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ABSTRACT

Blockchains have gained popularity due to their versatility and wide range of application. 

Blockchains are a decentralized data structure guaranteeing integrity and non-repudiation of data 

We use this to secure provenance meta-data. A blockchain can be seen as a distributed database, 

or a public ledger of transactions or digital events that have occurred and have been shared 

among participating parties. A consensus is required to verify each transaction. Blockchains are 

finding use in cryptocurrencies, academics, clinical trials, healthcare and agriculture. However, 

like other networks, we need to verify the robustness and availability of the blockchain 

networks. In this thesis, we leverage existing Denial of Service and Distributed Denial of 

Service[D/DoS] attacks as a tool to evaluate our proposed blockchain technology, Scrybe, for 

robustness. First, we check its performance in presence of Transmission Control Protocol [TCP]- 

based flooding attacks such as SYN Flooding and its variants. We also optimize TCP kernel 

parameters to improve the utility of syn cookies as a measure against SYN floods. Second, we 

evaluate malicious miner attempts to exclude client transactions by stalling the mining process 

and verify that consensus is reached as long as there is at least one honest miner in the network. 

The underlying algorithm of Scrybe is our novel Lightweight Mining [LWM] algorithm. Our 

technology guarantees the properties of data integrity and non-repudiation with minimal 

resource requirements. It introduces a way to mine new blocks in the blockchain, which is not a 

resource hungry Proof-of-Work [PoW] as required in many present-day cryptocurrency 

applications. 
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CHAPTER 1 
 

 

Introduction 
 

 
Blockchain technology has drawn attention from a wide range of stakeholders including 

academics, healthcare, and government agencies. A blockchain is a data structure for a shared, 

distributed, and fault-tolerant database that every participant in the network can access, but none 

can tamper with. Blockchains are designed to tolerate possibly malicious nodes being present in 

the participating network, but they rely on honest nodes to ensure that information is not vulnerable 

to manipulation. The absence of centralization speeds up the entire process. Owing to the 

cryptographic structure of the blockchain, it is impractical to alter it. Based on these features, 

blockchains have acquired an enormous range of applications even in sensitive fields. An important 

aspect for which blockchain-based networks need to be tested is their robustness and availability 

[1]. D/DoS attacks can be used as a tool to verify these attributes. D/DoS attacks are launched by 

cyber-criminals using one or more computers against a single or multiple computers or networks. 

These attacks disable computers, deny access to authorized users of a particular website or an 

application; or use a breached computer as a launch point for other attacks. A denial of service 

attack can be an attempt to flood a network, thereby, reducing a legitimate user's bandwidth, 

preventing access to a service, or disrupting service to a specific system or a user. As a smarter 

strategy, the attackers target the nodes that utilize the maximum share of the resources. If 

successful, the data on the application can be useless and unavailable to its owners. 

Our research team has proposed a Blockchain technology, Scrybe[2] with a novel, light-

weight mining algorithm [LWM],  for secure provenance and related applications such as clinical 

trials, academic integrity and digital forensics. The blockchain algorithm employed by most 
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cryptocurrencies like Ethereum and Bitcoin, and other digital services for expanding their 

blockchain is resource intensive. Scrybe offers an alternative which requires fewer resources than 

proof-of-work, and is more economical. Our proposed technology maintains non-repudiation and 

data integrity. 

The system is built on Transmission Control Protocol (TCP) Client-Server. TCP is a core 

protocol of the Internet protocol suite. It sits on IP layer, and its primary task is to provide a reliable 

and ordered communication channel between applications on networked nodes. TCP works in the 

Transport layer, which provides host-to-host communication services for applications. 

In this research, we evaluate Scrybe’s performance in presence of the TCP protocol-based 

D/DoS attacks to verify robustness and availability of our algorithm. A SYN Flood D/DoS attack 

on Scrybe is implemented. The attack uses IP-Spoofing, Randomized IP Spoofing and the local 

area network denial-of-service(LAND) techniques on the blockchain network; and the performance 

is evaluated in the presence of those attacks. Impact of increasing the size of the attack packets is 

also studied. We also evaluate the effect of TCP Linux kernel parameters such as the syn-ack retries 

and the max-syn-backlog queue on the impact of the attack on the network. The tool used to 

generate the attack traffic is hping3, and the network analyzer used is Wireshark. In addition, we 

consider the possibility of malicious intent of one or more miners to stall the LWM to prevent the 

addition of a new verified block to the blockchain, or to deny transactions from some clients to the 

blockchain. Modifications to the algorithm are suggested to mitigate the impact of anomalous 

behavior in our system.  

 Our work focuses on the following: 

1. Evaluating the performance of the proposed system during presence of a TCP vulnerabilities 

like SYN-Flooding attack and its variants, thereby verifying robustness and availability. 
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2. Verify that consensus is reached even if malicious miners try to stall the mining process as long 

as at least one miner is honest. 

The rest of the document is as follows: In Chapter 2, we provide background information 

on necessary topics relevant to this work and the related work; in Chapter 3, we describe our 

experimental set-up and the work done including the results , Chapter 4 has the analysis, and 

optimization of kernel parameters; and in Chapter 5,  we provide a conclusion of the work and 

some prospects from future work. 
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CHAPTER 2 
 

 

Background 
 

 
Since Satoshi Nakamoto published his Bitcoin white paper in 2008, blockchain has become 

one of the most frequently considered solutions for ensuring security of stored data and its transfer 

through decentralized, peer-to-peer networks. Being a cryptographic-based distributed 

ledger, trusted transactions are enabled among untrusted participants in the network using the 

blockchain technology. Since the first Bitcoin blockchain was introduced in 2008[3], blockchain 

systems such as Ethereum and Hyperledger Fabric, have been developed. Blockchain has seen a 

surge in interest among researchers [[4],[5],[6],[7]], software developers and industry practitioners 

due to the immutability it offers [[8],[9],[10]]. 

An important aspect of blockchain technologies is consensus. A majority of the 

participating miners need to approve who produces the next block and verify/validate this block 

when added to the blockchain. Bitcoin uses the proof-of-work (PoW) mechanism where miners 

compete to solve a mathematical puzzle. The miner who solves the mathematical problem earliest 

gets rewarded with bitcoins. This motivates participants to be honest. However, PoW consumes a 

lot of energy and is slow. An alternative consensus mechanism which is widely used is proof-of-

stake (PoS). In this mechanism, miners who have a financial stake in the network are allowed to 

produce the next block. Instead of spending energy to validate the block, participants need to prove 

that they have network tokens in their wallet. Ethereum used PoW, but is now planning a shift to 

PoS as CasperPoS, despite being energy efficient and less costly than PoW can create an oligarchy. 

Miners might buy a large number of coins at the beginning of the process and monopolize future 

mining rounds since they have a larger stake in the network. Variants of PoS such as Proof of 
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Elapsed Time(PoET), Delegated PoS, proof-of-work, proof-of-importance , proof-of-capacity also 

exist [11]. 

Scrybe, on the other hand, is more energy efficient and economical than PoW, thus an 

attractive choice to reach consensus about who would create the next block. Scrybe is described in 

Section 2.1. 

 

2.1  Scrybe : Our Proposed Blockchain Technology 
 

 
 The Scrybe architecture is provided in Figure 2.1. 

 

 
Figure 2.1. The Scrybe architecture 

 

The description of the architecture components is as follows: 

 

A. Blocks 

Blocks are one of the prime components of the system. A sequence of verified blocks forms 

the blockchain. The current block includes hash of the previous block. Hash is a mathematical 

one-way function - practically infeasible to invert- that maps an arbitrary -size  input data to 

a bit string of a constant size. This property makes the blockchain immutable. Blocks are added 

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Bit_string
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to the blockchain by miners or entities authorized to participate in the Light Weight Mining 

[LWM] round. Miners receive the list of transactions from clients or users, aggregate those and 

calculate the Merkle root. A Merkle root is the hash of all the hashes of all the transactions 

submitted to the blockchain network. This allows miners to confirm inclusion of all the 

transactions in the block by the miner who gets to produce the next block. Once the miner gets 

selected to add the next block to the blockchain based on the LWM algorithm, they broadcast 

the block to all other participating miners of that particular round, and the contents of the block 

including the previous hash, the Merkle root and the miner’s signature are verified. This ensures 

that all transactions are included and that an authorized  miner produces the block with a valid 

signature. 

