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ABSTRACT 

 In cycling study, there were limited research on recumbent bike kinetics, especially the 

frontal plane. Increased internal knee abduction moment (KAbM), on the frontal plane, has been 

shown to be an effective predictor of knee osteoarthritis. The purpose of this study was to 

examine the effects of different workrates and seat positions on knee biomechanics during 

stationary recumbent cycling. Fifteen participants cycled on a recumbent ergometer in 6 test 

conditions of pedaling in far, medium and close seat positions in each of two workrates of 60 and 

100 W, at the cadence of 80 RPM. A three-D motion analysis system and a pair of custom-made 

instrumented pedals were used to collect kinematic and kinetic data.  A 3 ´ 2 (seat position ´ 

workrate) repeated measures analysis of variance (ANOVA) was used to examine the effect of 

seat positions and workrates on selected variables of interest. Increased workrates significantly 

increased peak KAbM and knee extension moment. Different seat positions did not change either 

peak KAbM or knee extension moment. Due to the larger Q-factor for the recumbent bike used 

in the study, future study should examine the knee biomechanics with smaller Q-factors, as well 

as the lower limb muscle activities in recumbent cycling. 
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CHAPTER I 

INTRODUCTION  

 Cycling is a popular mode of transportation, recreation, and sport. From 2016 to 2017, 

25% of US citizens owned a road bicycle and half of them cycled on a regular basis (1, 2). 

Studies have shown that cycling can improve cardiorespiratory fitness (3), and strengthen knee 

flexor and extensor muscles (4, 5), as well as reduce cancer mortality (3), obesity morbidity (3), 

and depression (6). Moreover, cycling is a preferred exercise over walking or running for 

individuals with knee osteoarthritis (OA) and anterior cruciate ligament (ACL) injuries since it is 

advantageous at lessening knee joint loads (7). Despite the numerous benefits, there is a risk of 

suffering traumatic and non-traumatic injuries during cycling (8, 9), most commonly at the knee 

(10).  

 The recumbent bicycle has become popular in recent years due to its multiple advantages 

over traditional upright bikes. Several studies have reported a decreased knee load reflected in 

the reduced peak knee extension moments on a recumbent bike when compared to an upright 

bike (11-15). On a recumbent bike, the rider is allowed to pedal at a reclined position to decrease 

the intervertebral disc compression on the back (16, 17). With large and anatomically fitted 

padded areas, recumbent bike can provide a more significant weight distribution across the back 

and buttocks and relax arms in a neutral position (16), which would benefit cyclists with 

symptoms such as perineal numbness, erectile dysfunction, handlebar palsy and carpal tunnel 

syndrome caused by riding on a upright bicycle (16, 18-24). Additionally, a stationary recumbent 

cycling has been used as a rehabilitation and injury treatment method for people with disabilities 

such as cerebral palsy (25, 26), cerebral vascular accident (27, 28), diabetes (13), spinal cord 

injuries (29-31) and ankle immobilization (12).  
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OA is the most common joint disease in the US and over 80% of the cases affect the knee 

joint (32, 33). The most important variables associated with knee OA is the external knee 

adduction moment (KAM) [also known as the internal knee abduction moment (KAbM)]. 

Together with knee extension moment, they represent the medial compartment loading of the 

knee. During walking, the knee OA patients showed a greater than normal peak KAbM (34). 

Also, KAbM is an effective predictor of knee OA progression (35). Due to the reduced knee joint 

load, cycling is considered as a well suited exercise for OA patients (7). However, only a limited 

number of studies have investigated frontal plane knee biomechanics (including KAbMs) during 

recumbent and upright cycling (36-40).  In fact, frontal plane knee kinetics has never been 

examined in recumbent cycling. The only data about frontal plane kinematics of recumbent 

cycling was reported in the study by Johnson et al. (25). The authors compared lower extremity 

biomechanics between teenagers with and without cerebral palsy. Subjects were asked to cycle at 

a cadence of 30 and 60 RPM for at least 30 seconds. The workrate and seat position were highly 

individualized to each subject’s bodyweight and anthropometric measurements. As for results, 

the knee ROM was about 3 degrees in the frontal plane, ranging from 0 to 3 degrees of knee 

adduction in healthy subjects. During upright cycling, the knee frontal-plane ROMs were found 

between 6 degrees of adduction and 4 degrees of abduction (36, 37). The peak KAbM were 

reported to range from 7.8 Nm to 24.5 Nm while the peak knee adduction moment ranged from 

2.9 to 8.1 Nm (36-40). The large variability in the KAbM may be mostly due to the large 

variation of workrates (80 to 225 W) used in the studies. Fang et al. (36) indicated that larger 

workrate increased peak KAbM and knee abduction ROM in upright cycling.  Hummer et al. 

(41) examined KAbM in upright cycling at two workrates (80 and 120 W) and 3 saddle heights 



 3 

(20, 30, and 40 degrees of maximum knee extension angle). No significant difference was found 

across different saddle heights at either of the workrate.  

Sagittal plane knee kinetics has been widely studied in both recumbent and upright 

cycling. The results of these studies revealed that the recumbent cycling may create smaller knee 

extension moment than upright cycling, although no tendency of decreased flexion moments was 

shown. The sagittal plane knee kinetics reported in recumbent cycling by different studies have 

larger variations. The participants showed a mean peak knee extension moment of about 30 Nm 

with a pedaling resistance of 15 N, cadence of 60 RPM and backrest-ground angle of 40 degrees 

in a study by Brown et al. (11). Szecsi et al. (12) reported general muscle moments (GMMs, 

calculated via inverse dynamics) in recumbent cycling with participants’ ankles immobilized. 

The peak knee extension moments were shown to be 8.6 Nm and 24.7 Nm at the workrate of 30 

and 80 W, respectively, while the peak knee flexion moments were around 7.5 Nm at both 

workrates. Perell et al. (13) showed a mean peak knee extension moment of 1.8 Nm and flexion 

moment of 17.8 Nm with a cadence of  60-65 RPM and workrate of 60-65 W. With regards to 

upright cycling, Ericson et al. (15) reported a peak knee extension moment of 28.8 Nm and peak 

knee flexion moment of 11.9 Nm when the participants pedaled at 120 W and 60 RPM. Gregor 

et al. (42) showed that the peak knee extension reached 53 Nm with the cycling condition of 160 

W and 60 RPM. In the paper of Fang et al. (36), at the cadence of 60 RPM, the peak knee 

extension and flexion moment ranged from 11.6 to 37.2 Nm and from 17.4 to 19.7 Nm, 

respectively, when the workload increased from 0.5kg to 2.5kg. In the sagittal plane, larger 

workrates are found to lead to increased knee extension and flexion moments in both recumbent 

and upright cycling (12, 14, 15, 36, 43).  
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 Knee biomechanical variables can be influenced by the seat position as well. In a 

recumbent bike, the seat position is usually controlled by different notches. Therefore, the 

options are rather limited. The existing literatures only examined knee biomechanics when 

participants pedaled at different backrest angles in recumbent bike. Reiser et al. (44) did not find 

significant difference in knee ROM with varied angles of torso reclining. Brown et al. (11) 

addressed a significant increase of mean knee moment during one entire pedaling cycle when the 

back rest angle increased from 0 degree to 80 degree. Seat position on upright bike is usually 

reflected by saddle height, which is defined as the largest distance from the top of the saddle to 

the center of the upper pedal surface when the crank arm is in line with the seat tube (15). In the 

sagittal plane, saddle height affects knee kinetics (41). According to Hummer et al. (41), the peak 

knee flexion moment was increased and the peak knee extension moment was decreased as the 

saddle height increased.   

STATEMENT OF PROBLEM 

To our knowledge, no study has investigated how different workloads and seat positions 

would affect the frontal plane knee kinematics and kinetics in recumbent cycling. In fact, knee 

biomechanics data on the frontal plane related to recumbent cycling is nearly nonexistent. 

Therefore, the purpose of the study was to examine the effects of different workrates and seat 

positions on knee frontal and sagittal plane biomechanics during stationary recumbent bicycling 

among middle-aged and old cyclists. 

SIGNIFICANCE 

 KAbM has been shown to be associated with the progression of knee OA (34, 45-47). 

Comprehensive understanding of knee biomechanics, especially frontal-plane joint moment, is 
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necessary to provide guidelines for prescribing recumbent cycling as the therapeutic intervention 

and rehabilitation tool.  

HYPOTHESIS 

1. An increased workrate would result in a larger peak knee abduction moment and 

increased peak knee extension moment. 

2. A closer seat position would not result in a different peak knee abduction moment but 

would result in an increased peak knee extension moment.    

DELIMITATIONS 

1. All participants were 50 to 70 years old. 

2. All participants were free of lower extremity injuries for the past six months. 

3. All participants were able to ride a stationary bike for at least 20 minutes without aid. 

4. All participants cycled at least 6 hours per week on the regular basis.  

LIMITATIONS 

1. All tests were conducted in a laboratory setting. 

2. The anatomical marker placement of the bony landmarks might not be completely 

accurate. 

3. The tracking markers of the feet were placed on the shoes, which may not completely 

reflect the actual motion of the feet. 

4. The accuracy of the instruments in the study might affect the accuracy of the results. 

5. The cycling experience of each cyclist may vary. 
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CHPATER II 

LITERATURE REVIEW 

 The purpose of the study was to investigate the effects of different workrates and seat 

positions of recumbent bicycle on knee frontal plane biomechanics among middle-aged and old 

cyclists. This literature review includes the background of cycling, injury and biomechanics of 

upright cycling, and advantages and biomechanics of recumbent cycling.   

BACKGROUND OF CYCLING 

Benefits of cycling 

 As an efficient and environment-friendly mode of transportation, recreation and sport, 

cycling is intimately connected to people’s lives worldwide. In the United States, one-fourth of 

citizens owned a road bicycle in their household and half of them cycled regularly from 2016 to 

2017 (1, 2). The popularity of cycling is not a coincidence. According to related studies, cycling 

has been shown to improve cardiorespiratory fitness (3), and reduce cancer mortality (3), obesity 

morbidity (3), depression (6), and aid brain tissue health by increasing cerebral blood flow (48). 

Therefore, cycling is recommended for both physically and psychologically disabled and 

diseased populations.  

 Besides the benefits listed above, cycling is also commonly used as a lower extremity 

strength builder and injury rehabilitation tool by health professionals. Several studies have 

shown that cycling, as a method of resistance training, can effectively increase the strength and 

power of knee extensor and flexor muscles (4, 5). Also, since cycling is advantageous at 

lessening knee joint loads (7), it is a preferred exercise compared to walking or running for 

people who suffer from knee osteoarthritis (OA) and anterior cruciate ligament (ACL) injuries.     
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Injury risks of cycling 

Although it is recognized that cycling can result in benefits for disease prevention and 

mental health improvement, there is a risk of suffering common traumatic and non-traumatic 

injuries (8, 9). According to Kulund and Brubaker (10), the most prevalent lower limb non-

traumatic injuries experienced by bicycle riders involve the knee joint. In general, knee injuries 

in cyclists can be classified into 3 categories: patellofemoral inflammation, patella tendinitis and 

iliotibial band friction syndrome, which are believed to correlate with bike-fit problems, 

including saddle height, pedal width, and cleat orientation, as well as other factors, such as 

workload and cadence (49-51). Hence, it is essential to have a thorough understanding of how 

these variables impact knee biomechanics in cycling. 

UPRIGHT CYCLING BIOMECHANICS  

Upright cycling has been widely studied by researchers in recent years, with a certain 

amount of opinions and knowledge being universally accepted. In the following sections, we aim 

for reviewing the kinematics and kinetics of upright bike.  

Terminology 

 Throughout one upright pedaling cycle, the highest and the lowest point of the crank are 

called the top dead center and the bottom dead center, respectively. The top dead center is 

defined as the 0 degree or the 360 degrees, while the bottom dead center is defined as the 180 

degrees, of the crank cycle. A full cycle of the pedal contains power phase (0 to 180 degrees) and 

recovery phase (180 to 0 or 360 degrees). During the power phase, the lower limb extends to 

produce sufficient force to overcome the pedal resistance and to assist opposite leg in elevating 

during its recovery phase (52, 53).   
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Kinematics  

 Researchers have investigated the kinematics in upright cycling dating back to 1980s. 

Ericson et al. (54) showed that during the standard ergometer cycling (120 Watt workrate, 60 

RPM pedal cadence, a saddle height of 113% of the distance between the ischial tuberosity and 

the medial malleolus measured on each subject), the average knee range of motion (ROM) in the 

sagittal plane was 66 degrees, with 112 degrees of peak knee flexion and 46 degrees of peak 

knee extension. Bailey et al. (55) reported the average knee ROM was 67.5 degrees ranging from 

41.5 to 109 degrees for healthy subjects, and 66.7 degrees ranging from 40.7 to 107.4 degrees for 

subjects with anterior knee pain and/or patella tendinitis. Too and Landwer (56) studied the 

effect of crank arm length of upright bicycle on hip, knee, ankle angles and power production, 

noticing a mean knee ROM of 65.8 degrees at the crank length of 145 mm, which is almost 

identical as the number reported by Bini et al. (43). The knee kinematics results in the sagittal 

plane found in studies are generally in agreement with each other. The slight differences may be 

caused by the different settings such as workrate, pedaling cadence and saddle height.  

