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ABSTRACT 

Droughts are the most ambiguous of all natural hazards and yet are often cited as 

the most destructive and are responsible for the most widespread damage across all 

sectors of society. The purpose of this study was to further understand the impact that 

drought has on various sectors of society, especially the economic sector, and how 

various regions across the United States are specifically impacted by droughts and 

drought effects. In order to quantify the impact that drought has on the economic sector, 

an analysis was performed internationally between each country’s GDP and various 

drought indices such as PDSI, SPI, and SPEI. In order to account for exponential growth 

in GDP, the correlation was performed on detrended GDP using logarithmic trend free 

pre-whitening (TFPW) and logarithmic quadratic methods. The combination of PDSI and 

Log. TFPW gave the most complete understanding of negative correlation between 

drought and a nation’s economy. In order to focus on drought impact in the United States, 

ARIMA modeling was used to establish a forecasting model for PDSI time series for 

various climatic regions around the country. The accuracy of these forecasting models 

was quantified through an approximate AIC method and compared to precipitation and 

temperature of each of the regions to determine the influence each drought component 

had on model accuracy. The regions with lower temperatures such as the Upper Midwest 

gave the more accurate drought forecasting models. The applicability of each of these 

climatic regions towards drought studies were tested by Severity Area Frequency curve 

analysis. While the Northwest region of America necessitated a need for two drought 

sub-regions, most of the climatic regions were affected by droughts homogenously. 
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CHAPTER 1: A REVIEW OF DROUGHTS 

1.1 Droughts as Natural Hazards 

 The World Health Organization (WHO) defines a natural disaster as “an act of 

nature of such magnitude as to create a catastrophic situation in which the day-to-day 

patterns of life are suddenly disrupted and people are plunged into helplessness and 

suffering and as a result need food, clothing, shelter, medical, and nursing care and other 

necessities of life and protection against unfavourable environmental factors and 

conditions” (Assar, 1971). A natural hazard is the threat of a natural disaster that has not 

necessarily created the anthropomorphic impact that classifies as a disaster. Ultimately, 

natural hazards and disasters are determined by their impact on human activity and are 

even declassified as hazards if they have no human impact (Maybank et al., 1995). 

Natural hazards can include earthquakes, floods, tornadoes, storms, and droughts. Of all 

of these natural hazards, droughts arguably have the highest human impact over the 

entirety of its impact (Wilhite 2001). This is due to the cyclical negative system of water 

shortage creating higher water demand ultimately creating significant damage to societies 

as a whole. 

 While there are many aspects of droughts which are similar to other natural 

hazards such as the varying degrees of intensity, duration, and areal extent, there are 

many ways in which droughts differ which has created an ambiguous nature surrounding 

droughts and their impact. While most other hazards are a sudden event that occurs very 

rapidly, the onset and end of droughts are usually difficult to determine and have made 
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droughts considered a creeping phenomenon. This makes drought monitoring difficult to 

determine and also leaves mild local scale or short term droughts as mostly 

unidentifiable. And while all natural hazards can vary in scale, the maximum range of the 

areal extent of droughts is much larger than any other natural hazard. This makes the 

impacts of droughts more widespread but these direct impacts have been difficult to 

estimate in total. This is because the damages that drought cause are not often structural 

which is usually the standard which the damages of other natural hazards are estimated 

by. The cost of human life is not directly impacted as much as other natural hazards but 

the indirect impact of droughts have had tolls on human health and livelihood. 

 Finally, the main difference between droughts as opposed to other natural hazards 

is due to their lack of consensus definition. Most definitions revolve around a lack of 

precipitation while some include an aspect of temperature but it is important to explicitly 

differentiate a drought from a heat wave. Not only do heat waves lack the facet of 

precipitation but they also take place over a time scale of weeks rather than the months or 

years that a major drought event can last (Mishra & Singh, 2010). Droughts have 

different causes in varying locations and regions throughout the world, especially regions 

where precipitation follows a seasonality in magnitude and intensity. While other natural 

hazards are clearly defined by their natural structure, droughts have been defined and 

classified by their impacts rather than the natural or meteorological makeup (Lloyd-

Hughes, 2014). Multiple studies previously performed on droughts have put droughts into 

four different categories of increasing effect magnitude including (1) meteorological, (2) 
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hydrological, (3) agricultural, (4) groundwater, and (5) socio-economical droughts 

(Hisdal & Tallaksen, 2000). An expansion of these drought classifications follows. 

1.1.1 Meteorological Droughts 

A meteorological drought is based purely on precipitation and climatological 

norms. These droughts are defined by their degree of dryness and below average 

rainfall. In order to determine if lack of precipitation is due to drought, it is 

important to take location and local climate into account. In areas where the 

climate is already arid and dry, long periods of little rainfall may not be accurately 

classified as drought as this may just be a natural part of the climate (Wilhite & 

Glantz, 1985). Areas with seasonal rainfall such as the Indian subcontinent may 

also have periods with little rainfall and extreme rainfall such as the dry and 

monsoon seasons, but the dry seasons may not be classified as drought related 

since it is an annual and expected event. A special exception to these climate 

related lack of precipitation are those areas affected by El Niño-Southern 

Oscillation (ENSO) patterns as these events are inter-annual, less predictable, and 

extend beyond any single global region or climate. Meteorological droughts in all 

regions, whatever the cause, are all defined by a deficit of precipitation from the 

expected average over an extended time period. Because of the extent of records 

of precipitation data globally, most of the studies and analyses performed on 

droughts have centered on meteorological droughts, including the majority of the 

focus of this study. 
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1.1.2 Hydrological Droughts 

Droughts are classified as hydrological droughts when the lack of precipitation 

affects the access of local surface water resources. Many of the records defining 

this class of droughts include streamflow and land runoff volumes. These types of 

droughts are generally associated with low streamflow but this is not the only 

indicator of hydrological droughts as they affect surface water availability for 

water resource systems as well. Low streamflow is also not always an indicator of 

drought as there is a larger temporal aspect to droughts that an instantaneous 

record such as streamflow does not fully capture (Van Loon, 2015). A streamflow 

deficit can be caused by human activity and while this can exacerbate effects on 

other sectors of society, droughts are natural hazards and as such are caused by 

acts of nature rather than human activity. Hydrologic droughts are greatly 

impacted by local geography as land runoff is the direct supply of these 

hydrological records. Catchments and watersheds that are highly resilient to 

drought include those areas with low flow speeds and greater water accumulation 

spread throughout the area. This means that changes in land cover and land usage 

can also make areas more or less prone to hydrological droughts over time. 

 

1.1.3 Agricultural Droughts 

Agricultural droughts are determined when lack of water availability begins to 

affect agricultural production. These droughts are not only dependent on 

precipitation but also soil moisture and the specific crop water demand. The 
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variability associated with these kinds of droughts make agricultural droughts 

highly localized and region specific. While all drought classifications have some 

kind of impact on human activity, agricultural droughts are the earliest 

classification where droughts directly impact human society and are largely 

determined by human action. Choice of crop and farming practices can directly 

affect the severity of agricultural droughts (Rodda & Ubertini, 2004). These kind 

of droughts are also highly dependent on temperature as evapotranspiration drying 

out the upper layers of soil directly adds to the decrease in crop yield. Ultimately 

agricultural droughts focus on soil moisture and its direct effect on crop 

productions. 

 

1.1.4 Groundwater Drought 

A groundwater drought occurs when the significant lack of groundwater recharge 

begins to affect the groundwater storage levels and reduces discharge. 

Groundwater droughts are highly dependent on media properties where the 

groundwater is stored, similar to the impact that the surface sub-basins have on 

hydrological droughts. Aquifers with low permeability do not store as much total 

groundwater but are not as easily affected by short term recharge deficits unlike 

aquifers with high permeability which store more groundwater but have highly 

variable groundwater levels. Overall, groundwater droughts are on a much longer 

time scale than others such as meteorological droughts due to the lag time 

associated with groundwater recharge (Peters et al., 2005). Shorter or milder 
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droughts generally leave groundwater unaffected because of this recharge lag time 

buffer which makes groundwater management a vital part of regional drought 

resiliency. It is important to differentiate groundwater droughts from the previous 

agricultural droughts as agricultural droughts deal with low soil moisture whereas 

groundwater droughts are focused on deeper, saturated aquifer levels that are not 

accessed by crop roots (Van Lanen & Peters, 2000). Also agricultural droughts 

are primarily measured by drop yields while groundwater droughts focus on 

groundwater availability. 

 

1.1.5 Socio-economical Droughts 

Droughts which cause a shortage in demand of water resource systems are 

classified as socio-economical droughts. These droughts focus on water as an 

economic good and occur when the supply for that good cannot meet the water 

demand. Socio-economical droughts are the most significant to human activity 

and involve components of all previous drought classifications. The efficiencies 

in system development and water resource policy determine the vulnerability that 

a society has to socio-economic droughts. Minimizing water demand through 

conservative practices help increase drought resiliency in times of water scarcity. 

There is often public confusion between actual socio-economic droughts and 

water shortages created by over-usage of the local water supply. Consistent with 

all other drought classifications, socio-economical droughts are caused by weather 

related water shortages and cannot be reversed by short term human activity.  
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1.2 Drought Indices 

 While there are many indices focusing on various factors contributing to droughts 

such as precipitation, temperature, soil moisture, crop yields, etc., this study primarily 

focuses on the most popular indices of Palmer Drought Severity Index (PDSI) and 

Standardized Precipitation Index (SPI). It also includes a variation of SPI which includes 

the calculation of evapotranspiration (ET) called the Standardized Precipitation ET Index 

(SPEI). The calculation and limitations of each index is discussed below. 

