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Abstract

Distributed medium access control (MAC) protocols are essential due to the flexible and

self-organizing nature of ad hoc networks. Scheduling protocols have been popular choices, because

they guarantee access to the channel for each transceiver. The disadvantage with these scheduled

approaches is that they are inefficient when the network has low traffic loads. Consider a time-

division multiple access (TDMA) schedule where nodes are assigned time slots in which they are

allowed to transmit. If a particular node is scheduled but has no traffic to forward, then the time

slot is wasted. Because the channel has been reserved for use by that particular node, other nodes

in the network with traffic to forward are unable to do so. We investigate strategies to improve

the performance of TDMA scheduling protocols for ad hoc networks using radios with multiple

antennas. Multiple antennas at each radio enables the use of a physical layer technique known as

multiple-input multiple-output (MIMO) that leverages the spatial dimension. The antennas allow

for both spatial multiplexing and interference cancellation. Spatial multiplexing allows for multiple

parallel data streams to be transmitted at the same time. Interference cancellation is used to

selectively pick neighbors that do not receive interference from a transmission. Our protocol uses

both techniques to allow unscheduled nodes to transmit if the slot is not fully utilized. Using a

custom simulation, we show that Lyui’s scheduling protocol can be extended to support MIMO and

time slot sharing. Our new protocol provides performance improvements with regards to end-to-end

completion, throughput, and average delay.
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Chapter 1

Introduction

Wireless networks have become increasingly popular due to low cost and powerful transceivers.

An ad hoc network is an example of a flexible self-organizing wireless network which does not rely

on a preexisting infrastructure. In an ad hoc network, a transceiver serves the role of both the traffic

source and sink as well as the intermediary router for traffic not destined for itself. Because ad

hoc networks do not require preexisting infrastructure, they have been a popular choice for military

applications in hostile environments and during disaster relief efforts when existing infrastructure

has been damaged.

1.1 Medium Access Control

Wireless networks operate with all nodes using the same medium. This means that if two

nodes decide to transmit at the same time, additional interference is created at the intended receivers.

If the interference is too large, then a receiver may be unable to decode the intended message, and

the packet may be lost. A network’s sensitivity to interference caused by simultaneous transmissions

depends on the modulation and coding schemes used at the physical layer. Due to the issues posed

by simultaneous transmissions, medium access control (MAC) protocols are used to determine when

a node may transmit. Because ad hoc networks cannot use a central controller, it is important that

all MAC and network protocols work in a distributed manner.

The two classifications of MAC protocols are contention based and contention free. Contention-

based MAC protocols allow for nodes to dynamically decide when to transmit. Classic examples of

1



contention-based MAC protocols are ALOHA [1], CSMA [9], and MACA [8]. Some MAC proto-

cols, such as ALOHA, are unable to handle the hidden terminal problem [19]. The hidden terminal

problem occurs when node B is communicable with nodes A and C, but nodes A and C cannot

communicate. Node A must not communicate to B if C is simultaneously communicating with B.

The challenge of the hidden terminal problem is that nodes A and C cannot coordinate transmissions

to B, because they cannot communicate with each other. The MACA protocol is an example of a

contention-based MAC protocol that can address the hidden terminal problem by using a RTS/CTS

scheme to reserve the channel. This involves a node sending a request-to-send (RTS) and waiting

to transmit until it receives a clear-to-send (CTS) notification. Waiting for a CTS is the key to

avoiding the hidden terminal problem. Should a node not receive a CTS after a period of time, the

RTS is repeated. Commonly, an exponential back off is used to select a random time in the future to

send another RTS. This approach works well during periods of low network traffic. However, during

periods of high network traffic, delay increases rapidly due to the exponential back off.

In contention-free MAC protocols, channel access is not determined dynamically but is

instead reserved ahead of time. The process of reserving portions of the channel is referred to as

scheduling. Schedules can be based on time (TDMA), frequency (FDMA), or code (CDMA). We

use a TDMA approach. Traditionally, TDMA allocates one node per time slot. In large networks,

this approach is inefficient as many nodes outside the communicable range of the transmitter are

capable of transmitting. Consequently, we focus on spatial TDMA (S-TDMA), in which multiple,

widely separated, nodes are allowed to transmit in the same time slot. Scheduled MAC protocols

provide a guaranteed access to the channel for the node to transmit. Because of the guaranteed

access to the channel, traffic experiences less variation in delay. This feature is helpful for delay

sensitive traffic such as voice packets. Unfortunately, traditional TDMA approaches are inefficient

when the scheduled node has no packets to forward. If a node is scheduled to transmit but has

no packets to forward, then the entire time slot is wasted, and other nodes may have been able to

transmit instead. Often, the performance of ad hoc networks is limited by a significantly smaller

set of bottleneck nodes. If the traffic arrival rate at a bottleneck node is greater than the departure

rate, then eventually queue overflow will occur, and packets will be dropped from the network.

We propose an approach to TDMA scheduling to provide additional transmission opportunities to

nodes, including bottlenecks, that helps improve performance.

2



1.2 Direct Sequence Spread Spectrum

Direct-sequence spread-spectrum (DSSS) modulation is a physical layer technique that uses

a psuedorandom chipping sequence to spread the transmitter’s energy over a wider portion of the

frequency domain. The receiver must be correlated in time and be aware of the chipping sequence

used by the transmitter. With this modulation approach links are more robust to interference which

is important for ad hoc networks in which multiple access interference varies widely. Links with high

signal to interference-and-noise ratios (SINR) are able to shorten the length of the chipping codes

to increase the data rate. This reduces the protection from multiple-access interference but results

in higher capacity links. The higher capacity robust links provided by DSSS are of particular use

when trying to improve the performance of ad hoc networks [21].

1.3 MIMO

Multiple-input multiple-output (MIMO) is a physical layer technique that requires trans-

mitters and receivers to have multiple antennas, and it leverages the spatial dimension of well-

conditioned channels. Significant channel capacity increases have been shown using MIMO. For

example, MIMO has been used extensively to provide increased throughput for WiFi. Spatial multi-

plexing is a technique that uses MIMO to create multiple independent data streams. The increase in

link capacity is proportional to the number of antennas the transmitter-receiver pair have. Another

application of MIMO is interference cancellation, during which a transmitter is able to null out its

own signal at another receiver. This means that the receiver is available to receive a transmission

from a different transmitter. Additionally, MIMO is independent of the coding and modulation

technique used, so DSSS and MIMO can be combined as shown in our protocol. The NSF PAWR

[3] program has recently funded experimental platforms for next generation wireless technologies.

One such project is the creation of a MIMO test bed for future massive MIMO applications that

could use a similar approach to our protocol outlined here.

1.4 Problem Statement

We propose a new distributed MAC protocol that uses MIMO techniques to allow a slot’s

unused capacity to be reclaimed by secondary transmitters that are not scheduled to transmit in the

3



slot. Each node has n antennas which are used for both spatial multiplexing and interference can-

cellation to increase the effectiveness of the unscheduled transmissions. We show that this protocol

improves end-to-end completion in large ad hoc networks with varying densities.

The rest of this document is organized in the following order. Background is presented in

Chapter 2. A summary of the key assumptions of our system model are provided in Chapter 3. Our

new protocol for shared scheduled access is presented in Chapter 4. Simulation details are covered

in Chapter 5, and results from the simulation runs are presented in Chapter 6. Lastly, Chapter 7

contains the conclusions and future work.
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Chapter 2

Background

This chapter provides background and prior work for TDMA scheduling protocols and

MIMO. Our new protocol adapts an existing TDMA protocol to take advantage of transceivers

with multiple antennas. The existence of multiple antennas at the transmitter and receiver allows

for the use of MIMO.

2.1 Scheduling

Scheduling protocols based on TDMA can be classified into either link scheduling or broad-

cast scheduling. Link scheduling guarantees that a transmission on a link from node A to node

B will be successful. Broadcast scheduling guarantees that a broadcast from node A will be cor-

rectly decoded by each 1-neighbor. A k-neighbor is a node that is k hops from terminal A, where a

hop indicates a wireless transmission between two nodes. Therefore, a 1-neighbor is one hop away

from node A, and a 2-neighbor is two hops away. In order to avoid the hidden terminal problem,

broadcast scheduling requires that when a node transmits none of its 1-neighbors or 2-neighbors

transmit at the same time. The collective set of 1-neighbors and 2-neighbors is referred to as a

node’s neighborhood.

The most basic TDMA protocol for broadcast scheduling is to assign every node a single

time slot in which to transmit. With N nodes in a network, a node is scheduled to transmit every N

time slots. This is extremely inefficient, however, for large networks in which nodes may be separated

widely enough to transmit without disrupting other ongoing transmissions. An S-TDMA protocols
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take advantage of frequency reuse to allow multiple transmissions to take place at the same time.

However, the optimal slot assignment for S-TDMA has been shown to be NP-complete [5].

The classic coloring problem has been been applied in several ways to implement S-TDMA.

