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ABSTRACT 

The objective of this thesis is to identify change management processes in 

manufacturing and, if they exist, identify challenges and opportunities for improvement. 

There are many changes encountered in manufacturing as the advances of automation are 

integrated within production. For this reason, a change management process is required to 

effectively and efficiently implement these changes.  

To research this, a case study was conducted at a large manufacturing firm (more than 

ten-thousand employees). The facility studied produces low volume (~one per week), high 

complexity (~million components) products. The case study spanned six months, in which 

sixteen interviews were conducted with nine people from three different functional groups. 

The case study focused on a change to production, which was an automated machine that 

was implemented in the facility. This was not a change to the product, but a newly 

configured production station resulting in a decrease in automation level (bringing more 

manual activity into the task). The previous manufacturing method was fully automated 

but was not robust. Therefore, the change was to increase the human-robot cooperation in 

the robotic system. This study investigated the change process for this newly implemented 

automation.  

This was identified as a good case example to study due to several reasons. First, this 

was implemented within the past five years, which meant that people involved in the 

change process were still present. In addition to this, since the machine was still in 

operation it meant the propagation effects were stable and the changes were kept. Another 

reason this was a good example, was because this was a large-scale investment (~million 

dollars). This meant the return on investment (ROI) was high, leading to more attention to 
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detail and higher resource allocation. From a research perspective, these reasons ensure the 

process was a critical case for study.  

Many change management processes align with the following high-level process: 

identify opportunity, gather approval to find a solution, form teams to solve, discover a 

solution, review, deploy a solution, and measure the solution. The change management 

process identified through the interviews followed this general pattern. In this model, 

thirty-four tasks were identified. Through a series of follow-up interviews, the process 

model was validated. However, obstacles were identified throughout some of the tasks in 

the process that encountered many changes. To explore this, a collaborative design 

resistance model was applied to see whether the model could accurately identify the tasks 

of highest resistance. The resistances were applied to the objective data from the 

interviews, such as team size and communication, and then compared to the subjective 

obstacles. From this, it was determined that the resistance model accurately predicted the 

challenges throughout the process.  

This research resulted in a mapped change management process for typical automation 

implementations. It additionally helped discover opportunities for making these 

implementations more efficient by mitigating the resistances. Motivated from this study, 

the following are some opportunities that were discovered for future work: conducting 

workshops to have participants build the change process model, studying the process at a 

small-medium enterprise, studying the process at a company with product change (high 

volume, low complexity).  
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CHAPTER 1. 
SMART MANUFACTURING 

As industry looks to adopt more advanced technologies and synchronize their IT 

networks with their manufacturing processes, there has been a dramatic shift towards smart 

manufacturing [1]. With the concepts of smart manufacturing continually developing, the 

way it is defined amongst production and engineering literature varies [2]. However, a 

common theme is the integration of technology and data to connect manufacturing 

processes and propel manufacturing forward into the next revolution [1,3–5]. For purposes 

of this paper, smart manufacturing will be defined as the integration of technology within 

human and machine processes to increase reliability, agility, and productivity, leading to a 

revolution among human-machine interaction in manufacturing.  

To help guide the advances of manufacturing, in the United States of America an 

organization was formed, called the Smart Manufacturing Leadership Coalition (SMLC). 

The purpose of this coalition is to define some of the terminology and best practices related 

to smart manufacturing, although they too are in the development phase [1,3]. Being made 

up of industry partners, universities, and laboratories, provides them the resources to 

research and expand on these ideas [3].  

 In Europe, specific research organizations called the European Factories of the Future 

Research Association (EFFRA1) stem from ‘Factories of the Future 2.’ Like the SMLC, 

this is a combination of a range of small to large companies, academia, and research labs. 

 
1 https://www.effra.eu/effra ; Accessed February 11, 2020.  
2 https://www.effra.eu/factories-future ; Accessed: February 11, 2020. 

https://www.effra.eu/effra
https://www.effra.eu/factories-future
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Their goal is to increase the competitiveness of European manufacturing by supporting 

research and implementation of these technologies at companies [6].  

As shown in Figure 1.1, smart manufacturing is part of the larger progression towards 

Industry 4.0. The premise of this chapter is to introduce some of these key topics that have 

helped promote the advancement of manufacturing into the future. 

Figure 1.1. Industry 4.0 Key Concepts 

1.1 Defining Industry 4.0 

With industry’s shift toward the fourth industrial revolution, research is helping 

advance the adoption of Industry 4.0 concepts in manufacturing. Similar to smart 

manufacturing, the definition of Industry 4.0 is not well defined and varies amongst 

literature [7]. However, the constructs of Industry 4.0 began in Germany [8]. The concept 

of Industry 4.0 was a platform for increased flexibility through the use of technology to 

connect production processes and increase the adaptability of cyber-physical systems based 

on collected data [4,9]. As one of the leaders in manufacturing, Germany used this initiative 

to gain a competitive edge in the manufacturing market [8,9]. Since this topic became 
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public in 2011, research initiatives have expanded tremendously in the field and look for 

practical application of these methods in industry [8,10].  

What distinguishes Industry 4.0 from the previous revolutions seen throughout history 

are the technologies to connect automated machinery and computer systems found from 

Industry 3.0 [11]. Figure 1.2 (from footnote 3) shows the progression of industry 

throughout the ages and highlights the connectivity of the future Industry.  

Figure 1.2 Industrial Revolutions 3 

While there have been major advances towards this next revolution, industry has not 

fully adopted these methods and technologies [4,7]. Therefore industry is progressing 

towards, but has not yet achieved Industry 4.0 [12]. As additional research helps define 

many of these concepts, future research can help identify how best to implement them.    

3 Momentum: https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4 
; Accessed: February 15, 2020.  

https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4
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1.2 Defining Industrial Internet of Things 

To integrate all aspects within a manufacturing environment as proposed with Industry 

4.0, the use of sensors, RFID, software systems, cloud platforms, and other digital 

technologies are needed more than ever [8,10]. These IT technologies bring to fruition a 

fundamental concept of Industry 4.0 called the Industrial Internet of Things (IIoT), most 

commonly known as the Internet of Things (IoT) [13]. IoT is a collection of physical items 

that are connected to the internet and use electronics, such as sensors and software, to 

collect data and status on these items [4,13]. Through this network, these physical items 

are connected throughout the factory and real-time data can be collected on the status of 

these items, identifying maintenance opportunities and even energy consumption [4].   

The implementation of these advanced technologies to assist in the growth of IoT is 

best set up by the support of IT teams in companies. Based on their education and general 

competencies, these capabilities help ensure that the technology follows the requirements 

of cyber-security, as well as standardizations prior to the implementation.  

Currently, companies such as IBM4, known for their leadership in technological 

hardware and software, have leveraged their technological capabilities in manufacturing, 

thus moving towards Industry 4.0. IBM4 claims that their platform of using artificial 

intelligence (AI) and IoT can help mitigate downtime through predictive analytics.  

Through the connectivity of the IoT, manufacturing is said to have increased agility 

and flexibility [13]. With increased communication amongst systems and humans, there is 

a deeper understanding of the process. This opens up the ability to make more informed 

4 IBM: https://www.ibm.com/industries/industrial/industry-4-0 ; Accessed February 15, 2020. 

https://www.ibm.com/industries/industrial/industry-4-0
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decisions based on the environmental data [4,13]. Alongside this, IoT has great benefits for 

a more fluid value chain process through its communication and tracking capabilities [8].  

1.3 Defining Operator 4.0 

As there is further adoption of technology in manufacturing facilities, the training that 

will be required of the operators will drastically change. With increased interactions with 

advanced automated systems, the responsibilities of the operator are evolving. This future 

operator is what is known as Operator 4.0 [14,15]. The goal of the Operator 4.0 is to build 

trust between the human and machine in order to leverage both the skills of the machine 

and human [14]. This introduces several human factors such as trust and situation 

awareness that will be discussed later in CHAPTER 2.  

In addition to this, the shift in manufacturing technology is also to be developed such 

that it assists the human and makes the processes more efficient for them [15]. Figure 1.3 

shows the change in operators’ responsibilities throughout time. The evolution from 

Operator 3.0 to Operator 4.0 shows the change in human machine collaboration and the 

transition towards machine aiding the operator’s needs [15]. For this to be possible, the 

machine would need to be able to process the needs of the operator, which is referred to as 

adaptive automation [16].  

Figure 1.3. Operator Transformations [15] 
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However, there are challenges that present themselves as industry shifts towards an 

Operator 4.0. One challenge being how to best prepare and train the current operators for 

this transformation. Since everyone has different skills and experiences the most effective 

method to train these future operators is not trivial [14]. While research mentions that 

training will be required, it does not go into details to what that training should consist of 

[14]. Future work would benefit from identifying affective methods of training of these 

advanced technological systems.  

1.4 Automation in Manufacturing 

The focus in manufacturing has always been, and will be, to increase the productivity, 

reliability, and quality of production systems [17]. To achieve this, years of data from 

production will help to optimize the use of tools, personnel, and now technology [12]. 

During this time, automation has transformed from mechanized tools to now complex 

combinations of machines and computers [18]. As previously discussed, with the increase 

of ‘smart technology’ being embedded in automated systems, automation will shift towards 

aiding the physical and cognitive needs of the operator [15]. Through the connectiveness 

of the IoT, this adaptive automation will have the ability to communicate between not only 

machine-machine, but also between human-machine more effectively [15].  

1.4.1 The Role of Human Operators 

While there are many advantages to the use of automation, the acceptance of it in 

manufacturing has not always been positive. The fear has been that automation will take 

jobs and replace humans [19]. However, in most cases automation does not take away 

work, rather it changes the human’s role in the process [19,20]. As automation takes over 

some of the manual and repetitive operations within the process, the human’s role is then 
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to monitor the task or system [19,20]. Since humans are more flexible in their decision-

making capabilities, they act as better supervisors to the mechanical operations [20]. 

However, as will be discussed in CHAPTER 2, there are specific human factors that need 

to be considered for human’s to be successful in their role.  

Even though technology is advancing rapidly and is being implemented in larger 

degrees in production, automation will not completely take over manufacturing or replace 

humans in the near future [21]. Automation does not have the flexibility like humans to 

make judgement [19]. Many automated systems are programmed to the desired 

specifications and that’s precisely what they follow [19]. Therefore, the process will 

require humans ability to adapt and their cognitive capabilities [19]. 

Chapter 1 - Takeaways 

• Industry 4.0 is the next revolution that industry will encounter
• Training and preparation of operators for this industrial shift will lead to an

Operator 4.0
• Automation is useful for repetitive, manual labor

o Automation does not remove work, it changes the human
responsibilities
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CHAPTER 2. 
DRIVE FOR AUTOMATION RESEARCH 

To become more competitive in industry, manufacturing has looked to automation to 

help increase the efficiency and productivity of systems and processes [22]. However, there 

are many elements to consider when using automation. This chapter will address these 

trends in automation research. To conclude this chapter, the gaps within literature will 

propose the research questions for this study.  

2.1 Research Trends 

Within automation research, there are many different trends being studied from the 

machine capabilities to the human relationship with automation. Nonetheless, human and 

machine are affected by the continual changes being made in manufacturing. Having some 

level of awareness to these research trends helps understand the implications of changes in 

production and what factors need to be considered.  

2.1.1 Human Factors 

As automation grows in manufacturing, technology should not be the only element of 

focus, there are many factors that must be considered from the human perspective [23]. 

These considerations are related to human capabilities when interacting with different 

elements, which are referred to as human factors5. Incorporating these human factors into 

the design of the automated system can ensure that the machine will support the human 

needs.  