 

1.2.1 Standardized Precipitation Index (SPI) 

 In 1993, McKee et al. introduced SPI based on standardized precipitation, or “the 

difference of precipitation from the mean for a specified time period divided by the 

standard deviation where the mean and standard deviation are determined from past 

records.” The recommendations from that 1993 study state that the previous precipitation 

records used should be based on at least 30 years of precipitation data within the area of 

interest. The use of standardized precipitation implies that the precipitation data fits a 

normal distribution but as this is not always the case, a method was also determined to 

find the probability of the desired rainfall from a gamma distribution and then using an 

inverse normal function on this probability to determine the corresponding SPI value. 

The gamma distribution was chosen as an alternate method as this distribution is 

commonly associated with precipitation statistical distributions and modeling (Husak et 

al., 2007). SPI is commonly used over monthly periods but could also expand to include 
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multi-month, annual, or multi-year accumulations of rainfall. SPI is often used because of 

its simplicity and flexibility in terms of regionality and time scale (McKee et al., 1995). 

The main limitations associated with SPI are the dependency on distribution fit of the 

data and length of precipitation records used to derive the index value. Multiple statistical 

distributions have been used in association with SPI including the Log-Pearson Type III 

(LP3) distribution used later in this study. The precipitation data must have a high 

goodness-of-fit to the applied statistical distribution in order to produce accurate SPI 

values. The length of previous precipitation records used can directly affect this statistical 

distribution as a robust record of past precipitation creates much more reliable SPI values 

that accurately reflect the rainfall or lack thereof within the region of interest. 

 

1.2.2 Standardized Precipitation Evapotranspiration Index (SPEI) 

 Similar to SPI, SPEI also involves a standardization process where any statistical 

distribution used to determine probability of monthly data is converted into a normally 

distributed Z-score but its standardized value includes the calculation of loss of runoff 

due to ET (Vicente-Serrano et al., 2010). A common method used to predict ET or 

potential ET (PET) is the Thornthwaite method developed in 1948 which only requires 

the monthly average temperature for the study location. This method for calculating PET 

is shown in Equations 1-A – 1-G. The T in Equation 1-A represents the average 

temperature for the specified month in degrees Celsius. The I in Equation 1-A is a heat 

index which is a summation of all monthly heat indices i shown in Equation 1-B. The m 
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in Equation 1-A represents a coefficient based on the heat index I of the area and is 

calculated through Equation 1-C. K in Equation 1-A is calculated in Equation 1-D and is 

a correction coefficient based on the maximum number of sun hours N and the number of 

days within the specified month NDM. The maximum number of sun hours N shown in 

Equation 1-E is based on the hourly angle of sun rising 𝜛𝑠. Equation 1-F shows the 

calculation of the hourly angle of sun rising 𝜛𝑠 which is based on the latitude of the 

location of interest ϕ and the solar declination δ, both in radians. The solar declination δ 

in Equation 1-G is based on the average Julian day of the specified month J. After 

deriving the PET, this value is directly removed from the monthly precipitation depth to 

give the rainfall deficit or surplus for that month. 

𝑃𝐸𝑇 = 𝐾 (
10∗𝑇

𝐼
)
𝑚

    (1-A) 

𝑖 = (
𝑇

5
)
1.514

     (1-B) 

𝑚 = 6.75 ∗ 10−7 ∗ 𝐼3 − 7.71 ∗ 10−5 ∗ 𝐼2 + 1.79 ∗ 10−2 ∗ 𝐼 + 0.492 (1-C) 

𝐾 = (
𝑁

12
) (

𝑁𝐷𝑀

30
)    (1-D) 

𝑁 = (
24

𝜋
)𝜛𝑠     (1-E) 

𝜛𝑠 = arccos(− tan(𝜑) tan(𝛿))   (1-F) 

𝛿 = 0.4093 sin (
2𝜋𝐽

365
− 1.405)   (1-G) 
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1.2.3 Palmer Drought Severity Index (PDSI) 

 The PDSI is one of the most widely used drought index internationally but it is 

also one of the most complex indices (Jacobi et al., 2013). The index, developed by 

Palmer in 1965, is based on a water balance theory where precipitation P follows one of 

four different outcomes: evapotranspiration (ET), recharge (R), runoff (RO), or losses (L). 

The maximum values of each of these outcomes are estimated by “potential” values 

corresponding to each of the estimates. The value for potential ET (PE) is estimated 

using the Thornthwaite method shown previously. Potential recharge (PR) is estimated 

through Equation G and is based on the available water capacity (AWC) of the underlying 

layer of soil or the depth that can hold water before reaching the wilting point in the 

region. In his water balance method, Palmer split the soil of the study location into two 

layers with the surface layer being the depth necessary to hold 25 mm of moisture and the 

underlying layer being dependent on all other characteristics of the soil. The depth of this 

underlying layer is dependent on the AWC of the area. PR is also based on the available 

moisture already stored in both the surface and underlying layers represented by Ss and Su 

in Equation 1-H respectively. 

𝑃𝑅 = 𝐴𝑊𝐶 − (𝑆𝑠 + 𝑆𝑢)    (1-H) 

 The potential loss (PL) of the soil is defined as the summation of the potential 

losses in both the surface and underlying layers of soil or PLs and PLu in Equation 1-I. 

PLs is defined as the minimum of either the PE or the Ss, shown in Equation 1-J. The PLu 

is given by Equation 1-K. 
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𝑃𝐿 = 𝑃𝐿𝑠 + 𝑃𝐿𝑢     (1-I) 

𝑃𝐿𝑠 = min(𝑃𝐸, 𝑆𝑠)       (1-J) 

𝑃𝐿𝑢 =
(𝑃𝐸−𝑆𝑠)𝑆𝑢

𝐴𝑊𝐶
     (1-K) 

 This leaves potential runoff (PRO) to be defined as the potential precipitation that 

was not soaked into the soil. In Palmer’s original study, he estimated potential 

precipitation to be equivalent to AWC giving the definition of PRO shown in Equation 1-

L. 

𝑃𝑅𝑂 = 𝐴𝑊𝐶 − 𝑃𝑅 = 𝑆𝑠 + 𝑆𝑢       (1-L) 

 These four potential values are averaged for each month using previous records 

along with the average of the estimated actual values of ET, recharge, losses, and runoff 

to create the four local monthly coefficients used to describe the area of interest shown in 

Equations 1-M – 1-P. 

𝛼𝑗 =
𝐸𝑇̅̅ ̅̅ 𝑗

𝑃𝐸̅̅ ̅̅ 𝑗
     (1-M) 

𝛽𝑗 =
�̅�𝑗

𝑃𝑅̅̅ ̅̅ 𝑗
     (1-N) 

𝛾𝑗 =
𝑅𝑂̅̅ ̅̅ 𝑗

𝑃𝑅𝑂̅̅ ̅̅ ̅̅ 𝑗
     (1-O) 

𝛿𝑗 =
�̅�𝑗

𝑃𝐿̅̅̅̅ 𝑗
     (1-P) 
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 These coefficients are combined with the estimated actual values of the four 

outcomes for the specified month to create the Climatically Appropriate For Existing 

Conditions (CAFEC) precipitation which is then compared to the actual precipitation for 

the specified month to determine the surplus or deficit of precipitation for that month. 

This deficit (d) is shown in Equation 1-Q. 

𝑑 = 𝑃 − 𝐶𝐴𝐹𝐸𝐶 = 𝑃 − (𝛼 ∗ 𝑃𝐸 + 𝛽 ∗ 𝑃𝑅 + 𝛾 ∗ 𝑃𝑅𝑂 − 𝛿 ∗ 𝑃𝐿)  (1-Q) 

 The deficit is then multiplied by a weighting factor created for the specified 

location and month (Kj) in order to give the moisture anomaly index (Z) shown in 

Equation 1-R, commonly referred to as the Z-index. The weighting factor, shown in 

Equation 1-S, is based on the average of the absolute values of the deficits for that month 

in previous records as well as the ratio Tj of the average moisture demand to the average 

moisture supply for that month calculated in Equation 1-U. 

𝑍 = 𝐾𝑗 ∗ 𝑑     (1-R) 

𝐾𝑗 =
17.67𝐾�̂�

∑ 𝐷𝑖̅̅ ̅∗𝐾�̂�
12
𝑖=1

       (1-S) 

𝐾�̂� = 1.5 log10 (
𝑇𝑗+2.8

𝐷𝑗̅̅̅̅
) + 0.5    (1-T) 

𝑇𝑗 =
𝑃𝐸𝑗̅̅ ̅̅ ̅+𝑅𝑗̅̅ ̅+𝑅𝑂𝑗̅̅ ̅̅ ̅̅

𝑃𝑗̅̅ ̅+𝐿𝑗̅̅ ̅
       (1-U) 

 After determining the Z-index for the given month i and location, the PDSI value 

for these specifications is dependent on the previous month’s PDSI value and the Z-index 
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for the specified month. The final equation for calculating PDSI is shown in Equation 1-

V. 

𝑃𝐷𝑆𝐼𝑖 = 0.897𝑃𝐷𝑆𝐼𝑖−1 +
𝑍𝑖

3
    (1-V) 

 While PDSI is one of the most widely used drought indices, there have been many 

limitations and critiques of the method that have been previously established and studied. 

The first of these critiques is typically a comment on the complexity of the PDSI method 

in comparison with other drought indices. While it does give the advantage of accounting 

for precipitation, temperature, and soil characteristics, these also require a large amount 

of data to be available for the desired area of study. Another critique of the Palmer 

method is the somewhat arbitrary values and coefficients it gives for some of the steps in 

the process, especially the definition of the surface and underlying layers of soil being 25 

mm of moisture (Alley, 1984). While there have been other methods that have since 

developed to correct some of these arbitrary values such as the Self-Corrected PDSI (SC-

PDSI), there are still some aspects of the Palmer method that are derived empirically and 

were defined through limited sample size of the original study. One of the other 

limitations to PDSI that has arisen is the assumption in the water balance method used 

that runoff only occurs after all of the AWC is saturated which underestimates total 

runoff. It also assumes that all precipitation that produces runoff is rain and does not 

account for regions with lower temperatures which are severely affected by snowfall. 