B. Transactions 

Transactions are data elements stored on the blockchain. These are the backbone of  

provenance. Transactions can reference previous transactions if they are not the first transaction 

themselves, or they can be genesis events, i.e. the first data collected from a particular use case 

of our blockchain network. Input fields are used to make references to the previous transactions, 

while as for the genesis event, output fields are used. Normal transactions have both an input 

and an output field, but genesis events only have an output field. Input fields refer to the hashes 

of pointers of previous transactions, while output fields contain persistent URLs (PURLs) 

pointing to the data, along with the SHA-3 hash of the data, ensuring its validity. Additionally, 

output fields contain PURLs that point to the provenance of the data along with its SHA-3 hash. 

The size of the blockchain can drastically be reduced by storing the SHA-3 hash of the 

transaction instead of the transaction itself. The transaction itself will be stored on a transaction 
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server, which is locally maintained, along with the data server and the metadata server which 

store the relevant information. 

C. Light Weight Mining 

Our novel Lightweight Mining (LWM) algorithm guarantees data integrity and non-

repudiation with minimal resource requirements. It introduces a way to mine new blocks in the 

blockchain, which is not a difficult Proof-of-Work (PoW) required in present-day cryptocurrency 

applications[3]. Our approach to blockchain-based data provenance, paired with the LWM 

algorithm, provides the framework for key classes of provenance to be managed. The algorithm 

requires minimal processing power and cost. The algorithm is: 

Algo 1: Lightweight Mining (LWM) 

  

 

 

 

 

 

 

 

 

LWM ensures randomization in selecting the miner for producing the next block. 

One of the core ideas of LWM is sharing the hash first and then the actual secret random number. 

This guards against the possibility of a malicious miner exploiting the miner-selection process in 

their favor, as discussed in Chapter 5. A malicious miner can wait to receive everyone else’s random 

number to decide whether or not they like the outcome of the LWM if they shared their own 

number. Sharing the hash first ensures that every miner shares the hash of their random number 

Lightweight Mining Algorithm (LWM) 

Input: The number of miners N. 

Algorithm: For each miner mi, 1 ≤ i ≤  N, 

• Step 1: mi generates a random number si ; 

• Step 2: mi broadcasts the SHA-3 hash of the ri, denoted by H(sj); 

• Step 3: Once mi has collected all N hashes {H(s1), H(s2), · · ·, 

H(sN)}, mi broadcasts the random number si. 

•  Step 4: Once mi has collected all N random numbers {s1, s2, · · · , 

sN}, mi calculates l =∑ 𝑠𝑁
𝑗=1 j mod N. 

• Step 5: ml is the selected miner to create the next block from the 

collected transactions. (Without loss of generality, we map mi = j, 

1 ≤ j ≤  N as a simple rank ordering for the registered miners.) 
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with all other miners before they are able to see other miners’ choices. Since a different random 

number requires a different hash than the one they previously shared, the malicious miner cannot 

change the random number after sharing its hash without being detected. Thus, LWM can tolerate 

collusion of up to N - 1 malicious miners. As long as there is one honest miner value among the 

values used, the modulo operation is randomized.  

D. Servers 

The servers are locally maintained; and will hold the raw data comprising the ledgers in which 

the blockchains are held. The integrity of the transaction server can be verified by comparing the 

list of transactions on the blockchain to that on the transaction server. There should be no 

discrepancy between the two. Similarly, there should be no discrepancy between  SHA-3 hash of 

the data and the SHA-3 hash stored in the transaction to verify that the data and metadata are 

disreputable.  

 

2.2  Configuring Scrybe 
 

For implementing Scrybe, we pull the git repository of our project on the nodes. After installing 

all the necessary files, we configure some nodes as miners which receive transactions from the 

nodes which send those, and some nodes as clients who have files which they need to submit to the 

blockchain to secure those. The steps are as follows: 

a. A node, which acts as a miner, runs the Scrybe executable to initiate mining. We have opened 

up a specific port -10987 where the Scrybe miners listen and mine. 

b. Another node which wants to join the mining network uses the public IP address of the first 

miner to join the network. Same is true for the subsequent miners -They join the network using 

the public IP address of any of the existing miners, and start mining. 
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c. On each of the miner nodes, the LWM runs and a miner gets selected to produce the next block. 

d. A node which is supposed to act as a client first needs to join using the public IP address of any 

miner. 

e. The client first needs to request a blockchain update which provides it the peer list of the 

participating miners. 

f. The client submits transactions to all the participating miners of the LWM round 

simultaneously.  

g. The result of the modulo operation determines who gets to create the new block, adding the 

client transactions submitted since the last block was added. The block is then shared with all 

the participating miners, who verify it and add to their own copies of blockchain. 

If a new miner needs to join the network, the steps b-g are applicable. However, to the new miner, 

the relevant blockchain update as mentioned in step e is the updated length of the blockchain mined 

so far. This is important before the miner is able to participate in the subsequent LWM rounds 

because we want the miner to be able to add the next block at the current length of the blockchain 

produced so far.  

2.3  Communication Protocol In Scrybe 
 

In Scrybe, the communication protocol used is Transmission Control Protocol (TCP). We 

have a specific port – 10987 for our application. TCP works with the Internet Protocol (IP). IP 

defines how packets of data are exchanged between computers. The basic rules are defined by the 

TCP/IP. TCP is defined in the Request for Comment (RFC) number 793 by the Internet Engineering 

Task Force (IETF)[16]. 

Since we exploit TCP vulnerabilities, we elaborate on this protocol. TCP is connection-

oriented, i.e. in order to be able to exchange data, a connection needs to be established. Once 

established, the connection needs to be maintained until the application programs have finished 
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exchanging messages. It determines splitting application data into packets which the networks can 

deliver. This protocol sends packets to, and accepts packets from, the network layer and manages 

flow control. It also handles the retransmission of dropped packets as well as manages the 

acknowledgement of packets arrival at each end. This helps provide an error-free data transmission 

[12]. TCP format is shown in Figure 2.2. Its size is 32 bits.                                 

 

 

Figure 2.2. TCP packet format 

 

From Figure 2.2, TCP packets consist of following fields: 

1. Source and Destination Ports: These are 16- bit each and identify the end points of a TCP 

connection. 

2. Sequence Number: Its size is 32 bits. This field specifies the number assigned to the first 

byte of the current message. In some conditions, it can also be used to identify the initial 

sequence number belonging to a future data transmission. 
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3. Acknowledgement Number: It is also 32-bits. This field contains the value of the next 

sequence number that the sender of the segment is expected to receive, if the corresponding 

flag of this field is set. It must be understood that the sequence number corresponds to the 

data stream in the same direction as the segment, while the acknowledge number refers to 

the opposite direction as of the segment. 

4. Data Offset: This field is also known as header length. Its size is variable, and it conveys 

the information about the number of words in the TCP header whose size is 32 bits. 

5. Reserved bit: It is for future use. The default value of this bit is zero. 

6. Flags: The flags convey information about the status of the TCP connection. Each of the 

1-bit flags are: 

i. URG: conveys important data is in the segment. 

ii. ACK: indicates the acknowledgement number used is valid. 

iii. PSH: pushes for data to be passed to the application as early as possible. 

iv. RST: used to reset the connection. 

v. SYN: used to synchronize the sequence numbers used for initiation of a 

connection. 

vi. FIN: indicates that the sender of has finished sending the data and that the 

connection can be terminated now. 

7. Window: This field has 16 bits and conveys information about the receive window of the 

sender. In other words, it conveys how much buffer is available for incoming data. 

8. Checksum: The size is 16 bits and helps error recovery by conveying whether or not the 

header was damaged during transit. 

9. Urgent Pointer: It’s 16 bits and points to the first urgent data byte in the TCP packet. 
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10.  Options: This field is of variable length; and specifies  TCP options such as  the Maximum 

Segment Size(MSS) conveying information about the largest block of data that the sender 

would send to the receiver over the TCP; or the window scale factor allowing for the 

window size to go up for lines with high bandwidth [13]. 

 

11. Padding: This consists of zeros whose number is determined by the size of the Options 

field. Padding ensures that the header boundary is at 32 bits and data begins right after. 