The protocols assign a color number to each node in the network such that every node has a unique

color number in its neighborhood. Then, color numbers are assigned time slots instead of individual

nodes. This approach improves the spatial efficiency of the basic TDMA approach. The RAND

protocol [13] is an example of a centralized approach to coloring nodes for S-TDMA. The protocol

was later revised as a distributed version called DRAND [15]. Lyui’s protocol [10] is a distributed

protocol based on the global coloring approach as well, but assigns multiple colors per slot to increase

the spatial efficiency of the algorithm. We use Lyui’s algorithm as a basis for our work. However,

our approach works with any broadcast scheduling algorithm.

2.2 MIMO

A narrowband time-invariant wireless channel with n transmit antennas and n receive an-

tennas is described by H, an n × n deterministic matrix. The received signal, y, is modeled by

y = Hx+ w (2.1)

where x is the transmitted signal, and w is white Gaussian noise. A combination of pre-processing

and post-processing as shown in [20] can be used to find the correct symbols to transmit, x, that

produce the desired signal, y. Therefore, when both the transmitter and receiver have multiple

antennas and the channel has suitable fading conditions, then the spatial dimension can be exploited

to get a degree of freedom (DoF) gain. The DoF gain allows for both spatial multiplexing and

interference cancellation. Spatial multiplexing allows for n independent streams of data to be sent

from antennas on one transmitter to antennas on one or more receivers. Interference cancellation is

when a transmitter nulls out its own signal at another receiver. The other receiver is then able to

receive a transmission unimpaired by the original transmitter.

One challenge to using MIMO systems is acquiring the channel state information (CSI) used

for finding H. Inaccurate approximations of the CSI lead to significant increases in interference at

the receivers. A process known as channel sounding is used to find an approximation for the CSI.

One approach to measuring the CSI is to broadcast a known sequence of data to the receivers over
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the link. The receiver is then able to estimate the CSI based on the received signal and send the

resulting matrix, H, back to the transmitter. The performance of the MIMO system depends not

only on the accuracy of the approximation, H, but also the frequency with which the channel is

sounded. The frequency at which the channel should be sounded depends on the characteristics

of the channel. Experiments conducted by Ma [11] have shown that, for stable channels, the CSI

provides a good measure of the channel for up to 100 ms. More dynamic channels require more

frequent sounding. Another concern is that as the number of antennas, n, increases, the size of the

CSI matrix, H, increases like n2. This means increased overhead in estimating and distributing the

CSI as shown in [6].

Due to the complex matrix operations involved at the physical layer for MIMO, a simplified

optimistic network model has been developed [2] [12] that only requires numeric computations to

keep track of the number of degrees of freedom. Every node’s antenna is associated with a DoF.

Spatial multiplexing consumes one DoF at both the transmitter and receiver. Similarly, interference

cancellation consumes one DoF at the transmitter. A node can use any combination of degrees of

freedom for either spatial multiplexing or interference cancellation, but the total number of degrees

of freedom used cannot exceed the number of antennas a node has. The other constraint when

considering MIMO is the use of power. Each transmitter has a maximum power that can be used

and is divided among the antennas. At a network layer, it is helpful to think of the DoF and power

resources using budgets. To check if a MIMO transmission is feasible, it is only necessary to check

that the required DoF and power resources are within the respective budgets of the nodes involved.
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Chapter 3

System Model

Key assumptions of the system model are described in this chapter. The channel model

describes how the signal to interference plus noise ratio (SINR) is calculated and the requirements

for the transmission to be correctly decoded at a receiver. Next the scheduling algorithm used as

basis for our protocol is described. Lastly, details regarding MIMO are discussed for distributing

the channel state information and calculating the SINR.

3.1 Channel Model

Communication links are half duplex, meaning that nodes cannot transmit and receive at

the same time. Each node uses direct-sequence spread-spectrum (DSSS) modulation, and all nodes

are synchronized in time. A packet is considered correctly decoded only if the SINR at the receiving

node is greater than a threshold, β. Specifically, if node i is transmitting a packet to node j, then

the packet can be decoded correctly only if the SINR at the receiving node, j, satisfies

SINRi,j =
Pr(i, j)NsTc

N0 +
∑
∀k 6=i Pr(k, j)Tc

> β (3.1)

where Pr(i, j) is the power received at node j from node i, Ns is the spreading factor, Tc is the chip

duration, and N0 is the noise at the receiver. The multiple-access interference at node j from all

other nodes is
∑
∀k 6=i Pr(k, j)Tc.

Signal fading is assumed to follow an urban area cellular radio path loss model [14]. If the
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distance between the transmitter, i, and receiver, j, is denoted di,j , then the received power, denoted

by Pr(i, j), is given by

Pr(i, j) = Pt(i)(
λ

4πdi,j
)α (3.2)

where Pt(i) is the transmit power from node i, λ is the wavelength of the transmitted signal, and α

is the path loss exponent.

The spreading factor, Ns, can be adapted on a per link basis depending on SINRi,j . Using

the maximum spreading factor, Nmax, one packet per time slot can be transmitted on a link. Using

Ns = 1
2Nmax, two packets can be transmitted per time slot at the expense of halving the effective

SINRi,j . The same holds true for Ns = 1
4Nmax which is a link rate of four packets per time slot at

the expense of dropping the SINR by 75%. These are the only three spreading factors employed for

studies reported in this thesis.

3.2 Scheduling

Scheduling is based on Lyui’s protocol, originally defined in [10] and further analyzed in

[7] and [22]. Lyui’s protocol improves the time slotted global coloring algorithm by relaxing the

requirement that only nodes with the same color number can transmit in a slot. As in the global

coloring approach, each node, i, is assigned a color number, ci, that is unique among i’s neighborhood,

where the neighborhood is all nodes within 2 hops of node i. The problem of finding the minimum

number of color numbers is analogous to the coloring problem [16], a classic computation problem

that is known to be NP-complete. A greedy coloring algorithm is used because it can be implemented

in a distributed manner. Each node attempts to claim the smallest available color number in its

neighborhood, and ties are broken using the node’s unique ID number. This approach provides near

optimal coloring when the nodes are randomly distributed in the environment. Figure 3.1 shows a

possible coloring using this distributed approach for 100 nodes.

Lyui’s algorithm specifies which colors are allowed to transmit in a time slot. A node, i,

with color number, ci, is a candidate to transmit in time slot t if there exists an integer, n, such

that

t = ci + nPG(ci) (3.3)

where PG(ci) = 2k, and k is the smallest integer such that 2k ≥ ci. Table 3.1 shows when the first
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Figure 3.1: Sample network coloring for 100 randomly located nodes

eight color numbers are candidates for transmission according to Equation (3.3).

In each time slot, t, node i forms a candidate set, C, such that ∀j ∈ C j is either equal to

node i or in i’s neighborhood, and Equation (3.3) is satisfied. Table 3.1 shows the candidate time

slots for the first eight color numbers. Node i will only be assigned to transmit in time slot t if it is

a member of the candidate set and has the largest color number among the other candidates. Lyui’s

algorithm guarantees that each node will be able to transmit at least once per frame. The frame size,

f , is dictated by f = PG(cmax), where cmax is the largest color number in node i’s neighborhood.
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time slot t

C
ol

or
n
u
m

b
er
c i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 X X X X X X X X X X X X X X X X
2 X X X X X X X X
3 X X X X
4 X X X X
5 X X
6 X X
7 X X
8 X X

Table 3.1: Candidates for transmission, by color number, for Lyui’s algorithm

3.3 MIMO

Each node in the network has n antennas, and the channel state information(CSI), H, for

each 1-neighbor. The channel state information is distributed using the fact that every node is

scheduled at least once per frame. Consider node i with frame size f that is scheduled to transmit

in time slot t. Node i transmits a sequence of pilot symbols at the start of time slot t, allowing

each 1-neighbor to calculate H. Node i is guaranteed to be scheduled to transmit again in time

slot t+ f . Meanwhile, every 1-neighbor of node i is guaranteed to be scheduled to transmit at least

once, allowing each neighbor to respond to node i with the corresponding CSI. Then, beginning in

time slot t + f , node i is able to begin transmitting using MIMO. The process of learning the CSI

is repeated every frame. This approach means that the CSI used will be at least f time slots old.

However, as shown in [11], it is possible to use the same CSI for an extended period of time.

Figure 3.2 shows how the beginning of the time slot is divided to broadcast CSI information.

At the beginning of the time slot, every scheduled node transmits a sequence of pilot symbols. These

pilot symbols allow each 1-neighbor to calculate the CSI matrix, H, for node i. The next portion of

the time slot is used by the node to broadcast the CSI matrices calculated for all of its k neighbors

over the previous frame.