Lastly, another critique to PDSI is the autoregressive portion that is integrated into the 

methodology. While it is beneficial to incorporate the outstanding conditions of the 
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region into the calculation of PDSI for the specified month, the uneven weight that PDSI 

gives to its previous values allows a certain precipitation or drought event to have effects 

far into future values, with a single value holding weight for future values up to almost 

three and a half years into the future. This weight may cause certain drought events to be 

classified as droughts longer than they are actually affected the given region. 

 

1.3 Drought Descriptors 

 When the various drought indices previously mentioned are plotted with time for 

a certain region, they create a time series that can describe the region’s drought history. 

Run theory can then be applied to this time series compared to a certain threshold X0, 

often at zero to incorporate any negative value, to quantify certain characteristics of a 

drought (Fu & Koutras, 1994). The characteristics shown in Figure 1-1 are severity, 

duration, and intensity (Yevjevich, 1967). The duration of a drought is the run length of a 

drought index or the number of consecutive time steps, usually months, which the 

drought index value is found to be below the threshold. The drought severity is the run 

sum of a drought index or the summation of all consecutive drought index values that are 

found to be below the threshold. While the intensity in Figure 1-1 is shown to be the 

average index value during the drought event, the definition of intensity used in this study 

is the maximum index value found within the specific drought event. 
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1.4 Study Objectives and Outline  

 The objectives of this study are to analyze the impact droughts have on various 

sectors of society, gain a further understanding of what regions are especially affected by  

 

 

 

drought, and determine the accuracy of drought forecasting in certain regions. In order to 

determine both the direct and indirect impact that droughts have on local and global 

scales, a study of the correlation between droughts and GDP is performed in Chapter 2. 

This chapter includes a summary of examples of drought studies affecting local GDP, a 

background review of GDP as an economic indicator, methods for transforming GDP 

values into a time series that can be comparable to drought index time series, the 

Figure 1-1: Drought run theory characteristics 

(Mishra, Ashok K., and Vijay P. Singh. “A Review of Drought Concepts.” Journal of 

Hydrology, July 2010) 
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methodology used to perform a correlation analysis between various drought indices and 

GDP, and the results of the international economic-drought correlation analysis. The 

specific objectives of the comparison of drought indices and GDP is to determine the 

regions of the world most impacted economically by drought as well as determine which 

drought index and GDP transformation method each nation should use to best indicate 

the impact that drought has on their own nation’s economy.  

 Chapter 3 is focused on the applicability of drought indices to US national 

climatic regions. This chapter includes an introduction to time series stochastic modeling, 

a review of the use of Severity Area Frequency (SAF) curves as a spatio-temporal 

analysis, the methodology used in both ARIMA stochastic modeling and SAF curves, the 

results of the regional ARIMA modeling for PDSI, a brief test of the stationary 

assumption of stochastic modeling, and the results of the SAF curve analysis on all 

national climatic regions for various indices. The specific objective of these statistical 

analyses was primarily to determine if these national climatic regions were applicable to 

drought studies. Other objectives included which regions were more reliable to use 

stochastic modeling for drought forecasting, which aspects of drought most affected the 

accuracy drought modeling, and which drought index was most useful for summarizing 

the effects that droughts had on the various national climatic regions. The final Chapter 4 

is a conclusion of the study. This includes a summary of all results, limitations of the 

study and recommendations for future studies.  
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CHAPTER 2: DROUGHT IMPACT ON GLOBAL ECONOMIES 

2.1 Introduction 

 There have been many examples throughout history of negative impacts due to 

droughts in all areas of the world. Much literature has been written on these various 

impacts, especially agricultural impacts due to droughts, but the economic impact of 

droughts in all sectors of society is relatively undiscovered. There is great work to be 

done on determining and quantifying the connection between droughts and economies of 

various scales across all sectors. Of the studies that have been done that have modeled 

drought impact on economics (Harou et al., 2010; Freire-González et al., 2017), a few 

significant drought events have been highlighted. 

 

2.1.1 Catalonian Drought (2004-2008) 

 The first of these significant drought examples was the Catalonian drought in the 

mid to late 2000s which at one point caused the local government to have water shipped 

in from external sources such as Mersailles, France (Iceland, 2019). Catalonia, which is 

located in northeast Spain, is a region that contains Barcelona which has the highest 

population density in the country of Spain at 5.5 million people. This high population 

paired with the fact that the area already has inconsistent rainfall like much of the other 

Mediterranean cities meant that the area was already considerably vulnerable to drought 

(Martin-Ortega et al., 2012). When the worst drought on record in at least 90 years (with 

previous records being unreliable) hit the area from 2004-2008, the Catalonian region felt 
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the impact in all areas of society. As water reserves reached as low as 21% capacity in 

March 2008, a survey of the residents of Barcelona showed that around two-thirds of 

Barcelona residents took active water conservation methods and changed lifestyle 

routines (March et al., 2013). The Catalonian government made communication and 

conservation education a high priority as many campaigns to reduce water usage during 

hygiene routines such as turning off the water while brushing teeth or reducing time spent 

in showers were commonplace during the water shortage. This caused the Barcelona 

water demand to lower by 21% from 2007-2008 which created budget savings for the 

Ter-Llobregat river basin authority, an agency which regulates the usage of the watershed 

located inland in the Catalonian region, to provide relief for its residents. The total costs 

for the relief and regulation measures provided by the river basin authority made up 4.2% 

of the Spanish national budget in 2008. 

 Outside of the social impacts of this drought event, the direct and indirect impacts 

of the drought across all sectors was estimated by Martin-Ortega et al. (2012) through 

direct economic records and numerical estimations of impact on other sectors of society 

through previous input output tables of Gross Domestic Product (GDP) published by the 

Catalonian government. The areas most directly impacted by the regional drought were 

agricultural and hydroelectric production. With both of these sectors experiencing a 250 

million € and 114 million € losses between 2007 and 2008, respectively, the total direct 

production loss was estimated around 620 million €. Of all of the indirect losses that 

occurred due to the direct production loss, none were hit harder than the industrial sector 

which experienced a financial loss equivalent to 132.7 million €/year. Ultimately the total 



21 

 

losses from 2007-2008, including direct and indirect impacts, were estimated to be 750 

million €, corresponding of a 0.27% decrease in Spanish GDP in 2008 and a 0.48% 

decrease in Catalonian GDP. 

 

2.1.2 Australia’s Millennium Drought (1994-2009) 

 The most significant drought event that was highlighted across literature was the 

“Millennium Drought” that hit southeastern Australia in the late 90s and throughout the 

2000s. From 2001-2009, the Murray-Darling Basin located near Victoria in southeast 

Australia experienced nine straight years of below median rainfall on record (Van Dijk et 

al., 2013). With meteorological records in the area sparse prior to the twentieth century, it 

is difficult to say the exact frequency of this drought but it has been estimated to have a 

frequency of 1500 years and could possibly have been the most severe since 1783. As is 

usual with any drought event, the lack of water resources caused water use restrictions in 

urban areas and among farmers and also increased energy prices due to lack of 

hydroelectric production. While the impacts of the drought have been recorded 

extensively, the vast majority of the economic losses came from the agricultural industry 

in the area.  The previously mentioned water use restrictions caused agricultural water 

diversions within the Murray-Darling Basin to fall from 11 cubic km/year in the 1990s to 

4 cubic km/year in 2009. This lack of water caused the production of year round crops, 

which were most impacted, to decrease significantly with rice and cotton production 

falling by 99% and 84%, respectively. The wheat production in the area, another year 
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round crop, actually increased during this time period but mainly due to the increase in 

crop area and the transition to wheat crops that was already occurring. Van Dijk et al. 

(2013) estimated that despite the increase in wheat production, the overall yield of wheat 

crops in the area was 20% lower than what would have been expected under normal 

hydrologic conditions. The effect that the drought event had on seasonal crops such as 

oranges did not have as immediate of an effect as year round crops, but orange 

production was 32% lower from 2003-2007 than production in 1999-2002. Livestock 

population and production in the area also fell as sheep population in the Murray-Darling 

Basin fell by half. While wool clip production had been decreasing since its peak in 1970, 

its decline was exaggerated by the drought as overall production dropped by 40% during 

the drought event (Kirby et al., 2012). 

 The economic impact of these agricultural losses was significant to the Murray-

Darling Basin region and to the country of Australia. Overall, national agricultural GDP 

contribution fell by 16% on average during the drought period which corresponded to a 

1.6% drop in national GDP. The national agricultural production dropped by $7.4 billion 

in 2002-2003 alone. Socially, the employment rate in the Murray-Darling Basin dropped 

by 3% in drought years and farm debt totals tripled over the 10 year period of 2001-2010. 

In order to combat the social impacts of the drought, the Australian government provided 

$4 billion in government relief (Heberger, 2012). The majority of this relief went to mid-

size farms which were too large to have other avenues of income outside of the 

agricultural sector but too small to have drought resilient infrastructure in place. 

Although a direct and indirect analysis was not performed similar to the Catalonian 
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drought, the tourism economic production reduced by 5% in the Murray-Darling Basin 

area in 2008, representing a 0.7% drop in national tourism GDP. Effects that the drought 

event had on other sectors were also significant but not as easily quantified. 

