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Abstract

A deep neural network is a non-spiking artificial neural network which uses multiple

structured layers to extract features from the input. Spiking neural networks are another

type of artificial neural network which closely mimic biology with time dependent pulses to

transmit information. Whetstone is a training algorithm for spiking deep neural networks.

It modifies the back propagation algorithm, typically used in deep learning, to train a

spiking deep neural network, by converting the activation function found in deep neural

networks into a threshold used by a spiking neural network. This work converts a spiking

deep neural network trained from Whetstone to a traditional spiking neural network in the

TENNLab framework. This conversion decomposes the dot product operation found in the

convolutional layer of spiking deep neural networks to synapse connections between neurons

in traditional spiking neural networks. The conversion also redesigns the neuron and synapse

structure in the convolutional layer to trade time for space. A new architecture is created

in the TENNLab framework using traditional spiking neural networks, which behave the

same as the spiking deep neural network trained by Whetstone before conversion. This new

architecture verifies the converted spiking neural network behaves the same as the original

spiking deep neural network. This work can convert networks to run on other architectures

from TENNLab, and this allows networks from those architectures to be trained with back

propagation from Whetstone. This expands the variety of training techniques available to

the TENNLab architectures.
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Chapter 1

Introduction

There are a variety of neural networks that are currently under focus by the Artificial

Intelligence community. Deep Neural Networks (DNNs), based on traditional, non-

spiking, feed-forward neural networks, have been impressively successful in performing

image recognition tasks. Spiking neural networks (SNNs) are receiving a great deal of

attention because they more closely mimic the human brain, and they can perform powerful

computations with less power consumption than DNNs. Recently, researchers from Sandia

have designed an algorithm called Whetstone [1], which allows one to train DNNs, and then

“sharpen” them into Spiking Deep Neural Networks (SDNNs). These are similar to SNNs,

but contain some enhanced functionality beyond SNNs.

The original goal of this project was to leverage the Whetstone methology and incorporate

it into the TENNLab Exploratory Neuromorphic Computing framework [2]. This framework

supports a variety of SNN implementations, both in software and in hardware. In performing

this conversion, we discovered a debilitating problem, in that the converted SNNs were

enormous in size. As a result, we designed a second conversion methodology that trades

time for space, and drastically reduces the size of the SNN networks.

We have implemented both conversion modules, and incorporated them into two of the

TENNLab SNN architectures:

1



1. An architecture called “WHETSTONE,” whose neuron/synapse properties match the

SDNNs, but without the enhanced functionality. This architecture exists in simulation

only.

2. An architecture called DANNA2, which is a two-dimensional, integer-based SNN

architecture, which has software, FPGA and VLSI implementations [3].

We describe the conversion modules in detail, and show the results of running

classification tasks on the two TENNLab architectures.
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Chapter 2

Related Work

This chapter includes introduction of different types of artificial neural networks that are

relevant to this project, description of TENNLab’s projects that are being used in this work,

and overview of the Whetstone algorithm.

2.1 Deep Neural Network

A Deep Neural Network (DNN) is a traditional layer structured artificial neural network

that has been used for classification [4][5]. DNNs are composed of neurons, which calculate

values, and synapses, which communicate values from “pre” neurons to “post” neurons.

The following sections briefly describe Feed Forward Neural Network, Convolutional Neural

Network, and activation function.

2.1.1 Feed forward Neural Network

A feed forward neural network (FFNN) is constructed by one dimensional layers of neurons.

Every neuron in the previous layer is connected to every neuron in the next layer by a synapse.

Figure 2.1 shows an example FFNN. The network performs a sequence of computations on

the inputs to find a result. The computation is performed layer by layer. On each layer,

except the input layer, the neuron receives charges from its incoming synapses. The charge

received from each synapse is the product of the synapse weight and the pre-neuron’s firing

3



Figure 2.1: An example of FFNN with two inputs, four outputs, and two hidden layers.

charge. The neuron’s firing charge is different for every problem, but the synapse weight

remains the same. Figure 2.2 shows the detailed connections for B0, and using B0 as an

example, the charge in B0 will be

B0 = A0 ∗ w0 + A1 ∗ w1 + A2 ∗ w2 + A3 ∗ w3 + bias. (2.1)

2.1.2 Convolutional Neural Network

At a high level, the “convolutional layers” of a convolutional neural network (CNN) are

the layers that identify the presence or absence of different aspects of the input, which are

generally called “features.” [6] (Multiple features are usually checked for at the same time

during a single convolutional layer.) For example, if a CNN is designed to be able to classify

hand-written numerals (as in the MNIST data set), a convolutional layer might look for a

straight horizontal line at the bottom of the image (as in the way many people write the

number 2) and for any curve (which could indicate that the image is not a 1, a 4, or a 7). Of

course, identifying whether the input includes (or doesn’t include) a feature isn’t enough to

classify the image or eliminate possible classes, though it does raise or lower the probability

4



Figure 2.2: The detail connections of the neuron B0 from figure 2.1

that the image is of a certain class; these probabilities are what the output of CNNs depends

on.

Mathematical Details

Convolutional layers work by applying a set of “filters” (also called “feature maps” or

“kernels” and represented here with W ) to the layer’s input data (represented here with

I) and creating output channels (represented here with Z), one channel per filter. Each

filter is a matrix of weights. The following is a description of one filter being applied to the

input data. In our examples, I is composed of 0’s and 1’s to help keep the examples simple.

