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ABSTRACT 

The midgut is the main point of interaction between a lepidopteran larva and its 

environment, so understanding how the gut functions is important not just for 

understanding gut physiology but also the ecology and evolution of these organism. The 

midgut of these larvae is a fascinating system in which to study developmental, 

regenerative, and immune physiology. The midgut can exhibit up to a 200-fold increase 

in size through ontogeny, primarily through addition of new cells at molt, while 

damaged cells are replaced throughout intermolt periods. In the midgut of lepidopteran 

larvae, mature cells are produced from stem cells, localized in pockets underneath the 

mature cells.  

Several regulators of stem cell activity are known, but no integrative model has 

been established. In numerous animal taxa, bioelectric phenomena regulate stem cell 

activity, including duplication and differentiation. Here, we are using the tobacco 

budworm, Heliothis virescens, to characterize bioelectric patterns in the lepidopteran 

larval gut. We adapted a method to isolate stem and mature gut cells from 

physiologically staged fourth instar larvae and assay their membrane potential. As 

bioelectric phenomena are highly important in gut physiology, our results may be useful 

in regulating lepidopteran pests. Finally, our results could help further our understanding 

of how physiology and an organism’s environment interact. 
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CHAPTER ONE 

INTRODUCTION 

Lepidopteran gut physiology is a fascinating system to study. The midgut is the site of a 

large amount of stem cell growth of new cells and regeneration/replacement of dead or dying 

cells (Hakim et al., 2001). The gut epithelium is primarily composed of two cell types: the 

columnar cells are responsible for nutrient uptake and secretion of digestive enzymes, and the 

goblet cells which maintain the internal environment of the gut lumen (Hakim et al., 2001). 

Other cell types such as endocrine and stem cells are present but in much smaller numbers than 

goblet and columnar cells (Levy et al. 2004). Representative images of midgut epithelium cells 

can be seen in Figure 1. In Manduca sexta (Lepidoptera: Sphingidae), the gut can see a 200-fold 

increase in size between first and last larval instar (Rowland et al. 2016). Most of this growth 

happens during the molting period. This growth has been shown to be from a large increase in 

new cell numbers, rather than an increase in cell size (Hakim et al. 2010). Thus, new cells need 

to be produced due to natural developmental processes and following damage to replace lost or 

damaged cells. 

Figure 1. Distinguishing between cell types by morphological characteristics. For the 
purpose of this research, cells from the lepidopteran larval midgut are grouped into two 
categories. The first is “mature cells”. These cells are large and generally irregular in shape. 



Most of these mature cells are columnar (Left) and goblet cells (Center), although it also includes 
endocrine cells (not pictured) which generally are smaller and rounder than either of the other 
two mature cell types. The second category is stem cells, which are generally much smaller than 
the majority of mature cells and are almost perfectly circular in shape (Right). 

New cells in the larval lepidopteran midgut are exclusively stem cell derived (Hakim et 

al. 2010). This stem cell-based cell replacement allows for extremely rapid growth and 

regeneration. Several different processes are known to trigger stem cells to begin proliferation; 

these signals can be modulated through a variety of mechanisms such as paracrine, endocrine, 

and kinetic modalities. Some proportion of these stem cells will differentiate into mature cells. 

Following damage (whether by diet or pathogen), holes left by cells that are damaged or dead are 

filled by these newly generated mature cells (Hakim et al., 2010) (Figure 2). Stem cells are also 

responsible for expanding the gut during growth periods through ontogeny.  

Figure 2. Cell replacement in the gut of lepidopteran larvae. Stem cells are basal to mature 
cells during homeostatic tissue function. Following damage, stem cells will begin to divide. 
Once the dead/dying cells are removed stem cells begin to differentiate and fill the place of the 
removed cell/cells. 
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The genus Heliothis has several species that are known as major pests (Fitt 1989), 

including H. virescens Noctuidae:Heliothis. Heliothis virescens are typically an agricultural 

problem throughout North and South America, primarily feeding on tobacco, cotton, tomato, 

sunflower and soybeans. Heliothines lead to a large amount of crop damage each year (Bottrell, 

1977). These pests can be particularly troublesome for crops for several reasons, one of which is 

the tendency of these larvae to feed on plant structures that are high on nitrogen such as 

reproductive structures and growing points (buds). These feeding habits can incur major impacts 

on crop yield (Hardwick, 1965). The major pest species within the heliothines are polyphagous 

causing major damage to several different plant species.   