 

2.1.3 California Drought (2012-2016) 

 While the recent drought in California was a significant drought event that was 

studied extensively, the public infrastructure established to help mitigate the negative 

effects serves as an example of how proper governmental preparation can allow drought 

economic effects to be minimized overall. The drought that occurred in the Central 

Valley Basin in California from 2012-2016 has been widely estimated based on various 

assumptions in frequency analysis, with reports ranging from a 20 year to a 1,200 year 

drought event (Lund et al., 2018). Its impacts across all sectors were undeniable as there 

was a 30% of the agricultural use surface water and hydroelectric power production 

reduced by half. In order to reduce the impact of these losses, groundwater supplies were 

used to replace two-thirds of the lost surface water for agricultural use and gas-turbine 

power was used to replace the hydroelectric power loss. These replacements came at a 

cost, however, with the gas-turbine power costing a total of $2 billion more than what the 

hydroelectric power would have cost and increased environmental risk that was not 

associated with the cleaner hydroelectric power. While groundwater pumping only gave 

an extra expense of $600 million per year, the use of groundwater arguably had a larger 

effect overall due to the negative effect of land subsidence that occurred causing the San 
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Joaquin Valley canal capacity to reduce by 60% (Tortajada, 2017). And while 

groundwater replaced a majority of the surface water supply used for agriculture, 6% of 

cropland in California was either fallowed or idled due to the drought event. Outside of 

agriculture, the most well-known effect of the drought event was the wildfires that were 

causing massive damage environmentally and socially. The drought event caused the 

death of 102 million forest trees which further increased the magnitude and effects of the 

wildfires that were occurring over this time period. 

 Knowing that the impacts of this drought were significant in their own right, it is 

difficult to imagine what could have occurred if the impacts were not reduced due to 

public action. The economic impact on an individual farm was reduced due to the 

transition from field and seed crop to the more lucrative fruit and not crop that was 

already occurring. Government infrastructure was also already established based on 

previous drought experience and a lower dependence on the agricultural sector. The US 

Department of Agriculture (USDA) established multiple relief programs to allow 

economic flexibility to the farmers in the drought area. During this time the 

Environmental Quality Incentives Program (EQIP) allocated $13.7 million in water 

conservation efforts for California to allow for more efficient use of water in the 

agricultural sector. The Noninsured Crop Disaster Assistance Program (NAP) increased 

the value of crop insurance due to natural disaster from 55% of value for 50% of crops 

lost to 100% of value for 60% of crops lost. The public action also made it easier for 

these farmers to take out and pay off loans with programs such as the Emergency Farm 

Loans Program which allowed for emergency loans to replace harmful effects due to 
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drought for up to $500,000. Current farm loan payments were also allowed to be delayed 

for up to a year with the Disaster Set-Aside Program. All of these public relief efforts 

contributed to the economic impact of the California drought to be minimized during this 

time. 

 

2.2 Economics Background 

2.2.1 Using GDP as an Indicator of Economic Strength 

 As nations across around the world become globally integrated, droughts that 

once impacted areas locally are now creating an international impact. One sector that is 

affected by droughts that can be quantified with relative ease is the economic sector. 

Using GDP as an international economic indicator, the strength of drought effects on the 

economic sector can be determined. GDP represents the total production value generated 

annually by all businesses and services located within an individual country. It was 

developed by the United States in complement with a national income value which 

eventually evolved into Gross National Income (GNI) in order to provide a 

comprehensive indication on the economic status of the country during the Great 

Depression and World War II (Landefeld, 2008). Today, virtually all nations of the world 

use GDP as an indicator of economic strength and most countries publish this data 

publically to allow for international economic studies. 

 GDP is an economic indicator that is widely accessible internationally, but 

another reason that GDP was chosen as the economic indicator in this study is its robust 
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temporal aspect. As economies change globally and international interests and 

investments shift across different markets, using a more sector specific indicator such as 

agricultural or energy production would be more time dependent as emphasis on these 

markets have grown or shrank over time (Kuznets, 1961; Foquet, 2016). Although many 

studies have focused on the economic impact of droughts on agriculture, this study aims 

to take a broader approach and determine drought impact on a nation’s economy as a 

whole. Using a more socially oriented index such as GDP per capita allows the influence 

of population changes to raise or lower economic strength (Boyle & McCarthy, 1999). 

While GDP and economic strength of a country in general is not independent of the size 

of its population, focusing on GDP as a whole instead of averaging values based on 

population allows for the effects of events such as population booms to be dispersed 

throughout time instead of treatment as an isolated event (Headey & Hodge, 2009). Using 

GDP per capita also assumes a relatively homogenous dispersion of wealth throughout a 

nation and does not account for changes in wealth distributions or disparities (van den 

Bergh & Ankal, 2014). GDP also accounts for economic strength of a country relatively 

isolated from other countries as global markets continue to become interconnected since 

it only takes production from goods and services located domestically. Other economic 

strength indicators similar to GDP include Gross National Product (GNP), which account 

for goods and services produced by a country both abroad as well as domestic, and GNI, 

which reflects the total income by the citizens and businesses of a country both abroad 

and domestic (OECD, 2020). While these economic indicators do give a broader 

overview of economic wealth of a country, they allow the influence of droughts located 
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outside of the nation’s borders to impact the economic status of the country. This study 

looks to reflect the impact of domestic droughts on domestic economy as some areas of 

the world are less resilient to droughts than others. 

 

2.2.2 Accounting for Exponential Economic Growth 

 When relating an economic time series such as GDP values, it is important to take 

the exponential nature of macroeconomics into account (Modis 2013).  In order to find a 

correlation between drought severity and annual economic output, this exponential trend 

must be taken out of the data to avoid bias towards the larger GDP values in more recent 

years. While there are various methods for detrending both in the sense of pure time 

series and economic detrending, the methods chosen for this study were Logarithmic 

Trend Free Pre-Whitening (Log-TFPW) to account for general time series detrending as 

well as Logarithmic-Quadratic detrending (Log-Quad) to represent a more economics 

based detrending approach. These methods were chosen for their applicability and 

simplicity. 

 Since the economic figures over time show exponential growth, both of the 

detrending methods took the logarithm of the data to attempt to minimize the exponential 

trend in the data. By taking a time series oriented detrending approach, the log. GDP 

numbers can be analyzed similar to other hydrologic time series (Şen, 2012). In this 

regard, TFPW has been proven as effective for determining and extracting trends in time 

series data and can be applicable to this dataset. In TFPW, the assumed intrinsic linear 
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trend is removed from a time series of data x. The value of this linear slope can be 

produced through the Theil-Sen Slope Analysis, which entails taking the median of the 

linear slope between each point in the time series, shown in Equation 2-A 

(Sayemuzzaman & Jha, 2014). After determining this slope value, the trend is removed in 

the dataset through the Trend Free (TF) process shown in Equation 2-B to produce a new 

time series x’ (Yue & Wang, 2002). A 1-lag Autoregressive model (AR(1)) is then run on 

x’ to determine the 1-lag autocorrelation coefficient r1 and used to remove autocorrelation 

from the dataset in a process called Pre-Whitening (PW), shown in Equation 2-C. An 

autoregressive model analyzes the autocorrelation or linear trend value between a 

variable t and itself at a certain time lag k. An AR(1) model gives the autocorrelation 

value between t and t-1 (Anderson 1942). Removing this autoregressive behavior from a 

time series removes the influence that a value had on the consecutive point. In this study, 

the trend free, pre-whitened time series y’ was considered acceptably detrended and 

stationary. 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗−𝑥𝑖

𝑗−𝑖
) for all 𝑖 < 𝑗   (2-A) 

𝑥𝑖
′ = 𝑥𝑖 − 𝛽𝑡𝑖      (2-B) 

𝑦𝑖
′ = 𝑥𝑖

′ − 𝑟1𝑥𝑖−1
′      (2-C) 

 While keeping the simplicity of the Log TFPW model but taking a 

macroeconomic approach, the other detrending method used was Log-Quad detrending 

where an assumed quadratic trend is removed from the logarithm of the economic data 

(Uribe & Schmitt-Grohe, 2017). While this does not account for business cycles that are 
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often observed in macroeconomic studies, it does all for the data to be relatively 

stationary and useful for the purposes of relating droughts and economic strength. It also 

may be in the best interest to keep this cyclical behavior in the economic data as droughts 

do not necessarily occur the same time scale as these cycles and the correlation gathered 

will be a commentary on the effect on the country in both economic boon and depression 

alike (Mendoza 1991). The process to remove the quadratic trend from a time series x to 

create the detrended, stationary time series y’, which is similar to the TF process, is 

shown in Equation 2-D. An example of how both of the detrending methods used 

transformed the raw GDP of the United States is shown in Figure 2-1. 

 𝑦𝑖
′ = 𝑥𝑖 − 𝑎𝑥𝑖

2 − 𝑏𝑥𝑖 − 𝑐    (2-D) 

 

2.3 Methodology 

 This study used GDP values that were found on the World Bank GDP Database. 

This gave a time series of annual GDP (2019 US$) values for 263 countries and regions 

from 1960-2018 (“GDP (Current US$)”, 2019). After this data was received, the GDP 

time series for each country was detrended in order to create stationarity in the data set. 

The detrending methods used were Logarithmic-Quadratic (Log-Quad) detrending and 

Logarithmic Trend Free Pre-Whitening (Log-TFPW). This created three separate GDP 

time series for each country and region: unprocessed GDP values (Raw), Log-Quad GDP 

values, and Log-TFPW GDP values. 
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Figure 2-1: GDP Detrending Methods on United States GDP 
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 The drought indices used in comparison with GDP were the Palmer Drought 

Severity Index (PDSI), 1-Month Aggregated Standardized Precipitation Index (SPI), and 

1-Month Aggregated Standard Precipitation Evapotranspiration Index (SPEI). The PDSI 

values were provided by the Dai Dataset from the National Center for Atmospheric 

Research (NCAR). The dataset gave monthly time series values from 1850-2010 for each 

grid point on a 2.5° x 2.5° grid covering all of the global land coverage (Dai & Quian, 

2004).  

The SPI data was monthly time series values from 1948-2018 for each grid point 

on a 0.5° x 0.5° global grid. This SPI dataset was found using the International Research 

Institute for Climate and Society (IRI) online database, organized by Columbia 

University (“Data: IRI Analyses SPI SPI-PRECL0p5_1-Month.”, 2020). According to the 

documentation of the dataset, the SPI values for each month were derived using a Log-

Pearson Type III (LP3) distribution which is based on the mean μ, standard deviation σ, 

and skewness γ of the data (Amin et al., 2016). The method for calculating the probability 

for a given precipitation x for this distribution is best found using the Probability Density 

Function (PDF), which is shown in Equations 2-E – 2-H. After finding the probability of 

the monthly precipitation, the SPI value is the Z-value of the standard normal distribution 

which corresponds with that probability. 