5 Human Factors and Ergonomics Society: https://www.hfes.org/about-hfes/what-is-human-
factorsergonomics ; Accessed on February 28, 2020. 

https://www.hfes.org/about-hfes/what-is-human-factorsergonomics
https://www.hfes.org/about-hfes/what-is-human-factorsergonomics
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While automation assists in many physical aspects of manufacturing, it also accounts 

for some cognitive aspects, all of which impact the human’s physical and cognitive 

capabilities [24]. However, the focus of automation has primarily been on the physical 

factors, and it is unclear how, if at all, the cognitive human factors are evaluated when 

automation is implemented [25]. Some of these cognitive factors include trust and 

situational awareness [23–28]. The trust operators have towards automation can be viewed 

in a variety of ways. From a ‘systems’ perspective, operators perceive trust from its 

dependability, consistency, robustness, and more [26,27]. From an ‘individual’ 

perspective, an operators personality, adaptability, and openness can affect the trust they 

have towards automation [26,27]. Lastly, from a ‘situational’ perspective, the designated 

restrictions on time, work, task balance, etc. also contribute to trust [26]. This total level of 

trust plays a critical role in the relationship between human and machine [27]. 

Situational awareness is another human factor influenced by automation that is defined 

as a person’s perception of a given situation and their understanding throughout a task [29]. 

When a human collaborates with an automated system through supervision, the human’s 

situational awareness will be affected based on the complexity of the task [26,29]. The 

benefits of high situational awareness leads to the operator performing better and making 

more informed decisions [29,30]. However, the levels of automation affect the situational 

awareness of the operators, leading to the operator out-of-the-loop dilemma [24,26,29]. By 

designing the automated systems with operators situational awareness in mind can prevent 

any mishap with placing the operators out-of-the-loop and ensure the operators are working 

at peak performance [24,29,30].  
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Through the case study that will be discussed in depth in later chapters, parts of the 

design process were explored providing greater detail into the operator involvement for the 

automation implementation. This helped provide context to the design considerations, as 

well as the current state of operations from the operator’s perspective.  

2.1.2 Human-Machine Interaction 

The previously discussed human factors that accompany automation can provide a 

better understanding of the human and machine relationship [23]. To mitigate any failures 

in the system, the human must be considered while designing the automation [23]. This 

relationship between human and machine is affected by the levels of automation, which 

will be discussed later [28].  

As the role of automation and operators change, the relationship between the two will 

evolve [31]. Automation will be viewed less as stand-alone machines and more as 

collaborators with operators [31]. This can be achieved through improved communication 

[31]. For the human and machine to communicate efficiently, the right information needs 

to be provided to the operator [32]. This is done through different systems and interfaces 

[32]. Research on human factors has looked into responses between human and different 

interfaces [32].  

In the case study, which will be discussed in further detail in CHAPTER 4, human-

machine interaction is prevalent between the operators and the automated system being 

implemented. This interaction and relationship between human and machine help to better 

understand some of the human factors addressed earlier, such as levels of trust and 

situational awareness throughout the task.  
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2.1.3 Human-Cyber-Physical Systems 

With the role of automation evolving to assist the needs of the operator, human-

machine interaction will lead to stronger socio-cyber-physical systems, most commonly 

known as human-cyber-physical systems (HCPS) [15,33]. As previously discussed, these 

new systems will make the engagement between human and machine more efficient [15].  

Previous research focused efforts into developing this concept of cyber-physical 

systems (CPS), which is the integration of the physical and software elements [34,35]. 

When looking to integrate these systems engineers focus heavily on the production process 

and operations [35]. However, this excludes the most critical element to all automated 

systems, the human. Without the human element, these systems are just tools [31,33]. By 

incorporating the human throughout the design process will help shift the machines 

capabilities to aid in the operators physical and cognitive tasks [15].  

In this research, HCPS was discovered through the three functional teams that were 

identified: engineering, IT, and Operations. Operators are the human element, IT is the 

cyber element, and engineering is the physical element of the system. This relationship 

shows the importance of these functional teams for these implementations. However, as 

will be discussed later, the operators are involved at the end of the change process.  

2.1.4 Level of Automation 

Even with the adoption of new technology in manufacturing, tasks are comprised of 

physical and cognitive elements [36]. Examining the physical and cognitive elements for 

each task can provide a better understanding of the entire manufacturing process and assist 

in proper task allocations [36]. This type of research is measuring the levels of automation 
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(LoA) [36]. This topic has an important role in this study as the change implemented 

reduces the LoA. 

2.1.4.1 Cognitive and Physical Levels of Automation 

To analyze these physical and cognitive elements within a task a method called 

DYNAMO++ was created [36]. This method evaluates the physical and cognitive elements 

on a seven-level scale [36]. Table 2.1 shows the 7 levels used to evaluate the LoA for each 

task, where physical elements are represented as Mechanical LoA and cognitive elements 

as Information LoA [37]. It should be noted that the higher the LoA does not mean that the 

process is any more efficient than one with a lower LoA, it is all dependent on the needs 

and requirements of the process [38].   

Table 2.1 Physical and Cognitive Levels of Automation [37] 

2.1.4.2 Levels of Automation Matrix 

Upon evaluating both the cognitive and physical level for each task, a matrix is 

used to plot and tally the LoA [39]. Figure 2.1 shows the matrix used to mark the cognitive 
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(x-axis) and physical (y-axis) level for each task [39]. The matrix is made up of three core 

quadrants: “human assembling and monitoring,” “machine/technique monitoring,” and 

“machine assembling” [39–41]. The “human assembling and monitoring” would be when 

an operator is completing the task and monitoring the work [39]. The “machine/technique 

monitoring” would be when a machine monitors the work done by a human or machine 

[39]. Lastly, the “machine assembling” would be when a machine is completing the task 

and the human is monitoring the work done, or not involved in the process at all [39].  

Figure 2.1. Level of Automation Matrix [39] 

The matrix also shows an interesting relationship between flexibility and the levels of 

cognitive/physical LoA [39]. According to Figure 2.1, flexibility in the process is highest 

when the cognitive and physical LoA are totally manual [39]. As both the cognitive and 

physical LoA increase in automation, the flexibility decreases [39]. With many continual 

changes occurring in manufacturing, flexibility is an element that helps streamline these 

change in the process [42]. As was previously discussed, automation is only as flexible as 
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the program that was written for it. Therefore, it makes sense that the more flexibility 

comes from more manual tasks.    

Once all of the tasks have been evaluated and added to the LoA matrix, the area in the 

matrix that has the highest concentration of tasks can be further analyzed for opportunities. 

If most of the tasks are totally manual for both cognitive and physical LoA, then an 

opportunity might be to find where more automation can be added.  

2.1.4.3 Example Using Dynamo++ Method 

To understand how this method works, some examples will be shown in the 

proceeding screenshots from an automotive manufacturing video6. These screenshots 

illustrate different manual and automated tasks in an automotive manufacturing facility and 

will be evaluated for the cognitive and physical LoA following the definitions provided in 

Table 2.1 Physical and Cognitive Levels of Automation [37] Table 2.1. Figure 2.2 has been 

considered physical level 4 as they are using an automated hand tool, and cognitive level 

1 because the operator gathers or already understands the task based on experience.  

Figure 2.2. Operator Places Bolts and Tightens with a Hydraulic Bolt Driver 

6 Retrieved from https://www.youtube.com/watch?v=adB8xIUTLDI; Accessed February 13, 2019. 

https://www.youtube.com/watch?v=adB8xIUTLDI
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Figure 2.3 is considered a physical level 7 and cognitive level 7, because the machine 

is in complete control of the task. The automated machine is in control of gluing the 

adhesive, as well as processing all of the information on its own. This would be considered 

a fully automated machine.  

Figure 2.3. Machine Applies Adhesive to Roof 

Figure 2.4 was considered to have a physical level 5, as the lift assist is a static 

workstation aiding the operators to install the roof. The cognitive LoA was determined to 

be a level 3 as the operators most likely follow a procedure in the installation manual to 

ensure the roof has been assembled correctly.  

Figure 2.4. Lift Assist to Install Roof 
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Figure 2.5 was considered to have a physical level of 2, since there is a static hand tool 

used, which is circled red. The cognitive level for this task was considered a level 1 as the 

operator is completing the task without any assistance and using prior experience to 

connect the cables.  

Figure 2.5. Operator Installing Electrical Cables 

More task pictures and analysis can be found in APPENDIX A: DYNAMO++ LOA 

EXAMPLES. All of the physical and cognitive LoA for each task is then tallied. Like 

plotting points on a graph, the cognitive LoA represents the x-axis and the physical LoA 

represents the y-axis. Table 2.2 shows the plotted LoA for all of the tasks evaluated. If 

there were several tasks with the same LoA, they were be summed together. The box 

around the three LoA tasks represent the “concentrated” area in the manufacturing process 

and is called the “Square of Possible Improvements,” or SoPI [40]. This would identify an 

opportunity area to evaluate these tasks in deeper detail. Perhaps through the analysis there 

is an opportunity to increase the LoA.  
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Table 2.2. LoA for Example Tasks 

By using the DYNAMO++ method, manufacturers can find the appropriate balance of 

manual and automated systems [39]. The premise is to evaluate the entire system and 

ensure that each process is running at its optimal level [39]. This method also helps 

determine the human-automation interaction in the process [41]. This involves 

understanding the task allocation and should evaluate the human and machine tasks 

together [40]. 

The advantage of using this method is to increase the understanding of task allocation 

between human and machine throughout the process. However, it does not tell the user 

where and when to automate. This is a challenge that has identified itself throughout 

industry. Additionally, this model does not provide the user with the appropriate ratio of 

automation to manual labor. The challenge stems from processes being customizable, so 

no process is the same. Therefore, there is no standard ratio between automation and 

manual task, even though it would be helpful. Alongside this, it is not clear how much 

automation is too much. Currently levels of automation are at the discretion of the company 

to decide whether automating is worth the return on investment (ROI).  
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Through evaluating the LoA in a production process, opportunity areas are identified. 

Opportunities lead to the changes seen within manufacturing. This introduces an important 

area of research to understand changes to processes, this research will look to cover this 

topic.  

2.1.5 Change Management 

Implementing a change in a production process requires a rigorous change 

management process for it to be fully accepted and to be successful [43].  Change 

management processes cover a range of elements to ensure a smooth transition and mitigate 

the amount of resistance to change. Further discussion on how resistance plays into the 

change management process will be discussed later in CHAPTER 5.  Ideally change 

management heavily evaluates upstream and downstream processes to ensure no issues can 

be introduced into the system with the desired changes [44].  Proper analysis helps prevent 

increased cost and delays in the schedule [44].  

Table 2.3 briefly summarizes several change management processes found in the 

change management literature. While the principle goal of all the models is to aid in the 

process towards implementing a change, no method was found to be the same.   

Table 2.3. Change Models from Literature 

Change Models Type 
Defined 
Goal 

Structured 
Team 

Awareness 
of Change 

Project 
Debrief 

McKinsey 7S [45–47] Organizational Yes 
Kotter’s 8 Stage Process 
[47–49] 

Organizational Yes Yes Yes 

Kurt Lewin’s Change 
[47,50–52] 

Organizational Yes Yes 

ADKAR [47,53] Organizational Yes 
Bridges Transition [54,55] Behavioral Yes Yes 
Nudge Theory [56–58] Behavioral Yes Yes Yes 
Engineering Change [59–63] Part/Product Yes Yes 
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The McKinsey 7S model is made up of seven components:  Strategy, Structure, 

System, Style, Staff, Shared Values, and Skills [45–47].  The model does not follow a 

sequential order, rather each component should be analyzed in parallel prior the change 

[45–47].  This model is presented as more of a high-level management approach in 

considering the impact of a proposed change. 

The Kotter’s Eight Stage Process is configured as a step by step process for 

implementing a change [47–49].  The eight steps are as follows:  

1. Set the urgency,

2. Create a devoted team,

3. Formulate the goal and create plan,

4. Communicate goal and plan,

5. Empower individuals to act on the change,

6. Set short-term milestones,

7. Initiate more change, and

8. Make the changes concrete [47–49].

This model provides guidance on the overall process. Some of the steps require subjective 

considerations, such as setting the urgency.  These subjective aspects of the model can be 

best addressed through collaborative decision making. 

The Kurt Lewin’s Change model is a simple three step process that is considered to be 

the foundation for many other change management models [47,50–52].  The process 

involves:  

• Unfreeze (preparing for change),

• Change (executing the change),
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• Re-Freeze (solidifying the change) [47,50–52].