In actuality, I, W , and Z can all be arbitrary values.

Assume I is a square 4x4 matrix and that W is a 3x3 filter, as in Figure 2.3. (Note

that our subscripting throughout this Thesis is xy instead of rc; this is because we made the

decision to use coordinates because of how often we deal with matrices in more than two

dimensions in our research.) In this case, this layer is convolving from a 4x4 matrix to a 3x3

5
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Figure 2.3: Calculating Z00 in a convolutional layer; thus, a pictoral representation of
Equation 2.2.

1

0

0

1

1

0

1

1

0

1

0

0

0

0

0

1

0

0

2

2

4

3

4

0

1

5

13

6

5

I W Z

Figure 2.4: Calculating Z10 in a convolutional layer; thus, a pictoral representation of
Equation 2.3.

matrix. Z00 will be

Z00 = W00 ∗ I00 + W10 ∗ I10 + W20 ∗ I20

+ W01 ∗ I01 + W11 ∗ I11 + W21 ∗ I21

+ W02 ∗ I02 + W12 ∗ I12 + W22 ∗ I22 .

(2.2)

After calculating Z00, the filter moves one cell to the right, as in Figure 2.4. We now have:

Z10 = W00 ∗ I10 + W10 ∗ I20 + W20 ∗ I30

+ W01 ∗ I11 + W11 ∗ I21 + W21 ∗ I31

+ W02 ∗ I12 + W12 ∗ I22 + W22 ∗ I32 .

(2.3)

This “moving 1 cell to the right” (as from Figure 2.3 to Figure 2.4) means that there’s a

horizontal stride of 1. If W were to immediately move x cells to the right, it would have a

horizontal stride of x. Similarly, if it were to immediately move x cells to the right and y

6
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Figure 2.5: Calculating Z02 in a convolutional layer after adding a buffer of zeros to I.

cells down at a time, we would say that the filter has a stride of (x, y). If x and y are equal,

we simply say that the filter has a stride of x. In general, for a pxp I with a qxq W and a

stride of 1, we have

Zab =

q−1∑
i=0

q−1∑
j=0

WijI(i+a)(j+b) ∀a, b ∈ [0, p− q] ∩ Z . (2.4)

(Note that Equation 2.4 can be modified for non-square I, for non-square W , and for strides

other than 1.)

Convolving with an Empty Buffer Around the Perimeter

Also of note is what can be done if the desired filter size doesn’t match the desired dimensions

of Z. In other words, for the example in Figures 2.3 and 2.4, a situation can occur where the

user wants W to be 3x3 but Z to be 4x4. This can be done by adding a buffer of zeros to I,

as in Figure 2.5. Aside from needing to add the buffer of zeros, this method works exactly

like the general method, and, because only zeros are added, the only terms gained from this

and added to the sums Zij are Wkl ∗ 0 = 0.
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Figure 2.6: A simple example of a complete convolutional layer of a CNN.
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Figure 2.7: Calculating A00 in the pooling stage of a convolutional layer; thus, a pictoral
representation of Equation 2.5 with (a, b) = (0, 0).

2.1.3 Pooling

Figure 2.6 shows what a full convolutional layer might look like; notice that the left side of

the Figure (the part involving I, W , and Z) shows the “convolutional” part, as has already

been discussed. The rest of the Figure (the part that shows Z becoming A) shows “pooling,”

which is the step of a convolutional layer that shrinks the amount of data being sent to the

next layer based on the idea that, by only passing along some of the information, overfitting

can be prevented [7].

The pooling step by itself is shown in Figures 2.7 and 2.8. In this step, a pooling filter

is applied to Z very similarly to how the convolutional filter is applied to I in the previous

step, as explained in Section 2.1.2. There are two main differences: First, while convolutional

filters often have a stride of 1, generally a pxq pooling filter will have a stride of (p, q) (as

can be seen in Figures 2.7 and 2.8), and second, while a convolutional filter is a matrix of

weights, a pooling filter is simply the designation of a region of Z over which to apply a
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Figure 2.8: Calculating A10 in the pooling stage of a convolutional layer; thus, a pictoral
representation of Equation 2.5 with (a, b) = (1, 0).

pooling function; the output of that pooling function will then be the corresponding entry

in A. A common pooling function is max(), which we use throughout this Section. Its usage

is logical: To apply a pooling filter to a region of Z with a pooling function max(), take the

maximum element of the region and let that be the element that is “kept” in A.

For cases such as this example that have a 2x2 filter with a stride of 2, we have

Aab = max({Z(2a)(2b) , Z(2a+1)(2b) , Z(2a)(2b+1) , Z(2a+1)(2b+1)}) . (2.5)

In general, for a pxq filter with a stride of (x, y) and a pooling function f(), we have

Aab = f({Zij : (i, j) ∈ [ax, ax + q − 1] ∩ Z x [by, by + p− 1] ∩ Z}) . (2.6)

2.1.4 Activation Function

In a DNN, synapses add charge to the neuron they are connecting. The charge added to

the neuron is the product of the synapse weight and the neuron’s firing charge. The neuron

has to decide what charge to fire after it receives the charge from its incoming synapses.

