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ABSTRACT 
 
 

Direct Metal Laser Sintering (DMLS) is a specific type of additive manufacturing 

that is used to create metal parts. In this process, an optical laser is used to melt a metal 

powder, fusing the powder into a solidified form. The laser follows instructions from a 

CAD model, which illustrates the design and from which the layer pattern the laser should 

follow is extracted. A scan path is generated for the laser to trace on the powder, that 

initially follows the perimeter, and then draws parallel neighboring contour lines in the 

interior of the scanned perimeter to cover the surface and form a consolidated layer. 

Currently, there is an issue with DMLS builds; due to the high heat generated by the laser 

and the uneven cooling patterns of the metal after fusion. Deformations are forming in the 

design builds after cooling. Today, additive manufacturing technicians and or designers are 

having to adjust the original CAD files through the use of predictive software to account for 

the deformations caused by the laser heat. After an extensive literature review, it was 

confirmed that the scanning pattern the laser takes in the DMLS to sinter the powder metal 

affects the magnitude of the temperature gradient and thus affects subsequent build part 

deformations. 

A simulation that computationally mimics the moving laser heat source in DMLS on 

a build-part allows for control of the scanning pattern and the number of layers to be 

scanned and returns the temperature profile of the part as it is built and subsequently 

cooled. A genetic algorithm is tied to the simulation in order to optimize the scanning 

pattern of the laser with the ultimate goal to reduce the overall temperature gradients 

induced on the build part. The effects of layer build-up were also investigated with the 

optimization of the scanning pattern of the laser. The combination of the DMLS simulation 
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and Genetic Algorithm application show qualitatively that optimal scanning patterns can 

reduce the temperature gradients from the DMLS process. This research work is meant to 

be a basis for the optimization of scan pattern on specific build part designs and be able to 

be applied to a wider array of designs as well as in-situ DMLS builds in the future. 
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CHAPTER 1 

INTRODUCTION 

1.1 Direct Metal Laser Sintering 

1.1.1 Process description 

Additive manufacturing (AM) is a burgeoning process which can create solid 3-

dimensional parts directly from computer-aided design (CAD) file drawings. A vast array 

of materials are being made increasingly available in additive manufacturing processes, 

including metals and even multi-materials. One such process that has gained popularity is 

Direct Metal Laser Sintering (DMLS). Developed  by EOS GmbH in Munich, Germany 

in the 1990s, the DMLS process is able to build metal parts through additive 

manufacturing [1], [2]. DMLS builds such parts by using a laser to sinter layers of metal 

powder into a liquid phase—more analogous to a viscous fluid— onto a substrate, as 

shown in Figure 1.1, and then allowing the layers to cool and solidify into a solid, fully 

dense metal part [1], [3]. Sintering in this case is using the laser to heat the metal powder 

just below the liquid phase melting temperature, thereby allowing for the heated metal to 

bond with the surrounding metal [1], [4].  Variations of the process melt the metal and 

part of the substrate and adjoining built structure to form a fully dense part. 

To begin, “a powder layer (about 50 µm in thickness) is spread on the base plate 

using a moving wiper (mechanical re-coater) [5]”. From the U.S. Patent for the Direct 

Metal Laser Sintering Machine, the process is described as follows: “After the powdered 

material is deposited, [the] laser head emits a laser beam at the powdered material to melt 

or sinter the powdered material. After the laser beam has melted or sintered the powered 
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material, a solid layer of material is formed. This process is continued along the design of 

the part until the part is completely formed of solid material [6].” 

A representation of the DMLS process is shown in Figure 1.1, including both the full 

system set up as well as a closer look at the laser beam and powder metal interactions. 

 

Figure 1. 1 Representation of the DMLS Process [3] 

 

DMLS is claimed to have many benefits over other means of building three-

dimensional metal parts. In particular, DMLS is not as costly as, and is industrially safer 

than, traditional machining methods [7]. DMLS offers a solution to building three-

dimensional complex parts without having to use subtractive processes such as milling or 

lathing, which can sacrifice complexities in build parts [3].  

 

1.1.2 Residual Stress Issues in DMLS 

While a viable solution to many metal part builds, the DMLS as is currently 

implemented has drawbacks that make it more challenging in many cases to build 

complete parts. Perhaps the most significant drawback is inherent in the use of a laser to 
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sinter the metal. Since the laser generates high heat at a very small spot, heating and 

cooling are highly uneven; the upper layers are rapidly heated while the bottom layers 

experience slower cooling through conduction [3]. The rapid heating and slow cooling 

induces steep temperature gradients in the part as it is built layer by layer. These 

temperature gradients ultimately cause deformations in the layers as they become 

restricted in their expansion and compression due to the heating and cooling cycles, 

respectively [3]. As the laser heats the top layer, the metal’s expansion into the liquid 

phase is restricted by the layers around and beneath it and the previously scanned paths 

on the layer; a tensile stress is induced on the section of the material being directly heated 

and a compressive stress is induced on the surrounding material. As the laser then moves 

on, the metal recently heated begins to cool, but cannot contract as it is sintered to the 

adjacent layers; compressive stresses are induced on the element just heated and tensile 

residual stresses are induced on the surrounding material top surface [3], [7].  

 

Figure 1. 2 Thermal Deformations And State of Stress in DMLS [7] 

As the scans continue, these residual stresses accumulate and can eventually reach the 

yield stress of the material, causing distortion and cracking [8][9]. Currently, there is 

insufficient control of these residual stresses in DMLS, which leads to a “detrimental 

effect on the manufacturability and integrity of a component. [10].” Engineers use 
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predictive software to adjust designs prior to build in order to compensate for the 

inevitable deformations in DMLS [11].  

 

1.2 Preliminary Research Questions and Research Motivations 

Given the current issues in Direct Metal Laser Sintering related to steep temperature 

gradients during the build and residual stress accumulation on the build part, it is 

important to research ways to control and overall reduce the residual stresses and 

subsequent warping in DMLS; doing so will help mitigate the need for designing to 

predict manufacturing deformations, and allow for a smoother build process. One 

hypothesis is that the scanning pattern affects this deformation. From this, the first 

research question is posed for this research. 

1. How can one generate an optimal scanning pattern to minimize the thermal 

gradients induced on the part from the laser, thus minimizing the post-build 

deformations? 

The thermal gradients are found from calculating the temperature differences across 

the build part surface before and or after cooling. From the first question, the following 

hypothesis is made: The lower the temperature gradient over the build part, the lower the 

thermal stresses, and thus the lower the amount of total part warping post-build. 

The first research question begs the second. 

2. Which metric should be used in optimization to address the thermal gradient 

problem in DMLS? 

From the second question, the following hypothesis is made: The variations of 

temperature on the surface and in the part are indications of a temperature gradient. 
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This research aims to find a method to reduce the thermal gradients in a part during 

build. Finding a metric to define the temperature gradient helps to define improvements 

in the DMLS process from scanning pattern optimization; doing so helps answer the first 

research question, which can then help to develop a more controlled and reliable DMLS 

process.  

In order to answer both questions, this research proposes a computational simulation 

of the Direct Metal Laser Sintering process on a simple part, and an optimization of the 

scanning pattern used by the laser in order to reduce the uneven heating and cooling 

cycles the part undergoes; this follows the hypothesis that by lowering these temperature 

gradients, the overall deformations will be reduced. 

1.3 Thesis Organization 

This thesis is organized in the following manner. In Chapter 1, the Direct Metal Laser 

Sintering process is discussed and the current residual stress problems inherent with the 

process are presented. The research questions this thesis covers and the motivations for 

these questions are also presented. Chapter 2 reviews the literature on the residual stress 

problem, the thermal gradient definition, and the effects of scanning patterns on the 

residual stresses in DMLS. Chapter 3 outlines the DMLS simulation used in this research, 

including parameters and heat transfer effects considered; this chapter also presents 

preliminary runs of scanning patterns used in DMLS and the generated benchmark used 

to assess and compare optimization results. The fourth chapter explains the optimization 

approach based on a genetic algorithm and created for this research project, the 

combining of the algorithm with the DMLS simulation, and the intermediate and final 

optimization results. A comparison between the scanning patterns pre- and post-
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optimization is also shown here, with the final optimal scanning pattern corresponding to 

the greatest thermal gradient improvement selected.  Chapter 5 summarizes the main 

conclusions of this research and suggests future work to further expand on the idea of 

optimizing the scan pattern in DMLS to minimize thermal gradients and validating the 

numerical results. 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Residual Stresses and Distortion 

Previous studies, both based on simulations and experiments, have analyzed the 

process and end results of residual stress build up over the course of a metal part being 

built via DMLS. They focus on the subsequent distortion, warping, cracking and negative 

effects on material part properties resulting from the residual stresses [7],[8],[12]. 

Residual stresses are “stresses within a plastically- or elastically- deformed material that 

remain within the structure after the load that deformed it is removed [7].” In the DMLS 

process, the loads are the thermal loads resulting from the heat flux generated from the 

laser and incident on the metal powder and substrate. The cyclic heating and cooling on 

the build part creates internal stresses within the parts; these internal stresses can reach 

the yield stress of the material, leading to cracks and reduction of fatigue life in 

experimental work [3],[8].  

As shown in Figure 1.2 and Figure 2.1 below, the main mechanism for the residual 

stress generation is due to the high thermal gradients (Thermal Gradient Mechanism) 

surrounding the moving laser spot [13].  
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Figure 2. 1 Heating and Cooling from Laser and Subsequently Induced Stresses [3] 

From the high heat on the upper layers, and the slow cooling from heat conduction on 

the previously scanned layers, a high temperature gradient builds across the build part 

[13]. As the laser scans and heats the top layer, the directly heated portion of the layer 

tries to expand and experiences tensile stresses; as the previously scanned layers begin to 

cool, the layers experience contraction and, therefore, compressive stresses [7], [14]. The 

largest tensile stresses are found to be at the top and bottom of the part, while there are 

compressive stresses of lesser degree are found throughout the cross-section of the fully 

built part [12]–[14]. Once the part is removed from the substrate and other support 

structures, the stresses are relaxed but bending deformation occurs [13]; the tensile 

stresses built up on the top surface cause curling across the part when it is not anchored 

with supports to the base plate [15]. Deformations are worse in overhanging features [7] 

and around the edges, such as when dealing with a plate [9].  

Residual stress build-up and the subsequent part deformation is highly dependent on 

the number of layers required to build the final part; as the number of layers increases, so 

does the total deflection and final residual stresses measured [9], [13]. In a single layer 

scan, the stresses would dissipate with the cooling, but this is not the case with multiple 
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layers [7].  The magnitude  of residual stresses have also been found to decrease with 

thicker base plates [13]. The accumulation of the residual stresses in a part being built 

with DMLS also depends on scanning tracks and directions. The residual stress 

measurements are higher – sometimes as much as double—in the direction parallel to the 

scan vectors [10], [14], [15]. The scan vectors are the scan tracks the laser takes across 

the part during the DMLS process. The stresses also increase with vector length [10]. 

With the successive melting of adjacent tracks for one scan, transverse stresses increase 

due to the thermal expansion of the melt pool being inhibited by the previously scanned 

vector [10]. 

Certain process parameters have also been observed to affect residual stress 

accumulation and deformation in the build parts from DMLS through experiments. A 

longer laser exposure time on the part was found to increase the peak temperature on the 

part, which in turn increases the distortions on the build part [12]. Increasing the laser 

scan speed was found to significantly reduce the residual stresses, but sacrificed the 

density of the final build part [3],[9].  

 

2.2 Temperature Gradient 

Another important aspect to consider in DMLS when looking at part distortions is the 

temperature gradient mechanism (TGM). By understanding the TGM, and how to 

measure and define it, the problem of reducing the residual stresses accumulating in the 

DMLS can begin to be tackled. The temperature gradient mechanism controls many 

outcomes in DMLS including but not limited to the tensile stresses and part distortion. 

Researchers have developed a Finite Element (FE) model of DMLS with a moving heat 
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flux source to look into the effects of process parameters on the melting process, as well 

as gain a better understanding into the temperature gradient mechanism [3]. From the 

simulation process, whose parameters and details are described in more detail in Section 

2.4, many characteristics of the TGM were discovered. One such characteristic is that the 

temperatures across the part and along the scanning direction drastically decrease when 

moving from the center of the laser beam towards its edge. In addition, the temperature 

gradient becomes much steeper with high laser powers. The temperature gradient was 

found to be much higher in the depth direction of the part than along the width or 

scanning direction, as each additional layer significantly affects the temperature gradient 

[3]. 

Another model was created in a past study in order to understand the transient 

temperature field in laser melting AM processes. This study backed the understanding 

that the material undergoes rapid heating and cooling, which increases the thermal 

stresses [16]. It also supported the idea that each successive layer being scanned raises 

the temperature in the previous layers, resulting in a steady temperature build up in the 

previously scanned layers with each new layer added. The upper layers had a 

significantly higher maximum temperature, which could be due to both the temperature 

build up as well as the first layer having a lower conductivity than the base plate 

properties chosen for the model; the upper layers maintain their heat as they are farther 

from the base, which can act as a heat sink [16]. 

 

2.3 Effects of Scanning Pattern in DMLS  
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Researchers have studied the effects of various process parameters and their effects 

on the distortion outcomes of DMLS parts. In particular, multiple studies have simulated 

the DMLS process and analyzed the effects of scanning patterns on the distortion 

outcomes. One study [17] attempted to minimize distortion of FE simulated laser-

processed components by testing different scanning patterns. The first pattern tested in 

the study was the traditional raster scan along a simulated square of nickel, where raster 

scan means the laser scans back and forth along adjacent parallel vectors for each layer. 

This scan pattern created a saddle-shaped distortion, shown in Figure 2.2.  

 

Figure 2. 2 Raster Scan and Subsequent Distortion from [17] 

The saddle-shaped distortion is a product of both out-of-plane distortions along both 

the X- and Z- directions (note that in this paper, the coordinate system is not the usual 

one which has X and Y defining the plane and Z defining the out of plane direction) [17]. 

The authors then tested a spiral scanning pattern from the outside of the simulated plate 

inward towards its center; by creating a scanning pattern that goes in both X- and Z- 

directions, the concave upward and concave downward distortions negated each other to 

some extent. The decreased distortion from the spiral scan pattern is shown in Figure 2.3. 
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This study [17] was one of the first to show that the scanning pattern has an effect on the 

distortion of built parts in laser-processed components. 

 

Figure 2. 3 Spiral Scan and Subsequent Distortion  from [17] 

Another study [10] looked at the scanning pattern effect on residual stress build-up 

and distortion by looking at a raster scan with unidirectional and alternating directions. 

The study looked at the start and end temperatures of the scan vectors between each scan 

strategy in order to understand the differences in residual stress build up; it was found 

that alternating directional scan strategy had each adjacent scan starting at higher 

temperatures due to the previous scan just finishing at a location adjacent to the next 

starting point, as opposed to the unidirectional scan strategy. While the alternating 

directional scan showed a lower temperature gradient than the unidirectional scan, the 

temperature gradients for both scans become independent of scan direction after a few 

seconds. This study found that when looking at the alternating scan strategy, there was a 

larger area of the scan region under compressive transverse stress than when using the 

unidirectional scan strategy [10]. The alternating scan had lower magnitude of stresses 

and plastic strain, but these differences were overall minimal between the two scan 

strategies. A separate study that looked at different scanning patterns and the subsequent 
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deflection and stresses on the build part found that an XY alternating scanning strategy 

(one layer is scanned in the x-direction only, while the subsequent layer is scanned in the 

y-direction)  gave the most uniform distribution of stresses for a multi-directional 

scanned part [18].  

Other studies have also looked at the effects of scanning direction on part distortion in 

DMLS; multiple studies have shown that the longer the scanning vector along each layer, 

the higher the distortion on the final build part [9], [11], [15], [19]. Shorter scan vectors 

may be more favorable due to shorter time between layer deposition as well as the heat 

from previous layers having less time to cool between scans of layers [15]. As the 

number of layers increases, the deflection in the longitudinal (direction across long edge 

of build part) scan direction increases but the deflection across the part transversely 

(direction across the short edge of build part) decreases [9], [18]. One study points out 

that while the magnitude of stresses does not differ greatly between unidirectional and 

alternating directional raster scans, the distribution of stress and plastic strain does vary 

due to differing thermal histories between the two scanning strategies; the alternating 

scan strategy showed reduced temperature gradients for each scanned vector [10]. This 

study uses this evidence to show that part stresses in DLMS can be mitigated by using an 

optimal scan strategy [10]. 

 

2.4 Heat Transfer Models 

Heat transfer models are crucial in understanding the DMLS process and how the 

temperature distributions form on the build part throughout the AM process.  However, 

the heat transfer process in DMLS is complex and solving for the temperature field is 
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tedious. Some of the heat transfer model complexity comes from the considerations of the 

powder phase change to solid, as well as the various boundary conditions that the process 

exhibits [20]. Several papers have looked at how to accurately model the complex heat 

transfer processes that occur in DMLS. The most common results, as explained below, 

use the Fourier heat conduction theory and consider conduction, convection, and 

radiation heat transfer processes on the build part during build time and cooling [20]. 

One study looks at the 3D steady state conduction in DMLS and similar processes; it 

considers a moving rectangular heat source and surface cooling [21]. Points of interest to 

consider in this heat transfer model are the boundary conditions and governing equations. 

This heat transfer model follows the steady state three-dimensional heat advection-

diffusion model, taking into account the energy-transport phenomena, as shown in 

Equation 2.1, where T is the Temperature, V is the velocity of the moving heat source 

and a is the diffusivity of the material [21]. 
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 The study considers a block, the top surface of which experiences convection while 

the sides are considered insulated. Various types of integral transforms, including 

frequential integral transforms which account for the periodicity of the heating 

conditions, are completed to find an analytical solution for this specific case. 

While the analytical solution found in [21] is not suited for this research (as insulated 

sides and convection are considered), this study shows that using the heat conduction 

equation coupled with boundary conditions and incident heat flux can be formulated [21]. 

Another study looked at numerically modeling the temperature history, as it is 

difficult to accurately measure the rapidly changing temperatures of the DMLS process 
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experimentally [22]. This paper looked at decoupling the overall model by first solving 

the heat transfer problem, and then using that solution as input for the thermomechanical 

problem. The time-dependent heat conduction equation was used. 

𝜌𝑐(
)"
)*
= −𝑑𝑖𝑣(𝑞) + 𝑄     2. 2 

Where r is the material density, cp is the specific heat, T is temperature, t is time, and 

Q is the heat source. In this equation, q is the heat flux vector as defined by Fourier’s 

Law q=-kÑT where k is the thermal conductivity. The boundary conditions considered 

for the modelled block were insulation at the side walls, and fixed temperature on the 

bottom wall, and convective and radiative heat transfer on the top surface. This heat 

transfer model was solved and the temperature field used in the thermomechanical 

simulation, which was able to produce predicted stresses and deformations for the DMLS 

process [23]. Other simulation studies considered the same boundary conditions, as well 

as using Fourier’s law or energy conservation to solve the governing equation for the 

temperature distribution [23], [24]. These commonalities among general heat conduction 

equation and boundary conditions are shown through these studies to be applicable to the 

simulation this study will look at. More details of heat flux and laser equation modeling 

from previous studies are given in the next section, Section 2.5: Simulation Models. 

 

2.5 Simulation Models 

Since DMLS is a monetarily costly process to run experiments with, many of the 

previous studies done looking at the heat and mechanical outcome of the process have 

been completed through simulations. How these simulation models were set-up is 

important to understand, as these simulations can be costly in computational time; 
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depending on the level of detail in mesh and number of layers simulated, a DMLS 

simulation has been claimed to take anywhere from multiple days to months [11], [25], 

[26]. This can make it challenging to develop an accurate model with to-scale parameters 

without sacrificing part or process information that can be crucial to the part response and 

outcome in DMLS [26]. These models can be implemented using ANSYS, Abaqus with a 

DFLUX subroutine, or a code created for a specific study [19], [27]–[29]. 

The DMLS process is considered a coupled process between the thermal responses 

and the mechanical responses; this coupling is considered weak though, as the thermal 

history has a significant influence on the mechanical response of the part, but the reverse 

is not true [11], [12], [22], [28], [30]. Much of the literature states the most important 

aspects that a thorough DMLS simulation should have. These aspects include a model for 

the laser thermal input; temperature-dependent material properties to account for heating 

and cooling on different stages of the process; the layering build-up process and its 

heating and cooling effects on the overall part; and the mechanical responses to the part 

from the laser-powder interactions and how the laser moves [3], [28], [30]. Models, such 

as the one completed in [11], replace the thermo-mechanical coupled simulation with a 

static mechanical one, but this can sacrifice some of the necessary physics to get accurate 

results. 

When accounting for the thermal input, the laser heat flux incident on the simulated 

build part must be accounted for; the sintering time in DMLS is exceptionally short, with 

heat flux coming from the moving laser to each particle for only 1 milliseconds to 0.1 

seconds [30] and generating a rapidly changing temperature history [22]. To model the 

moving laser as a heat source and its incident heat flux, many past simulations have 
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utilized the Gaussian Heat Flux Model [3], [10], [23], [28], [31]–[33]. Table 2.7 outlines 

a few of the heat flux types and the corresponding Gaussian distributions for heat flux. 

 

Figure 2. 4 Table of Heat Flux Models from [28] 

These equations calculate the average heat flux incident on the part as the laser moves 

across each element [28]. Some simulations have applied the volumetric Gaussian heat 

source, which accounts for volumetric energy density [10], [34]. The Gaussian heat flux 

model is preferred over other laser heat flux models, such as Rosenthal’s evolution of 

temperature field [20], due to the fact that the Gaussian model allows for the laser spot 

size, element size, and thickness of each layer to be of the same magnitude [31]. In one 

DMLS simulation study, the researchers were able to implement a line heat source over a 

Gaussian point heat source to try to reduce the computational time [23]. Some studies 

used dynamic meshing – with a finer mesh under the laser spot and coarser mesh 

elsewhere – in order to reduce the computational time of calculating the moving heat flux 

[25], [34]. Simpler meshing under the laser heat source considers a consistent mesh with 

the laser spot size the size of one element [32]. 
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When considering the heat transfer modes occurring in the DMLS process and how to 

quantify the cooling of the simulated part, most previous studies reviewed implemented 

time-dependent Fourier’s law of heat conduction discussed in Section 2.4: Heat Transfer 

Models [22], [25], [31], [32], [35]. One aspect important to note that is specific to the 

simulations is the boundary conditions considered. One boundary condition considered in 

some simulations is heat loss by radiation from the part [22], [23], [25], [34], but one 

study found that radiation influence can be ignored since its influence on the overall 

cooling is much smaller compared to the other heat loss mechanisms of convection and 

conduction [25]. Convective heat transfer between the part and the ambient air is another 

boundary condition many previous simulation studies considered [23], [25], [27], [34]. 

The process is often completed in an inert and still environment to help with preventing 

reactions such as oxidations [7], and convection may be ignored under this assumption. 

Conduction is also considered between the layers of sintered metals with insulated sides 

to simulate the part in contact with surrounding powders [10], [23], [25]. To account for 

the substrate underneath the part being built, studies have either treated the bottom as 

insulated [22], [32], or as a heat sink with a prescribed temperature on the bottom most 

layer of the simulation [12], [23]. When considering all of the heat transfer modes, the 

previous simulations have emphasized the importance of considering the temperature-

dependent process and the different states of metal throughout the process [10], [28]. 

 

2.6 Genetic Algorithms and Optimization 

The last topic looked at in the literature review for this project was in optimization 

and Genetic Algorithms. Due to the non-linear and complex nature of the problem, a 
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genetic algorithm would supply the means to find an optimal scanning pattern in DMLS 

by means of a simulation and without sacrificing key elements of the optimization 

problem.  

Genetic Algorithms come from Darwin’s theory of evolution and the “survival of the 

fittest” and can be employed to solve both linear and nonlinear problems [36]. Genetic 

algorithms include a starting population, represented as “genes,” a crossover method, and 

a mutations method [36], [37]. Literature shows that it is important to start with a well 

distributed population in order to broaden the search space, avoid local optima, and 

obtain better results [36], [37]. The number of generations for each run of the GA 

increases with the population size [37]. After the initial population is generated, with 

either binary or valued genes, each parent selected in the selection process undergoes a 

crossover; in this action, the genes from each parent are swapped at different sections to 

create new, unique children [36]–[38].  

The crossover technique is of importance in this literature review, as an order-based 

crossover is needed to generate scanning paths as no path can be repeated. In an order-

based crossover, several random positions are selected in a parent string similar to  a k-

point crossover, but the selected positions of genes in parent 1 are imposed onto those of 

parent 2 and vice versa to keep the order of genes non-repeating for the children [37]–

[39]. A sample order-based crossover is below, adapted from an example in [38]. P1 and 

P2 are the parents, C1 and C2 are the children, and the selected crossover point is marked 

by double lines. 
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P1 = (1 2 3 4 || 6 9 8 5 7) 

P2 = (2 1 9 8 || 5 6 3 7 4) 

After the crossover point is selected for both parents, the genes to the right of the 

crossover point in one parent are identified in the other parent. In P1, the genes to the left 

of the crossover point are 1, 2, 3 and 4.  These are located in parent P2, and the remaining 

genes are marked with a star. Similarly, the genes to the left of the crossover point in 

parent P2 are 1, 2, 9 and 8. These are located in Parent P1, and the remainder are replaced 

by stars. 

P1 = (1 2 * * * 9 8 * *) 

P2 = (2 1 * * * * 3 * 4) 

The genes not selected with a * in either parent keep their position in the respective 

child, and the rest of the genes of the child are filled in with the genes from the other 

parent. Thus, the obtained children would be: 

C1 = (1 2 5 6 3 9 8 7 4) 

C2 = (2 1 6 9 8 5 3 7 4) 

Another crossover aspect found to be important to this project found is a uniform 

crossover, where a random real number determines which genes each child will get from 

the two parents selected [38]. This ensures the gene selection is uniform across both 

parents. 