This model provides a general description of a state change model (before, during, after), 

without significant guidance on how each of these phases interact.   

The ADKAR model is a made up of five elements that focus on how people acclimate 

to change [47]. The elements are Awareness (towards the change), Desire (to contribute to 

the change/empowerment of employees), Knowledge (of the change process), Ability 

(resources and skills available to implement in the change), and Reinforcement (method to 

enforce the change) [47,53]. This model is more focused on the culture of change rather 

than the implementation of the change in a manufacturing environment. 

Bridges transition focuses on the levels in change processes [54,55].  The transition 

comprises of three phases: “Endings” (leaving behind the old method) , the ‘neutral zone’ 

(establishing new processes, becoming more familiar with transition), and “New 

Beginnings” (culture shift to accept change) [54,55].  This model essentially is a 

combination of the state change model of Lewin’s and the ADKAR model focused on 

culture adaption. 

The Nudge Theory provides an opportunity for feedback throughout the change 

process [56–58].  The Nudge Theory defines parameters regarding the change, gathering 

feedback from those impacted by the change, and presenting back the new change as the 

preferred ‘choice’ based on the feedback [56–58].  This feedback loop is central to 

monitoring the implementation of the change so that it does not have detrimental impacts 

on other aspects of the system. 

As seen in Table 2.3, each change model focuses on different key elements. However, 

some elements appear to be shared across multiple models. First, there has to be a clearly 
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defined goal and plan [43]. Without this the project does not have a foundation when 

proceeding with the project. Next it is important that there is a structured team that is 

preparing and implementing the change, with the addition of a designated leader [43]. 

Having a standard team (with little variance in representatives) will help increase the 

efficiency of the collaboration and communication [64].  Typically the most effective teams 

range in size from six to fifteen [65]. Alongside this, it is critical that all individuals 

impacted by this implementation are made aware of the changes before proceeding with 

implementing the change [43]. This allows the individuals to be prepared and involved in 

the process, even though they may not be on the implementation team [43]. Lastly, upon 

completion of the implementation, it is helpful for future implementation projects to 

evaluate the process used and identify opportunities [43].  

Throughout the proposed processes, it can be inferred that change management is 

human-centric. Not only does each step require input from people, but change impacts 

individuals [66]. Since change processes involve people this results in different levels of 

collaboration, which is discussed further later. While Table 2.3 shows many examples of 

behaviorally and organizationally focused change models, there has been research done on 

product change management [59–63]. This can be viewed as design changes after the 

product has already been integrated with production [60]. Among the engineering change 

literature studied, a standard process for product changes was not identified. However, one 

commonality between the processes studied is the reason for change, whether that be 

external or internal pressures, such as safety, quality, or cost [60,67].  

To summarize Table 2.3 shows example models, from literature and industry, for how 

people and products are affected by change. Although there are processes changes that 
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need to be considered as well. In change management research, the gap discovered is with 

the process. Therefore, this research looks to understand change management for 

production processes. 

2.1.6 Design Processes 

While many similarities were found in this research between change management and 

design, this section will review different design processes in literature. To start, engineering 

design focuses on understanding the ‘what’ and ‘how’ to a problem [68]. The ‘what’ phase 

focuses on discovery, defining the problem, and generating requirements based on the 

needs of the stakeholder [68]. The output of this is called functional requirements [68].  

The ‘how’ phase focuses on devising a plan for executing those functional requirements 

[68]. The output of this is called design parameters [68].   

In engineering there are many different design processes and methods that can be used. 

Depending on the objective, one method may work better than the other. Some methods 

follow sequential tasks, others can be iterative. If the project is more adaptive versus 

structured, an iterative process would accommodate a higher degree of flexibility. Table 

2.4 shows different design processes and methods found in literature.  
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Table 2.4. Design Processes/Methods in Literature 

Design Processes/Methods Description 

Traditional Design Process7 [69] Discovery, Planning, Defining, Designing, Testing, 
Improving 

Spiral Model [69–71] Requirements, Prototypes, Evaluation, Planning Next 
Phase… (Repeat as needed) 

Waterfall Model [69,70,72] Requirement gathering, Designing, Prototyping, 
Testing, Supporting 

Verification and Validation [72–75] “Constructing the model correctly to constructing the 
correct model” 

Axiomatic Design  [68,76] Stakeholder needs, Functional requirements, Design 
parameters, Process variables  

2.1.6.1 Traditional Design Process 

The traditional design process follows a cycle from beginning to end, for example the 

start of a project to the end of a project. This design process is made up of typically 6 

sequential steps, which can be seen in  Figure 2.6 [69]. The process starts with identifying 

and defining the problem [69]. Once there is context to the project, requirements are 

generated7. The product or solution is then constructed or implemented, then goes through 

testing7. Upon testing the product, there is an improvement period to support and aid in any 

additional changes that may be required7. As a result of the structure in the traditional 

design process, when there is an engineering change identified in any step, then there may 

be a need start the process from the beginning to ensure the new requirements are met. 

Figure 2.6. Traditional Design Process [69] 

7 Retrieved from: https://www.nasa.gov/audience/foreducators/best/edp.html; Accessed February 25, 2020. 

https://www.nasa.gov/audience/foreducators/best/edp.html
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2.1.6.2 Spiral Model 

The Spiral Model is another design process most often used in software development 

[69–71]. This is an iterative process that works closely with the stakeholder, similar to 

design reviews [69–71]. Figure 2.7 shows a spiral model as it relates to engineering 

development [69]. The phases involve gathering requirements, prototyping, evaluating 

with the stakeholder, and planning the next phase [69–71]. This process then repeats until 

accepted by the stakeholder [69–71]. What distinguishes this model from the others is the 

continual prototyping element [69–71]. For software developers, these prototypes can be 

completed much faster as opposed to a physical prototype [69]. But this user group is 

expanding with the growth of rapid prototyping [69]. As a result of the iterative nature of 

this process, when a change is introduced there are more opportunities to adapt and revisit 

these changes.  

Figure 2.7. Spiral Model [69] 
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2.1.6.3 Waterfall Model 

The Waterfall Model, also known as the stage-gate process, is a sequential phase 

model [69,70,72]. This means that to move on to the next phase requires the preceding to 

be finalized [70,72]. For this reason clear deadlines are critical for this method [72]. The 

general model follows the following steps: Requirement Gathering, Designing, 

Prototyping, Testing, and Supporting [70,72]. The most emphasized step in this model is 

the requirements gathering. Due to the strict sequential nature of this model, the 

requirements should be concrete and should not vary throughout the process [70,72]. 

Therefore, this model does not adapt well to change [70].     

2.1.6.4 Verification and Validation Model 

The Verification and Validation Model, also known as the V-Model, has been often 

used for coding, simulations, and system engineering processes [73–75]. Between the two 

elements, verification focuses on constructing the model correctly and validation seeks to 

construct the correct model [74]. Figure 2.8 shows a high-level V-model. While the tasks 

are sequential, this is an iterative process model [74]. With continual changes throughout 

the project lifecycle, the verification and validation is repeated to ensure it meets the 

requirements [74]. The V-Model has many similarities to the Waterfall method, however, 

the V-Model has a stronger emphasis on testing [72].  
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Figure 2.8. Verification and Validation Model 8 

2.1.6.5 Axiomatic Design 

Axiomatic Design is another well-known design method. Figure 2.9 shows the design 

domains that are broken down in this method [68,76]. The design process starts in the 

‘customer domain,’ which is gathering information and collating the needs of the 

stakeholder [68,76]. This information is then translated into functional requirements, 

within the ‘functional domain’ [68,76]. Mapping to the physical domain, these functional 

requirements are transformed into design parameters [68,76]. The last domain, ‘process 

domain,’ takes the design parameters and works towards a product, this is achieved through 

‘process variables’ [68,76].  

Figure 2.9. Design Domains [68,76] 

8 Retrieved from: https://en.wikipedia.org/wiki/V-Model ; Accessed on February 26, 2020. 

https://en.wikipedia.org/wiki/V-Model
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In this process, Axiomatic Design defines two axioms [68,76]. The first axiom is to 

keep the functional requirements independent of one another [68,76]. Thus, a change to 

one functional requirement will not affect other functional requirements [68]. The second 

axiom is to reduce the amount of information for the design [68,76]. This axiom is a 

measure to determine the best design based on the amount of information required to 

suffice the functional requirement [68,76]. Thus, functional requirements that are satisfied 

with the least amount of information is favorable [76]. 

Together, these axioms ideally result in functional requirements being individually 

linked to design parameters [68]. However, this does not mean that each design parameter 

results as a physical feature on the design [68]. By using a process like Axiomatic Design, 

designers have increased creativity [68]. Ultimately, due to the relationship between 

functional requirements and design parameters, the effect of change is locally controlled. 

This should make changes easier to accommodate, since there is less connectivity between 

elements [61].   

2.2 Research Questions 

As discovered, there are many topics highlighted in literature that are active research 

topics in automation and manufacturing. However, automation and smart manufacturing 

literature does not extend past rudimentary information. For example, smart manufacturing 

literature does not address how to implement these technologies and automation literature 

does not address how much automation is sufficient or where in particular to automate. All 

of these concepts relate back to changes being made in the production process. As such, in 

this research, the primary focus is understanding changes in manufacturing. Since 

technological changes are inevitable in this current era of manufacturing, the goal of 
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following a change management process would hopefully provide insight to the meticulous 

decision making and better understand the collaboration element, whether that be human 

to human or human to machine.  

2.2.1 Research Question 1 

What is the change management process for large-scale automation implementations? 

Stemming from the evolution of automation in manufacturing, understanding the 

reason for change and how these changes are made are of interest in this research. Figure 

2.10 shows two assembly methods in the automotive industry, manual (left) and automated 

(right). These distinct differences in the manufacturing process was a key motivator for 

this research. This raises several questions such as how was it decided where to automate 

and how were these changes made?  

With advances in technology, assembly tasks are becoming increasingly automated 

[77]. However, it is not well known how tasks are chosen to be automated or the process 

to how these automated systems are implemented. To fill this gap, this research looked to 

better understand the change management process for automation implementations.  

Figure 2.10. Manufacturing Evolution: Left( Manual)9, Right (Automated)10 

9 Image Retrieved from: https://www.magoda.com/industrial/recovering-auto-manufacturing-industry-
boosts-global-demand-for-robotics/ ; Accessed on February 27, 2020 
10 Image Retrieved from: https://www.robotics.org/blog-article.cfm/The-History-of-Robotics-in-the-
Automotive-Industry/24 ; Accessed on February 27, 2020 

https://www.magoda.com/industrial/recovering-auto-manufacturing-industry-boosts-global-demand-for-robotics/
https://www.magoda.com/industrial/recovering-auto-manufacturing-industry-boosts-global-demand-for-robotics/
https://www.robotics.org/blog-article.cfm/The-History-of-Robotics-in-the-Automotive-Industry/24
https://www.robotics.org/blog-article.cfm/The-History-of-Robotics-in-the-Automotive-Industry/24
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While literature addresses different change management processes, it is not clear 

which method is used in industry. Do companies follow change processes from literature, 

create their own process, or not have a process at all? Studying how these implementations 

are managed creates a better foundation for future automation implementations. For there 

to be improvements in the efficiency of these implementations, identifying the change 

management process and evaluating it will help find opportunities for improvement for 

future processes.  

2.2.2 Research Question 2 

How does the Change Management Process differ from the Design Process? 

Through studying different change processes and conducting a case study on the 

change management process to automation implementations, similarities were found 

between the change process and design process. For this reason, it became of interest to 

study what makes the change management process different from the design process? 

Could it be that the change management process is that similar to the design process that 

they are used interchangeably? Or is the change management process embedded in the 

design process, or vice versa? Through studying this, it is intended to provide clarity and a 

better understanding of the differences between these two processes.  