This decision is made by the activation function. The activation function is a mathematical

equation that takes the total charge that the neuron receives from its synapse and outputs

a firing charge. There are many kinds of activation functions exist.
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2.2 Spiking Neural Network

A spiking neural network (SNN) is an artificial neural network mimics neural networks from

biology [8]. In a SNN, every neuron has a threshold and a refractory period. As opposed

to DNN, where neurons always transmit charge. In a SNN, the neuron has to accumulate

charges that are larger than its threshold to fire. The neuron also has a rest time named

”refractory period” after each fire. The neuron cannot fire within the rest time even if it has

enough total charge. Every synapse in a SNN has a weight and a delay. The weight value

of the synapse is the same as in DNN. The delay of a synapse is the time required for the

charge to travel from one end of the synapse to the other end. On a large scale, the SNN

has a time factor which the DNN doesn’t have.

2.3 TENNLab

TENNLab is a neuromorphic computing group at the University of Tennessee, Knoxville

focuses on machine learning in SNN [9][10]; TENNLab has developed multiple network ar-

chitectures and learning methods for SNNs, and they also have developed many applications

that can be run by their method trained SNNs. This project uses TENNLab’s classification

application for classifying different datasets, but trains the SNNs using back propagation on

a DNN, and then converts the DNN to a SNN. The following section briefly explains the

application and architectures that are relevant to this project.

2.3.1 Classification Application

Class2d is an application from TENNLab for classifying different classes in a dataset [11].

The application can have a human or a neural network user. If the application is played by

a human, it presents classification problems on the command line for the user to answer. If

the application is played by a SNN, it connects the application with the network simulator

for the simulator to answer problems. The data for each problem is converted to spikes with

different amount of charge. This application is used only by a converted SNN in this project.

In other words, the application is not involved in the training of the SNN.
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2.3.2 Architectures

TENNLab has multiple architectures for SNNs. The architectures have different properties.

For example, DANNA2 is a two-dimensional network architecture that uses integers to

represent components properties such as neuron threshold and synapse weight [12]. NIDA

is a three-dimensional network architecture, whose synapse delays are determined by the

length of the synapses [13]. MrDANNA is an architecture whose properties are derived from

its implementation using memristors [14]. The architectures that being used for this project

will be detailed discussed in Chapter 5.

2.4 Whetstone

Whetstone is an algorithm that trains a conventional, non-spiking DNN to a spiking deep

neural network (SDNN) by gradient descent. It first trains the network as a DNN using

gradient descent for several iterations. After that, the algorithm gradually shrinks the valid

range of the activation function. This shrinking process is called ”sharpening”. Eventually,

the valid range of the activation function decreases to a discrete value, and this value becomes

the neuron’s threshold in the final SDNN. This process is described on detail in [1].
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Chapter 3

Supply File

Due to the differences between the SDNN and SNN, the conversion program creates a supply

file along with a converted network file from every original SDNN. The network file is

straightforward: Is contains the converted SNN. The supply file includes extra information

from the SDNN to make it work with the converted SNN. There are two kinds of data in

every supply file. First is the input layer’s synapse weights, and second is the variables for

the Softmax function. The network is run by the TENNLab software framework and class2d

application. We use the supply file to provide pro-processing of the input layer’s synapse

weights, which than get sent to the class2d application. The application’s outputs are then

post-processed using the variables for the Softmax function.

3.1 Softmax

Softmax is an activation function that is generally used for classification in a DNN. It is

also what the SDNN use for classification. Softmax takes the spike activity as input and

outputs a predicted classification. TENNLab’s program can monitor the spike activity, but

does not have the Softmax function built in to the program, so the conversion program from

this project writes the Softmax variables to the supply file. The classification application

reads the Softmax variable from the supply file and performs Softmax on the spike activity.
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3.2 Input Layer Weight

In an SDNN, the input neurons don’t need an activation function to determine the firing

charge because the input value is their charge. Therefore, the Whetstone algorithm sharpens

the activation function to a threshold for every neuron in the SDNN except the neurons in

the input layer. This creates a problem when converting the SDNN to an SNN, because the

SNN only has fixed thresholds for its neurons. To solve this problem, the conversion program

writes the input layer neurons’ synapse weights to the supply file, and the classification

application uses this synapse weights to pre-process the inputs.
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Chapter 4

Conversion

The conversion program is the primary focus of this project. This conversion program can

convert different layer structured SDNNs to SNNs in different TENNLab architectures. It

supports conversion of networks with feed forward layers, convolutional layers, and other

layer structures. One network may be composed by multiple layer structures. While

implementing the original conversion program, we encounter a major obstacle: the resulting

SNNs were enormous. For that reason, we developed a second conversion that trades time

for space, resulting in drastically smaller SNN that take longer to run.

4.1 Feed Forward Neural Networks

There is no need to rearrange neurons and synapses when converting FFNNs to SNNs,

because the structure of the feed forward layer is simple. The only problem of converting a

FFNN to an SNN is how to handle the bias in the FFNN, because neurons in SNNs only have

a threshold and no bias. Every neuron in an SDNN produced by the Whetstone algorithm

has the same threshold, due to sharpening, but each neuron has its own unique, trained

bias. The charge in the bias is added to the neuron’s charge along with synapse weights.