Both Ericson et al. (15, 54) and Bailey et al. (55) pointed out that the peak knee flexion 

occurred right before the bottom dead center, which is the lowest position of the crank and pedal. 

Ericson et al. (15) specified that during cycling, the knee extension occurred between the crank 

angle of 300 and 140 degrees, while knee flexion happened during the rest of the crank cycle. 

As for the frontal plane, Gardner et al. (37) compared the effects of limb alignment 

alternations on knee biomechanics between individuals with and without knee OA, authors found 

that the first peak knee adduction angle was reached around 60 degrees in the crank cycle when 

the riders’ feet were in a neutral position with a toe cage.  
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 Several studies showed that saddle height (the distance from the top of the saddle to the 

pedal axle center when the crank arm is pointing down and in line with the seat tube) has a 

substantial impact on sagittal plane knee kinematics (54, 57). Rugg et al. (57) calculated the 

lower limb muscle lengths at different saddle height. They showed that compared to ankle and 

hip, knee joint ROM was more affected as the saddle height increased from 100% to 115% 

crotch height (the vertical distance from the crotch of the standing subject to the ground). Ericson 

et al. (54) further showed that when the saddle height was increased from 102% to 120% of the 

distance between the ischial tuberosity and medial malleolus, the knee extension in the power 

phase increased 41 degrees while the knee flexion in the recovery phase decreased 22 degrees, 

resulting a significant increase in the knee ROM of roughly 19 degrees.  

 However, with respect to the effect of workrate on knee kinematics in cycling, the studies 

in the literature show inconsistent results. An earlier study conducted by Ericson et al. in 1988 

(54), described that when the workrate increased from 0 to 240 W, the maximum knee extension 

angle during power phase significantly lessened from 49 to 42 degrees, while the maximum knee 

flexion angle during recovery phase and knee ROM did not significantly change. The results are 

partially supported by the findings of several later studies. Bini et al. (43) asked their participants 

to perform the test at 3 saddle heights [100% trochanteric length (the length from the greater 

trochanter of the femur to the floor) as reference; low (-3cm) and high (+3cm)], and at 2 

cadences (40 and 70 RPM) 3 workloads (0, 5 and 10 N of breaking force). They found that 

neither the knee extension ROM nor peak knee flexion/extension angles in the power phase were 

influenced when workloads were increased by 5 N of breaking force.  Edeline et al. (58) also 

observed a non-significantly changed knee extension ROM when cyclists pedaled till fatigue, 

with a starting workrate of 100 W and an increase of workrate by 50 W for every 180 seconds. 
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 Fang and her colleagues (36) focused on the effects of workload and cadence on frontal 

plane knee biomechanics. They used a motion analysis system and a customized pedal 

instrumented with two 3D force sensors to collect three-dimensional kinematics and pedal 

reaction force data at five workloads (0.5, 1, 1.5, 2 and 2.5 kg ) at 60 RPM and three cadence 

conditions (70, 80 and 90 RPM) with 1 kg workload. As the workload increased, no difference at 

peak knee adduction angle was found, although significant but small changes in knee extension 

ROMs did exist (ranged from 76.9 to 80.3 degrees). The authors believed the increased knee 

extension ROMs might attribute to participant’s trunk sway and rotation to keep up with the 

higher pedaling workloads.  

Kinetics  

 Ericson et al. (15) conducted a series of experiments related to knee joint kinetics. When 

subjects cycled at a power output of 120 W, a cadence of 60 RPM, and a saddle height of 113% 

of the distance between the ischial tuberosity and the medial malleolus, the average peak knee 

extension moment was 28.8 Nm and peak knee flexion moment was 11.9 Nm (15). Gregor et al. 

(42) utilized two instrumented dynamometric pedals on both sides of the bicycle to measure the 

pedal reaction forces between the feet and pedals in the sagittal plane. Five participants pedaled 

at 60 RPM with a power output of 160 W for four minutes, revealing a mean peak knee 

extension moment of 53 Nm at 36 degrees of cranks cycle and a peak knee flexion moment right 

before the bottom dead center (same time when the peak knee flexion angle occurred discussed 

in the previous section). Neptune and Hull (59) created a forward dynamic model and an 

optimization framework to simulate steady-state ergometer cycling with submaximal effort. 

They identified the intersegmental joint moments when six subjects pedaled at 90 RPM and 225 

W. It was shown that the peak knee extension and flexion moments were both about 30 Nm.  
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As for frontal plane, Ericson et al. (38) examined the knee adduction and abduction load 

when subjects cycled at 60 RPM and 120W. It showed that the average peak knee abduction 

moment was 24.5 Nm in the power phase and peak knee adduction moment was 2.9 Nm in the 

recovery phase. In a study by Gregersen et al. (39), participants cycled at 225 W and 90 RPM. 

The peak knee abduction moment was 7.8 Nm and the peak knee adduction moment was 8.1 

Nm. Recently, Gardner et al. (37) showed that the average peak knee abduction moment was 9.0 

Nm when healthy subjects pedaled at 60 RPM and 80 W with neutral foot position. Shen et al. 

(40) showed that when subjects pedaled at 60 RPM with neutral knee alignment and toe clips on, 

the average peak knee abduction moments were 4.8, 6.6 and 8.9 Nm with workloads of 0.5kg (40 

W), 1.0kg (78W) and 1.5kg (W), respectively.     

 Most studies agreed that the saddle height has some impacts on the knee kinetics. (15, 43, 

60) Ericson et al. (15) compared knee kinetics in the sagittal plane when subjects were cycling at 

saddle heights of 102, 113, and 120% of the distance between the ischial tuberosity and the 

medial malleolus. Although the exact magnitudes were not provided, a bar graph in the paper 

showed that the peak knee flexion moment was decreased and the peak knee extension moment 

was increased as the saddle height enlarged. In the Bini et al.’s study (43), the reference saddle 

height was defined as 100% of the greater trochanteric height, while the low and high saddle 

heights were described as 3 cm lower and higher, respectively. They did find that the knee work 

contribution (42% vs 38%) to the total mechanical work of the lower limb joint was inversely 

related to saddle height when the seat was changed from low to high, although no differences of 

the knee work contribution to the total mechanical work were seen when comparing the 

reference saddle height to the “low” and “high” heights.  
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 Different workrates usually change knee kinetics substantially. Studies done by Ericson 

(15) and Bini (43) groups discussed in the previous paragraph both examined knee kinetics at 

several different workrates. Ericson et al. (15) used power output of 0, 120 and 240 W. When the 

workrate increased, both peak knee extension moment and knee flexion moment increased 

significantly. In particular, the external knee flexion moment had a large significant increase of 

41 Nm (from 9 to 50 Nm) as the workrate being modified from 0 to 240 W. When Bini et al. (43) 

compared the results of cycling under workloads of 0 N, 5 N, and 10 N, they noticed that even a 

small increase in workload caused a significantly increase of knee joint mechanical work (11 J at 

5 N, 15 J at 10 N).  Significant increases of peak knee extension moment were also noticed 

between all pairs of workloads from 0.5 to 2.5 kg, only with 2 to 2 kg as an exception in Fang’s 

(36) paper.   

For the frontal plane moment, Fang et al. (36) manipulated different workloads to explore 

the biomechanical changes in the knee frontal plane. They found that the peak knee abduction 

moments significantly increased 3.68 Nm (from 5.82 to 9.50 Nm) and 4.18 Nm (from 10.18 to 

14.36 Nm) when the workload changed from 0.5 to 1 kg and from 1.5 to 2.5 kg, respectively.    

RECUMBENT CYCLING BIOMECHANICS  

Studies about recumbent cycling are generally lacking in biomechanics literature, 

especially the frontal plane kinetics. When sitting on a recumbent bicycle, gravity influences 

body parts dissimilarly than that in an upright bicycle because of the different body positions, 

which may cause differences in joint kinematics and kinetics (61). The next sections will review 

the advantages, components, body positions, kinematics, kinetics of recumbent bicycle, and the 

biomechanics comparison of upright and recumbent bike.  
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Advantages of Recumbent Cycling  

 Recumbent bicycle has become the newest craze among today’s exercise bikes. Several 

advantages over traditional upright bikes made this kind of bicycles popular throughout the 

world. According to various publications, 30%-70% of riders reported cervical, dorsal or lumbar 

back pain, which usually causes recreational cyclists to drop out of the sport (17, 18, 62). The 

pain is typically a consequence of intervertebral disc compression with the back in a prolonged 

flexed position (16-19, 63). On a recumbent bike, the rider is allowed to pedal at a natural and 

relaxed reclined position to eliminate most of the stress on the back (16). Due to the small areas 

of the saddle and handlebars of upright bikes, the concentration of the rider’s bodyweight on the 

pubic area and ulnar nerves can reduce blood flows to the particular body parts, causing genital 

and upper extremity disorders such as perineal numbness, erectile dysfunction, handlebar palsy 

and carpal tunnel syndrome (16, 18-24). Recumbent bikes, with much larger and anatomically 

fitted padded areas, can benefit cyclists who have such symptoms by providing a more 

significant weight distribution across the back and buttocks and relaxing arms in a neutral 

position without the need to support the weight of the arm and trunk (16). Additionally, a 

stationary recumbent bike has been recommended as a reliable substitute for upright stationary 

cycle as a rehabilitation and injury treatment tool for people with physiological disabilities like 

cerebral palsy (25, 26), cerebral vascular accident (27, 28), diabetes (13), spinal cord injuries 

(29-31) and ankle immobilization (12). In terms of safety, the recumbent bike is a preferred type 

of transportation than the conventional upright bike as well. With a more erect, head-up riding 

position on a recumbent bike, the rider would be more conscious of the surrounding 

environment. In addition, since a recumbent bicycle is lower to the ground than the upright 

bicycle, the rider is more unlikely to get seriously injured when accident happens (16).  
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Equipment & Body Positions of Recumbent Cycling 

 Similar to upright cycle, a recumbent cycle is usually made up of the frame, saddle, 

cranks, pedals and handlebars (52). One unique component of a recumbent cycle is the seat-

backrest (64, 65). There are many variations in the segments between different brands of 

recumbent cycles. In the studies of Szecsi et al. (12) and Telli et al. (66), the handlebar was 

placed in front of the rider at approximately chest level, while in many other studies (14, 67, 68), 

the handle bars were positioned at sides of recumbent cycles. Few brands of recumbent bicycles 

even have two sets of handlebars mounted at both of the positions listed above. There are some 

variations in how the seats can be adjusted in specific bike models. Some allow for both the seat 

back inclination and the seat to pedal distance (SPD) to be adjusted (12, 67), while others are 

restricted to only the SPD adjustments (13, 14, 53, 66). Johnston et al. (65) used a recumbent 

bike with adjustable-length crank arms, pedals and seat back to investigate the differences in 

pedal forces of adolescents with and without cerebral palsy  in 2008 .  

 During one recumbent pedaling cycle, most literatures defined the top dead center and 

bottom dead center same as that of upright pedaling cycle illustrated previously (13, 14, 53). 

However, there are few exceptions. Johnson et al. (25) defined the zero degrees as the point at 

which the crank arm is at 3 o’clock and farthest away from the subject in recumbent bike.  

 The four critical geometrical variables to describe the body position of the rider on a 

recumbent bike are body configuration angle, torso angle, hip orientation angle and seat to pedal 

distance (Figure 1) (64, 66). Body configuration angle was defined as the angle formed by the 

trunk and the line connecting the hip joint and crank center with the origin at the hip joint. Torso 

angle, as known as the body orientation or backrest angle, is the hip-shoulder segment angle 

relative to the ground. Hip orientation angle is the angle between the horizontal line and the line  
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Figure 1. Four critical geometrical variables that describe the riders’ positions (69): body 

configuration angle (BC), torso angle (TA), hip orientation angle (HO) and seat to pedal distance 

(SPD). 

 

 

connecting hip joint and bottom bracket (64, 66). The seat to pedal distance is usually modifiable 

for each subject’s lower limb length and reflected by the knee angle at bottom dead center (12, 

13, 66). Telli et al. (66) made the seat to pedal distance 100% of trochanteric length of each 

subject, meaning that the knee extension at the bottom dead center was 180 degrees. However, 

both of the Szecsi et al. (12) and Perell et al. (13) regulated the knee to be around 20 degrees of 

flexion at the bottom dead center for their subjects.  