Chapter 2 - Takeaways 

• There are many research trends regarding human and automation that play a
critical role in this research (human factors, human-machine interaction, LoA,
etc)

• Change management processes focus on organizational, behavioral, and
product changes

o Gap in research for process changes
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CHAPTER 3. 

CASE STUDY RESEARCH METHOD 

Empirical studies collects data through the ‘current-state’ observations of practices in 

industry [78,79]. The use of empirical research can help develop the methods used for 

automation design [25]. Empirical studies are made up of quantitative and qualitative 

research [80]. Qualitative research can help to understand the process people take and the 

purpose of certain actions [81]. This research used qualitative methods through the use of 

a case study and conducting interviews [82]. This chapter will review case studies, as well 

as an overview of the interviewing method.  

3.1 Case Study Methods 

As previously mentioned, case studies are a qualitative research method [82]. They are 

particularly useful in answering research questions such as ‘how’ and ‘why’ certain 

phenomena occur [83,84]. With the motivations of this research to observe and identify a 

change management process, a case study was used. Case studies are a good method to use 

when looking to study a ‘current-state’ scenario in the field without modifying or 

controlling any elements in that scenario [85]. They are often useful in gathering data after 

changes have been made, this is what we were focusing on for this research [86].  

Like many methods and processes, the case study method starts with identifying the 

problem [84]. A plan should then be put together to ensure that the data is collected 

properly [84]. Since case studies are often under scrutiny for reliability and validity, the 

data collection process is important to consider [84,86]. The case study can then be 

executed and general conclusions can be drawn [84].  
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Since case studies often focus on one phenomenon, the results are difficult to 

generalize [84,86]. This is the major criticism that case studies receive [86]. However, the 

data collected helps develop inferences and predictions for future work [86]. In this 

research, the motivation was exploratory, since these concepts in literature are not well 

defined. For this reason, the research was not focused on replication, rather gathering 

foundational information for future work.  

3.2 Interview Method 

Interviewing is a method that can be used to collect data in empirical research [86]. 

There are three different interview methods: structured, semi-structured, and unstructured 

[87]. Structured interviews have a list of specific questions that are asked in a set order for 

every interview [87]. Semi-structured interviews have set questions, however, they are 

more flexible allowing the interviewer to ask follow up questions or change the order of 

questions as needed [87]. Unstructured interviews is the most flexible interview method, 

by allowing the interviewer to ask any questions based on the context and not needing to 

prepare questions in advance [87]. In this study, semi-structured interviews were used. 

When preparing the questions for semi-structured interviews the researcher should 

triangulate the questions [88]. This means asking the same questions in different way to 

see if the interviewee will respond similarly, this helps to validate the question and answer 

[88,89].  

To know how many interviews need to be conducted is found through ‘data saturation’ 

[90]. Depending on the research, the level of data saturation will change, which is what 

makes this a controversial topic in research [90]. However, for purposes of this research, 
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data saturation is when interviews provide no new information leading to no new data being 

introduced [90].  

Chapter 3 - Takeaways 

• Case studies are a qualitative research method, good for observing the ‘current
state’

o Great for answering ‘how’ and ‘why’ questions
• Interviewing is a data collection method for empirical research

o Three different kinds of interview methods: structured, semi-structured
and unstructured

o Number of interviews needed depends on data saturation
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CHAPTER 4. 

OVERVIEW OF CASE STUDY AT COMPANY 

The case study that will be introduced in this section was conducted in industry at a 

manufacturing company. For purposes of this paper, the company will be referred to as 

TruAutomation. The company name will not be disclosed in respect to remaining 

anonymous. To provide more context to the study environment, TruAutomation is a lower 

volume, larger product manufacturing company. On a spectrum of company size, 

TruAutomation would be considered a large company with 50,000+ employees.  

Due to the complexity of the product, the manufacturing processes consists primarily 

of manual work. This results in a slower movement of the product throughout the line. 

However, with the advantages of automation, there has been a shift towards further 

adoption of these advanced technologies in hopes to increase the speed of production, while 

maintaining quality and improving reliability.  

The type of manufacturing process observed in this study was job-shop11 style. This 

means that the manufacturing tasks were grouped based on their function and the flow of 

production is scattered throughout the facility11. While there was a final assembly process, 

this was not evaluated in this research.  

During the duration of this study, the researcher interacted with members from 

different teams, including several different engineers, IT representatives, and operations 

support. This provided the researcher with a broader perspective of the environment. In 

addition to this, all members interviewed were co-located at the same facility.  

11 Retrieved from: https://www.whatissixsigma.net/job-shop-manufacturing/ ; Accessed: April 14, 2020. 

https://www.whatissixsigma.net/job-shop-manufacturing/
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4.1 Investigation of Case Example 

The automation example used for this case study was a machine where the human and 

machine were working cooperatively. However, as in many automation cases, the human 

was assisting the machine in completion of the task. The machine would start the task and 

only once the human completed its task could the machine move on to the next task. From 

this, different perceptions of automation were found. Some believed that the human was 

not as efficient as a fully automated system, but through observation the human was waiting 

on the machine in most instances. While the machine has the capability to make decisions 

on whether it can move on to the next step or not, the human still has override abilities 

since there is an operator that supervises the machine on different displays. It should be 

noted that only the manufacturing process needed to be studied as there was no change to 

the product.  

The machine is made up of 4 automated systems working alongside a team of 

approximately 8 people. This is a 2:1 ratio of human to machine. During operations, the 

operator has limited vision capabilities of the machine. Therefore, what is displayed on the 

monitors for the operators is critical to the task and must provide the operator with the 

proper information for the task. This requires there to be a level of trust between the human 

and machine. As previously discussed, trust is an important human factor when looking at 

human-automated systems.  

For this case study, it was important to find an automated machine where the 

implementation process could be followed. The goal was to be able to understand how 

changes were made through this process. After expressing the goal and objective of the 

research, the example case for the study was identified for analysis by the company. This 
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machine had already been implemented prior to the start of this investigation on 

implementation process. However, it was a good case to study because it was only 

implemented several years prior, which meant people involved in the process were still 

available to be interviewed. Additionally, with this being a large-scale automation 

implementation there was a large investment at stake requiring a high return on investment. 

This meant that the process studied would be rigorous, there was a higher attention to detail, 

and a larger resource pool to observe.  

This project stemmed from TruAutomation’s initiative to enhance the manufacturing 

technology. Due to the complexity of the implementation, this project took several years 

to complete. It also required efforts from cross-functional teams to get the machine up and 

running. With that said, there was a heavy rotation amongst the team members throughout 

the entirety of the project. This led to several challenges, which will be discussed further 

in the proceeding sections.  

To become more familiar with the machine, daily standups were attended. Standup 

meetings were small meetings (less than ten people) in front of the machine reviewing data 

on current state operations. This was a good opportunity to hear the current state of the 

machine and how changes were being made to improve the efficiency of the system. The 

standups used manufacturing improvement methods such as Kanban and Kaizens. Kanban 

is a Japanese method stemming from the Toyota Production System [91]. This method is 

traditionally done non-electronically and provides a visualization of updates regarding the 

machine, operators, and production/rate [91]. Similarly, Kaizen also originates from Japan, 

meaning “continuous improvement” [92]. These are often smaller, quick suggestions or 

improvements that can be implemented on the machine [92]. 
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4.2 Interview Questions 

To study this case example, interviews were used to collect the data. The interview 

questions for this case study were created and tested in a preliminary study for the ME 

8730 – Research Methods class at Clemson University. The context and background of the 

study were similar to those of this case study. The questions were tested at two different 

medium sized companies (5,000+ employees). Both had distinct automation capabilities, 

with one company having older automated systems and the other implementing new 

automated systems. The preliminary study provided feedback on the most useful questions 

that pertained to the research question. The questions that were not useful were thrown out 

of the set. The finalized set of sixteen questions can be found in Table 4.1. 
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Table 4.1. Interview Questions Used for Case Study with Automation Stakeholders 

B
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1 Name, Job Role/Organization 

2 Describe day in the life/daily activities (hours, tools used, etc.) 

3 How did you use/interact with the machine? 

4 How long have you been working with the machine? 

5 Have you worked with any other automated systems? 

If yes, how would you compare them? 

6 In your perspective, what is the manual effort? 

7 What’s something you would keep and what’s something you would 

change/improve? 

C
ha

ng
e 

M
an

ag
em

en
t 

8 When did the process start changing? 

9 What were the changes? 

Were they good or bad? 

10 Was this change communicated to you? 

If so, in what way? Who told you? 

11 How involved were you throughout the implementation process? 

What did the training look like? 

12 Do you know how to suggest changes? 

13 Did people follow up? 

Po
st

-I
m

pl
em

en
ta

tio
n 14 Has there been improvements since the change was implemented? 

15 Why would you or would you not say you are prepared for another 

implementation? 

16 Who should I go talk to next? 
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The interview questions can be broken down into three categories: background 

information (orange), change management (blue), and post-implementation (yellow). Each 

section was created to target critical aspects of the research question. It was important to 

gather different perspectives on the contexts of the machine, how the change was executed, 

and evaluation after it was all completed.  

4.2.1 Background Information Section 

The background information provided more context to who the person was, how they 

were involved in the process, and their perception of the automated system. With the nature 

of industry, roles often change within a several year span, for this reason, it was important 

to understand the persons current role, as well as their role during the implementation.  

This section also highlighted the individual’s level of experience with the machine by 

asking how long the individual worked with it. By asking whether they ever worked with 

another automated system triangulates the question back to their experience level 

particularly with automation. If they had prior experience with another implementation, the 

comparison question was to find out more of what makes this automation unique as 

compared to the others. By asking what they believed the manual effort was not only 

provides their perspective of the automation level, but it also triangulates back to their 

experience with automation.  

To help transition to the next section, each person was asked what they would keep 

and what is something they would change regarding the machine or implementation. This 

was an opportunity for identifying obstacles, as well as gathering more information on the 

process.    
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4.2.2 Change Management Section 

The change management questions were crafted to specifically find out how the 

change was executed and what steps were required for their role in the process. Asking 

questions such as “when did the process start changing,” points to when the individual was 

first made aware of the project and helped distinguish where in the process they began to 

be involved. Following this with asking what the changes were, was to determine the 

awareness throughout the implementation and how roles may have changed the type of 

information that people receive. With this section focusing solely on change, it was an 

opportune moment to also ask whether they knew how to suggest changes. This would then 

open the discussion to discuss a change process if there was one put in place.  

Throughout the change, it was of high interest to capture communication patterns. This 

would provide more context towards understanding the collaboration aspect during the 

implementation. For this reason, the question regarding whether the change was 

communicated and who was responsible for sharing the information was asked. This 

question was still helpful even if the person did not work directly with the implementation 

as it showed levels of awareness to changes made in the factory, triangulating back to 

understanding the communication patterns. 

After discussing the change process and leading into the post implementation section, 

each person was asked whether people followed up on the changes. It was of interest to see 

whether those that made changes were also the ones to follow up on the success of the 

particular change.  
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4.2.3 Post Implementation Section 

The last set of questions in the interview was on the post-implementation to understand 

the current state and what the change process looked like after the machine was set up. By 

discussing the improvements since the machine was stood up was to gauge the size of 

changes post implementation. The last question in this section was towards the 

interviewee’s opinion on the readiness for another implementation. The goal with this 

question was to extract what methods went well and what could be improved for future 

implementations.  

To conclude the interview, each person was asked who should be interviewed next. 

This not only was a referral, but also provided more context to who this person worked 

with on the project.  

4.3 Overview of Interviews 

With their being an advanced technologies team in IT focused on automation, this was 

an ideal team to start the study with. This research was of interest to this team to better 

understand the standardization process and identify opportunities throughout the 

implementation. With their own objective, the individuals in IT were more familiar with 

the study. They were also more available throughout the course of the study for any help 

or questions that arose. For this reason, the interview responses from IT were more honest 

and identified more challenges, which will be discussed later.  

With a starting team, the rest of the interviews could be set up through referrals, 

following the “snowball interview method” [93]. Snowball sampling relies on 

recommendations to people that are related to the particular topic of study [94]. This was 

particularly helpful considering the entire network for this change process was not known 
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[95]. Therefore, this method helped identify different individuals involved throughout the 

process, as well as understand the collaboration between the individuals.   