Pilot H1 … Hk …

Figure 3.2: Time slot division for CSI

The use of MIMO complicates the SINR calculation in Equation 3.1 slightly. If the transmis-
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sion from node i to node j is using MIMO for either spatial multiplexing or interference cancellation,

then the multiple-access interference from the other transmissions are included in the MIMO pre-

processing associated with the receive antenna at node j. Formally this is expressed as

SINRi,j =
Pr(i, j)NsTc

N0 +
∑
∀k∈Ti Pr(k, j)Tc

> β (3.4)

where Ti is the set of all transmissions in the current time slot that did not originate at i and were

included in the MIMO pre-processing to be canceled at the receive antenna at node j. For example,

if node i uses two antennas to transmit to node j, then the interference from one antenna is not

included in the multiple-access interference calculation for the other antenna at j. This is because

we assume perfect cancellation of signals at the receiver.
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Chapter 4

Scheduled Channel Access for

MIMO

This chapter describes our new protocol for transmission scheduling using radios with mul-

tiple antennas. We leverage interference cancellation to allow multiple nodes to transmit. This

protocol is layered on top of a broadcast scheduling protocol. We define a primary transmitter as a

node scheduled for the time slot in question. A secondary transmitter is a node not scheduled for

the current time slot, but that is allowed to transmit. Our protocol allows one or more secondary

transmitters to transmit when a primary transmitter is unable to completely utilize a slot. First,

an overview of how we combine spatial multiplexing and interference cancellation with a broadcast

scheduling algorithm is described. Second, the details of how to pick secondary transmitters with-

out violating the assumptions of the broadcast scheduling algorithm is described. Next, the specific

algorithm for greedily assigning resources for a primary transmitter is covered, and then the algo-

rithm for assigning remaining resources to secondary transmitters is described. Lastly, an example

is discussed to clarify how the two algorithms work together.

4.1 Overview

Every node acts as the primary transmitter in time slots when it is scheduled according to

Lyui’s protocol. Each primary transmitter forms an ordered set of secondary transmitters. Let the
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primary transmitter have m secondary transmitters where the size of the ordered set is less than

or equal to mmax. In a time slot in which the primary transmitter is unable to completely use the

slot capacity, secondary transmitters are allowed to transmit. This allows time slots that would

otherwise be wasted to be reclaimed. The primary transmitter uses a greedy approach to try to fill

the capacity of the slot. The primary node transmits as many packets from its own queue as it can,

using both spatial multiplexing and adaptive spreading. The remainder of the slot capacity is given

to the set of secondary transmitters which use interference cancellation to send additional packets.

The coordination between the primary transmitter and secondary transmitters is done during a

short sequence of messages at the start of the slot.

i

j

k

l

Figure 4.1: Example one slot assignment for MIMO

An example time slot is shown in Figure 4.1. Each node has three antennas allowing for

each node to be involved in up to three transmissions. Let i be the primary transmitter in time

slot t with secondary transmitter j. In this time slot example, node i has packets in its queue for

two transmissions to node k. Node i has not used the entire capacity of the time slot and has no

packets remaining in its queue that do not require more resources than are available. The secondary

transmitter, j, is then allowed to send a transmission to node l. These three data transmissions

are indicated by the solid arrows in Figure 4.1. However, this requires node i canceling out the

interference from its two transmissions at node l, and node j canceling out the interference from its

transmission at both antennas at node k. The interference cancellation is indicated by the dashed
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arrows in Figure 4.1. It is not necessary for each data transmission to only contain a single packet.

Adaptive spreading may be used to pack additional packets into each transmission.

i

Figure 4.2: Example two slot assignment for MIMO with maximum number of transmitters

Three constraints on two resources control which packets can be transmitted from the queues

of the primary and secondary transmitters. The two resources are the degrees of freedom (DoF)

and available power for each transmitter. Each node has n antennas, each of which corresponds to

a degree of freedom. Additionally, each node has a maximum total transmit power of Pmax. The

final constraint is to limit the total output power of the primary and secondary transmitters to

be less than or equal to Pmax. Limiting the total output power helps prevent drastically changing

the multiple-access interference environment. These constraints are monitored using three budgets,

BDoF , BP , and BTP . The degrees of freedom (DoF) budget, BDoF , is monitored on a per node

basis and monitors the number of antennas available to use. Thus, the DoF budget is capped at n.

The power budget, BP , is also monitored on a per node basis and monitors the amount of power

available for transmitting. For simplicity, the power budget is divided into a finite number of units,

and it is assumed that an integer number of units is always used. Figure 4.2 depicts a situation in

which the maximum number, n, of unique transmitters occurs. Each node must use its n− 1 other

antennas for interference cancellation. This results in a total of n2 transmissions. In order to allow

the possibility of n parallel transmissions, the power budget must have at least n2 units. Again for
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simplicity, it is assumed that the the power budget is capped at n2 units. The total power budget,

BTP , tracks the total output power of the primary and secondary transmitters. The total power

budget is capped at BTP = n2 to prevent creating excessive additional interference.

Pilot H1 … Hk P S1 Sm… Data
Broadcast

max

Figure 4.3: Time slot division for our protocol

Figure 4.3 illustrates how the time slot is divided. During the broadcast phase of the

time slot, the channel state information is shared with neighbors as described in Chapter 3. This

is followed by the coordination of the primary and secondary transmitters. First, the primary

announces its intended transmissions. The secondary transmitters then take turns announcing their

own intended transmissions with the remaining slot capacity. After the coordination phase is over,

the rest of the time slot is spent transmitting data.

4.2 Picking Secondary Transmitters

The method of selecting secondary transmitters is based on a time division approach to

sharing slots with secondary transmitters from [17] and [18]. Let node i be the primary transmitter

of time slot t, and node j be a 1-neighbor of i. Node j is a possible secondary transmitter of node i

if

SINRi,j ≥ pβ (4.1)

where p is a constant greater than one. The parameter, p, constrains the secondary transmitters to

limit creating additional multiple-access interference.

Each 1-neighbor of i is evaluated using Equation (4.1) to produce a candidate set of sec-

ondary transmitters. The candidate set is then filtered into the ordered set of secondary transmitters

by randomly picking nodes from the candidate set until either the candidate set is exhausted or the
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secondary transmitter set has reached its maximum size, mmax. As secondary transmitters are ran-

domly selected, the candidate set is further reduced to ensure that each candidate is communicable

with every secondary transmitter. Each secondary transmitter must be communicable with every

other secondary transmitter so that the initial coordination of primary and secondary transmitters

can occur. Picking secondary transmitters randomly from the candidate set helps reduce correlation

in the secondary transmitters of neighboring nodes.

4.3 Primary Transmitter Budget Allocation

We use a greedy approach to try to allocate as much of the budget as possible to the primary

transmitter because there is no guarantee that secondary transmitters will have packets in their own

queues. The goal is to forward as many packets from node i’s queue to its next hop as possible

without wasting any of the slot capacity. A transmitter can use both adaptive spreading and spatial

multiplexing to increase the throughput of high capacity links. Adaptive spreading involves choosing

a spreading factor, Ns, that allows one, two, or four packets to be transmitted to the same next

hop, j, at the expense of lowering the SINRi,j . Spatial multiplexing involves allocating portions of

the DoF budget and power budgets to allow up to n independent data flows that do not have to

be to the same next hop. As in adaptive spreading, spatial multiplexing also involves dropping the

SINRi,j to achieve the performance gain. Each data flow created by spatial multiplexing is also

capable of supporting adapting spreading if the SINR on the link is sufficiently high. The challenge

is finding the combination of adaptive spreading and spatial multiplexing while working within the

given budgets.

At the start of a time slot, each node has its DoF budget, BDoF , initialized to n, and its

power budget, BP , initialized to n2. During the primary transmitter allocation phase, it is not

necessary to consider the total output power budget, because it is equivalent to the individual power

budget. The primary transmitter begins searching at the beginning of its queue. Let the next hop

for this packet be over link li,j with associated SINRi,j . The primary transmitter then counts the

number of packets, k, in its queue with the same next hop, j.

The spreading factor, Ns, is chosen first by finding the minimum value of Ns such that

k ≥ R(Ns) (4.2)
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where R(Ns) = Nmax
Ns

is the associated transmission rate. This indicates that no portion of the

transmission in the time slot is being wasted. This can be done by first calculating the minimum

spreading factor, Nmin, given SINRi,j and the largest power of two less than or equal to k, PL(k).

The minimum spreading factor that satisfies Equation 5.6 is given by

Ns =
Nmax

min(Nmin, PL(k))
(4.3)

For example, consider a link that is capable of transmitting four packets using the spreading factor

1
4Nmax. If there are only two packets in i’s queue with j as a next hop, then the spreading factor

1
2Nmax is chosen. If instead there are three packets in i’s queue with j as the next hop, then the

same spreading factor is still be used to transmit two of the packets. This is done to maximize the

use of the slot.

The next step is to determine how much of the DoF budget and power budget this trans-

mission will require. Every transmission by the primary transmitter requires one antenna which is

equivalent to one degree of freedom from the budget. It is also necessary to determine the power,

P , required for the transmission to be correctly decoded by node j given the new effective SINR,

Ns
Nmax

SINRi,j . The DoF budget is then decremented by one, and the power budget is decremented

by P . The first R(Ns) packets in i’s queue with next hop, j, are then removed from the queue and

prepared for transmission.