One of the more common control techniques used to combat lepidopteran pests is the use 

of plants genetically engineered with Bt-cry toxins, so common that almost 80% of cotton and 

corn in the U.S.A. is Bt-recombinant (Wechsler, 2018). This method is so widely used that 

resistance has developed in many insect species to several Bt toxins (Reisig et al., 2018; 

Tabashnik et al., 2003). The toxins work by binding to mature cells causing pores within the gut 

leading to the loss of cells and eventually death of the organism (Carriere et al., 2010; Coates, 

2016; de Bortoli and Jurat-Fuentes, 2019). Several resistance modalities have been demonstrated 

in lab colonies, including activation and receptor binding (Coates, 2016). Another mechanism of 

resistance or survival may be related to gut stem cell replenishment rate: increased rates of 
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midgut stem cell division and/or differentiation may replace mature cells sufficiently to 

overcome sublethal crytoxin damage (Spies et al.,1985; Loeb et al., 2000). 

Numerous soluble factors regulating stem cell division and differentiation have been 

identified in lepidopteran midguts, such as ecdysone and 20-hydroxyecdysone which are known 

to regulate proliferation and differentiation, respectively, in Spodoptera littoralis larval gut stem 

cells (Smagghe et al., 2005). Bioelectric mechanisms (Levin et al. 2013) may also play a role. 

Bioelectricity, which in the broad sense is the generation, maintenance, and dynamism of charge 

gradients across living cell membranes, is linked to nearly all aspects of cellular and tissue 

physiology, including developmental phenomena. In planaria, an animal known for its 

regenerative properties, stem cell behavior can be manipulated by treating wound sites with 

Ivermectin, a Cl- channel agonist (Ferenc and Levin, 2019). It was demonstrated in the frog 

Xenopus laevis that hyperpolarized the membrane potential of cells at wound sites via incubation 

in Na+ ion rich media increases regeneration rate by altering stem cell division and 

differentiation rates (Tseng & Levin 2012). These examples suggest that bioelectricity, 

specifically membrane potential (Vmem), could be playing an important role in regulating stem 

cell activity. Across animal phyla, stems cells are depolarized relative to mature cells, and 

embryonic stem cells are even more depolarized (Levin 2017). Further, there are differences in 

cell membrane potential of different types of terminal or mature cells reflecting the different task 

these cells have. The question at hand remains: in lepidopterans, specifically the midgut, is 

membrane potential just a readout of cell physiology or is it a determining factor in controlling 

cell behavior? 
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The main goal of this project was to characterize membrane potential patterns within the 

gut mature and stem cells of H. virescens larvae. I hypothesized that stem cells would be 

depolarized relative to mature cells. I further predicted that following dietary challenge, I would 

observe changes in membrane potential of stem cells suggesting a change in the behavior of 

these cells in response to the damage caused by the dietary assay. The results of this work will 

not only allow us to better understand the role of membrane potential in H. virescens stem cells, 

but potentially stem cell systems in general. Thus, H. virescens midguts could serve as an 

alternative model for understanding stem cell behavior. 
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CHAPTER TWO   

 DYNAMICS OF LEPIDOTERAN LARVAE MIDGUT CELL MEBRANE POTENTIAL 

1. Abstract

In the midgut of lepidopteran larvae, mature cells are produced from stem cells, localized in 

pockets underneath the mature cells. Several modalities, including small soluble molecules such 

as endocrine and paracrine factors as, are known to regulate lepidopteran gut stem cell activity. 