4.3.1 Interview Process 

Since many of the interviewees were referred, in most cases the introduction was 

conducted via email. The email consisted of a personal introduction, brief explanation of 

the study, and request to meet to ask some questions. While many of the interviewees were 

met in person, a couple were conducted virtually to accommodate schedules. In several 

cases, the interviewee was not met in person and the relationship only developed virtually. 

Figure 4.1. Interview Process shows a high-level flow for how the interviews were 

conducted. 

Figure 4.1. Interview Process 

As was mentioned, the project started with the Advanced Technology Team. Several 

interviews were conducted on this team and referrals were made for who to talk to next. 

More interviews were done with individuals from different teams and roles providing a 

diverse perspective. With this data, the objective was to create a process model to 
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understand how the automation was implemented. The recap of all interviews can be found 

in Table 4.2. It should be noted that the interviews could not be recorded due to the nature 

of the information discussed. In this case, only handwritten notes could be used.  

Table 4.2. Interview Recaps 

Name Position Type of 
Interview 

Day of 
Research 

Duration 
(minutes) 

Location 

Isabella Technology 
Integrator 

1 Formal 21 50 Conference room 
near desk 

1 Validation 163 45 Virtual 
1 Gemba Walk 15 60 Factory Floor 

Emma Engineering 
Programmer 

1 Formal 28 35 Virtual 

Ivy IT Business 
Partner 

1 Formal 29 35 Conference room 
near desk 

1 Validation 183 45 Virtual 
1 Gemba Walk 17 60 Factory Floor 

Olivia Operations 
Business 
Partner 

1 Formal 48 40 Conference room 
near machine 

Opal Research 1 Formal 55 30 
minutes 

Virtual 

Ingrid IT Architect 1 Formal 70 60 
Minutes 

Conference room 
near desk 

1 Formal 72 60 
Minutes 

Conference room 
near desk 

1 Validation 147 50 
minutes 

Virtual 

1 Gemba Walk 76 60 Factory Floor 
Ellie Maintenance/ 

Tooling 
Engineer 

1 Gemba Walk 41 45  Factory Floor 

Irene IT Business 
Partner 

1 Informal 22 90 Conference room 
near desk 

Olga Operator Gemba Walk 49 360 Factory Floor 

The day of research shows when in the study the interview was conducted and how 

far apart each interview was from one another. The study started with Isabella, who was a 



43 

technology integrator, in the Advanced Technology team. Through the snowballing 

method the interviews spread to different teams and individuals in various roles. The time 

in between interviews allowed for processing the previous interview information as well 

as begin the introduction and set up of the proceeding individuals interviews. From the 

table it can also be observed that one Gemba walk was done with the operators. This was 

done earlier in the project to better understand the machine and process, in addition to 

providing more context for the rest of the interviews. ‘Gemba’ is another Japanese word 

meaning ‘real place’ [96]. In manufacturing, the ‘real place’ is the shop floor at the station 

being evaluated. These walks are an opportunity to be immersed in the process and to gain 

the perspective of the person involved [96].  

4.3.2 Overview of Roles Interviewed 

To better understand the interview data, a brief description of each position will be 

provided. From the IT team, there were three individuals that were interviewed. One was 

a technology integrator, which focuses on the technology being brought in and standing it 

up to the specified requirements. Another was the IT business partner, whose responsibility 

was to interact with other departments and support the development of the department’s 

strategies. The person interviewed was in the role during the implementation, but had since 

changed roles, which is why another IT business partner, who was currently in the role was 

interviewed informally. The third was an IT architect. This role’s responsibilities were 

often to map out the networks of different technologies. On this project the IT architect 

helped breakdown the engineering requirements and illustrated it in such a way that made 

it easier to process.  
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From engineering, a programmer was interviewed. This individual worked with the 

research team to help develop the technology for the automated machine. Additionally, an 

informal interview was conducted with the tooling/maintenance engineer. This individual 

was responsible for making sure the machine was running properly and assessing 

downtown. This person was often at the standups sharing updates on the machine.  

From the operations team there was a range of people interviewed. One was the 

operations business partner. This role’s main function is to support different parts of the 

factory to ensure the resources are available to minimize downtime. This person had a large 

role in the implementation from starting to then supervising the project. Another person 

interviewed was on the operations research team. This team focused on helping integrate 

improvements to the machines that were already stood up in the factory. Lastly were the 

operators, who were the end users interacting with the machine.   

4.3.3 Interview Recap 

Reviewing Table 4.2, everyone was given an alias for anonymity purposes. The location 

of the interviews was also heavily considered to ensure a familiar environment, which is 

why the conference rooms were chosen near the interviewees desk or on the factory floor. 

Also, some interviewees offered to do a walkthrough of the factory. This ended up showing 

how the perspective of the factory changes based on the role of the individual. Not 

surprisingly, the individuals in IT focused more on the technology during the walkthrough, 

while those in engineering focused more on the machines and production processes.    

4.3.3.1 Overview of Interviews 

In total, there were 7 formal interviews, 3 informal interviews, and 3 validation 

interviews. The informal interviews were primarily focused on general information 
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regarding the machine and current process, as the interviewees were not directly involved 

in the implementation but worked with the machine in its current state. The formal 

interviews followed the semi-structured interview approach and each interviewee was 

asked the questions in Table 4.1. The semi-structured interview approach allowed the 

flexibility to ask clarification questions as they were needed throughout the interview, 

which was particularly helpful for company specific acronyms.  

Once the data had been aggregated and the process model was created, the validation 

interviews were to review the information gathered in the formal interviews, as well as 

validate and gather feedback for the process model found in Figure 4.6. The key feedback 

received was the process model would represent more of a “perfect-state” implementation. 

It also reinforced some of the challenges that were identified during the interviews.     

4.3.4 Common Words in Interviews 

Based on the six people of which formal interviews were conducted, there were several 

common words identified. These words were totaled and then aggregated in Figure 4.2. 

The one word that was highlighted in all interviews was ‘standardization.’ While the 

context varied based on the interviewee, several pointed out the lack in standardization of 

individuals on the team. Since this was a multi-year project, people rotated in and out of 

positions frequently. This caused challenges with team familiarity, which in turn can affect 

the performance of collaboration and knowledge sharing [64]. From the interviews, it also 

became apparent that there was not a standard process for requirements tracking. For those 

involved in the implementation there was mention of requirements being the responsibility 

of each team and providing those at the weekly project meetings and then uploaded to a 

file-share. However, after a certain point in the project, there was so much information and 
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nobody was identified to be tracked requirements this way. This introduces an opportunity 

which will be discussed later in this paper.     

Figure 4.2. Interview Theme Occurrence 

Many of the other words were referenced in half of the formal interviews conducted. 

These include project planning phase, safety, cost, rate, change, flow down, and 

communication. All terminology that is prevalent in manufacturing.  

Another interesting point is that interviewees from IT addressed culture. One interview 

focused on how change is culture influenced and for there to be adoption individuals need 

a “change in behavior.” However, the question that results from this is how to effectively 

change a culture? The other interview addressed culture from the project team phase. With 

representatives from different departments each has their own culture. This can be seen 

through the different focuses and requirements that the teams had during the weekly 

meetings.  
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4.3.5 Interview Observations 

Additionally, from the interviews, it became apparent that IT felt they were repeatedly 

being made aware of certain decisions after the fact, because the engineers wanted primary 

ownership of the project. It was mentioned that on several other automation 

implementations, an automated system would already be in the facility when IT would be 

made aware of it. During the interview, Isabella mentioned to fix this it requires a ‘change 

in behavior’ to accept a ‘standard process,’ but there is ‘resistance to do something in a 

new and different way.’ Enforcing a standard process would ensure that future technologies 

are following the specified requirements and can be stood up faster knowing it meets the 

requirements. 

However, this is not the only instance where there seemed to be siloed teaming. Once 

the requirements would be brought back from managers after the weekly meetings, 

individuals would go about executing the job without much cross-reference with other 

departments. This “siloed teaming” is quite common amongst larger teams as they are more 

comfortable working with those that they know and relate to. Figure 4.3 shows interactions 

between roles during the implementation and illustrates some of the “siloed teaming” that 

was found from the interviews.  
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Figure 4.3. Collaboration Map 

The collaboration map shows the individuals interviewed and the interactions 

mentioned in the interviews. If someone said that they had worked with someone else that 

was interviewed they would become connected on the map. However, it should be noted 

that this map does not identify all the interactions that each role had. This only identifies 

the people mentioned in the interviews.  

One observation from this map is that few people mentioned interacting with the 

operators. With this being an automated solution that entails a close human-automation 

interaction, ideally the operator should have been involved in the implementation. In their 

interview, the operators mentioned that when the change was made, they were told what to 

do and how to do it. Following concepts of human-centered design, with the operators 

being the end user, they have superior experience that could improve the overall product 

before it is implemented in the factory. When asked about future implementations, Ingrid 

(IT Architect) did acknowledge the need to leverage the knowledge from the operator’s 

experience. This reinforces a major opportunity for future automation implementations.  
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Upon aggregating all interactions identified in the interviews, the three core teams of 

engineering, IT, and operations became quite apparent. As previously mentioned, while all 

core teams are interreacting with one another to some capacity, there are opportunities to 

increase the communication and collaboration. This also highlighted an interesting 

relationship between the studied Human-Cyber-Physical systems (HCPS) from literature 

and the core teams, Operator-IT-Engineering. Figure 4.4 illustrates this relationship. 

Figure 4.4 Relationship between functions and HCPS 

Recall that HCPS focuses on the person interacting with the machine, which in this 

case are the operators working with the automation. The cyber aspect is the technology that 

goes into the machine, which IT helps implement those capabilities, and the physical 

system is the machine which is owned by the engineering team to maintain and sustain the 

operations. Therefore, these three core teams can be more deeply investigated to help 

further research on HCPS. From this relationship, perhaps a better understanding can be 

developed in how each elements of HCPS tie in with one another.  
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4.3.6 Process Obstacles 

As was mentioned, during the interviews several obstacles were identified within the 

process. In varied capacities, all roles encountered obstacles. However, due to the 

relationship with certain interviews, not all obstacles were expressed explicitly. The 

hurdles that will be highlighted in this section were all discussed in the interviews.  

4.3.6.1 Changes in Project Team 

Within the multi-year development there were several critical obstacles identified. For 

the two roles interviewed that were a part of the Project Team (Ivy and Olivia), there was 

an emphasis on the challenge with a changing team. Each week the project team would 

meet, there would be a new representative from different departments. Through mention 

of losing expertise with people leaving this was identified as a hurdle. In the other 

interview, ‘large teams’ and ‘not fully standard teams,’ was repeated several times. This 

lack of a standard team creates a challenge of team awareness and furthermore, 

responsibility.  

4.3.6.2 Requirements Tracking 

Additionally, during this phase the only individual identified that was tracking 

requirements was a person in IT (Ingrid). Ingrid mentioned that when she came on the 

project nobody seemed to be tracking requirements. This meant that only the requirements 

that Ingrid was made aware of would be tracked, all others ‘lost’. Ingrid also mentioned 

the data being free floating. The challenge created by this was a lack in proper 

documentation. Hence, if the documentation was not updated, there runs the risk that 

individuals are working off of wrong or outdated information which could lead to change 

propagation later in the project [59]. Alongside this, since the changes were not 



51 

communicated very well, the documentation did not change either. This effects the 

repeatability for future implementations, such as a “digital twin” reference.      

4.3.6.3 Communication and Recommending Suggestions 

Obstacles were also identified in interviews with the machine’s operation support 

team. From the research team, Opal used the word ‘disorganized’ when referring to the 

process and little communication when changes were being made to the machine. Similar 

to IT, the interviewee felt they were made aware of changes once it was already 

implemented.  