 

 

12. Data: This contains upper layer information. This is also variable-sized [11]. 

 

TCP has a three-way handshake to establish connection between a client and server or 

between two clients.  Before a client attempts to establish connection with a server, the server needs 

to first bind to and listen at a port to make it available for connections, called as the passive open 

[11]. Once the passive open is established, a client is able to initiate an active open. This process 

involves three steps and both the ends are required to exchange the synchronization (SYN) and 

acknowledgment (ACK) packets before the real data communication process starts. This is the 

reason the three-way handshake is also called the syn-synack-ack handshake. The handshake is 

designed in a way such that both ends help to initiate, negotiate, and separate TCP socket 

connections at the same time. It allows transfer of multiple TCP socket connections in both 

directions simultaneously[16]. The process is described in Figure 2.3 below: 
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Fig. 2.3. TCP three-way handshake for connection setup 

 
The steps of establishing the connection are as follows: 

Step 1. The client establishes attempts to establish a connection with the server by sending a 

segment with synchronization (SYN) request. The client sets the segment’s sequence number to a 

random value, X. 

Step 2. In response, the server sends back a segment with an acknowledgement for the 

synchronization segment sent by the client in the previous step – SYN-ACK.  

The acknowledgment number is set to one number ahead of the received sequence number, i.e. to 

X + 1; and the sequence number that the server chooses for the packets is another random number, 

Y. 

Step 3. Finally, the client responds back with an acknowledgment (ACK) of the received response 

from the server in Step 2. This is called the Forward Acknowledgement. The sequence number gets 

set to the acknowledgment value received in step 2, i.e. X+1; and the acknowledgement number 

gets set to one value greater than the received sequence number in Step 1, i.e. Y+1[11]. 
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When both the client and server acknowledge each other’s requests, the handshake is successful 

and a dedicated connection is established between the two machines[17]. After this the actual data 

gets transferred and the connection stays open until data exchange is complete.  

The completion of the data exchange is indicated by exchange of FIN flags and their 

corresponding acknowledgements from both the ends. The process is shown in Figure 2.3. 

 

 

Fig. 2.4. TCP connection termination 

 

It involves the following: 

Step 1. The client sends the segment with FIN flag set as high indicating the completion of data 

transmission. 

Step 2.  The server replies with an ACK confirming that it received the FIN from the client. 

Step 3. When server has no further data to send to the client, it sends a FIN segment to the latter. 
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Step 4. The client side sends back the ACK to the server side conveying it received the FIN from 

the latter as well. Now the data exchange has completed from both the ends and the connection 

terminates. 

 

2.4  Agreement In Scrybe 
 
To guarantee Scrybe reaches a consensus, we use Lamport’s Byzantine- fault-tolerant (BFT) 

algorithm[28]. BFT can tolerate less than  
1

 3
 * n faulty nodes (f), where n is the total number of 

participating miners in each round. BFT has been employed by a large number of researchers in 

their work to tolerate faulty nodes. [[18],[19],[20],[21]]. 

 

2.5  Related Work  
 

There is an extensive body of work on the D/DoS attacks and their implications. Liang et 

al.[22] implemented a DoS attack method for an IoT system using IP Spoofing and provided results 

which of the SYN flood attack was the most effective against the security of the IoT technology. 

The work included evaluation of CPU and memory usage change during the attack and the effect 

of the size of attack packets on the impact of the DoS attack. 

Kshirsagar et al.[23] implemented a LAND DoS attack using IP spoofing and conducted a 

performance analysis of the LAND DoS detection comparing their proposed Intrusion Detection 

System [IDS] with state-of-the-art systems. Their proposed architecture consists of network traffic 

analyzer, feature identification and extraction. 

 Vasek et al.[24] provide an empirical insight into impact of DDoS attacks on operators of 

distributed networks such as the Bitcoin, stating that services with anti-DDoS protection are three 

times more likely to be attacked. 
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 Johns Hopkins -APL provided an elaborate discussion on DDoS Tradeoff Analysis. They 

discuss how the SYN flood attacks monopolize the resources, the relations between the attacks, 

mitigation techniques and the attacker performance such that ways can be found to lower the 

attacker influences[25]. 

 Congcong et al.[23] conducted a security analysis of blockchain with a case study of 51 % 

attacks. They have simulated the blockchain process and deduced the rule between the blockchain 

security, attacking and attacking method and attacking power. Their study found how by adjusting 

the attacking power, most of the blockchain states can be found and the probability of the honest 

state becoming the attacking state can be analyzed.  

 K. Geetha et al.[24] have conducted identification and analysis of SYN floods against an 

Ad Hoc network. They implement the SYN flood using IP Spoofing and analyze how the Quality 

of Service (QoS) parameters such as the packet ratio, average end-to-end delay change due the 

attack.Their findings show how the legitimate users experience a lower QoS due to the attack. 

 Saket et al.[25] conducted a survey of DDoS attacks on the TCP/IP protocol vulnerabilities. 

They discuss how the attacks could drain the computational resources of the victim within a short 

span of time. They also discuss and compare different attack tools such as LOIC, MStream and 

Switchblade in terms of the vulnerabilities they exploit. 

 Al-Hawawreh[26] has worked on syn-flood attack on a virtual cloud and its detection based 

on TCP-IP header statistical features using machine learning techniques. Their findings include the 

CPU utilization comparison between before the attack and during the attack scenarios. 

 Kshirsagar et al.[28] have discussed the CPU load utilization and minimization for TCP syn 

floods. Their work includes a survey of the attack detection techniques and a proposed attack 

detection method based on the CPU threshold load and misuse detection. The analysis is primarily 

based on how the TCP syn floods cause a abrupt surge in the CPU load. 
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CHAPTER 3 
 

 

Security Attribute Verification Using DDoS Tests 
 

 
Once a distributed system has been designed to maintain performability, it becomes 

important to verify that the system is successful. To do this, we consider common approaches for 

disabling, or degrading distributed systems. The most successful tools are generally referred to as 

Distributed Denial of Service (DDoS) attacks [16]. To verify our proposed blockchain network, we 

therefore integrate successful DDoS methods into our verification suite. Since Scrybe uses TCP for 

communication, we leverage DoS attacks as a tool to exploit the known flaws in the TCP such as 

the SYN flood D/DoS attack.  

In Section 3.1 we describe the experiment platform; in Section 3.2, we describe the 

experiment design, Sections 3.2.1, 3.2.2, and 3.2.3 describe the TCP vulnerabilities – SYN flood 

with IP spoofing, SYN flood with Randomized IP spoofing and the LAND attack respectively- we 

exploit to verify the system robustness. 

3.1 Experiment Platform 
 

The proposed network is evaluated for performability in presence of SYN flood with IP 

spoofing for both the cases of reachable and unreachable spoofed node, SYN flood with 

randomized IP Spoofing and LAND attack. We evaluate the response time of the network when a 

new miner attempts to join the existing network by sending a blockchain request. This is the most 

strenuous time for the network because the entire length of blockchain mined so far is sent to the 

requesting miner in this step. If the network handles this well, we assume it is robust in presence 

of DoS attacks.  In addition to this, we try to optimize the kernel parameters to improve the utility 

of syn cookies against the SYN flood attacks.  
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The components of the network are: 

1. Miners: There are N participating miners. Miners receive transactions from Clients. The miner 

selected using the algorithm in Section 2.1 produces the new block, broadcasts it to all the 

miners. Then each miner appends it to the last block of the blockchain locally. 

2. Client: Clients submit transactions to the miners to secure their data, and make it immutable. 

For our experiment, we configure a single client that submits transactions to all miners. This is 

sufficient for these test scenarios, since the process is symmetric for all miners. 

3. Attacking node: The attacking node can send attack traffic to any miner. This node can be 

either a malicious miner or an external node. 

4. Hping3: is the tool we used to generate attack traffic. It is widely used for testing. It is 

versatile and robust. 

5. Wireshark: is the network analyzer we use. 

 3.2 The Experiment Design 
 
We configure seven Ubuntu 18.04.2 virtual machines (VMs) on seven distinct physical host 

machines in our Network Security Lab.  The specifications of each are provided in Table 1. 