Kinematics  

 Only a limited number of articles presented the lower limb kinematics in recumbent 

cycling (25, 26, 44, 70-73). Although kinematics was secondary research interests of most of 

these studies, the results summarized here may give us a clear picture of knee kinematics in the 

recumbent cycling. It is worth mentioning that when discussing about the knee ROM, none of 

the articles specified it as knee extension ROM or knee flexion ROM.  
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 Reiser et al. (44) investigated the power output and kinematics in standard pedaling 

(upright position), as well as recumbent cycling with multiple backrest angles (at 60 RPM and 0 

kg for 5 seconds, and as fast as possible for 30 seconds and 8.5% body mass). The backrest 

angles were defined by a fixed hip orientation angle (-15 degrees) and 5 different body 

configuration angles (100, 110, 120, 130 and 140 degrees). For the standard cycling position, the 

participants were allowed to adjust the handlebar height and rotation by their own preferences in 

order to cycle with comfortable angles of torso lean. The authors controlled the hip-to-pedal 

distance of all conditions at 105% of the standing leg length (the height from greater trochanter 

to floor). Interestingly, the body configuration angles of the optimal recumbent peak-power 

output position (ORP) for the cyclists were not different from that of the self-selected standard 

cycling position (SCP) (135 vs 134 degrees). As demonstrated in the literature, the lower 

extremity angles were not affected by how much the subjects lean backwards in recumbent 

positions. Yet the knee kinematics in ORP and SCP did show some significant differences 

although the body orientation angles did not differ. Specifically, the maximum and minimum 

knee angles for all five backrest angles were about 115 and 50 degrees, respectively, creating a 

knee ROM of around 65 degrees. In the SCP, the mean peak knee flexion and extension angles 

were 108 and 38 degrees, respectively, resulting in a knee ROM of 70 degrees.  

 A study by Kerr et al. (72) compared muscle activities and joint kinematics in recumbent 

cycling versus sit-to-stand and step-up movements. The extension phase of each movement was 

selected for comparison. In terms of recumbent cycling, the extension phase started at the time 

when the knee began to extend and finished at the time that the hip began to flex. Subjects were 

instructed to keep the cycling rate at 60 RPM and enable to have their own preferred seat 

position choices (workload was not specified). The average knee ROM on the recumbent bike 
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was 51.2 degrees, with the peak knee flexion and extension angles of 80 and 28.8 degrees. These 

results were not significantly different from that of sit-to-stand (71.0 degrees, ranging from 9.1 to 

80.1 degrees) and step-up activities (59.7 degrees, ranging from 10.5 to 70.2 degrees).  

 When examining recumbent and supine cycling, it is necessary to use a position-

controllable cycle ergometer, as seen in a study performed by Kato et al. (71),  who used this to 

examine the maximum muscle strength and oxygen uptake in these conditions. The backrest of 

the recumbent position was adjusted to a body configuration angle of 105 degrees. For both 

recumbent and supine conditions, the seat positions were individualized to each subject in order 

to let their knees slightly bent when reaching the farthest point in the crank cycle. The isokinetic 

leg muscle strength was tested under three angular velocities: 300, 480 and 660 degrees per 

second (50, 80, 110 RPM respectively). The researchers found that the knee joint angles at the 

peak torque (around 110 degrees) were very similar between recumbent and supine pedaling, so 

as among all three cycling cadences. Additionally, no significant difference of the knee range of 

motion (78.8 degrees for recumbent vs. 83.1 degrees for supine), peak knee extension angle 

(139.1 degrees for recumbent vs. 143.1 degrees for supine) and peak knee flexion angle (60.3 

degrees for recumbent vs. 60.0 degrees for supine) was seen within two cycling positions.  

 Johnston et al. (25, 26) executed a series of studies with regard to adolescents with 

cerebral palsy (CP) on the recumbent bicycle, and two of the studies included and discussed 

kinematics. In the earlier paper (25), the authors analyzed the muscle electromyographic (EMG) 

activities, kinematics and power output of lower extremities of CP and typical development 

teenagers. Subjects were requested to cycle at a cadence of 30 and 60 RPM for at least 30 

seconds. The seat position and workload were highly individualized to individual subjects. In 

particular, the seat-to-pedal distance was set as 85% of the distance measured from the greater 
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trochanter to the base of the calcaneus; the seat back angle was set when the seat-to-greater 

trochanter distance (the distance from seat to greater trochanter) reached 15% of the distance 

measured from the greater trochanter to the base of the calcaneus; the crank arm length was 

adjusted to 30% of the tibial length of the participant; the work load was calculated by the 

method of Dore et al. (74). In terms of the procedure, this study is different from the other papers 

mentioned in this section in two main ways. First, they examined not only sagittal plane 

kinematics, but three dimensional (3D) kinematics data by using a 7-camera motion analysis 

system. Secondly, unlike the most of the recumbent cycling studies that labeled the top dead 

center as zero degrees of the crank cycle, the zero degree here is defined as the point at which the 

crank arm is parallel to the ground and farthest away from the subject. For adolescents with 

typical development, the knee ROM was about 35 degrees (from 95 to 130 degrees of knee 

extension) in the sagittal plane and 3 degrees in the frontal plane (0 to 3 degrees of knee 

adduction) at the cadence of 30 RPM. The peak knee extension and flexion occurred at around 

15 and 180 degrees, respectively, while the peak knee adduction reached at around 120 degrees 

of the crank cycle.  

 To summarize, sagittal plane knee angles in recumbent cycling have been shown to be 

similar to that of upright cycling in majority of the literature. The knee ROM usually fluctuates 

around 60 degrees, with a peak knee flexion angle of around 100 degrees and a peak knee 

extension angle of around 40 degrees. Although only one article reported frontal plane knee 

kinematics, knee joint exhibits small adduction movement during a pedaling cycle. It is worth 

mentioning that the knee kinematics on the bicycle is highly related to the seat position. Since 

the there is a certain level of variance on the brand of the bike, the seat-to-pedal distance, the 
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backrest angle etc. in the reviewed articles, it is understandable that their results were not exactly 

consistent.  

Kinetics  

 There are only a handful of studies examining the kinetics on the knee joint in recumbent 

cycling (11, 12, 14, 27, 28, 65, 70, 75, 76). Despite the fact that many of the experiments were 

performed with diseased populations, none of them examined populations with knee diseases 

such as knee OA.  

 Brown et al. (11) investigated muscle activities, along with joint moments and angles 

when individuals pedaled at different orientations. Eleven healthy participants cycled at constant 

workrate of 80 J and cadence of 60 RPM, with the same hip and knee kinematics, and backrest 

angles of 0, 40 and 80 degrees relative to the ground. Pedal forces were obtained by using a pair 

of instrumented pedal (77) with footplates attached. Lower extremity joint moments of the 

sagittal plane were calculated through the pedal forces and kinematics by using the standard 

Newton-Euler inverse dynamics equations (78). The results showed enlarged knee extensor 

moments when the body was more perpendicular to the ground. In particular, the average peak 

knee extensor moment was around 35 Nm (estimated) when the backrest-ground angle was 80 

degrees, while the backrest-ground angles of 0 and 40 degrees both showed the peak knee 

extensor moments around 30 Nm (estimated). The mean knee moment during the entire pedaling 

cycle was significantly increased when the backrest-ground angles increased from 0 degree to 80 

degrees (10.5 Nm vs 15.4 Nm).  Since the body orientations (backrest angles relative to the 

ground in this article) of 40 degrees and 80 degrees mimicked the recumbent and upright cycling, 

respectively, the study might suggest that the knee joint would have a less moment at a more 

reclined position. However, we should also keep in mind that in this study, subjects were fixed 
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by lap harnesses on a backboard throughout the whole testing process, which was somewhat 

different from the traditional upright cycling position.  

 Gregor et al. (14) investigated effects of workrate and age in recumbent cycling, along 

with the comparison of the general muscle moment (GMM) between the recumbent and upright 

bicycle. The kinematics data was recorded by a six-camera motion capture system (Motion 

Analysis, Santa Rosa, CA, USA) while pedal forces were collected by a pair of customized 

pedals (Konigsberg, Pasadena, CA, USA) that can monitor the normal and tangential parts of the 

applied loads. According to Szecsi et al. (12), the GMMs, also known as the net GMMs, are the 

results of subtracting the passive cycling GMMs (nonzero moments caused by ligaments or joint 

moment forces during passive cycling) from the active cycling GMMs. The passive moments 

were calculated from the crank moments recorded during the passive cycling period (motor 

driven leg turning) by using inverse dynamics. The younger (under 35 years old) and older 

subjects (over 50 years old) were asked to ride a recumbent bike at a steady cadence (60-65 

RPM) and two workrates (30-32.5 W and 60-65 W). The age difference did not influence lower 

limber GMM patterns, while the workrate had the most obvious effect on the knee moments, as 

the average peak knee moment were positive (extensor) at the higher workrate (1.10 Nm for the 

younger group and 2.72 Nm for the older group) and negative (flexor) at the lower workrate (-

2.37 Nm for the younger group and -2.17 Nm for the older group). The authors additionally 

compared the kinetics patterns with the upright cycling study by Gregor et al. (42) in 1985. The 

upright and recumbent cycling had the similar timing when the knee extension and flexion 

moment achieved their peak values. However, the recumbent cycling had significantly smaller 

peak knee extensor moment values (1.91 Nm vs 100 Nm) during the first 90 degrees of the crank 

cycle, which was mainly due to the lower workrate applied to the subjects in the recumbent 
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cycling study (60-65 W) than in the upright cycling study (160 W). Nevertheless, it cannot 

completely exclude the contribution of the different pedaling positions to the difference of knee 

extension moments.  

In 2014, Szecsi et al. (12) provided net GMM and power patterns of healthy subjects with 

ankle immobilization while riding on a recumbent bike at two different workrates (30 and 80 W). 

The fixation of the ankle joint at the sagittal plane was to mimic the cycling procedure for 

patients with partial or complete paralysis in the rehabilitation process. At the workrate of 80 W, 

the knee produced extensor moments from the crank angle of 350 degrees to 180 degrees, with 

the peak value of 24.7 Nm. For the lower workrate, the corresponding knee extension phase 

showed a reduced range (350 to 150 degrees) with a significant lower peak knee extension 

moment of 8.6 Nm. Interestingly, Subjects revealed very similar peak knee flexion moments at 

the two workrates, which were both around 7.5 Nm. The knee GMM patterns were somewhat 

different from the ones provided by  Gregor et al. (14). Gregor et al. (14) reported a constant 

knee flexor moment all through the entire crank cycle without knee extension moment in 

recumbent cycling with a power output of 30-32.5 W. Szecsi et al. (12) believe the previous 

authors (14) should have subtracted passive moments from the GMM data in order to obtain the 

knee extensor moments in the power phase. Power and work were also estimated in the paper, 

showing that knee joint extensors generated significantly more work as the workrate increased 

(4.5 J at 30 W vs 14.5 J at 80 W).  

Hakansson and Hull (75) used forward dynamic simulations to quantify the power 

contribution of the lower extremity muscles during low power (50 W) recumbent cycling at 

different pedaling cadences (40, 50 and 60 RPM). The six-segment model previously developed 

by Neptune and Hull (59) via SIMM (MusculoGraphics, Inc., Santa Rosa, CA) was used to 
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compute muscle excitation patterns of the right and left legs. At 50 RPM, three-component 

vastus (all three vasti muscles) (VAS) and gluteus maximus & adductor magnus (GMAX) 

muscle groups reached the peak power of 46.1 and 40.7 W, respectively, generating the major 

net mechanical work of the right leg. The knee extensor muscle groups (VAS) was shown 

negatively correlated to the pedaling rates, with the net mechanical work contributions of 38.4%, 

33.6% and 22.3% at 40, 50 and 60 RPM, respectively.  

Reiser et al. (70, 76) investigated the effects of the recumbent cycling position (RCP) and 

standard, upright cycling position (SCP) on power outputs. The authors recruited 19 recreational 

cyclists and asked them to pedal at 250 W and 90 RPM at RCP and SCP. For both positions, 

knee muscles did the majority of the work (55%), followed by hip (25%) and ankle (11%) 

muscle groups. Despite the similarity, for SCP, 67% of the knee positive work was done during 

the power phase and rest of the knee positive work (33%) was done in the recovery phase, while 

for RCP, only 55% of the knee positive work was done during the power phase, although the two 

positions did not have significantly different total amount of positive work produced by the knee 

extensors. A larger peak power generated by knee flexor activities in the recovery phase was also 

observed in the RCP, which was coupled with a smaller knee extensor moment at the power 

phase.         

 Johnston et al. (65) compared pedal forces between young adults with and without CP at 

the cadences of 30 and 60 RPM in recumbent cycling. The pedal force data were measured by 

tri-axial piezoelectric force transducers (PCB Piezotronics, Depew, NY, USA) that instrumented 

into cycle pedals and a seven-camera, 3D motion analysis system (Vicon Motion Analysis, Inc., 

UK). The vertical forces to the pedal surface were measured. The results suggested that CP 

subjects spent less percentage of time during a complete crank cycle to push into the pedal to 
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create positive force than healthy subjects at 30 RPM (41.4% vs 50.4%, respectively) and 60 

RPM (43.9% vs 51.9%, respectively). The reason why this pattern occurred might be because the 

CP subjects had weaker hip extensors and ankle plantarflexors, therefore increased hip flexion 

and ankle dorsiflexion, and discontinued the knee extension phase early. The larger hip flexion 

motion of the CP subjects can be clearly obtained from the kinematic results of the earlier study 

done by the same group (25).  However, no joint moments were reported.  