In numerous animal taxa, bioelectric phenomena regulate stem cell activity, including 

duplication and differentiation. Here, we used the tobacco budworm, Heliothis virescens, to 

characterize bioelectric patterns in the lepidopteran larval gut. We adapted a method to isolate 

stem and mature gut cells from physiologically staged fourth instar larvae and characterized cell 

membrane potential using both cationic and anionic membrane potential sensitive dyes 

DiBac4(3) and Rhodamine 6G. We found that gut stem cells are depolarized compared to mature 

cells, a general trend seen in other stem cell systems. As bioelectric phenomena are highly 

important in gut physiology, our results, including ability to manipulate gut bioelectricity, may 

be useful in regulating lepidopteran pests. Finally, our results could help further our 

understanding of how the physiology of an organism interacts with the environment in which 

they live.  
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2. Introduction

The midgut of larval Lepidoptera is the site of food digestion, nutrient uptake and

transport, and consequently encounters numerous stresses from growth to toxins. Given this, the 

midgut is also the site of substantial stem cell proliferation and differentiation that facilitate the 

regeneration and replacement of dead or dying cells (Billingsley and Lehane, 1996). The luminal 

face of the gut epithelium is primarily composed of two cell types: columnar cells which are 

responsible for nutrient uptake and secretion of digestive enzymes and goblet cells which 

maintain the internal environment of the gut lumen. In the vasal face of the epithelium there are 

pockets of stem cells intermixed with endocrine cells (Loeb et al., 2000). New columnar and 

goblet cells are thought to be exclusively stem-cell derived, with little stem cell activity (division 

or differentiation) except immediately prior to or during intramolt periods and following periods 

of damage (Hakim et al. 2010; Hakim et al., 2001). During intramolt periods, midgut stem cells 

are highly proliferative, facilitating incredible increases in gut size and cell number: for example, 

the gut of the larval noctuid Trichoplusia ni exhibits a 2.6-fold increase in total cell populations 

from 3rd to 5th instar (Engelhard et al., 1991).  

A common control technique for lepidopteran larvae in cotton and corn is the use of 

toxins from the bacterium Bacillus thuringiensis (Bt); approximately 80% of cotton and corn in 

the US is Bt-recombinant (Wechsler, 2018). Although there is uncertainty regarding the specific 

mode of action, toxin ingestion, activation and binding induces gut cell death, resulting in loss of 

mature cell numbers and eventually death of the organism (Carriere et al., 2010; de Bortoli and 
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Jurat-Fuentes, 2019). Selection stemming from the pervasive use of this method has led to the 

development of resistance to several Bt-cry toxins in lepidopteran lineages (Reisig et al., 2018; 

Tabashnik et al., 2003). While several resistance modalities have been demonstrated in 

laboratory colonies, including activation and receptor binding (Coates, 2016), an intriguing 

mechanism may be related to gut stem cell replenishment rate: increased rates of midgut stem 

cell division and/or differentiation may replace mature cells sufficiently to overcome sublethal Bt 

toxin damage (Spies et al.,1985; Loeb et al., 2000). These studies were done in vitro and not in 

vivo but the results imply that in vivo results would be similar, that stem cells in vivo might help 

overcome a lower dosage by mitigating the damage. Given this, better understanding of the 

mechanisms regulating lepidopteran midgut stem cell division and duplication may enhance 

control opportunities.  

Numerous soluble factors regulating lepidopteran midgut stem cells have been identified. 

Ecdysone and 20-hydroxyecdysone regulate proliferation and differentiation, respectively, in 

Spodoptera littoralis gut stem cells (Smagghe et al., 2005), and arylphorin and 20-

hydroxyecdysone induce differentiation in Bombyx mori (Cermenati et al., 2007). Additionally, 

several midgut derived paracrine factors (termed MGDF 1-4) have mitogenic activity in 

Heliothis virescens (Loeb et al., 1999; Loeb, 2010). Significantly greater knowledge exists 

regarding regulation of Drosophila melanogaster adult intestinal stem cells, as the Wnt, Notch, 