If either the DoF budget or the power budget have been exhausted at this point, then node

i may transmit as allocated. Otherwise, the process begins again with the next packet in the queue.

Initial values of Ns and P are computed in the same way, but now it is necessary to make sure their

is room in the respective budgets. The budget check is indicated by the expressions 4.4 and 4.5.

BDoF > 0 (4.4)

BP − P ≥ 0 (4.5)

Specifically, this means that the DoF budget must be greater than zero, and the power budget

minus the required power, P , be greater than or equal to zero. If these conditions hold, then the

first R(Ns) packets in i’s queue with next hop j are then removed from the queue and prepared for
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transmission. If the conditions do not hold, and the spreading factor is not at its maximum value,

then the spreading factor can be increased by a factor of two. The new spreading factor halves

the transmission rate and decreases the required power P . The process of iteratively increasing the

spreading factor can be repeated until the required resources are within the budget or the spreading

factor reaches Nmax. If the required resources are now within the budget, then the first R(Ns)

packets in i’s queue with next hop, j, are removed from the queue and prepared for transmission.

Otherwise no additional transmissions to j are feasible.

The iterative process of selecting Ns and P is repeated until every packet remaining in i’s

queue has been examined or either budget is exhausted. At this point, if either the DoF budget or

the power budget have been exhausted, then node i may transmit as allocated. Otherwise, there is

remaining slot capacity which is offered to the ordered set of secondary transmitters. Algorithm 1

provides a concise description of the primary transmitter budget allocation.

Algorithm 1 Primary Transmitter Budget Allocation

1: Instantiate budgets BP = n2 and BDoF = n.
2: The packet at the front of node i’s queue is selected, assume it’s next hop is link li,j with the

associated SINRi,j .
3: Count the number of packets, k, in the queue with the same next hop destination j.
4: Find the minimum spreading factor, Ns, such that k ≥ R(Ns), where R(Ns) is the link rate

given SINRi,j .
5: Calculate minimum power, P , required for the transmission from i to j given Ns.
6: if BP − P ≥ 0 and BDoF > 0 then
7: BP ← BP − P
8: BDoF ← BDoF − 1
9: Allocate first R(Ns) packets from i’s queue with next hop j for transmission.

10: else if Ns < Nmax then
11: Ns ← 2Ns
12: goto step 5

13:

14: if BP = 0 then
15: No more transmissions in time slot can occur.
16: else if BDoF = 0 then
17: No more transmissions in time slot can occur.
18: else if i is last packet in queue then
19: Continue with secondary transmitter budget allocation.
20: else
21: Consider the next packet in i’s queue and the new next hop j and goto step 3.
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4.4 Secondary Transmitter Budget Allocation

If neither budget is filled after the primary transmitter allocation phase, the remaining slot

capacity is offered to the ordered set of m secondary transmitters. The first secondary transmitter

forwards as many packets from its own queue as possible, using both adaptive spreading and spatial

multiplexing. The next secondary transmitter is then offered any remaining slot capacity. This

is continued until the slot capacity is exhausted, or all m nodes have been offered the remaining

capacity.

The algorithm for allocating a secondary transmitter’s budget has two main differences from

allocating a primary transmitter’s budget. The first difference is the introduction of a new constraint.

The total output power of the primary and secondary transmitters is limited to Pmax, the maximum

output power of a single transmitter. This constraint helps to prevent detrimental changes to the

interference environment that would break the underlying assumptions of the scheduling algorithm.

This constraint is monitored using an additional power budget that measures the total output power

of the participating nodes thus far. The second difference is that each secondary transmission must

use interference cancellation to every participating receiver. Let T be the set of all previously

allocated transmit antennas, and R be the set of all previously allocated receive antennas. In order

for a secondary transmitter, i, to forward packets to node j, i must also transmit an interference

cancellation signal to every antenna, aR, in R unless the antenna belongs to j and the transmission

to aR is also from i. In other words, if the antenna aR is being used for spatial multiplexing from the

same source antenna, then i does not need to cancel interference at antenna aR. Additionally, every

transmitter other than i with an antenna in T must transmit an interference cancellation signal to

j.

As with the primary transmitter, every secondary transmitter is initialized with a full DoF

budget and power budget at the beginning of the time slot. The total power budget is initialized

by the first secondary transmitter to the power used by the primary transmitter. The total power

budget is then shared by each subsequent secondary transmitter. The sets of participating transmit

antennas, T , and participating receive antennas, R, are also inherited from the primary transmitter

and shared with subsequent secondary transmitters. Each secondary transmitter begins searching

at the beginning of its queue. Let the next hop for this packet be link li,j with associated SINRi,j .

Links are half duplex, so node i must not have any antennas in the set R. If so, then the current
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secondary transmitter cannot transmit in the time slot so consider the next secondary transmitter.

Additionally, because links are half duplex node j must not already have an antenna in the set, T .

If so, then consider the next packet in i’s queue. Count the number of packets, k, in the secondary

transmitter’s queue with the same next hop, j.

The spreading factor, Ns, is chosen first by finding the minimum value of Ns such that equa-

tion 4.2 holds. Given Ns and SINRi,j the required power, P , for the secondary data transmission

can be calculated. These calculations are the same as in the primary transmitter allocation phase.

Consider the set Ti, a subset of T , that is only missing allocated antennas from i, and the set Ri,j ,

which is a subset of R and only missing receive antennas used for the link li,j . An additional degree

of freedom for every antenna in the set Ri,j is also needed, so the degree of freedom budget check is

given by Equation 4.6. Additionally, each interference cancellation from i to r requires power, Pr,

for each receiver r in the set Ri,j . The power budget check is given by Equation 4.7. Additionally,

each transmitter, t, in Ti must satisfy Equations 4.4 and 4.5 for the interference cancellation from t

to j. The total power budget check is given by Equation 4.8.

BDoF − |Ri,j | > 0 (4.6)

BP − P −
∑
∀r∈Ri,j

Pr ≥ 0 (4.7)

BTP − P −
∑
∀r∈Ri,j

Pr −
∑
∀t∈Ti

Pt ≥ 0 (4.8)

If the conditions do not hold and the spreading factor is not at its maximum value, then

the spreading factor can be increased by a factor of two. The new spreading factor, Ns, halves the

transmission rate and the required power P . The process of iteratively increasing the spreading

factor can be repeated until the required resources are within the budgets or the spreading factor

reaches Nmax. If the required resources are within the budget, then the first R(Ns) packets in i’s

queue with next hop, j, are then removed from the queue and prepared for transmission. Otherwise,

no additional transmissions to j are feasible.

The iterative process of selecting Ns and P is repeated until every packet remaining in

i’s queue has been examined or either budget is exhausted. At this point, if the DoF budget or
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either power budget have been exhausted, then node i may transmit as allocated. Otherwise, there

is remaining slot capacity which is offered to the remaining secondary transmitters. A concise

description of this process is given in algorithm 2.

Algorithm 2 Secondary Transmitter Budget Allocation

1: Instantiate budgets BP = n2, BDoF = n.
2: Inherit budget BTP = BP (primary), the set of transmit antennas, T , and the set of receive

antennas, R, from the primary transmitter.
3: The packet at the front of node i’s queue is selected, assume it’s next hop is link li,j with the

associated SINRi,j .
4: Calculate subsets Ti and Ri,j .
5: if i ∈ R then
6: Allow the next secondary transmitter to use the remaining slot capacity.

7: if j ∈ T then
8: Consider the next packet in i’s queue and the new next hop j and goto step 4.

9: Calculate subsets Ti and Ri,j .
10: Count the number of packets, k, in the queue with the same next hop destination j.
11: Find the minimum spreading factor, Ns, such that k ≥ Ri,j , where Ri,j is the link rate given

SINRi,j .
12: Calculate minimum power necessary, P , for the transmission from i to j given Ns.
13: if BDoF −|Ri,j | > 0 and BP −P −

∑
∀r∈Ri,j Pr ≥ 0 and BTP −P −

∑
∀r∈Ri,j Pr−

∑
∀t∈Ti Pt ≥ 0

then
14: BP ← BP − P −

∑
∀r∈Ri,j Pr

15: BTP ← BTP − P −
∑
∀r∈Ri,j Pr −

∑
∀t∈Ti Pt

16: BDoF ← BDoF − |Ri,j | − 1
17: Allocate first Ri,j packets from i’s queue with next hop j for transmission.

18:

19: if BP = 0 then
20: No more transmissions in time slot can occur.
21: else if BDoF = 0 then
22: No more transmissions in time slot can occur.
23: else if BTP = 0 then
24: No more transmissions in time slot can occur.
25: else if i is last packet in queue then
26: Allow the next secondary transmitter to use the remaining slot capacity.
27: else
28: Consider the next packet in i’s queue and the new next hop j and goto step 4.

4.5 Example

This section provides an example time slot for both the primary and secondary transmitters.