 Two studies looked into the recumbent cycling mechanics of people who had experienced 

cerebrovascular accidents (CVAs). Hemiplegia, the impairment resulted from CVAs and one of 

the most commonly seen neurological symptoms, usually causes asymmetries between left and 

right limbs. In 1998, Perell et al. (27) examined both the affected (aka involved) and the 

unaffected (aka contralateral) lower limbs within CVAs population. Subjects pedaled at self-

selected cadences ranging from 20 to 60 RPM and moderate resistances (28-70 W). The mean 

peak knee flexor moment of the involved side was larger (21.71 vs 18.29 Nm) and occurred later 

(189 vs 200 degrees in the crank cycle) than that of the contralateral side. In addition, the authors 

showed that the contralateral lower limbs of CVAs individuals shared similar patterns of knee 

joint moment as healthy cyclists who pedaled on an upright bike. The same research team in 

2000 (28) also noticed significantly posteriorly directed tangential pedal forces when subjects 

with CVAs received force symmetry feedback trainings. Perell et al. (13) made the comparison 

of the joint kinetics in diabetic and nondiabetic men during recumbent pedaling with consistent 

cycling cadence of 60-65 RPM and workrate of 60-65 W. Although the groups showed the 

similar muscle moment patterns, they did have disparities on the magnitudes of peak joint 

moments. For the knee, the peak extensor moment was 1.82 Nm for healthy subjects while the 

diabetic subjects did not show positive peak knee extensor moment. Moreover, the diabetic 
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group revealed a significantly increased peak knee flexion moment than healthy group (27.24 vs 

17.81 Nm respectively).  

 In summary, the results of several studies have shown that recumbent cycling may create 

smaller knee extensor moment, which is an advantage over standard upright cycling, although 

this might be related to the fairly low workloads used in the recumbent cycling studies. However, 

the recumbent cycling did not seem to show decreased knee flexion moments even though lower 

workloads were involved.  Unfortunately, no previous research reported frontal plane knee 

kinetics in recumbent cycling, which is a parameter that is strongly correlated to the knee OA 

progression (45, 46).  
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CHAPTER III 

METHODS 

PARTICIPANTS 

 Fifteen experienced, 50 to 70 year-old cyclists who were healthy (age: 55.5±3.7 years, 

height: 1.75±0.09 m, mass: 84.3±15.7 kg) participated in the study. Experienced cyclist was 

defined as an individual who spends at least six hours per week in cycling (41). A healthy 

participant was free of injury in the lower extremities for the past six months, and able to ride a 

stationary bike for at least 20 minutes. The participants were recruited from local cycling shops, 

groups and clubs by emails, flyers and social media. Before the data collection, a written 

informed consent that was approved by the University of Tennessee Institutional Review Board 

was read and signed by each participant.  

 A power analysis was done based on the peak knee abduction moments in the research by 

Hummer et al. (41). A sample size of 18 was approximated with an effect size of 0.59 with 

Cohen's F, alpha level of 0.05 and beta level of 0.8 in a 3 x 2 ANOVA design using G*Power 

(3.1).   

INSTRUMENTATION 

3D Motion Analysis System  

A 12-camera three-dimensional (3D) motion capture system (240 Hz, Vicon, Oxford, 

UK) was used to collect kinematics data during the test. Reflective anatomical markers were 

attached to the 1st and 5th metatarsals, medial and lateral malleoli, medial and lateral epicondyles, 

greater trochanter, iliac crest, and acromion process of both sides of the body. Four non-collinear 

reflective tracking markers grouped as a cluster on a semi-rigid thermoplastic shell were placed 

to the pelvis, both thighs, and both legs. For the feet, four individual reflective tracking markers 



 26 

were placed at the posterior and lateral heel counter of each shoe. One pedal anatomical marker 

was secured in the middle of the front side of each pedal. Four pedal tracking markers were put 

on the pedal bilaterally, with three of them facing the lateral side and one pointing to the inferior 

direction of the bike (Figure 2b). One reflective marker was attached on each side of the crank 

axis as well as the front of the recumbent bike. 

Recumbent Ergometer 

A Kettler Recumbent Ergometer (Model RE7, Kettler, Ense-Parsit, Germany) with 

electromagnetic brake system was used in the data collection. There are 12 notches along the 

sloping support frame allowing seat position adjustments. The angle of recline of the backrest 

can be altered as well. Both the workload and cadence were shown on the bicycle computer 

display in front of the participants. A jig was used to secure the recumbent ergometer so that the 

axes of the pedal coordinate system and the lab coordinate system were aligned parallel to each 

other.  

Customized Pedals 

 Two customized instrumented pedals were utilized to measure 3D pedal reaction forces 

and moments. To achieve that, two 3D force sensors (1200Hz, Type 9027C, Kistler, 

Switzerland) paired with two amplifiers (Type 5073A, Kistler, Switzerland) were mounted on 

each pedal in order to measure the pedal reaction force (PRF) data bilaterally (36, 37). The 

charge amplifiers converted the output from the force sensors to voltages and sampled 

simultaneously with the 3D kinematic data by the Vicon system using Nexus (Version 2.7, 

Vicon, Oxford, UK).  
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PROCEDURES 

 All participants wore spandex shorts, t-shirt and a pair of standard lab running shoes (Air 

Zoom Pegasus 34, Nike). The height and bodyweight of each participant were then recorded. 

Reflective anatomical and tracking markers were then placed on the participant as described 

previously. Before the actual data collection, a static calibration trial was taken, during which the 

participant stood with their arms crossed in front of the body and feet separated at shoulder width 

with both feet pointing forward. After each static trial, anatomical markers were removed from 

the participant and pedals.  

 For dynamic trials, a total of six conditions with 3 seat positions (close, medium and far) 

and 2 workrates (60 and 100 Watts) were tested in the study. The “far”, “medium” and “close” 

seat positions had knee extension angles of 20-30 degrees, 30-40 degrees and 40-50 degrees, 

respectively. The seat positions were randomized first. Within a certain seat position, the 

randomization of the two workrates was followed. Participants were asked to grab the handlebars 

on the sides of the ergometer and maintain a cadence of 80 RPM (±2 RPM) during all test 

conditions. Before the actual testing, they were allowed to pedal at least two minute at the middle 

seat position with a cadence of 80 RPM and workrate of 80 W to allow participants to acclimate 

to the testing protocol. After the practice trials, participants then cycled one minute for each 

condition. The actual recording of the kinematics and kinetics data started at the 48th second until 

the end of each minute. The final10 seconds of the cycling movement was chosen to ensure at 

least five continuous pedaling cycles collected for individual trials. Participants took a minimum 

of 2 minutes of rest between conditions and drank water whenever they needed to minimize 

fatigue and dehydration. After each condition, they were asked to provide the rating of perceived 

exertion (RPE) (79) to evaluate the perceived intensity of the test condition.  
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DATA AND STATISTICAL ANALYSES  

 The 3D marker trajectories were first examined and processed in Nexus. The mislabeled 

markers were relabeled and the marker gaps were filled by the means of either rigid body fill or 

pattern fill, and the ghost markers were deleted. For each condition of each participant, the ten 

seconds of trajectory was truncated into five individual trials with each cycle starts and ends at a 

crank angle of 270°. This starting crank angle was chosen by examining knee, ankle and hip 

extension moments to ensure the peaks of these moments occurring during the power phase (first 

180° of the crank cycle), which is different from the traditional starting crank angle of 0° for 

upright bike due to the nature of the recumbent bike.   

The marker trajectory data then were exported from Nexus and imported into Visual 3D 

(Version 2.6, C-Motion, Inc., Germantown, MD, USA) to calculate the 3D kinematic and kinetic 

variables. The computation of the joint angles followed an X-Y-Z Cardan rotation sequence. A 

right-hand rule was applied to determine the polarity of the joint angles and moments. Positive 

values represented knee extension, adduction, internal rotation; ankle dorsiflexion, inversion, 

internal rotation and hip flexion, adduction, internal rotation angles and moments. A 4th order 

low-pass Butterworth filter with zero lag at a cutoff frequency of 6 Hz was used to filter both raw 

kinematics and PRF data (37). In order to determine the critical peak values of the important 

variables and organize them for statistical analyses, customized programs (VB_V3D and 

VB_Tables, MS VisualBASIC 6.0) were used.  

 A 3 ´ 2 (seat position ´ workrates) repeated measures analysis of variance (ANOVA) 

was used to examine the effect of seat positions and workrates on selected variables of interest 

(Version 25, IBM SPSS Statistics, Chicago, IL). An alpha level of 0.05 was set a priori for the 

ANOVAs. When a significant interaction or a seat position main effect was present, a post-hoc 
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analysis using a pairwise t-test was followed with Bonferroni adjustments to test specific 

differences between seat positions at different workrates and seat positions. The adjusted p 

values were 0.008 for post hoc analysis for interaction, and 0.016 for post hoc analysis for seat 

position.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

CHAPTER IV 

EFFECTS OF WORKRATE AND SEAT POSITION ON FRONTAL AND SAGITTAL 

PLANE KNEE BIOMECHANICS IN RECUMBENT CYCLING 

ABSTRACT 

 In cycling study, there is limited research on recumbent bike kinetics, especially in the 

frontal plane. Increased internal knee abduction moment (KAbM) has been shown to be an 

effective predictor of knee osteoarthritis. The purpose of this study was to examine the effects of 

different workrates and seat positions on knee biomechanics during stationary recumbent 

cycling. Fifteen participants cycled on a recumbent ergometer in 6 test conditions of pedaling in 

far, medium and close seat positions in each of two workrates of 60 and 100 W, at the cadence of 

80 RPM. A three-dimensional motion analysis system and a pair of custom-made instrumented 

pedals were used to collect kinematic and kinetic data.  A 3 ´ 2 (seat position ´ workrate) 

repeated measures analysis of variance was used to examine the effect of seat positions and 

workrates on selected variables of interest. Increased workrates significantly increased peak 

KAbM and knee extension moment. Different seat positions did not change either peak KAbM 

or knee extension moment. Due to the larger Q-factor for the recumbent bike used in the study, 

future study should examine the knee biomechanics with smaller Q-factors, as well as the lower 

limb muscle activities in recumbent cycling. 

Keywords: recumbent cycling, knee OA, knee abduction moment, knee extension moment  
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INTRODUCTION 

Cycling is a popular mode of transportation, recreation, sport and rehabilitation. Research 

has shown that cycling can improve cardiorespiratory fitness (3), strengthen knee flexor and 

extensor muscles (4, 5), reduce cancer mortality (3), obesity morbidity (3), and depression (6). 

According to Kutzner et al. (7), cycling is also a preferred exercise over walking or running for 

individuals with knee osteoarthritis (OA) and anterior cruciate ligament injuries since it is 

advantageous at lessening knee joint loads.  

On a recumbent bike, the rider is allowed to pedal in a reclined position with large and 

padded backrest, in order to decrease the intervertebral disc compression and help with 

symptoms such as perineal numbness, erectile dysfunction, handlebar palsy and carpal tunnel 

syndrome (17-24). Due to its multiple advantages over traditional upright bikes, recumbent 

bicycle has become preferred exercise and rehabilitation tool in recent years. Several studies 

have reported decreased knee loads in recumbent bike compared to upright bike, reflected by the 

reduced peak knee extension moments (11-15). Additionally, stationary recumbent cycling has 

been used as a rehabilitation and injury treatment method for people with cerebral palsy (26, 65), 

cerebral vascular accident (27, 28), diabetes (13), spinal cord injuries (29-31) and ankle 

immobilization (12).  

Despite the numerous benefits, there is a risk of suffering overuse injuries and diseases 

during stationary cycling (8, 9), most commonly at the knee (10). OA is the most common joint 

disease in the US and over 80% of the cases affect the knee joint (32, 33). The most important 

variable that is associated with knee OA is the external knee adduction moment, also known as 

the internal knee abduction moment (KAbM). Together with knee extension moment, they 

represent the medial compartment loading of the knee. During walking, knee OA patients 
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showed a greater than normal peak KAbM (34), which makes KAbM an effective predictor of 

knee OA progression (35). Due to the reduced knee joint load, cycling is considered as a well-

suited exercise for OA patients. However, only a very limited number of studies has investigated 

frontal plane knee biomechanics (including KAbMs) during upright cycling. Knee frontal plane 

kinetics has never been examined in recumbent cycling. Johnson et al. (25) only reported data 

about frontal plane kinematics in recumbent cycling in teenagers with and without cerebral palsy. 

During upright cycling, the peak KAbM were reported to range from 7.8 Nm to 24.5 Nm while 

the peak knee adduction moment ranged from 2.9 to 8.1 Nm (36-40). The large variability in the 

KAbM may be mostly due to the large variation of workrates (80 to 225 W) used in the studies. 

Fang et al. (36) indicated that an increased workrate increased peak KAbM in upright cycling.  