Hippo/Yorkie, JNK, JAK/STAT and EGFR pathways are all implicated in stem cell behavior, as 

has also been observed in mice (Lin et al., 2008). Importantly, signaling patterns during stem cell 

replacement of gut cells lost through damage appear to involve many of the pathways engaged 

during ontogeny (Jiang et al 2016). 
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An additional modality observed to regulate cell decisions regarding quiescence, 

duplication and differentiation are bioelectric signals. All cells generate, maintain and modulate 

voltage differences across their plasma membrane (membrane potential, Vmem). These gradients 

are used to power many different forms of work including cross-membrane transport, but they 

also have been linked to cell-cycle regulation (Blackison et al., 2009). Of relevance here, it has 

been demonstrated across a range of animals that stem and other highly dividing cells are 

depolarized (more positive internal to outside) relative to terminal cells (Binggeli and Weinstein, 

1986), and that Vmem is not only a readout of cell state, but also can affect cell differentiation 

patterns (Levin et al., 2017). This then suggests that modification of stem cell Vmem might lead to 

targeted manipulation of duplication and differentiation patterns in the lepidopteran midgut, 

enhancing control opportunities. 

Given the above and lack of knowledge of the relationship between cell type and Vmem 

patterning in insects, the main goal of this study was to characterize the patterns of Vmem in 

different cell types collected from the gut tissue of lepidopteran larvae, through ontogeny 

(development) and after dietary damage. Understanding these patterns will allow us to better 

understand the system and serve as a starting point for future manipulations of cellular and tissue 

physiology. In this study we found that, as observed in other animals, stem cells in the 

lepidopteran gut are depolarized relative to mature cells. We found that this pattern is consistent 

through ontogeny as well as following dietary challenge. Additionally, following dietary 

challenge-induced loss of mature cells, we observed significant alterations in midgut stem cell 
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Vmem. Together, our data suggest that Vmem may serve as an indicator of functional changes in 

lepidopteran midgut stem cell populations and is worthy of future attempts to manipulate for 

control purposes.  

3.    Materials and Methods

Insect husbandry 

Heliothis virescens were obtained from Benzon Research (Carlisle, PA) as 2nd and 3rd 

instar larvae. Insects were maintained on artificial diet at 22 C° or 26 C° until use, and in some 

instances, cohorts were temporarily incubated at 4 C° for 12 hours to delay development. In the 

latter instances, cold storage was performed >48 hours prior to experimental use. Larvae were 

staged according to head capsule width and slippage (Strand et al., 1988) and interval since molt. 

Gut cell isolation 

After being anesthetized on ice for 20-30 minutes, larvae were surface sterilized in a 

washing solution (30% sterile distilled-deionized water, 3% commercial dish soap, 67% 

commercial bleach). Larval midguts were removed through a dorsal cut in sterile Ringers 

solution (137mM NaCl, 1.8mM CaCl22.7mM KCl and 2.4mM NaHCO3) (Barbosa 1974). 

Excised midguts were incubated in Ringers until dissections were completed. Midguts were then 

transferred to Incubation Media [3:1 Graces Insect Media:Ringers; Castagnola et al. (2011)], cut 

into 2-3 pieces each, and incubated for 90 minutes. Following incubation, guts were triturated 

until no distinct tissue remained visible. The homogenate was pipetted through a 70 µm cell 
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strainer (Fisher Scientific). The flow-through containing the cells was transferred into a 15 ml 

conical tube and centrifuged (400 g for 5 minutes at 4 C°). The resulting cell pellet was 

resuspended in 3 ml of incubation media, and an aliquot of resuspended cells counted by 

hemocytometer. The remaining cells were plated in a multiwell (6-well) plate and allowed to 

attach for 10-15 minutes before imaging. 

Bioassays 

For analysis of developmental patterns, larvae were staged and then dissected as 

described above. For dietary challenges, 24 hours prior to dissection, ten 4th instar larvae were 

moved to a 30 mm petri dish with a thin layer of 2% agar and either artificial diet supplied by 

Benzon Inc. or washed organic Iceberg lettuce bought from local stores. For each replicate, five 

larvae were placed on each diet.  

Fluorescence staining and imaging 

To allow Vmem quantification, cells were incubated with Vmem-sensitive fluorescent dyes. 

One millimolar stocks of the anionic dye DiBac4(3) and the cationic Rhodamine 6G, which 

increasingly fluoresces with depolarization and hyperpolarization, respectively, were generated 

in ddH2O and added to a final concentration of 1 µM to the incubation media containing cells. 