                                                       Table I : Machine specifications 

Memory 2 Gb 

Storage (Hard Disk) 10 Gb 

Number of CPUs 1 

 

We configure five VMs as miners and one as a client. The client submits one xml file every 

3 seconds to all participating miners. One of the five miners is assumed to be malicious. The 

malicious miner VM sends attack traffic using hping3 to one of the honest miners. A new miner 

attempts to join the network using IP address of any of the existing miners. and requests a 
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blockchain update. One miner is randomly selected to send the blockchain update. Wireshark 

captures traffic on the victim miner. The blockchain update is required to know the list of all the 

participating miners; and the length of blockchain produced so far. Unless the new miner has the 

blockchain produced so far, it can’t produce the new block and broadcast to the rest of the miners 

if it gets selected by the LWM algorithm to add the new block. This is a very important step in the 

implementation and is strenuous in terms of computation. Therefore, if our network performs with 

an acceptable level of robustness in this step, we assume it can handle all other steps. We use the 

time taken by the new node to have its request processed to measure Scrybe’s resilience and 

robustness. The IP addresses of the nodes are in Table II. 

 

Table  II :IP Addresses Used 

Device Virtual Machine IP Address 

Personal Computer 1 Scrybe 1 192.168.10.108 

Personal Computer 2 Scrybe 2 192.168.10.112 

Personal Computer 3 Scrybe 3 192.168.10.150 

Personal Computer 4 Scrybe 4 192.168.10.134 

Personal Computer 5 Scrybe 5 192.168.10.138 

Personal Computer 6 Scrybe 6 192.168.10.136 

Personal Computer 7 Scrybe 7 192.168.10.110 

 

We evaluate system performance for the attacks below. SYN cookies are enabled for 

each mining node throughout our experiments. When a malicious miner launches the attack, care 

is taken to maintain a ratio of less than  
1

3
 * N malicious miners to honest miners. N is the total 

number of miners. For our evaluation, we use N = 5. 
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3.2.1  Syn Flood With Ip Spoofing: 
 
SYN flood attacks exploit the TCP three-way handshake. The target is to have as many half-open 

TCP connections as possible and slow down the victim. In a normal TCP connection, a client sends 

a SYN request. The server responds with a SYN-ACK acknowledgment packet. After receiving 

the SYN-ACK from the server, the client responds with an ACK packet[12]. Then the connection 

is established and data is exchanged. However, to establish an attack, the attacker sends an 

enormous number of SYN requests to the server. The server can’t differentiate between the SYN 

request of a malicious node and a legitimate SYN request. Therefore, it attempts to send a SYN-

ACK in response to incoming SYN requests. However, the TCP queue of the server fills due to the 

large flood of SYN packets rendering it unable to handle more incoming requests for a TCP 

connection until the queue is reaped out. Any service requested from the server during this time 

experiences a denial-of-service. 

IP Spoofing uses a forged IP address as the source IP of an IP packet. The node sending the 

packet fools the host with the target IP address into sending its reply packet to the node with the 

forged address. This helps attackers escape detection.  

This can be illustrated by: 
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Figure 3.1(a).  Normal traffic network 

 

 

Figure 3.1(b). Network traffic with spoofed IP address 
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In Figure 3.1(a), the network traffic operates normally. Host A sends traffic using its own IP address 

and destination Host B replies to Host A. In Figure 3.1(b), Host A forges the IP address from Host 

C while sending traffic to Host B. Consequently, Host B sends replies to Host C. 

This is exploited by attackers by using the IP address of the target (victim) as the source address 

while sending traffic requests to an enormous number of machines and directing the reply packets 

to the target. Consequently, the target experiences resource throttling and authorized users of the 

applications hosted on Host C experience a denial or delay of service. 

 3.2.1.1 Why Ip Spoofing Works:  

IP routing follows a hop by hop mechanism. Each packet is routed separately, and the route 

of each packet is decided by the routers the packets passes through. The reason why IP spoofing is 

possible is because routers only use the destination IP address in the packet header to make routing 

decisions. This means whether or not the source IP is valid, the packet delivery won’t be affected. 

The destination only uses that address to reply to the source [28].  

IP Spoofing can be accomplished primarily in the following two ways : 

A. With Spoofed Host Reachable 

For evaluating the performance of Scrybe under the influence of this attack, we configure 

the VMs as follows: 

Table III: Nodes and their role for IP spoofing with spoofed host reachable 

IP Address  Role 
192.168.10.150 Miner (victim) 

192.168.10.134 Miner (spoofed)  

192.168.10.110 Miner  

192.168.10.108 Miner 

192.168.10.136 New Miner requesting update 

192.168.10.138 Client 

192.168.10.112 Malicious miner [Attacking node] 
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Implementation: 

We first use hping3 on the attacking node to see if the port we want to attack on is listening or 

not.  

The command used is: hping3 -V -p 10987 -S -c 1 192.168.10.150 ; where V means verbose 

mode, 10987 is the port where our miners communicate with other nodes for our blockchain 

network and hence is our target port, S means we are sending SYN traffic[9], c 1 means we stop 

after sending one packet and receiving its reply packet of 1 and 192.168.10.150 is our target 

machine.  

After receiving a SYN-ACK packet in return, we confirm that the port is open and we can 

successfully send attack traffic to it. Next, while the initial miners are mining and the client is 

submitting files, we launch attack on the target miner using hping3 on the attacking node. To 

demonstrate detection-evasion and attempt to malign an honest participating miner, we spoofed the 

IP address of the latter while launching the attack. The new miner asks for a blockchain update 

while the attack is ongoing. 

 The command used for the attack is: hping3 -V -p 10987 -S -d 120 –flood 192.168.10.150 -a 

192.168.10.134; where flood continuously sends packets as quickly as possible without showing 

replies , -a is used to spoof IP addresses while attacking, which, in our case is 192.168.10.134and 

-d lets us set the data packet size in bytes, which in our case is 120. 

Another relevant parameter relevant is TCP window size. We use the default value of 64 in 

hping3 through out our experiments. Therefore, we don’t need to configure that explicitly in the 

script. Since we are configuring the attack in flood mode, we don’t configure the count c because 

that would be overridden by the flood mode. 
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A portion Wireshark trace from the experiment is in Figure 3.2. SYN requests and SYN-

ACK responses are shown. No final ACK from the client complete the handshake. We used the 

following command on Wireshark to filter this traffic: 

 tcp.flags.syn==1 && (tcp.flags.syn==0 

 
 

Figure 3.2. A portion of attack traffic captured on the victim node during the attack using Wireshark for IP 

spoofing with spoofed host reachable 

 

A portion of the TCP stream of the attack packets is shown in Figure 3.3. 

 

 

 
Figure 3.3: TCP streams of the attack packets for IP spoofing with spoofed host reachable 

 

 

 



 

 25 

Observations: 

From Figure 3.2, we see a large number of SYN packets being sent continuously to the 

victim. The packets appear to have been sent from miner with IP address as 192.168.10.134, 

however, those are actually launched by the malicious miner with IP address as 192.168.10.112.  

The server sends back the SYN-ACK reply to each of the SYN requests from 192.168.10.134 since 

it has no way to tell those from non-malicious packets. Since the machine with IP address 

192.168.10.134 didn’t initiate any of those SYN connections, it responds with an RST packet in 

return, thereby terminating the connection. 

From Figure 3.3, we observe the TCP stream for one of the attack packet. Similar TCP 

stream was observed for all the attack packets. It appears that the spoofed machine responded with 

a RST packet to the SYN-ACK reply the target machine sent to it because it thought that was the 

source IP address of the initial SYN packet. 

 

B.  With Spoofed Host Unreachable 

It is also possible that the attacking nodes spoof the IP of a machine which has been 

powered off. This avoids the spoofed machine terminating the connection. The VMs are 

configured as follows: 

 
TABLE IV: Nodes and their role for IP spoofing with spoofed host unreachable 

IP Address  Role 
192.168.10.150 Miner (victim) 

192.168.10.134 Spoofed [Switched off] 

192.168.10.110 Miner  

192.168.10.108 Miner 

192.168.10.136 New Miner requesting update 

192.168.10.138 Client 

192.168.10.112 Malicious miner [Attacking node] 
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Implementation: 

The implementation of this case is similar to section A. The only difference is that the spoofed 

IP belongs to a VM which has been turned off. While the initial miners are mining and the client is 

submitting files, we launch attack on the target miner using hping3 on the attacking node. The new 

miner asks for a blockchain update while the attack is ongoing.  

