strains on curved surfaces for 

inclined substrates. 

Surface inclination also showed the most frequent effects on loading for the 

humerus, though the directionality of effects was not as consistent as for the femur.  

Fourteen of 19 comparisons between FL-LEV and FL-INC substrates showed significant 

differences in strain for the humerus, but six cases showed greater strains on level 

surfaces, and eight cases showed greater strains on inclined surfaces. Similar to the 

femur, compliant substrates had little impact on load magnitudes for the iguana humerus, 

with four comparisons showing greater strains on compliant surfaces, but the remaining 

15 of 19 (79%) comparisons showing no significant difference in strain between FL-LEV 

and FL-COMP surfaces. Surface geometry also had little impact on load magnitudes. 

Eleven of 17 comparisons (64%) for the forelimb between FL-LEV and CRV-LEV 

surfaces, and 11 of 19 comparisons (58%) between FL-INC and CRV-INC, showed no 

significant differences in strain. There was not a consistent pattern among cases that did 

show significant differences, with three of six showing greater strains on level curved 

surfaces, and 3 of eight showing greater strains on inclined curved surfaces. 
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Substrate Compared 
to Flat-Level 
Locomotion 

Result of 
Comparison Counts of Cases 

  Femur Humerus 
Flat-Incline FL-LEV > FL-INC 2 (11%) 6 (32%) 

 FL-INC > FL-LEV 10 (53%) 8 (42%) 
 No signif. diff. 7 (36%) 5 (26%) 

Compliant FL-LEV > FL-COMP 1 (5%) 0 (0%) 
 FL-COMP > FL-LEV 3 (14%) 4 (21%) 
 No signif. diff. 18 (81%) 15 (79%) 

 

Table 1 — Effects of substrate inclination and compliance on the absolute magnitudes of 

strains in iguana limb bones. Counts of cases that showed a particular comparison result 

are based upon all Mann-Whitney U-test comparisons (at p < 0.05), performed for each 

successfully recorded strain variable, within each individual iguana (see Tables S1, S2). 

Comparisons for other substrate conditions that were modeled did not yield significant or 

directional results. 

 

 

 

 

Figure 1 (following page) —  Femoral strain traces from representative limb cycles 

comparing flat (FL-LEV), incline (FL-INC), and compliant (FL-COMP) surfaces. Shaded 

regions indicate the time duration in which the pes is in contact with substrate. 
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Figure 2 (following page) — Humeral strain traces from representative limb cycles 

comparing flat (FL-LEV), incline (FL-INC), and compliant (FL-COMP) surfaces. Shaded 

regions indicate the time duration in which the manus is in contact with substrate. 
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IV. DISCUSSION 
 
 

Comparative limb bone loading mechanics during level locomotion 

During locomotion on level, non-compliant surfaces, femoral strains recorded 

from the green iguana in this study were largely consistent with those recorded 

previously from this species (Blob and Biewener 1999), indicating substantial torsion 

superimposed on bending along an anterodorsal to posteroventral axis. Torsional loading 

of the femur appears to be a widespread feature of locomotion among tetrapods using 

sprawling locomotion (Butcher et al., 2008; Sheffield et al. 2011; Young et al. 2017), and 

potentially species using more upright posture as well (Carrano, 1998; Butcher et al., 

2011; Copploe et al. 2015). In contrast to the similarities in femoral torsion across 

sprawling taxa, patterns of femoral bending are more diverse. The axis of bending in the 

iguana femur is similar to that in Alligator (Blob and Biewener 1999), running from 

anterodorsal to posteroventral; however, the dorsal aspect of the femur is loaded in 

compression in alligators, rather than in tension in iguanas. In contrast to these taxa, in 

both river cooter turtles (Butcher et al. 2008) and tegu lizards (Sheffield et al. 2011), the 

dorsal aspect of the femur is loaded in tension like in iguanas; however, the axis of 

bending in both of these species runs from anteroventral to posterodorsal. This diversity 

in femoral bending mechanics probably reflects a variety of kinematic differences across 

these taxa, particularly the extent to which the femur rotates about its long axis. Long 

axis rotation of limb bones changes the orientation of anatomical surfaces with respect to 

absolute space, such that largely vertical ground reaction forces (Kawano and Blob 2013) 

would place different anatomical surfaces of the femur in tension versus compression 
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about a bending axis that is horizontal in absolute space (Blob and Biewener 2001; 

Kawano et al. 2016). This possibility could be tested through the use of experimental 

techniques such as XROMM (X-ray Reconstruction of Moving Morphology: Brainerd et 

al. 2010), which can accurately and precisely resolve axial rotation of limb skeletal 

elements (Kambic et al., 2014; Mayerl et al., 2016).  