𝑓(𝑥) =
1

|𝛼|𝑥Γ(𝛽)
[(

ln(𝑥)−𝜉

𝛼
)
𝛽−1

] 𝑒−
ln(𝑥)−𝜉

𝛼    (2-E)  

𝛼 =
𝜎𝛾

2
      (2-F)  
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𝛽 =
4

𝛾2
      (2-G)  

𝜉 = 𝜇 −
2𝜎

𝛾
     (2-H)  

The SPEI values were given by the Spanish National Research Council (CSIC) 

(Beguería, 2017). This dataset gave monthly time series values from 1901-2015 for each 

grid point on a 0.5° x 0.5° global grid. The SPEI values for this dataset were calculated 

using the log-logistic distribution which is also based on the mean μ, standard deviation 

σ, and skewness γ of the data (Ahmed, 1988). The method for calculating the probability 

for a given precipitation x for this distribution is best found using the Probability Density 

Function (PDF), which is shown in Equations 2-I – 2-M. After finding the probability of 

the monthly precipitation, the SPEI value is the Z-value of the standard normal 

distribution which corresponds with that probability. (Γ(x) refers to the gamma function 

of x.) 

𝑓(𝑥) =
(
𝑥−𝜌

𝛼
)
−
1
𝛽

𝛼(𝑥−𝜌)(1+(
𝑥−𝜌

𝛼
)
−
1
𝛽)

2            (2-I) 

𝜇 = 𝜌 + 𝛼 ∗ 𝐴(1, 𝛽)      (2-J) 

𝜎 = 𝛼2 ∗ 𝐴(2, 𝛽) − 𝜇2    (2-K) 

𝛾 =
𝐴(2,𝛽)−3∗𝐴(2,𝛽)∗𝐴(1,𝛽)+2𝐴3(1,𝛽)

[𝐴(2,𝛽)−𝐴2(1,𝛽)]
3
2

    (2-L) 

𝐴(𝑗, 𝑐) =
Γ(1+𝑗𝑐)∗Γ(1−𝑗𝑐)

Γ(2)
    (2-M) 
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 Once these drought index datasets were received, the process of aggregating the 

monthly values to give annual drought severity was performed. For each of the monthly 

values within a given year, the absolute value of the sum of the negative index values 

gave the annual drought severity value for that year. Positive index values throughout the 

year were ignored in this summation. Once the annual drought severity was determined 

for each of the years at each of the grid points, the points were aggregated based on their 

respective countries. For countries that contained more than one data point, the annual 

drought severities for each year were averaged among all of the contained points. This 

gave each country a single time series for each of the drought indices. Countries that did 

not include a grid point were ignored for the study. 

 After associating both the GDP and drought index time series with each country, 

the Pearson product moment correlation coefficient (R) was determined to quantify the 

correlation between each drought index and GDP detrending method (Hauke & 

Kossowski, 2011). The method for calculating R is shown in Equations 2-N – 2-Q. The 

detrended US GDP series were plotted on scatter plots against the annual PDSI severity 

values in Figure 2-2. The raw, Log-Quad, and Log TFPW GDP correlation values were 

0.61, -0.02, and -0.36, respectively. 

𝑅 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦
          (2-N) 

𝑆𝑥𝑦 = ∑𝑥𝑖𝑦𝑖 −
(∑𝑥𝑖)(∑𝑦𝑖)

𝑛
      (2-O) 

𝑆𝑥𝑥 = ∑𝑥𝑖
2 −

(∑𝑥𝑖)
2

𝑛
     (2-P) 
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𝑆𝑦𝑦 = ∑𝑦𝑖
2 −

(∑𝑦𝑖)
2

𝑛
     (2-Q) 

 

Figure 2-2: GDP Detrending Methods PDSI Scatter Plots on United States GDP 
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 An important assumption to note when using R to determine correlation is that the 

results show the strength of the linear relationship between variables x and y. This means 

that the non-linear relationships between variables may not be completely captured by 

quantifying correlation in this way. However, it does provide a general sense of the trend 

between the two variables and is a commonly used practice in quantifying correlation. 

 

2.4 Results and Discussion 

By comparing both of the Log-Quad and Log TFPW detrended global GDP time 

series with the global averaged PDSI time series from 1960-2005 in Figures 2-3 – 2-4, 

some negative correlation is visually presented on a global scale, especially on the Log 

TFPW. This was an initial indicator that Log TFPW may be a more applicable detrending 

method to use when considering the negative effects that droughts can have on a global 

scale. The positive correlation that is seen in the latter half of the Log-Quad time series 

may show that the global economy is moving more independently of drought indices. 

 
Figure 2-3: Global Average Annual PDSI Drought Severity & 

Log-Quad Detrended Global GDP 
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 In order to further investigate the applicability of these detrending method as well 

as test their versatility, the correlation between raw or detrended GDP and drought 

indices such as PDSI, SPI, or SPEI were found for each nation with applicable data. The 

correlation values were then summarized in boxplots. The boxplots for PDSI shown in 

Figure 2-5 show that while both detrending methods show a stronger negative correlation 

than the raw GDP values, the Log-Quad detrending correlation plot showed a wider range 

of negative trends than the Log TFPW detrending correlation values. This was then 

contradicted by Figure 2-6 representing the SPI boxplots which show that the Log TFPW 

method to be the only applicable method for determining negative drought effects on 

GDP as it was the only range of correlation values to have at least 50% of the countries 

tested giving a negative trend between GDP and SPI. Finally the SPEI boxplots shown in 

Figure 2-4: Global Average Annual PDSI Drought Severity & 

Log TFPW Detrended Global GDP 
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Figure 2-7 give all GDP series, including raw values, being applicable to represent 

negative drought effects on GDP on a global scale with the raw GDP values giving a 

wider negative range and the Log TFPW GDP values giving a slightly stronger negative 

range among the detrending methods. 

 

Figure 2-5: World GDP PDSI National Correlation Values 
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Figure 2-6: World GDP SPI National Correlation Values 

Figure 2-7: World GDP SPEI National Correlation Values 
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Keeping in mind the spatial component of droughts, this same process of 

comparing GDP and drought indices through boxplots was broken down further to show 

the correlation by continental region. Since the PDSI boxplots gave stronger negative 

correlation to the detrending methods, this continental analysis was only performed using 

the PDSI drought index values. Comparing the raw GDP correlations to the detrended 

GDP in Figure 2-8 shows that the detrending methods are useful in determining negative 

trends between drought and economic impact. Between the detrending methods, while 

Log-Quad showed stronger negative correlation in some regions, especially Europe and 

Asia, Log TFPW had more negative correlation values among the different regions with 

all continents having at least 50% of countries showing a negative trend between PDSI 

and GDP except for Europe. Log TFPW also gave a stronger negative correlation value 

for North American countries than Log-Quad GDP. 

 By showing the correlation values on an international map, the regional 

applicability of negative trend between droughts and economic strength can be further 

concentrated. Of all of the drought indices and GDP detrending methods used, the Log-

Quad GDP correlated with PDSI shown in Figure 2-9 produced the negative trend with 

the greatest magnitude with Bosnia and Herzegovina with a correlation value of -0.73. 

This was in line with the surrounding area as most of the countries in Eastern Europe 

showed a negative trend with drought when correlating Log-Quad GDP with PDSI. 

While Log-Quad GDP produced the strongest negative correlations, the Log TFPW GDP 

with PDSI in Figure 2-10 produced the most widespread significant negative correlation 

values. This was especially true in North America as Canada, the United States, and 
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Mexico all had correlation values that were more negative than -0.25. Another significant 

area to note under this drought index and detrending method is near the southeast coast of 

Africa as one of the highest negative correlation values of this combination was produced 

in Zimbabwe of -0.51. 

Figure 2-8: Continental GDP PDSI National Correlation Values 
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 Figure 2-9: Global Log-Quad GDP PDSI National Correlation Values 

Figure 2-10: Global Log TFPW GDP PDSI National Correlation Values 
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Of all of the detrending methods and drought index correlations calculated, the 

pairing of Log-Quad detrended GDP and SPI produced the negative trends with the least 

magnitude and produced the least number of countries with negative correlation values, 

as seen in Figure 2-11. However, this combination did produce the strongest negative 

correlation for the Chinese economy with a value of -0.22 and the strongest negative 

trend under this correlation was Uganda at -0.38. Alternatively, the correlations between 

Log TFPW GDP and SPI in Figure 2-12 had slightly more widespread negativity in 

correlation across the globe and produced some of the strongest negative correlations of 

any combination for the region of Western Europe. It also produced a stronger maximum 

negative correlation with Somalia having a negative correlation of -0.57. 

Figure 2-11: Global Log-Quad GDP SPI National Correlation Values 
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The last drought index tested was SPEI which was much more applicable to the 

eastern hemisphere than the previous drought indices. SPEI and Log-Quad detrending 

produced stronger correlations overall, seen in Figure 2-13. The strongest correlation for 

this method was -0.40 found in Burundi, with several other nations such as Bolivia, the 

Faroe Islands, and Mongolia producing correlations below -0.35. While the Log-Quad 

detrending produced stronger negative correlations on average, the correlations between 

SPEI and Log TFPW shown in Figure 2-14 gave more widespread negative correlations 

across the eastern hemisphere. A majority of the countries in Africa, Asia, and Eastern 

Europe produced a negative correlation using this method with the strongest negative 

correlation occurring in Slovenia at -0.48. 