Order-based crossovers are found commonly in Travelling Salesmen Problems, which 

uses a specific type of Genetic Algorithm. TSP problems find the shortest route which 

traverses every city in a path only once [37], [39]. In the past TSP problems investigated, 

a two-point order-based crossover was used; two-point crossover increases computational 
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time, but helps avoid desired characteristics from a parent not being passed down to a 

generated child [37]. A two-point crossover selects two points along the genes of the 

parents in which to crossover the genes at; child 1 inherits the head and tail genes from 

Parent 1, and the center genes from Parent 2, and vice-versa for child 2 [37]. An example 

of a two-point crossover is shown in Figure 2.9, where the double lines between genes 

indicate the two crossover points selected. It should be noted that the location of the 

double lines for the crossover is selected at random. 

 

Figure 2. 5 Two-point crossover example [37] 

Applying this type of GA crossover and knowing its success in these past studies 

helps show its usefulness moving forward with finding an optimal scanning pattern in 

DMLS.  
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CHAPTER 3 

DMLS SIMULATION 

3.1 Simulation Introduction 

Based on the previously reviewed literature, this study aims to assess the issues of the 

high temperature gradients and subsequent deformations through optimizing the scan 

pattern the laser takes in a DMLS build [9], [10], [18]. Using the previous analysis and 

results on residual stresses induced on build parts in DMLS, heat transfer models, and 

simulation set-ups as detailed in Chapter 2, the first part of this research looks at the 

development of a simulation of the DMLS process. The simulation aims to simulate the 

moving heat source from the laser, the layer build-up process, and the effects of heat 

transfer on the simulated build part. Using the generated simulation, an optimization 

technique is then be applied in the second part in order to find a scanning pattern that 

reduces thermal gradients.  

 

3.2 Simulation Overview 

In order to measure the thermal gradients and distortions from the DMLS process in a 

research setting, a simulation was created using MATLAB and Abaqus/Standard and 

Abaqus/CAE. The MATLAB code was originally generated by post-doctoral researchers 

Jennifer Snipes and S. Ramaswami; the purpose of the code is to generate the necessary 

input files that can be submitted to Abaqus/Standard to run the simulation. The results 

from these simulation runs are then designed to be read and processed by Abaqus/CAE.  

A schematic of the DMLS process is shown in Figure 3.1; this figure helps to show 

how the powder bed, solidified metal, and laser scanner all relate. This figure may be 
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useful to refer to when considering the heat transfer methods and boundary conditions 

discussed in later sections of this chapter. 

 

Figure 3. 1 Schematic of DMLS Process [40] 

This chapter describes the parameters, the geometry, and the heat transfer, and 

explains how the input file is written using the MATLAB code. In addition, preliminary 

results comparing non-optimized scanning patterns are given, together with possible 

routes to defining the temperature gradient in the process. 

 

3.3 Parameter Description 

3.3.1 Process and Laser Parameters 

     The process and material parameters used in the simulation are described here. Below 

in Table 3.1 and 3.2 are the process parameters and laser parameters, respectively, that 

were set for the simulation. Since the main goal is to develop a qualitative approach to 

the problem, these values were later adjusted in an effort to exaggerate the thermal 

gradients developed in the process, and so to arrive at an optimizable metric. 



 35 

Bed Temperature 298 K 

Initial Temperature 298 K 

Tinf 298 K 

Table 3. 1 Process Parameters 

Laser Power 2500 W 

Scan Speed 0.05 m/sec 

Laser Radius .0025 m 

Table 3. 2 Laser Parameters 

3.3.2 Material Properties 

      The material properties chosen for the simulation are those of  Titanium Ti-6Al-4V 

(Grade 5), Annealed. The material properties are shown in Table 3.3 [41]. 

Density 4430 kg/m3 

Modulus of Elasticity 113.8E9 Pa 

Poisson’s Ratio 0.342 

Coefficient of Expansion from 20 to 950 

C 

9.7E-6 m/m-C 

Table 3. 3 Material Properties for Ti-6Al-4V [41] 

     Since the DMLS sinters powdered metal, which then cools into solid metal, the 

thermal conductivity varies from powder state to the solid metal state. Within both of 

these states, the variation of thermal conductivity and specific heat with the part 

temperature must be accounted for. The thermal conductivity values are shown in Table 

3.4 and the specific heat values are shown in Table 3.5 [28].  
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Temperature [K] Thermal Conductivity [W/mK] 

Powder 

293 0.2 

1879 19.4 

1928 28.3 

Bulk 

299.85 7.20 

373.00 8.15 

473.00 9.44 

773.00 13.32 

1149.85 18.20 

1273.00 19.79 

1773.00 26.26 

1928.00 28.27 

2399.00 37.00 

2699.85 42.00 

Table 3. 4 Thermal Conductivities of Ti-6Al-4V [28] 

Temperature [K] Specific Heat [J/kgK] 

293 580 

478 620 

698 670 

923 760 
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1143 930 

1273 936 

1473 1016 

1673 1095 

1928 1126 

Table 3. 5 Specific Heat of Ti-6Al-4V [28] 

      In order to correctly model heat transfer phenomena on the simulated build part, 

latent heat is also included in this simulation. Using the solidus and liquidus temperatures 

shown in the conductivity data, 1878K and 1928K respectively, the latent heat used in 

this model is 286 W/mK [42]. All material properties are taken from the input file and 

used by Abaqus to complete the coupled temperature-displacement analysis. 

 

3.4 Geometry Description 

     The geometry chosen for this simulation is a block with a fin attachment, as shown in 

Figures 3.2 and 3.3. 
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Figure 3. 2 One Layer Fin/Block Geometry from Abaqus 

 

Figure 3. 3 Multi-Layer Fin/Block Geometry from Abaqus 

      The intention behind setting the above geometry as the one used in initial simulation 

testing, was to look at both the effects of heating and cooling cycles on a square and 

deformation effects on the edges, as well as to potentially see the issues in deformations 

in thinner features within some DMLS build parts.  

z 
y 

x 

z y 

x 
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      Each element within the part is given the same dimensions in the x-,y-, and z-

directions. This size can be changed within the MATLAB script to specify a coarser or 

finer mesh. When changing the element size, the number of total elements created is also 

changed. The simulation converged on using 5mm as the element size in the pre-

optimization analysis and final optimization tests. More discussion on mesh selection is 

included in Section 3.5.1. 

      As stated, the block with fin attachment is set to have a specific number of elements 

along each edge. These numbers for a 5mm element size are shown on a labeled block 

with fin attachment shown in Figure 3.4 below. 

 

Figure 3. 4 Geometry with Element Numbers 

Below is the section of MATLAB code written that defines this specific block and fin 

geometry; dimensions are in meters: 

% Finer mesh 

mesh.del_x = 5e-3; 

z 
y 

x 
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mesh.del_y = 5e-3; 

mesh.del_z = 5e-3; 

  

  

% So, when it comes to the interior block scan, I want to have 2^4 

element 

% rows in y direction.  So that is 16 interior + 2 that will be in 

% perimeter. (Per Jennifer Snipes) 

  

mesh.num_elem_z = 9;    

mesh.num_elem_y = 18;   

mesh.num_elem_x_with_fin = 36;   

mesh.num_elem_x_without_fin = 18;    

  

mesh.elem_rows = 1 : mesh.num_elem_y; 

mesh.elem_rows_with_fin = 8:11;  

  

mesh.elem_rows_without_fin = ... 

    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 

  

mesh.num_nodes_z = mesh.num_elem_z + 1; 

mesh.num_nodes_y = mesh.num_elem_y + 1; 

mesh.num_nodes_x_with_fin = mesh.num_elem_x_with_fin + 1; 

mesh.num_nodes_x_without_fin = mesh.num_elem_x_without_fin + 1; 
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From this section of code, it can be seen that the number of elements in each direction 

is defined and then used to calculate the number of element rows both on and off the fin 

are calculated, as well as the number of nodes per layer in each direction. 

Each row of elements starting from the back end (left side) of the block are 

considered scanning vectors, with each element in the highlighted row in Figure 3.3 

being the starting positions of each vector. More details on the scanning vectors in 

relation to the chosen geometry are provided in Chapter 4.  

 

3.5 Heat Transfer: One Element 

3.5.1  Description of an element and boundary conditions 

The model in this simulation consists of elements having a mesh size of 5 x 5 x 5 

mm. The order of magnitude of this size of elements is comparable to past numerical 

simulations [3], [17], [27], [43]. While typically mesh refinement is done until results do 

not change, mesh refinement in this simulation increases the computational cost greatly; a 

five-layer scan with 5mm element size takes about 10 hours, and finer meshes only 

increased this time. Since this study requires numerous runs in the Genetic Algorithm 

(discussed in Chapter 4), it was important to keep the computational costs down to allow 

for more efficient optimization. The element type chosen in Abaqus/Standard is 

C3D8RT, which is an 8-node thermally coupled element with trilinear displacement and 

temperature outputs [44]. Every element in the simulation is initially considered powder, 

but changes to solid once the simulated laser has scanned the element. All elements 

properties are considered isotropic in all properties as mentioned in Section 3.2.2. Elastic 
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deformation is accounted for and coupled temperature-displacement is found on each 

element at each Abaqus time step.  

Boundary conditions are set for both exterior and interior elements. The first 

condition is that the bottom surface of the first layer of elements has a fixed temperature; 

this condition helps simulate the conduction between the layers of the build part and the 

substrate, which acts as a heat sink during the scanning and cooling periods. Conduction 

occurs between the elements above the first layer, as well. Radiation is considered 

negligible in this simulation because of the small size of the melt pool, which is assumed 

to be the same size as the laser beam [17], and the very quick cooling once the laser 

moves away. Also ignored is convection; due to the small size of the molten pool, the 

heat loss by convection from the top surface is small compared to the heat loss by 

conduction from the part. The simulation also assumes an inert chamber [7], with no gas 

motion. This assumption of no gas motion is important to consider when addressing 

convection, as without the movement of the surrounding air, significant convection 

cannot happen between the build part and the chamber air.  

A statistical analysis was done to evaluate the significance of convection on the 

temperature profile of a build part in the DMLS process. Two single-layer scans were 

completed in Abaqus/CAE, meaning no field variables were accounted for, so the thermal 

conductivity values remained that of powder for the entire scan. One single-layer scan 

considered convection on the build part surfaces, and the other did not. The average 

NT11 (where NT11 is the nodal temperatures across the part’s surface) values were 

found for both runs, and an independent sample t-test was done to evaluate if there was a 

significant difference between the two runs [45]. The results are shown below in Table 
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3.6. The degrees of freedom chosen was 202, as there were 202 time-steps in the scan. 

The null hypothesis taken was µ1-µ2 = 0, or that there is no difference in the mean values 

of the NT11 data from both runs. The confidence level chosen was 90%, or a=.01. 

 Single Layer Scan 

Without Convection 

Single Layer Scan With Convection 

Avg. NT11 909.6471 K 903.2841 K 

T Test 

x1 909.6471 N = 203 

x2 903.2841 SE = 24,9269 

s1 253.1272 x1-x2 =6.36301 

s2 249.1209 t = .2552 

Table 3. 6 T-Test Results for Comparing Convection vs No Convection in Simulation One-Layer Scan 

In the table above, x1 and x2 are the mean values from each population, s1 and s2 are 

the standard deviations from both populations, and SE is the standard error for the 

differences in samples. All of these are used for calculating the test statistic for the t-test. 

As can be seen from this table, the t value found was small, signaling that the two 

populations are very similar. The critical value of t found from a t-distribution graph with 

n=202, a/2 = .005 (use for a two-tailed test) was 2.576 [45]. The test t value found from 

the two means was .255. Since the test t value is less than the critical value of t, it can be 

said at a 90% confidence level that the difference between mean NT11 values of the two 

populations – the two scans, one with and one without convection – are not statistically 

different. Therefore, this helps support the assumption made for this simulation of no 

convective heat transfer being included on the simulated build part.  
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The sides of the exterior elements also experience conduction, to mimic the fact that 

the newly solidified powder on the perimeter of the build part is still in contact with the 

rest of the powder in the bed, with which conduction occurs. Volume shrinkage of the 

elements is not considered in this model. With these assumptions, the numerical model of 

the DMLS process is simplified, yet sufficient to evaluate the hypothesis of this research.  

The last boundary conditions set on the elements is a displacement boundary 

condition. A corner node on the bottom face is set to have zero displacement. Its nearest 

neighboring nodes in the element along the x-,y-, and z-directions are also fixed in their 

respective directions. This idea is taken from a past simulation model with the goal of 

preventing rotation and translation [17]. Specifics of the laser incident on the element are 

detailed in the next sub-section, 3.5.2: Description of Laser. 

A schematic of a boundary and interior element is shown below in Figure 3.5. 
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Figure 3. 5 Schematic of Elements with Boundary Conditions 

Below, the section of MATLAB code defining the initial and boundary conditions, 

respectively, for bottom layer elements respectively is shown: 

fprintf(fid_aba, '%s \r\n','****'); 

fprintf(fid_aba, '%s \r\n','**'); 

fprintf(fid_aba, '%s \r\n','*INITIAL CONDITION, TYPE=TEMPERATURE'); 

fprintf(fid_aba, '%s%s \r\n','Nset_All, ', num2str(T_init)); 

fprintf(fid_aba, '%s \r\n','**'); 

% Field variable = 0 for powder, 1 for bulk 

fprintf(fid_aba, '%s \r\n','*INITIAL CONDITION, TYPE=FIELD'); 

fprintf(fid_aba, '%s%s \r\n','Nset_All,',num2str(FV.powder)); 

fprintf(fid_aba, '%s \r\n','**'); 

fprintf(fid_aba, '%s \r\n','****'); 
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    if (current_layer == 1) 

        % Set bottom of first layer to bed temperature 

        fprintf(fid_aba, '%s \r\n', '*BOUNDARY');         

        fprintf(fid_aba, '%s,%5i,%5i,%10i \r\n', mesh.Nset_bottom.name, 

11, 11, T_inf);     

        fprintf(fid_aba, '%s \r\n', '*BOUNDARY, TYPE=DISPLACEMENT'); 

        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', corner_node, 1, 3, 0); 

        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 

            corner_node_neighbor_x, 2, 3, 0); 

        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 

            corner_node_neighbor_y, 1, 1, 0); 

        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 

            corner_node_neighbor_y, 3, 3, 0); 

  

        fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER 

INTERVAL=1'); 

        fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 

        fprintf(fid_aba, '%s \r\n','EVOL');   

    end 

 

To calculate the heat flux for each element, the DFLUX subroutine was used in 

Abaqus/Standard. This user subroutine is used “to apply distributed fluxes in fully 

coupled thermal-stress analysis [46].” This simulation assumes a non-uniform heat flux 

distribution, and calculates the distributed flux using the element number and face, the 

type of distributed flux, and the reference flux magnitude [46], [47]. In this case, the 

reference flux magnitude was set to 1W/m2; the flux calculated for each element is only 

multiplied by one unit of heat flux per unit surface area. Since this simulation uses non-



 47 

uniform heat flux distributions, the heat flux data for the DFLUX user subroutine comes 

from the amplitude data calculated at each time step. Using a reference magnitude of one 

allows for the heat flux to come from the amplitude data  instead of being a set value 

throughout the simulation, such as in uniform heat flux instances [47]. In this case, the 

amplitude data consists of the magnitudes of heat flux incident on the part and its position 

along the part for each time step of the simulation. 

 

3.5.2 Description of Laser 

A key part to having a working simulation of DMLS is having the model of the laser 

accurately apply heat flux to each element while moving. As laid out in Section 3.2.1, the 

laser spot size is set to be the same size as the element [32]; in this case, the radius of the 

laser is defined as half the width of each square element. The laser definition in this 

simulation assumes the part to have an even number of rows and assumes that laser does 

not finish scanning a layer on one of the scanning vectors that makes up the fin.  

The laser beam approximation in this simulation follows a Gaussian beam profile; 

these are used in many models as laid out in Chapter 2 [3], [10], [20], [23], [25], [31]–

[33]. Equations 3.1 and 3.2 model from [25] the Gaussian beam profile and are used in 

the simulation to solve for the heat flux at each point in the part and the average heat flux, 

respectively. 
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Where: 

- P = laser power 

- r0 = laser beam radius 

- r = radial distance of a point from the center of the laser beam center 

The radial distance of a point on the build part from the laser beam center was 

calculated using Cartesian distance equations and the points along the top surface in 

relation to the laser beam radius. As the laser hits an element, the heat flux incident on 

that element accounts for all surrounding points on the top surface of the part. The laser 

beam’s radius is assumed to be half the width of an element; this allows for the Gaussian 

beam heat flux distribution calculated to cover each element. While the Gaussian beam 

distribution covers the area of a circle and the elements are considered square, Equations 

3.1-3.2 calculate the distribution such that the heat flux incident can be calculated on each 

element and surrounding area. The average heat flux in Equation 3.2 is used to calculate 

the heat flux incident on each element using the DFLUX subroutine, and the amplitudes 

are recorded and submitted with the input file on the simulation when run in 

Abaqus/Standard. 

 

3.5.3 Energy Balance on an Element 

From the boundary conditions and heat flux equations stated in Sections 3.4.1 and 

3.4.2, the governing equations for the energy balance and heat transfer on an element are 

deduced; these equations pair with the schematic laid out in Figure 3.4.  
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The governing heat transfer equation used to approximate the heat transfer on an 

element – and so the entire build part – comes from Fourier’s three- dimensional time-

dependent heat conduction equation, shown in Equation 3.3 [21]. This form of the 

equation takes into account a moving heat source and surface cooling [21]. The boundary 

conditions applied are laid out in Section 3.4.1, and the initial conditions are shown in 

Equations 3.5-3.10. As shown in Chapter 2, this equation is used often in modelling the 

heat transfer phenomena that occur during the DMLS process. 

  

 3. 3 

Where: 

- T = Temperature  

- V = Velocity of laser 

- a = Thermal diffusivity of the material 

Equation 3.3 indicates that diffusivity plays an important role in the heat diffusion 

when the velocity of the moving heat source is greater than zero. As the velocity 

tends to infinity, though, the temperature becomes independent of the direction in 

which the heat source is moving [21]. It should also be noted that this equation is the 

same as the standard unsteady state three-dimensional heat conduction equation; if V 

is replaced with )#
)*

, then the equation on takes on the traditional form [48], as shown 

below in Equation 3.4. 
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Boundary Conditions: 

Boundary Element: 

𝑥, 𝑦, 𝑧|-./01/	3.**.4	151410*	0.)16 = 0        3.5 

𝑇(𝑧 = 0) = 𝑇31)        3.6 

 

   𝑞 = −𝑘∇𝑇        3.7 

 

Internal Element: 

𝑇(𝑧 = 0) = 𝑇31)      3.8 

    𝑞 = −𝑘∇𝑇        3.9 

 

Initial Condition for all elements: 𝑇(𝑡 = 0, 𝑥, 𝑦, 𝑧) = 𝑇708    3.10 

Where: 

- q = heat flux 

- k = thermal conductivity 

- T = Temperature 

- t = time 

The DMLS process consists of unsteady heat transfer modes as the laser moves 

across the build part. However, an energy balance can be done on a single element for 

each time step. Figure 3.5 shows the energy balance on both a boundary element an 

interior element while the laser is incident on it. The heat loss to substrate and heat 
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conduction to surrounding elements corresponds to the equations 3.4 – 3.10 respectively, 

for the boundary conditions above. 

 

Figure 3. 6 Energy Balance on Boundary and Internal Elements 

 

With the heat flux equations in 3.4.2, the heat transfer equations above, and the 

energy balance on a single element, the heat transfer and temperature history of an 

element in the build part in DMLS is sufficiently modelled in the simulation. 

 

3.6 MATLAB Code Description/Input File 

The MATLAB code written for this DMLS simulation begins with initializing 

process parameters and generating the mesh. In generating the mesh, the number of 

layers, the size of the elements, and the number of elements is dictated, and the element 

and node sets are generated for the set number of layers. The code then sets the laser 

parameters and time parameters that are used throughout the code to determine the 

durations of the various stages of the simulation; the code writes the boundary conditions 



 52 

used in this simulation as well, as described in Section 3.4. Then, the perimeter of the part 

is “scanned” in the code, with the heat fluxes and amplitudes being calculated and 

recorded in a file to submit to Abaqus. The interior is then scanned; depending on 

whether a raster or random scan is required, the code generates the vector scanning order 

and as with the perimeter scan, the heat fluxes and amplitudes are calculated and 

appended to the files being submitted to Abaqus.  

For this simulation, raster scans follow adjacent vector scans, while a random scan 

follows an unordered array of vector scans. A schematic of the scanning patterns is 

included below in Figure 3.4. The numbers above the scanning arrows correspond to the 

track number of the scan in the sample of four scanning vectors. This is the only 

difference in code between the raster and random scans that are run. 

 

Figure 3. 7 Schematic of Raster vs. Sample Random Scan 

  

After the heat flux data is calculated and recorded for the simulated scanning, the 

MATLAB code then writes the input file that is submitted into Abaqus. The heat flux 

data that MATLAB calculates is used as the input heat flux loads for the temperature-

displacement analysis completed in Abaqus. 

   1   2  3  4              2   4  1  3 

   Raster               Random 
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The MATLAB code begins writing the input file by including all the element and 

node files, then writing the material properties and initial conditions. The rest of the input 

file is written in four main steps, with heat flux and amplitude data being added when a 

step involves laser scanning. The steps written to the input file are described below. 

Step 1: Material Removal 

In this step, all material from the simulated part is removed. At the beginning of 

the input file, all element and node sets are included in the part. However, the simulation 

should only add the requested number of layers, and do so one at a time after the previous 

layer has been scanned. This step “removes” all the material that adding all the elements 

and nodes would have created in Abaqus from the start of the input file, so that the 

subsequent steps can dictate which element and node layer sets should be added and 

evaluated. 

Step 2: Adding Layer 

 In this step, a layer is added to the build part in the simulation. The layer is added 

by adding the elements and node sets from the specific layer as determined in the mesh 

generation. If a layer is being added beyond the first layer, this step ensures the flux on 

the top surface for the previous layer is set to zero and the field variables are set “bulk,” 

so all previous layers are considered a solid part having bulk properties.  

Step 3: Scanning Layer 

 In in this step of the input file that the top layer is heated according to the heat 

flux data calculated and the scanning pattern dictated earlier in the code. A coupled 

temperature-displacement analysis is set for Abaqus to complete. Once scanning is 

complete, the heat flux is set to zero once scanning is complete, and the field variables 
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are changed to give the recent layers bulk properties. Steps 2 and 3 are repeated until the 

number of layers dictated is reached. 

Step 4: Cooling Part 

 The last step written to the input file is the cooling step, in which time is added to 

allow the part to cool, and a coupled temperature-displacement analysis is set for Abaqus 

to complete. All output files are generated from Abaqus for post-processing of the 

simulation.  

 

3.7 Defining the Temperature Gradient 

In order to address and minimize the thermal gradients and deformations on the build 

part, three possible objective functions for the optimization were evaluated based on the 

preliminary results found in section 3.8: Preliminary Results from Raster and Random 

Scans. These different objective functions represent ways to characterize and compare the 

thermal gradients between the raster scan and random scan by utilizing the nodal 

temperature outputs of the Abaqus DMLS simulation. 

i. Average of Max NT11 across top surface of part 

The average Max NT11 takes the average, over the entire scan time, of the 

maximum nodal temperatures across the top surface of the build part over the 

entire scan time. The maximum values averaged are found in Abaqus using 

the maximum envelope of the nodal temperature curves across the top surface 

of the build part at each time step. An example of the maximum envelope 

calculation done in Abaqus to find the maximum nodal temperatures at each 

time step of the simulation is shown below in Figure 3.8. Each curve on the 
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plot represents the variation in temperature in temperature at one node on the 

top surface. This figure shows the temperature profile over all time steps of 

each node for the single-layer raster scan simulation; the top red line that 

follows the maximum peaks of the nodes is the maximum envelope, and these 

maximum values are used as the maximum nodal temperatures at each time 

step over the entire simulation. 

 

Figure 3. 8 Maximum Envelope Plot for 1-Layer Simulation 

This objective function is relevant because it helps to see over the course 

of the scan what the average temperature across the top surface of the part is, 

as this could be useful when comparing temperature gradients between scans. 

Using this as an objective function in the genetic algorithm will also help 

optimize the scan to have a lower average peak temperature, thus minimizing 

the temperature gradient.  

ii. Absolute Max of NT11 across entire part surface 

The absolute max of NT11 finds the maximum, over the entire scan time, of 

the maximum envelope calculated by Abaqus of the nodal temperatures across 
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the surface of the build part at each time step of the simulated scan. The 

maximum envelope is the envelope from all the NT11 curves for each node 

generated by Abaqus, so finding the absolute maximum across all of the 

nodes. This objective function is relevant because it helps see which scan 

results in the highest peak temperature during the scan time; if used in the 

optimization, reducing the peak temperature that occurs during the scan can 

help to reduce the temperature gradients over the entire part.  

iii. Average of the Average NT11 across entire part surface 

The average of the Average NT11 takes the average, over the entire scan, 

of the average nodal temperatures across the build part calculated by Abaqus 

at each time step of the simulated scan. Using the average nodal temperatures 

has the advantage of accounting for the lower end of the part’s temperatures 

during scan time, in addition to the maxima. This objective function could 

provide insight into which scan pattern generates overall lower temperatures, 

and so lower thermal gradients.  

Since stresses are directly related to the temperature gradients in a build part in laser 

sintering as shown in Chapter 2 (a selection of references to this include [10], [13], [18], 

[49]), it is important to have the temperature gradient appropriately defined for the 

analysis portion of the optimization. The first two metrics help to see a difference in peak 

temperatures on the build part and how they vary across the final scanned surface; 

minimizing the peak temperatures would help to minimize the uneven heating and 

cooling on the build parts. The third metric gives insight into the average temperatures 

across the final scanned surface; lowering them could also lower the peak temperatures. 
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An investigation into the differences between the raster scan and the un-optimized 

random scan, in Section 3.8, helped to decide which metric is best to define a temperature 

gradient in the simulation to use in the optimization. 