The dyed media containing cells was transferred from the conical tube to a 6-well plate and 

incubated at room temperature in the dark for 20 minutes. For each well, three fields of view 

were haphazardly selected, and Bright Field (BF) and fluorescence [FITC for DiBac4(3) or 

TRITC for Rhodamine 6G] images captured. All imaging was done on a Nikon TE2000 inverted 
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microscope with standard FITC and TRITC fluorescent optics as well as phase contrasts for 

bright field using a Nikon Di2 monochrome camera. The exposure time was constant per dye for 

each replicate. These produces were done following the methods outlined in Zhang and Turnbull 

2018.  

Data analysis 

Corresponding stacks of BF and fluorescence images for each field of view were 

generated in FIJI (ImageJ 1.52h). For each set of stacked images, 25 mature and 25 stem cells 

(based on cell morphology) were haphazardly selected on the Bright Field layer using the free-

hand selection tool, and area, mean pixel intensity, standard deviation, and perimeter of each 

ROI (region of interest) were measured on the fluorescent layer. Data were exported to Excel 

(Microsoft, 2016) and normalized mean intensity of each cell was calculated following the 

protocol in Zhang and Turnbull (2017).  

Statistical Analysis 

Comparisons of cell area between mature and stem cells were analyzed using a T-test. All 

other multiple comparisons  mainly the comparisons of membrane potential between cell type, 

ontogenic stage, and diet type were completed using an analysis of variance (ANOVA) and 

Tukey’s HSD post-hoc test. All statistical analyses were performed in R (R studio, 2020), and all 

figures generated in DataGraph 4.5.1.  
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4. Results

General Morphology 

As has been reported in other publications (Hakim et al, 2001; Loeb et al., 2000), we 

observed in preliminary observations that cells isolated from the midgut of H. virescens larvae 

fall into two populations based on visual morphology: large, irregularly-shaped cells are likely 

columnar and goblet cells, and smaller, rounder cells a likely of a mix of stem and endocrine 

cells (Levy et al. 2004) (Figure 3A). Size distribution appears largely continuous (Figure 3B), 

although area significantly differs between cell type (t(111.62)=11.42, p < 0.0001) (Figure 3C). 

Figure 3.  Gut cell isolation from H. virescens and morphological distinction. A) 
Representative image of midgut cells isolated from 4th instar H. virescens. B) Distribution of cell 
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size. C) Isolated midgut mature cells are significantly larger than stem cells [t(111.62)=11.42, p 
< 0.0001]. 

Ontogeny 

We next examined cellular patterns through ontogeny. We observed that the above 

described size and shape dimorphism of the cells was consistent through ontogeny from early 4 th 

instar to early 5th instar when looking at the area of mature vs stem cells (Figure 4) 

[F(7,2363)=279.1, p <0.001].  

Figure 4. Ontogenic patterns in H. virescens gut cell morphology. Ontogenically staged 
larvae were dissected and cells isolated from the midguts. The area of a representative number of 
cells was collected. This shows that throughout ontogeny mature cells are larger than stem cells. 

To characterize patterns of membrane potential associated with development of the gut, 

we stained cells isolated from 4th through early 5th instar larvae with the Vmem-sensitive dye 

Rhodamine 6G, for which intensity increases with hyperpolarization, and observed that stem 

cells consistently fluoresce less intensely than mature cells (Figure 5) (F(2,2363)=179.53), p < 
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0.001); this indicates that stem cells are depolarized relative to mature cells. The Rhodamine 6G 

intensity data suggest there may be some difference within stem cells late in 4th instar, as small 

cells exhibit higher intensity (are more hyperpolarized) at this time than at other periods, while 

early 5th instar mature cells similarly are significantly more hyperpolarized than mature cells 

isolated from other instars. Regardless of developmental period, as found in other animal 

systems, stem cell populations are depolarized relative to terminal populations. 

A B

C D
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Figure 5. Membrane potential of gut stem and mature cells during 4th and early 5th larval 
instars.  A) Rhodamine 6G(R6G) intensity of cells based on morphological type through 
ontogeny; populations with different letters significantly differ at p < 0.05. B) Distribution of 
stem cell population intensities through ontogeny. C) Scatter plot of the normalized intensity, 
demonstrating mature and stem cell populations largely are distinct based on both area and 
normalized Rhodamine 6G intensity. D) Rhodamine 6G intensity is consistent within population 
throughout ontogeny.  