Figure 2-12: Global Log TFPW GDP SPI National Correlation Values 
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Figure 2-13: Global Log-Quad GDP SPEI National Correlation Values 

Figure 2-14: Global Log TFPW GDP SPEI National Correlation Values 
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In order to succinctly summarize the correlation processes that were performed, a 

statistical t-test of negative significance with 95% confidence was performed for both 

drought indices and both detrending methods on the correlation values for all the 

countries with data. This test helped reaffirm some of the statements made previously 

about the different drought indices and detrending methods. PDSI on average was found 

to be more widely applicable than any of the other indices to signify the negative impact 

between drought severity and national GDP. It also helped in eliminating some of the 

countries where negative trends could have been calculated by cross correlation with 

external variables. Among all of the countries of the world, the only country to have 

negative statistical significance in all drought indices no matter the detrending method 

was Madagascar. These statistical significance tests for PDSI, SPI, and SPEI are shown 

in Figures 2-15 – 2-17, respectively. 

Figure 2-15: Global GDP PDSI National Significantly Negative 

Correlation Values 
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Figure 2-16: Global GDP SPI National Significantly Negative 

Correlation Values 

Figure 2-17: Global GDP SPEI National Significantly Negative 

Correlation Values 
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2.5 Conclusion 

Through all of the methods and comparisons performed in this study, almost all 

countries that included both drought and GDP data had some combination of drought 

index and GDP detrending method that produced a significantly negative trend in GDP. 

This means that the effects that droughts have on a nation’s economic strength, while not 

necessarily independent of the economic development of the country, is an international 

phenomenon. The particular combination of drought index and GDP detrending appears 

to be regional in its effectiveness as combinations that produced strong negative 

correlations for a single country usually produced similar correlations to those nations 

surrounding it. On an international scale, PDSI was the most effective drought index on 

average while Log TFPW seemed to be more effective on average than Log-Quad in 

terms of GDP detrending. It is important to note that the correlation values presented in 

this study do not reflect the magnitude of effect that drought has on economic strength 

but rather the consistency that the effects occur. A high negative correlation value 

between drought index and detrended GDP gives a high probability that the drought will 

affect GDP, but does not speak on how drastic that effect will be. 
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CHAPTER 3: DROUGHT FORECASTING AND REGIONAL ANALYSIS 

3.1 Introduction 

3.1.1 US Climate Regions 

 The National Climatic Data Center (NCDC) under the National Oceanic and 

Atmospheric Administration (NOAA) has divided the United States into nine climatically 

similar regions for spatial comparison of climatic data (Enloe, 2020). These regions were 

derived by a 1984 study by Karl & Koss according to similar average temperature values. 

These national climatic regions are shown in Figure 3-1. One of the purposes of this 

study is to determine if these NOAA climatic regions are appropriate to apply for drought 

comparison. 

 
Figure 3-1: NOAA US Climatic Regions 

(Enloe, Sanchez-Lugo. “US Climatic Regions.” NOAA, 6 March 2020.) 
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3.1.2 Time Series Modeling 

 It is useful to consider a series of drought index values in a certain area as a time 

series in order to perform key statistical analyses. A temporal component is important to 

consider as droughts, unlike other natural disasters, occur over a certain duration of time 

instead of a relatively instantaneous event (Mishra & Singh, 2010). Of the various time 

statistical analyses used in time series studies, stochastic modeling is used often to 

suggest that the semi randomized behavior of weather patterns and droughts in particular 

can be described in a mathematical model (Katz & Parlange, 1998). An important 

assumption of the use of any stochastic modeling technique is that the data is assumed 

stationary and that no underlying trend would have influence over any specific point or 

set of points. The specific use of an Auto Regressive Integrated Moving Average 

(ARIMA) model in this study was from of the use of the Palmer Drought Severity Index 

(PDSI) because its derivation includes the influence of the value from the previous time 

step which would encourage auto regressive behavior (Jacobi et al., 2013). Another 

reason for the use of the ARIMA model was the popularity in the use of ARIMA models 

for forecasting precipitation and drought data (Mishra & Desai, 2005; Mishra & Singh, 

2011). This study aimed to determine if the use of ARIMA modeling for forecasting 

purposes was appropriate for the climatic regions given. 

 

 

 



54 

 

3.1.3 Spatio-Temporal Analysis 

 Another component of droughts that is important to consider is the scale of their 

spatial influence. Mishra & Desai (2010) stated that “a regional drought is assumed when 

a significant fraction of the total area of the region is under drought conditions.” This 

means that in order to fully understand if the climatic regions presented by the NOAA are 

applicable to droughts, they need to be studied holistically. It is also important to 

determine if some areas within these regions are more affected by droughts than others as 

droughts are not always homogenous in their effects (Mishra & Singh, 2010). A good 

method for summarizing the effects of drought on an entire region are through the use of 

Severity Area Frequency (SAF) curves. This technique has been used in multiple areas 

but studies that apply this analysis on this large of spatial scale are few (Mishra & Desai, 

2005; Amirataee et al. 2018). The previous studies applying this technique also often 

focused on a singular drought index rather than the comparison of multiple indices. This 

study can not only determine if the climatic regions are useful for spatio-temporal 

analyses and comparisons but also which drought index would be most applicable. 

 

3.2 Methodology 

3.2.1 Stochastic Modeling 

 For the stochastic modeling portion of the statistical analysis, a single state within 

each of the national climatic regions were chosen to represent the region. For this study, 

the Southeast region was represented by South Carolina (SC), South region by Texas 
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(TX), Southwest region by Colorado (CO), West region by California (CA), Northwest 

region by Washington (WA), Northern Rockies and Plains region by South Dakota (SD), 

Upper Midwest region by Wisconsin (WI), Ohio Valley region by Illinois (IL), and 

Northeast region by New York (NY). Once each state was selected, a Palmer Drought 

Severity Index (PDSI) time series was found on the Climate Data Online (CDO) 

Divisional Select database run by the National Climatic Data Center (NCDC) through the 

National Oceanic and Atmospheric Administration (NOAA). The CDO database gave a 

single PDSI time series as a state-wide summary for each state selected (Baldwin, 2020). 

Each time series was split into a training period for the stochastic models of 1895-1989 

and a testing period of 1990-2019. 

 Once all of the PDSI time series data was accumulated and processed, the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) was run on 

each of the state training period time series at multiple lag values. When the ACF, which 

determines the correlation value of a variable with itself at a particular time lag and all 

other previous lags, is run at multiple lags and plotted in a correlogram, the significant 

time lags used in the Autoregressive (AR) portion of the ARIMA stochastic models are 

clearly shown (Anderson, 1942). If the correlogram of the ACF shows exponential decay 

with no specific lags breaking this trend, then there are no significant lags suggested for 

use in an AR model. The process for calculating the autocorrelation value �̂� of a variable 

x with n observations at a time lag L is shown in Equations 3-A – 3-B. 

𝛾(𝐿) =
1

𝑛
∑ ((𝑥𝑖+𝐿 − �̅�) ∗ (𝑥𝑖 − �̅�))𝑛−𝐿
𝑖=1    (3-A) 
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�̂�(𝐿) =
�̂�(𝐿)

�̂�(0)
     (3-B) 

 Similarly, when the PACF, which determines the correlation value of a variable 

with itself only at one particular time lag, is run at multiple lags and plotted in a 

correlogram, the significant time lags used in the Moving Average (MA) portion of the 

ARIMA stochastic models are clearly shown. If the correlogram of the PACF shows 

exponential decay with no specific lags breaking this trend, then there are no significant 

lags suggested for use in a MA model. Since the process of finding the true partial 

autocorrelation value involves taking a partial derivative of the entire population, an 

estimate of the PACF for discrete samples has been developed from the best 

approximation, through mean square error, of the sample using an AR model �̂� (Dürre & 

Liboschik, 2015). The function for estimating the partial autocorrelation value �̂� of a 

variable x with n observations at a time lag L is shown in Equation 3-C. 

�̂�(𝐿) = 2 ∗
∑ ((𝑥𝑖−�̂�𝑖)∗(𝑥𝑖−𝐿−�̂�𝑖−𝐿))
𝑛
𝑖=𝐿+1

∑ ((𝑥𝑖−�̂�𝑖)
2+(𝑥𝑖−𝐿−�̂�𝑖−𝐿)

2)𝑛
𝑖=𝐿+1

             (3-C) 

 Once the correlogram of both the ACF and PACF were plotted and the significant 

lags of the AR and MA portions of the candidate ARIMA models were determined, each 

model was performed on the training period data. The best candidate model was then 

selected for each state by a method based on similar concepts to Akaike’s Information 

Criterion (AIC) (Akaike, 1973; Ozaki, 1977). The approximate AIC of each model with n 

observations and residuals E was quantified by Equation 3-D. The candidate model with 
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the lowest approximate AIC was then selected and applied to the testing period of the 

PDSI data. The accuracy of each model to the testing period was also calculated. 

𝐴𝐼𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑛 ∗ ln(𝜎2(𝐸)) + 2 ∗ (#𝑜𝑓𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)         (3-D) 

 

3.2.2 Severity Area Frequency (SAF) Curves  

 Unlike the stochastic modeling, the spatio-temporal SAF curve analysis used the 

entire climate region defined by NOAA instead of using a single state to represent the 

region. The analysis was performed using both PDSI values and 1-month aggregated 

Standardized Precipitation Index (SPI) data. The gridded PDSI data used was provided 

by the Dai Dataset from the National Center for Atmospheric Research (NCAR) (Dai & 

Qian, 2004). The dataset gave monthly time series values from 1850-2010 for each grid 

point on a 2.5° x 2.5° grid covering all of the global land coverage. The data points 

located outside of the United States were ignored for this analysis. 

 The SPI data was found using the International Research Institute for Climate and 

Society (IRI) online database, organized by Columbia University, and provided by 

NCDC through NOAA (“NOAA NCDC CIRS NClimDiv v1 sp01: 1-Month 

Standardized Precipitation Index Data,” 2017). This dataset gave index values from 

1895-2017 at station locations throughout the United States. Since the SPI data is not 

equally spaced like the PDSI values, it was necessary to develop a method to determine 

area weight. In order to determine the region that each station location affected, an 

Inverse Distance Weight (IDW) analysis was performed on the station locations 



58 

throughout the US using the climate region borders as break lines (Lu & Wong, 2008). 