Consider Figure 4.4 in which node i is the primary transmitter of the current time slot and node k is

a secondary transmitter. In this example, node m is elsewhere in the network and not communicable
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Figure 4.4: Example three slot assignment for MIMO setup

with i but happens to be receiving a packet in the same time slot from another node. The numbers

on the link indicate the minimum units of power required for a transmission to be correctly decoded

at the receiver. Each node has four antennas indicating that the DoF budget is limited to four, and

the power budget is limited to 16. The DoF and power budget for each node at the start of the time

slot is shown for each node. The total output power budget is also included in Figure 4.4. A simple

example is to assume that node i has four packets in its queue with next hop j. Using the spreading

factor 1
4Nmax all four packets could be packed onto the link consuming all 16 units of power and

one degree of freedom. Consider instead a slightly more complicated scenario in which node i has

one packet in its queue and the next hop of the packet is j, and let node k have three packets in its

queue, all of which have the next hop l.

Node i is the primary transmitter so it will attempt to transmit as many packets from its

queue as possible. However, in this scenario there is only one packet in the queue. The transmission

to j requires four units of power and one degree of freedom. Figure 4.5 illustrates the state of the

budgets after the resources for the first transmission have been allocated.

Node i has no remaining packets in its queue, so the first secondary transmitter, k, is offered
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Figure 4.5: Example three slot assignment for MIMO part one

the remaining slot capacity. All three packets in k’s queue have next hop l. The SINR on the link

from k to l is also good enough to support the spreading factor 1
4Nmax, which transmits four packets.

However, with only three packets with next hop l the spreading factor 1
2Nmax is instead chosen to

transmit two packets. Halving the spreading rate means the required power is increased by a factor

of two to two units. The transmission from k to l requires both node i and k to transmit interference

cancellation signals to the intended receive antennas. Figure 4.6 illustrates the resource requirements

for allocating the second transmission. Both node i and k only require two degrees of freedom and

six power units for a grand total of 12 power units. The power and DoF budgets have not been

consumed, each node has two DoF remaining and four power units for the total power budget.

The secondary transmitter, k, still has one packet in its queue for l that may be able to

be transmitted. If the maximum spreading factor is used for this transmission from k to l, then

only one unit of power is required Figure 4.7. Node i must use interference cancellation at the new

receive antenna. However, because node k is using spatial multiplexing, it does not need to transmit

any additional interference cancellation. At this point, both nodes have consumed three degrees of

freedom and a total of 15 units of power. The capacity of the slot has not been completely consumed,
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Figure 4.6: Example three slot assignment for MIMO part two

but there are no more secondary transmitters to offer the extra capacity, and the remaining unit of

power cannot be further subdivided. It is important to note that all three transmitting antennas

are creating interference at node m. The broadcast scheduling algorithm determined it was safe

for i, not k, to transmit when m can receive. The extra multiple-access interference, caused by

node k transmitting, could be enough to prevent m from correctly decoding its packet. Our protocol

includes two constraints to limit the effect of multiple access interference in the event of this situation

occurring. First, we constrain the secondary transmitters to have high SINR links with the primary

transmitter in hopes that the produced multiple-access interference is similar to the interference

produced by the primary node. Second, we limit the power available to the secondary transmitter

by limiting the total output power of all the transmitters.
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Figure 4.7: Example three slot assignment for MIMO part three
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Chapter 5

Simulation

A custom simulation was developed in C++ to test our new protocol. The simulation

operates in a time slotted manner and uses the physical layer and link layer techniques discussed

previously. The passing of messages for sounding the channel and coordinating the secondary trans-

mitters are not simulated. This chapter discusses the details relevant to the simulation, including

routing and traffic generation.

5.1 Channel

The parameters used for the channel model are given in Table 5.1, where R denotes the the

maximum distance between a transmitter and receiver such that Equation (3.1) holds, assuming the

use of the largest spreading factor, Nmax, the maximum transmit power, Pmax, and no multiple-

access interference. Given R, we define

Pmax = (
4πR

λ
)α

βN0

TcNmax
(5.1)

where Pmax is the maximum transmit power of each node.

When node i receives a packet from node j, the instantaneous SINR, Sest, is measured. It

is assumed that the link is approximately symmetric, so the measured incoming SINR from node j

is used as an estimate for the outgoing SINR to node j. However, the received SINR depends on

the spreading factor, Ns, and transmit power, Pt, so the estimated SINR must be normalized before
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λ 0.125 m
β 8

Nmax 96
Tc 2.9e− 7 s/Chip
α 3.5
N0 4.0e− 21 J/Hz
R 200 m

Table 5.1: Channel model parameters

being recorded. Equation 5.2 is used to normalize the estimated SINR, Sest to Snorm.

Snorm =
NmaxPmax
NsPt

Sest (5.2)

In order to calculate lower bounds on the expected outgoing SINR on the link an exponential

weighted moving average (EWMA) is used to track the average and variance of the normalized SINR

samples. The formulas for calculating the new average, Sn, and variance, Vn, given a new sample,

Snorm, are shown below. The smoothing factor used is α = 0.15, and the variance, V0, is initialized

to zero. For the purposes of the simulation, the average S0 is initialized to the SINR estimate

assuming maximum spreading factors and transmit power as well as no multiple-access interference.

The standard deviation of the link is given by σn =
√
Vn. An estimated lower bound of the outgoing

SINR on the link, li,j , is given by Sn − 3σn.

δn = Snorm − Sn−1 (5.3)

Sn = Sn−1 + αδn (5.4)

Vn = (1− α)× (Vn−1 + αδ2n) (5.5)

Adapting the spreading factor, Ns, allows the data rate of a link to be increased at the

expense of decreasing the SINR of the received signal. The exact multiple access interference cannot

be anticipated, so the link SINR estimate is used to pick the value of Ns. To try to guarantee that the

message will be correctly decoded at the receiver, the following condition is used Ns
Nmax

(S−3σ) ≥ fβ

where S and σ are the current estimates of the SINR and standard deviation, respectively, and f acts
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as a buffer in case the multiple-access interference is more than was estimated. For the simulation,

a buffer of f = 1.5 is used. Solving for S yields Equation 5.6 which is used to pick the spreading

factor, Ns, as shown in Table 5.2.

S ≥ Nmax
Ns

fβ + 3σ (5.6)

Link SINR Estimate Link Spreading Factor Link Rate

β < S < 3β + 3σ Nmax 1 packet per slot

3β + 3σ ≤ S < 6β + 3σ Nmax
2 2 packets per slot

6β + 3σ < S Nmax
4 4 packets per slot

Table 5.2: Spreading factors

5.2 MIMO

The power budget is distributed into n2 units with the total transmit power Pmax. Let S

be the estimated SINR and σ be the estimated standard deviation if the full transmit power (n2

units) is used to transmit. If only a units of power are used, the effective SINR is a
n2S. then, the

minimum units of power to ensure that the SINR is acceptable is

a = d n
2fβ

S − 3σ
e (5.7)

where as explained before S − 3σ is an expected lower bound of the SINR, and f provides a buffer

to ensure the SINR is not reduced directly to β. For the purposes of the simulation, the value

f = 1.5 is used. The same calculation for required power is used for data transmissions and spatial

multiplexing.

In the simulation, by default, all nodes are given four antennas, the candidate secondary

transmitter set constraint is ten, and the maximum number of secondary transmitters is five. These

default parameters are given in Table 5.3.

n 4
p 10

mmax 5

Table 5.3: MIMO parameters
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5.3 Routing

Packets are routed from the source nodes to the destination nodes using forwarding tables

generated from Dijkstra’s algorithm [4]. Routes are calculated every 1000 time slots. The metric

used to calculate link weights from node i to node j is based on [21] and given by

wi,j =
φ(Si,j)(1 + Uj)

ETR(i)R(i, j)
. (5.8)

The term φ(Si,j) is a scaling function used to de-emphasize routing over low SINR links, and Si,j is

the current SINR estimate over the link from i to j. This term is defined as:

φ(x) =


∞ x ≤ β

1− ln(x−ββ ) β < x ≤ 2β

1 x > 2β

(5.9)

The term Uj approximates the utilization of node j by using an exponential weighted moving

average (EWMA), and the fraction of slots assigned to j, in which j transmits a packet. Every time

j is a scheduled as the primary transmitter for the slot t, j updates its utilization estimate as follows:

U ′j = (0.95)Uj + (0.05)T (j) (5.10)

where the function T (j) = 1 if j transmits a packet in the current time slot, and T (j) = 0 other-

wise. This term attempts to spread traffic through the network to prevent nodes from becoming

bottlenecks.

The term ETR(i) is the effective transmit rate of node i, which is calculated as the number

of slots in each frame that node i is scheduled as the primary transmitter divided by the frame

length.

The final term, R(i, j), is an approximation of the link rate from node i to node j. A simple

metric is calculated to approximate the link rate. The calculation begins by finding the minimum

power, a, from Equation (5.7) for the transmission to be correctly decoded at the receiver. Given

the new effective SINR a
n2Si,j , the minimum spreading factor, Ns is chosen. The rate supported on

a link using the minimum power is given by Nmax
Ns

. The next calculation is to see how many of the
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minimum power transmissions can be supported via spatial multiplexing. At most, there can be n

parallel transmissions. Equation (5.11) gives the number of parallel links, k. Note that k can take

values 0 through n.

ki,j =


n a < n

bn
2

a c a ≥ n
(5.11)

The resulting link rate is the product of the number of parallel links, k, and the data rate achievable

on each of these links as shown in Equation 5.12.