Besides the effect of workrate, knee biomechanical variables can be influenced by the seat 

position as well. In a recumbent ergometer, the seat position is usually controlled by different 

notches. Therefore, the options of seat adjustments are limited. The existing literatures only 

examined knee biomechanics when participants pedaled at different backrest angles in 

recumbent bike. Reiser et al. (44) did not find significant difference in knee ROM with varied 

angles of torso reclining. Brown et al. (11) showed a significant increase of mean knee moment 

during one entire pedaling cycle when the back rest angle increased from 0 degree to 80 degree 

and a mean peak knee extension moment of about 30 Nm with a pedaling resistance of 15 N and 

cadence of 60 RPM. In an upright bike study, Hummer et al. (41) examined KAbM in upright 

cycling at two workrates (80 and 120 W) and 3 saddle heights (20, 30 and 40 degrees of 

maximum knee extension angle). No significant differences were found across different saddle 

heights at either of the workrate. For the sagittal plane, the peak knee flexion moment was 
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increased and the peak knee extension moment was decreased as the saddle height increased 

(41).   

To our knowledge, no study has investigated how different workloads and seat positions 

affect frontal plane knee kinetics and kinematics in recumbent cycling. Comprehensive 

understanding of knee biomechanics, especially frontal plane joint moments, is necessary to 

provide evidence for prescribing recumbent cycling as the therapeutic intervention and 

rehabilitation tool. Therefore, the purpose of the study was to examine effects of different 

workrates and seat positions on knee frontal and sagittal plane biomechanics during stationary 

recumbent cycling. It was first hypothesized that an increased workrate would result in a larger 

peak knee abduction moment and extension moment. It was also hypothesized that a closer seat 

position would result in no changes in peak knee abduction moment but an increased knee 

extension moment.  

METHODS 

Participants 

 Fifteen experienced and healthy cyclists (age: 55.5±3.7 years, height: 1.75±0.09 m, mass: 

84.3±15.7 kg) participated in the study. All participants were free of injury in the lower 

extremities for the past six months. Each participant spent at least six hours in cycling on a 

weekly basis. A sample size of 18 was approximated with an effect size of 0.59, alpha level of 

0.05 and beta level of 0.8 in a 3 x 2 ANOVA design using G*Power (3.1) based on the knee 

abduction moment data of Hummer et al. (41). A written informed consent approved by the 

University of Tennessee Institutional Review Board was read and signed by each participant 

before the data collection.  
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Instrumentation 

A 12-camera three-dimensional (3D) motion capture system (240 Hz, Vicon, Oxford, 

UK) was used to collect kinematics data during the test. Reflective anatomical markers were 

attached to the 1st and 5th metatarsals, medial and lateral malleoli, medial and lateral epicondyles, 

greater trochanter, and iliac crest of both sides of the body. Four non-collinear reflective tracking 

markers grouped as a cluster on a semi-rigid thermoplastic shells were placed on the pelvis, both 

thighs, and both legs. The two-marker clusters were placed on the pelvis anteriorly due to the 

need of proper tracking. For the feet, four individual reflective tracking markers were placed at 

the posterior and lateral heel counter of each shoe. One pedal anatomical marker was secured in 

the middle of the front side of each pedal. Three pedal tracking markers were put on the lateral 

side of each pedal, one additional tracking marker was placed on the anterior-interior side of 

pedal. One reflective marker was attached on each side of the crank axis as well as the front of 

the recumbent bike (Figure 2b).  

A Recumbent Ergometer (RE7, Kettler, Ense-Parsit, Germany) with electromagnetic 

brake system was used in the data collection (Figure 2a). There are 12 notches along the sloping 

support frame allowing seat position adjustments. The angle of recline of the backrest can be 

altered as well but was kept at the default angle. Both the workload and cadence were shown on 

the bicycle monitor in front of the participants. A customized jig was used to secure the 

recumbent ergometer to the floor so that the axes of the pedal coordinate system and the lab 

coordinate system were aligned parallel to each other. Two customized instrumented pedals were 

utilized to measure 3D pedal reaction forces and moments (Figure 1b). Two 3D force sensors 

(Type 9027C, Kistler, Switzerland) paired with two amplifiers (Type 5073A, Kistler, 

Switzerland) were mounted on the each pedal in order to measure the pedal reaction force (PRF) 
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data bilaterally (36) (37). The outputs from the force sensors were converted to voltages by the 

charge amplifiers and sampled at 1200 Hz simultaneously with the 3D kinematic data using 

Nexus (2.7, Vicon, Oxford, UK). 

Procedures 

 A static calibration trial was taken before the actual data collection. A total of six test 

conditions with 3 seat positions (far, medium and close) and 2 workrates (60 and 100 Watts) 

were tested in the study. The far, medium and close seat positions were determined to target the 

peak knee extension angle to fall between 20-30 degrees, 30-40 degrees and 40-50 degrees, 

respectively.  The order of the testing condition was determined such that the seat positions were 

randomized first, followed by the randomization of the two workrates for each seat position. 

Participants were asked to grab the handlebars on the sides of the ergometer and maintain a 

cadence of 80 RPM (±2 RPM) during all test conditions. Before the actual testing, participants 

were allowed to pedal at least one minute at the preferred seat position with a cadence of 80 

RPM and workrate of 60 W to acclimate to the testing protocol. After the practice, participants 

then cycled one minute for each condition. The actual recording of the kinematics and kinetics 

data started at the 48th second until the end of each minute to obtain at least five continuous 

pedaling cycles. Participants took at least 1 minute of rest between conditions and drank water 

whenever they needed to minimize fatigue and dehydration. After each condition, they were 

asked to provide the rating of perceived exertion (RPE) (79) to evaluate the perceived intensity 

of the test condition. 

Data and Statistical Analysis  

 The 3D marker trajectories were first examined and processed in the Nexus of the Vicon 

system. For each condition of each participant, the 12 seconds of trajectory data were truncated 
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into five individual cycles/trials for analysis. Each cycle starts and ends at the 270° of the crank 

angle. This starting crank angle was chosen by examining knee, ankle and hip extension 

moments to ensure these peaks of these moments occurring during the power phase (first 180° 

crank cycle), which is different from the traditional starting crank angle of 0° for upright bike 

due to the nature of the recumbent bike.   

The marker trajectory data then were exported from the Nexus to Visual 3D (Version 2.8, 

C-Motion, Inc., Germantown, MD, USA) to calculate the 3D kinematic and kinetic variables. 

The computation of the joint angles was computed following an X-Y-Z Cardan rotation 

sequence. A right-hand rule was applied to determine the polarity of the joint angles and 

moments. Positive values represented knee extension, adduction, internal rotation; ankle 

dorsiflexion, inversion, internal rotation and hip flexion, adduction, internal rotation angles and 

moments. A 4th order low-pass Butterworth filter with zero lag was used to filter both raw 

kinematics and PRF data at a cutoff frequency of 6 Hz (37). In order to determine the critical 

peak values of the important variables and organize them for statistical analyses, customized 

programs (VB_V3D and VB_Tables, MS VisualBASIC 6.0) were used.  

 A 3 ´ 2 (seat position ´ workrate) repeated measures analysis of variance (ANOVA) was 

used to examine the effect of seat positions and workrates on selected variables of interest 

(Version 25, IBM SPSS Statistics, Chicago, IL). An alpha level of 0.05 was set a priori for 

ANOVA. When a significant interaction or a seat position main effect was present, a post-hoc 

analysis using a pairwise t-test was followed with Bonferroni adjustments to test specific 

differences between seat positions at different workrates and seat positions. The adjusted p 

values were 0.008 for post hoc analysis for interaction, and 0.016 for post hoc analysis for seat 

position.      
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RESULTS 

Significant main effects of workrate and seat position were found for RPE (Table 2). The 

RPE was larger at 100 W than 60 W (p< 0.001). However, post hoc comparisons did not show 

significant difference of RPE between specific seat positions. A significant main effect of 

workrate was found for peak vertical, anterior and medial PRF (Table 2). These peak forces were 

higher at 100 W compared to 60 W.  

 A significant main effect of workrate was found for peak knee extension moment, peak 

knee abduction moment, peak ankle plantarflexion moment, peak ankle abduction moment, and 

peak hip abduction moment (all P ≤ 0.008, Table 3). The magnitudes of all these variables were 

all higher at 100 W compared to 60 W. There was a significant main effect of seat position only 

for peak knee flexion moment (Table 3). The post hoc comparison showed that peak knee flexion 

moment was higher in the far seat position compared to medium and close seat position (both p < 

0.001). In addition, the peak flexion moment was higher in the medium seat position than close 

position (p < 0.001). 

 There were significant main effects of workrate and seat position on peak knee extension 

angle (Table 4). The peak knee extension angle was greater at 60 W than 100 W. Post hoc 

comparison showed that the peak knee extension angle was higher in the close position 

compared to medium and far positions (both p < 0.001). Moreover, the peak knee extension 

angle was higher in the medium position than far position (p < 0.001).  Significant main effects 

of workrate and seat position were also found on peak knee extension ROM (Table 4). Knee 

extension ROM was greater at 100 W than 60 W. Post hoc results indicated that the peak knee 

extension ROM was greater in the far position than the medium and the close position (both p < 

0.001), and was higher in the medium position than the close position (p < 0.001). Lastly, there 
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was a significant main effect of seat position for the knee abduction ROM (Table 4). Post hoc 

results showed that the knee abduction ROM was significantly higher in the far position than 

close position (p = 0.004). In addition, knee abduction ROM was significantly higher in the 

medium position than close position (p = 0.002).  

DISCUSSION 

The purpose of the study was to examine the effects of different workrates and seat 

positions on knee biomechanics during stationary recumbent cycling amongst middle aged and 

old cyclists. We first hypothesized that an increased workrate would result in an increased peak 

KAbM and peak knee extension moment. The hypothesis was supported by our results.  

 Our results showed that peak KAbM increased as the workrate increased. Peak KAbM 

moment, along with peak knee extension moment, represent the knee medial compartment 

loading. The increased KAbM accompanied with increased peak knee extension moment caused 

the possible increased medial compartment loading with the increased workrate. The increased 

peak knee extension moments are also reflected in the increased peak vertical (the major 

component with larger magnitude) and medial PRF. Studies on frontal plane knee joint kinetics 

in recumbent back is lacking in the literature. Several studies have reported the frontal plane 

knee kinetics in upright stationary cycling. Fang et al. (36) examined the effects of workrate and 

cadence on frontal plane knee biomechanics. At the workload of 1kg, the mean KAbMs were 7.0 

Nm when the participants cycled at 80 RPM. The peak KAbM increased 63%, 7%, 14%, and 

24% when the workload increased from 0.5 to 1 kg, 1 to 1.5 kg, 1.5 to 2 kg, and 2 to 2.5 kg, at 

cadence of 60 RPM, respectively. Hummer et al. (41) also reported a significant increase of peak 

KAbM when the cycling workrate increased from 80 W to 120 W at cadence of 80 RPM. The 

peak KAbM ranged from 10.2 to 13.7 Nm when participants pedaled at different workrates (80-
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120 W) and saddle heights (peak knee extension angle of 20-40 degrees). These results about 

how peak KAbM tends to change with increased workrate are in agreement with our results.  

Several other studies (37, 39, 40) showed that the peak KAbM ranged from 4.8 to 9.0 Nm 

on the upright bike (with workrate of 40-225 W and cadence of 60-90 RPM). In our study, the 

peak KAbM ranged from 10.8 to 15.6 Nm across all conditions (workrate of 60-100 W and seat 

position of 24.3-46.4 degrees of peak knee extension angle), which did not show advantages over 

upright bikes. The slightly larger KAbM in recumbent bike might be caused by the several 

factors. Thorsen et al. (80) showed that an increased Q-factor (the intra-pedal distance between 

the outside surface of one crank arm to the outside surface of the crank arm on the opposite side) 

caused increases in KAbM in upright stationary cycling.  The Q-factor of the recumbent 

ergometer in our study is 20.3 cm while it is only 14.5 cm for the upright cycle ergometer 

(Excalibur Lode Ergometer) used in the study by Hummer et al. (41). Another potential 

contributor to the larger KAbM is body mass of the participants. In our study, the average mass 

of the participants of 84.3 kg was larger than that in most of the upright cycling literature (ranged 

from 73.1 kg to 80.1 kg) (36, 37, 39, 40). Since our cycling moment values were not normalized 

to body mass, it is possible that these moment values may be more affected by the body mass. 

The KAbM is a predictor of knee OA progression (35) and therefore the recommendation of 

recumbent bike usage for knee OA patients should consider Q-factor. Further study on the 

frontal plane knee loads in recumbent bike with different Q-factors is recommended.  

 Peak knee extension moment also increased significantly as the workrate increased. 

During the power phase of the cycling, the knee extends to produce sufficient torque to 

overcome the pedal resistance and to assist the opposite leg during its recovery phase. Our results 

also showed that both vertical and posterior PRF significantly increased with the increased 
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workrate, explaining the increased peak knee extension moment. During cycling, the knee 

extension moment is the most important and driving moment that powers the cycling motion. 

When the workrate increased, the participants needed to exert greater knee extension moment to 

overcome increased resistance. 