Since the data points were discrete and not in a continuous raster format, there was no 

need for interpolation between points when using the IDW analysis so the search radius 

for all areas was set to only be the nearest point. This means that when considering any 

given point within the entire area of study, the distance to each station was calculated and 

inversed so that the station with the lowest distance would hold the most or in this study 

all of the weight of influence over that point. This split all of the regions into separated 

areas where the SPI values at the stations applied homogenously to the surrounding area. 

A map of the regions with the station points is shown in Figure 3-2. 

After each drought index dataset was obtained and processed, a gamma 

distribution was fit to the time series of both drought indices at each data point. The 

gamma distribution, whose Probability Density Function (PDF) is shown in Equation 3-

E, is based on the mean 𝜇 and variance 𝜎2 of the data (Thom, 1958). The shape 𝛼 and

Figure 3-2: SPI Data Stations and Associated Regions of 

Influence 
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scale 𝛽 parameters for the distribution are calculated by Equations 3-F – 3-G. Once these 

parameters were calculated for each data point, the 5, 10, 30, 50, and 100 year frequency 

drought severities were calculated for each drought index time series. 

𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽    (3-E) 

𝜇 = 𝛼𝛽     (3-F) 

𝜎2 = 𝛼𝛽2     (3-G) 

 With these drought severity frequency values associated to each data point 

throughout the area of the United States, all of the data points were separated by their 

associated climatic region. Once separated, the data points in each region were sorted 

from in descending order by the magnitude of their drought severity at each of the 

calculated frequency values. Once the severities were sorted at each frequency in each 

region, the cumulative area percentage that they represented was calculated to the scale of 

the highest severity representing the frequency value for the entire area (100%) and the 

lowest severity representing the frequency value for none of the area (0%). Since the 

PDSI data was equally spaced throughout the regions, the cumulative area percentage 

was calculated based on the rank k of the severity magnitude out of n observations shown 

in Equation 3-H. The SPI drought severities at the specified frequencies had associated 

area values ai so the cumulative area percentage was scaled using these areas as well as 

the rank k and number of region observations n, shown in Equation 3-I. These cumulative 

area percentage values of both of the drought indices were plotted against their respective 

drought severities to make the SAF curves necessary for the analysis. 
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𝐴𝑃𝐷𝑆𝐼 = 1 −
𝑘−1

𝑛−1
     (3-H) 

𝐴𝑆𝑃𝐼 = 1 −
𝑎𝑛/∑𝑎𝑖

𝑛−1
∗ (𝑘 − 1) −

∑ 𝑎𝑖
𝑘−1
𝑖=1

∑𝑎𝑖
   (3-I) 

 

3.3 Regional Applicability of Stochastic Models on PDSI 

 In order to determine the appropriate candidate models for the PDSI forecasting, 

the correlograms for the ACF and PACF of the training period of PDSI time series were 

plotted. While only the ACF and PACF correlograms of the Southeast region are shown 

in Figures 3-3 – 3-4 respectively, the correlograms of all the regions were extremely 

similar. The PACF correlogram for all of the regions showed exponential decay with no 

significant drop to indicate possible MA applicability. The possible candidate models are 

shown in Table 3-i.  

 
Figure 3-3: ACF Correlogram for Southeast region (SC) PDSI 

from 1895-1989 
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With the possible candidate models calculated through the correlograms of the 

training periods of PDSI data, the best possible model for each region was chosen. The 

method for choosing the appropriate model for each region followed the minimum AIC 

method (mAIC) also developed by Akaike in 1973 stating that the lowest approximate 

Region Candidate Models

Southeast (SC) AR(1)

AR(1)

AR(2)

Southwest (CO) AR(1)

West (CA) AR(1)

Northwest (WA) AR(1)

Northern Rockies & Plains (SD) AR(1)

Upper Midwest (WI) AR(1)

AR(1)

AR(2)

Northeast (NY) AR(1)

South (TX)

Ohio Valley (IL)

Figure 3-4: PACF Correlogram for Southeast region (SC) 

PDSI from 1895-1989 

Table 3-i: Candidate Models for All Regions 
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AIC calculated when applying each of the models to the testing period gave the most 

appropriate model. As shown in Table 3-ii, most of the states followed an AR(1) model 

with only the South region (TX) following an AR(2) model. The chosen best models for 

each of the regions are shown in Figures 3-5 – 3-13. 

 

Region Model AIC Precipitation Temperature 

Southeast (SC) AR(1) 451.39 3.98 62.59 

South (TX) AR(2) 568.24 2.27 64.81 

Southwest (CO) AR(1) 377.32 1.50 44.84 

West (CA) AR(1) 442.34 1.85 57.63 

Northwest (WA) AR(1) 431.56 3.52 46.28 

Northern Rockies & Plains (SD) AR(1) 369.51 1.61 44.68 

Upper Midwest (WI) AR(1) 295.73 2.64 42.61 

Ohio Valley (IL) AR(1) 370.10 3.17 51.78 

Northeast (NY) AR(1) 401.51 3.41 44.77 

 

Figure 3-5: Southeast Region (SC) AR(1) PDSI Model In 

Testing Period of 1990-2019 

Table 3-ii: Best Fit Models for All Regions 
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Figure 3-6: South Region (TX) AR(2) PDSI Model In Testing 

Period of 1990-2019 

Figure 3-7: Southwest Region (CO) AR(1) PDSI Model In 

Testing Period of 1990-2019 
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Figure 3-8: West Region (CA) AR(1) PDSI Model In Testing 

Period of 1990-2019 

Figure 3-9: Northwest Region (WA) AR(1) PDSI Model In 

Testing Period of 1990-2019 
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Figure 3-10: Northern Rockies & Plains Region (SD) AR(1) 

PDSI Model In Testing Period of 1990-2019 

Figure 3-11: Upper Midwest Region (WI) AR(1) PDSI Model 

In Testing Period of 1990-2019 
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Figure 3-12: Ohio Valley Region (IL) AR(1) PDSI Model In 

Testing Period of 1990-2019 

Figure 3-13: Northeast Region (NY) AR(1) PDSI Model In 

Testing Period of 1990-2019 
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With the same methods used for each region, the approximate AIC derived for 

determining the models used for each region could be used to compare suitability of 

applying stochastic models for forecasting between each of the regions. According to this 

accuracy comparison, the Upper Midwest region represented by Wisconsin had the 

lowest approximate AIC of 295.73 showing that stochastic modeling was most applicable 

in this region. Contrastingly, the region with the highest approximate AIC representing 

low stochastic model suitability was the South region represented by Texas with a score 

of 568.24. Since PDSI is mainly based on precipitation and temperature in the area, the 

average monthly precipitation and temperature of the different regions is also included in 

Table 3-ii in order to determine which of these factors, if any, have an effect on the 

accuracy of stochastic modeling for forecasting PDSI (Jacobi et al., 2013). A visual 

summary was made for these statistics in Figures 3-14 – 3-16 While Figures 3-14 – 3-15 

compare the accuracy to precipitation and temperature directly, Figure 3-16 compares 

accuracy to both temperature and precipitation by considering how the region ranks 

among all regions in the specified category. All of these figures support the idea that 

temperature affects stochastic modeling applicability more than precipitation. This claim 

would need to be furthered researched in future studies. 

In addition to checking the applicability of stochastic models for each region 

through an approximate AIC, an introductory study was performed on the stationarity 

assumption necessary to apply stochastic modeling. This was done by splitting the entire 

PDSI time series into two sixty year halves from 1900-1959 and 1960-2019. The 

maximum drought severity, intensity, and percentage of period in drought is shown in  
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Figure 3-14: Regional Average Monthly Precipitation and 

Stochastic Model Accuracy 

Figure 3-15: Regional Average Monthly Temperature and 
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Figure 3-16: Regional Average Monthly 

Precipitation/Temperature and Stochastic Model Accuracy 
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Table 3-iii. These statistics are also represented visually for severity, intensity, and 

drought percentage in Figures 3-17 – 3-19. A drought event in the Northern Rockies & 

Plains region (SD) during the first half of data gave it a large difference from the first half 

of data to the second in both drought severity and intensity but the drought percentage, 

which is less effected by individual drought events, for this region was relatively equal 

among the two time periods. In the drought percentage statistic the largest difference 

shown were in the South and Upper Midwest regions, represented by Texas and 

Wisconsin respectively, with both areas having about 13% more drought months in the 

first sixty years compared to the second. The region that seemed to follow the stationarity 

assumption the closest would be the Northwest region shown through Washington as the 

values for maximum drought intensity and severity as well as percentage of months that 

were considered in drought were relatively equal among both time periods. 

 

Region 

1900-1959 1960-2019 

Max. 
Severity 

Max. 
Intensity 

Drought 
Percentage 

Max. 
Severity 

Max. 
Intensity 

Drought 
Percentage 

Southeast (SC) 199.57 5.46 58.47 136.78 5.41 49.58 

South (TX) 341.62 7.77 65.00 199.52 8.06 52.08 

Southwest (CO) 196.70 6.43 48.19 221.17 9.09 47.78 

West (CA) 85.59 6.03 51.67 181.47 7.01 61.67 

Northwest (WA) 125.67 5.10 51.67 111.60 4.78 52.64 

Northern Rockies & 
Plains (SD) 

423.33 8.31 46.53 127.04 5.10 39.17 

Upper Midwest (WI) 193.34 6.41 50.28 75.73 7.88 37.64 

Ohio Valley (IL) 155.77 7.05 52.64 92.20 5.17 40.97 

Northeast (NY) 101.56 4.76 54.31 204.31 5.89 42.22 

 

Table 3-iii: Comparing Maximum Drought Severity and Intensity 

and Percentage of Drought between 1900-1959 & 1960-2019 
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Figure 3-17: Maximum Drought Severity between 1900-1959 & 1960-2019 

Figure 3-18: Maximum Drought Intensity between 1900-1959 & 1960-2019 

Figure 3-19: Maximum Percentage of Drought between 1900-1959 & 1960-2019 
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3.4 Spatio-Temporal Regional Analysis 

 After calculating the specified drought severity frequencies for each point and 

determining the associated area values, the severity and area values were plotted together 

for each frequency to form the SAF curves for each region. The PDSI SAF curves are 

shown in Figures 3-20 – 3-28. For areas such as the Southeast, Ohio Valley, and 

Northeast regions in Figures 3-20, 3-27, and 3-28 the flatter curves show a homogenous 

region where drought severity applies equally across the region. For areas with SAF 

curves that have a large jump in severity at low cumulative area values such as the 

Southwest, West, Northern Rockies & Plains, and Upper Midwest in Figures 3-22 – 3-23 

and 3-25 – 3-26 show that there are specific points within the region that are particularly 

prone to drought. The curves shown in the Northwest region in Figure 3-24 have two 

clearly separate homogenous regions. This may show that this region would need to be 

further divided into sub regions when analyzing PDSI based drought frequency. The 

curves shown in Figure 3-21 for the South region show a constant linear trend in all of 

the curves which means that the areas where droughts are particularly severe diffuse 

throughout the region to create a continuity of drought severities. 