R(i, j) = ki,j
Nmax
Ns

(5.12)

5.4 Traffic Generation

A global traffic generation rate is specified as G for a network of N nodes. Each node then

generates traffic at an average rate of G
N using a Bernoulli process, letting p = G

N . When a packet is

generated, the destination is uniformly distributed across the remaining N − 1 nodes.

Acknowledgments are not sent for packets that reach the final destination. Packets dropped

by the network for any reason are not retransmitted. There are three possible reasons for a packet

being forwarded from node i to node j to be dropped. First, a packet may be dropped due to queue

overflow at j, if j is not the final destination, and the queue size of j is equal to Qmax. Second, if

the SINRi,j ≤ β, the packet fails to be decoded by receiver j. Third, if node j has no entry in its

routing table for the next hop, then the packet is dropped.

5.5 Simulation Parameters

Simulations consist of two parts, a warm-up phase and steady-state phase. The warm-up

phase allows the network to reach equilibrium. Only during the steady-state phase are statistics

recorded. Each node has a maximum queue size of Qmax. Table 5.4 details the simulation parameters

used for the analysis.

The N nodes participating are distributed uniformly in a square whose dimensions are given

by s =
√

N
ρ where ρ is the specified network density in units of nodes per m2. Table 5.5 details the

densities investigated. The density statistics were measured using 2000 unique, random networks
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N 500
Qmax 40

Warm up Length 1000
Steady state Length 20000

Table 5.4: Simulation parameters

for each density. In order to calculate the network density statistics, simulations were run using the

basic Lyui’s algorithm and min hop routing where each link weight is one. The network diameter

is the length of the longest shortest path between any two nodes. The average number of hops is

the average number of times a node is forwarded until it reaches the final destination. The average

number of 1-neighbors is the average number of nodes within one hop. However, our simulation does

not use min hop routing. The routing metric given by Equation 5.12 emphasizes taking short, fast

hops over long, slow hops. Consequently, the maximum and average path lengths are much higher

in simulations as shown in Table 5.6. The simulation runs used to determine these statistics were

using the default simulation parameters listed in this chapter.

ρ Diameter Average # Hops Average # 1-neighbors

Low 1
1002 20.0 7.8 11.6

Med 1
752 13.9 5.4 20.1

High 1
502 8.9 3.5 42.8

Table 5.5: Network densities

ρ Maximum # Hops Average # Hops

Low 1
1002 48.4 15.7

Med 1
752 40.5 13.0

High 1
502 32.2 9.9

Table 5.6: Network densities routing path lengths

5.6 Statistics

During each simulation run, three measurements (end-to-end completion rate, throughput,

and average delay) are recorded to compare network performance. End-to-end completion is the

ratio of the number of packets that reach the final destination to the total number of packets that

are generated. Throughput is the average number of packets delivered to the final destination in a

given time slot. Average delay is the average number of time slots from when a packet is generated
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until it is delivered to the final destination.

33



Chapter 6

Results

Results from simulation investigations are discussed in this chapter. First, the benefits of

spatial multiplexing and secondary transmissions are examined. Then, the parameters for determin-

ing the set of secondary transmitters (p, mmax) are examined to justify the choices used elsewhere in

this chapter. Then the benefits of using additional antennas (n) is discussed. Lastly, the importance

of the routing metric is demonstrated. For each of the following experiments, the global generation

rate, G, is swept from 0.1 to 4.0. For each generation rate, G, 200 trials were performed, each with

a unique random network. The average across all 200 trials is depicted in the plots below with 95%

confidence error bars.

6.1 Performance of Secondary Transmitters

The main inefficiency with standard time slotted scheduling MAC protocols is that when a

node has no packets in its queue, the time slot is wasted. In these wasted time slots, the scheduled

transmitter may be blocking nearby nodes that have packets which would otherwise be forwarded.

The main contribution of this MAC protocol is to apply MIMO techniques that allow the time slot to

be shared with neighboring nodes when the primary transmitter is unable to completely utilize the

time slot. The benefit of sharing the time slots is illustrated in Figures 6.1, 6.4, and 6.5 which detail

the end-to-end completion rate for networks with varying densities. When comparing performance,

it is useful to observe when each curve crosses the 90% completion rate. The 90% thresholds for the

three examined densities are listed in Table 6.1.
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Figure 6.1: Completion rate versus secondary transmissions and spatial multiplexing in high density
networks (p = 10, mmax = 5)

The performance of the set of high density networks is illustrated in Figure 6.1. The value

of n indicates the number of antennas each node has, and the presence of “secondary” indicates

that secondary transmissions have been enabled. The baseline to compare performance is given by

n = 1, which constrains each node to only have a single antenna and disables secondary transmis-

sions. Under these conditions, nodes are unable to use either spatial multiplexing or interference

cancellation, because each node has only one degree of freedom. However, even with only one

antenna, if secondary transmissions are enabled, and the primary transmitter’s queue is empty, a

secondary transmitter is still able to transmit. Even without the benefits of MIMO techniques, the

sharing of the time slot increases the 90% threshold by a factor of 1.72. The spatial multiplexing

gain of four antennas is given by n = 4, where the 90% threshold increases by a factor of 2.18

compared to the base case of n = 1. This large performance gain is because higher capacity links

are taken advantage of. With just a single antenna, links have a maximum link rate of four packets.
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However, with four antennas, links have a maximum link rate of 16 packets. Enabling secondary

transmissions when n = 4 raises the 90% threshold by a factor of 3.47 compared to the base case

of n = 1. The additional improvement is due to the interference cancellation that permits multiple

transmitters if the primary is unable to utilize the slot capacity.

The performance of the set of high density networks is also illustrated in Figures 6.2 and 6.3

which show the average delay and throughput, respectively. In both cases, the network performance

improves as the number of antennas, n, increases or secondary transmissions are allowed. For

very low generation rates, the delay is minimized for a single antenna. This is because routing

emphasizes fewer hops when high capacity links are unavailable. However, using delay to compare

results can be misleading, because it is only measured for packets that reach their final destination,

and at high generation rates, many packets never reach the final destination. Throughput and

end-to-end completion are indirectly related, so all the observations already made have analogous

observations that can be drawn from Figure 6.3. To avoid cluttering the results section, focus will be

on evaluating network performance based on completion rate for the remainder of this chapter. Plots

for all remaining experiments pertaining to average delay and throughput are included in Appendix

B.

The performance of the set of networks with medium density are shown in Figure 6.4. The

baseline performance with n = 1 and no secondary transmissions is better than for the high density

network. The decreased density means smaller frames, so nodes get to transmit more often than

in high density networks. By allowing secondary transmissions, the 90% threshold increases by a

factor of 1.58 compared to n = 1. The spatial multiplexing gain for four antennas is 1.75 compared

to the base case of n = 1. Lastly, the performance gain from spatial multiplexing and secondary

transmissions is 2.46 compared to n = 1.

The performance of the set of networks with low density is shown in Figure 6.5. Similar

trends are observed for low density networks as for previous scenarios. The performance gain from

allowing secondary transmissions while restricted to one antenna is 1.36 compared to the base case

of n = 1. However, the performance in this scenario exhibits a higher variability from point to point

than experiments using other densities. In low density networks, there is a higher probability of

a link with low SINR being needed to ensure network connectivity. These links act as bottleneck

links, and our protocol is of little help in those cases. The increased variability is an indication of

the sensitivity to the network topology. The spatial multiplexing gain of using four antennas is 1.42
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Figure 6.2: Average delay versus secondary transmissions and spatial multiplexing in high density
networks (p = 10, mmax = 5)

compared to n = 1. Lastly, the performance gain from spatial multiplexing with four antennas and

enabling secondary transmissions is 1.70 compared to n = 1.

In practice, the network density is not a parameter that can be controlled, instead it is a

property of the network. We show that our protocol works well in a variety of scenarios. However,

our protocol with four antennas and secondary transmissions provides the largest performance gain,

compared to the base case of n = 1 for high density networks. This can be attributed to three

reasons. First, the base performance with one antenna and no secondary transmissions is worse for

high density networks because of larger frame sizes that result in fewer transmission opportunities.

Second, the high density network has more high capacity links that are taken advantage of by spatial

multiplexing. Third, increased network density means a larger secondary transmitter candidate set.

Larger candidate sets generally means larger sets of secondary transmitters, which increases the

chances of some node having traffic for the remaining slot capacity. The combination of higher
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Figure 6.3: Throughput versus secondary transmissions and spatial multiplexing in high density
networks (p = 10, mmax = 5)

average throughput on a per link basis and increased transmission opportunities as a secondary

transmitter provide the performance gains described earlier.