 

3.8 Preliminary Results from Raster and Random Scan 

Before optimizing the scan path, preliminary results on the differences between raster 

scans and random scans are analyzed; specifically, the nodal temperatures across the 

simulated build part after completing all scans are found using Abaqus/CAE and 

compared. Initially, all raster and random scans were run with the same properties as 

listed in 3.2.1, but with a scan speed of 0.1 m/s. These initial scans were run for both 1-

layer and 5-layers, in order to see differences between the heating and cooling from the 

two scan modes as layers were built up. Computationally, these runs took about 30 

minutes and 6 hours, respectively on Abaqus/Standard. It should be noted that the 

random scanning pattern is changed for each random scan, as the code generates a new 

random scanning path each time a new Abaqus input file is generated. Figures 3.9 and 

3.10 show the nodal temperatures across the surface (NT11) for 1-layer raster and 

random scans, and Figures 3.11 and 3.12 show the nodal temperatures across the surface 

for 5-layer raster and random scans. Also included in these figures is a look at the center 

node (node 668) on the bottom surface of the block – this idea is taken from a past study 

looking at defining the temperature gradients [3], which looked at the thermal history of 

the center node on the top surface of the bottom layer. Looking at the center node helps to 

emphasize the heating and cooling cycles the part undergoes in DMLS. 
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Figure 3. 9 Raster 1-Layer Scan NT11 – Original Parameters with Scan Speed = .1m/s 
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Figure 3. 10 Random 1- Layer Scan NT11 – Original Parameters with Scan Speed = .1m/s 
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Figure 3. 11 Raster 5- Layer Scan NT11 – Original Parameters with Scan Speed = .1m/s 
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Figure 3. 12 Random 5- Layer Scan NT11 – Original Parameters with Scan Speed = .1m/s 

 

The graphs for both sets of 1- and 5-Layer scans show that the simulation running 

at the set parameters and speed produces reasonable and realistic temperature results; the 
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magnitude of the peak temperatures reached matches that found in past simulation studies 

[12], [20], [22], [27], [43]. 

For both the 1-layer scans (Figures 3.9-3.10), the maximum temperature reached from 

both scans is approximately 1660 K and they both share nearly identical average 

temperature profiles across the scan surface for the scan time. However, differences 

between the two scanning patterns in the thermal history can be seen in both the average 

maximum NT11 over the scanning period as well as the maximum temperature reached 

by the center node. The graphs show that the random scanning pattern drops to cooler 

NT11 values over the course of the scanning period (occurring from ~4 seconds to 20 

seconds) when looking at the maximum NT11 curve , as opposed to the raster scan, 

which heats up to and stays close to the maximum NT11 reached. For both the 1- and 5-

layer scans, the center node’s maximum temperature reached is about 200K less using a 

random scanning pattern versus the raster scanning pattern. These results show that while 

overall differences are not significant, there are key thermal history differences between 

the raster and random scanning patterns that can be used to minimize thermal gradients 

on the simulated DMLS build parts. 

The stresses calculated by Abaqus for the runs at the initial parameters were also 

looked at, to better assess the validity of the simulation. An initial 5-layer raster scan 
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simulation was completed, and the Von Mises stress over the course of the entire scan 

was found in Abaqus. These measurements are shown in Figure 3.13. 

 

 

Figure 3. 13 Von Mises Stress for 5-Layer Raster Scan 

 As can be seen from the graph, the maximum Von Mises stress reaches 

approximately 790 MPa. In addition, the stresses are also shown to build up with each 

additional layer, as indicated by the 5 “hills” along the average Von Mises stress line; 

these stress measurements and the stress build-up are similar to what has been seen in 

past studies [9], [13]. The tensile and compressive yield stresses for Ti-6Al-4V are 880 

MPa and 970 MPa respectively [41]; as can be seen, the more layers added in a DMLS 

part, the closer the stress values reach the yield stress of the material.  

From the initial scan results with minimal difference in thermal history between 

random and raster scans, the next steps were to try to exaggerate these differences. One 
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outcome of this research is to develop an approach to optimize the scanning pattern, 

which means finding an objective function that varies with scanning pattern to be used in 

the optimization. By exaggerating the thermal histories, the objective functions should 

become clearer and more useful in helping to magnify the effects of the scanning pattern 

on the thermal gradients of a build part in DMLS. In an attempt to exaggerate existing 

differences in thermal history existing between the raster and random scans, the 

simulation parameters were adjusted.  First, the thermal conductivity values were 

multiplied by 10 to see if increasing the rate of heat transfer would increase the thermal 

history differences more than shown in the initial run. These results are shown in Figure 

3.14. 
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Figure 3. 14 Raster and Random Scans at Scan Speed = .1 m/s and 10x normal conductivity 

 As expected, the part cooled much quicker than before for both scans, but the 

differences in the maximum NT11 seen between the two for normal conductivity 

simulations are still similar overall; while at lower temperature values, the random scans 
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still maintain a lower average maximum NT11 – almost identical to the normal 

conductivity runs differences – during scanning than the raster scan.  

 Another test run to see simulation differences in random and raster scans was a 

decrease in speed while maintaining the other parameters the same as normal. The speed 

was halved to 0.05 m/sec, to see if the differences found in the average maximum NT11 

during scanning could be exaggerated from the normal and 10x conductivity value runs. 
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The NT11 results for half-speed simulation runs for raster and random scans for both 1- 

and 5-layer scans are shown in Figures 3.15 and 3.16. 

 

 

Figure 3. 15 NT11 Results for 1-Layer Random and Raster Scan at original parameters at Scan Speed = 0.05m/s 
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Figure 3. 16 NT11 Results for 1-Layer Random and Raster Scan at original parameters at Scan Speed = 0.05m/s 

 Figures 3.15 and 3.16 indicate that decreasing the speed increases the maximum 

temperature reached in the part to about 2600K and 2900K respectively for both 1- and 5-

layer random and raster scans, which is to be expected because the laser spends more 

time heating each element on the simulated part. The same major differences appear in 

between the random and raster scans, namely in the average maximum NT11 for the part 

 

 

0
500

1000
1500
2000
2500
3000
3500

0
8.

73
1

18
.2

31
27

.7
31

37
.2

41
46

.3
61

55
.8

61
65

.3
61

74
.8

71
83

.9
91

93
.4

91
10

2.
99

1
11

2.
50

1
12

1.
62

1
13

1.
12

1
14

0.
62

1
15

0.
13

1
15

9.
25

1
16

8.
75

1
17

8.
25

1
18

7.
76

1
19

7.
26

1
23

9.
64

1
28

7.
16

1
33

4.
68

1
38

2.
20

1

Te
m

pe
ra

tu
re

 (K
)

Time (seconds)

5-Layer NT11 - Raster Scan at 0.05 m/s

Avg NT11 Min NT11 Max NT11

0
500

1000
1500
2000
2500
3000
3500

0
8.

73
1

18
.2

31
27

.7
31

37
.2

41
46

.3
61

55
.8

61
65

.3
61

74
.8

71
83

.9
91

93
.4

91
10

2.
99

1
11

2.
50

1
12

1.
62

1
13

1.
12

1
14

0.
62

1
15

0.
13

1
15

9.
25

1
16

8.
75

1
17

8.
25

1
18

7.
76

1
19

7.
26

1
23

9.
64

1
28

7.
16

1
33

4.
68

1
38

2.
20

1

Te
m

pe
ra

tu
re

 (K
)

Time (seconds)

5-Layer NT11 - Random Scan at 0.05 m/s

Avg NT11 Min NT11 Max NT11



 69 

during the scan period (occurring ~11 seconds to 43 seconds for 1-layer scan and ~11 

seconds to 197 seconds for 5-layer scan). A closer look in comparison of the maximum 

NT11 values between both scans during the simulation time is taken in Figure 3.17 for 1-

layer scan and 3.18 for 5-layer scan.. 

 

 

Figure 3. 17 Maximum NT11 over course of simulation for both 1-Layer scanning types at Scan Speed = 0.05 m/s 
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Figure 3. 18 Maximum NT11 over course of simulation for both 5-Layer scanning types at Scan Speed = 0.05 m/s 

 Figures 3.17 and 3.18 show that the random scanning pattern lowers the average 

maximum nodal temperature across the part surface during the simulation. The objective 

function that most clearly shows an improvement in thermal gradients between raster and 

random scans is the average of the maximum NT11. Specifically, the random scan 

pattern has an average maximum NT11 value of 1340 K over the course of the 1-layer 

simulation, while the raster scan has an average maximum NT11 value of 1461.3259 K; 

the random scan keeps the average maximum surface temperature roughly 100 K cooler 

over the scan period than the raster scan. For the 5-layer simulation, the random scan 

pattern has an average maximum NT11 value of 2042K, while the raster scan’s average 

maximum NT11 value was 2214K over the scan time. In the case of 5-layers, the random 

scan keeps the average maximum surface temperature nearly 200K cooler over the scan 

period than the raster scan. When comparing the two, the power was 2500W for both but 

the speed was slowed down from initial simulations of 0.1 m/sec to 0.05 m/sec so as to 
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exaggerate any differences in temperature gradients for the both types of scans; the idea 

of adjusting speed and power to increase peak temperatures reached on the part is found 

in past laser sintering studies [20]. Using a slower scan speed to help exaggerate this 

difference, the differences found in average maximum NT11 provides a feasible objective 

function in the minimization of the thermal gradients over the build part in the DMLS 

simulation created.  
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CHAPTER 4 

OPTIMIZATION OF SCAN PATTERN 

4.1 Description of Genetic Algorithm 

A Genetic Algorithm was coded using MATLAB to optimize the DMLS scanning 

pattern. The genetic algorithm was chosen as the optimizer to ensure diversity of 

scanning path orders; genetic algorithms are capable of solving both linear and non-linear 

unconstrained problems, and explore all possible regions of a state space to find a viable 

solution [36].  

The genetic algorithm code consists of a main script and 6 functions. The first 

function called by the main script defines the initial population; in this case, the initial 

population is random permutation arrays of the starting coordinates of paths along the 

part built in the input file. For the specific shape of the base and fin modeled in this 

research, the initial population of designs would consist of arrays with a random 

permutation of the numbers 1 through 16, the number of possible starting path positions.  

 

Figure 4. 1 Sample Initial Population with Population Size of 5 

 Figure 4.2 shows how the population arrays relate to the build part and the 

starting positions. The random permutation of numbers 1 through 16 correspond to the 

vectors on the build part, not including the perimeter (as this is scanned first and separate 

from the random interior scan). 
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Figure 4. 2 Visual of Scanning Vectors used in GA Population 

After the initial population is created, the initial “fitness” of these path arrays is 

found. In order to calculate the “fitness” of a scanning path array, the scanning patterns 

from the initial population are written into the input file for Abaqus. These input files are 

then submitted to Abaqus/Standard for analysis. Using the Abaqus2Matlab program [50], 

the “fitness” function is written to pull post-processing data from the Abaqus/Standard 

output files into MATLAB. For the purposes of this research, the nodal temperature data 

at the nodes after the dictated number of scans is extracted for each population member 

from the Abaqus output database (.odb) file and pulled into MATLAB. For the selection 

step of the GA, tournament selection was chosen; four designs from the initial population 

were randomly chosen twice and their fitness’s compared, with the top two designs from 

each random selection of designs advancing through the algorithm as Parent 1 and Parent 

2. Below is a schematic of how the tournament selection works; note that the fitness 

values, population size, and desired fitness are all arbitrary for the purpose of explaining 

the genetic algorithm. 
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Figure 4. 3 Sample Tournament Selection from Example Design Population = 3 

In the above figure, the total population is considered five. The number of random 

designs for the tournament selection is set at three; three random members are chosen 

twice from the total population of five. In this example case, maximum fitness’ are 

considered desirable. From the two sets of three randomly selected population members, 

the most fit individual (or as stated in this example, the members with the highest fitness 

value) are selected to become the two parents to crossover and create two children. 

The two parents are then crossed over to generate two children. An order-based 

crossover was implemented following previously explored order-based crossovers (OBX) 

[38] and outlined coding logic [51]; the crossover logic pulls from the Travelling 

Salesman Problem [39] to ensure crossovers with no repeating genes in either child. OBX 

was used to ensure that no paths in the design strings would be repeated after the 

crossover, which could cause the laser to scan some paths twice and others not at all. An 

example of this crossover method is shown below: 
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Figure 4. 4 Order based Crossover shown with sample P1 and P2 

From the order-based crossover, the two children’s design strings are created. To 

finalize the new designs, the children are mutated. The main code contains a set mutation 

rate under one; each path position (or gene) in the cross-over design arrays are assigned a 

random number from zero to one, and if the gene’s assignment is below the mutation 

rate, then the gene is mutated. If a position in child’s mutated array is the same as an 

already existing path in the design array, then the duplicated path takes on the original 

path assignment of the mutated gene prior to mutation. 
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Figure 4. 5 Example Mutation with Sample Child 

The selection, crossover, and mutation process repeat with the population for as 

many children dictated in the code. Post mutation, the population has grown and genetic 

diversity between arrays has increased. The fitness of each design—both from the set of 

initial design as well as the new ones— is evaluated, and the designs with the worst 

fitness’s are trimmed off and the population size returns to the original size of the initial 

population. Convergence can be checked in the code in multiple ways; convergence can 

be considered reached if the number of generations reaches the dictated maximum 

number of generations, if the number of function call exceeds the dictated maximum 

number of function calls, if the differences in average fitness’s of the population falls 

under a certain tolerance, or if there is no difference in average fitness from one 

generation to the next. Convergence would signify an optimal scanning pattern has been 

obtained. If convergence has not been met yet, then the code writes the newly obtained 

population path arrays to the MATLAB code which generates the Abaqus input file, and 

the algorithm is run again. 
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4.2 The Genetic Algorithm in MATLAB 

The Genetic Algorithm, with steps as described above in 4.1, was coded to take any 

number of scanning paths in the DMLS process and optimize the path order to limit the 

temperature gradients. The code links with Abaqus by writing the chosen path from each 

generation into the input file and running the simulation; then, the temperature results are 

analyzed using Abaqus post-processing capabilities and the Abaqus2Matlab program 

[50]. The temperature results are used to the evaluate the “fitness” of each path.  

The exact parameters for the GA used are included in this section. Four different 

convergence criteria were created, to allow for changing the criteria for convergence 

depending on which was desired in any given run. The four convergence criteria created 

were: 

• if the number of generations created by the GA reaches the maximum number 

set (in this case, 30) 

• if the number of GA calls exceeded the maximum number set (in this case, 

2000) 

• if the average fitness between two consecutive generations are the same 

• if the top fitness of the current generation is the same as the top fitness of the 

past generation 

These options come from past genetic algorithm literature [52]. It was decided for the 

GA runs to terminate if either first the maximum number of generations were met or if 

first the average fitness between two consecutive generations was below a termination 

epsilon. Due to high computational costs of the GA, the maximum number of generations 
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was set to 30 and ε=0.01. A lower tolerance epsilon was chosen to help with convergence 

as the code is so time intensive, and 30 generations could take multiple days to reach. 

When picking a population size for the GA, it was important to pick a large enough 

population size to allow for diversity in the problem without having the computational 

costs of the GA becoming too high [52]. Given the nature of the problem and the single 

variable being assessed in the GA, it was decided that 10 would be an appropriate starting 

size for population.  

The selection technique chosen for this GA was tournament selection; it is often 

viewed as a selection technique with high efficiency and easy implementation [52], [53]. 

In tournament selection, random individuals are chosen from the larger population and 

are set to “compete” against each other. The members with the highest fitness values go 

on to generate the children [52]. The number of individuals to be randomly selected in the 

tournament selection in this case was four, as to give enough competing selection without 

adding too much computational time. 

The two-point order-based crossover was implemented in the GA. As described in the 

literature review, the two-point crossover helps to improve the chances of desired traits 

getting passed on to the children of each generation [37]. Implementing a two-point 

crossover also allowed for the crossovers to remain order-based, so the children did not 

have any repeating paths. 

The mutation rate – the rate at which chromosomes are mutated for members of a 

population in a given generation [52] – chosen was 0.01; this mutation rate prevents the 

GA from becoming a random search, but still allows for mutations to occur that will 

prevent the GA from getting trapped in local optima [52]. 
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As described in Section 3.8, the objective function chosen to minimize the thermal 

gradients on a build part in DMLS was the average maximum NT11 values across the 

simulated part’s surface. This objective function was the goal fitness function used in the 

GA. Utilizing the Abaqus2Matlab toolbox’s function ReadFil(output_file.fil, Record 

Key), Using the Record Key 201, MATLAB is able to read the temperature values from 

the .fil file. The maximum envelope of the temperatures across the part surface was 

recorded (as was explained in Section 3.8 for how Abaqus find maximum NT11) and 

then averaged. This value was used as the fitness for a certain scanning pattern and was 

used in the trimming of the population. Once the children were created and the entire 

generation evaluated, those scanning patterns that produced the least fit individual were 

cut from the population for the next generation, to keep the population size down to 10 

and maintain only the fittest scanning patterns. 

There is one note in regard to the temperature gradient analysis done directly in 

Abaqus and that done using the Abaqus2Matlab toolbox. In Abaqus, both the nodal 

temperatures and the elemental temperatures are available output options. In Chapter 3, 

the nodal temperatures were evaluated for initial comparisons of raster and random scans 

since the nodal temperatures are more accurate and do not require Abaqus to interpolate 

any values [44]. However, the record key available in the Abaqus2Matlab toolbox 

available for temperature pulls the elemental temperatures [50]; This is an averaged 

temperature over the whole element rather that a single node temperature.  This 

introduced a complexity if we were to attempt to regenerate the nodal temperatures from 

these elemental temperatures, but for purposes of minimizing the temperature values used 
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to define the temperature gradient, minimizing the elemental temperatures in the GA 

should accomplish the same goal and also minimize the nodal temperatures of the part.  

Another thing to note is how the fitness function was calculated in the GA in 

MATLAB. While the average max NT11 was looked at in Abaqus as a temperature 

gradient definition, the fitness function in the GA had to be able to be calculated multiple 

times, over each generation. It was decided that in the GA in MATLAB it would be most 

effective to average all the temperatures over all the time steps and take the maximum of 

these average for all elements. By minimizing this average, the GA will be able to find 

the lowest difference between the high and low temperatures, and thus a lower 

temperature gradient. This metric in MATLAB also creates a fitness function  The initial 

results for the output averaged maximum temperatures from MATLAB for the raster scan 

discussed in Chapter 3 are included below and are used in Section 4.5 in comparing 

temperature gradients generated from the optimized scanning path to the raster scan along 

with the post-processing values of the average maximum NT11 values from Abaqus. The 

Abaqus run with the optimized scan pattern return the correct nodal temperatures which 

are significantly higher than the elemental temperatures. 

 

 

Temperature Output (maximum average elemental 

temperatures) of Raster Scan from MATLAB – One 

Layer 

 

 

 

526.2899 K 
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Temperature Output (maximum average elemental 

temperatures) of Raster Scan from MATLAB – Five 

Layer 

 

 

 

788.0681 K 

 

Table 4. 1 MATLAB Elemental Temperature Output for 1- and 5-Layer Raster Scan 

 
4.3 Running the GA on Clemson’s Palmetto Cluster 

Due to high computational needs and long processing times, the Genetic Algorithm 

code tied to Abaqus was executed on Clemson’s Palmetto Cluster. In order to effectively 

use the GA, each population in the GA should be around 10; this means 10 simulations 

must be run on Abaqus and analyzed for their fitness in each generation. 30 generations 

were chosen as the convergence criteria for this GA. That comes out to 300 Abaqus 

simulations. If a five-layer scan is being completed with each Abaqus simulation being 

run in sequence, that would mean about 2,400 hours of computational time needed. The 

Genetic Algorithm code was edited by Grigori Yourganov of the CITI Group to help 

parallelize the Abaqus runs from a population onto the Cluster, in order to help lower 

wall-time and increase the code’s efficiency. The edits made to the code involve sending 

each Abaqus run in a population to a different node in the Palmetto Cluster, to allow for 

all members of the populations to be run on Abaqus simultaneously and cut down on the 

total time needed for the GA to cycle through on generation.  

In order to help shorten the computational time from MATLAB, much of the code 

was rewritten into Linux in order to run batch scripts and avoid using the MATLAB 
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interface. This code is included in Appendix C. This allowed for easier parallel 

processing of each Abaqus run, as well as taking out some of the computational time of 

having to also run the MATLAB jobs for the GA in parallel as well. The most 

computationally costly portion of the GA code is the reading of the results in MATLAB 

of the Abaqus output file; converting this step onto Linux help to facilitate the 

input/output step and reduce the length of time. This portion of the code, however, is the 

still bottleneck when it comes to the speed that the GA processes each generation at. Four 

batch scripts were written, for the different stages of the Genetic Algorithm; initialization 

of new generation, simulation runs for each member of the generation, crossover and 

children, and trimming. Within the batch scripts, the MATLAB scripts are called and run 

utilizing the Cluster specifications called in each batch script. Each script called the 

necessary amount of memory from the processing nodes depending on which part of the 

GA was being completed. 

 

4.4 Optimization Results 

Three Genetic Algorithm runs were completed first for optimizing the scan pattern on 

the one-layer simulation. All three single-layer scan runs were done under the same 

parameters. An initial population of 10 was chosen with 4 parents being selected via 

tournament selection and 4 children being created in each generation; the total population 

was trimmed back to 10 after comparing fitness values among the population prior to the 

next generation. The other GA parameters remained the same as described in the previous 

section. The first run took a total of approximately 52 hours and found the following 

optimal scanning pattern and corresponding temperature gradient in table 4.3 under Run 
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1; the convergence occurred when the difference of average fitness between generations 

was near zero. The convergence happened after the 7th generation’s fitness values were 

evaluated. The evolution of optimal results can be seen in Figure 4.6. The second run 

took a total of approximately 48 hours and found the following optimal scanning pattern 

and corresponding temperature gradient in table 4.3 under Run 2. The evolution of the 

second run’s optimal results can be seen in Figure 4.7. For the second single-layer 

optimization run, the convergence happened after the 10th generation; there was no 

difference in any of the scanning patterns of members of the population at this point. The 

third run took approximately 30 hours to complete and found the following optimal 

scanning pattern and corresponding temperature gradient in table 4.3 under Run 3. The 

evolution of the third run’s optimal results can be seen in Figure 4.8. In the third run, the 

convergence happened after the 6th generation, at which point there was no difference in 

scanning patterns of the members of the total population. The decrease in time for Single-

Layer Run 2 and Single-Layer Run 3 is most likely due to less computational traffic on 

the Palmetto Cluster, allowing all runs in the GA to skip computing queues that may have 

existed during Single-Layer Run 1.  

 

 

 

 

One-Layer Simulation Optimization Results: 

Run 1 
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Optimal Scan Pattern: 9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 

 

MATLAB Average Max. 

Temperature Output: 

 
 
 

520.0048 K 

 

ABAQUS Temperature 

Gradient Output: 

 

1321.0255 K 

Run 2 

 

Optimal Scan Pattern:  

 

 

8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 

 

MATLAB Average Max. 

Temperature Output: 

 

520.8018 K 

 

ABAQUS Temperature 

Gradient Output: 

 
 

1377.84039 K 
 

 
 
 

Run 3 
 

 

Optimal Scan Pattern: 

 

 
 

10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 
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MATLAB Average Max. 

Temperature Output: 

 
 

516.9315 K 

 

ABAQUS Temperature 

Gradient Output: 

 
 

1367.6019 K 

 

Table 4. 2 Single Layer Full Simulation GA Optimal Results 

 

Figure 4. 6 Single Layer Full GA Optimal Solution Evolution: Run 1 
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Figure 4. 7 Single Layer Full GA Optimal Solution Evolution: Run 2 

 

Figure 4. 8 Single Layer Full GA Optimal Solution Evolution: Run 3 

For Single-Layer Run 1, the optimal scanning pattern was found first in the 4th 

generation, and persisted through the 7h generation, with the 1st generation being 

considered the initial population generated as in the test run of the single layer 
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optimization. For Single-Layer Run 2, the optimal scanning pattern was found in first in 

the 6th generation and persisted through the 10th generation. For Single-Layer Run 3, the 

optimal scanning pattern was found in the 2nd generation and persisted through the 6th 

generation. The GA evolution of all three runs shows that all runs started with a 

widespread initial population, but that after the first crossover and trim was completed, 

the population spread began to become less.  A discussion on the differences between the 

different runs and more in-depth comparison to original raster scan results is included in 

the following section, 4.5 Comparison of Optimized Results to Raster Scan. 

After successful single-layer GA optimization runs, a five-layer simulation scanning 

pattern GA optimization run was completed. It is important to look at the scanning 

pattern optimization on multi-later simulation, as the multi-layer build parts are more 

realistic to industry as well as where the high temperature gradients become more of an 

issue, as discussed in the Chapter 2 Literature Review. The five-layer simulation GA ran 

under the same parameters as the single-layer scan did, but with five-layers being 

scanned in the simulation. The first 5-layer GA run took roughly 5 days to run; some 

generations took roughly 20 hours to process, due to the increased computational time of 

a 5-layer simulation as well as possible queues on the Palmetto Cluster. The optimal 

scanning pattern, corresponding fitness, and the evolution of the GA results is shown 

below in Table 4.3 and Figure 4.9, respectively. 

 

 

Five-Layer Simulation Optimization Results: 
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Scan Pattern: 

 

 

15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 

 

MATLAB Temperature 

Gradient Output: 

 

 
 
 

685.6925 K 
 

 

ABAQUS Temperature 

Gradient Output: 

 

 

 

2018.1599 K 

 

Table 4. 3 Five Layer Full Simulation GA Optimal Results 

 

Figure 4. 9 Five Layer Full GA Optimal Solution Evolution: Run 1 
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The five-layer GA converged after 5 generations, with the initial population being 

considered the 1st generation; the code converged after the difference in average fitness 

between generations was near zero. The optimal scanning pattern first appeared in the 2nd 

generation and persisted through the 5th generation. The optimal scanning pattern found 

for the five-layer scan is the same scanning pattern on each layer; the scanning pattern 

was not set to vary on each layer. The five-layer optimization run has similar patterns to 

the single-layer optimization runs when looking at the optimal solution evolution, 

indicating that the GA’s uses can be extended to various size parts. When looking at the 

optimal scanning patterns found for all three runs, it can be seen that the scanning 

patterns switch between the outer vectors (towards the edge of the part) and the inner 

vectors (towards the center of the part) every scanning position, suggesting this dispersal 

of scanning positions helps to even out the heating and cooling across the surface of the 

build part. This pattern is seen both between the three single-layer GA solutions as well 

as between the single-layer and five-layer GA solutions, with some adjacent scanning 

vectors appearing in Single-Layer Runs 2 and 3 and the Five-Layer run. 