Therefore, to convert a neuron in FFNN to a neuron in SNN, the conversion program assigns

the neuron’s threshold to be the original threshold (shared by all neurons) minus bias. In this

way, each neuron has its own unique threshold that is a combination of the SDNN neurons’

shared threshold and unique bias.
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Figure 4.1: An example convolutional layer in SDNN

4.2 Convolutional Neural Networks

The CNN in SDNN is different from the normal CNN in DNN, Figure 4.1 is an example

convolutional layer in SDNN. Every neuron in the SDNN has a firing charge of either 0 or

1, and this simplifies equation 2.4. This section describes the conversion of the CNN from

SDNN to SNN, both the original version which results in excessively large network, and the

second version which trades time for space.

4.3 Version 1

Version 1 of converting a CNN to an SNN is to connect every neuron in the output layer

with every neuron in the input layer that contributes to its calculation. Figure 4.2 shows

the synapse connection for a single neuron in the output layer in a convolutional layer with

a 3x3 filter, and Figure 4.3 shows all of the synapses for this example. For a convolutional

layer with n output neurons, and a pxq filter, the converted subnetwork has a synapse count

of:

S = n ∗ p ∗ q (4.1)
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Figure 4.2: Synapse connection for a single neuron in the output channel in SNN

In the example of figure 4.2 from 4.3, this convolutional layer needs

4 ∗ 4 ∗ 3 ∗ 3 = 144 (4.2)

synapses. This synapse count can be overwhelming. For example, for a DNN from an

example MNIST network, the total synapse count of all the converted convolutional layers

was 1,143,072. As it turns out, this subnetwork is too large to store in RAM, so there needs

to be another, more tractable conversion method.

4.4 Version 2

To solve this problem, we developed a method for what we’re calling “trading time for space”

that does just that: By using more timesteps and a more complex implementation, we reduce

the synapse count to drastically raise the upper bound on network size that can be feasibly

held in memory. In this implementation, for one convolutional layer with n neurons in each

layer and a pxq filter, the synapse count is

S = O(n) + O(pq) (4.3)
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Figure 4.3: Synapse connection a 4x4 matrix with 3x3 filter in SNN

Figure 4.4: Convolution for an SNN. This is identical in form to the examples in Section
4.2 except for the fact that I and Z must be bitmatrices and for the threshold function. The
threshold here is 6, so Z ′ij ≥ 6⇔ Zij = 1.

rather than O(npq) from equation 4.1. The number of additional neurons is also O(n) +

O(pq).

4.4.1 Method Overview

For a general idea of what version 2 looks like, compare Figure 4.4 with Figures 4.5-4.15.

Figure 4.4 shows a CNN layer’s calculations when converted to a SDNN. The inputs I and

output Z are constrained to be 0’s and 1’s, as they are implemented by spikes. The Z ′ matrix

represents the original CNN calculations. It is converted to Z by applying a threshold, which

is 6 in this example. In Figures 4.5-4.15, I is the bitmatrix (matrix composed only of zeros

and ones) to the left, W is the matrix to the bottom left, and Z is the matrix that has yet to
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Figure 4.5: Time 0: All of the nonzero input neurons spike.
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Figure 4.6: Time 1: Synapses from nonzero input neurons to PA() with delay 1 spike.
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Figure 4.7: Time 2: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′00 spike. The charge of the threshold neuron now equals Z ′00 = 8,
which is greater than or equal to the threshold 6, so the threshold neuron spikes.
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Figure 4.8: Time 3: Synapses from nonzero input neurons to PA() with delay 3 spike. The
synapse from the threshold neuron to PC() fires because the threshold neuron fired in the
last timestep, indicating that Z00 will be 1. The threshold neuron receives a spike of weight
reset.
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Figure 4.9: Time 4: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′10 spike. The charge of the threshold neuron now equals Z ′10 = 6,
which is greater than or equal to the threshold 6, so the threshold neuron spikes.
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Figure 4.10: Time 5: Synapses from nonzero input neurons to PA() with delay 5 spike.
The synapse from the threshold neuron to PC() fires because the threshold neuron fired in
the last timestep, indicating that Z10 will be 1. The threshold neuron receives a spike of
weight reset.
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Figure 4.11: Time 6: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′20 spike. The charge of the threshold neuron now equals Z ′20 = 0,
which is not greater than or equal to the threshold 6, so the threshold neuron doesn’t spike.
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Figure 4.12: Time 7: Synapses from nonzero input neurons to PA() with delay 7 spike.
The synapse from the threshold neuron to PC() doesn’t fire because the threshold neuron
didn’t fire in the last timestep, indicating that Z20 will be 0. The threshold neuron receives
a spike of weight reset.
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Figure 4.13: Time 32: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′33 spike. The charge of the threshold neuron now equals Z ′33 = 2,
which is not greater than or equal to the threshold 6, so the threshold neuron doesn’t spike.
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Figure 4.14: Time 33: There are no synapses from nonzero input neurons to PA() that
haven’t spiked yet. The synapse from the threshold neuron to PC() doesn’t fire because the
threshold neuron didn’t fire in the last timestep, indicating that Z33 will be 0. The threshold
neuron receives a spike of weight reset.
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Figure 4.15: Time 37: Synapses from PC() to an output neuron that should be a 1 spike,
causing the appropriate output neurons to fire. This completes this convolutional layer.