The command used for the attack is : hping3 -V -p 10987 -S -d 120 - - flood 192.168.10.150 

-a 192.168.10.134 ; where 192.168.10.150  is the victim miner and -a is used to spoof the IP of 

other node while attacking, which, in our case is 192.168.10.134. VM with IP address 

192.168.10.134 is switched off. 

A portion of the captured traffic on Wireshark is shown in Figure 3.4. However, the TCP stream is 

different, as shown in Figure 3.5. 

tcp.flags.syn==1 && tcp.flags.ack==0 

 

Figure 3.4. A portion of attack traffic captured on the victim node during the attack using Wireshark for IP 

spoofing with spoofed host unreachable 
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Figure 3.5. TCP streams of one of the attack packets for IP spoofing with spoofed host unreachable 

 

Observations 

From Figure 3.4, we observe that unlike in Figure 3.2, there is no RST packet sent back 

from the spoofed IP machine  because the IP belongs to a machine which is inactive(switched 

off).There is a large number of incomplete TCP connections because the initiator of the SYN 

handshake never sent the final ACK packet required to establish the connection. Instead of that, 

there is a large inflow of new SYN requests from the same IP address. 

Figure 3.5  has TCP stream of one of the attack packets to further establish that the TCP connection 

is half-open and just using the resources of the victim. Each attack packet has similar TCP stream. 

3.2.2  Syn Flood With Randomized Ip Spoofing 

IP Spoofing with a single source IP spoofed is comparatively less strong to escape detection 

and foiling. Using botnets is another way of launching DDoS attacks. Botnets are an internet-

connected network of devices which are running one or more bots, where a bot is a malware-

infected compromised machine that can remotely be controlled by a cybercriminal. However, 

cybercriminals wishing to launch DDoS attacks but also wanting to avoid using large botnets can 

send flood traffic with randomized IP spoofing. This helps them to conceal their own identity as 

well as makes blocking the attack more challenging as it appears to be originating from many 

sources simultaneously[28].   
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For evaluating the performance of Scrybe under the influence of this attack, we configure 

the VMs as follows: 

TABLE V: Nodes and their role for randomized IP Spoofing attack 

IP Address  Role 
192.168.10.136 Miner (victim) 

192.168.10.134 Miner  

192.168.10.110 Miner  

192.168.10.108 Miner 

 192.168.10.150 New Miner requesting update 

192.168.10.138 Client 

192.168.10.112 Malicious miner [Attacking node] 

 

Implementation: 

The implementation of this case is similar to section A. The difference is that the attack traffic 

comes from a large number of random IP addresses available on the internet for this. While the 

initial miners are mining and the client is submitting files, we launch attack on the target miner 

using hping3 on the attacking node keeping source node as random. The new miner asks for a 

blockchain update while the attack is ongoing.  

The command used is: hping3 -V  -d 120  -S -p 10987 - -flood - - rand source 192.168.10.136 

;where 192.168.10.136 is the victim miner and rand source  is the mode of the sending the attack 

traffic. In this mode, hping3 looks for random IP addresses available over the internet and makes 

the attack seem to be launched from all those. This option stresses the firewall state tables and other 

per-ip dynamic tables (which can be used to block traffic from a particular malicious IP address) 

in the TCP/IP stack and the firewall software.  

The captured traffic on Wireshark is shown in Figure 3.6; and the TCP stream is different, as shown 

in Figure 3.7. 
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As mentioned in previous sections, the Wireshark filter used to see the attack traffic is : 

tcp.flags.syn==1 && tcp.flags.ack==0 

 
 

Figure 3.6. A portion of traffic captured on the victim node during the attack using Wireshark for 

Randomized IP spoofing 

 

 

Figure 3.7. TCP stream of one of the attack packets for randomized IP spoofing 
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Observations 

From Figure 3.7, we observe that the SYN flood packets appear to be launched from a large 

number of random IP addresses across the internet. The victim miner responds to each of the SYN 

request with a SYN-ACK packet since it has no way to tell a legit SYN request from the malicious 

one because these requests are not from a single IP as the source address. 

From Figure 3.7, we observe the TCP stream of one of the attack packets. This is also an 

incomplete SYN handshake resulting a half-opened TCP connection. All the attack packets have 

similar TCP streams. 

3.2.3   LAND DoS Attack 

LAND attack is a DoS attack where the attacker crafts the attack packets in such a way that 

the source IP address and the port and the destination IP address and the port of the TCP segments 

is the same[16], i.e. that of the victim’s; and the port chosen is one of the open ports on the victim. 

In a way, it’s a variant of IP spoofing where the spoofed IP address is same as the victim’s IP 

address. This attack results in the victim ending up in a continuous loop (lock-up) of sending 

packets and responses to itself until the system is crashed or the attack is detected [29,30].  

Diagrammatically, LAND DoS attack can be represented as shown in Figure 3.8. 
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Figure 3.8 . LAND DoS attack illustration 

 
For evaluating the performance of Scrybe under the influence of this attack, we configure the 

VMs as follows: 

 

TABLE V: Nodes and their roles for LAND attack 

IP Address  Role 

192.168.10.150 Miner (victim) 

192.168.10.110 Miner  

192.168.10.108 Miner 

 192.168.10.136 New Miner requesting update 

192.168.10.138 Client 

192.168.10.112 Malicious miner [Attacking node] 
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Implementation: 

The implementation of this attack makes it seem that a large number of packets are sent from 

the victim continuously to itself on one of its ports. While the initial miners are mining and the 

client is submitting files, we launch attack on the target miner using hping3 on the attacking node 

keeping source node as random. The new miner asks for a blockchain update while the attack is 

ongoing.  

The command used is : sudo hping3 -V -d 120 -w 64 -S -p 10987 -k -s 10987 - -flood 

192.168.10.150 -a 192.168.10.150 , where 192.168.10.150 is the victim node, -a is used to spoof 

the source IP address to the victim’s IP address so that the machine keeps sending traffic 

continuously to itself,  -s is used to select a base source port to send the traffic to the destination 

port, -k is used to keep this port number still, i.e. keep sending traffic from this port continuously. 

By default, the source port is incremented by one with each new packet sent.  

The captured traffic on Wireshark is shown in Figure 3.9; and the TCP stream is different, as shown 

in Figure 3.10. 

As mentioned in previous sections, the Wireshark filter used to see the attack traffic is : 

tcp.flags.syn==1 && tcp.flags.ack==0 
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Figure 3.9. A portion of the attack traffic captured on Wireshark for LAND attack 

 

 
Figure 3.10.  TCP stream of one of the attack packets for LAND attack 

Observations: 

From Figure 3.9, we observe a continuous traffic going from the same IP address to the same 

destination address, with the same port as the source as the destination port. Since the SYN packet 

flood is originating from the same source port, i.e. 10987, the Wireshark sees it as an unusual 

behavior stating the ‘TCP Port numbers reused warning’. 



 

 34 

Figure 3.10 shows the TCP stream. There is only a SYN packet from source to destination. Due to 

SYN packets circling around the same port and IP address for both source and destination, the 

machine drops these and does not reply with a SYN-ACK packet instead. 

3.3  Results 

In each case of experiments, the mining algorithm runs successfully, and we have a selected miner 

at the end of each round to produce the new block. The  

The response times for each of the attack cases above is noted. For reference, we also checked how 

much time does it take for the new miner to get the response when the network is not under 

influence of any attack. The results are summarized in the following table.  

TABLE VI- Mean Response times for different attack cases 
[values reported on a 95% confidence interval] 

 

Case 

Mean No. of 

attack 

packets sent 

 

Mean Response time of the victim [seconds] 

  When miner under 

attack selected to send 

response to the 

blockchain request 

When another miner 

selected to send 

response to the 

blockchain request 

No attack      -             -            5 

 

SYN flood with IP spoofing 
Spoofed IP 

reachable 

 

612195 

 

 

24.2 ± 4.41 

          

           5 

 

Spoofed IP 

unreachable 

 

1643336 

 

32 ±  3.46 

         

           5 

SYN Flood with Randomized 

IP Spoofing 

  

926612 

 

25.4 ± 4.67 

 

           5 

 

LAND Attack 

  

1567141 

 

30.9 ± 2.99 

 

           5 
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Figure 3.11. Graphical representation of mean response times in case of no attack and different subcases of 

the SYN flood attack with 95% confidence interval 

 

The time-series graphs for the case with no attack and the case with maximum impact on 

the response time (SYN flood with an unreachable Spoofed IP) are provided in the 

following figures. 