Dietary Assay 

When looking at the effect of diet on cell number and membrane potential, we observed a 

significant reduction in total cell number when larvae were fed lettuce prior to gut cell isolation 

(F (3,8)=16.88, p < 0.014) (Figure 6A). While stem cell numbers decreased relative to artificial 

diet control, the reduction was not significant (F (3,12)=1.793, p=0.202) (Figure 6B). There was 

a significant reduction in mature cell numbers following lettuce feeding as compared to control 

(Figure 6B) (F93,8)=16.88), p < 0.001).  

A B

* 

A B A
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Figure 6. Heliothis virescens larvae exhibit cell population shifts when fed on lettuce 
relative to artificial cake diet. A) Total number of cells on both diets, showing a reduction 
following the dietary challenge. B) The total number of cells separated out by classification, 
showing an increase in stem cells following dietary challenge.  

Given these findings, we utilized organic lettuce as a mild (sublethal) dietary challenge to 

test whether alterations in cell number via cell death resulted in alterations in membrane 

potential. To quantify midgut cell Vmem following dietary challenge, we utilized both DiBac4(3) 

and Rhodamine 6G, which fluoresce more intensely when cells are depolarized and 

hyperpolarized, respectively. We again recovered two size dimorphic cell populations in the 

dietary assay (Figure 7A-B), and broadly observed that stem cells are relatively depolarized in 

comparison to mature cells (Figures 7C-E). Vmem results differed between the two dyes for both 

populations of cells. Stem cells stained with Rhodamine 6G were statistically indistinguishable 

(F (3,896) = 660, p=0.48) between diet treatments; however, they significantly differed in the 

DiBac4(3) staining (F (3,896) = 279.7, p<0.001). Conversely, mature cells isolated from lettuce-

fed individuals exhibited significantly different Vmem as compared to artificial diet controls with 

Rhodamine 6G (F (3,896) = 660, p<0.001), but not with DiBac4(3) (F (3,896) = 279.7, p=0.70). 

In both statistically different instances - stem cells isolated from lettuce-fed individuals stained 

with DiBac4(3), and mature cells isolated from lettuce-fed individuals stained with Rhodamine 

6G - the cells exhibited significant depolarization relative to controls. Examination of the 

distribution of cell intensities shows that the stem cells are uniformly depressed in intensity in 

lettuce-fed pools stained with Rhodamine 6G (Figure 7C). The distribution of stem cell 

intensities in DiBac4(3) more clearly shows what may be a dimorphic pool (Figure 7E). This 
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implies that DiBac4(3) may be a better tool to observe stem cell depolarization, due to how close 

stem cell intensities were to the background fluorescence of Rhodamine 6G. 

Figure 7. Membrane potential shifts in stem cells in lettuce but not artificial diet-fed 
individuals. A) Area and B) normalized mean intensity of midgut cells incubated with 
Rhodamine 6G following feeding with artificial (cake) diet or iceberg lettuce. C) Distribution of 
normalized mean intensity for mature and stem cell populations stained with Rhodamine 6G. D) 
Area, E) normalized mean intensity of DiBac4(3)-stained cells isolated from artificial diet or 
lettuce fed larvae. 

A B C

D E



5. Discussion

Bioelectric patterns are known to drive important processes in many different animal 

systems. The role of bioelectricity in the development and regeneration in the lepidopteran 

system is not well studied. The first step was to reliably distinguish between different 

populations of cells ex vivo. Traditionally, the morphology of the cells is used to distinguish 

between the different types of cells (Loeb et al.,2000). We observed that various cell types 

generally found in the gut epithelium of caterpillars can be placed in one of two populations 

(Figure 3A): mature cells which were typically non-uniform in shape and small round cells 

which are a combination of endocrine and stem cells. Additionally, we found that different cell 

populations could be distinguished by size (cell area). When area and shape were combined, we 

found that columnar and goblet cells were large and irregular and stem and endocrine cells were 

small and round. These patterns of size and shape are consistent with other studies that have 

looked at isolated populations of gut epithelial cells (Loeb and Hakim, 1996; Hakim et al., 2001). 