 In order to compare each region, the 50 year and 100 year SA curves for all 

regions were combined in Figures 3-29 and 3-30 respectively. Comparing these regions 

shows that the eastern regions, specifically the Southeast, Northeast, Ohio Valley and 

South regions, are especially comparable and could be merged in future analyses. While 

not as comparable, similar claims could be made for the Upper Midwest and Northern 

Rockies & Plains regions.  
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Figure 3-20: Southeast PDSI SAF Curves 

Figure 3-21: South PDSI SAF Curves 
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Figure 3-22: Southwest PDSI SAF Curves 

Figure 3-23: West PDSI SAF Curves 
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Figure 3-24: Northwest PDSI SAF Curves 

Figure 3-25: Northern Rockies & Plains PDSI SAF Curves 
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Figure 3-26: Upper Midwest PDSI SAF Curves 

Figure 3-27: Ohio Valley PDSI SAF Curves 
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Figure 3-29: Climate Regions 50 Year PDSI SA Curves 
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 Using a similar procedure for the SPI based droughts, the SAF curves for these 

index values are shown in Figures 3-31 – 3-39. The curves derived from these index 

severities show much more homogenous regions with slightly linear trends indicating a 

continuous drought severity affecting the entire region. The lower severities in the upper 

end of the cumulative area of the Southwest and West regions in Figures 3-33 and 3-34 

respectively show that there is a small region that is particularly resilient against droughts 

in the southwestern area. This is also seen in the comparison graphs of the 50 year and 

100 year frequency SA curves in Figures 3-40 and 3-41 as all regions seem to be 

comparable except for the upper cumulative areas of the West and Southwest regions. 

The only other exception in this comparison was the lower cumulative area of the South 

region showing an area in this region that is especially affected by droughts compared to 

the rest of the nation. 
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Figure 3-31: Southeast SPI SAF Curves 

Figure 3-32: South SPI SAF Curves 
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Figure 3-33: Southwest SPI SAF Curves 

Figure 3-34: West SPI SAF Curves 
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Figure 3-35: Northwest SPI SAF Curves 

Figure 3-36: Northern Rockies & Plains SPI SAF Curves 
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Figure 3-37: Upper Midwest SPI SAF Curves 

Figure 3-38: Ohio Valley SPI SAF Curves 
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Figure 3-40: Climate Regions 50 Year SPI SA Curves 
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3.5 Conclusion 

 Through both ARIMA modeling and SAF curve analyses, some of the climatic 

regions produced by the NCDC are more applicable to drought study than others. 

Through the stochastic modeling accuracy, the regions with lower extreme temperatures 

such as the Northern Rockies & Plains, Upper Midwest, and Ohio Valley regions proved 

to have more accurate forecasting of PDSI values. The Southwest region also gave a 

fairly accurate ARIMA model despite commonly having higher temperatures in the 

region but this could be due to the state of Colorado, which represented the region, 

experiencing lower temperatures in some regions of the state compared to the rest of the 

region. The accuracy of drought index forecasting means that these regions can be more 

prepared for droughts and their expected impacts. The stationarity assumption of 

stochastic modeling was also tested and while the assumption was not proved false, the 
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differences of various drought qualities between the first half of PDSI data compared to 

the second suggests that the assumption should be tested further. 

 When taking the spatial aspect of droughts into account in the SAF curve analysis, 

the entirety of the climatic regions can be more properly assessed for drought 

applicability. Between the two indices tested, PDSI seemed to show more variability than 

SPI and could indicate a more detailed assessment of the regions. The lack of variability 

in SPI does indicate that precipitation affects most of the regions homogenously meaning 

that purely meteorological studies performed using these regions would be appropriate. 

The regions that lacked variability in the PDSI SAF curves, including the Southeast, 

Northeast, and Ohio Valley regions, indicate that these regions are appropriate for 

drought study. Most of the other regions have particular areas where droughts are more 

likely to occur, the Northwest region had two distinct areas with differing drought 

severities in each frequency which indicates a necessity for possible sub-regions when 

performing drought studies in the area.  
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CHAPTER 4: CONCLUSION 

4.1 Summary of Results 

 The objective of this study was to understand the severity which droughts affect 

different sectors of society and gain further depth on expectations of drought effects 

throughout the United States. The second chapter of this study focused on drought 

correlation with the international economic sector in order to quantify the impact that 

droughts have on different regions of the world. The initial global correlation boxplots 

showed the necessity of detrending GDP data to remove the exponential influence of 

economic trends and gain a more accurate understanding of drought impact on the 

regional and international economy. It was also shown through each of the international 

correlation maps that each country or region has a different combination of GDP 

detrending and drought index that produces the most significant negative correlation. 

Overall, the combination of Log TFPW GDP detrending and PDSI drought index seemed 

to give the most complete picture of negative correlation between drought and GDP. 

Each nation’s economists could look at which combination of drought index and 

detrending method was most productive for their country in order to determine the impact 

that droughts have on their individual national economy. 

 Once the importance that droughts have on the economic sector was established, 

the third chapter focused on the application of the NOAA US national climatic divisions 

to drought studies to understand if these regions were appropriate for drought summaries. 

The stochastic ARIMA modeling in this chapter were performed on the PDSI values of 
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state representatives of each region because of the strong negative correlation that this 

index was shown to have on the American economy shown in the previous chapter. The 

forecasting results were compared for accuracy to determine which regions could have 

more predictability with droughts and plan for future resiliency techniques more reliably. 

The northern regions of the Upper Midwest, Northern Rockies & Plains, and Ohio Valley 

were shown to have the most accurate ARIMA models while the southern regions of the 

South and Southeast were found to be the least accurate. This was then supported by the 

comparison of model accuracy to individual factors influencing PDSI where it was shown 

that states with higher temperatures generally gave less accurate models. The test for the 

stationarity assumption in stochastic modeling became inconclusive as there were some 

differences in the halves of PDSI data but not a significant enough trend to debunk the 

assumption. 

 Knowing the affects that precipitation and temperature had on the different 

drought modeling schemes, the PDSI and SPI indices for each region were analyzed 

through SAF curves to determine if droughts were affecting each region homogenously. 

This tested the original objective to determine the applicability of the climatic regions for 

drought studies. The analysis for SPI did not give much variability in the regions 

suggesting that the divisions were appropriate from a meteorological perspective. The 

PDSI results gave much variability in the regions and showed that some regions should 

be applied to drought studies with caution. The Northwest region specifically seemed to 

show two subregions under this analysis and suggested that further division seemed 

necessary for appropriate drought study. 
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4.2 Study Limitations and Future Recommendations 

 There were many limitations in this study and methods that could be improved in 

recommended studies to be performed in the future. The first of these limitations is the 

exclusive nature of the second chapter focusing solely on GDP as an indicator for drought 

effects on different sectors of society. While many sectors have monetary value attributed 

to them and would be captured by the use of GDP, there are also more specific indicators 

that could be used to not only reflect the economic sector but other sectors of society as 

well. Future studies should find correlations and impacts between droughts and other 

indicators such as crop yields, renewable and non-renewable energy production, or 

mortality rates. A summary or combination of multiple indices would give a more 

accurate and complete representation of the severity that drought impact has on each 

country and the international community. 

 Secondly, while the ARIMA and SAF analyses did give a summary of different 

drought indices of the regions of the United States, other statistical analyses could have 

been performed in these regions to give a further understanding of drought compatibility 

with these climatic regions. Other forecasting models such as Markov chain or neural 

network modeling could have been performed to support or contest the findings of which 

region could be most prepared for the prediction of droughts. Other temporal analyses 

could have been performed in the form of decision tree or probability analysis in order to 

determine the severity of various drought frequencies which would reflect on how large 

of an impact droughts have on each climatic region. All of these analyses could have 

been performed on a wider range of drought indices such as the Palmer Hydrological 
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Drought Index (PHDI), Palmer Z-score, Crop Moisture Index (CMI), or the Surface 

Water Supply Index (SWSI). Other temporal scales could have also been applied to the 

applicable indices that were used in the study of SPI and SPEI instead of just the 1-month 

time scales. 

 The last and probably most important limitation is the test of the stationarity 

assumption when using stochastic modeling for drought forecasting. The procedure to 

test this assumption performed in this study was introductory and as the results were 

inconclusive, the recommendation for future studies would be to test this assumption 

using more in depth analyses. Due to the changing nature of recent climate trends, 

stationarity analyses such as the Man-Kendall trend, Hurst exponent, or Thiel-Sen Slope 

analysis could be performed to see if any non-stationarity found in the time series data 

was significant. If the stationarity of this data was found to be rejected, the use of 

stochastic models to determine the predictability of droughts in each region would be 

inappropriate and the use of other modeling methods that did not require stationarity 

would be recommended.  
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