Using the genetic algorithm for solving this optimization problem was important as 

this problem can hold many solutions and has a more complex search space, which are 

characteristics of optimization problems that GA’s are efficient at handling [52]. With 16 

different scanning vectors and an unconstrained problem, an exhaustive search could 

have been completed; the initial population scanning orders could have been switched 

more to try to find a true optimum. However, computational limits made this challenging. 

However, it can be seen from the above results that using a GA with a DMLS simulation 

creates a feasible approach to optimizing the scanning pattern of the DMLS process to 
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reduce the temperature gradients. This approach can be generalized for any shape, as 

well, making it a versatile tool. 

A full list of the genetic algorithm runs and the results—the scanning patterns and 

corresponding fitness— from each generation are included in Appendix D. 

 

4.5 Comparison of Optimized Results to Raster Scan 

A summary of the optimization results is below. The temperature gradients from the 

optimal scanning patterns are compared directly with the original raster scan temperature 

gradient results in Table 4.5. 
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Temperature Gradients of Original and Optimized Simulation Runs 

 

Original 1-Layer Run, Raster 

 

 

Optimized 1-Layer Run 

 

 

 

 

 

 

 

MATLAB Output: 526.2899 K 

Abaqus Output: 1461.3259 K 

 

RUN 1: 

MATLAB Output: 520.0048 K 

Abaqus Output: 1321.0255 K 

TEMPERATURE GRADIENT 

REDUCTION (Abaqus Results 

Reduction): 140.3004 K 

 

 

RUN 2: 

MATLAB Output: 520.8018 K 

Abaqus Output: 1377.84039 

TEMPERATURE GRADIENT 

REDUCTION (Abaqus Results 

Reduction): 83.4855 K 
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RUN 3: 

MATLAB Output: 516.9315 K 

Abaqus Output: 1367.6019 

TEMPERATURE GRADIENT 

REDUCTION (Abaqus Results 

Reduction): 93.7240  K 

 

 

Original 5-Layer Run, Raster 

 

 

Optimized 5-Layer Runs 

 

 

MATLAB Output: 788.0681 K 

Abaqus Output: 2214.4722 

 

MATLAB Output: 685.6925 K 
 

Abaqus Output: 2018.1599 K 

TEMPERATURE GRADIENT 

REDUCTION (Abaqus Results 

Reduction): 196.3123 K 

 

Table 4. 4 Comparison of Raster Scan Results vs. Optimized Scan Pattern Results 

 
When looking at the single-layer optimized scanning patterns, it can be seen that the 

GA found three different optimal scanning patterns. The first GA run produced a 

scanning pattern that generates a lower temperature gradient overall when looking at the 
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Abaqus output; the drop in the temperature gradient is greater in the in the first run’s 

scanning pattern. The MATLAB output of all three runs are very close, suggesting that 

there are multiple optimal scanning patterns that can achieve the same fitness values. The 

second run’s temperature gradient is higher, though, than the first by roughly 50K and 

third run’s is higher by roughly 40K. The second and third GA runs might have run into a 

local minimum, hence why the scanning patterns do not produce as low of a temperature 

gradient as the first run’s scanning pattern does. Overall, the single-layer optimization 

runs show that scanning patterns outside of the raster scan can affect the temperature 

evolution on a DMLS part during the build and allow for lower temperature gradients 

than what the current raster scan generates. The multiple runs also show the possible 

existence of multiple optimal scanning patterns for a DMLS build part. 

The five-layer optimized scanning pattern sees a greater reduction in temperature 

gradient from an optimal scanning pattern than the single-layer optimization did; this was 

expected as the residual stress build up occurs more severely in higher numbers of layers, 

as the uneven heating and cooling becomes more of an issue [9], [13]. At the found 

optimum scanning pattern, on average, the maximum temperature across the build part 

was 200K less at each time step (barring the initial time steps when the part was at the 

initial temperature condition). Due to high computational costs, only one five-layer run 

was completed to compare with the initial raster scan results; as the two single-layer GA 

runs suggest, a different scanning pattern could exist for the five-layer scan that could 

possibly further reduce the temperature gradient along the build part in the simulation. 

However, the results from the five-layer GA run show that a scanning pattern does exist 

that will minimize the thermal gradients on the build part. As is discussed in Chapter 5: 
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Future Work, more comprehensive GA runs can be competed with higher population 

sizes and high number of parents/children which will help generate more robust 

optimization results for more in-depth build simulations.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Research Conclusions 

Overall, this research shows that it is possible implement a DMLS simulation and 

optimize the temperature profiles. Chapter 3 explained in detail the set-up and process 

that the DMLS simulation takes, and Chapter 4 explains the set-up and execution of the 

Genetic Algorithm written that minimizes the temperature gradient across a build part 

through adjusting the order of scanning pattern from the laser in DMLS. Through the GA, 

an optimal scanning pattern was discovered for both a single-layer build and a five-layer 

build. This optimal scanning pattern sequence shows reduced temperatures across the 

build part when compared to the traditional raster can. Since the temperature gradients 

are lowered, the post-build deformations should also be reduced as the steep temperature 

gradients are what lead to the deformations, as discussed in Chapter 2.  

To complete the optimization of scanning pattern, this research explored different 

possible metrics for temperature gradient on the build part to be used at the objective 

function. It was determined that the average maximum nodal temperature was a viable 

metric to minimize in the GA, as it showed the most variation among different scanning 

patterns. The aim of this research was to lay groundwork for optimizing the laser 

scanning path in DMLS; this was achieved through a working simulation and genetic 

algorithm, which is able to find a scanning pattern that minimizing temperature gradients 

induced from the laser on the build part during the build process.  

 

5.2 Future Work 



 96 

While this research showed that optimizing the scan pattern will result in a lower 

temperature gradient, and therefore, less thermal stresses, much more work can be done 

to improve on the results and broaden the applications of this research. Updating the 

simulation to match more closely the in-situ process of DMLS would be beneficial to 

increasing the validity of the optimization results. These updates could include 

convection and radiation effects, as well as smaller element sizes to increase the accuracy 

of the heat flux data from the moving laser. These updates could be made with the 

availability of more computational power, as these updates would increase the 

computational time of the simulation and the overall GA.  

Changes to the GA that could help further this research would be to design it to 

optimize the scan pattern for each layer individually. Currently, the multi-layer scans 

have the same vector scanning order for each layer. However, each layer of a multi-layer 

scan could exhibit a different scan pattern, and this could help to further minimize the 

overall temperature gradients on a build part and make the GA more robust in its results. 

In order to achieve this, the simulation would have to be adjusted so that each time a new 

layer is dictated to be scanned, the scanning order is also changed. The GA would also 

have to be adjusted to look at and optimize the scanning patterns of each individual layer 

of the multi-layer scan.  

Another aspect that should be considered in future work is the application of the 

simulation and GA to other shapes; simulating and testing on other shapes would prove 

the diversity of the GA within the realm of DMLS applications, as well as possibly show 

any patterns in the optimal scanning pattern that reduces the temperature gradients. 
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Testing on other shapes can also explore the effects scanning pattern in DMLS might 

have on various types of features, such as thinner overhangs or rounded edges. 

Ultimately, taking the optimization from simulation to experiment would greatly 

increase the optimal scanning pattern GA application. Future work should apply the 

optimal scanning pattern found in the GA to the physical scanning and building of a part 

in DMLS in order to validate both the simulation being ran as well as validate the 

application of the optimal scanning pattern to an in-situ build. This validation could help 

show the physical improvements on build part deformations from using an optimized 

scanning pattern, would help strengthen the case for the GA’s application to real world 

use. 
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APPENDIX A. MATLAB SCRIPT FOR DMLS SIMULATION ABAQUS 

INPUT FILE 

Appendix A includes the 9 MATLAB functions that calculates and generates the node 

and element mesh data and input files, the heat flux input data and input files, and the 

laser scan position data and input files. The overall simulation Abaqus input file is 

generated at the end as well, calling the individual input files for mesh and heat flux data 

that are generated. The majority of the code was written by Jennifer Snipes and 

Ramaswami Subrahmanian for their post-doctoral research, but adjustments were made 

for this specific project. Also included after the code is a simulation input file that would 

be generated from the code.  

 
A1_main.m 

%% Housekeeping  
  
  
clc 
clear 
close all 
fclose all; 
tic; 
  
%% For graphs 
  
line_width = 5; 
  
  
%% Generate meshes 
  
% This flag should be set to 'true' when running this program for the 
first 
% time after any mesh parameter 
% (e.g. the number of layers in the z-direction, mesh.num_elem_z) 
% has been set in the program P01_generate_mesh.m . 
generate_mesh = true; 
disp('Generating mesh ...') 
run P01_generate_mesh.m 
  
  
%% Process parameters 



 100 

  
run P02_set_laser_params.m 
  
T_bed = 298;    % K 
  
T_init = 298;    % K 
T_inf = 298;     % K 
  
% laser_power = 50;   % W 
% laser_radius = 300e-6; % micron -> m 
  
ref_flux_magnitude = 1;% W/m^2 
  
  
% estimated for heat transfer from a vertical flat plate, 
% assuming constant heat flux, and calculating property values 
% at 950 K (= (300 + 1600)/2), where 1600 K  is a little below the 
melting 
% point of stainless steel. 
%%%Heat_transfer_coefficient = 10;    % W/(m^2.K) 
  
  
%% Time parameters 
  
  
% For removing material 
initial_time_inc_Stage1 = 1e-3; 
duration_Stage1 = 1e-3; 
  
% For heating one layer of material 
initial_time_inc_Stage2 = 0.01; 
  
scan_speed = 0.05 ; % m/sec 
  
del_t = mesh.del_x / scan_speed;   
  
  
  
% For cooling material 
initial_time_inc_Stage3 = 0.01; 
  
  
  
%% Field variables for powder and bulk 
  
FV.powder = 0; 
FV.bulk = 1; 
  
  
%% Trace and scan perimeter 
  
disp('Scanning Perimeter ...') 
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run P03a_trace_perimeter.m 
run P03b_perimeter_scan.m 
  
  
%% Scan interior 
  
disp('Scanning Interior ...') 
  
run P04_random_scan.m 
  
% from which we can now obtain these variables 
duration_Stage2_per_layer=random_scan.flux_ampl_data(end,1); 
duration_Stage3 = duration_Stage2_per_layer * mesh.layers_considered; 
  
  
  
%% Generate data for heat flux corresponding to perimeter+interior scan 
  
  
top_surf_flux_ampl_data = [ ... 
    perim_scan.flux_ampl_data;  random_scan.flux_ampl_data 
    ]; 
  
  
  
%% Write heat flux data to files 
  
% Call a script to write Ampl lines 
disp('Writing Ampl data files ...') 
run P05b_write_ampl_data_files.m 
  
% Call a script to write Dflux lines 
disp('Writing DFlux data files ...') 
run P05c_write_DFlux_lines.m 
  
  
  
  
%% ***** Write .inp file *****  
disp('Writing input file ...') 
  
%% Open file and print heading  
  
fid_aba = fopen('00_Additive_mfg.inp', 'w'); 
  
fprintf(fid_aba, '%s \r\n', '*HEADING'); 
fprintf(fid_aba, '%s \r\n', 'Simulation of thermal distortion and 
stress in additive manufacturing'); 
  
  
%% Nodes 
  
fprintf(fid_aba, '%s \r\n', '****'); 
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fprintf(fid_aba, '%s \r\n', '**'); 
  
filename = '01_Nodes.inp'; 
fprintf(fid_aba, '%s \r\n', '*NODE, NSET = Nset_All'); 
fprintf(fid_aba, '%s%s \r\n', '*INCLUDE, INPUT = ', filename); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Elements 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
filename = '02_Elements.inp'; 
fprintf(fid_aba, '%s \r\n', '*ELEMENT, ELSET = Elset_All, TYPE = 
C3D8RT'); 
fprintf(fid_aba, '%s%s \r\n', '*INCLUDE, INPUT = ', filename); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Node set for bottom layer 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
cmd_line = ['*NSET, NSET = ', mesh.Nset_bottom.name, ', GENERATE']; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
fprintf(fid_aba, '%5i, %5i, %1i \r\n', mesh.Nset_bottom.first_node, ... 
    mesh.Nset_bottom.last_node, 1); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Element sets for xy-layers 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
% Element sets for layers  
filename = '03_Elsets_layers.inp'; 
fid_elsets = fopen(filename, 'w'); 
  
for k = 1 : mesh.num_elem_z 
     
    cmd_line = ['*ELSET, ELSET = ', mesh.Elset_layer_array(k).name, ', 
GENERATE']; 
    fprintf(fid_elsets, '%s \r\n', cmd_line); 
    fprintf(fid_elsets, '%5i, %5i, %1i \r\n', 
mesh.Elset_layer_array(k).first_elem, ... 
        mesh.Elset_layer_array(k).last_elem, 1); 
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end 
clear k  cmd_line 
fclose(fid_elsets); 
  
% Include the Elsets file in the main file 
cmd_line = ['*INCLUDE, INPUT=' filename]; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Node sets for xy-layers 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
% Node sets for layers  
filename = '04_Nsets_layers.inp'; 
fid_Nsets = fopen(filename, 'w'); 
  
for k = 1 : mesh.num_elem_z 
    Nset_name = mesh.Nset_layer_array(k,1).name; 
    Elset_name = mesh.Nset_layer_array(k,1).Elset; 
     
    cmd_line = ['*NSET, NSET = ', Nset_name, ', ELSET = ', Elset_name]; 
    fprintf(fid_Nsets, '%s \r\n', cmd_line);     
end 
clear k  cmd_line 
clear Nset_name  Elset_name 
fclose(fid_Nsets); 
  
% Include the Nsets file in the main file 
cmd_line = ['*INCLUDE, INPUT=' filename]; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Solid section 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '*SOLID SECTION, ELSET = Elset_All, 
MATERIAL = Ti-6Al-4V'); 
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Material 
  
% Unless otherwise stated, properties used are: 
% Properties of Titanium Ti-6Al-4V (Grade 5), Annealed 
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% From MatWeb, www.matweb.com, accessed January 26, 2017 
% Note the melting point is not specified in the model. 
% MatWeb gives it as 1604 - 1660 deg. C. 
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '*MATERIAL, NAME = Ti-6Al-4V'); 
fprintf(fid_aba, '%s \r\n', '*DENSITY'); 
fprintf(fid_aba, '%s \r\n', '4430'); % kg/m^3 
fprintf(fid_aba, '%s \r\n', '*ELASTIC'); 
fprintf(fid_aba, '%s \r\n', '113.8E9, 0.342'); % E in Pa, nu 
  
% For temperature from 20 to 950 deg. C 
fprintf(fid_aba, '%s \r\n', '*EXPANSION'); 
% BELOW IS INCORRECT VALUE, used to test and evaluate how code is 
working 
%fprintf(fid_aba, '%s \r\n', '9.7E-3'); % m/(m.degC) 
  
% BELOW IS THE CORRECT VALUE, ABOVE IS DIFFERENT VALUE TO TEST 
fprintf(fid_aba, '%s \r\n', '9.7E-6'); % m/(m.degC) 
  
% Source of data for thermal conductivity and specific heat: 
%{ 
3-DIMENSIONAL FINITE ELEMENT MODELING OF SELECTIVE LASER 
MELTING TI-6AL-4V ALLOY 
C.H. Fu, Y.B. Guo 
  
https://sffsymposium.engr.utexas.edu/sites/default/files/2014-089-
Fu.pdf 
accessed May 12, 2017 
%} 
  
% 1/2 CONDUCTIVITY 
%{ 
fprintf(fid_aba, '%s \r\n', '*CONDUCTIVITY, DEPENDENCIES=1'); 
% for powder  
fprintf(fid_aba, '%s%s \r\n', ' 0.1,  293, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '9.7, 1878, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '14.15, 1928, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s \r\n', '**'); 
% for bulk 
fprintf(fid_aba, '%s%s \r\n', ' 3.6,  299.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', ' 4.075,  373.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', ' 4.72,  473.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '6.66,  773.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '9.10, 1149.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '9.895, 1273.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '13.13, 1773.00, ', num2str(FV.bulk)); % 
W/m.K 
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fprintf(fid_aba, '%s%s \r\n', '14.135, 1928.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '18.50, 2399.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '21.00, 2699.85, ', num2str(FV.bulk)); % 
W/m.K 
%} 
  
%{ 
% DOUBLE CONDUCTIVITY 
fprintf(fid_aba, '%s \r\n', '*CONDUCTIVITY, DEPENDENCIES=1'); 
% for powder  
fprintf(fid_aba, '%s%s \r\n', ' 0.4,  293, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '38.8, 1878, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '56.5, 1928, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s \r\n', '**'); 
% for bulk 
fprintf(fid_aba, '%s%s \r\n', ' 14.4,  299.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', ' 16.3,  373.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', ' 18.88,  473.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '26.64,  773.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '36.4, 1149.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '39.58, 1273.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '52.52, 1773.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '56.54, 1928.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '74.00, 2399.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '84.00, 2699.85, ', num2str(FV.bulk)); % 
W/m.K 
%} 
  
  
% CORRECT CODE FOR CONDUCTIVITY - COMMENTED OUT FOR DIFFERENT TRIAL 
fprintf(fid_aba, '%s \r\n', '*CONDUCTIVITY, DEPENDENCIES=1'); 
% for powder  
fprintf(fid_aba, '%s%s \r\n', ' 0.2,  293, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '19.4, 1878, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '28.3, 1928, ', num2str(FV.powder)); % 
W/m.K 
fprintf(fid_aba, '%s \r\n', '**'); 
% for bulk 
fprintf(fid_aba, '%s%s \r\n', ' 7.20,  299.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', ' 8.15,  373.00, ', num2str(FV.bulk)); % 
W/m.K 
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fprintf(fid_aba, '%s%s \r\n', ' 9.44,  473.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '13.32,  773.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '18.20, 1149.85, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '19.79, 1273.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '26.26, 1773.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '28.27, 1928.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '37.00, 2399.00, ', num2str(FV.bulk)); % 
W/m.K 
fprintf(fid_aba, '%s%s \r\n', '42.00, 2699.85, ', num2str(FV.bulk)); % 
W/m.K 
%{ 
Table data 
 7.20 26.85  
 8.15 100.00 
 9.44 200.00 
13.32 500.00 
18.20 876.85 
19.79 1000.00 
26.26 1500.00 
28.27 1655.00 
37.00 2126.00 
42.00 2426.85 
%} 
%} 
  
fprintf(fid_aba, '%s \r\n', '*SPECIFIC HEAT'); 
% fprintf(fid_aba, '%s \r\n', '526.3'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 580,  293'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 610,  478'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 670,  698'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 760,  923'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 930, 1143'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', ' 936, 1273'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', '1016, 1473'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', '1095, 1673'); % J/kg.K 
fprintf(fid_aba, '%s \r\n', '1126, 1928'); % J/kg.K 
%{ 
Table data: 
580 20  
610 205 
670 425 
760 650 
930 870 
936 1000 
1016 1200 
1095 1400 
1126 1655 
%} 
  
%{ 
Source of latent heat value: 
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https://materialsdata.nist.gov/dspace/xmlui/bitstream/handle/11115/166/
Thermophysical%20Properties.pdf?sequence=3 
accessed June 6, 2017 
  
Using solidus and liquidus temperatures defined as part of conductivity 
data, for consistency 
%} 
% CORRECT LATENT VALUE = 286 
% TEST LATENT VALUE = 500 
fprintf(fid_aba, '%s \r\n', '*LATENT HEAT'); 
fprintf(fid_aba, '%4i, %4i, %4i \r\n', 500, 1878, 1928); % W/m.K 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
%% Amplitude 
  
fprintf(fid_aba, '%s \r\n', '** Include data for amplitude of heat flux 
to each element'); 
% filename = 
'scratch1/cvbuck/scans/heat_flux/ampl/00_ampl_inc_file.inp'; 
filename = '/scratch1/cvbuck/dmp2/00_ampl_inc_file.inp'; 
% filename = './heat_flux/ampl/00_ampl_inc_file.inp'; 
cmd_line = ['*INCLUDE, INPUT=', filename]; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '** Include data for amplitude of zero flux 
to a layer'); 
cmd_line = '*AMPLITUDE, NAME=AMP_Zero'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
begin_time = 0; 
end_time = initial_time_inc_Stage2; 
fprintf(fid_aba, '%5i,%5i,%9.5f,%5i \r\n', begin_time, 0, end_time, 0); 
  
  
%% Initial Conditions 
  
%{ 
The melting point of AISI 304 stainless steel ranges from 1400 to 1455 
deg. 
C, according to MatWeb, 
http://www.matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e
3c922237098da&ckck=1 
acessed January 21, 2017. 
%} 
fprintf(fid_aba, '%s \r\n','****'); 
fprintf(fid_aba, '%s \r\n','**'); 
fprintf(fid_aba, '%s \r\n','*INITIAL CONDITION, TYPE=TEMPERATURE'); 
fprintf(fid_aba, '%s%s \r\n','Nset_All, ', num2str(T_init)); 
  
fprintf(fid_aba, '%s \r\n','**');  
fprintf(fid_aba, '%s \r\n','*INITIAL CONDITION, TYPE=FIELD'); 
fprintf(fid_aba, '%s%s \r\n','Nset_All,',num2str(FV.powder)); 
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fprintf(fid_aba, '%s \r\n','**'); 
fprintf(fid_aba, '%s \r\n','****'); 
  
  
%% Stage 1 - Remove material 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
fprintf(fid_aba, '%s \r\n', '*STEP, NAME=Material_Removal_Step'); 
fprintf(fid_aba, '%s \r\n', '*COUPLED TEMPERATURE-DISPLACEMENT'); 
fprintf(fid_aba, '%12.8f,%12.8f \r\n', initial_time_inc_Stage1, 
duration_Stage1); 
fprintf(fid_aba, '%s \r\n', '*MODEL CHANGE, REMOVE'); 
fprintf(fid_aba, '%s \r\n', 'Elset_All'); 
fprintf(fid_aba, '%s \r\n', '*END STEP'); 
  
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
  
  
  
%% Stage 2 - Add material layer by layer, heating the top each time 
  
  
% Apply heat flux  starting at x_min, y_min 
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
% Separate input files included for heating each layer 
for current_layer = 1 : mesh.layers_considered 
    %% Add this layer to the model 
    cmd_line = ['*STEP, INC=35000, NAME = Adding Layer ', ... 
        num2str(current_layer)]; 
    fprintf(fid_aba, '%s \r\n', cmd_line); 
     
    fprintf(fid_aba, '%s \r\n', '*COUPLED TEMPERATURE-DISPLACEMENT'); 
    fprintf(fid_aba, '%12.8f,%12.8f \r\n', initial_time_inc_Stage2, 
initial_time_inc_Stage2); 
     
    fprintf(fid_aba, '%s \r\n', '*MODEL CHANGE, ADD'); 
    fprintf(fid_aba, '%s \r\n', 
mesh.Elset_layer_array(current_layer).name); 
     
     
    % Fix nodes at and near corner of bottom surface 
    if (current_layer == 1) 
        % Set bottom of first layer to bed temperature (commented)             
        fprintf(fid_aba, '%s \r\n', '*BOUNDARY');         
        fprintf(fid_aba, '%s,%5i,%5i,%10i \r\n', mesh.Nset_bottom.name, 
11, 11, T_inf);                    
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        % Using an idea from following reference to minimize 
translation 
        % and rotation of part: 
        % On the bottom face, fix a corner node in x,y,z. 
        % Fix its nearest neighbor along 'x' in y,z. 
        % Fix its nearest neighbor along 'y' in x,z. 
        % 
        % REFERENCE: 
        %{ 
        K. Dai and L. Shaw,  
        "Distortion minimization of laser-processed components  
        through control of laser scanning patterns",  
        Rapid Prototyping Journal, 8(5), 270 276, 2002. 
        %} 
         
        fprintf(fid_aba, '%s \r\n', '*BOUNDARY, TYPE=DISPLACEMENT'); 
        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', corner_node, 1, 3, 0); 
        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 
            corner_node_neighbor_x, 2, 3, 0); 
        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 
            corner_node_neighbor_y, 1, 1, 0); 
        fprintf(fid_aba, '%5i,%5i,%5i,%5i \r\n', ... 
            corner_node_neighbor_y, 3, 3, 0); 
  
        fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER 
INTERVAL=1'); 
        fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 
        fprintf(fid_aba, '%s \r\n','EVOL');   
    end 
     
    % When adding a layer past the first,  
    % ensure the flux on the top surface of the previous layer 
    % is now zero. 
    if (current_layer > 1) 
        cmd_line = '*DFLUX, OP=NEW, Amplitude=AMP_Zero'; 
        fprintf(fid_aba, '%s \r\n', cmd_line); 
        data_line = [ ... 
            mesh.Elset_layer_array(current_layer-1).name,', S2, ', ... 
              num2str(ref_flux_magnitude) ... 
            ];         
        fprintf(fid_aba, '%s \r\n', data_line); 
         
         
        % Reset field variable so that previous layer  
        % now has bulk properties 
        cmd_line = '*FIELD, OP=MOD'; 
        fprintf(fid_aba, '%s \r\n', cmd_line); 
         
        Nset_name = mesh.Nset_layer_array(current_layer-1).name; 
        data_line = [ ... 
            Nset_name,', ', num2str(FV.bulk) ... 
            ];         
        fprintf(fid_aba, '%s \r\n', data_line); 
         
         
        % Check that heat flux on top surface of layer just scanned is 
now zero 
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        fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER 
INTERVAL=1'); 
        fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 
        fprintf(fid_aba, '%s \r\n','FLUXS, FV, EVOL');         
        fprintf(fid_aba, '%s \r\n','**');                 
         
    end         
     
    fprintf(fid_aba, '%s \r\n', '*END STEP'); 
    fprintf(fid_aba, '%s \r\n', '**'); 
    fprintf(fid_aba, '%s \r\n', '****'); 
     