A previous recumbent cycling study showed a mean peak knee extension moment of 

about 30 Nm with a pedaling resistance of 15 N and cadence of 60 RPM (11). Another study 

reported a peak knee extension moment of 24.7 Nm at the workrate of 80 W (12). These results 

are similar to the peak knee extension moments found in our study, which ranged from 20.7 Nm 

(far seat position at 60 W) to 34.6 Nm (close seat position at 100 W). In upright cycling, the peak 

knee extension moment could be as high as 53 Nm (42). The main contributor of the knee 

extension moment in recumbent and upright cycling are somewhat different. In the studies by 

Fang et al. (36) and Hummer et al. (41), the magnitudes of the vertical PRF were about 3 times 

as large as that of the posterior PRF. However, our results show that in recumbent cycling, the 

magnitudes of the vertical PRF and posterior PRF were very similar and in most of the 

conditions, the posterior PRFs were even slightly larger. The primary pedaling direction of 

power phase in recumbent cycling is mostly horizontal whereas the primary pedaling direction 

during the same power phase in upright cycling is vertical, which are reflected by the different 

magnitudes in the respective vertical and posterior PRFs. The increase peak extension moments 

are also supported by the increased RPEs reported by the participants. Our participants reported 

their RPEs ranging from 7 to 10, representing very light to light exertion. It is also worth 

mentioning that all the participants are experienced cyclists, and therefore their perceived ratings 

could be lower than what the regular population would report. For patients with knee 

pathologies, RPE in riding a recumbent ergometer at similar workrate, cadence and seat 
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conditions could be higher than the light exertion reported by experienced older cyclists. 

However, it is unknown if perceived exertions would be lower in riding a recumbent ergometer 

compared to riding an upright ergomter.  

   Our second hypothesis stating that a closer seat position (with more knee flexion) 

would not result in a different peak KAbM, but would result in an increased peak knee extension 

moment. This hypothesis was partially supported by the results in that a decreased seat position 

did not result in significant changes in peak KAbM and peak knee extension moment. In upright 

cycling, Hummber et al. (41) reported that when healthy participants cycled at 80 RPM, no 

significant differences were found in peak KAbMs at three different saddle heights (20, 30 and 

40 degrees of knee angles), which is in line with our results. Main contributors of the KAbM are 

vertical and medial PRFs, and neither of these variables was significantly changed by seat 

positions. However, the medial PRF at the close position did show a 17.2% increase than that at 

the far position. This result suggests that patients with knee OA may have some flexibility when 

they pick seat positions in exercise on a recumbent bike without worrying about increased medial 

knee loading.  

Peak knee extension moment did not change with seat positions. However, Hummer et al. 

(41) reported that the knee extension moment significantly decreased when participants pedaled 

at a more knee extended position. A factor for this result may be related to the different peak 

knee extension angles reached in the current study: at the “far”, “medium” and “close” positions, 

the peak knee extension angles are 25.4, 34.2 and 45.1 degrees. Even though we had the similar 

increment about 10 degrees as the upright cycling saddle positions of 20, 30 and 40 degrees 

(desired positions), it is difficult to make direct comparisons as Hummer et al. (41) did not report 

the actual peak knee angles achieved in the three saddle height positions. The seat position in our 
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recumbent ergometer is controlled by equal distance notches (2.7 cm between each notch). This 

design feature made adjustments of seat positions limited and more difficult to achieve desired 

peak knee angle for each of the three seat positions, as the desired knee angle is not only 

influenced by the seat position but also by different body height, and relative thigh and leg 

lengths of our participants. 

Another interesting finding is that there was a main effect of seat position on the peak 

knee flexion moment in recumbent bicycle. At the workrate of 60 and 100 W and cadence of 80 

RPM, the peak knee flexion moment was only 7.3 Nm at the flexed position, but was up to 18.9 

Nm at the far position, which is almost 257% of the magnitude. In recumbent cycling, when the 

seat gets farther away from the pedal, the knee extensors would have difficulty in completing the 

transition from the power phase to the recovery phase. At the same time, the contralateral limb 

needs to rely on knee flexors to exert flexion moment and drive the pedal forward to transition 

from the recovery phase to power phase. During recumbent cycling, the peak knee flexion 

moment occurred around 50% of the crank cycle (Figure 3d), while the peak ankle planterflexion 

moment occurred almost at the same time to assist the transition from the power into the 

recovery phase (Figure 3e). In addition, a larger knee flexion moment is usually coupled with 

increased muscle activation of knee flexors. In the study by Hummer et al. (41), a more extended 

(farther) seat position showed a significantly larger the knee flexion moment, along with 

increased semitendinosus muscle activity. Future studies may be needed to investigate 

electromyographic activities of knee extensors and flexors in recumbent cycling at different 

workrates and seat positions.     

There are a few limitations of this study. As mentioned before, the seat position of the 

recumbent ergometer is controlled by fixed notches, which made it difficult for us to control each 
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participant’s peak knee extension angle same at respective positions (close, medium and far). 

The number of cyclists participated did not fully meet the desired sample size, reducing the 

statistical power of the key variables (e.g. peak knee extension moment). In addition, even 

though all the participants were experienced cyclist, some of them had more experience than the 

others, which might have led to different pedaling habits and techniques.      

CONCLUSION 

The findings of this study indicate that increased workrate significantly increased KAbM 

and peak knee extension moment. However, as seat position was adjusted, neither KAbM nor 

peak knee extension moment was changed. This study is the first study to examine the effects of 

workrate and seat position on frontal plane knee biomechanics in recumbent cycling. For patients 

with knee OA, a low workrate should be selected in recumbent cycling exercises, and the seat 

position should be chosen based on personal preference. In addition, using a recumbent 

ergometer with smaller Q-factor could be more beneficial. Future study should investigate the 

knee biomechanics with different Q-factors as well as the lower limb muscle activities in 

recumbent cycling.  
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APPENDIX A: FIGURES AND TABLES FOR CHAPTER FOUR 

 
a) 

 
b) 

Figure 2. The recumbent ergometer (a) and the instrumented pedal, and anatomical and tracking 

markers (b) used in the study. 
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Figure 3. Representative ensemble curves of knee, ankle, hip angle and moment in sagittal plane at workrate of 100 W and medium 
seat position of a representative subject: (a) knee angle, (b) ankle angle, (c) hip angle, (d) knee moment, (e) ankle moment and (f) hip 
moment. 
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Table 1: Subject age (years), height (m), mass (kg), BMI (kg/m^2) and cycling time per week (hr): Mean ± STD 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mean ± STD 

Age 55.53±3.68 

Height 1.75±0.09 

Mass 84.33±15.68 

BMI 27.44±3.73 

Cycling Time/Week 7.47±2.29 
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Table 2: RPE and Mean Peak Pedal Reaction Force (N) at three seat positions and two workrates (W): Mean ± STD 

Variables Workrate Far Medium Close Interaction Seat 
Position Workrate 

RPE 60 8.20±2.54 7.46±1.81 7.93±2.05 0.606 0.023 < 0.001 
100 10.13±2.62 9.27±2.15 10.07±2.22 

        

Vertical PRF 
60 131.0±28.6 132.8±29.6 140.1±31.1 

0.475 0.134 <0.001 
100 144.0±30.3 147.7±28.8 148.4±28.3 

        

Posterior PRF 
60 -135.3±26.4 -148.4±27.6 -154.2±34.6 

0.943 0.167 <0.001 
100 -174.2±29.4 -185.2±21.0 -192.2±31.5 

 

Medial PRF 60 -30.3±10.1 -35.3±12.9 -35.9±14.4 
0.784 0.091 <0.001 

100 -41.9±12.7 -48.2±13.4 -48.7±15.3 
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Table 3: Peak knee, ankle and hip moment (Nm) at three seat positions and two workrates (W): Mean ± STD 

Variables Workrate  Far Medium Close Interactio
n 

Seat 
Position Workrate 

Knee Extension 
Moment 

 

60 20.7±5.6 22.9±6.6 25.2±8.8 
0.725 0.132 <0.001 

100 28.2±7.3 31.1±6.8 34.6±9.2 
Knee Flexion 
Moment#,$,% 

 

60 -17.8±7.1 -12.3±6.1 -7.20±6.78 
0.216 <0.001 0.160 

100 -20.0±8.6 -13.9±7.7 -7.35±7.87 
Knee Abduction 

Moment 
 

60 -10.8±4.0 -12.0±5.2 -12.2±5.9 
0.769 0.592 <0.001 

100 -14.6±5.5 -15.4±6.4 -15.6±7.5 
Ankle 

Plantarflexion 
Moment 

60 -17.5±5.1 -17.8±5.1 -18.5±5.3 
0.112 0.676 <0.001 

100 -20.0±5.2 -20.4±5.2 -19.4±4.6 

 
Ankle Abduction 

Moment 

 
60 

 
-3.4±2.1 

 
-3.6±2.4 

 
-3.5±2.5 0.991 0.452 0.008 

100 -3.9±2.4 -4.1±2.7 -4.0±3.0 
 

Hip Flexion 
Moment 

60 -16.7±8.1 -18.5±8.1 -20.6±11.1  
0.439 

 
0.434 

 
0.785 

 100 -18.8±9.5 -18.4±9.4 -19.3±9.7    
 

Hip Abduction 
Moment 

60 -14.2±8.3 -14.1±9.2 -14.0±9.2  
0.998 

 
0.982 

 
<0.001 

 100 -17.9±10.3 -17.8±10.6 -17.7±10.1    
Note: 
#: significant difference between Far and Medium, $: significant difference between Far and Close, %: significant difference between 
Medium and Close  
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Table 4: Peak Knee Angle (deg) and Knee ROM (deg) at three seat positions and two workrates (W): Mean ± STD 

Variables Workrate Far Medium Close Interaction Seat 
Position Workrate 

Extension 
Angle#,$,% 

60 26.5±7.3 35.1±10.0 46.5±10.3 0.797 <0.001 <0.001 
100 24.3±8.7 33.3±9.0 43.8±10.6 

Abduction Angle 60 2.6±3.7 3.5±4.9 5.9±6.7 0.689 0.058 0.063 
100 1.7±4.3 3.2±5.0 5.4±7.0 

Extension 
ROM#,$,% 

60 79.7±5.2 74.3±5.0 68.5±5.0 0.892 <0.001 <0.001 
100 81.6±5.7 76.1±4.9 70.7±5.4 

Abduction 
ROM$,% 

60 9.0±4.3 8.3±5.2 5.7±4.2 0.420 0.003 0.067 
100 10.0±5.5 8.4±4.3 5.9±4.1 

Note: 
#: significant difference between Far and Medium, $: significant difference between Far and Close, %: significant difference between 
Medium and Close  
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APPENDIX B: INDIVIDUAL PARTICIPANT CHARACTERISTICS 

Table 5: Individual participant characteristics. 
Subject Gender Age (years) Height (m) Weight (kg) BMI (kg/m^2) Cycling Time/Week (h) 

1 M 60 1.81 95.25 29.07 8 
2 M 55 1.72 73.48 24.84 6 
3 M 56 1.81 102.05 31.15 6 
4 M 61 1.81 81.64 24.92 6.5 
5 M 50 1.75 106.59 34.80 7 
6 F 52 1.65 54.40 19.98 6 
7 M 59 1.83 102.05 30.47 7 
8 F 53 1.57 70.31 28.52 6.5 
9 F 54 1.57 63.50 25.76 7 
10 M 53 1.75 89.81 29.33 9.5 
11 M 56 1.83 90.72 27.09 6.5 
12 M 53 1.75 78.02 25.48 8 
13 M 61 1.78 73.48 23.19 15 
14 M 51 1.78 81.64 25.77 7 
15 M 59 1.81 102.05 31.15 6 

Mean±STD 55.53±3.68 1.75±0.09 84.33±15.68 27.44±3.73 7.47±2.29 
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APPENDIX C: INFORMED CONSENT FORM  

Consent for Research Participation 

Research Study Title: Effects of Workrate and Seat Position on Frontal Plane Knee 
Biomechanics in Recumbent Cycling 
Researcher(s): Tianyi Lu, University of Tennessee, Knoxville 
                          Tanner Thorsen, University of Tennessee, Knoxville 
Faculty Advisor: Dr. Songning Zhang, University of Tennessee, Knoxville   
 

 

Why am I being asked to be in this research study? 

We are asking you to be in this research study because you have met all the inclusion and 
exclusion criteria and we believe you will be a good candidate for this study. 

What is this research study about? 

The purpose of this study is to investigate the effects of different workrates and seat positions of 
recumbent bicycle on knee frontal plane biomechanics among middle-aged and old adults. The 
exclusion and inclusion criteria of the study are: 
Inclusion criteria: 

• Being between the ages of 50 and 70 years old 

• Spending about 6 hours per week in cycling 
Exclusion criteria: 

• Suffering from lower extremity injuries in the past 6 months 

• Not being able to ride a stationary bike for at least 20 minutes without aid 

• Answering “No” to any question on Par-Q form 

How long will I be in the research study? 

If you agree to participate, your participation will last approximately 1-1.5 hours. 

What will happen if I say “Yes, I want to be in this research study”?  

If you agree to be in this study, we will ask you to: 
• Change into appropriate clothing provided by either yourself or the lab. 
• Complete a brief 2-minute cycling warmup on a recumbent bicycle. 
• Be fitted with retroreflective markers and have a calibration trial taken. 
• Complete 1 minute of successful cycling trials per each of 6 test conditions, including 2 

workrates and 3 seat positions. The 2 workrates are 80 and 120W and the 3 seat 
positions are close, middle and far positions.  