We note, however, that these differences in size were continuous and there could be some 

ambiguity relating to the presence of both endocrine cells as well as differentiating stem cells, 

which are known to be different at least in morphology from that of non-differentiating stem 

cells, in that stem cells are small and round and mature cells are typically larger and irregular in 

shape (Sadrud-din et al., 1996).  

To characterize the baseline membrane potential patterns between our different cell 

populations, we used both DiBac4(3) and Rhodamine 6G. With both dyes we observed that stem 

cells (small round) are depolarized relative to mature cells and these patterns were constant 

19 
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throughout ontogeny (from late 3rd to early 5th instar). Similar patterns have been seen in other 

stem cell systems (Levin et al. 2012). 

Next, we characterized Vmem patterns during repair and regeneration of the epithelium 

following a dietary antagonist. We found that guts dissected from larvae fed on lettuce had a 

significantly lower mature cell count than guts from larvae fed on artificial diet, suggesting the 

diet treatment caused some damage and loss of cells. We then used the dyes mentioned above to 

record the membrane potential. We observed that the cells from the lettuce treatment were more 

depolarized than the cells from the artificial diet treatment. It has been suggested that new stem 

cells are predicted to be more depolarized than older cells (Levin et al. 2012). Our data thus 

imply that the stem cells in the lettuce treatment are newer, suggesting proliferation and possibly 

differentiation into mature cells, could be happening to fill the holes that would have been left by 

dying or dead mature cells (Loeb et al., 2000). These trends align with the idea that the gut stem 

cells act to rapidly repair the gut following damage, which has been suggested to be a major 

point of defense within the caterpillar, given that stem cell-based repair of the gut has been 

implicated in both the survival of larvae on sublethal doses of Bt toxins as well as viral infection 

(Spies, 1985 Hoover et al., 1998).   

As has been reported previously (Loeb et al., 2000; Loeb et al, 2003; Hakim et al., 2009; 

Castagnola et al, 2010), stem cells of the larval lepidopteran H. virescens have the characteristic 

morphology of being small and round relative to the larger, more irregularly shaped columnar 

cells and the goblet cells. It should be noted that endocrine cells, which co-localize on the basal 

face of the pseudostratified gut epithelium (Levy et al. 2004) also are small and round. 



Therefore, we likely have conflated their values (morphology, membrane potential, and 

numbers) with those of the stem cells. This could be an issue given endocrine cells are mature 

cells and likely have vmem readouts similar to other mature cells. But given the consistency of the 

data presented here, the patterns observed are likely real. Future work would benefit from a 

method to remove the ambiguity caused by the inclusion of endocrine cells.  

There are many examples of Vmem changes being linked to cell processes. One such example 

is the proliferation of vertebrate cells, where hyperpolarization is a necessary step in S-phase 

induction. G2/M induction has also been linked to depolarization activity in the cell (Blackiston 

et al., 2009). Outside the cell cycle, Vmem pattern changes have also been implicated in certain 

developmental pathways. In the fly Drosophila melanogaster, for example, depolarization during 

wing development increased potassium uptake via inward rectifying potassium channels leads to 

fluxes of Ca2+, which in turn induces the release of the BMP ligand Decapentaplegic (Dpp) 

(Dahal et al., 2017; George et al., 2019). Dpp is required for the formation of proper wing 

patterns. Intriguingly, Dpp release may also be induced by exogenous depolarization, supporting 

that bioelectric signals are enough to regulate (at least some) ligand signaling pathways.  

Bioelectric signaling has also been shown to be important in regenerative processes. In the 

frog Xenopus laevis, limb regeneration is limited to early stages of development. Removal of a 

limb post-regenerative state followed by incubation of the wound in a media with increased 

concentrations of Na+ was shown to induce Notch and BMP signaling. These signals lead to cell 

proliferation at the wound site (Tseng and Levin, 2013). Similarly, the well-known regenerative 

abilities of planarians can be manipulated by treating wound sites with Ivermectin, a Cl- channel 
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agonist. Here, modification of wound site bioelectric patterns results in changes in regenerative 

abilities (Ferenc and Levin, 2019). Thus, across hundreds of millions of years of evolution and 

divergent animal phylogenies, there is a linkage and even dependence between bioelectric 

phenomena and developmental and regenerative processes.  