     
    %% Apply heat flux using random scanning pattern 
     
    fprintf(fid_aba, '%s \r\n', '****'); 
    fprintf(fid_aba, '%s \r\n', '**'); 
     
    cmd_line = ['*STEP, INC=35000, NAME = Scanning Layer ', ... 
        num2str(current_layer)]; 
    fprintf(fid_aba, '%s \r\n', cmd_line); 
     
    fprintf(fid_aba, '%s \r\n', '*COUPLED TEMPERATURE-DISPLACEMENT'); 
    fprintf(fid_aba, '%12.8f,%12.8f \r\n', initial_time_inc_Stage2, 
duration_Stage2_per_layer); 
     
    filename 
=['/scratch1/cvbuck/dmp2/DFlux_Layer_',num2str(current_layer),'.inp']; 
    % filename = 
['scratch1/cvbuck/Scans/heat_flux/DFlux/DFlux_Layer_',num2str(current_l
ayer), '.inp']; 
    % filename = 
['./heat_flux/DFlux/DFlux_Layer_',num2str(current_layer), '.inp']; 
    cmd_line = ['*INCLUDE, INPUT=', filename]; 
    fprintf(fid_aba, '%s \r\n', cmd_line); 
     
    % Convective heat transfer from sides 
     
%     fprintf(fid_aba, '%s \r\n', '*FILM, OP=NEW'); 
%      
%     if (current_layer == 1) 
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_side_y_min(1,1).name, ... 
%             'F3', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_side_y_max(1,1).name, ... 
%             'F5', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_side_x_min(1,1).name, ... 
%             'F6', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_side_x_max(1,1).name, ... 
%             'F4', T_inf, Heat_transfer_coefficient); 
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%     else 
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_names_side_y_min_combined{current_layer-1, 
1}, ... 
%             'F3', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_names_side_y_max_combined{current_layer-1, 
1}, ... 
%             'F5', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_names_side_x_min_combined{current_layer-1, 
1}, ... 
%             'F6', T_inf, Heat_transfer_coefficient); 
%          
%         fprintf(fid_aba, '%s,%10s,%10i,%10i \r\n', ... 
%             mesh.Elsets_names_side_x_max_combined{current_layer-1, 
1}, ... 
%             'F4', T_inf, Heat_transfer_coefficient); 
%     end 
     
     
    % Output 
    fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER INTERVAL=100'); 
    fprintf(fid_aba, '%s \r\n','*NODE OUTPUT'); 
    fprintf(fid_aba, '%s \r\n','U,NT'); 
  
    fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 
    fprintf(fid_aba, '%s \r\n','S, PEEQ, THE, TEMP, EVOL');         
     
    fprintf(fid_aba, '%s \r\n','*OUTPUT, HISTORY, NUMBER INTERVAL=2'); 
    fprintf(fid_aba, '%s \r\n','*NODE OUTPUT, NSET = Nset_All'); 
    fprintf(fid_aba, '%s \r\n','U');           
     
     
        
     
    %% Write restart file if scanning last layer 
    if (current_layer == mesh.layers_considered) 
        cmd_line = '*RESTART, WRITE, NUMBER INTERVAL=2, TIME 
MARKS=YES'; 
        fprintf(fid_aba, '%s \r\n', cmd_line); 
    end 
     
     
    %% End scanning step 
     
    fprintf(fid_aba, '%s \r\n', '*END STEP'); 
    fprintf(fid_aba, '%s \r\n', '**'); 
    fprintf(fid_aba, '%s \r\n', '****'); 
     
end 
clear cmd_line 
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%% Still stage 2 - Zero the flux on the top surface of the last layer 
... 
% ... and set field for last layer 
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
cmd_line = '*STEP, INC=35000, NAME = Set Flux Zero'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
fprintf(fid_aba, '%s \r\n', '*COUPLED TEMPERATURE-DISPLACEMENT'); 
fprintf(fid_aba, '%12.8f,%12.8f \r\n', initial_time_inc_Stage2, 
initial_time_inc_Stage2); 
  
cmd_line = '*DFLUX, OP=NEW, Amplitude=AMP_Zero'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
Elset_name = mesh.Elset_layer_array(current_layer).name; 
data_line = [ ... 
    Elset_name,', S2, ', ... 
    num2str(ref_flux_magnitude) ... 
    ]; 
fprintf(fid_aba, '%s \r\n', data_line); 
  
% Reset field variable so that last layer 
% now has bulk properties 
cmd_line = '*FIELD, OP=MOD'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
Nset_name = mesh.Nset_layer_array(current_layer).name; 
data_line = [ ... 
    Nset_name,', ', num2str(FV.bulk) ... 
    ]; 
fprintf(fid_aba, '%s \r\n', data_line); 
         
% Check that heat flux on top surface of layer just scanned is now zero 
fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER INTERVAL=1'); 
% fprintf(fid_aba, '%s%s \r\n','*ELEMENT OUTPUT, ELSET=', Elset_name); 
fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 
clear Elset_name 
fprintf(fid_aba, '%s \r\n','FLUXS, FV'); 
fprintf(fid_aba, '%s \r\n','**'); 
  
fprintf(fid_aba, '%s \r\n', '*END STEP'); 
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
clear cmd_line  data_line 
  
  
  
%% Stage 3 - Allow the part to stand and cool 
  
fprintf(fid_aba, '%s \r\n', '****'); 
fprintf(fid_aba, '%s \r\n', '**'); 
  
cmd_line = '*STEP, INC=35000, NAME = Cooling Part'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
fprintf(fid_aba, '%s \r\n', '*COUPLED TEMPERATURE-DISPLACEMENT'); 
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fprintf(fid_aba, '%12.8f,%12.8f \r\n', initial_time_inc_Stage3, 
duration_Stage3); 
  
% Output 
fprintf(fid_aba, '%s \r\n','*OUTPUT, FIELD, NUMBER INTERVAL=100'); 
fprintf(fid_aba, '%s \r\n','*NODE OUTPUT'); 
fprintf(fid_aba, '%s \r\n','U,NT'); 
  
fprintf(fid_aba, '%s \r\n','*ELEMENT OUTPUT'); 
fprintf(fid_aba, '%s \r\n','S, PEEQ, THE, TEMP, EVOL'); 
  
fprintf(fid_aba, '%s \r\n','*OUTPUT, HISTORY, NUMBER INTERVAL=1'); 
fprintf(fid_aba, '%s \r\n','*NODE OUTPUT, NSET = Nset_All'); 
fprintf(fid_aba, '%s \r\n','U'); 
%%%% THESE THREE LINES WERE ADDED on 10/29/19 TO TRY TO GENERATE.FIL 
for runs 
fprintf(fid_aba, '%s \r\n', '*FILE FORMAT, ASCII'); 
fprintf(fid_aba, '%s \r\n', '*NODE FILE, NSET=Nset_Layer_1'); 
% change to output on 11/11 to try to fix memory issue 
fprintf(fid_aba, '%s \r\n', 'NT'); % if testing nodal temps 
% fprintf(fid_aba, '%s \r\n', 'U'); if testing displacement 
% fprintf(fid_aba, '%s \r\n', 'RF, U'); 
  
% Write restart file 
cmd_line = '*RESTART, WRITE, NUMBER INTERVAL=2, TIME MARKS=YES'; 
fprintf(fid_aba, '%s \r\n', cmd_line); 
  
fprintf(fid_aba, '%s \r\n', '*END STEP');     
fprintf(fid_aba, '%s \r\n', '**'); 
fprintf(fid_aba, '%s \r\n', '****'); 
  
clear cmd_line 
  
  
%% Close file 
  
fclose(fid_aba); 
disp('*** Input file written ***') 
  
 
P01_generate_mesh.m 

%% Flag 
  
view_2d_mesh = 0; 
view_3d_mesh = 0; 
  
  
%% Geometrical and Mesh parameters 
  
  
% So, when it comes to the interior block scan, I want to have 2^4 
element 
% rows in y direction.  So that is 16 interior + 2 that will be in 
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% perimeter. 
  
% Coarser mesh 10 mm 
%{ 
mesh.del_x = 1e-2; 
mesh.del_y = 1e-2; 
mesh.del_z = 1e-2; 
  
mesh.num_elem_z = 10; 
mesh.num_elem_y = 10; 
mesh.num_elem_x_with_fin = 20; 
mesh.num_elem_x_without_fin = 10; 
  
mesh.elem_rows = 1 : mesh.num_elem_y; 
mesh.elem_rows_with_fin = [5, 6]; 
mesh.elem_rows_without_fin = ... 
    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 
%} 
  
% Finer mesh 5mm 
  
mesh.del_x = 5e-3; 
mesh.del_y = 5e-3; 
mesh.del_z = 5e-3; 
  
mesh.num_elem_z=9; 
mesh.num_elem_y=18; 
mesh.num_elem_x_with_fin=36; 
mesh.num_elem_x_without_fin=18; 
  
mesh.elem_rows=1:mesh.num_elem_y; 
mesh.elem_rows_with_fin=8:11; 
  
mesh.elem_rows_without_fin = ... 
    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 
  
  
% Finer mesh 2.5mm 
%{ 
mesh.del_x = 2.5e-3; 
mesh.del_y = 2.5e-3; 
mesh.del_z = 2.5e-3; 
  
mesh.num_elem_z=18; 
mesh.num_elem_y=36; 
mesh.num_elem_x_with_fin=72; 
mesh.num_elem_x_without_fin=36; 
  
mesh.elem_rows=1:mesh.num_elem_y; 
mesh.elem_rows_with_fin=15:22; 
  
mesh.elem_rows_without_fin = ... 
    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 
%} 
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% Finer mesh 1mm 
%{ 
mesh.del_x = 1e-3; 
mesh.del_y = 1e-3; 
mesh.del_z = 1e-3; 
  
mesh.num_elem_z=45; 
mesh.num_elem_y=90; 
mesh.num_elem_x_with_fin=180; 
mesh.num_elem_x_without_fin=90; 
  
mesh.elem_rows=1:mesh.num_elem_y; 
mesh.elem_rows_with_fin=35:55; 
  
mesh.elem_rows_without_fin = ... 
    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 
%} 
  
% Finer mesh .5mm 
%{ 
mesh.del_x = 5e-4; 
mesh.del_y = 5e-4; 
mesh.del_z = 5e-4; 
  
mesh.num_elem_z=90; 
mesh.num_elem_y=180; 
mesh.num_elem_x_with_fin=360; 
mesh.num_elem_x_without_fin=180; 
  
mesh.elem_rows=1:mesh.num_elem_y; 
mesh.elem_rows_with_fin=70:110; 
  
mesh.elem_rows_without_fin = ... 
    setdiff(mesh.elem_rows, mesh.elem_rows_with_fin); 
%} 
  
mesh.num_nodes_z = mesh.num_elem_z + 1; 
mesh.num_nodes_y = mesh.num_elem_y + 1; 
mesh.num_nodes_x_with_fin = mesh.num_elem_x_with_fin + 1; 
mesh.num_nodes_x_without_fin = mesh.num_elem_x_without_fin + 1; 
  
last_elem = mesh.elem_rows(end); 
mesh.node_rows = [ mesh.elem_rows, last_elem+1 ];  
  
last_elem = mesh.elem_rows_with_fin(end); 
mesh.node_rows_with_fin = [ mesh.elem_rows_with_fin, last_elem+1 ];  
  
mesh.node_rows_without_fin = ... 
    setdiff(mesh.node_rows, mesh.node_rows_with_fin); 
clear last_elem 
  
  
num_elem_rows_with_fin = length(mesh.elem_rows_with_fin ); 
num_elem_rows_without_fin = length(mesh.elem_rows_without_fin); 
mesh.num_elem_xy_plane = ... 
    (num_elem_rows_with_fin * (mesh.num_elem_x_with_fin)) + ... 
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    (num_elem_rows_without_fin * mesh.num_elem_x_without_fin); 
  
  
%% How many layers do we want to add? 
  
mesh.layers_considered = min(1, mesh.num_elem_z); 
  
  
%% Is defining parameters enough? Do we already have mesh files? 
if (generate_mesh == false) 
    return 
end 
  
  
%% Define an xy-plane of nodes as a template 
  
mesh.Nodes = []; 
num_node_rows_with_fin = length(mesh.node_rows_with_fin ); 
num_node_rows_without_fin = length(mesh.node_rows_without_fin); 
mesh.num_nodes_xy_plane = ... 
    (num_node_rows_with_fin * (mesh.num_nodes_x_with_fin)) + ... 
    (num_node_rows_without_fin * mesh.num_nodes_x_without_fin); 
  
Nodes_xy_plane = zeros(mesh.num_nodes_xy_plane, 3); 
ctr = 0; 
for j = 1 : mesh.num_nodes_y  
    y = (j-1) * mesh.del_y;  
     
    if (ismember(j, mesh.node_rows_without_fin)) 
        num_nodes_x_curr = mesh.num_nodes_x_without_fin; 
  
    elseif (ismember(j, mesh.node_rows_with_fin)) 
        num_nodes_x_curr = mesh.num_nodes_x_with_fin; 
         
    end 
     
    for i = 1 : num_nodes_x_curr 
        x = (i-1) * mesh.del_x; 
         
        ctr = ctr+1; 
        Nodes_xy_plane(ctr, :) = [ctr, x, y]; 
    end     
end 
clear ctr x y   
clear i j 
  
  
% View mesh 
if (view_2d_mesh == true) 
    fh = figure; 
    set(fh, 'OuterPosition', get(0, 'ScreenSize')) 
    ph = plot(Nodes_xy_plane(:,2), Nodes_xy_plane(:,3), 'ok'); 
    set(ph, 'LineWidth', line_width) 
    grid on 
end 
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%% Node set for bottom layer  
  
  
mesh.Nset_bottom.name = 'Nset_bottom_surf'; 
mesh.Nset_bottom.first_node = 1; 
mesh.Nset_bottom.last_node = mesh.num_nodes_xy_plane; 
  
  
%% Generate 3D mesh of nodes using 2D template 
  
num_nodes_total = mesh.num_nodes_xy_plane * (mesh.layers_considered + 
1); 
mesh.Nodes = zeros(num_nodes_total, 4);  
for k = 1 : (mesh.num_elem_z + 1)   
    start = ((k-1) * mesh.num_nodes_xy_plane) + 1;     
    finish = k * mesh.num_nodes_xy_plane;  
  
    mesh.Nodes(start : finish, 1:3) = Nodes_xy_plane; 
    % Adjust node numbers 
    mesh.Nodes(start : finish, 1) = ... 
        mesh.Nodes(start : finish, 1) + ((k-1) * 
mesh.num_nodes_xy_plane); 
    mesh.Nodes(start : finish, 4) = ... 
        mesh.Nodes(start : finish, 4) + ((k-1) * mesh.del_z); 
end 
clear k start finish 
  
% View mesh 
if (view_3d_mesh == true) 
    fh = figure; 
    set(fh, 'OuterPosition', get(0, 'ScreenSize')) 
    ph = plot3(mesh.Nodes(:,2), mesh.Nodes(:,3), mesh.Nodes(:,4), 
'ok'); 
    set(ph, 'LineWidth', line_width) 
    grid on 
    view(45, 45) 
end 
  
  
%% On the lower face, identify the corner node and its nearest 
neighbors in x,y 
  
corner_node = 1; 
corner_node_neighbor_x = 2; 
if (ismember(1, mesh.node_rows_without_fin)) 
    corner_node_neighbor_y = mesh.num_nodes_x_without_fin + 1; 
elseif (ismember(1, mesh.node_rows_with_fin)) 
    corner_node_neighbor_y = mesh.num_nodes_x_with_fin + 1; 
end 
  
  
%% Write node data to file 
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filename = '01_Nodes.inp'; 
fid_nodes = fopen(filename, 'w'); 
fprintf(fid_nodes, '%s \r\n', '** NODE DATA'); 
fprintf(fid_nodes, '%10i,%12.8f,%12.8f,%12.8f \r\n', mesh.Nodes'); 
fclose(fid_nodes); 
  
  
%% ***** Define elements *****  
  
%% Define one xy-layer of elements  
  
Elem_xy_plane = zeros(mesh.num_elem_xy_plane, 9); 
  
% Define element-node connectivity for first element 
curr_row = 1; 
curr_col = 1; 
if (ismember(curr_row, mesh.elem_rows_without_fin)) 
    num_nodes_curr_row = mesh.num_nodes_x_without_fin; 
    num_elem_curr_row = mesh.num_elem_x_without_fin; 
else 
    num_nodes_curr_row = mesh.num_nodes_x_with_fin; 
    num_elem_curr_row = mesh.num_elem_x_with_fin; 
end 
  
nodes = zeros(1,8); 
  
nodes(1,1) = 1; 
nodes(1,2) = 2; 
nodes(1,3) = nodes(1,2) + num_nodes_curr_row; 
nodes(1,4) = nodes(1,1) + num_nodes_curr_row; 
  
nodes(1,5:8) = nodes(1,1:4) + mesh.num_nodes_xy_plane; 
Elem_xy_plane(1, :) = [1, nodes]; 
  
  
% Define element-node connectivity for the remaining elements 
for ctr = 2 : mesh.num_elem_xy_plane 
    new_nodes = zeros(1,8); 
     
    if (curr_col < num_elem_curr_row) 
         
        curr_col = curr_col + 1; 
         
        new_nodes(:) = nodes(:) + 1;         
         
        
    elseif (curr_row < mesh.num_elem_y) 
         
        prev_row = curr_row;  
        curr_row = curr_row + 1; 
        
        curr_col = 1;         
         
        if (ismember(curr_row, mesh.elem_rows_with_fin)) 
            num_elem_curr_row = mesh.num_elem_x_with_fin; 
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        else 
            num_elem_curr_row = mesh.num_elem_x_without_fin; 
             
        end 
         
        % Four cases: 
        % 1. Current row has fin, previous row has not 
        if (ismember(curr_row, mesh.elem_rows_with_fin)  && ... 
                ismember(prev_row, mesh.elem_rows_without_fin)) 
            new_nodes(1:2) = nodes(1:2) + 2; 
            num_nodes_curr_row = mesh.num_nodes_x_with_fin; 
        % 2. Current row hasn't a fin, previous row has  
        elseif (ismember(curr_row, mesh.elem_rows_without_fin)  && ... 
                ismember(prev_row, mesh.elem_rows_with_fin)) 
            num_extra_nodes = ... 
                mesh.num_nodes_x_with_fin - ... 
                mesh.num_nodes_x_without_fin; 
            new_nodes(1:2) = nodes(1:2) + 2; % + num_extra_nodes  
            num_nodes_curr_row = mesh.num_nodes_x_with_fin; 
        % 3. Neither current nor previous row has a fin 
        elseif (ismember(curr_row, mesh.elem_rows_without_fin)  && ... 
                ismember(prev_row, mesh.elem_rows_without_fin)) 
            before_prev_row = prev_row - 1; 
            if ((before_prev_row > 0) && ... 
                    (ismember(before_prev_row, mesh.elem_rows_with_fin 
))) 
                num_extra_nodes = ... 
                    mesh.num_nodes_x_with_fin - ... 
                    mesh.num_nodes_x_without_fin; 
                new_nodes(1:2) = nodes(1:2) + 2 + num_extra_nodes; 
            else 
                new_nodes(1:2) = nodes(1:2) + 2;  
            end             
             
            num_nodes_curr_row = mesh.num_nodes_x_without_fin; 
             
        elseif (ismember(curr_row, mesh.elem_rows_with_fin)  && ... 
                ismember(prev_row, mesh.elem_rows_with_fin)) 
            new_nodes(1:2) = nodes(1:2) + 2; 
            num_nodes_curr_row = mesh.num_nodes_x_with_fin; 
         
        end 
  
        new_nodes(3) = new_nodes(2) + num_nodes_curr_row; 
        new_nodes(4) = new_nodes(1) + num_nodes_curr_row; 
         
        new_nodes(5:8) = new_nodes(1:4) + mesh.num_nodes_xy_plane; 
  
    else 
        break 
    end 
    Elem_xy_plane(ctr, :) = [ctr, new_nodes]; 
    % Update 'nodes' to be ready for numbering the next element 
    nodes = new_nodes; 
end 
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clear ctr new_nodes 
clear curr_row  prev_row  before_prev_row 
clear num_nodes_curr_row  num_extra_nodes 
  
  
  
%% Coordinates of centers of element faces on top surface 
  
% x,y-coordinates of elements on top surface of deposited material 
% These coordinates are the same for every layer 
top_surf_center_data = zeros(mesh.num_elem_xy_plane, 3); 
  
finish = mesh.num_elem_xy_plane; 
top_surf_center_data(1 : finish, 1) = (1 : finish)'; 
  
  
for j = 1 : mesh.num_elem_xy_plane 
    node = Elem_xy_plane(j,2); 
    index = find(mesh.Nodes(:,1) == node); 
    x_coord = mesh.Nodes(index,2) + (mesh.del_x/2);  
    y_coord = mesh.Nodes(index,3) + (mesh.del_y/2);          
  
    top_surf_center_data(j, 2:3) = [x_coord, y_coord];     
end 
clear j  node  index  x_coord  y_coord 
  
  
filename = '00_top_surf_center_data.txt'; 
fid_surf = fopen(filename, 'w'); 
fprintf(fid_surf, '%12.8f,%12.8f,%12.8f \r\n', top_surf_center_data'); 
fclose(fid_surf); 
  
  
%% Define element-node connectivity for complete mesh 
  
  
num_elem_total = mesh.num_elem_xy_plane * mesh.layers_considered; 
  
mesh.Elements = zeros(num_elem_total, 9);  
for k = 1 : mesh.num_elem_z 
    start = ((k-1) * mesh.num_elem_xy_plane) + 1;     
    finish = k * mesh.num_elem_xy_plane;  
  
    mesh.Elements(start : finish, :) = Elem_xy_plane; 
    % Adjust element and node numbers 
    mesh.Elements(start : finish, 1) = ... 
        mesh.Elements(start : finish, 1) + ((k-1) * 
mesh.num_elem_xy_plane); 
    mesh.Elements(start : finish, 2:end) = ... 
        mesh.Elements(start : finish, 2:end) + ((k-1) * 
mesh.num_nodes_xy_plane); 
end 
clear k start finish 
  
  



 121 

%% Define separate element sets for each layer 
  
mesh.Elset_layer_array = struct([]); 
for k = 1 : mesh.num_elem_z 
    first_elem = ((k-1) * mesh.num_elem_xy_plane) + 1; 
    last_elem = k * mesh.num_elem_xy_plane; 
     
    mesh.Elset_layer_array(k,1).name = ['Elset_Layer_', num2str(k)]; 
    mesh.Elset_layer_array(k,1).first_elem = first_elem; 
    mesh.Elset_layer_array(k,1).last_elem = last_elem; 
end 
  
  
%% Using element sets, define separate node sets for each layer 
  
% Yes, there will be overlap between node sets 
mesh.Nset_layer_array = struct([]); 
for k = 1 : mesh.num_elem_z         
    mesh.Nset_layer_array(k,1).name = ['Nset_Layer_', num2str(k)]; 
    mesh.Nset_layer_array(k,1).Elset = ['Elset_Layer_', num2str(k)];     
end 
  
  
%% Write element data to file 
  
filename = '02_Elements.inp'; 
fid_elements = fopen(filename, 'w'); 
fprintf(fid_elements, '%s \r\n', '** ELEMENT DATA'); 
fprintf(fid_elements, '%10i,%10i,%10i,%10i,%10i,%10i,%10i,%10i,%10i 
\r\n', mesh.Elements'); 
fclose(fid_elements); 
  
 

P02_set_laser_params.m 

% P02_set_laser_params.m 
  
laser.power = 2500;   % W 
laser.radius = mesh.del_x/2; % micron -> m 
  
laser.x_min = mesh.del_x/2; 
laser.y_min = mesh.del_y/2; 
  
% This definition assumes that the laser will not end on the fin. 
% In turn, the fin is assumed to have an even number of rows, and the 
laser 
% is assumed to start on the "main" part of the workpiece.  
laser.y_max = (mesh.num_elem_y * mesh.del_y) - mesh.del_y/2; 
  
% xmax with no fin 
laser.x_max_no_fin = (mesh.num_elem_x_without_fin * mesh.del_x) - ... 
    (mesh.del_x / 2); 
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% xmax with fin 
laser.x_max_with_fin = (mesh.num_elem_x_with_fin * mesh.del_x) - ... 
    (mesh.del_x / 2); 
 

P03a_trace_perimenter.m 

% P03a_trace_perimeter.m 
  
  
%% For graphs 
  
plot_perimeter_pts = false; 
plot_moving_perim_pts = false; 
  
%% create array of start and end positions for the laser to trace the 
perimeter 
  
  
% there are 3 cases to be considered here: 
% (i) fin starts on the first y-row 
% (ii) fin starts and ends in the middle 
% (iii) fin ends on the last row 
  
  
  
% y positions of the fin 
y_fin=(mesh.elem_rows_with_fin * mesh.del_y) - mesh.del_y/2; 
  
% we will assume that the laser trace start in first y-row 
  
% if we start in the fin 
  
x_end_pt(1) = laser.x_min; 
y_end_pt(1) = laser.y_min; 
  
% Case(i) fin starts on the first y-row 
if mesh.elem_rows_with_fin(1) == 1     
     
    x_end_pt(2)=laser.x_max_with_fin; 
    y_end_pt(2)=y_end_pt(1); 
     
    x_end_pt(3)=laser.x_max_with_fin; 
    y_end_pt(3)=y_fin(end); 
     
    x_end_pt(4)=laser.x_max_no_fin; 
    y_end_pt(4)=y_fin(end); 
     
    x_end_pt(5)=laser.x_max_no_fin; 
    y_end_pt(5)=laser.y_max; 
     
    x_end_pt(6)=laser.x_min; 
    y_end_pt(6)=laser.y_max; 
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    x_end_pt(7)=laser.x_min; 
    y_end_pt(7)=laser.y_min + mesh.del_y; 
     
     
     