22



be filled in to the very right of the Figures. (See the top of Section 2.1.2 for an explanation

of the variables used here. Also, note that everything in Section 4.4 involves only the actual

convolution part of a convolutional layer and leaves out pooling.) This Section uses 4x4 I,

3x3 W , and 4x4 Z; some of the parameters to the subnetworks depend on these dimensions.

We’ll hold off on explaining the subnetworks PA(), PB(), and PC() for now; just think

of them as “black boxes” until Section 4.4.2. (They should actually be styled with their

parameter lists as PA(n,w, i, d), PB(i, d, w, c, o), and PC(n, i, d), but, again, we’re leaving

that until Section 4.4.2.)

Notice that all of the (non-buffer) entries of I are neurons, each with a synapse connected

to PA(); each of these synapses has weight 1 and delay 1. There’s also a synapse from PA()

to the threshold neuron T = t corresponding to each element of W , each with weight equal

to the value of the Wij that it corresponds to and with delay 1. There’s a single synapse from

PB(reset) to the threshold neuron with weight reset and delay 1. (The meaning of weight

reset will be discussed in 4.4.2; for now, just know that a synapse firing with a weight of

reset will zero out the charge of the neuron that receives it.) There’s a single synapse from

the threshold neuron to PC() with weight 1 and delay 1, and, lastly, for all Zij, there’s a

synapse from PC() to Zij with weight 1 and delay 1.

At time 0, the neurons in I fire. This is the point where the method described in this

Section starts to take more time: To reduce the amount of data needed to be held in memory,

instead of finding all elements of Z ′ at once (as in Figure 4.4), we take one timestep for each

Z ′ij (the even timesteps where the synapses corresponding to W fire) and a second timestep

for each corresponding Zij (the odd timesteps where the synapse from the threshold neuron

to PC() fires).

Example: Z ′00 and Z00

Time 2 corresponds to Z ′00 and time 3 corresponds to Z00 (see Figures 4.7-4.8). At time 2, all

synapses corresponding to elements of W that are multiplied by a 1 from I to calculate Z ′00

fire. (Note that the original zeros in this equation come from the “buffer” of zeros around
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I.)

Z ′00 = W00 ∗ 0 + W10 ∗ 0 + W20 ∗ 0

+ W01 ∗ 0 + W11 ∗ I00 + W21 ∗ I10

+ W02 ∗ 0 + W12 ∗ I01 + W22 ∗ I11

= 0 + 0 + 0

+ 0 + W11 ∗ 1 + W21 ∗ 1

+ 0 + W12 ∗ 0 + W22 ∗ 1

= W11 + W21 + W22

= 4 + 0 + 4

= 8 .

(4.4)

Thus, the synapses corresponding to W11, W21, and W22 are the only weight synapses that

fire, as can be seen in Figure 4.7. At this point, the Z ′00 is known to be the charge of the

threshold neuron, with is 8.

At time 3, if Z ′00 ≥ T , the synapse from the threshold neuron to PC() will fire. In the

example we’ve been using, the threshold is 6. Since 8 ≥ 6, the synapse to PC() does fire;

thus, at time 37 (Figure 4.15), the synapse from PC() to Z00 will fire, indicating that Z00 = 1.

The synapse from PB(reset) to the the threshold neuron also fires at time 3 to clear out

the threshold neuron in case it didn’t fire. (If it did fire, this wouldn’t be necessary because

firing will zero out a neuron).

Note the agreement between Z ′ and Z here and Z ′ and Z in Figure 4.4.

General Timestep Expressions

Let Z be a pxq matrix. For our system of counting timesteps where time 0 is the timestep

when the neurons of I fire, we have the following:

• The synapses from PA() to the threshold neuron corresponding to the weights that

will be summed to calculate Z ′ij fire at time 2(jq + i) + 2.

• If Zij should be 1, the synapse from the threshold neuron to PC() fires at time 2(jq +

i) + 3.
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Figure 4.16: The init neuron. Each neuron of I has a synapse to init with weight 1 and
delay 1.

• For all Zij that should be 1, the synapses from PC() to Zij fire at time 2pq + 5.

• The synapse from PB(reset) to the threshold neuron fires at time 1+2k ∀k ∈ Z : k > 0.

4.4.2 Subnetwork Details

Init Neuron

The init neuron (Figure 4.16) is a neuron local to each layer that has synapses to all PB()

and to a few other neurons (discussed later), causing them to fire at certain times. To ensure

that init fires in each layer, there is a synapse from every neuron of I to init. This way, if

any input neuron fires, init will fire; if no input neuron spikes, there is no reason for init to

fire. Assuming init fires, it will fire at time 1.

PB(i, d, w, c, o)

The PB(i, d, w, c, o) subnetwork is the simplest of the subnetworks presented here. It’s

composed of three neurons, as in Figure 4.17, and produces a spike of weight w at time

ij + d ∀j ∈ [1, c] ∩ Z. Each PB(i, d, w, c, o) has a synapse of weight 1 from the init neuron

to its own B0 and a synapse of weight −1 from the init neuron to both B0 and B1. The
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Figure 4.17: PB(i, d, w, c, o) produces a spike of weight w at time ij + d ∀j ∈ [1, c] ∩ Z.
Synapse weights and delays are written as (weight,delay).