Our recordings from the iguana humerus are the first humeral strains recorded 

from any lepidosaur. Strain patterns were different from those of the femur in some 

respects, despite both elements being proximal limb bones. For example, although torsion 

was prominent in the humerus as it was in the femur, the orientation of bending differed 

between these bones, placing the dorsal surface of the femur in tension in iguanas, but the 

ventral and posteroventral surfaces in tension in the humerus. Contrasts in loading 

between the femur and humerus were also observed in sprawling salamanders, and were 

interpreted as differences in the initial orientation and axial rotations of these elements 

through stance (Kawano et al. 2016). However, in addition to differences in axial rotation 

between these elements, it is also possible that the humerus and femur of iguanas differ in 

the magnitude of axial compression that is superimposed on their cross-sections in 

support of body weight. Increases and reductions of axial compression can shift the 

neutral axis of bending away from the cross-sectional centroids of bones, leading to 

changes in the distribution of tension and compression about the cortex (Blob and 

Biewener 1999). Because the iguana forelimb is smaller than the hindlimb, ground 

reaction force magnitudes or severity of effect may differ between the humerus and 

femur, contributing to differences in the distribution of their strains. Iguana humeral 

strains also differ from those of American alligators, which exhibit tensile strains on the 
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anterior and anteroventral surfaces, and compressive strains on the ventral surface. 

Although the factors that contribute to the differences in axial compression between these 

elements are unclear, they seem unlikely to relate to differences in axial compression 

because the forelimbs are similar in proportion to the body in both taxa.   

Environmental effects on limb bone loading and implications for biomechanical release 

Out of all the simulated environmental conditions that we compared, only surface 

incline had appreciable effects on limb bone loads during locomotion compared to level, 

flat substrates – neither surface curvature nor compliance showed characteristic changes 

in loading compared to level ground. These results indicate that, among the distinctive 

components of arboreal habitats, the angle of the surface and the demands of climbing 

vertically may place the greatest demands on the limbs. In the majority of the hindlimb 

cases, the FL-INC (inclined) condition incurred significantly higher strains than those 

incurred on the FL-LEV (level) condition. This directionality of effects was not as clear 

for the humerus, but there were still several cases where the FL-INC condition incurred 

significantly higher strains than FL-LEV, and average strain for the FL-INC was also 

higher overall.  

Data from this study were collected with the goal of gaining insight into how the 

limbs of arboreal taxa lengthened through evolutionary time, particularly whether 

lengthening of the limb bones might have been facilitated through opportunities provided 

by a release from typical biomechanical loads during arboreal locomotion. Our results do 

not support this conclusion. Rather than showing lower loads during simulations of 

arboreal conditions, iguana limb bones did not show consistent changes in strains on 

curved or compliant surfaces compared to flat, level ground. Only inclined substrates 
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showed prominent differences in loads from flat, level surfaces, but these more 

commonly showed higher, rather than lower strains. In this context, the evolution of 

longer limb bones in arboreal species may actually have occurred in spite of increases in 

overall strain, rather than being facilitated by a reduction in loads. Biomechanical release 

was likely an influential mechanism in other evolutionary habitat transitions, such as the 

secondary invasion of aquatic habitats by tetrapods (Young and Blob 2015; Young et al. 

2017). However, it seems unlikely to have contributed to morphological changes across 

terrestrial-to-arboreal habitat transitions, suggesting that limb elongation in these 

transitions was driven by functional demands or other factors that superseded any 

potential costs of higher limb bone loads. 
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Table S1 (pages 28–30) — Hindlimb strain data across strain gauge metrics. “R” in 

gauge metric row indicates that this metric was associated with the rosette gauge. Values 

in first five rows indicate the average maximum/minimum strain (units in microstrain, µε 

= 10−6 × strain) ± standard deviation, with number of steps in parentheses. Bottom four 

rows indicate p-value of Mann-Whitney U-Tests comparing steps between two 

conditions. Bolding denotes significant differences between comparisons. 
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Table S2 (pages 32–34)— Forelimb strain data across strain gauge metrics. “R” in gauge 

metric row indicates that this metric was associated with the rosette gauge. Values in first 

five rows indicate the average maximum/minimum strain (units in microstrain, µε = 10−6 

× strain) ± standard deviation, with number of steps in parentheses. Bottom four rows 

indicate p-value of Mann-Whitney U-Tests comparing steps between two conditions. 

Boldface text denotes significant differences between comparisons. 
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