    % Case (ii) fin starts and ends in the middle 
elseif mesh.elem_rows_with_fin(1) > 1 && mesh.elem_rows_with_fin(end) < 
mesh.num_elem_y     
     
    x_end_pt(2)=laser.x_max_no_fin; 
    y_end_pt(2)=y_end_pt(1); 
     
    x_end_pt(3)=laser.x_max_no_fin; 
    y_end_pt(3)=y_fin(1);         
     
    x_end_pt(4)=laser.x_max_with_fin; 
    y_end_pt(4)=y_fin(1); 
     
    x_end_pt(5)=laser.x_max_with_fin; 
    y_end_pt(5)=y_fin(end); 
     
    x_end_pt(6)=laser.x_max_no_fin; 
    y_end_pt(6)=y_fin(end); 
     
    x_end_pt(7)=laser.x_max_no_fin; 
    y_end_pt(7)=laser.y_max;     
     
    x_end_pt(8)=laser.x_min; 
    y_end_pt(8)=laser.y_max; 
     
    x_end_pt(9)=laser.x_min; 
    y_end_pt(9)=laser.y_min + mesh.del_y;     
     
     
    % Case (iii) fin ends on the last row 
elseif mesh.elem_rows_with_fin(end) == mesh.num_elem_y 
     
    x_end_pt(2)=laser.x_max_no_fin; 
    y_end_pt(2)=y_end_pt(1); 
     
    x_end_pt(3)=laser.x_max_no_fin; 
    y_end_pt(3)=y_fin(1);     
     
    x_end_pt(4)=laser.x_max_with_fin; 
    y_end_pt(4)=y_fin(1); 
     
    x_end_pt(5)=laser.x_max_with_fin; 
    y_end_pt(5)=y_fin(end); 
     
    x_end_pt(6)=laser.x_min; 
    y_end_pt(6)=laser.y_max;  
     
    x_end_pt(7)=laser.x_min; 
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    y_end_pt(7)=laser.y_min + mesh.del_y; 
     
end 
  
  
perimeter.xy = [x_end_pt', y_end_pt']; 
  
  
%% Add intermediate points between each pair of end points 
  
num_end_pts = size(perimeter.xy, 1); 
perimeter.detailed_xy = []; 
  
for i = 1 : (num_end_pts - 1) 
    perimeter.detailed_xy = [perimeter.detailed_xy; perimeter.xy(i,:)]; 
     
    change_in_x = perimeter.xy(i+1,1) - perimeter.xy(i,1); 
    change_in_y = perimeter.xy(i+1,2) - perimeter.xy(i,2); 
         
    if (change_in_x ~= 0) 
        num_inter_pts = abs(round(change_in_x / mesh.del_x)) - 1; 
        inter_pts = zeros(num_inter_pts,2); 
        if (change_in_x > 0) 
            inter_pts(:,1) = perimeter.xy(i,1) + ((1 : 
num_inter_pts)*mesh.del_x); 
             
        else 
            inter_pts(:,1) = perimeter.xy(i,1) - ((1 : 
num_inter_pts)*mesh.del_x); 
             
        end 
        inter_pts(:,2) = perimeter.xy(i,2); 
    elseif (change_in_y ~= 0) 
        num_inter_pts = abs(round(change_in_y / mesh.del_y)) - 1; 
        inter_pts = zeros(num_inter_pts,2); 
         
        if (change_in_y > 0) 
            inter_pts(:,2) = perimeter.xy(i,2) + ((1 : 
num_inter_pts)*mesh.del_y); 
         
        else 
            inter_pts(:,2) = perimeter.xy(i,2) - ((1 : 
num_inter_pts)*mesh.del_y); 
        end 
        inter_pts(:,1) = perimeter.xy(i,1); 
    end 
    perimeter.detailed_xy = [perimeter.detailed_xy; inter_pts]; 
     
end 
clear i  change_in_x  change_in_y 
clear inter_pts 
perimeter.detailed_xy = [perimeter.detailed_xy; perimeter.xy(end,:)]; 
  
num_perim_elem = size(perimeter.detailed_xy,1); 
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%% Optional plotting 
if plot_perimeter_pts 
    fh = figure; 
    set(fh, 'OuterPosition', get(0, 'ScreenSize')) 
    ph = plot(perimeter.detailed_xy(:,1), perimeter.detailed_xy(:,2), 
'b*'); 
    set(ph, 'LineWidth', 5) 
    grid on 
    axis equal 
     
    hold on 
end 
  
  
if plot_moving_perim_pts  
    fh = figure; 
    set(fh, 'OuterPosition', get(0, 'ScreenSize')) 
     
    for i = 1 : length(perimeter.detailed_xy) 
        ph = plot(perimeter.detailed_xy(i,1), 
perimeter.detailed_xy(i,2), 'b*'); 
        set(ph, 'LineWidth', 5) 
        grid on 
        hold on 
        axis([laser.x_min - mesh.del_x, laser.x_max_with_fin + 
mesh.del_x,... 
            laser.y_min - mesh.del_y, laser.y_max + mesh.del_y]) 
        axis equal  
        pause(0.1) 
    end 
end 
 
 

P03b_perimeter_scan.m 

% P03b_perimeter_scan.m 
  
%% Procedure for moving laser: 
%{ 
-- A path of elements covering the perimeter of the domain was defined 
in 
P03a_trace_perimeter.m 
 - Use a loop over the number of elements in the path. 
 - Before the loop, define the initial position and the row of the 
laser.  
%} 
  
%% Laser position parameters 
  
tol = mesh.del_x / 100; 
  
  
%% Duration of scan 
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perim_scan.duration_per_layer = num_perim_elem * del_t; 
perim_scan.time_array = 0 : del_t : perim_scan.duration_per_layer; 
  
%% For storing heat flux amplitude data 
  
% Array for amplitude of heat flux as a function of time for each 
element 
perim_scan.flux_ampl_data = ... 
    zeros(length(perim_scan.time_array), mesh.num_elem_xy_plane + 1); 
perim_scan.flux_ampl_data(:,1) = perim_scan.time_array'; 
  
  
%% Scan the top surface of the sample  
time_ctr = 0; 
% For each time step 
for k = 2 : length(perim_scan.time_array) 
    time_ctr = time_ctr + 1; 
     
    laser.x_current = perimeter.detailed_xy(k-1,1); 
    laser.y_current = perimeter.detailed_xy(k-1,2);     
     
    % Define flux on top surface  
    run P05a_heat_flux_data.m      
     
    % Save the flux data 
    % 'time_ctr' defined in calling script 
    perim_scan.flux_ampl_data(time_ctr+1, 2:end) = ... 
        perim_scan.flux_ampl_data(time_ctr+1, 2:end) + flux_data'; 
end 
clear k 
  
 
 

P04_random_scan.m 

%% Procedure for moving laser: 
  
plot_moving_scan=false; 
  
%% Identify rows with and without fin 
% Some rows have already been scanned as part of the perimeter. Those 
% elements should not be scanned again. These are the rows that now 
belong 
% to the interior. 
  
random_scan.rows_with_fin = mesh.elem_rows_with_fin(2 : end-1); 
  
% If the fin starts on the first row 
if (ismember(1, mesh.elem_rows_with_fin)) 
    random_scan.rows_without_fin = mesh.elem_rows_without_fin(1 : end-
1);  
% If the fin ends on the last row 
elseif (ismember(mesh.num_elem_y, mesh.elem_rows_with_fin)) 
    random_scan.rows_without_fin = mesh.elem_rows_without_fin(2 : end);  
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% If the fin is away from the first and last rows 
else 
     
    random_scan.rows_without_fin = [ ... %mesh.elem_rows_without_fin(2 
: end);  
        2 : mesh.elem_rows_with_fin(1), ... 
        mesh.elem_rows_with_fin(end) : (mesh.num_elem_y-1) ... 
        ]; 
end 
  
  
random_scan.inter_rows=[random_scan.rows_with_fin, 
random_scan.rows_without_fin]; 
  
  
%% Identify limits of laser movement for interior scan 
  
% Note that the min and maxes here were previously defined for the 
% perimeter scan 
  
random_scan.x_min = laser.x_min + mesh.del_x; 
random_scan.y_min = laser.y_min + mesh.del_y; 
  
% xmax with no fin 
random_scan.x_max_no_fin = laser.x_max_no_fin - mesh.del_x; 
% xmax with fin 
random_scan.x_max_with_fin = laser.x_max_with_fin - mesh.del_x; 
  
random_scan.y_max = laser.y_max - mesh.del_y; 
  
  
random_scan.x_length_no_fin=random_scan.x_max_no_fin-random_scan.x_min; 
random_scan.x_length_fin=random_scan.x_max_with_fin -... 
    (random_scan.x_max_no_fin+ mesh.del_x); 
  
random_scan.num_elem = mesh.num_elem_xy_plane - num_perim_elem; 
  
  
%% Set parameters for random start positions 
  
% In the following paper  
% B. Cheng, et al., Stress and deformation evaluations of scanning 
strategy  
% effect in selective laser melting, Addit Manuf (2016),  
% http://dx.doi.org/10.1016/j.addma.2016.05.007 
% there was mention of a technique called island scanning.  We can 
borrow 
% this idea of having our domain divided into certain number of regions 
for 
% the scanning paths to take place. 
  
% For now our scanning will continue to always be in the x direction. 
  
Nx_block_regions=1; 
Nx_fin_regions=1; 
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del_x_block_reg=random_scan.x_length_no_fin/Nx_block_regions; 
del_x_fin_reg=random_scan.x_length_fin/Nx_fin_regions; 
  
  
Ny_block_regions=1; 
Ny_fin_regions=1; 
  
  
% Assuming we will not have something starting at the middle of a 
region, 
% only at the edges of a region 
  
% for scanning in x, the total number of possible start positions, not  
% including the fin, is 
  
N_starts= (length(random_scan.inter_rows)*Nx_block_regions);  %+... 
%     (length(random_scan.rows_with_fin)*Nx_fin_regions); 
  
  
%% Create array of start and end positions 
  
% We will create an array that has the start and end position for each 
path 
% that the laser could take in the interior of the block.   
  
% So the columns are index xstart  ystart  xend  yend  rand 
  
laser_start_end_array=zeros(N_starts,6); 
  
% In addition, each path will be assigned a random number, so they can 
be 
% shuffled later. 
  
rand_array=randperm(N_starts)'; 
  
ctr=0; 
for i=1:length(random_scan.inter_rows) 
    for j=1:Nx_block_regions 
        ctr=ctr+1; 
        rand=rand_array(ctr,1); 
         
        xstart=random_scan.x_min + (j-1)*del_x_block_reg; 
        xend=xstart+del_x_block_reg; 
         
        ystart=random_scan.y_min + (i-1)*mesh.del_y; 
        yend=ystart; 
        
         
        laser_start_end_array(ctr,:)=[ctr, xstart, ystart, xend, yend, 
rand]; 
         
    end 
end 
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% Now, to "shuffle" the paths we will order them from least to greatest 
by 
% the rand column 
% LINE BELOW FOR RANDOM 
% sorted_laser_start_end_array=sortrows(laser_start_end_array,6); 
  
%LINE BELOW FOR RASTER 
sorted_laser_start_end_array=laser_start_end_array; 
  
% Since for now the fin is so small we will just let it be scanned at 
the 
% end and " in order" 
laser_fin_start_end_array=zeros(length(random_scan.rows_with_fin),6); 
  
ctr=0; 
index=size(sorted_laser_start_end_array,1); 
for i=1:length(random_scan.rows_with_fin) 
    for j=1:Nx_fin_regions 
        ctr=ctr+1; 
        rand=1; 
         
        xstart=(random_scan.x_max_no_fin + mesh.del_x) + (j-
1)*del_x_fin_reg; 
        xend=xstart+del_x_fin_reg; 
         
        ystart=laser.y_min + (random_scan.rows_with_fin(1,i)-
1)*mesh.del_y; 
        yend=ystart; 
         
        index=index+1; 
        laser_fin_start_end_array(ctr,:)=[index, xstart, ystart, xend, 
yend, rand]; 
         
    end 
end 
  
  
sorted_laser_start_end_array=[sorted_laser_start_end_array; ... 
    laser_fin_start_end_array]; 
  
  
save laser_scan_positions.txt   sorted_laser_start_end_array  -ascii 
  
  
  
%% Duration of scan 
  
random_scan.duration_per_layer = random_scan.num_elem * del_t; 
  
  
start_time = perim_scan.time_array(end) + del_t; 
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end_time = perim_scan.time_array(end) + random_scan.duration_per_layer; 
  
random_scan.time_array = ... 
    start_time : del_t : end_time; 
  
  
%% For storing heat flux amplitude data  
  
% Array for amplitude of heat flux as a function of time for each 
element 
random_scan.flux_ampl_data = ... 
    zeros(length(random_scan.time_array), mesh.num_elem_xy_plane + 1); 
  
  
  
%% Scan the top surface of the sample  
  
% 'time_ctr' updated in P03b_perimeter_scan.m 
  
curr_time=perim_scan.time_array(end); 
  
for k=1:size(sorted_laser_start_end_array,1) 
     
    % Not sure if we need right now, but in case 
    time_ctr = time_ctr + 1; 
     
    curr_time=curr_time+del_t; 
     
    
    index = time_ctr - num_perim_elem; 
    random_scan.flux_ampl_data(index, 1)=curr_time; 
     
     
    xstart=sorted_laser_start_end_array(k,2); 
    ystart=sorted_laser_start_end_array(k,3); 
     
    xend=sorted_laser_start_end_array(k,4); 
    yend=sorted_laser_start_end_array(k,5); 
     
    laser.x_current = xstart;  
    laser.y_current = ystart; 
     
     
     
    % Define flux on all elements in the top surface for the time  
    % corresponding to the current laser position . 
    run P05a_heat_flux_data.m 
     
    % Save the flux data 
    random_scan.flux_ampl_data(index, 2:end) = flux_data'; 
  
  
% optional plotting 
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if plot_moving_scan  
  
        ph = plot(laser.x_current, laser.y_current, 'b*'); 
        set(ph, 'LineWidth', 5) 
        grid on 
        hold on 
%         axis([laser.x_min - mesh.del_x, laser.x_max_with_fin + 
mesh.del_x,... 
%             laser.y_min - mesh.del_y, laser.y_max + mesh.del_y]) 
        axis equal  
        pause(0.1) 
  
end 
%      
     
    % if we didn't reach the end of the strip yet  
     
    while laser.x_current <= xend 
         
        % update time 
        time_ctr = time_ctr + 1; 
        index = time_ctr - num_perim_elem; 
         
        curr_time=curr_time+del_t; 
        random_scan.flux_ampl_data(index, 1)=curr_time; 
         
        % update position 
        laser.x_current = laser.x_current + mesh.del_x; 
         
         
        run P05a_heat_flux_data.m 
        random_scan.flux_ampl_data(index, 2:end) = flux_data'; 
         
        if plot_moving_scan  
  
        ph = plot(laser.x_current, laser.y_current, 'b*'); 
        set(ph, 'LineWidth', 5) 
        grid on 
        hold on 
%         axis([laser.x_min - mesh.del_x, laser.x_max_with_fin + 
mesh.del_x,... 
%             laser.y_min - mesh.del_y, laser.y_max + mesh.del_y]) 
        axis equal  
        pause(0.1) 
  
        end 
         
    end 
     
  
    disp('Exited while loop successfully') 
     
     
end 
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P05a_heat_flux_data.m 

%% Define heat flux history data for top surface 
  
  
%% If needed, define a matrix containing top surface center data 
  
if (generate_mesh == false) 
    filename = '00_top_surf_center_data.txt'; 
    fid_surf = fopen(filename, 'r'); 
    data = textscan(fid_surf, '%12.8f,%12.8f,%12.8f'); 
    top_surf_center_data = [data{1}, data{2}, data{3}]; 
end 
clear data 
  
  
%% Amplitude data 
% Write lines for *AMPLITUDE to separate files 
% one file for each element 
  
  
Cartesian_distance_data = [ ... 
    top_surf_center_data(:,2) - laser.x_current, ... 
    top_surf_center_data(:,3) - laser.y_current  ... 
    ]; 
r = sqrt((Cartesian_distance_data(:,1).^2) + ... 
    (Cartesian_distance_data(:,2).^2)); 
  
% Use the distance data to calculate flux on each element 
% Source: 
%{ 
        Eq. 5 in paper 
        "Comparison of 3DSIM thermal modelling of selective laser 
melting 
        using new dynamic meshing method to ANSYS" 
        K. Zeng, D. Pal, H. J. Gong, N. Patil and B. Stucker 
        Materials Science and Technology 2015 VOL 31 NO 8 945-56 
         
        laser_power = 50;   % W 
        laser_radius = 300e-6; % micron -> m 
%} 
flux_fn = 2 * laser.power / (pi * (laser.radius^2)); 
flux_data = flux_fn * exp(-2 * (r.^2) / (laser.radius^2)); 
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P05b_write_ampl_data.m 

% write_ampl_data_files.m 
  
%% Write Amplitude data files  
  
% Write a single input file containing lines 
% to include the heat-flux amplitude data 
%filename = './heat_flux/ampl/00_ampl_inc_file.inp'; 
% THIS FILE PATH WAS CHANGED !!! 
filename = 
'/scratch1/cvbuck/Scans/heat_flux/ampl/00_ampl_inc_file.inp'; 
fid_ampl = fopen(filename, 'w'); 
     
% For each element 
for i = 1 : mesh.num_elem_xy_plane   
     
    element_number_str = num2str(top_surf_center_data(i,1)); 
    % Save the heat-flux data for the element to a separate array 
    current_heat_flux_data = ... 
        [top_surf_flux_ampl_data(:,1), top_surf_flux_ampl_data(:,i+1)]; 
     
    % Write separate files for the heat-flux amplitude data 
    % for each element 
    filename = ... 
        ['/scratch1/cvbuck/dmp2/ampl_Element_', element_number_str, 
'.inp']; 
    fid_ht_fl = fopen(filename, 'w'); 
     
    cmd_line = ['*AMPLITUDE, NAME=AMP_Element_',element_number_str]; 
    fprintf(fid_ht_fl, '%s  \r\n',cmd_line); 
    fprintf(fid_ht_fl, '%9.5f,%10.5f \r\n',current_heat_flux_data'); 
     
    fprintf(fid_ht_fl, '%s \r\n', '****'); 
    fprintf(fid_ht_fl, '%s \r\n', '****'); 
     
    % Write the line in the "including" file 
    % to include the amplitude file for the element 
    cmd_line = ['*INCLUDE, INPUT=', filename]; 
    fprintf(fid_ampl, '%s \r\n', cmd_line); 
    fprintf(fid_ampl, '%s \r\n', '****'); 
     
    fclose(fid_ht_fl); 
end 
clear cmd_line 
fclose(fid_ampl); 
 
 

P05c_wrtie_DFlux_lines.m 

%% DFLUX lines 
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% Write lines for *DFLUX to separate files 
% one file for each layer 
for k = 1 : mesh.num_elem_z 
    % Open file for writing 
%     filename = ['./heat_flux/DFlux/DFlux_Layer_',num2str(k), '.inp']; 
%     filename = 
['/scratch1/cvbuck/Scans/heat_flux/DFlux/DFlux_Layer_',num2str(k), 
'.inp']; 
    filename = ['/scratch1/cvbuck/dmp/DFlux_Layer_',num2str(k), 
'.inp']; 
    fid_ht_fl = fopen(filename, 'w'); 
     
    element_amp_numbers = top_surf_center_data(:,1); 
    element_numbers = top_surf_center_data(:,1); 
    finish = mesh.num_elem_xy_plane; 
    element_numbers(1 : finish) = ... 
        element_numbers(1 : finish) + ... 
        (k-1) * mesh.num_elem_xy_plane;     
     
     
    for i = 1 : size(top_surf_center_data, 1) 
         
         
        element_amp_number_str = num2str(element_amp_numbers(i,1)); 
        element_number_str = num2str(element_numbers(i,1)); 
        % Write *DFLUX lines to file 
        cmd_line = ['*DFLUX, Amplitude=AMP_Element_', 
element_amp_number_str]; 
        fprintf(fid_ht_fl, '%s \r\n', cmd_line); 
        data_line=[element_number_str,', S2, ', 
num2str(ref_flux_magnitude)]; 
        fprintf(fid_ht_fl, '%s \r\n', data_line); 
         
        if (mod(i,10) == 0) 
            fprintf(fid_ht_fl, '%s \r\n', '****'); 
            fprintf(fid_ht_fl, '%s \r\n', '****'); 
        end 
    end 
    % Close file 
    fclose(fid_ht_fl); 
end 
clear i  k 
clear element_number 
clear cmd_line  data_line 
 
 
00_Additive_mfg.inp 

*HEADING  
Simulation of thermal distortion and stress in additive manufacturing  
****  
**  
*NODE, NSET = Nset_All  
*INCLUDE, INPUT = 01_Nodes.inp  
**  
****  
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****  
**  
*ELEMENT, ELSET = Elset_All, TYPE = C3D8RT  
*INCLUDE, INPUT = 02_Elements.inp  
**  
****  
****  
**  
*NSET, NSET = Nset_bottom_surf, GENERATE  
    1,   451, 1  
**  
****  
****  
**  
*INCLUDE, INPUT=03_Elsets_layers.inp  
**  
****  
****  
**  
*INCLUDE, INPUT=04_Nsets_layers.inp  
**  
****  
****  
**  
*SOLID SECTION, ELSET = Elset_All, MATERIAL = Ti-6Al-4V  
**  
****  
****  
**  
*MATERIAL, NAME = Ti-6Al-4V  
*DENSITY  
4430  
*ELASTIC  
113.8E9, 0.342  
*EXPANSION  
9.7E-6  
*CONDUCTIVITY, DEPENDENCIES=1  
 0.2,  293, 0  
19.4, 1878, 0  
28.3, 1928, 0  
**  
 7.20,  299.85, 1  
 8.15,  373.00, 1  
 9.44,  473.00, 1  
13.32,  773.00, 1  
18.20, 1149.85, 1  
19.79, 1273.00, 1  
26.26, 1773.00, 1  
28.27, 1928.00, 1  
37.00, 2399.00, 1  
42.00, 2699.85, 1  
*SPECIFIC HEAT  
 580,  293  
 610,  478  
 670,  698  
 760,  923  
 930, 1143  
 936, 1273  
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1016, 1473  
1095, 1673  
1126, 1928  
*LATENT HEAT  
 500, 1878, 1928  
**  
****  
** Include data for amplitude of heat flux to each element  
*INCLUDE, INPUT=/scratch1/cvbuck/dmp2/00_ampl_inc_file.inp  
**  
** Include data for amplitude of zero flux to a layer  
*AMPLITUDE, NAME=AMP_Zero  
    0,    0,  0.01000,    0  
****  
**  
*INITIAL CONDITION, TYPE=TEMPERATURE  
Nset_All, 298  
**  
*INITIAL CONDITION, TYPE=FIELD  
Nset_All,0  
**  
****  
****  
**  
*STEP, NAME=Material_Removal_Step  
*COUPLED TEMPERATURE-DISPLACEMENT  
  0.00100000,  0.00100000  
*MODEL CHANGE, REMOVE  
Elset_All  
*END STEP  
**  
****  
****  
**  
*STEP, INC=35000, NAME = Adding Layer 1  
*COUPLED TEMPERATURE-DISPLACEMENT  
  0.01000000,  0.01000000  
*MODEL CHANGE, ADD  
Elset_Layer_1  
*BOUNDARY  
Nset_bottom_surf,   11,   11,       298  
*BOUNDARY, TYPE=DISPLACEMENT  
    1,    1,    3,    0  
    2,    2,    3,    0  
   20,    1,    1,    0  
   20,    3,    3,    0  
*OUTPUT, FIELD, NUMBER INTERVAL=1  
*ELEMENT OUTPUT  
EVOL  
*END STEP  
**  
****  
****  
**  
*STEP, INC=35000, NAME = Scanning Layer 1  
*COUPLED TEMPERATURE-DISPLACEMENT  
  0.01000000, 39.60000000  
*INCLUDE, INPUT=/scratch1/cvbuck/dmp2/DFlux_Layer_1.inp  
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*OUTPUT, FIELD, NUMBER INTERVAL=100  
*NODE OUTPUT  
U,NT  
*ELEMENT OUTPUT  
S, PEEQ, THE, TEMP, EVOL  
*OUTPUT, HISTORY, NUMBER INTERVAL=2  
*NODE OUTPUT, NSET = Nset_All  
U  
*RESTART, WRITE, NUMBER INTERVAL=2, TIME MARKS=YES  
*END STEP  
**  
****  
****  
**  
*STEP, INC=35000, NAME = Set Flux Zero  
*COUPLED TEMPERATURE-DISPLACEMENT  
  0.01000000,  0.01000000  
*DFLUX, OP=NEW, Amplitude=AMP_Zero  
Elset_Layer_1, S2, 1  
*FIELD, OP=MOD  
Nset_Layer_1, 1  
*OUTPUT, FIELD, NUMBER INTERVAL=1  
*ELEMENT OUTPUT  
FLUXS, FV  
**  
*END STEP  
**  
****  
****  
**  
*STEP, INC=35000, NAME = Cooling Part  
*COUPLED TEMPERATURE-DISPLACEMENT  
  0.01000000, 39.60000000  
*OUTPUT, FIELD, NUMBER INTERVAL=100  
*NODE OUTPUT  
U,NT  
*ELEMENT OUTPUT  
S, PEEQ, THE, TEMP, EVOL  
*OUTPUT, HISTORY, NUMBER INTERVAL=1  
*NODE OUTPUT, NSET = Nset_All  
U  
*FILE FORMAT, ASCII  
*NODE FILE, NSET=Nset_Layer_1  
NT  
*RESTART, WRITE, NUMBER INTERVAL=2, TIME MARKS=YES  
*END STEP  
**  
****  
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APPENDIX B. MATLAB SCRIPT FOR GENETIC ALGORITHM 

Appendix B consists of the MATLAB scripts for the GA as originally written (i.e., 

not including the batch scripts for it to run on the Palmetto Cluster). There are 7 

MATLAB scripts in total for the GA. These scripts include the generation of a random 

initial population, the tournament selection for selecting parents, the crossover and 

mutation for generating children, the fitness check of population members, and trimming 

the population back to the fittest individuals before the GA undergoes the next 

generation.  Updated MATLAB scripts for the parallelization of the Abaqus runs on the 

Palmetto Cluster will be included in Appendix C: Batch Scripts for Palmetto Cluster GA 

Run.  