 

Figure 3.12.  Time-series graph for Scrybe mining rounds with no attack 
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Figure 3.13. Time-series graph for Scrybe mining rounds with SYN Flood attack with unreachable spoofed 

IP address 

 

Observations: 

 

From Table IV and Figure 3.11, we observe that the network performance statistics change 

under the influence of an attack by a considerable extent. The attack with maximum impact is the 

SYN flood using IP spoofing with Spoofed machine not reachable. 

3.4  Effect Of Increasing The Size Of The Attack Packets On The Impact 

                        Of DoS Attacks 

We also study the effect of increasing the size of the attack packets on the impact of the 

DoS attacks. 

For this, we consider the attack case which resulted in the maximum impact, i.e. SYN 

flooding using Spoofed IP with spoofed machine un-reachable. The size of attack packets is 

determined using the d parameter in the hping3 command. 
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The command used is: hping3 -V -p 10987 -S -d X –flood 192.168.10.150 -a 192.168.10.134 

where X is the size of the packets. We tested the system for X = 120, 300, 600,900 and 1200 and 

determined the response time when a new miner requests for a blockchain update. 

 The results of these tests are summarized in Table VIII. 

Table  VII: Effect of increasing size of attack packets 
[Values reported with 95% confidence interval] 

 

Size of the attack packets[bytes] 

 

Mean Response Time of the victim [seconds] 

When miner under attack 

selected to send response to 

the blockchain request 

When another miner selected 

to send the response to the 

blockchain request 

 

120 

 

32 ± 3.46 

 

5 

 

300 

 

33.4 ± 2.63 

 

5 

 

600 

 

35 ± 1.93 

 

5 

 

900 

 

38.44 ± 3.33 

 

5 

 

1200 

 

43.33 ± 4.68 

 

5 

 

 

Figure 3.14. Graphical representation of effect of size of attack packets on the impact of the SYN flood 

attacks 
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CHAPTER 4 
 

 

Analysis 
 

  
From results in Sections 3.3 and 3.4, we observe that the network performance statistics 

change under the influence of an attack by a considerable extent. When the miner which gets 

selected to send the response to the blockchain request is under the influence of an attack, the 

response time increases. The reason for the increase of response time is the incomplete SYN 

connections in the victim’s TCP queue as a result of a large number of SYN packets sent by the 

attacker. On receiving the SYN packets, the victim responds with the SYN-ACK packet for each 

of those; and keeps waiting for the final ACK packet from the node which initiated the SYN request. 

Until the TCP queue is reaped from the incomplete connection entries, the victim’s resources get 

throttled causing it to refuse new connection requests. As a result, it is not able to process the 

request of a legitimate user while under the influence of an attack.  

The attack with maximum impact is the SYN flood using IP spoofing with Spoofed 

machine unreachable. Maximum number of the attack packets are sent in this case to the victim 

until it again becomes responsive. The reason lies in the TCP parameter ‘syn-ack-retries’. The 

victim is configured to keep retransmitting the SYN-ACK packet in response to the initial SYN 

request for a certain number of times as configured on the kernel. Since the attacker used a spoofed 

IP address, and kept that machine powered off, the victim has to spend an additional time in trying 

to reach the machine first. In addition to not sending the ACK packet, the machine does not even 

send an RST packet like in the case of reachable spoofed IP, since it is powered off. The server 

keeps retrying to reach the spoofed IP by sending the SYN_ACK packet a number of times as 

configured in the tcp_syn_ack_retries parameter[30]. In all of the attack cases with victim being the 

selected miner to send the blockchain update response, the performance of the network is degraded.  
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 The effect of the size of the attack packets is summarized in Table VII and Figure 3.14. As 

the size of the attack packets is increased, the attacks become more effective causing the response 

time to increase. At a packet size of 1200 bytes, the response time becomes equal to that of the 

worst-case scenario we achieved in Table VI, i.e. the SYN flood using IP spoofing with Spoofed 

machine not-reachable. It should be noted that in each of the cases of packet-size, we have used a 

value less than the Maximum Transmission Unit [MTU]. For our network [Ethernet], the MTU is 

1500.  

This raises an important question about the reliability of distributed systems. Even though 

blockchains claim to ensure security and immutability, delay in the response of the network can 

cause many harmful implications. The stakes are higher for critical applications such as e-banking, 

healthcare and other important infrastructure. 

However, an important observation is that when the miner which gets selected to send the response 

to the blockchain request is not the victim of the DoS attack, the response time is same as when no 

attack is launched. This means potentially, the attacker failed to launch a DoS attack on our network 

in this case. This implies that the probability of users experiencing denial-of-service while using 

our network is equal to the probability that the selected miner to send blockchain update responses 

is the victim.  

Mathematically, 

P(successful DoS attack on Scrybe) = P(selected miner to send blockchain updates to be the victim) 

Since miners are randomly selected, the probability of selection is uniformly distributed. 

= >   P(selected miner to send blockchain updates to be the victim) = 
1

𝑁
 = 

1

5
 

Therefore, for our experiments 

P(successful DoS attack on Scrybe) = 
1

5
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As N increases, the probability of a successful DoS attack on Scrybe decreases for a constant 

number of miners under attack simultaneously. 

4.1 Role Of Syn-Cookies 

 
An important point to lay emphasis on is the SYN flood attacks were successful despite 

the SYN cookies being enabled. SYN cookies are generally considered useful against SYN flood 

attacks because of their stateless nature. These are configured in the /etc/sysctl.conf file and take 

integer values as arguments. A value of 1 means these are enabled and would be active in case a 

SYN flood occurs and help the server to avoid dropping connections when the SYN queue gets 

filled up. These are enabled by adding the following in the /etc/sysctl.conf file: 

net.ipv4.tcp_syncookies = 1 

 Conventionally, when a client sends a SYN packet, an entry is made in the TCP queue for 

that regardless of the final ACK packet transmission. Enabling SYN cookies involves storing the 

initial SYN entry in an encoded form into the sequence number sent in the SYN-ACK packet. If 

the initial host responds back with a final ACK packet to complete the connection, it would use the 

sequence number equal to the sequence number used in the SYN-ACK packet incremented  by 

1.Upon receiving the ACK packet, the server decodes the sequence number and is able to 

reconstruct the SYN queue entry to proceed with the connection as in a conventional TCP protocol. 

 However, there are two major caveats to enabling SYN cookies. Server has a limit of only 

8 unique MSS values since SYN cookies use 3 bits to encode that information in the SYN queue 

entry. In addition, the server must reject all TCP options (such as large windows), because the SYN 

queue entry where this information is otherwise stored is discarded by the server.  

 Another important implication of using SYN cookies is an additional computational 

overhead. Implementing SYN cookies involves a cryptographic hash of the IP address and the port 

number used on the server and the timestamp while sending the responses to the SYN requests. 

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
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This results in an extensive overhead. When attacks occur and the SYN cookies are enabled, the 

server has to spend a lot of efforts encrypting responses to the incoming SYN requests. This also 

results in a slower response by the server to the requests from legitimate users. 

 SYN cookies are not capable of reducing or deflecting traffic. Therefore, SYN cookies are 

not necessarily useful against attacks targeting bandwidth. The attacks launched on Scrybe involved 

sending thousands of SYN packets per second, similar to a bandwidth attack. 

We’ll try to optimize the utility of enabling SYN cookies to mitigate the impact of SYN floods 

using the tcp_syn_ack_retries and the tcp_max_syn_backlog kernel parameters in the next chapter. 

 

4.2  Optimization Of Kernel Parameters To Strengthen Defense Of Syn Cookies 

            Against DDoS Attacks 
 

We tried to study the effect of changing the tcp_syn_ack_retries and the 

tcp_max_syn_backlog parameters to help SYN cookies offer better protection against the SYN 

flood attacks.Both of these kernel parameters are tunable. We choose a These parameters are also 

configured in the /etc/sysctl.conf file. 