Low Medium High

n = 1 0.98 1.00 0.79
n = 1 & secondary 1.33 1.58 1.36

n = 4 1.39 1.75 1.72
n = 4 & secondary 1.67 2.46 2.74

Table 6.1: 90% thresholds of spatial multiplexing and secondary transmissions
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Figure 6.4: Completion rate versus secondary transmissions and spatial multiplexing in medium
density networks (p = 10, mmax = 5)
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Figure 6.5: Completion rate versus secondary transmissions and spatial multiplexing in low density
networks (p = 10, mmax = 5)
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6.2 Secondary Transmitter Candidates

The parameter, p, constrains the set of secondary transmitters with the goal of limiting

changes to the interference environment. For instance, p = 1 allows every 1-neighbor to be a

secondary transmitter candidate and gives the largest possible candidate set. Larger sets of secondary

transmitters translates to more chances for secondary transmitters to have packets to reclaim a slot.

Allowing p = 1 also allows for nodes to potentially create different multiple-access interference

by transmitting in slots not assigned to them. For this reason, it is advisable to use p > 1 to

limit creating additional interference. However, if p is over constrained, the set of candidates for

secondary transmitters may be reduced to the point that the candidate set is empty, and secondary

transmissions will not occur. Selecting an appropriate value of p needs to balance the concerns of

added interference and the number of secondary transmitters. Figures 6.6, 6.8, and 6.9 detail the

end-to-end completion rate for networks with varying densities. The 90% thresholds for the three

examined densities are listed in Table 6.2.

p Low Medium High

1 1.86 2.43 2.50
5 1.74 2.50 2.68
10 1.67 2.46 2.74
20 1.58 2.33 2.75
40 1.49 2.13 2.68
100 1.42 1.93 2.38
200 1.42 1.86 2.22

Table 6.2: 90% thresholds for candidate secondary transmitter set (p)

For the high density network in Figure 6.6, as p increases, performance improves until

p = 20, and then falls to be worse than the initial performance with p = 1. This illustrates

the balance between additional interference and limiting secondary transmitters. Initially, allowing

every 1-neighbor to be a secondary transmitter creates too much additional interference, which

causes packets to be dropped because the SINR falls below β. Figure 6.7 illustrates the rapid drop

off of the number of link errors as p is increased. Then as p � 1 the candidate set of secondary

transmitters shrinks, resulting in fewer nodes that can take advantage of the remaining slot capacity.

The correct balance of the two concerns with high density networks appears to be between p = 10

and p = 20.

For the medium density network in Figure 6.8, as p is increased, performance remains fairly
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Figure 6.6: Completion rate versus secondary transmitter candidate set size in high density networks
(n = 4, mmax = 5)

stationary until p = 20 where performance begins to drop. This set of networks illustrates a similar

balance compared to the high density network, because performance drops after p = 10. However,

unlike the high density networks, performance does not improve initially as p is increased. This is

likely due to the decrease in network density reducing the secondary transmitter candidate set.

The low density network detailed in Figure 6.9 performs best for p = 1, and performance

drops as the candidate set is further restricted. This set of networks does not show the trade off seen

with high density networks, because the size of the secondary transmitter candidate set is already

so restricted for p = 1. As with the previous experiment, the lower density network scenarios have

a higher variability from point to point. This is because low density networks are more sensitive to

the random topology of the network, where it is more likely for the network bottlenecks to be single

links with low SINR that can not be taken advantage of.

The value p = 10 is utilized for the remaining investigations presented in this thesis. It
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Figure 6.7: Link errors versus secondary transmitter candidate set size in high density networks
(n = 4, mmax = 5)

provided the best performance for high and medium density network scenarios investigated in this

work, without being far below the best value of p for low density networks.

43



Figure 6.8: Completion rate versus secondary transmitter candidate set size in medium density
networks (n = 4, mmax = 5)
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Figure 6.9: Completion rate versus secondary transmitter candidate set size in low density networks
(n = 4, mmax = 5)
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6.3 Maximum Number of Secondary Transmitters

The parameter, mmax, determines the maximum number of secondary transmitters that can

be selected from the candidate set. While at most n, where n is the number of antennas, secondary

transmitters may transmit in a given time slot, it is not necessary to limit the number of secondary

transmitters to n. This is because secondary transmitters are only of use if they have traffic that

they can forward. By allowing the set of secondary transmitters to be larger, the probability of a

secondary transmitter having a packet to forward is increased. The effect of mmax is demonstrated

in Figures 6.10, 6.11, and 6.12. The 90% thresholds are given in Table 6.3. There are 500 nodes in

the simulation, so setting mmax = 500 provides the maximum secondary transmitter set size. The

only reason for a candidate transmitter to not be included is if it is not communicable with every

other secondary transmitter.

mmax Low Medium High

1 1.50 1.92 2.05
2 1.61 2.12 2.29
3 1.63 2.28 2.46
4 1.67 2.38 2.61
5 1.67 2.46 2.74
6 1.69 2.53 2.83
7 1.71 2.54 2.90
8 1.68 2.54 2.95
9 1.67 2.54 3.01
10 1.65 2.53 3.02
500 1.63 2.58 3.12

Table 6.3: 90% thresholds for maximum number of secondary transmitters (mmax)

Figure 6.10 shows how as the value of mmax increases, so does the network performance.

The best performance is given by mmax = 500 which allows for the largest possible secondary

transmitter sets. The 90% threshold for this case is a factor of 1.52 better than only allowing one

secondary transmitter. Approximately 52% of the improvement occurs by the time mmax = n = 4.

As mmax increases past 4, we experience diminishing returns, and the performance approaches the

upper bound given by mmax = 500. However, increasing mmax also increases the overhead. The

overhead is illustrated by Figure 4.3. As the size of the secondary transmitter set increases, a larger

fraction of the time slot is consumed by coordinating the primary transmitter and m secondary

transmitters. The trade off is not present in these works, because the coordination phase of the time

slot is not simulated. Similar behavior is observed for medium density networks in Figure 6.11 where
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approximately 85% of the limit is reached when mmax = n = 4. For low density networks depicted

in Figure 6.12, performance does not improve for mmax > 2. The decreasing impact of mmax as the

network density decreases is because the average size of the candidate set is shrinks, and mmax does

not have an impact on the size of the secondary transmitter set.

Figure 6.10: Completion rate versus maximum number of secondary transmitters in high density
networks (n = 4, p = 10)
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Figure 6.11: Completion rate versus maximum number of secondary transmitters in medium density
networks (n = 4, p = 10)
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Figure 6.12: Completion rate versus maximum number of secondary transmitters in low density
networks (n = 4, p = 10)
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6.4 Number of Antennas

The number of antennas, n, determines the number of degrees of freedom each node has, as

well as the possible link rates. Figures 6.13, 6.14, and 6.15 detail the end-to-end completion rate for

networks with varying densities. The 90% thresholds are listed in Table 6.4.

n Low Medium High

1 1.33 1.58 1.36
2 1.52 1.91 1.87
3 1.60 2.23 2.36
4 1.67 2.46 2.74
5 1.72 2.63 3.04
6 1.73 2.76 3.22
7 1.76 2.87 3.42
8 1.76 2.98 3.60
9 1.80 3.11 3.76
10 1.79 3.14 3.88

Table 6.4: 90% thresholds for number of antennas (n)

As shown in Figures 6.15 and 6.14 for low and medium density networks, as more antennas

are added, performance improves until a limit is reached. It appears that the limit for low density

networks is approximately 1.80, and for medium density networks, the limit is approximately 3.14

each with 10 antennas. Similar behavior is observed of high density networks shown in Figure

6.13. However, the limit is approximately 4.76 with n = 20. It is important to note that while

performance does improve as n increases, the channel state matrix, H, increases like n2, so the

overhead of distributing the CSI increases as well. The overhead of distributing the CSI is not

simulated, so no trade offs are seen in the results.
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Figure 6.13: Completion rate versus number of antennas in high density networks (p = 10, mmax = 5)
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Figure 6.14: Completion rate versus number of antennas in medium density networks (p = 10,
mmax = 5)
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Figure 6.15: Completion rate versus number of antennas in low density networks (p = 10, mmax = 5)
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6.5 Routing Metric

Traditional views of networks prefer to treat separate layers as independent entities. How-

ever, wireless ad hoc networks have a wide distribution of links, and their performance is often

limited by a few bottleneck nodes. Cross-layer routing metrics enable networks to take advantage

of high capacity links as well as achieve load balancing at network bottlenecks. The importance of

the routing metric or link weight is give in Figures 6.16, 6.17, and 6.18. The routing metric “Min-

Hop Basic” assigns every link weight to be one. The routing metric “NodeUtil ETR LinkRate” is

the link weight described by Equation 5.8. The 90% thresholds are given in Table 6.5. When min

hop is used to generate link weights, performance does not seem to depend on the network density.

However, high density networks, using the “NodeUtil ETR LinkRate” link weights, perform a factor

of 4.81 better than min hop.