Figure 4.18: PA(n,w, i, d) has n input synapses of weight 1 and w output synapses whose
weights correspond to the weights of W . The parameters i and d are used for timing. In
this case, n = (4, 4), w = (3, 3), i = 2, and d = 1.
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Figure 4.19: The threshold neuron. Each Wij of PA(n,w, i, d) has a synapse to the
threshold neuron, which then has one synapse to PC(n, i, d). There is also a PB(reset)
with a synapse to the threshold neuron to zero it out after every spike from PA(n,w, i, d).
Synapse weights and delays are written as (weight,delay).

Figure 4.20: PC(n, i, d) has a synapse from the threshold neuron to C0 and has n output
synapses to Z. The parameters i and d are used for timing. In this case, n = (4, 4), i = 2,
and d = 1.
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synapses of weight −1 are there to ensure that PB(i, d, w, c, o) stops producing spikes when

they’re no longer needed, which makes each PB(i, d, w, c, o) significantly more efficient.

What has been referred to in this Thesis as PB(reset) is really PB(i, d, w, c, o) with

w = reset, which, in our implementation, is simply a “very large number.” If w = reset,

then that will cause the neuron N to fire, thus “resetting” it. To cancel out the consequences

of N having to fire to be reset, the parameter o contains a list of neurons that N has a synapse

to and the weights and delays of those synapses. PB(i, d, w, c, o) will then contain a synapse

to every neuron that N has a synapse to, but with a delay of one more and with negative

weight. Thus, when N fires to be reset, it triggers synapses that shouldn’t be triggered, but

they won’t actually affect anything since at the timestep that those synapses fire with weight

w1 to a neuron, the neuron also receives a pulse of weight −w1. Note that, outside of this

subsection, this Thesis doesn’t mention the synapses from PB(reset) to the neurons in o.

PA(n,w, i, d)

The first subnetwork that the input neurons are connected to is PA(n,w, i, d) (see Figure

4.18). It’s in this subnetwork that the “trading time for space” begins to happen: Whereas,

without this method, we would need a lot of synapses at once, with our implementation, we

simply take two timesteps apiece for each Zij.

At time 0, all Iij fire. Each Iij is connected to a synapse whose weight and delay are

shown inside Iij’s neuron, in the top left of Figure 4.18. In this case, our parameters to

PA(n,w, i, d) are PA((4, 4), (3, 3), 2, 1), so at time 1, neurons I00, I10, I01, and I11 have their

spikes reach PA(n,w, i, d). This corresponds to the top-left 3x3 submatrix of I surrounded

by a buffer of zeros. When a Wij spikes, it sends a spike of weight Wij to the threshold

neuron. If the sum of the spiking Wij is greater than or equal to the threshold, then the

threshold neuron will send a spike to PC(n, i, d); otherwise, the threshold neuron is zeroed

out by PB(reset). Then, at time 3, the spikes from I20 and I21 reach PA(n,w, i, d) as the

spikes which were already there move to the left one. This corresponds to the next 3x3

submatrix of I surrounded by a buffer of zeros. This continues; see Figures 4.21-4.30 for a

more detailed walkthrough.
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Threshold Neuron

The threshold neuron (as shown in Figure 4.19) is the equivalent in this method of going

from Z ′ij to Zij (as in Figure 4.4). If Z ′ij is greater than or equal to the threshold t, then Zij

should be 1; this happen by the threshold neuron sending a spike to PC(n, i, d). However,

if Z ′ij is less than the threshold, then Zij should be 0, which will be forced by the lack of a

spike from the threshold neuron to PC(n, i, d).

To ensure that the threshold neuron doesn’t spike because of a build-up of charge that

doesn’t on its own cause it to spike, PB(reset) will zero out the threshold neuron after every

timestep where it might spike.

PC(n, i, d)

The final subnetwork of our convolutional layer is PC(n, i, d), as shown in Figure 4.20. This

subnetwork is responsible for catching when Zij should be 0 or 1. The first timestep when

C0 can spike is time 3, which corresponds to Z00. (In other words, if Z00 should be a 1 if and

only if C0 spikes at time 3.) If C0 does spike at time 3, then all Cij will receive a charge of 1

at time 4. The way that we ensure that only the appropriate neuron fires is by making each

Cij have a threshold of 2 and giving each Cij a synapse from init with delay 2(mj + i) + 3.

For C00, this synapse will fire at time 4 = 2(0) + 3 plus another 1 to include the delay from

Iij to init. This will ensure that, if C0 fires at time 3, C00 will have a charge of 2 at time 4,

causing it to fire. At time 5, a host of PB(reset)s zero out all Cij.

The delay from Cij to Zij is to ensure that all Zij spike at the same time. The “37”

comes from

37 = (size(Z ′)) + (size(Z)) + (I spike time) + (Cij spike time) + (C0 to C33) + (final delay)

= 16 + 16 + 1 + 1 + 1 + 2 .

(4.5)

Thus, for 2-dimensional I, 2-dimensional W , and 4x4 Z, this method will require 37 timesteps

to complete the layer; at time 37, all relevant Zij will fire.
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Figure 4.21: Time 0: All of the nonzero input neurons spike.

4.4.3 The Complete Picture

A step-by-step walkthrough of the first ten timesteps of the example from Figure 4.4 is

shown in Figures 4.21-4.30. (This walkthrough is significantly more detailed than that given

in Figures 4.5-4.15.)