• tcp_syn_ack_retries : 

This parameter determines the number of times the server should retry to send the SYN-ACK 

packet in response before giving up waiting for the final ACK packet. On Linux machines, the 

default is 5.  We tested the system performance by lowering this value and checking the response 

time while under the influence of D/DoS attack. The results are for the worst-case scenario we 

achieved in Table VI, i.e. the SYN flood using IP spoofing with Spoofed machine not-reachable. 

Table VIII provides the summary of the results. 
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Table VIII: Effect of decreasing tcp_syn_ack_retries value 

[Values reported at 95% confidence interval] 

tcp_syn_ack_retries value Response time[seconds] 

5 32 ± 3.46 

4 29.7 ± 3.62 

3 28.33 ± 3.42 

2 26.22 ± 3.66 

1 22.55 ± 3.48 

0 15.44 ± 2.05 

 

 

 

Figure 4.1. Graphical representation of the effect of decreasing the tcp_syn_ack_retries parameter value 
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Observations: 

The performance of the system increases while being attacked if the number of syn_ack_retries 

value is reduced. In other words, the server doesn’t wait for a longer time before terminating the 

connection request. The retry times are calculated based on the Round Trip Time [RTT] between 

the peers. For linux systems, it is around 2 seconds for the first packet, doubled to 4 seconds after 

second retry packet sent, then 8 seconds for the next packet, and so on [31]. Configuring the server 

to a zero number of syn_ack_retries improves the performance considerably during the SYN flood 

attacks. However, there is a trade-off. The connections with legitimate nodes can suffer network 

congestion or link failure momentarily and the SYN-ACK packet might not reach them. The server 

should be able to attempt retransmitting the packet if need be. For that reason, we set this value to 

an optimum value of 3. 

Next, using the syn_ack_retry value of 3, we try to optimize the system performance changing the 

tcp_max_syn_backlog parameter as follows: 

• tcp_max_syn_backlog:  

This parameter determines when to activate the syn cookies. When the TCP connection requests 

exceed the value set in this parameter, the system starts using the syn cookies. As discussed in 

Section 5.1.1, enabling syn cookies (setting a value of 1) means those are enabled and can be 

activated as required. On Linux machines, the default value is 128 (27). 

We studied the effect of increasing the value of this parameter. 

The results are summarized below: 
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Table IV: Effect of increasing tcp_max_syn_backlog value 
[values reported at 95% confidence interval] 

 

tcp_syn_ack_retries =3 

tcp_max_syn_backlog value  Mean response time 

[seconds] 

127 28.33 ± 3.42 

256 23.77± 4.0 

512 18.55 ± 2.74 

1024 17.33 ± 1.59 

2048 11.55 ± 1.29 

 

 

 
 

Figure 4.2. Graphical representation of the effect of decreasing value of the tcp_syn_backlog  

 

Observations: 

The performance of the system improves with the increasing number of the 

tcp_max_syn_backlog value. This is because an increased value must mean the TCP queue 

saturates at a higher number of flood packets in case of a SYN flood attack, thereby, responding 

faster to the legitimate connections. In addition to this, a higher value means that the syn cookies 

are not activated until the TCP connection requests exceed 2048. As discussed earlier, syn cookies 

increase computational overhead and slow the performance during the flooding attacks collaterally.  
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We observe that the response time goes down to 11 seconds for the tcp_max_syn_backlog value of 

2048 as compared to 31 seconds on the default value of 127. 

 Like in the case of tcp_syn_ack_retries parameter, arbitrarily increasing the value of this 

parameter is not a reasonable idea. Each entry in SYN queue takes 256 bytes and in case a SYN 

flood is launched, all those resources would be wasted on storing the attack packets. Therefore, it 

is not a good idea to configure the max_syn_backlog to a very large value. 

The overall improvement as a result of optimizing both the tcp_max_syn_backlog value 

and the max_syn_ack_retries value can be seen by comparing the mean response time of about 32 

seconds before optimization to about 11 seconds after optimization. 
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CHAPTER 5 
 

Lightweight Mining Consensus 
 
 

As described in Chapter 1, Malicious miners and arbitrary faults might disrupt the 

functioning of the blockchain network using multiple strategies. They might share conflicting hash 

values or secret values to different miners causing confusion and try to favor a certain outcome of 

the modulo-n addition operation. They might also exclude certain client files, or files from certain 

clients, thereby, denying them the service they have employed the blockchain technology for 

However, as long as there is at least a single honest miner in the network, faults can’t disrupt the 

network. In a practical blockchain network, there would always be more than one honest miner. In 

this work, we showed a single honest miner is enough to keep a check on faulty activities in a 

blockchain network. As number of honest miners increases, so does their control of the consensus 

in a blockchain network. 

In this chapter, we verify that as long as there is at least one host miner in the network, 

consensus is reached, and the client transactions are registered on the blockchain. The detailed 

algorithm is provided first. Then we prove theorems and discuss cases which prove our hypothesis 

that a single honest miner is sufficient to keep a check on the faulty activities in a blockchain 

network. 
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Lightweight Mining (LWM) 

 

 5.1 Overview 

 
In this paper, we focus on verifying the robustness of our blockchain i.e. the ability of nodes to 

converge to a decision despite the presence of arbitrary errors. This is most easily modeled, by 

allowing the presence of malicious nodes which we could try to disrupt the functioning of the 

algorithm. Lamport's work explains that other failure models are overly optimistic[28]. 

To guarantee that Scrybe reaches consensus, we rely on Lamport’s Byzantine Fault Tolerance 

(BFT) results. BFT work proves [38] that it is impossible to reach consensus if the number of faulty 

Lightweight Mining Algorithm (LWM) 

Input: The number of miners N. 

Algorithm: For each miner mi, 0 ≤ i ≤ N-1, 

• Step 1: mi generates a secret value (random number) si ; 

• Step 2: mi broadcasts the SHA-3 hash of the si, denoted by H(si) after signing it with its 
private key Pi. 

• Step 3(a): Wait for 𝑛

3
 hashes and proceed to Step 3(b). 

• Step 3(b): Broadcast the 𝑛

3
 hashes received in Step 3(a) to all the miners. Once values received from 

50% + 1 number of miners, check that no conflicting values have been received corresponding to a 
particular miner. If yes, drop those values and evict those miner(s) from the current round. Once 
verification done, proceed. 

• Step 4: mi broadcasts the secret value si signed with its private key Pi. 

•  Step 5(a): Wait for 𝑛

3
  random numbers and proceed to Step 5(b). 

• Step 5(b): Broadcast the 𝑛

3
 secret values received in Step 5(a) to all the miners. Once values received 

from 50% + 1 number of miners, check the following: 
o No conflicting values have been received corresponding to a particular miner.  
o Verify that the secret value corresponds to the hash shared in Step 3(a). 

         If discrepancies found in any of these two checks, drop those values and evict the miner(s) involved from 
         the current round. 
         Once check completed, proceed to the modulo-addition operation. 
• Step 6: mi calculates l = ∑ 𝑠𝑁−1

𝑗=0 j mod N 

C is the consensus on the selected miner, l, to create the new block from the collected 
client files. (Without loss of generality, we map mi = j, 0 ≤ j ≤ N-1 as a simple rank 
ordering for the registered miners.) 
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nodes, f, in a distributed network is not less than 
1

3
rd of the total nodes, n. Though BFT handles the 

final outcome to be either ‘0’ or ‘1’, we and we try to  reach a consensus on a value 0 to n-1, where 

we need to show both consensus and that the value is an emergent property of the set of nodes such 

that no group of nodes can influence the choice as long as any single node does not collude with that 

group. BFT needs 
1

3
rd of n to have the same value, S. We need responses from  

1

3
rd of n, regardless of the 

values. 

 We accept Lamport's result that the number of malicious nodes must be less than 
1

3
 * n. This 

may not be the largest number of malicious nodes we can tolerate, that proof is outside the scope 

of this paper.  Using a larger number would slow down our algorithm. Using a smaller number may 

be unrealistic. We accept the  
𝑛

3
 value as one that is widely used in this domain and practical for our 

system. Given Lamport's result, we limit the size of the colluding set to less than 
1

3
rd of the 

participating nodes, and therefore waiting for 
1

3
rd  of the n possible values ensures that at least 

one  value is from  an honest miner. 