However, the most obstacles came from the operators working on the machine. When 

asked whether they knew how to suggest changes, this became a major frustration from 

their limited ability to make suggestions. The operator mentioned ‘lost communication’ 

and this was repeated in several scenarios. While the Kaizen cards were the method of 

submitting improvements, they felt that nobody followed up on them because the 

appropriate changes were never made. In addition to this, there was not anyone they felt 

that they could follow up with except Opal in Research.  

4.3.6.4 User Interface 

Another challenge was regarding some of the user-interfaces between the operator 

and machine. They had expressed that they were not able to see some information that 

would be helpful for their tasks, but due to not being able to successfully suggest changes, 

they work with what they have. As was previously discussed, this is an opportunity with 

the human factor’s aspect of the human-machine interaction. The operators also mentioned 

the challenge of not having a step by step process written out for them. This becomes a 



52 

challenge when operators are brought in and they are trained on the process at the machine 

versus with standard work instructions.  

4.3.7 Use of Obstacles 

With the goal of mapping the process model based on the interview data, as more 

obstacles were highlighted, they became opportunities for improving future 

implementations. The most challenges were found at the beginning and end of the process, 

which will be discussed later in CHAPTER 5. Further discussion on these process 

opportunities will be in Section 5.4.     

4.4 Process Model 

As was previously mentioned, the interviews helped map out the process model. Recall 

the goal was to understand how this machine was implemented. By interviewing 

individuals in different roles, information on the process was gathered, such as when people 

were brought into the project, their level of awareness, who they collaborated with, and 

their perspective on the implementation. Figure 4.5 shows a condensed form of the process 

model. Similar to the detailed process model, the colors represent different teams and gives 

a basic idea of the flow of tasks throughout the implementation.  
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Figure 4.5. Condensed Process Model 

The detailed process model that was built can be seen in Figure 4.6.  Depending on 

the task, the shapes of the boxes represents whether it was an action (To Do), a formed 

team, or communication. Note that the different colored boxes represent different 

teams/roles. However, not all individuals that were a part of the implementation were 

interviewed. This was due to several factors, such as people no longer at the company 

and interviewees not remembering certain individuals due to the multi-year span. This 

detailed process model was also created at the high-level and kept general for future 

research on additional processes. 
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Figure 4.6. Process Model 
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To better explain the process model, Figure 4.7 shows what the arrow represents. Since 

this automation implementation was executed by internal teams and a vendor, there are 

internal and external inputs. This can be information such as requirements, project updates, 

etc. Above each task, is the assignee or the team that collaborated to complete the task. The 

arrow on the right is the output, which in-turn becomes the input for the next task.   

Figure 4.7. Process Model Explanation 

4.4.1 Review of Process Model 

Reviewing the model, the process started with a regular analysis of production by the 

business team supporting operations. During this time leadership was looking to promote 

an initiative for advanced technologies. Each project went through a reviewal process 

where the objective, plan, resources, and return on investment (ROI) got either approved 

or rejected by leadership. The approved projects went through a planning phase and then a 

project team was assigned accordingly. This project team would meet weekly for the course 

of several years to review requirements, help-needed, and other project needs. It was during 

this phase of the project where the project team was constantly changing, and different 

people would be sent to represent their department on an as needed basis. As the project 

developed and further details of the machine were specified, a person from IT architect 
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familiar with building system models, was brought in to gather and track requirements. On 

a cross-functional team this helped build a visualization for the defined specifications.  

After meeting weekly for the project meetings, the representatives would ideally then 

go back to their team and provide them with the action items. This is where the model starts 

dividing into the respective roles and tasks, which can be seen in Figure 4.6, as well as in 

APPENDIX B: FULL PROCESS MODEL. The business focal supporting operations 

becomes the oversight of the project and helps to mitigate any roadblocks the teams may 

encounter. Between the different roles in this phase, there is collaboration with the machine 

provider (vendor) and the required testing/feedback iterations to ensure the machine is 

functioning properly. Once the machine has been stood up in the factory, the operators are 

trained, and the machine is put into production. The sustaining period is the current state 

where the machine is supported by the operations business support to ensure the resources 

are available to reduce machine downtime.  

This process model was validated as briefly mentioned in Section 4.3.3 Interview 

Recap. To validate, the individuals went through each step of the process model to verify 

the accuracy and provide feedback. From the feedback, this was an accurate 

implementation model, but it illustrated more of the ‘ideal state.’ The suggestions implied 

that the model needed to identify and highlight these challenges in the process, which is 

how the resistance model was created. This will be discussed later in CHAPTER 5. 

The value in mapping a process like this is it provides a visual for the high-level steps 

that were required to achieve the implementation from beginning to end. With this being a 

multi-year project, from an internal perspective, it can be difficult to keep track of the step 

by step process. In fact, throughout the research, no implementation process or general 
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process had been identified. While the process that was created may be considered 

rudimentary, it establishes a baseline for what an ideal implementation process should look 

like. This becomes useful for companies especially if they do not have a general to process 

to follow.  

This case example was good to follow because it was a process change through the 

implementation of automation. Depending on who would be asked, the response would 

vary on whether this was a change management process or a design process. Much of the 

evaluation of upstream and downstream analysis was done in the front end of the project 

during the ramp up period, but this was a dynamic process as requirements changed 

throughout the project. When analyzing the process similarity to the McKinsey 7S Model, 

or even the Kotter’s Change Management Theory, the beginning of the project certainly 

encompassed a change management initiative. A plan was created, a team was developed 

accordingly, a company initiative was formed, and resources were gathered. All of these 

seen in the study are examples of a change management process, specifically organizational 

change. However, once the project started and tasks were distributed amongst the different 

teams, elements of the engineering design process can also be seen throughout the model. 

Through generating requirements, prototyping, testing these are all seen throughout the 

implementation. This points to an interesting relationship between the change management 

process and the design process. Since both processes have elements that overlap, perhaps 

the change management is a derivative of the engineering design process. This will be 

explored further in the coming chapters. 



58 

Chapter 4 - Takeaways 

• Three functions were identified from semi-structured interviews– Engineering,
IT, and Operations

• Data from interviews were used to build a process model
o Feedback was that this model portrayed the ‘perfect-state’

• Obstacles were identified throughout the change process and needed to be
resembled in the process model
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CHAPTER 5.

RESISTANCE MODEL 

After changes are made often resistance follows shortly after [97]. Therefore, methods 

to reducing resistance has become of high interest in research. In change literature, 

resistance is often not defined due to assumptions that resistance is a known and common 

principle [98]. However, in this research, resistance is defined as obstacles and challenges 

that prevent the change from being efficient.  

Based on the feedback from the validation interviews, the process model needed to 

resemble the challenges, or resistances, throughout the process. Additionally, as will be 

discussed later in this chapter, the relationship found between change management and 

design motivated the application of a resistance model to collaborative design. This chapter 

will cover previous research on resistances as they apply to design methods, apply the 

resistance to the case study model, review lessons learned, and highlight improvement 

areas.  

5.1 Review Resistance Research 

Previous research has looked to apply a collaborative design taxon to model resistance 

in a process [65,99]. The collaborative design taxon is divided into six core attributes: team 

composition, nature of the problem, information, communication, distribution, and design 

approach [65,99]. These core attributes are then expanded and extended to different levels 

[65,99], which can be seen in APPENDIX C: COLLABORATIVE DESIGN TAXON 

[104]. Depending on the resistance scale chosen by the researcher (low, medium, high or 

1,3,9, etc), each task in a given design process would be evaluated for each taxon [99]. 
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Taking the sum of values found for each taxon, as shown in Equation 1, provides the total 

resistance per task [99].  

Equation 1. Total Resistance per Task [99] 

In Equation 1, N is the number of applicable taxons evaluated for resistance [99]. Since 

the design taxon has seventy-seven lowest level elements, N will always be less than 

seventy-seven [99]. The variable i is the particular element in the taxon that is evaluated 

for resistance [99]. Comparing all of the total resistances calculated will highlight the tasks 

with highest and lowest predicted resistance [99]. 

5.2 Limitations to Proposed Resistance 

With the proposed resistance being applied to collaborative design, there are 

limitations applying it directly to the case study example. Based on the process model 

observations, Figure 5.1 shows the perceived process relationship throughout the 

implementation.  

Figure 5.1. Observed Relationship in Process 
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Since the objective of this automation project was to improve production processes, 

the motivation is associated with production management [100]. Production management 

involves altering elements in the manufacturing process to achieve the desired output [100]. 

Observing trends in production such as throughput and efficiency help to identify 

these opportunity areas. This initiates the change management process where a strategy is 

developed, a company initiative is formed, the skills needed are acquired, and a team is 

created. The front end of the process model follows closely with the change management 

process. As the project develops, it starts forming into the design process. Requirements 

are generated, prototypes are created, testing is done, and improvements are made. While 

these three processes are coupled, they are not the same. 

In this case study, there are three processes to account for. However, the proposed 

resistance model has only been researched for the design process. Therefore, a direct 

application to this example has its limitations. There were challenges applying resistances 

from the collaborative design taxonomy to tasks in the change management process. 

However, for purposes of this research, the taxons were selected based on their 

applicability for all the tasks in the process model and then the resistances were calculated. 

5.3 Application of Resistances 

Taking into consideration the limitations with the previous work on resistance, a direct 

application was not feasible. For this reason, the taxons needed to be filtered for their 

applicability to this scenario and then a ranking process needed to be outlined. This section 

will introduce the process used to find the resistance, review a few examples from the 

model, and discuss some of the taxons not used in the study.  
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5.3.1 Process Used to Apply Resistance 

Some of the limitations to the previous resistance research is that there are no 

definitions or standard process for determining the resistance values. For this reason, a 

protocol was created to be able to apply the resistance model. Future research should 

identify a standard process.  

From the taxonomy, three key categories were applied for this case example: Team 

composition, Information, and Communication. Each of these categories had components 

that were evaluated through the resistance model: Group size, group culture, problem 

abstraction, problem complexity, information form (design artifact/background), 

ownership, information dependability (completeness), and verbal/written communication. 

Each task identified in the process model was analyzed and using a geometric scale was 

given a low (1), medium (3), or high resistance (9) for each category.  

The protocol for applying resistance values is as follows: Group size was ranked a low 

resistance for teams smaller than 5 people, medium resistance for teams between 5-10, and 

high resistance for teams greater than 10 people. Culture was dependent on how many 

different departments were contributing to a task, as the focus was on shared or unshared 

culture amongst functional teams. Low resistance was if there was one department per 

team, medium resistance was if there were 2-3 departments per team, and high resistance 

was if there were more than 3 departments per team.  

Abstraction of the problem was based on how much information or context was 

available for that task. If this was a routine task it was valued with a low resistance. If there 

was a set objective, or context to the problem but certain elements were unknown or 

changing, such as requirements, then it was considered to have a medium resistance. If the 
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task did not have many guidelines or parameters or did not seem to have much context to 

the project, it was considered to have high resistance.  

Complexity was based on its definition, whether the task had many embedded steps or 

whether it was a more simple process [101]. If there were any challenges identified, this 

was considered into the complexity scoring. If the task was easy to accomplish and had 

few steps it was considered low resistance (1). If the task had some challenges and few 

intertwined steps it was considered medium resistance (3). If the task had many challenges 

and many connected steps it was considered high resistance (9).  

The information form (design artifact or background) was evaluated based on how 

information or context was available for each task. If the context of the task was well 

known and the information was readily available, then this was considered low resistance 

(1). If there was some context, but some information needed further investigation, then this 

was considered medium resistance (3). If there was little context to the task, a lot of 

unknowns, and little information available at the start of the task, this was considered high 

resistance (9). 

Ownership was evaluated based how many people were responsible for the tasks. If 

there was one role responsible for the task, then it was considered to have a low resistance 

(1). If there were a couple of roles responsible for the task, and there was an obstacle 

identified regarding who “owned” the task or product, then this was considered medium 

resistance (3). If there were several teams and the responsibility was unclear, then this was 

considered high resistance (9).  

Completeness evaluates the task based on the amount of changes that will be made to 

the information after the task is completed. If there were few to no changes to the 
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information in later tasks, then the completeness for the task was rated a low resistance (1). 