Notice that we don’t show the inner parts of any PB(i, d, w, c, o), nor do we show the

synapses to them from init. Since PB(i, d, w, c, o) is so comparatively simple, we felt showing

the spikes moving around in it to be unnecessary. Refer back to Section 4.4.2 if it doesn’t

quite make sense.

4.5 Max-pooling

Conversion of the max-pooling layer to SNN is really straightforward. In SDNNs, max-

pooling sends 1 to the next layer if and only if there is at lease one active neuron in the

selected region. The conversion program assigns a threshold of 1 to each neuron in the

output layer. It connects each of these with a synapse to a pre-neuron in the input layer

that is part of its output calculation. Each of these synapse have weights and delays of one.

In this way, if any neuron in the region fires, the synapse is going to add 1 to the output

neuron and cause the neuron to fire.
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Figure 4.22: Time 1: Synapses from nonzero input neurons to PA() with delay 1 spike.

Figure 4.23: Time 2: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′00 spike. The charge of the threshold neuron now equals Z ′00 = 8,
which is greater than or equal to the threshold 6, so the threshold neuron spikes.
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Figure 4.24: Time 3: Synapses from nonzero input neurons to PA() with delay 3 spike.
The synapse from the threshold neuron to PC() fires because the threshold neuron fired in
the last timestep, indicating that Z00 will be 1. The threshold neuron receives a spike of
weight reset.

Figure 4.25: Time 4: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′10 spike. The charge of the threshold neuron now equals Z ′10 = 6,
which is greater than or equal to the threshold 6, so the threshold neuron spikes.
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Figure 4.26: Time 5: Synapses from nonzero input neurons to PA() with delay 5 spike.
The synapse from the threshold neuron to PC() fires because the threshold neuron fired in
the last timestep, indicating that Z10 will be 1. The threshold neuron receives a spike of
weight reset.

Figure 4.27: Time 6: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′20 spike. The charge of the threshold neuron now equals Z ′20 = 0,
which is not greater than or equal to the threshold 6, so the threshold neuron doesn’t spike.
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Figure 4.28: Time 7: Synapses from nonzero input neurons to PA() with delay 7 spike.
The synapse from the threshold neuron to PC() doesn’t fire because the threshold neuron
didn’t fire in the last timestep, indicating that Z20 will be 0. The threshold neuron receives
a spike of weight reset.

Figure 4.29: Time 8: Synapses from PA() to the threshold neuron corresponding to the
weights that will sum to Z ′30 spike. The charge of the threshold neuron now equals Z ′30 = 4,
which is not greater than or equal to the threshold 6, so the threshold neuron doesn’t spike.
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Figure 4.30: Time 9: Synapses from nonzero input neurons to PA() with delay 9 spike.
The synapse from the threshold neuron to PC() doesn’t fire because the threshold neuron
didn’t fire in the last timestep, indicating that Z30 will be 0. The threshold neuron receives
a spike of weight reset.

Figure 4.31: A max-pooling layer with a stride of 2 on a 4x4 matrix. All synapses have
weights and delays of one. The Bij neurons all have thresholds of one.
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Chapter 5

Spiking Architecture

The conversion program converts the SDNN to an SNN in the TENNLab framework. Every

spiking architecture has a simulator that can be run by a computer, but some architectures

also have a hardware implementation that allows the network to run by a piece of hardware.

TENNLab has many network architectures for SNN, and this conversion program supports

two architectures: WHETSTONE and DANNA2. Details of those two architectures is

explained in the following sections.

5.1 WHETSTONE

WHETSTONE is a three-dimensional spiking architecture that we created in TENNLab,

which aims to match the original SDNN behavior spike by spike. TENNLab has many

network architectures, but none of them matches the original SDNN 100%. Since one

goal of this project is to prove that the converted networks match the original networks,

WHETSTONE was created within the TENNLab framework. WHETSTONE stores network

elements in floating point, and the WHETSTONE simulator processes one layer every one

timestep to implement the time factor in SNN. As the result, the converted WHETSTONE

network shows 100% match on spike activity with the original SDNN, and this architecture

proves that TENNLab’s spiking architecture can mimic the SDNN behavior.
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5.2 DANNA2

DANNA2 is a two-dimensional spiking architecture in TENNLab with software, FPGA, and

VLSI implementations. Although it is not identical to the WHETSTONE architecture, we

converted Whetstone SNNs to DANNA2s, to see how well they would perform. DANNA2 has

a hardware constraint that forces network to be represented as integers instead of floating-

point. Therefore, the original network has to be reduced to two-dimensions and converted it

to a integer network. We performed these conversions, and performed experiments on both

DANNA2 and WHETSTONE. The results are presented in Chapter 6.
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Chapter 6

Benchmark and Result

The benchmark tests are split into three parts. The first test is on the effectiveness of version

2 for converting CNNs to SNNs. The second test is on the accuracy of the original SDNNs

and converted SNNs in DANNA2. The last test is on the spike rate and event rate. All

three tests are done on twelve different CNN or FFNN topologies. The twelve topologies are

the cross combination of four network depths and three filter sizes. We name these depths

“deep” (6 convolutional layers and 2 feed forward layers), “medium” (4 convolutional layers

and 2 feed forward layers), “shallow” (2 convolutional layers and 2 feed forward layers), and

“dense” (2 feed forward layers). The filter sizes are 3x3, 5x5, and 7x7.