This linkage highlights the importance of this work as a first step in understanding the role 

stem cell play in tissue regeneration and development, particularly the role that membrane 

potential plays in these processes. And given the relative importance of development and 

regeneration to the survival of insects, this work could serve as a first step in better 

understanding how insects survive our efforts to limit population size and thus allow us to better 

defend against these pests.  



CHAPTER THREE 

CONCLUSION  

In this thesis work, I characterized the patterns of membrane potential in cells isolated 

from the midgut of larval Heliothis virescens. Although stem and mature cell membrane 

potential have been quantified in other organisms, this has not yet been characterized in a 

lepidopteran species. We found that the mature or large irregular cells were more hyperpolarized 

than the stem or small round cell. This pattern was consistent through ontogeny and following 

the treatment of different diets. Additionally, we saw indication that stem cells of the 

experimental group were more depolarized than the control, following the dietary damage. This 

is in line with what other studies have reported in other animal systems, that stem cells are 

depolarized relative to mature cells (Binggeli and Weinstein, 1986). This suggests that these 

patterns could be conserved across evolutionary time.  

Our characterization with membrane potential sensitive dyes provides basic insight into 

the idea of lepidopteran stem cells behaving in a similar way to stem cells found in other 

organisms. This work was done by isolating cells from gut tissue and staining and imaging 

shortly after. Future studies could look at characterizing these patterns over time in a primary 

culture that can be maintained for weeks. In the past, primary culture has been used to investigate 

the effects of Bt toxins on gut cultures (Loeb et al. 2001). The latter method could be modulated 

to track the shifts in membrane potential through time by taking a subset of cells and staining
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with a membrane potential sensitive dye. This would allow us to observe shifts in membrane 

potential through proliferation and differentiation, granting more insight into the role membrane 

potential plays in stem cell behavior. Additionally, attempts could be made to modify membrane 

potential to observe if altering membrane potential changes cell behavior. Primary culture of H. 

virescens midgut cells has been done (Loeb et al., 2003; Castagnola et al. 2010; Hakim et al, 

2009), but getting a culture technique that is sterile and viable can be difficult. We tried to 

culture midgut cells by dissecting in sterile conditions in the presence of multiple concentrations 

of antibiotics, but the longest we could get viable cells was four days post-isolation (data not 

shown).  

Primary culture could also serve as a method to eliminate some of the ambiguity caused 

by the inclusion of endocrine cells. This ambiguity is problematic when trying to distinguish 

between stem cells and mature cells (endocrine cells included). Stem cells divide in the midgut 

tissue (Castagnola et al., 2010), so tracking differentiation and proliferation could grant insight 

into a better way to distinguish between stem cells and other “small and round cells” found in the 

gut tissue. Though this will do little to distinguish between endocrine cells and quiescent or 

undifferentiated stem cells. Other than morphology, there needs to be a better method to 

distinguish between stem cells and other cell types. This can be done in several different ways. 

We could use vital dyes to distinguish between dead/dying cells and those that are viable. Based 

on what is seen in other studies, mature cells should dye after a few days leaving mostly stem 

cells (Castagnola et al. 2010). Flow cytometry has also been identified as a potential method to 

distinguish cell types (Castagnola et al. 2010). Additionally, RNAseq could be used on the 

different populations of cells to identify differences in gene expression between mature and stem 
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cells. Using combinations of these approaches, stem cell specific markers could be designed to 

unequivocally distinguish between mature and stem cells.  

The main potential application of this work is in population control of insects. Though a 

specific control technique has not been suggested from this work, this study grants insight in the 

proper functioning of the lepidopteran gut. Since the gut is the main point of interaction between 

a lepidoptera larvae and the environment in which it lives, a better understanding of how these 

larvae survive our control techniques could allow us to better defend against them.  
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