If there were some changes occurring during the task that would change the information 

during that task, then this was considered medium resistance (3). If there were many 

changes to the information in proceeding tasks, then this was considered to have a low 

completeness leading to a high resistance value (9). 

Lastly, for communication, the verbal/written mode was evaluated based on the 

amount of perceived communication. The team familiarity would also be considered during 

this step, as well as team size, as information sharing often becomes more challenging as 

team size increases [102]. If there were no challenges identified with communication or 

collaboration and high team familiarity, then the task was evaluated a low resistance (1). 

This follows with high team familiarity leading to higher team performance [64]. If there 

were some challenges identified with communication or collaboration during a task, then 

a medium resistance (3) was applied. If there was low team familiarity due to turnover or 

issues communicating due to department specific vocabulary (acronyms, etc.), then this 

was considered a high resistance (9).  

5.3.2 Resistance Ranking 

An example for how the tasks were rated for resistance can be found in Table 5.1. The 

three example scenarios that were selected were pre-change analysis, a planning program, 

and weekly all-team project meetings. The pre-change analysis is where the current 

business process is evaluated, which primarily consisted of business support individuals. 

The planning program is the projection of the future business process, such as calculating 

return on investment. This usually involved business support and leadership. The weekly 

all-team project meeting were status updates throughout the life of the project involving a 
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representative from all core teams of the company. This resulted in a large cross-functional 

rotating team. These examples were chosen because of the distribution between low, 

medium, and high resistance tasks.  

Table 5.1. Examples of Resistance Ranking 

Factory 

Analysis 

Project 

Planning Phase 

Weekly All-Team 

Project Meeting 

Team 

Composition 

Group Size Low Medium High 

Culture Low Low High 

Abstraction Low High Medium 

Complexity Low Medium High 

Information Form (Design 

artifact or 

background) 

Low Low Medium 

Management Ownership Low Medium High 

Dependability Completeness Medium High High 

Communication Mode Verbal / 

Written 

Low Medium High 

Total: Low Medium High 

Rtask 0.1200 0.257 0.6923 

The resistance values that were applied were based on the authors interpretation of the 

case study data. However, the values were supported with literature as applicable. 

Reviewing each of the resistance values that were applied, the pre-change analysis 

consisted of a small team size (less than 5 individuals), therefore it was labeled with a low 

resistance. The project planning phase consisted of medium team size (between 5 and 10), 
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so it was given a medium resistance rating. However, the weekly all-team project meetings 

were given a high resistance rating, because the size of the team was large (greater than 

10).  

Next was the evaluation of culture, which was viewed as shared or unshared culture 

between cross-functional teams. While there are many advantages to cross-functional 

teams, there are some challenges that follow with it. From literature, functional 

characteristics, such as language (team specific acronyms, etc.) and team responsibilities 

can create a hurdle for effective collaboration [103]. So, following the composition of the 

teams, since both the factory analysis and the planning program consisted of mostly 

members from the same department, they were labeled with a low resistance. While the 

weekly all-team project meeting consisted of over seven different functional departments, 

the unshared culture led to a higher resistance. 

The next evaluation was for the abstraction of the problem. As previously stated, the 

pre-change analysis was a routine analysis of the factory process, meaning it was a more 

concrete process, deeming it a low resistance [104]. The planning program was the 

development and refinement of the project. Since this was an opened-ended step, a design 

team could have aided in the abstraction of the task. However, this was a team consisting 

of individuals from the same department proposing a plan to leadership. This plan consisted 

of a broad project idea, return on investment, and resources needed, however, this 

information was high-level and is what led to a high resistance [104]. This defining stage 

of the planning program could have benefited from a diverse team to help work through 

some of the ambiguity in this step. With the weekly all-team project meeting while there 

was a problem statement, there were many elements that needed defining along the way, 
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but there was more context to the task, so the level of abstraction was considered 

intermediate. Additionally, since there was a cross-functional ‘design team’, the resistance 

was lower than the planning program. For this reason it was evaluated as medium resistance 

[104]. Lastly, complexity was evaluated based on its definition looking at the degree of 

overlapping components and difficulty to complete the task [105,106]. The factory analysis 

was reviewing the production data and processes. This was done routinely to ensure timely 

throughput, so the complexity was low leading to a low resistance. For the project planning 

phase, there were several components that affected the outcome of this task, but it also 

could be completed with less difficulty by having the right information. For this reason, 

the resistance was considered medium. Now due to the many overlapping components in 

the weekly project meetings and the challenges faced with larger team this led to a high 

complexity resulting in a high resistance.   

The next section to be evaluated was on the information, specifically the design artifact 

and background [99]. The design artifacts are the information and data that provide context 

to the project or task [65]. The resistance scoring was based on the presence of design 

artifacts, the less information the higher the resistance. Since the factory analysis was all 

based on manufacturing data, this stage curated many artifacts, this resulted in a low 

resistance. Since the planning program required presenting the design artifacts to 

leadership for approval, such as defining the context of the project, the return on 

investment, etc., this resulted in a low resistance. As the project picked up speed, the 

weekly all-team project meetings generated project updates and defined requirements. 

However, the resistance here was the lack of thorough tracking of these artifacts, resulting 
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in medium resistance. A high resistance rating would be if there were no design artifacts 

or context to the given task.  

The next evaluation was on the ownership of the information. In this project, it seemed 

that the more teams that were involved, the more distributed the ownership was on who 

was able to make changes to the information. This relates closely to change management 

[65], because if someone made a change and any questions arose, then proper 

documentation would provide with who made the change so they can be contacted. 

Additionally, with more individuals capable of making changes to the information there is 

less sense of ownership which can cause resistance if individuals are not making the proper 

updates as a result of relying on someone else to make the appropriate changes [65]. For 

the pre-change analysis, since there was only one team involved, few were able to make 

official changes to documentation which is why the resistance rating was low. For the 

planning program, since there were several teams involved this increases the ownership of 

the information, which is why the resistance is medium. Similarly, since the weekly all-

team project meetings involved all the core teams (7+ teams), the ownership of the 

information was widespread, which led to a high resistance rating. 

The last resistance evaluated for information was for the dependability and 

completeness. Completeness evaluates the task based on the amount of changes that will 

be made to the information after the task is completed [107]. While the pre-change analysis 

evaluated the production process, changes were always being made to the process which 

meant the information was changing, this resulted in a medium resistance. Due to the high 

level of abstractness in the planning program, particularly when defining the project, there 

were a lot of variables that needed to be defined later in the project. For this reason, the 
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resistance was considered high. The reason the weekly all-team project meeting was also 

rated a high resistance was because it was the responsibility for each team to update and 

add their information to the shared database, however, the information stopped being 

updated causing incomplete information. Incomplete information causes resistance and can 

introduce issues later on in the process [65,104]. 

The next section evaluated was communication throughout each task. The modes of 

communication identified for this project were both verbal and virtual (written). The 

resistance rating was evaluated based on the team size, as information sharing becomes 

more challenging as the team size increases [102]. Applying this, the factory analysis had 

a lower resistance, the planning program had a medium resistance, and the weekly project 

meetings had a high resistance. APPENDIX D: RESISTANCE DATA shows all the taxon 

resistance values for each of the tasks found in the process model. Taking this data, the 

total resistance for each task could be calculated and was added to the resistance model.  

5.4 Lessons Learned from Resistance Model 

The constructs of the resistance model are based on the process model tasks and circuit 

properties. Figure 5.2 shows the proposed resistance model, a larger model can be found 

in APPENDIX E: RESISTANCE MODEL. The resistors represent that each task exhibit 

resistance to some capacity. The switches found at the beginning signify critical decisions 

made throughout the project. For example, there is a switch after the project planning phase 

because leadership decides whether to invest in the project or not. Depending on the 

decision, the switch will be open or closed to either pause or continue to the next step, 

respectively.  
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Figure 5.2 Resistance Model 

Taking each of the taxon resistance values per task and plugging them into Equation 

1 gives the total resistance per task. The aggregated data can be found in Table 5.2. From 

the table, Task 1 ‘Factory Analysis’ has the lowest resistance Task 6 ‘Weekly Project 

Meetings’ has the highest resistance. Each of the resistance values per task are also depicted 

in the resistance model from Figure 5.2. 
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Table 5.2. Resistance Value per Task 

The resistance model also shows the obstacles that were identified in the interviews, 

represented as check marks. An interesting observation from this is that the most obstacles 

were found at the beginning and end of the process. This could be a result to the many 

changes that were occurring during these phases of the project. At the beginning, many 

requirements were changing as the project developed. Depending on the level of 

communication or collaboration regarding these requirements can affect the success of 

proceeding tasks. Additionally, as identified in previous sections, there was high change 

amongst the representatives in the weekly project meetings. At the end of the project, 
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sustaining the machine created major changes at the operational level. In all, the 

preparation and planning for these changes seem to have a heavy influence on the resistance 

or adoption to these changes. 

Looking at the high resistance values and the obstacles in the model, the resistance 

values did identify where the challenges would be in the process. While the interviews 

were used to apply the resistance values, these highlighted objective characteristics which 

were used to build the process model, and then resistance model. From the resistance model 

the top resistances were identified. The interviews also highlighted subjective obstacles 

from each individual. The top resistances from the model and the subjective obstacles were 

then compared to determine that the resistance model accurately identified the challenges 

in the process. Figure 5.3 illustrates this interview data comparison. 

Figure 5.3. Interview Data Comparison 

5.5 Resistance Model Improvements 

There are many opportunities to improve the resistance model presented here due to 

the limitations of previous research. The resistance model would certainly benefit from a 

more well-defined scoring method. This would greatly enhance the objectivity of the 

resistance scoring when applied to a future process.  



73 

In addition to this, the taxon used for the resistance scoring was specifically for 

collaborative design. To make this more applicable, the resistance model would benefit 

from a change management taxon. Since the process was divided between change 

management and design, an additional taxon would help improve the resistance rating for 

each of the tasks.  

To review the resistance data, another opportunity area would be to have several 

people code the resistances and use statistical methods, like inter-rater reliability to verify 

the results. This would help ensure that the rating process was clear and consistent amongst 

the raters, as well as increase the validity of the results.  

Chapter 5 - Takeaways 

• Limitations to a direct application of the collaborative design resistance model
to this change management process

• Design process was found embedded in the change management process
• Resistance model showed the tasks of highest resistance

o These tasks of highest resistance matched with subjective obstacles
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CHAPTER 6. 

RESEARCH QUESTIONS ANSWERED 

Alongside the change to the manufacturing process, there were many other changes 

identified within the implementation process through building a process model. From the 

case study data, the more changes that were encountered in the task led to higher 

resistances. Mitigating these resistances with a thorough change management process will 

reduce cost and time [108]. This section will cover the answers to the two proposed 

research questions addressed in Chapter 2.2.  

6.1 Answers to Research Question 1 

 What is the change management process for large-scale automation implementations 

processes? 

During the case study there was no formal change management process identified. 

Therefore, to understand the implementation, a change management process was mapped 

based on the case study data, which was shown in Figure 4.6. Comparing to other change 

management processes found in literature, this process had a defined goal for what the 

company wanted to achieve with the implementation. However, throughout the change 

process there did not appear to be a structured team. There was a heavy rotation in the 

representatives in the weekly project meetings which led to a high resistance. Despite this, 

there was a level of awareness to the changes due to the factory initiative. By getting the 

entire factory involved helped empower the employees to be a part of the change, even if 

they weren’t directly involved in the implementation. Lastly, with this being a multi-year 

project there was plenty to learn about the process. In the interviews, this implementation 

was considered to have been better than others. However, there was no clear justification 
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provided to support this. Through a project debrief, the lessons learned and process 

overview could have identified opportunities for future implementations. Table 6.1 shows 

the key elements found within the case study process model. Recall in Chapter 2.1.5, this 

table was used to compare other change management processes from literature to the key 

elements found for successful change management. The conclusions from the constructed 

change process show that there was defined goal and an awareness of change. However, 

due to the rotation in team representatives, there was not a structured team, nor was a 

project debrief identified.  