 

GA_Maincode.m 

clear all 
clc 
%% Genetic Algorithm - Main Code 
% This Genetic Algorithm will be used to take any number of scanning 
paths 
% in DMLS and optimize the path to limit the deformations caused by 
thermal 
% gradients. The code links with Abaqus by writing the chosen path from 
% each generation into the input file and running the simulation, and 
then 
% pulling out deformation results in CAE post-processing, and using 
those 
% values to evaluate the "fitness" of each path. 
  
%%  initialize GA Parameters 
Init_Pop=5;        % Size of initial population % originally 20 
Num_kids=5;        % Number of kids generated in each run % originally 
20 
S=4;                % Number of designs competing in each tournament 
Kpoints=2;          % Number of crossover points 
Mut_rate=0.07;      % Mutation Rate 
Ctype=1;            % Type of convergence 
                    %Ctype=1 #generations Ctype=2 #calls Ctype=3 change 
in avgfit Ctype=4 no change in top fitnesses 
maxgen=200;         % Max num of generation for Ctype=1 
maxcalls=2000;      % Max num of GA calls for Ctype=2 
epsilon=0.00001;    % Convergence criteria for Ctype=3 
Topcompare=10;      % Convergence criteria for Ctype=4 
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%%  initialize counters 
convergence=0; 
generation=1; 
  
Pop=initialPop(Init_Pop);   % Set population // FUNCTION 1 - 
initialPop.m 
Fit=FitCheck(Pop);          % Assess fitness of initial population // 
FUNCTION 2 - FitCheck.m 
calls=Init_Pop; 
  
if(Ctype==3) 
     
    avgfit(generation)=mean(Fit); 
end 
if(Ctype==4) 
    OldFit=Fit(1:Topcompare); 
end 
  
%% Enter GA loop 
while(convergence==0) 
    nkeep=Init_Pop; % set number of kept population from previous GA 
run to current GA run's initial population 
    for(i=1:Num_kids/2) 
        P1=Tournament(Fit,S);   % Tournament selection to find P1 and 
P2 from InitPop % FUNCTION 3 - Tournament.m 
        P2=Tournament(Fit,S); 
        [C1(i,:),C2(i,:)]=Crossover(Pop(P1,:),Pop(P2,:),Kpoints); % 
Crossover P1, P2 to find C1, C2  // FUNCTION 4 - Crossover.m 
        C1(i,:)=Mutation(C1(i,:),Mut_rate); % Mutate C1, C2 // FUNCTION 
5 - Mutation.m 
        C2(i,:)=Mutation(C2(i,:),Mut_rate); 
    end 
    Pop=[Pop;C1]; % Add C1, C2 to Population 
    Pop=[Pop;C2]; 
    Fit=[Fit;FitCheck([C1;C2])]; % Check fitness // FUNCTION 6 - 
FitCheck.m 
    calls=calls+2*size(C1,1); % update GA calls 
    [Pop,Fit]=Trim(Pop,Fit,nkeep); % Trim population back down to 
number of designs // FUNCTION 7 - Trim.m 
    generation=generation+1; % update generation tally 
     
    %Check for Convergence 
    switch Ctype 
        case 1 
            if(generation>maxgen) 
                convergence=1; 
            end 
        case 2 
            if(calls>maxcalls) 
                convergence=1; 
            end 
        case 3 
            avgfit(generation)=mean(Fit); 
            if(abs(avgfit(generation)-avgfit(generation-
1))/avgfit(generation-1)<epsilon) 
                convergence=1; 
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            end 
        case 4 
            if(Fit(1:Topcompare)==OldFit) 
                convergence=1; 
            end 
            OldFit=Fit(1:Topcompare); 
    end 
Fit(1)   
end 
     
disp('done') 
Fit(1)         
     
 
initialPop.m 

%% Sets initial population 
  
function [Population] = initialPop(size) 
%Makes 'size' number of designs each of which are a random sorting of 
16-rows 
  
Rows=16;    %number of rows for each design i.e. 16 
Population=zeros(size,Rows); 
for(i=1:size) 
    Population(i,:)=randperm(Rows); 
end 
  
  
end 
  
 

Tournament.m 

%% Function to carry out Tournament Selection of population 
  
function [Parent] = Tournament(Fit,S) 
%Compares 's' random members of the population and chooses the best 
fitness as the next parent 
  
designs=numel(Fit); 
selected=randi(designs,1,S); 
[Sorted,ind]=sort(Fit(selected),'ascend'); 
Parent=selected(ind(1)); 
  
end 
 
 

Crossover.m 
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%% K-Point Order Based Crossover - checks that no paths are repeated 
after crossover ; switches repeating values 
function [C1,C2] = Crossover(P1,P2,K) 
% Uses k-point ordered crossover of parents 'P1' and 'P2' 
% To output children designs 'C1' and 'C2' 
  
  
C=[P1;P2]'; 
Genesize=size(P1,2); 
k_points=sort(randperm(Genesize,K)); 
for(k=1:K) 
    C(k_points(k):end,:)=C(k_points(k):end,[2,1]); 
end 
  
C_band=C(k_points(1):k_points(2)-1,:); 
C_out=C([1:k_points(1)-1,k_points(2):end],:); 
Oidx=find(ismember(C_out,C_band)); 
Bidx=find(ismember(C_band,C_out)); 
Rval=flip(C_band(Bidx)); 
C_out(Oidx)=Rval; 
C_right=C(k_points(1):end,:); 
C=[C_out(1:k_points(1)-1,:);C_band;C_out(k_points(1):end,:)]; 
C1=C(:,1)'; 
C2=C(:,2)'; 
  
  
  
  
end 
  
 

Mutation.m 

function [Mutated_Child] = Mutation(Child,Rate) 
% each index has a percentage rate of 'Rate' (0 to 1) to be changed to 
a random value 
% then the index that originally contained the new value will be 
replaced with the now missing term 
% Ensures all values in design remain unique - non- repeating values 
  
GeneSize=numel(Child); 
Mutated_Child=Child; 
for(i=1:GeneSize) 
    if(rand<=Rate) 
        swap=randi(GeneSize); 
        Mutated_Child(i)=Child(swap); 
        Mutated_Child(swap)=Child(i); 
        Child=Mutated_Child; 
    end 
end 
  
  
end 
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FitCheck, 

% per Jennifer and Rama: This file will take the following steps: 
% (1) take the start positions as the input from the ga 
% (2) drop them into the Matlab file for creating the random scan 
pattern 
%     and writing the corresponding Aba inp file 
% (3) Run Abaqus 
% (4) Extract from the output the [z-displacements of the nodes] temp 
of 
%     the nodes 
% (5) Some post processing step to average the nodal data over the 
whole 
%     layer 
  
%% Real Fitness Function 
  
function [Fitness] = FitCheck(Pop) 
  
global rand_array  N_elem_z  N_layers_to_scan  N_elem_y 
  
%evaluates the fitness of all of the designs (rows) of the input "Pop" 
  
N=size(Pop,1);  %Number of designs 
N_elem_z = 9; % variable will change depending on geom. 
N_layers_to_scan=1; % Number of layers in z which will be added and 
scanned 
% "So when it comes to the interior block scan, I want to have 2^4 
element 
% rows in y direction. So that is 16 interior + 2 that will be in 
% perimeter." 
N_elem_y=2+(2^4); 
% to keep track of jobs 
% (2) pu the inputs into matlab and obtain the abaqus input file 
Job_ctr=0; 
Job_ctr_array=[]; 
Fitness=zeros(N,1); 
for(i=1:N) % N is size of population 
    % Keeping track of job runs 
    Job_ctr=Job_ctr+1; 
    Job_ctr_array=[Job_ctr_array; Job_ctr]; 
    % Set population variable for array of start positions 
    D=Pop(i,:); 
    % to keep from having to change out inner code that much 
    rand_array = Pop(i,:)'; 
    % run random scan to generate input file 
    run run_random_scan\A1_main_scan.m 
    % Copy the file into a run directory 
    % First create a run directory (this will keep track of runs done 
by 
    % the GA) 
    new_dir_name=strcat('run_',num2str(Job_ctr)); 
    mkdir('C:\Users\cvbuc\OneDrive\Desktop\Optim Scan\GA 
Code\Aba',new_dir_name); 
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    % get the files to copy 
    files_from_path = 'C:\Users\cvbuc\OneDrive\Desktop\Optim Scan\GA 
Code\run_random_scan'; 
    file1=strcat(files_from_path,'\00_Additive_mfg.inp'); 
    file2=strcat(files_from_path,'\01_Nodes.inp'); 
    file3=strcat(files_from_path,'\02_Elements.inp'); 
    file4=strcat(files_from_path,'\03_Elsets_layers.inp'); 
    file5=strcat(files_from_path,'\04_Nsets_layers.inp'); 
    file6=strcat(files_from_path,'\laser_scan_positions.txt'); 
    file7=strcat(files_from_path,'\heat_flux'); 
     
    % and where we are copying them 
    files_to_path=strcat('C:\Users\cvbuc\OneDrive\Desktop\Optim Scan\GA 
Code\Aba\',new_dir_name); 
  
    % copy the files 
    copyfile(file1,files_to_path); 
    copyfile(file2,files_to_path); 
    copyfile(file3,files_to_path); 
    copyfile(file4,files_to_path); 
    copyfile(file5,files_to_path); 
    copyfile(file6,files_to_path); 
    copyfile(file7,strcat(files_to_path,'\heat_flux')); 
     
%% old dir code     
% %     mkdir('C:\Users\cvbuc\Dropbox\Buck_Research\GA 
Code\Final_for_Fadel\01_standalone_scan') 
% %     addpath('.Final_for_Fadel\01_standalone_scan') 
%% OLD Abaqus Run Code -- might revisit 
    %** here is now how we run abaqus and pull outputs from each 
    %  population run ** 
end 
disp1=sprintf('All Input Files (total = %d) written for each member of 
the population',N); 
disp(disp1) 
    for j=Job_ctr_array(1):Job_ctr_array(end) 
    % Report time before Abaqus analysis starts 
    t1=toc; 
    % tic 
    tAbaqus=0; 
    run_path=strcat('C:\Users\cvbuc\OneDrive\Desktop\Optim Scan\GA 
Code\Aba\run_',num2str(j)); 
    cd(run_path); 
    % Run the input file 00_Additive_mfg.inp with Abaqus 
    !abaqus analysis job=optim_scan_run input=00_Additive_mfg 
    % Pause Matlab execution to give Abaqus enough time to create the 
    % optim_scan_run.lck file 
    pause(10) 
    % If the optim_scan_run.lck file exists then halt Matlab execution 
    while exist('optim_scan_run.lck','file')==2 
        pause(0.1) 
    end 
    disp2=sprintf('Simulation %d Finished',j); 
    disp(disp2) 
    % Report time after Abaqus analysis terminates 
      t2=toc; 
      tAbaqus=tAbaqus+t2-t1; 
%     tTOTAL=toc; 
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%     tAbaqus; 
%     tMatlab=tTOTAL-tAbaqus; 
%% from template 
% % % % Postprocess Abaqus results file with Abaqus2Matlab 
% % % % Assign all lines of the fil file in an one-row string (after 
Abaqus 
% % % % analysis terminates) 
% % %  
% % % disp('Reading simulation # %d.fil',j) 
% % % Rec = Fil2str(['optim_scan_run.fil']); 
% % %  
% % %  
% % % % Obtain the desired output data 
% % % disp('Obtaining desired output data') 
% % % out = RecXXX(Rec); % Put here the Rec function selected 
%% From truss optimization example 
    % Obtain the nodal displacements (CHECK DIRECTION) 
    disp3=sprintf('reading simulation # %d .fil and obtaining desired 
output data',j); 
    disp(disp3) 
    oldfolder = cd('C:\Users\cvbuc\OneDrive\Desktop\Optim Scan\GA 
Code'); 
    newfolder = run_path; 
    cd(newfolder); 
    out2 = readFil('optim_scan_run.fil',101); 
    NodalDisplacements=out2{1,1}(:,2:3); 
    % Delete the files of last Abaqus run to avoid rewriting them 
    delete('optim_scan_run.fil'); 
    delete('optim_scan_run.prt'); 
    delete('optim_scan_run.com'); 
    delete('optim_scan_run.sim'); 
    % Calculate the maximum nodal displacements 
    maxNodDisplX1=max(abs(NodalDisplacements(:,1))); 
    maxNodDisplY1=max(abs(NodalDisplacements(:,2))); 
    maxNodDisplZ1=max(abs(NodalDisplacements(:,3))); 
     
    Fitness(i) = maxNodDisplZ1; 
    fprintf('Fitness of simulation #1 = %d', Fitness(i)) 
    cd(oldfolder); 
    end 
end 
  
] 
 

Trim.m 

function [Population,Fitness] = Trim(Population,Fitness,nkeep) 
% keeps the best 'nkeep' number of designs based on top fitness values 
% Trims population back to desired number of population number 
[Fitness,ind]=sort(Fitness,'ascend'); 
Population=Population(ind,:); 
Fitness=Fitness(1:nkeep); 
Population=Population(1:nkeep,:); 
  
end 
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APPENDIX C. BATCH SCRIPTS FOR PALMETTO CLUSTER GA RUN 

Appendix C includes the batch scripts written in Linux to help facilitate the i/o 

between MATLAB and Abaqus, as well parallelize the Abaqus runs, Updated or newly 

made MATLAB scripts from Grigori Yourganov to execute the parallelization of Abaqus 

runs are also included. The overall GA code remains the same in structure and goal, and 

the simlations for each member of each population is run the same as the code in 

Appendix A, which the only change being the scanning pattern in each simulation 

coming from the GA population members. Descriptions of each batch script and what 

they execute are included next to the file name if the file name is not descriptive enough. 

 

main_batch_eps.sh: This file the main batch script file from which the GA and all 
functions within it are executed on the Cluster. This batch script includes convergences 
for either reaching max number of generations or if the average fitness is the same 
between two consecutive generations. 
 
#!/bin/bash 
 
num_kids=4 
tourn_select=4 
kpoints=2 
mut_rate=0.01 
init_pop=10 
nkeep=$init_pop 
maxgen=30 
epsilon=0.01 
fast_queue=0 
 
code_path=$PWD 
results_path="$PWD/fivelayertest/" 
echo "Code path: $code_path" 
echo "Results path: $results_path" 
 
if [ ! -d $results_path ]; then 
 mkdir $results_path 
fi 
cd $results_path 
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rm -rf * 
cd $code_path 
if [ -f lock_file.txt ]; then 
 rm lock_file.txt 
fi 
 
echo "Initializing a population of ${init_pop}" 
qsub -v code_path=$code_path,results_path=$results_path,init_pop=$init_pop 
qsub_batch1.sh 
 
echo "Waiting for the gen_sequences file to appear" 
until [ -f $results_path/gen_sequences.txt ]; do 
 sleep 1 
done 
while [ $(wc -l $results_path/gen_sequences.txt | awk '{print $1}') -lt $init_pop ]; do 
 sleep 1 
done 
 
echo "Running initial run" 
generation_number=1 
keep_working=1 
cd $results_path/Aba 
run_folders=$(ls -d run_*) 
for one_run in $run_folders; do 
 cd $results_path/Aba 
 cd ${one_run} 
 run_path=$PWD 
 cd $code_path 
 if [ $fast_queue -eq 1 ]; then 
  qsub -v code_path=$code_path,results_path=$results_path,run_path=$run_path 
qsub_batch2.sh 
 else 
  qsub -v code_path=$code_path,results_path=$results_path,run_path=$run_path 
qsub_batch2_slowq.sh 
 fi 
done 
 
cd $results_path 
echo "Waiting for the gen_fitnesses file to appear" 
until [ -f gen_fitnesses.txt ]; do 
 sleep 1 
done 
while [ $(wc -l gen_fitnesses.txt | awk '{print $1}') -lt $init_pop ]; do 
 sleep 1 
done 
 



 148 

sort gen_sequences.txt > cur_sequences.txt 
sort gen_fitnesses.txt > cur_fitnesses.txt 
prev_average=$($code_path/calc_average.sh $results_path/cur_fitnesses.txt) 
 
echo "Generation $generation_number" 
echo "Sequences:" 
cat gen_sequences.txt 
echo "Fitnesses:" 
cat gen_fitnesses.txt 
echo "Average fitness = $prev_average" 
 
#while [ $generation_number -lt $maxgen ]; do 
while [ $keep_working -eq 1 ]; do 
  cd $results_path 
 
  generation_number=$(($generation_number+1)) 
  echo "processing generation $generation_number" 
  rm gen_sequences.txt 
  rm gen_fitnesses.txt 
  rm -rf Aba/run* 
  qsub -v 
code_path=$code_path,results_path=$results_path,num_kids=$num_kids,tourn_select=$t
ourn_select,kpoints=$kpoints,mut_rate=$mut_rate $code_path/qsub_batch3.sh 
  echo "Waiting for the gen_sequences file to appear" 
  until [ -f gen_sequences.txt ]; do 
   sleep 1 
  done 
  while [ $(wc -l gen_sequences.txt | awk '{print $1}') -lt $num_kids ]; do 
   sleep 1 
  done 
 
  cd $results_path/Aba 
  run_folders=$(ls -d run_*) 
  for one_run in $run_folders; do 
   cd $results_path/Aba/$one_run 
   run_path=$PWD 
   cd $code_path 
   if [ $fast_queue -eq 1 ]; then 
    qsub -v code_path=$code_path,results_path=$results_path,run_path=$run_path 
qsub_batch2.sh 
   else 
    qsub -v code_path=$code_path,results_path=$results_path,run_path=$run_path 
qsub_batch2_slowq.sh 
   fi 
  done 
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  echo "Waiting for the gen_fitnesses file to appear" 
  until [ -f $results_path/gen_fitnesses.txt ]; do 
   sleep 1 
  done 
  while [ $(wc -l $results_path/gen_fitnesses.txt | awk '{print $1}') -lt $num_kids ]; do 
   sleep 1 
  done 
 
  echo "*******" 
  echo "New kids created in Generation $generation_number" 
  echo "Sequences:" 
  cat $results_path/gen_sequences.txt 
  echo "Fitnesses:" 
  cat $results_path/gen_fitnesses.txt 
 
  echo "Trimming in process..." 
  echo "Trimming in process..." > $results_path/trim_lock.txt 
  qsub -v code_path=$code_path,results_path=$results_path,nkeep=$nkeep 
$code_path/qsub_batch4.sh 
  while [ -f $results_path/trim_lock.txt ]; do 
   sleep 1 
  done 
  echo "After combining and trimming:" 
  echo "Sequences:" 
  cat $results_path/cur_sequences.txt 
  echo "Fitnesses:" 
  cat $results_path/cur_fitnesses.txt 
 
  curr_average=$($code_path/calc_average.sh $results_path/cur_fitnesses.txt) 
  echo "Average fitness = $curr_average" 
  diff=$(echo "sqrt(($curr_average - $prev_average)^2)" | bc) 
  echo "Diff = $diff" 
  keep_working=$(echo "$diff > $epsilon && $generation_number < $maxgen" | bc) 
  prev_average=$curr_average 
done 
 
cd $results_path 
echo "Finished!" 
echo "Final sequences:" 
cat cur_sequences.txt 
echo "Final Fitnesses:" 
cat cur_fitnesses.txt 
cp cur_fitnesses.txt final_fitnesses.txt 
cp cur_sequences.txt final_sequences.txt 
 
qsub_batch1.sh: This batch script initializes the code and runs the ‘getting_started.m 
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 matlab script. This initialization script creates the random sequences for the initial 
population. 
 
#!/bin/bash 
# 
#PBS -N initialize 
#PBS -l select=1:ncpus=1:mem=10gb 
#PBS -l walltime=1:00:00 
#PBS -o initialization.txt 
#PBS -j oe 
 
cd $code_path 
 
matlab_input="getting_started('${code_path}','${results_path}',${init_pop})" 
echo $matlab_input 
module load matlab/2018b 
module load abaqus/6.14 
taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nosplash -r 
${matlab_input} -logfile $results_path/initialization.out 
 
qsub_batch2_slowq.sh: This batch script creates the Abaqus input files for each member 
of the population, submits them in parallel, and then reads the output to calculate the 
fitness using the read_abaqus_output.m MATLAB script. The “slowq” part of the title 
refers to the use of the older nodes on the Cluster; while slowing in queue, these nodes 
have a higher walltime and memory which is needed for these runs. 
 
#!/bin/bash 
# 
#PBS -N abaqus_matlab 
#PBS -l select=1:ncpus=4:mem=20gb:interconnect=1g 
#PBS -l walltime=150:00:00 
#PBS -j oe 
#PBS -o abaqus_matab.txt 
 
#matlab_input="fit_check_onepop('${run_path}')" 
run_number=$(echo $run_path | cut -d \_ -f 2) 
output_log="$results_path/fitcheck_$run_number.out" 
module load matlab/2018b 
module load abaqus/6.14 
 
cd $code_path 
matlab_input="prepare_for_abaqus('${code_path}','${results_path}','${run_path}')" 
echo $matlab_input 
taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nosplash -r 
${matlab_input} -logfile ${output_log} 
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cd $run_path 
/software/abaqus/6.14-1/code/bin/abaqus analysis job=optim_scan_run 
input=00_Additive_mfg cpus=$OMP_NUM_THREADS background 
sleep 10 
while [ -f optim_scan_run.lck ]; do 
 sleep 1 
done 
 
cd $code_path 
matlab_input="read_abaqus_output('${code_path}','${results_path}','${run_path}')" 
echo $matlab_input 
taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nosplash -r 
${matlab_input} -logfile ${output_log} 
 
qsub_batch3.sh: This batch script calls spawn_generation.m, which completes the 
tournament selection, croasover, and mutation function in mtlab. The output is the 
children created from the selected parents in the overall population. 
 
#!/bin/bash 
# 
#PBS -N spawn_generation 
#PBS -l select=1:ncpus=2:mem=10gb 
#PBS -l walltime=5:00:00 
#PBS -o spawn_output.txt 
#PBS -j oe 
 
cd $code_path 
 
matlab_input="spawn_generation('${code_path}','${results_path}',${num_kids},${tourn
_select},${kpoints},${mut_rate})" 
echo $matlab_input 
module load matlab/2018b 
module load abaqus/6.14 
taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nosplash -r 
${matlab_input} -logfile $results_path/spawn_generation.out 
 
qsub_batch4.sh: This batch script analyzes the children and then trims the population 
back to the original size before the children were created, keeping only the members with 
the highest fitness (in this case, the members with the lowest temperature output from 
MATLAB). 
 