6.1 Network Size

We first compare the neuron and synapse counts for version 1 and version 2 in the twelve

MNIST networks. This provides a direct way of showing how version 2 improves the network

size compare with version 1. Figure 6.1 shows the total neuron and synapse count. The dense

network is not shown because it doesn’t have convolutional layer. It is very obvious that the

difference on synapse count is much larger than the difference on neuron count, and this is

especially true for larger networks. This graph demonstrates that version 2 does decrease the

network size, more precisely the synapse count, to a reasonable number, allow the networks

to fit in memory. Version 2 does require more neurons than version 1, but compared to the

improvement on synapse count, the effect is negligible.
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Figure 6.1: Comparison of neuron and synapse counts by the two CNN conversion methods
on different network topologies. The x-axis displays nine different network sizes, and the y-
axis represent the neuron and synapse counts.

39



6.2 Accuracy of DANNA2

This test is necessary because DANNA2 networks use integers to represent their network

elements, so the converted network is different from the original network. The WHET-

STONE architecture matches the SDNN spike by spike, so the accuracy of the converted

WHETSTONE network is the same as the accuracy of the original SDNN. This test includes

accuracy testing on both the converted DANNA2 networks and original SDNNs, which is

the same as the WHETSTONE networks.

Figure 6.2 is a bubble graph of DANNA2 and Whetstone accuracy on four different

classification datasets:

1. MNIST - handwritten digits.

2. FASHION MNIST - dataset of 10 classes of fashion images [15].

3. CIFAR10 - dataset of 10 classes of color images [16].

4. CIFAR100 - extrapolate of CIFAR10 with 100 classes.

Due to time, we only tested 100 test cases on DANNA2. On Whetstone, we ran all of

the test cases.

Most datasets have better accuracy on Whetstone than on DANNA2. The reason very

likely is that the DANNA2 architecture loses precision by using integers for its network

properties. The loss of precision hurts accuracy of the FASHION MNIST, CIFAR10, and

CIFAR100 dataset. It helps the MNIST dataset, most likely because the loss of precision

reduces overfitting.

6.3 Other

The converted SNN can run either on a simulator or potentially a hardware device. Therefore,

it is interesting to test the event rate and spike rate of classification. The event rate is

important, because the simulators for DANNA2 and WHETSTONE architectures are all

event based simulators. Similarly, when implemented on neuromorphic hardware, event and

spike counts are aid in estimating power consumption.
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Figure 6.2: DANNA2 and Whetstone accuracy comparison on MNIST, FASHION MNIST,
CIFAR10, and CIFAR100 dataset. The bubble color represent the network topologies,
and the bubble size represent the filter size of the networks. Bubble below the diagonal
line indicate the Whetstone network has a better accuracy than the converted DANNA2
networks, and vice versa.
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Figure 6.3: Spike and event rate for different networks on MNIST, FASHION MNIST,
CIFAR10, and CIFAR100 dataset. The graph variables are the same as Figure 6.2.

Figure 6.3 displays a bubble graph of spikes vs. events in the four applications. Events

compose a superset of spikes as not all events lend to spikes. This is borne out by the graphs,

where the event-to-spike ratio is roughly 3.3 to 1.
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Chapter 7

Future Work

7.1 PB()

In a converted CNN, PB() spikes at least one synapse every timestep. As future work, a

new implementation of PB() utilizes on interval i to be the delay of the synapses which

connect B0 and B1. Figure 7.1 shows the new implementation, This decreases the spike rate

of PB() from once every timestep to once every i timesteps. Since PB() has been used in

multiple places in the converted convolutional layer, the new implementation should increase

simulation speed, and decrease power consumption on neuromorphic hardware.

Figure 7.1: A new implementation of PB() that should speed up the network.
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7.2 PC()

One other way to make the network run faster is to improve PC(). Every Cij neuron is

connected by a PB(), and every PB() generates at lease one spike every timestep (or one

spike every i timesteps in the future version). The spikes take up most of the network activity.

To improve PC(), the conversion program can create just one PB() that connects to every

Cij instead of having one PB() per Cij. The new PC() would still have the same activity

because all the original PB() units have the same parameters, and this implementation

could decrease the network size and increase the network speed because it has fewer PB()

unit which generate fewer spikes.

7.3 Pipelining

Each Cij neuron has a synapse connects that to Zij, and those synapses all have different

delay values so the spikes will arrive to Z at the same time. One way to improve the network

speed is, instead of using the delays to synchronize the spikes, to have the spikes arrive to Zij

directly after Cij fires. The next convolutional layer will start after Zij accumulates enough

spikes.
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Chapter 8

Conclusion

The goal of this project is to convert a Whetstone trained SDNN to a SNN in TENNLab,

enabling the SNN to be trained by back propagation. The conversion method can convert a

network with feed forward layers, convolutional layers, and other types of layers to a SNN

of either DANNA2 or WHETSTONE architectures. The first approach of converting CNN

to SNN failed, because the converted network was too large to store in memory. Another

conversion method was designed to solve this problem. The converted subnetwork trades time

for space, so the network fits in memory. The experiment shows that version 2 significantly

decreases the network size and successfully converts the SDNN to a SNN. The experiment

also shows that the WHETSTONE network has the same accuracy as the original Whetstone

network, and DANNA2 network can be better or worse depending on the dataset complexity.
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