Link Weight Low Medium High

MinHop Basic 0.56 0.51 0.57
NodeUtil ETR LinkRate 1.67 2.46 2.74

Table 6.5: 90% thresholds for routing metric
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Figure 6.16: Completion rate versus routing metric in high density networks (p = 10, mmax = 5,
n = 4)
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Figure 6.17: Completion rate versus routing metric in high density networks (p = 10, mmax = 5,
n = 4)

56



Figure 6.18: Completion rate versus routing metric in high density networks (p = 10, mmax = 5,
n = 4)
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Chapter 7

Conclusions

We have designed and investigated a new protocol for ad hoc networks that use MIMO tech-

niques to capture unused capacity of time slots in scheduled TDMA protocols. In many scheduling

protocols, if a node is scheduled to transmit in a time slot but does not have any packets in its queue,

the slot is unused. This leads to poor network performance, because scheduled nodes prevent other

nodes with packets to forward from transmitting. We propose a protocol that uses interference can-

cellation to allow nodes not scheduled in a particular time slot to transmit. This approach requires

overhead in distributing the CSI and coordinating between primary and secondary transmitters.

Each node must transmit pilot symbols to determine the CSI and then distribute the information

to neighboring nodes over the course of a frame. The other source of overhead occurs when primary

and secondary transmitters coordinate at the beginning of the slot, so that the data can be encoded

correctly. We also use adaptive spreading and spatial multiplexing to create high capacity links that

are capable of being used by either primary or secondary transmitters.

We use Lyui’s scheduling algorithm to demonstrate our approach. However, our protocol

is independent of the scheduling algorithm as long as slot assignments ensure broadcast capabil-

ities. Our protocol preserves the idea of fairness, because each node is still guaranteed to be a

primary transmitter at least once per frame. Two ideas work together to ensure that the underlying

scheduling algorithm, like Lyui’s algorithm, continues to work despite unscheduled nodes transmit-

ting. First, we require high SINR between primary and secondary transmitters to hopefully provide

similar multiple-access interference. Second, we limit the total output power of the primary and

secondary transmitters to be the same as if the primary is the only transmitter.
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We use simulations to show that our protocol improves end-to-end completion, throughput,

and delay in large random ad hoc networks with varying densities. Additional investigations deter-

mined appropriate constraints for the secondary transmitter candidate set and the maximum size of

the secondary transmitter set. Investigations also show that as more antennas are used, gains are

limited. We also confirm the importance of routing in allowing the network to take advantage of our

new protocol.

Future work could provide further improvements through several avenues. Nonrandom,

intelligent ways to filter the candidate set of secondary transmitters may lead to higher slot utiliza-

tion. Routing may provide additional performance gains if the concept of secondary transmissions

is somehow incorporated. Another way that routing could lead to gains is to modify the forwarding

tables to reflect forward progress. Then, during the budget allocation phases, additional packets

could be packed onto links via adaptive spreading even if the link is not the designated next hop.
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Appendices
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Appendix A Interference Analysis of Secondary Transmit-

ters

The parameter p in Equation (4.1) is used to constrain the candidates for secondary trans-

mitters. The smaller the value of p, the more secondary transmitter candidates. Unfortunately,

smaller values of p can cause the interference environment to change more than larger values of p.

An analysis of the impact of p on the interference environment based on the underlying channel

model follows.

Consider the scenario depicted in Figure 1, in which nodes i, j, and k are co-linear with the

SNRi,j = SNRi,k = fβ where f ≤ 1. Nodes j and k are thus not communicable with i. However,

the interference caused by node i is received by nodes j and k. Let node i have all m secondary

transmitters located at point A, where SINRi,A = pβ and p ≥ 1. Nodes transmitting at A in node

i’s time slot will create different interference environments than Lyui’s algorithm considers.

β

pβ

fβ

ik jA

Figure 1: Worst case and best case interference environments.

In this scenario, let node i not have any packets in its queue, so the secondary transmitters
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at A use the entire power budget Pt. The measurement Φ(x) measures the interference gain at node

x caused by the secondary transmitters compared to the interference that node i would have created.

We define

Φ(x) =
SINRA,x
SINRi,x

(1)

when there is no multiple-access interference. In the scenario outlined in Figure 1, it is clear that

Φ(x) is maximized for node j, denote this Φworst = Φ(j). Conversely, Φ(x) is minimized for node k,

denoted Φbest = Φ(k). Using the Equations 3.1 and 3.2 that model the channel, the following can

be derived:

Φworst = [1− (
f

p
)

1
α ]−α (2)

Φbest = [1 + (
f

p
)

1
α ]−α (3)

Figure 3 shows the worst case interference gain, Φworst, caused by different values of p

depending on the distance from the primary transmitter when the communicable range, R, is 200m.

Figure 2 is a similar plot showing the best case interference gain Φbest. Because we have established

upper and lower bounds for the interference gain, we know that the observed interference gain will

fall somewhere between the bounds for any other network configuration. For instance, consider the

value p = 10 and a node located 2R = 400m from the primary node. The interference gain Φ(x) is

bounded 0.45 ≤ Φ(x) ≤ 3 independent of the network topology.
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Figure 2: Best case interference gain when selecting secondary transmitters.
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Figure 3: Worst case interference gain when selecting secondary transmitters.
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Appendix B Additional Results

B.1 Importance of Secondary Transmitters

Figures 4 and 5 show the impact that allowing secondary transmissions has on the average

delay and throughput, respectively, for all three tested densities. In general, the combination of

using four antennas and secondary transmissions provides the best results regardless of density for

both statistics.

(a) High Density (b) Medium Density

(c) Low Density

Figure 4: Average delay versus secondary transmissions and spatial multiplexing (p = 10, mmax = 5)
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(a) High Density (b) Medium Density

(c) Low Density

Figure 5: Throughput versus secondary transmissions and spatial multiplexing (p = 10, mmax = 5)

B.2 Secondary Transmitter Candidates

Figures 6 and 7 show the impact that the secondary transmitter candidate set has on the

average delay and throughput, respectively, for all three tested densities. The value of p hardly

makes a difference in either statistic, regardless of the density. This is likely because both statistics

only measure packets that successfully reach the final destination. Figure 8 shows the number of

link errors as p is changed. In general, as long as p > 5 there does not seem to be a significant

difference in the number of link errors, regardless of network density.

66



(a) High Density (b) Medium Density

(c) Low Density

Figure 6: Average delay versus secondary transmitter candidate set size (n = 4, mmax = 5)
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(a) High Density (b) Medium Density

(c) Low Density

Figure 7: Throughput versus secondary transmitter candidate set size (n = 4, mmax = 5)
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(a) High Density (b) Medium Density

(c) Low Density

Figure 8: Link errors versus secondary transmitter candidate set size (n = 4, mmax = 5)
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B.3 Max Number of Secondary Transmitters

Figures 9 and 10 show the impact that the maximum size of the secondary transmitter set

has on the average delay and throughput, respectively, for all three tested densities. For high density

networks, the delay is slightly improved as the maximum set size is increased. This is because nodes

are more likely to be offered a chance to be a secondary transmitter, allowing them to transmit more

often. However, for lower density networks the improvement seen by increasing is reduced. This is

because the smaller density networks means a smaller candidate set, and the parameter mmax does

not come into play at all.

(a) High Density (b) Medium Density

(c) Low Density

Figure 9: Average delay versus maximum number of secondary transmitters (n = 4, p = 10)
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(a) High Density (b) Medium Density

(c) Low Density

Figure 10: Throughput versus maximum number of secondary transmitters (n = 4, p = 10)

B.4 Number of Antennas

Figures 11 and 12 show the impact that the number of antennas has on the average delay

and throughput, respectively, for all three tested densities. In general, the delay decreases as more

antennas are added to a node regardless of network density. However, the lower density networks

approach a limit faster than the high density network. The same pattern is observed in Figure 12

which shows that the throughput increases as more antennas are added until an upper bound is

reached. The reason the high density networks have better performance bounds than lower density

networks is because of the higher probability of high capacity links, which can take advantage of

more antennas.

71



(a) High Density (b) Medium Density

(c) Low Density

Figure 11: Average delay versus number of antennas (mmax = 5, p = 10)

72



(a) High Density (b) Medium Density

(c) Low Density

Figure 12: Throughput versus number of antennas (mmax = 5, p = 10)
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B.5 Routing Metric

Figures 13 and 14 show the impact that the routing link weights have on the average delay

and throughput, respectively, for all three tested densities. The “MinHop Basic” term uses a link

weight of one for every link where as the “NodeUtil ETR LinkRate” term is the one given by

Equation 5.8. The min hop link weight actually provides better performance from the delay point

of view, because on average traffic is relayed through fewer hops. However, delay is only measured

for packets that successfully reach the final destination, so the measurement is biased. Figure 14

illustrates the throughput improvement from the more advanced link weight.

(a) High Density (b) Medium Density

(c) Low Density

Figure 13: Average delay versus routing metric (n = 4, mmax = 5, p = 10)
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(a) High Density (b) Medium Density

(c) Low Density

Figure 14: Throughput versus routing metric (n = 4, mmax = 5, p = 10)
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