#!/bin/bash 
# 
#PBS -N process_generation 
#PBS -l select=1:ncpus=2:mem=10gb 
#PBS -l walltime=5:00:00 
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#PBS -o process_output.txt 
#PBS -j oe 
 
#echo "Trimming in progress!" > $results_path/trim_lock.txt 
 
cd $code_path 
 
matlab_input="process_generation('${code_path}','${results_path}',${nkeep})" 
echo $matlab_input 
module load matlab/2018b 
module load abaqus/6.14 
taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nosplash -r 
${matlab_input} -logfile $results_path/process_generation.out 
 
getting_started.m: This MATLAB function sets up the initial population and creates the 
scanning patterns of the initial population. 
 
function getting_started (code_path, results_path, Init_Pop) 
% code_path = '/home/gyourga/source/cvbuck2'; 
% results_path = [code_path '/test']; 
rng ('shuffle'); 
addpath (genpath (code_path)); 
if ~isfolder (results_path) 
    mkdir (results_path); 
end 
 
Pop=initialPop(Init_Pop);   % Set population // FUNCTION 1 - initialPop.m 
cd (results_path); 
fp2 = fopen ([results_path '/all_sequences.txt'], 'w'); 
fprintf (fp2, '******\n'); 
mkdir ('Aba');     
cd ('Aba'); 
for i = 1:Init_Pop 
    run_name = ['run_' num2str(i)]; 
    if isfolder (run_name) 
        rmdir (run_name); 
    end 
    mkdir (run_name); 
    cd (run_name); 
    fp = fopen ('sequence.txt', 'w'); 
    fprintf (fp, '%d ', Pop (i, :)); 
    fclose (fp); 
    cd .. 
    fp = fopen ([results_path '/gen_sequences.txt'], 'a'); 
    str = [num2str(i) ' ' sprintf('%d ', Pop (i, :))]; 
    fprintf (fp, '%s\n', str); 
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    fclose (fp);     
    fprintf (fp2, '%s\n', str); 
end 
fclose (fp2); 
 
 
prepare_for_abaqus.m: This MATLAB function creates the run folders for each 
Abaqus run of the members of the opulation. 
 
function [Fitness] = prepare_for_abaqus(code_path, results_path, run_path) 
 
global rand_array  N_elem_z  N_layers_to_scan  N_elem_y num_nodes_xy_plane 
%#ok<NUSED> 
%code_path = '/home/gyourga/source/cvbuck2'; 
%results_path = [code_path '/test']; 
addpath (genpath (code_path)); 
rng ('shuffle'); 
 
N_elem_z = 9; % variable will change depending on geom. 
N_layers_to_scan=5; % Number of layers in z which will be added and scanned 
% "So when it comes to the interior block scan, I want to have 2^4 element 
% rows in y direction. So that is 16 interior + 2 that will be in 
% perimeter." 
N_elem_y=2+(2^4); 
 
 
cd (run_path); 
fp = fopen ('sequence.txt'); 
sequence = fscanf (fp, '%d '); 
fclose (fp); 
rand_array = sequence; 
 
cd (code_path); 
 
while exist('lock_file.txt','file')==2 
    pause(0.1) 
end 
disp (['Copying files for ' run_path]); 
 
fp = fopen ('lock_file.txt', 'w'); 
fprintf (fp, 'Lemme finish!\n'); 
fclose (fp); 
 
run run_random_scan/A1_main_scan.m 
files_from_path = [code_path '/run_random_scan']; 
file1=strcat(files_from_path,'/00_Additive_mfg.inp'); 
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file2=strcat(files_from_path,'/01_Nodes.inp'); 
file3=strcat(files_from_path,'/02_Elements.inp'); 
file4=strcat(files_from_path,'/03_Elsets_layers.inp'); 
file5=strcat(files_from_path,'/04_Nsets_layers.inp'); 
file6=strcat(files_from_path,'/laser_scan_positions.txt'); 
file7=strcat(files_from_path,'/heat_flux'); 
 
% and where we are copying them 
files_to_path=run_path; 
 
% copy the files 
copyfile(file1,files_to_path); 
copyfile(file2,files_to_path); 
copyfile(file3,files_to_path); 
copyfile(file4,files_to_path); 
copyfile(file5,files_to_path); 
copyfile(file6,files_to_path); 
copyfile(file7,strcat(files_to_path,'/heat_flux')); 
 
% added by GY: copy the environment file that tell Abaqus not to prompt the user when 
overwriting a file 
copyfile ([code_path '/abaqus_v6.env'], files_to_path); 
 
delete ('lock_file.txt'); 
 
process_generation.m: This function finds the fitnesses and sequences of the parents 
and children that have been calculated, and trims the generation back, keeping only the 
fittest individuals. 
 
function process_generation (code_path, results_path, nkeep) 
addpath (genpath (code_path)); 
rng ('shuffle'); 
 
cd (results_path); 
%fp = fopen ('trim_lock.txt', 'w'); 
%fprintf (fp, 'Trimming in progress\n'); 
%fclose (fp); 
 
fp_seq = fopen ('cur_sequences.txt'); 
while ~feof (fp_seq) 
    line = fgetl (fp_seq); 
    temp = sscanf (line, '%d'); 
    Pop (temp (1), :) = temp (2:length(temp)); 
end 
fclose (fp_seq); 
fp_fit = fopen ('cur_fitnesses.txt'); 
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while ~feof (fp_fit) 
    line = fgetl (fp_fit); 
    temp = sscanf (line, '%f'); 
    Fit (temp (1)) = temp (2); 
end 
fclose (fp_fit); 
Fit = Fit'; 
 
fp_seq = fopen ('gen_sequences.txt'); 
while ~feof (fp_seq) 
    line = fgetl (fp_seq); 
    temp = sscanf (line, '%d'); 
    new_sequence (temp (1), :) = temp (2:length(temp)); 
end 
fclose (fp_seq); 
fp_fit = fopen ('gen_fitnesses.txt'); 
while ~feof (fp_fit) 
    line = fgetl (fp_fit); 
    temp = sscanf (line, '%f'); 
    new_fitness (temp (1)) = temp (2); 
end 
fclose (fp_fit); 
new_fitness = new_fitness'; 
 
Pop = [Pop; new_sequence]; 
Fit = [Fit; new_fitness]; 
[Pop,Fit]=Trim(Pop,Fit,nkeep); % Trim population back down to number of designs // 
FUNCTION 7 - Trim.m 
 
fp = fopen ('cur_fitnesses.txt', 'w'); 
for i = 1:size(Fit, 1) 
    fprintf (fp, '%d %.8f\n', i, Fit(i)); 
end 
fclose (fp); 
fp = fopen ('cur_sequences.txt', 'w'); 
for i = 1:size(Pop, 1) 
    str = [num2str(i) ' ' sprintf('%d ', Pop (i, :))]; 
    fprintf (fp, '%s\n', str); 
end 
fclose (fp); 
 
delete ('trim_lock.txt'); 
 
read_abaqus_output.m: This function reads the output temperature data from 
MATLAB for all members of the population. 
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function [Fitness] = read_abaqus_output(code_path, results_path, run_path) 
 
%code_path = '/home/gyourga/source/cvbuck2'; 
%results_path = [code_path '/test']; 
addpath (genpath (code_path)); 
rng ('shuffle'); 
 
cd (run_path); 
 
fprintf ('Reading the output file...\n'); 
out2 = Rec201 (fil2Str('optim_scan_run.fil')); 
NodalTemps = out2 (:, 2); % changed by GY: Rec201 retuns a double array, not a cell 
array 
%THIS IS HARDCODED FOR NOW, CHANGE LATER 
num_nodes=902; 
% num_time=1980; %for .1m/s 
num_time=3960; %for .05m/s 
temps=reshape(NodalTemps,num_nodes,num_time); 
[maxenv,~]=envelope(temps); 
maxenv2=max(maxenv); 
% Calculate the avgmaxNT11 
avgmaxNT11=mean(maxenv2(1,:)); 
 
% BELOW IS FOR DISPLACEMENT 
% out2 = readFil('optim_scan_run.fil',101); 
% NodalDisplacements=out2{1,1}(:,2:3); 
% Delete the files of last Abaqus run to avoid rewriting them 
delete('optim_scan_run.fil'); 
delete('optim_scan_run.prt'); 
delete('optim_scan_run.com'); 
delete('optim_scan_run.sim'); 
 
Fitness=avgmaxNT11; 
 
ii = find (run_path == '_'); 
jj = ii (length (ii)); 
seq_number = str2num (run_path (jj+1:length(run_path))); 
fprintf('Sequence %d: fitness of simulation = %f\n', seq_number, Fitness); 
cd(results_path); 
fp = fopen ('gen_fitnesses.txt', 'a'); 
fprintf (fp, '%d %.8f\n', seq_number, Fitness); 
fclose (fp); 
 
Rec201.m: MATLAB function created by Abaqus2Matlab Toolboc for reading the 
temperature output from an Abaqus simulation [50].  
 



 157 

function out = Rec201(Rec) 
% 
% ABAQUS temperature output to MATLAB 
%  
% Syntax 
%     #Rec# = Fil2str('*.fil'); 
%     #out# = Rec201(#Rec#) 
% 
% Description 
%     Read temperature output from the results (*.fil) file generated from 
%     the ABAQUS finite element software. The asterisk (*) is replaced by 
%     the name of the results file. The record key for temperature output 
%     is 201. See section < < Results file output format > > in ABAQUS Analysis 
%     User's manual for more details. 
%     The following options with parameters have to be specified in the 
%     ABAQUS input file for the results (*.fil) file to be created and to 
%     contain temperature results: 
%         ... 
%         *FILE FORMAT, ASCII 
%         *NODE FILE 
%         NT 
%         ... 
%     NOTE: The results file (*.fil) must be placed in the same directory 
%     with the MATLAB source files in order to be processed. 
%      
% Input parameters 
%     #Rec# (string) is an one-row string containing the ASCII code of the 
%         ABAQUS results (*.fil) file. It is generated by the function 
%         Fil2str.m. 
%  
% Output parameters 
%     #out# ([#n# x #m#]) is a double array containing the attributes of 
%         the record key 201 as follows: 
%         Column  1  ñ  Node number.  
%         Column  2  ñ  Temperature.  
%         Column  3  ñ  Etc (for heat shells) 
%         where #n# is the number of nodes multiplied by the number of 
%         increments and #m#-1 is the number of temperatures per node. If 
%         the results file does not contain the desired output, #out# will 
%         be an empty array 
% 
% 
________________________________________________________________________
_ 
% Abaqus2Matlab - www.abaqus2matlab.com 
% Copyright (c) 2016 by George Papazafeiropoulos 
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% 
% If using this toolbox for research or industrial purposes, please cite: 
% G. Papazafeiropoulos, M. Muniz-Calvente, E. Martinez-Paneda. 
% Abaqus2Matlab: a suitable tool for finite element post-processing (submitted) 
% 
% 
 
ind = strfind(Rec,'I 3201I'); % record key for node temperature output (201) 
if isempty(ind) 
    out=[]; 
    return; 
end 
nextpos=numel('I 3201')+1; 
% Initialize record length matrix 
NW=zeros(numel(ind),1); 
for i=1:numel(ind) 
    % find the record length (NW) 
    Rec2=Rec(ind(i)-7:ind(i)); 
    indNW=strfind(Rec2,'*'); % record starting position 
    % ensure that the record exists and that the record type key is at 
    % location 2 
    if isempty(indNW) || indNW>3 
        ind(i)=NaN; 
        continue; 
    end 
    % number of digits of record length 
    ind1=indNW+2; % 1st digit of 2-digit integer of 1st data item 
    ind2=indNW+2+1; % 2nd digit of 2-digit integer of 1st data item 
    a1=str2num(Rec2(ind1:ind2)); 
    % Record length (NW) 
    ind1=ind1+2; % +2 digits 
    ind2=ind2+a1; % +2-digit integer 
    NW(i)=str2num(Rec2(ind1:ind2)); 
end 
% remove ind and NW values which do not correspond to output 
NW(isnan(ind))=[];  
ind(isnan(ind))=[]; 
% Initialize 
NodeNum=zeros(numel(ind),1); 
NodeOut=zeros(numel(ind),max(NW)-3); 
for i=1:numel(ind) 
    % number of digits of node number 
    ind1=ind(i)+nextpos; % 1st digit of 2-digit integer of 3rd data item 
    ind2=ind(i)+nextpos+1; % 2nd digit of 2-digit integer of 3rd data item 
    a1=str2num(Rec(ind1:ind2)); 
    % Node number 
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    ind1=ind1+2; % +2 digits 
    ind2=ind2+a1; % +2-digit integer 
    NodeNum(i)=str2num(Rec(ind1:ind2)); 
    % node temperatures 
    for j=1:NW(i)-3 
        % temperature 
        ind1=ind2+1+1; % +1 character+1 
        ind2=ind2+1+22; % +1 character +22 floating point digits 
        NodeOut(i,j)=str2num(Rec(ind1:ind2)); 
    end 
end 
% Assemply of matrices for output 
out=[NodeNum NodeOut]; 
 
end 
 
spawn_generation.m: This MATLAB function creates the new children for each 
generation. 
 
function spawn_generation (code_path, results_path, Num_kids, S, Kpoints, Mut_rate) 
addpath (genpath (code_path)); 
rng ('shuffle'); 
 
cd (results_path); 
fp_seq = fopen ('cur_sequences.txt'); 
while ~feof (fp_seq) 
    line = fgetl (fp_seq); 
    temp = sscanf (line, '%d'); 
    Pop (temp (1), :) = temp (2:length(temp)); 
end 
fclose (fp_seq); 
fp_fit = fopen ('cur_fitnesses.txt'); 
while ~feof (fp_fit) 
    line = fgetl (fp_fit); 
    temp = sscanf (line, '%f'); 
    Fit (temp (1)) = temp (2); 
end 
fclose (fp_fit); 
Fit = Fit'; 
 
fp_log = fopen ([results_path '/fitness_log.txt'], 'a'); 
for i = 1:length (Fit) 
    sequence_str = sprintf ('%d ', Pop (i, :)); 
    fprintf (fp_log, '%d %s %.4f\n', i, sequence_str, Fit(i)); 
end 
fclose (fp_log); 
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for(i=1:Num_kids/2) 
    P1=Tournament(Fit,S);   % Tournament selection to find P1 and P2 from InitPop % 
FUNCTION 3 - Tournament.m 
    P2=Tournament(Fit,S); 
    [C1(i,:),C2(i,:)]=Crossover(Pop(P1,:),Pop(P2,:),Kpoints); % Crossover P1, P2 to find 
C1, C2  // FUNCTION 4 - Crossover.m 
    C1(i,:)=Mutation(C1(i,:),Mut_rate); % Mutate C1, C2 // FUNCTION 5 - Mutation.m 
    C2(i,:)=Mutation(C2(i,:),Mut_rate); 
end 
new_generation = [C1;C2]; 
 
cd (results_path); 
fp2 = fopen ('all_sequences.txt', 'a'); 
fprintf (fp2, '******\n'); 
cd ('Aba'); 
for i = 1:Num_kids 
    run_name = ['run_' num2str(i)]; 
    if isfolder (run_name) 
        rmdir (run_name, 's'); 
    end 
    mkdir (run_name); 
    cd (run_name); 
    fp = fopen ('sequence.txt', 'w'); 
    fprintf (fp, '%d ', new_generation (i, :)); 
    fclose (fp); 
    cd .. 
    fp = fopen ([results_path '/gen_sequences.txt'], 'a'); 
    str = [num2str(i) ' ' sprintf('%d ', new_generation (i, :))]; 
    fprintf (fp, '%s\n', str); 
    fclose (fp);     
    fprintf (fp2, '%s\n', str); 
end 
fclose (fp2); 
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APPENDIX D. FULL RESULTS FROM GENETIC ALGORITHM RUNS 

Appendix D consists of the full results from the Genetic Algorithm runs. Each table 

has the scanning patterns and corresponding fitness for each generation.  

SINGLE LAYER FULL OPTIMIZATION TEST ONE RESULTS: 

Scanning Pattern Fitness 
Generation 

Number 
10 15 1 5 7 11 8 3 6 14 16 4 12 2 9 13 523.6364 1 
16 8 13 7 5 10 2 15 1 11 14 12 3 9 4 6 538.3928 1 
7 4 10 13 8 15 9 1 5 14 6 3 12 2 16 11 525.8633 1 
2 12 15 13 5 11 4 7 8 10 16 1 3 6 9 14 528.5111 1 
8 7 10 11 6 12 15 9 3 5 4 2 13 1 14 16 543.4936 1 
7 1 6 8 5 10 3 11 2 13 14 9 12 4 16 15 523.4062 1 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 1 
1 3 10 14 15 16 2 11 12 13 8 7 9 5 6 4 534.9879 1 
2 7 10 6 14 11 16 13 3 12 9 15 1 4 5 8 538.7946 1 
0 3 14 16 12 9 8 1 2 6 11 13 7 15 4 10 5 530.0398 1 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 2 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 2 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 2 
10 15 1 5 8 2 11 3 6 14 16 4 12 7 9 13 522.7798 2 
7 1 6 8 5 10 3 11 2 13 14 9 12 4 16 15 523.4062 2 
10 15 1 5 7 11 8 3 6 14 16 4 12 2 9 13 523.6364 2 
12 13 9 16 7 11 5 6 2 15 10 4 1 14 3 8 523.8514 2 
7 4 10 13 8 15 9 1 5 14 6 3 12 2 16 11 525.8633 2 
2 12 15 13 5 11 4 7 8 10 16 1 3 6 9 14 528.5111 2 
0 3 14 16 12 9 8 1 2 6 11 13 7 15 4 10 5 530.0398 2 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 520.5771 3 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.5771 3 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 3 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 3 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 3 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 3 
10 15 1 5 8 2 11 3 6 14 16 4 12 7 9 13 522.7798 3 
7 1 6 8 5 10 3 11 2 13 14 9 12 4 16 15 523.4062 3 
10 15 1 5 7 11 8 3 6 14 16 4 12 2 9 13 523.6364 3 
0 12 13 9 16 7 11 5 6 2 15 10 4 1 14 3 8 523.8514 3 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 4 
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12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 520.5771 4 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.5771 4 
12 1 9 16 8 2 5 6 7 15 10 4 13 14 3 11 520.9359 4 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 4 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 4 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 4 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 4 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 4 
0 10 15 1 5 8 2 11 3 6 14 16 4 12 7 9 13 522.7798 4 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 5 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 5 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 5 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 5 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 520.5771 5 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.5771 5 
12 1 9 16 8 2 5 6 7 15 10 4 13 14 3 11 520.9359 5 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 5 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 5 
0 12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 522.2229 5 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 6 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 6 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 6 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 6 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 6 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 6 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 6 
9 5 1 8 13 10 3 11 6 14 16 4 12 7 2 15 520.3534 6 
12 13 9 16 8 2 5 6 7 15 10 4 1 14 3 11 520.5771 6 
0 9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.5771 6 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 13 1 8 5 10 3 11 6 14 16 4 12 7 2 15 520.0048 7 
9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 7 
0 9 1 13 8 5 10 3 11 6 14 16 4 12 7 2 15 520.1569 7 
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SINGLE LAYER FULL OPTIMIZATION TEST TWO RESULTS: 

Scanning Pattern Fitness 
Generation 
Number 

15 14 12 5 16 6 4 13 3 1 8 2 11 7 9 10 549.6049 1 
16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 1 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 1 
15 8 12 13 14 9 7 5 4 2 16 3 10 1 11 6 535.0237 1 
9 15 6 16 11 5 1 13 4 3 10 8 14 2 12 7 544.5099 1 
15 12 7 16 6 8 14 5 9 11 4 10 2 13 3 1 540.1388 1 
6 10 14 5 7 15 16 2 4 12 8 13 1 9 11 3 537.7729 1 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 1 
13 4 10 3 5 15 6 14 9 1 11 16 2 7 12 8 539.3556 1 
0 2 14 13 5 4 10 15 3 1 9 6 7 11 8 12 16 539.5525 1 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 2 
1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 2 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 2 
15 8 12 13 14 9 7 3 4 2 16 5 10 1 11 6 534.7108 2 
15 8 12 13 14 9 7 5 4 2 16 3 10 1 11 6 535.0237 2 
16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 2 
16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 2 
16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 2 
6 10 14 5 7 15 16 2 4 12 8 13 1 9 11 3 537.7729 2 
0 13 4 10 3 5 15 6 14 9 1 11 16 2 7 12 8 539.3556 2 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 3 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 3 
1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 3 
1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 3 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 3 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 3 
15 8 12 13 14 9 7 3 4 2 16 5 10 1 11 6 534.7108 3 
15 8 12 13 14 9 7 5 4 2 16 3 10 1 11 6 535.0237 3 
16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 3 
0 16 14 10 4 9 12 5 3 7 6 13 8 11 15 1 2 536.1955 3 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 4 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 4 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 4 
11 15 12 10 2 7 6 1 16 8 3 4 13 9 14 5 525.464 4 
11 14 15 13 2 7 6 1 16 8 3 10 4 9 12 5 527.8739 4 
1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 4   
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1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 4 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 4 
1 14 15 13 8 4 10 12 6 9 16 5 3 2 11 7 533.6638 4 
0 15 8 12 13 14 9 7 3 4 2 16 5 10 1 11 6 534.7108 4 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 5 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 5 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 5 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 5 
11 15 12 10 2 7 6 1 16 8 3 4 13 9 14 5 525.464 5 
11 14 15 10 2 7 6 1 16 8 3 13 4 9 12 5 525.9824 5 
11 15 12 13 2 7 6 1 16 8 3 10 4 9 14 5 526.7671 5 
11 14 15 13 2 7 6 1 16 8 3 10 4 9 12 5 527.8739 5 
11 1 15 13 8 4 10 12 6 9 16 5 3 2 14 7 532.5524 5 
0 1 14 15 13 8 4 10 12 6 9 16 3 5 2 11 7 533.6483 5 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 6 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 6 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 6 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 6 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 6 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 6 
11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 6 
11 15 12 10 2 7 6 1 16 8 3 4 13 9 14 5 525.464 6 
11 14 15 10 2 7 6 1 16 8 3 13 4 9 12 5 525.9824 6 
0 11 15 12 13 2 7 6 1 16 8 3 10 4 9 14 5 526.7671 6 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 7 
8 14 12 10 4 7 6 3 13 9 16 1 5 2 11 15 524.5997 7 
11 15 12 10 2 7 6 1 16 8 3 13 4 9 14 5 524.7907 7 
0 11 15 12 10 4 7 6 1 13 9 16 5 3 2 14 8 525.2977 7 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 8 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 8 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 8 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 8 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 8 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 8 
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8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 8 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 8 
8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 8 
0 8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 8 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 9 
11 8 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.9205 9 
0 8 14 12 10 4 7 6 1 13 9 16 3 5 2 11 15 524.4788 9 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 
0 8 11 12 10 4 7 6 1 15 9 16 5 3 2 14 13 520.8018 10 

 

 

SINGLE LAYER FULL OPTIMIZATION TEST THREE RESULTS: 

Scanning Pattern Fitness 
Generation 

Number 
5 13 3 10 14 4 16 7 9 8 6 1 2 15 12 11 542.6426 1 
14 3 6 7 1 9 12 4 5 16 10 11 15 2 8 13 522.0725 1 
15 10 1 5 9 6 8 13 16 12 4 14 3 7 2 11 524.6888 1 
5 12 16 13 2 10 1 15 6 8 14 3 7 9 11 4 541.7777 1 
16 7 3 14 4 9 15 11 13 1 2 6 8 12 10 5 542.4941 1 
12 1 9 13 3 10 4 14 6 7 2 5 16 11 15 8 539.9081 1 
2 5 6 15 11 3 14 1 13 12 7 10 9 8 4 16 530.5689 1 
3 13 14 10 7 2 5 9 15 11 16 1 4 6 12 8 521.9986 1 
15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 1 
0 11 16 12 10 6 13 2 1 3 5 8 4 15 7 9 14 539.2106 1 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 2 
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15 9 2 1 11 3 14 13 12 16 7 6 10 5 4 8 520.8314 2 
15 13 6 7 1 9 12 4 5 16 10 14 8 2 3 11 520.8314 2 
15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 2 
3 13 14 10 7 2 5 9 15 11 16 1 4 6 12 8 521.9986 2 
14 3 6 7 1 9 12 4 5 16 10 11 15 2 8 13 522.0725 2 
15 10 1 5 9 6 8 13 16 12 4 14 3 7 2 11 524.6888 2 
2 5 6 15 8 14 4 1 13 12 7 10 9 3 11 16 529.3367 2 
2 5 6 15 11 3 14 1 13 12 7 10 9 8 4 16 530.5689 2 
0 11 16 12 10 6 13 2 1 3 5 8 4 15 7 9 14 539.2106 2 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 3 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 3 
15 9 2 1 11 3 14 13 12 16 7 6 10 5 4 8 520.8314 3 
15 13 6 7 1 9 12 4 5 16 10 14 8 2 3 11 520.8314 3 
15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 3 
15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 3 
3 13 14 10 7 2 5 9 15 11 16 1 4 6 12 8 521.9986 3 
14 3 6 7 1 9 12 4 5 16 10 11 15 2 8 13 522.0725 3 
15 9 2 1 11 3 14 13 12 16 7 6 10 4 8 5 522.1378 3 
0 15 10 1 5 9 6 8 13 16 12 4 14 3 7 11 2 524.6798 3 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 4 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 4 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 4 
15 13 6 7 1 9 12 4 5 16 10 14 8 2 11 3 517.0456 4 
3 10 2 1 8 14 4 13 12 16 7 6 15 5 9 11 517.0456 4 
15 9 2 1 11 3 14 13 12 16 7 6 10 5 4 8 520.8314 4 
15 13 6 7 1 9 12 4 5 16 10 14 8 2 3 11 520.8314 4 
9 15 2 1 8 14 4 13 12 16 7 11 10 5 3 6 520.9726 4 
15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 4 
0 15 9 2 1 8 14 4 13 12 16 7 6 10 5 3 11 521.1286 4 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 5 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 5 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 5 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 5 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 5 
15 5 6 1 8 14 4 3 12 16 10 9 7 2 11 13 517.0123 5 
15 13 6 7 1 9 12 4 5 16 10 14 8 2 11 3 517.0456 5 
3 10 2 1 8 14 4 13 12 16 7 6 15 5 9 11 517.0456 5 
15 9 2 1 11 3 14 13 12 16 7 6 10 5 4 8 520.8314 5 
0 15 13 6 7 1 9 12 4 5 16 10 14 8 2 3 11 520.8314 5 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
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10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
10 3 2 1 8 14 4 13 12 16 7 11 15 5 9 6 516.9315 6 
0 15 5 6 1 8 14 4 3 12 16 10 9 7 2 11 13 517.0123 6 

 

 

ƑIVE LAYER FULL OPTIMIZATION TEST ONE RESULTS: 

Scanning Pattern Fitness 
Generation 

Number 
15 6 10 2 8 7 11 4 3 16 12 13 14 1 9 5  686.1648 1 
13 5 4 2 8 9 15 11 16 12 10 1 7 6 3 14 691.3158 1 
5 3 15 16 7 14 4 2 1 10 13 6 8 9 11 12 692.1203 1 
13 11 9 4 2 7 12 16 15 3 8 6 1 10 5 14 694.5306 1 
11 12 9 4 13 15 6 8 3 14 7 16 5 1 2 10 694.9699 1 
15 11 5 6 10 16 2 13 9 4 12 1 7 14 3 8 697.2562 1 
8 14 16 4 6 15 3 13 7 12 5 11 2 9 1 10 700.6226 1 
6 5 1 9 15 4 13 12 2 16 11 7 10 8 14 3 700.7995 1 
2 9 16 5 6 13 4 3 10 1 8 15 7 13 11 12 707.0362 1 
7 1 3 11 6 8 13 10 5 14 15 9 16 2 12 4 710.0605 1 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 2 
15 6 10 2 8 7 11 4 3 16 12 13 14 1 9 5  686.1648 2 
15 6 10 2 8 7 11 4 3 16 12 1 9 5 13 14 689.2971 2 
13 5 4 2 8 9 15 11 16 12 10 3 14 1 7 6 690.7996 2 
13 5 4 2 8 9 15 11 16 12 10 1 7 6 3 14 691.3158 2 
5 3 15 16 7 14 4 2 1 10 13 6 8 9 11 12 692.1203 2 
4 11 9 13 2 7 12 16 15 3 8 6 14 1 10 5 693.4291 2 
13 11 9 4 2 7 12 16 15 3 8 6 1 10 5 14 694.5306 2 
11 12 9 4 13 15 6 8 3 14 7 16 5 1 2 10 694.9699 2 
15 11 5 6 10 16 2 13 9 4 12 1 7 14 3 8 697.2562 2 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 3 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 3 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 3 
15 6 10 2 8 7 11 4 3 16 12 13 14 1 9 5 686.1648 3 
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15 6 10 2 8 7 11 4 3 16 12 1 9 5 13 14 689.2971 3 
13 5 4 2 8 9 15 11 16 12 10 3 14 1 7 6 690.7996 3 
13 5 4 2 8 9 15 11 16 12 10 1 7 6 3 14 691.3158 3 
5 3 15 16 7 14 4 2 1 10 13 6 8 9 11 12 692.1203 3 
4 11 9 13 2 7 12 16 15 3 8 6 14 1 10 5 693.4291 3 
13 5 15 2 8 9 11 4 16 12 10 1 7 6 3 14 693.4862 3 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 4 
15 6 10 2 8 7 11 4 3 16 12 13 14 1 9 5 686.1648 4 
15 6 10 2 8 7 11 4 3 16 12 1 9 5 13 14 689.2971 4 
13 5 4 2 8 9 15 11 16 12 10 3 14 1 7 6 690.7996 4 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 1 9 5 14 685.6925 5 
15 6 10 2 8 7 11 4 3 16 12 13 14 1 9 5 686.1648 5 
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