• Take a minimum of 2-minute rest between conditions and drink water whenever you 
need to minimize fatigue and dehydration. 
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What happens if I say “No, I do not want to be in this research study”? 

Being in this study is up to you. You can say no now or leave the study later at any time.  

What happens if I say “Yes” but change my mind later? 

Even if you decide to be in the study now, you can change your mind and stop at any time.  
If you decide to stop before the study is completed, please inform the primary investigator to 
end your participation. Once the primary investigator is informed, your collected data, and any 
data identifying you directly will be destroyed immediately. 

 

Are there any possible risks to me? 

Potential risk associated with this study is minimal. Since recumbent cycling is a non weight 
bearing activity, the loading to knee joints will be minimal. You will be required to cycle for no 
more than 20 minutes including the warm up during the testing session. You may experience 
delayed onset muscle soreness (DOMS) in which the muscles are sore for a day or two 
following the exercise session. However, these conditions are normal for any person who is not 
accustomed to regular physical activity. You will be able to end the test at any time if they feel 
uncomfortable. The attachment of the reflective markers to skin will unlikely cause skin irritation. 
The researchers are also certified in first aid to render care if needed. It is also possible that 
someone could find out you were in this study or see your study information, but we believe this 
risk is small because of the procedures we use to protect your information. These procedures 
are described later in this form.  

Are there any benefits to being in this research study? 

There is a possibility that you may benefit from being in the study, but there is no guarantee that 
will happen. Possible benefits include the identification of any possible abnormalities of cycling 
pattern as a result of their participation in the study which may serve as valuable information for 
correcting these abnormalities. Even if you don’t benefit from being in the study, the data 
collected from you will help provide a better understanding of how different seat positions and 
workrates would affect the knee frontal plane biomechanics in recumbent cycling. 
Comprehensive understanding of knee biomechanics, especially frontal-plane joint moment, is 
necessary to provide guidelines for prescribing recumbent cycling as a therapeutic intervention 
and rehabilitation tool. We hope the knowledge gained from this study will benefit others in the 
future. 

Who can see or use the information collected for this research study? 

We will protect the confidentiality of your information by de-identifying data such that only 
subject numbers will be collected and attributed to your data. Only the principal investigators 
and Biomechanics/Sports Medicine Laboratory personnel will have access to the respective 
subject information and data. The de-identified data will be stored on hard drives of password 
protected computers in the Biomechanics/Sports Medicine Lab for a minimum of three years 
after the completion of the study and will be backed up onto DVDs, flash drives, and/or data 
backup cartridges, and then deleted from all hard drives. All subject data will be coded 
numerically and referred to only by the code and not by subject name at the time of data 
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collection. Identity of the subjects will be held in strict confidence through the use of the coded 
subject numbers during data collection, analysis, and in all references made to data, both during 
and after the study, and in the reporting of the results. If information from this study is published 
or presented at scientific meetings, your name and other personal information will not be used. 
We will make every effort to prevent anyone who is not on the research team from knowing that 
you gave us information or what information came from you.  Although it is unlikely, there are 
times when others may need to see the information we collect about you.  These include: 

• People at the University of Tennessee, Knoxville oversee research to make sure it is 
conducted properly. 

• Government agencies (such as the Office for Human Research Protections in the U.S. 
Department of Health and Human Services), and others responsible for watching over 
the safety, effectiveness, and conduct of the research.  

• If a law or court requires us to share the information, we would have to follow that law or 
final court ruling. 

What will happen to my information after this study is over? 

We will not keep your information to use for future research purposes. Your name and other 
information that can directly identify you will be deleted from your research data collected as 
part of the study. 
We may share your research data with other researchers without asking for your consent again, 
but it will not contain information that could directly identify you. 

Who can answer my questions about this research study? 

If you have questions or concerns about this study, or have experienced a research related 
problem or injury, contact the researchers, Tianyi Lu via email at tlu3@vols.utk.edu, or via 
phone at (865) 765-7511. You may also contact my faculty advisor, Dr. Songning Zhang via 
email at szhang@utk.edu.  
For questions or concerns about your rights or to speak with someone other than the research 
team about the study, please contact:  
Institutional Review Board 
The University of Tennessee, Knoxville 
1534 White Avenue 
Blount Hall, Room 408 
Knoxville, TN 37996-1529 
Phone: 865-974-7697 
Email: utkirb@utk.edu 

STATEMENT OF CONSENT 

I have read this form and the research study has been explained to me.  I have been given the 
chance to ask questions and my questions have been answered.  If I have more questions, I 
have been told who to contact.  By signing this document, I am agreeing to be in this study.  I 
will receive a copy of this document after I sign it. 
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Name of Adult Participant Signature of Adult Participant      Date 
 
Researcher Signature (to be completed at time of informed consent) 
I have explained the study to the participant and answered all of his/her questions. I believe that 
he/she understands the information described in this consent form and freely consents to be in 
the study. 
 

      
Name of Research Team Member Signature of Research Team Member      Date 
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APPENDIX D: FLYER 
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APPENDIX E: PHYSICAL READINESS QUESTIONNAIRE (PAR-Q) 
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APPENDIX F: INDIVIDUAL RESULTS FOR SELECTED VARIABLES
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Table 6: Individual mean peak vertical PRF (N). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 159.155±6.734 170.534±13.641 155.977±4.025 166.352±9.918 164.764±25.166 167.791±32.097 
2 80.395±4.127 87.750±8.506 98.729±3.369 120.221±2.178 111.533±6.307 128.009±3.234 
3 137.676±21.495 177.444±24.006 149.630±14.242 176.800±14.723 203.084±7.549 183.448±8.109 
4 153.691±11.801 141.438±5.354 158.217±8.372 172.670±5.065 144.967±6.502 167.639±11.109 
5 188.362±9.416 187.065±10.409 181.778±6.377 204.219±15.706 191.350±14.447 207.915±14.802 
6 96.399±4.705 104.132±6.606 87.804±8.739 99.212±6.778 101.297±3.078 127.168±5.805 
7 138.168±19.798 153.925±12.800 160.761±4.203 171.615±26.962 157.890±5.739 157.773±8.636 
8 101.818±11.009 118.600±8.806 106.941±11.087 128.142±8.694 117.922±3.878 136.085±5.974 
9 102.744±7.320 149.761±22.683 84.380±7.117 120.587±17.066 88.130±3.327 91.266±2.794 

10 128.231±3.333 144.038±9.298 139.946±6.085 143.720±10.775 144.264±11.401 144.611±7.889 
11 159.407±5.500 192.700±12.104 154.054±4.272 178.270±5.226 148.538±5.124 167.715±5.077 
12 131.681±20.658 134.255±12.877 109.860±5.402 132.889±18.998 141.896±11.581 128.854±9.761 
13 111.129±4.196 114.126±4.835 123.515±3.405 126.498±1.052 126.998±1.358 135.013±1.762 
14 141.439±3.669 130.627±3.328 130.983±5.358 137.904±13.288 129.443±5.271 129.199±2.277 
15 134.644±9.714 153.427±18.510 148.963±29.729 137.023±13.391 129.593±10.480 153.569±7.603 

Mean 130.996±28.579 143.988±30.285 132.769±29.551 147.741±28.831 140.111±31.103 148.404±28.323 
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Table 7: Individual mean peak posterior PRF (N). 

 
 
 
 
  

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -157.368±7.561 -192.388±10.042 -164.101±4.762 -199.757±19.739 -126.232±56.389 -192.732±25.572 
2 -116.743±7.918 -165.336±18.820 -117.647±3.574 -157.372±15.536 -122.961±3.156 -178.046±14.745 
3 -121.212±55.889 -196.173±9.048 -179.747±18.904 -205.681±21.983 -219.633±17.608 -238.481±21.008 
4 -154.278±2.133 -157.638±9.436 -171.477±11.612 -218.994±22.401 -154.387±15.962 -203.066±29.701 
5 -162.880±17.544 -198.911±9.447 -174.368±14.918 -197.439±12.788 -188.145±11.233 -199.287±19.560 
6 -90.768±11.479 -111.958±6.740 -102.207±14.021 -140.745±26.711 -99.030±6.835 -132.887±20.021 
7 -144.548±16.271 -160.269±12.506 -143.440±76.872 -199.634±13.582 -197.058±39.536 -257.140±54.489 
8 -135.176±17.213 -183.646±12.310 -137.850±14.325 -181.562±20.260 -150.799±4.506 -193.524±14.442 
9 -141.205±14.028 -189.289±27.915 -106.706±12.294 -181.117±21.021 -114.015±8.842 -148.906±16.736 

10 -111.212±26.762 -191.760±65.549 -119.185±18.320 -164.265±57.434 -121.226±18.766 -156.125±7.778 
11 -162.041±7.823 -188.317±6.624 -149.952±9.239 -164.432±86.854 -149.346±9.828 -184.155±8.658 
12 -84.116±21.243 -108.243±10.705 -143.348±3.814 -182.740±26.069 -176.929±16.092 -191.758±5.674 
13 -128.035±5.092 -175.498±9.953 -163.395±7.809 -192.084±4.033 -164.382±6.649 -208.392±5.499 
14 -172.175±20.506 -191.714±12.492 -193.387±6.883 -204.027±9.149 -187.858±15.275 -197.984±15.239 
15 -147.723±14.668 -201.428±22.367 -159.357±12.989 -188.134±25.428 -140.252±13.345 -201.051±23.765 

Mean±STD -135.299±26.371 -174.171±29.362 -148.411±27.568 -185.199±21.041 -154.150±34.597 -192.236±31.467 
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Table 8: Individual mean peak medial PRF (N). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -29.648±5.575 -36.153±4.876 -26.469±2.745 -38.589±8.162 -23.251±1.930 -41.532±8.272 
2 -38.133±2.381 -56.329±5.515 -42.998±1.825 -58.374±6.018 -38.298±1.953 -63.065±3.780 
3 -38.769±7.218 -48.769±3.006 -46.134±4.030 -54.269±5.441 -50.405±7.719 -67.816±5.753 
4 -41.243±2.493 -35.466±0.821 -36.742±3.658 -51.712±3.396 -33.678±4.787 -40.460±19.860 
5 -40.741±9.818 -46.291±7.390 -49.335±10.312 -53.054±10.625 -49.759±7.784 -56.066±13.492 
6 -17.671±3.722 -26.389±2.278 -23.261±4.749 -38.080±8.533 -23.675±2.857 -33.862±3.023 
7 -28.334±3.513 -47.536±3.280 -41.275±11.028 -46.848±9.151 -43.786±13.036 -62.081±22.334 
8 -36.824±2.758 -50.979±4.472 -39.423±6.669 -50.477±7.644 -39.139±2.373 -52.579±4.096 
9 -44.765±7.101 -63.194±11.631 -32.031±6.362 -61.177±8.166 -39.270±5.087 -50.486±7.502 

10 -20.177±8.285 -43.789±22.371 -24.046±8.400 -46.951±26.993 -29.402±9.319 -37.032±5.497 
11 -8.082±2.196 -10.594±2.098 -12.102±1.963 -17.120±3.439 -14.794±2.343 -21.579±3.455 
12 -28.204±4.084 -44.779±7.510 -60.310±11.905 -75.478±16.822 -66.362±8.618 -79.472±4.048 
13 -29.668±4.179 -47.252±4.204 -41.395±3.978 -50.343±1.469 -42.554±4.079 -51.245±1.903 
14 -28.474±4.678 -34.153±4.448 -36.612±3.497 -48.221±9.532 -33.239±3.654 -37.877±3.988 
15 -23.693±4.936 -37.334±6.835 -16.872±7.968 -32.923±7.597 -11.033±2.644 -35.873±6.240 

Mean±STD -30.295±10.090 -41.934±12.702 -35.267±12.903 -48.241±13.352 -35.910±14.373 -48.735±15.282 
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Table 9: Individual mean peak knee extension angle (deg). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -10.688±0.684 -4.923±1.447 -9.672±0.907 -12.307±1.480 -18.050±0.933 -14.014±1.208 
2 -22.216±0.503 -17.712±0.729 -45.760±0.295 -41.383±0.374 -50.366±0.559 -49.627±0.702 
3 -26.613±2.804 -23.784±1.736 -32.889±1.640 -28.199±2.275 -40.931±1.395 -38.160±1.048 
4 -24.287±0.910 -22.013±1.209 -42.908±0.355 -38.216±1.333 -52.515±0.662 -51.035±0.849 
5 -27.277±1.362 -25.270±0.977 -34.455±0.668 -32.827±0.505 -53.447±0.814 -52.219±0.612 
6 -31.236±0.322 -33.607±0.962 -38.962±1.053 -39.165±10.711 -51.066±1.942 -45.242±0.672 
7 -32.507±2.282 -32.422±2.653 -41.854±2.468 -43.409±2.039 -47.180±2.512 -38.997±1.987 
8 -22.840±2.123 -20.017±0.651 -23.769±1.778 -27.064±1.223 -39.905±0.358 -35.920±0.706 
9 -24.738±1.090 -17.584±2.222 -29.133±1.625 -24.355±1.957 -40.502±0.675 -41.995±1.108 