 

5.2  Reaching Consensus In Scrybe 

 
In Scrybe's lightweight mining process, there are three main phases where information is 

shared: the hash-sharing phase, the secret-sharing phase, and the block-sharing phase: 

1. Hash-sharing phase: Each miner, mi, generates a random number, called a secret-value, si,., 

computes its hash H(si), signs H(si)  using  its private key , Pi , and shares the signed hash with 

all other participating miners. 

a. Once 
1

3
rd of the n number of hashes is received on a node, we proceed to Step b. 

b. In this step, all the miners broadcast all the 
𝑛

3
 hashes they received in Step a. This 

ensures that all the miners agree on a set of values.  
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Once values from 50 % + 1 number of the miners are received, thereby, ensuring the network has 

not fractured, we verify the following: 

• No conflicting values have been received corresponding to a particular miner. If yes, 

drop those values, identifying the miner(S) with their private key(s), and evict them 

from the current round.  

Once verification done, proceed to Step 2.  

2. Secret-sharing phase: In this phase, each miner is expected to share its secret value si , 

signed with its private key,Pi, with all the miners. 

a. Once 
1

3
rd of n secret values are received, we proceed to Step b. 

b. In this step, all the miners broadcast the 
𝑛

3
 secret values they received in Step a. 

This ensures that all the miners have the common majority of values required to run the modulo-n 

operation. Once values from 50 % + 1 of the miners are received, thereby, ensuring that the network 

has not fractured, we check the following: 

• No conflicting values have been received corresponding to a particular miner.  

• Verify that the secret value corresponds to the hash shared in Step 3(a). 

 

Once check is completed,  the modulo-n operation is implemented on each node to select the miner 

to create the new block. 

3. Block-sharing phase: Once consensus is reached on which miner would create the new 

block Bi, the selected miner broadcasts the new block, signed with its private key with all the 

miners who participated in Step 2. After all the miners verify the validity of the block, they 

append it to their own copies of the blockchain. 
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5.3 Cases 

 

 

I. An honest miner gets selected to create the new block: This is an ideal situation as 

an honest miner would ensure all the client transactions since last block are included in the 

current block. Thus, clients are provided the services they have employed the blockchain 

for. After creating the block, the honest miner signs in and broadcast it to the rest of the 

miners who verify it and add it to their own copy of blockchain.  

 

II. A malicious miner gets selected to create the new block: The modulo-n addition 

can result in a malicious miner to get selected to create the new block. A malicious miner 

can choose to exclude transactions submitted from a specific client or clients, thereby 

denying them the services they are authorized for. However, when the new block is created, 

the selected miner needs to sign it with its key and broadcast it. If any transaction has been 

left out, the honest miner(s) would be able to detect it upon verification even if the other 

malicious miners form a coalition with the selected malicious miner. Hence, due to failing 

to prove the validity, the block would be deleted. Since the invalid block was signed by the 

malicious miner, we know who the miner was and evict them from the current mining 

round. 

 

Theorem : Given a set of n nodes, each with a secret value S(j), where at most  
𝑛

3
  are faulty, the 

non-faulty nodes can reach consensus C on a value l, where l is the miner selected to create the new 

block, and = ∑ 𝑠𝑁−1
𝑗=0 j mod N. 

Proof: We begin by proving that as long as there is at least one honest miner in the network, the 

selection of the miner to create the next block is random and can’t be controlled by the malicious 

miners. To prove this, we show if values from n -1 miners result in a particular output of the 
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modulo-n operation, an honest miner can choose the secret value in a way which forces the 

summation to whatever we want. In practice, the miners bind to a value and the sum can’t be forced 

to a desired value at any cost. But this proof describes that having at least a single value from an 

honest miner randomizes the output and makes it fair. 

Without loss of generality, let us assign the honest miner mn an index 0. Hence, the non-malicious 

nodes are in the range 0 < j < N. All the nodes Nj share hash values H(si) and secret values sj for 0 

< j < N.  Let us assign l =  ∑ 𝑠𝑁−2
𝑗=0 j mod(N-1) as the modulo-n operation result of the values chosen 

by the malicious miners. If an honest miner picks an arbitrary integer value k from the range 0 to 

N-1, we can assign the secret value for the honest miner as s0= ( l– k)mod N  that forces the 

summation in the modulo-n operation to be whatever we want. 

Thus, the result is not controlled by the malicious miners anymore because the honest miner would have to 

agree with the values generated on the malicious nodes. 

 

Axiom: As long as there is at least a single honest miner in the network generating a random 

number from range 0 – n-1 with uniform distribution, all the results are equally likely. 

 
Theorem: We can always detect if a malicious miner sends conflicting values to different miners 

Proof: The value can be received and promulgated by either a single node or multiple nodes. Step 

1.b of the LWM involves broadcasting the 
1

3
 * n hashes received in Step 3.a to all the miners. If 

only one node gets the value, then all nodes get that value, so there is no conflict. Another scenario 

could be that multiple miners receive the same value which also results in no conflict. However, if 

conflicting values are sent out to different miners, the broadcast step allows nodes to drop those 

values.  
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Once values from 50% + 1 miners are received, we proceed to next phase. This means, the hashes 

sent out by the malicious miners would be received at each node from multiple sources. Comparing 

the hashes corresponding to each miner, an honest miner would confirm if conflicting values have 

been sent out. Since all the hashes need to be signed, we can determine the miner(s) who sent out 

conflicting values and evict them from the network for the current round. The algorithm proceeds 

with the remaining validated values. 

Similarly, a malicious miner can’t go undetected if they send conflicting random numbers (secret 

values) to different miners. 

Mathematically, if a miner mi sends a hash H(si) to one miner, the hash value corresponding to mi 

as H(si) after the broadcast step of 3.b. should be same for all the miners. 

H(si) = H(sj) iff i = j 

As long as there is at least one honest miner, this condition is satisfied.  

 

 
Theorem: We can always detect if a malicious miner sends a secret value which doesn’t correspond 

to the hash shared in the hash-sharing phase 

 

Proof: Step 2.a requires miners to send the hashes first before sending the actual secret value. Both 

the hashes and secret values are signed by the miner’s private key. If a malicious miner sends a 

secret value which does not correspond to the hash they sent previously, an honest miner would 

confirm this activity upon comparison of the hash generated by the secret value shared by the miner 

with the hash the miner shared themselves previously. The signature would determine which miner 

did it and they are evicted from the network for the current round. The algorithm proceeds with the 

validated values. 
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Mathematically, if a miner mi sends out a secret number si in the secret-sharing phase, hash of the 

number, i.e. H(si) should be equal to the hash the miner mi shared in the hash-sharing phase. This 

is guaranteed as long as there is at least one honest miner in the network. 
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CHAPTER 6 
 

Conclusion 
 

 
This thesis focuses on the security analysis of a blockchain network, Scrybe, evaluating its 

robustness and availability. To do this, common approaches are considered for disabling, or 

degrading distributed systems. The most successful tools are generally referred to as Distributed 

Denial of Service (DDoS) attacks. To verify our proposed blockchain network, we therefore 

integrate successful DDoS methods into our verification suite. Since Scrybe uses TCP for 

communication, we leverage DoS attacks as a tool to exploit the known flaws in the TCP such as 

the SYN flood D/DoS attack.  

We observe that the presence of D/DoS attacks increases the response time of the network. 

We also observe how the performance changes with change in some Linux kernel TCP parameters. 

Consensus is reached in all the cases.  

We also consider the possibility of a malicious miner(s) attempting to disrupt the 

functioning of the blockchain network so that client files are not successfully registered on the 

network. We verified that as long as there is at least a single honest miner in the network, consensus 

on who gets to create the new block is guaranteed and the client files are registered on the network. 

 

6.1 Future Work 

The experiments and results are valid for our test case scenario of one malicious miner out 

of five malicious miners. As the total number of participating miners increases, and more malicious 

miners are present, the impact of the attacks could be more powerful because they could be 

launched by proper coordination of the malicious miners. They could attack multiple miners 
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simultaneously, thereby, increasing the probability of the miner getting selected to send the 

blockchain update response to be under the influence of the attack. As a result, the probability of 

legitimate miners or clients experiencing denial-of-service can be increased. 

We verified how consensus is reached as long as there is at least one honest miner in the 

network. In practice we would have an n number of miners with less than 
1

3
 * n faulty. We need to 

verify the minimum number of n for which our tests and proofs are valid.  
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