Table 6.1. Change Process Elements 

Change Model Defined 
Goal 

Structured 
Team 

Awareness of 
Change 

Project 
Debrief 

Case Study Process Model Yes No Yes No 

Through validation interviews, it was confirmed that the process model represents a 

‘perfect state’ implementation, however, it did not identify some of the obstacles that were 

encountered throughout the process. Therefore, a resistance model was applied to identify 

the tasks of highest resistance and was verified with the subjective challenges from the 

interviews. To conclude, the resistance model accurately represented the challenges 

identified throughout the process.  

6.2 Answers to Research Question 2 

How does the Change Management Process differ from the Design Process? 

Upon constructing the change management process, it appeared that there were many 

similarities with the design process. After comparing the characteristics of both processes 

from literature, it became apparent that, in this scenario, the design process was embedded 
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in the change management process. Figure 6.1 shows elements of change management and 

design processes. The black dotted section of the process coincided with the change process 

at the frontend of the project, while the solid blue box signified tasks that followed the 

design process.  

Figure 6.1. Identified Change Management and Design Process 

As previously discussed, even though the processes appear to be similar, they are 

distinct processes. While in this scenario, the design process is embedded in the larger 

change management process, this does not mean that the design process is a part of the 

change management process or vice versa.  

To distinguish the two, in this case study, the change management process focusses 

mainly on the human element [66]. While design processes can be people-centric as well, 

in this example, it was found that the design process was problem and solution focused. 

For an automation implementation, there are human elements to consider, as well as 

machinery and tooling to account for. Therefore, it is logical that the process was a 

combination of change management and design processes. Further research should 
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continue elements of this study to identify whether this holds true for other automation 

implementations, or whether this combination was case specific.  

Chapter 6 - Takeaways 

• Change process was constructed based on case study data
• Change management process and design process have many similarities, but

are distinct processes
• In this scenario, change management process was people-centric and the

design process was problem/solution focused
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CHAPTER 7. 

OPPORTUNITIES AND RECOMMENDATIONS 

From this research, it is apparent that automation implementations are quite complex 

and there are many intertwined, variable parts. Like any manufacturing process, there are 

always opportunities for improvement. Based on observations from this study, this section 

will highlight some recommendations for future implementations. The following list are 

suggested opportunities for future implementations that resulted from the obstacles 

addressed in the interviews:  

• Thorough documentation and requirements tracking

• Construct a standard process model, ending with a project review

• Strong involvement of IT in the development phase

• Increased communication and collaboration between all teams

• Incorporate the operators at the beginning of the process

In a project, requirements help establish what criteria needs to be achieved. As such, 

requirements can also help measure the success at the end of the project, based on whether 

they have been achieved or not. Since requirements are often dynamic and can change 

throughout the course of the project, proper documentation of this information is critical. 

For future implementations, thorough documentation and list of requirements creates a 

foundation for proceeding projects. It is suggested to standardize the requirements process 

and ensure that all teams are contributing and making updates to the requirements 

accordingly. While requirements documentation can help align all departments involved, 

it can also help track useful technological knowledge.  
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In conjunction with requirement standardizations, there should be an overall standard 

process to follow for these types of implementations. With so many different components 

to the project, having a general best practice process will provide guidance to the 

implementation teams. Additionally, a database of feedback and lessons from each 

completed project can enhance the efficiency of the process, in turn improving future 

implementations. These guidelines can accelerate the project schedule and mitigate running 

into common obstacles. These different lessons learned from each project can provide basic 

parameters to follow for future implementations.   

As was seen in this project, automation implementations require a large set of diverse 

skills. However, with the increase of digital technologies within these systems, the 

involvement of IT is required more than ever. Especially as companies begin to setup and 

standardize their own technological requirements, IT is typically the only department to 

proficiently set up these processes. From this, it is recommended to increase the 

collaboration between engineering and IT earlier in the development phase to ensure the 

physical and hardware requirements align and the standardizations are met prior to the 

machine entering the facility. 

Alongside this, increasing the communication and collaboration cross-functionally 

will help to decrease the siloed teaming observed throughout the process. Challenges often 

arise when there is a lack of communication or missing information. To prevent this 

throughout the process, it is suggested to increase the cross-functional teaming to bring 

awareness to other departments.     

Finally, the operators are such a valuable aspect to the automation implementation 

process. Through daily interactions with automated systems, operators can provide helpful 
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manufacturing insight to the process. Taking the principles of user-centered design and the 

overall user-experience, the operator should help develop the requirements and provide 

input prior to the machine being brought into the factory. For this reason, it may be helpful 

to include the operators earlier in the design process, while developing these machine 

requirements.  

Chapter 7 – Takeaways 

Opportunities identified throughout the process:  

• Thorough documentation and requirements tracking
• Construct a standard process model, ending with a project review
• Strong involvement of IT in the development phase
• Increased communication and collaboration between all teams
• Incorporate the operators at the beginning of the process



81 

CHAPTER 8. 

CONCLUSIONS AND FUTURE WORK 

This section will cover the conclusions, providing an overview of the study, the results 

and answers to the research questions. Additionally, future work topics will be proposed 

for advancing this research.  

8.1 Conclusions 

Smart manufacturing and Industry 4.0 literature introduces a broad range of topics on 

the advancement of technology, such as automation and IoT, in manufacturing. However, 

this literature does not discuss the implementation, or the change management processes 

for these topics. With continual changes in production environments, understanding the 

processes can help identify opportunities to increase the efficiency and reduce resistance 

to the changes.  

To further study this, a case study method was used. This use of empirical research 

provided insight to how one automation implementation was conducted. While the findings 

don’t guarantee repeatability, it creates a foundation for future work. The focus of this 

research was to answer the following two research questions:  

Research Question 1: What is the change management process for automation 

implementations? 

In this case study, since no formal change management process was identified, a 

process model was constructed based on the interview data gathered. This helped layout 

the core tasks in the implementation process, as well as visualize the collaboration amongst 

the different teams. The process model was a representation of the ideal state 

implementation. However, it did not identify some of the obstacles that occurred 
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throughout the process. For this reason, a collaborative resistance model was applied to see 

where in the process was the highest resistance. The resistances indicate areas that are 

prone to cause delays or bottlenecks in the process. Identifying these areas in advance can 

lead to increased efficiency. The results from the process model led to the second research 

question.  

Research Question 2: How does the change management process differ from the 

design process? 

Throughout the analysis of the process model, several tasks resembled elements of 

design. Further analysis was conducted to see what distinguishes change management and 

design. The distinction identified is that change management is a people-centric process, 

while the design process is problem and process-centric. In the process model (Figure 4.6 

and in APPENDIX B: FULL PROCESS MODEL), the front-end of the process was 

focused on preparing for the change by collecting data, forming the right teams, and 

creating awareness to the changes. As the project shifted towards integration and 

development of the automated system, there was an apparent shift to the design process. In 

this phase, many of the requirements were gathered and iterations of testing/modifications 

were done.  

With automation implementations needing to account for human and machine 

elements, it is not surprising that the process accommodates for both elements. However, 

the combination of both processes (change management and design process) suggests the 

need for future work to attempt to distinguish and develop them further.  
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8.2 Future Work 

The results of this study introduce new concepts that should be studied further. Since 

this process model was constructed based on the case example, future research would 

benefit from investigating how similar or dissimilar this process is to others found in 

industry. The following research questions are proposed for future work:  

Question 1: How would small to medium enterprises affect the change management 

process? 

With the amount of resources varying based on the size of the enterprise, the objective 

would be to see how the size of the company influences the change management process. 

Would less resources make an impact on the process or not? 

Question 2: How would product changes (such as higher volume and lower 

complexity) affect the change management process? 

The objective with this research question would be to determine whether product 

complexity influences the rigor of the change management process. Do less complex 

products have a more simple change management process or do they follow closely with 

the change management process found in this research?  

Question 3: How would the change management process differ if followed from the 

beginning of an implementation? 

In this research, we observed the process after the implementation was already 

completed. The objective of this question would be to see whether observing the 

implementation from the beginning would identify new elements or change the process 

found in this work. 
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Additionally, the resistance model was beneficial in identifying the areas of highest 

resistance in the process model. However, for future applications the following question 

and research objective is proposed:  

Question 4: How would evaluating resistance prior to the implementation affect the 

obstacles within the change process? 

This question looks to apply the resistance model prior to a change to see whether the 

challenges or obstacles can be mitigated, leading to a reduction in resistance.  

Objective 1: Using artificial intelligence (AI) to predict the resistances based on the 

process model data.  

As data is collected when changes are made, the objective would be to see whether 

artificial intelligence can predict the areas of resistance so that they can be mitigated prior 

to the implementation of a change.  

Throughout the research, there were some limitations identified towards applying a 

collaborative design scenario to the change management process identified. For this reason, 

it is suggested that the resistance model would benefit from another taxon, but for 

collaborative change management. Additionally, the resistance model can be used to track 

information flow throughout the process through quantifying active knowledge (current)  

and passive knowledge (voltage). Measuring the current and voltage throughout the 

resistance model can provide a different perspective on the resistance from what was 

looked at in this research.  

In the future, manufacturing will continue to adopt new technologies and will 

transform as industry shifts towards the fourth industrial revolution. In preparation, future 

work should look at the needs of the operators.  
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Question 5: What are effective methods of training these advanced technologies for 

future operators? 

As more automation and advanced technologies are implemented, the needs of 

operators will change requiring a unique set of training. Thus, this question looks to 

investigate what methods will most effectively train and prepare operators.  

Question 6: How can it be ensured that operators have been properly trained? 

Alongside the previous question on training methods, this question seeks to know how 

much training is required. Since many of these advanced technologies do not involve trivial 

processes, it’s important for operators to be fully trained prior to being put in production, 

but this measure needs to be developed.  

Lastly, since this research constructed and validated the process model, it would be 

beneficial in future work to use another research method to gather the process model data. 

This could be done by having the participants build the process models themselves. This 

leads to the following research objective:    

Objective 2: Conduct a workshop in which participants engage in mapping out the 

change management process.  

By having the participants build their own model provides a different perspective. Such as 

real-time data on their thought process, feedback on the challenges identified during the 

change, and elements of collaboration throughout the activity. It would be of interest to see 

how similar or dissimilar this is to the process identified in this research.  
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Chapter 8 - Takeaways 

• A Change management process was constructed from this case study
• Resistance model accurately predicted the challenges addressed in the

interviews
• In this example, the design process was embedded in the change management

process
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CHAPTER 10. APPENDICES 
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APPENDIX A: DYNAMO++ LOA EXAMPLES 6 

Figure 1: Operator places sticker component on vehicle (Physical: 1, Cognitive: 3) 

Figure 2: Operator moves drill so machine can install screws (Physical: 5, Cognitive: 3) 



95 

Figure 3: AGV moves chassis throughout factory (Physical: 6, Cognitive: 7) 

Figure 4: Operators connecting cables (Physical: 1, Cognitive: 1) 
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Figure 5: AGV brings chassis to machine for inspection (Physical: 7, Cognitive: 7) 

Figure 6: Machine tightens bolt in zoned off area (Physical: 5, Cognitive: 7) 
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Table 1: Total Physical and Cognitive LoA for each task identifying improvement areas 
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APPENDIX B: FULL PROCESS MODEL 
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APPENDIX C: COLLABORATIVE DESIGN TAXON [104] 

Team Composition 

Group Size 

Culture 

Individual Personality 

Expertise 

Team Member Relations 

Leadership Styles 

Nature of Problem 

Type 

Concurrency 

Coupling 

Abstraction 

Scope 

Complexity 

Information 

Form 

Management 

Ownership 

Permission to Change 

Security 

Change Propagation 

Perceived level of criticality 

Dependability 

Reliability 

Completeness 

Communication Mode 

Verbal 

Written 

Graphic 



102 

Gestures 

Quantity Frequency 

Duration 

Syntax Language 
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Technology 
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APPENDIX D: RESISTANCE DATA 
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APPENDIX E: RESISTANCE MODEL 
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