10 -21.241±1.450 -20.157±2.229 -35.053±0.398 -36.810±1.773 -58.779±0.659 -57.427±0.473 
11 -38.151±1.836 -39.989±0.957 -45.204±0.811 -41.827±0.456 -44.934±0.360 -45.529±0.639 
12 -25.968±1.157 -24.171±2.174 -34.038±1.683 -28.533±1.295 -42.636±0.839 -42.209±0.772 
13 -28.314±1.025 -25.942±0.423 -40.096±0.457 -36.846±0.028 -59.344±0.358 -57.133±0.208 
14 -20.238±1.416 -21.307±0.909 -25.885±1.086 -23.813±1.033 -42.115±0.629 -38.567±0.735 
15 -40.504±1.004 -35.884±1.282 -47.170±0.856 -44.339±1.506 -56.059±1.917 -48.308±0.733 

Mean±STD -26.455±7.325 -24.319±8.662 -35.123±10.035 -33.273±9.040 -46.522±10.297 -43.759±10.635 
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Table 10: Individual mean peak knee abduction angle (deg). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 2.762±0.587 -0.339±0.551 2.154±0.722 6.894±7.352 6.238±0.722 4.024±0.576 
2 7.590±0.599 4.140±0.374 11.252±0.341 10.703±0.409 10.420±0.347 10.648±0.163 
3 9.180±0.874 9.641±1.684 10.621±0.617 10.166±0.669 15.355±3.977 19.954±0.491 
4 6.201±0.712 8.456±0.966 8.653±0.942 4.914±1.837 7.272±1.705 7.331±0.296 
5 4.142±1.449 3.530±0.383 4.699±1.017 4.906±0.743 7.920±2.037 8.347±0.923 
6 -2.033±0.829 -3.788±0.142 -0.287±0.857 -0.264±1.566 1.489±0.485 2.270±0.152 
7 1.661±2.001 0.957±1.475 -0.455±0.716 -1.622±0.903 -1.894±1.603 -5.047±0.604 
8 -4.898±0.440 -6.969±0.420 -8.111±0.628 -8.760±0.799 -7.630±0.361 -7.675±0.623 
9 -0.389±0.718 -1.814±1.502 2.134±1.481 -0.737±0.553 5.265±1.181 4.712±0.622 

10 3.215±0.403 1.724±0.616 1.751±0.582 0.316±0.863 -3.746±0.779 -4.032±0.358 
11 -0.379±1.083 0.035±0.295 1.411±0.823 2.587±0.549 8.910±0.393 7.462±1.136 
12 0.901±2.046 1.063±2.839 4.999±1.450 5.581±1.670 8.802±1.922 8.099±2.006 
13 4.379±0.693 2.079±0.622 8.123±0.668 7.793±0.374 16.935±0.953 11.588±0.351 
14 1.357±0.418 1.395±0.282 2.438±0.352 2.346±0.663 8.554±0.520 5.518±0.883 
15 5.122±1.676 5.362±1.683 3.445±0.844 3.696±1.288 4.831±1.458 7.775±2.345 

Mean±STD 2.587±3.725 1.698±4.286 3.522±4.924 3.235±5.032 5.915±6.655 5.398±7.013 
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Table 11: Individual mean peak knee extension ROM (deg). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 82.560±0.987 87.134±1.460 83.539±1.141 82.550±1.486 77.872±1.003 80.584±1.342 
2 85.239±0.618 89.171±0.834 70.598±0.471 74.137±0.758 70.073±0.513 70.170±0.526 
3 74.435±1.758 76.271±1.471 72.626±1.433 74.688±2.296 67.864±1.277 72.290±1.387 
4 82.159±1.035 82.698±1.109 69.615±0.653 75.249±1.233 65.268±0.532 66.054±0.815 
5 74.906±1.063 77.174±0.715 70.354±0.722 71.968±0.525 59.228±1.092 59.860±1.173 
6 78.410±0.320 75.680±1.343 72.200±1.813 70.569±10.496 66.366±1.516 69.835±0.853 
7 77.250±2.265 76.750±2.831 70.917±2.536 71.048±2.006 69.444±2.127 75.985±1.979 
8 75.015±2.061 80.827±1.043 76.984±2.219 77.046±1.002 68.525±1.338 73.605±0.931 
9 85.751±1.157 92.253±1.873 82.208±1.803 86.713±1.919 74.551±1.562 74.804±1.185 

10 89.023±1.691 89.159±2.333 76.683±0.544 75.977±1.388 62.723±0.568 64.567±0.488 
11 80.544±2.087 77.696±1.039 73.898±0.788 76.684±0.594 74.169±0.527 74.574±0.832 
12 74.301±0.970 76.352±2.539 70.323±1.594 75.452±1.116 67.164±0.973 67.148±1.289 
13 76.676±1.205 78.909±0.545 70.830±0.565 72.314±0.239 63.607±0.498 64.789±0.370 
14 86.502±1.666 85.784±0.505 83.158±0.933 84.328±0.957 74.118±0.660 74.839±0.906 
15 73.347±0.931 77.527±1.839 71.354±0.799 72.634±1.557 66.367±1.872 71.371±0.571 

Mean±STD 79.741±5.171 81.559±5.676 74.352±4.970 76.091±4.853 68.489±5.046 70.698±5.420 
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Table 12: Individual mean peak knee abduction ROM (deg). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -17.194±0.768 -21.129±0.579 -18.874±1.269 -13.996±7.652 -14.813±0.965 -15.921±0.767 
2 -8.061±0.453 -11.386±0.389 -1.072±0.257 -2.284±0.302 -0.747±0.447 -0.437±0.248 
3 -12.475±1.694 -14.083±1.397 -14.291±0.529 -13.871±1.114 -9.265±3.736 -8.409±0.760 
4 -2.824±0.579 -1.486±0.704 -0.603±1.027 -2.827±1.329 0.226±1.544 0.398±0.617 
5 -10.132±0.944 -11.023±0.604 -11.263±1.563 -11.464±0.314 -9.290±2.283 -9.198±1.089 
6 -2.620±1.024 -3.251±0.540 -0.972±1.100 -2.468±1.293 0.292±0.353 -0.716±0.472 
7 -7.100±2.396 -8.168±1.411 -7.992±1.006 -9.880±1.851 -10.270±1.616 -9.516±0.597 
8 -3.917±1.422 -3.444±1.255 -5.722±1.095 -6.082±0.682 -3.660±1.436 -4.161±0.874 
9 -7.711±1.150 -10.333±1.952 -10.505±1.874 -9.877±1.414 -9.476±1.413 -7.421±0.781 
10 -7.685±0.916 -7.633±0.657 -3.673±1.000 -4.487±0.693 -4.917±0.599 -4.850±0.347 
11 -9.157±0.999 -6.092±0.688 -7.672±0.775 -5.993±0.555 -4.124±0.481 -4.779±1.202 
12 -12.623±1.950 -14.363±2.623 -11.484±1.209 -13.625±2.460 -6.165±1.619 -7.127±2.001 
13 -15.180±0.518 -17.616±0.594 -11.209±0.524 -12.427±0.440 -4.275±0.964 -6.196±0.633 
14 -12.405±0.705 -12.478±0.397 -11.630±0.407 -10.632±0.681 -4.499±0.573 -6.248±0.693 
15 -6.428±1.804 -7.329±1.873 -7.683±1.310 -6.657±1.450 -5.042±1.691 -4.063±2.435 

Mean±STD -9.034±4.331 -9.988±5.472 -8.310±5.245 -8.438±4.282 -5.735±4.232 -5.910±4.139 
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Table 13: Individual mean peak knee extension moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 13.047±1.247 16.065±1.635 14.985±0.977 24.852±4.797 15.556±2.304 22.915±5.772 
2 15.394±1.553 20.207±2.509 17.832±0.790 23.295±2.659 17.824±0.997 32.207±2.528 
3 20.579±5.974 17.890±2.789 18.477±4.278 20.576±2.668 24.015±2.171 33.106±4.589 
4 35.981±2.241 40.760±1.926 36.487±2.479 48.743±9.583 31.560±3.221 45.784±11.014 
5 14.139±5.276 27.533±2.556 19.863±5.450 28.536±5.632 27.934±1.989 27.377±6.655 
6 19.640±4.082 24.700±1.958 21.238±2.384 24.171±4.199 17.733±1.195 23.119±3.598 
7 17.471±3.399 22.821±2.843 27.182±7.515 32.325±5.651 33.726±11.362 55.540±17.487 
8 22.970±5.035 32.393±3.525 19.555±3.975 32.481±6.476 25.792±1.438 40.181±3.918 
9 26.306±2.839 33.120±3.590 20.322±4.904 33.613±4.090 19.396±2.717 28.892±2.208 
10 21.527±7.507 37.322±16.118 16.580±4.034 31.054±17.791 13.375±5.676 23.141±2.537 
11 20.071±1.596 30.800±5.170 18.105±1.820 37.006±3.849 18.444±3.967 37.076±3.957 
12 18.273±2.985 26.654±2.701 32.237±6.005 32.665±5.929 44.274±6.546 40.819±2.090 
13 18.930±1.663 31.224±2.212 31.898±2.422 35.241±1.150 31.293±1.773 40.717±1.106 
14 22.610±4.068 24.801±2.716 28.373±1.199 30.192±6.900 36.304±2.981 35.360±5.450 
15 23.197±7.607 36.239±9.470 19.956±3.953 31.363±5.853 20.728±2.802 32.188±3.968 

Mean±STD 20.676±5.551 28.169±7.252 22.873±6.603 31.074±6.770 25.197±8.819 34.561±9.164 
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Table 14: Individual mean peak knee flexion moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -28.919±1.691 -33.007±2.636 -28.393±3.626 -29.788±3.456 -25.476±10.874 -32.109±9.573 
2 -13.431±0.967 -15.763±2.055 -11.921±1.357 -12.117±1.558 -9.042±1.747 -10.002±1.776 
3 -22.898±8.787 -31.303±2.554 -15.354±4.928 -24.834±1.777 -4.196±0.951 -7.976±1.678 
4 -17.390±1.616 -17.143±0.959 -3.754±1.123 -4.939±1.545 -3.073±1.415 0.640±2.227 
5 -20.976±5.591 -21.796±5.222 -13.305±3.744 -16.754±8.635 -6.184±4.373 -10.474±5.611 
6 -21.518±0.681 -22.847±1.411 -13.501±3.200 -19.169±2.129 -11.772±1.452 -10.260±0.572 
7 -19.503±4.113 -32.316±5.431 -17.539±9.565 -14.536±10.174 -12.566±11.421 -7.463±4.485 
8 -11.306±2.205 -16.095±1.925 -16.513±2.100 -13.230±3.659 -5.004±2.661 -4.336±2.336 
9 -4.516±2.407 -10.928±2.270 -4.385±2.576 -5.929±3.257 -0.004±1.407 -1.682±2.144 

10 -14.237±1.424 -17.072±3.811 -13.890±2.370 -10.800±1.922 -14.902±5.711 -10.051±3.408 
11 -9.840±1.396 -8.392±3.070 -10.081±0.691 -3.942±1.678 -6.057±1.256 -0.708±0.624 
12 -27.729±3.416 -21.715±3.815 -9.611±2.388 -11.288±3.201 -0.943±2.729 -1.241±2.968 
13 -20.231±1.747 -17.126±0.865 -6.630±0.598 -11.485±0.752 -3.379±1.325 -3.196±0.504 
14 -25.256±1.411 -29.183±1.276 -13.032±1.066 -22.954±3.858 0.418±0.763 -8.075±2.389 
15 -9.796±9.438 -5.212±2.798 -6.937±3.115 -6.074±1.464 -5.748±4.565 -3.289±2.352 

Mean±STD -17.836±7.144 -19.993±8.624 -12.323±6.141 -13.856±7.655 -7.195±6.789 -7.348±7.868 
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Table 15: Individual mean peak knee abduction moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -15.958±2.793 -18.921±1.936 -14.948±1.894 -20.376±3.784 -12.901±1.567 -20.401±4.049 
2 -12.662±0.746 -19.488±2.589 -10.184±0.572 -15.326±1.957 -9.878±0.517 -16.270±1.196 
3 -13.179±2.785 -18.945±0.795 -17.294±3.035 -20.594±2.143 -20.233±1.426 -30.890±3.916 
4 -12.504±1.716 -11.398±0.983 -12.748±2.059 -13.109±3.003 -8.770±1.055 -12.715±1.854 
5 -17.275±4.815 -19.874±2.342 -17.230±3.640 -21.007±3.236 -18.870±2.834 -21.605±2.583 
6 -1.625±1.174 -2.152±0.193 -2.850±0.727 -4.537±1.275 -2.859±1.027 -3.716±0.659 
7 -10.153±1.119 -15.620±1.289 -14.532±3.512 -13.467±2.607 -15.511±5.649 -17.043±6.621 
8 -8.422±1.006 -8.182±1.383 -5.735±1.043 -6.608±1.175 -4.007±0.235 -4.021±0.859 
9 -10.592±2.144 -15.844±3.124 -8.546±1.789 -15.350±2.778 -10.684±1.597 -12.472±2.325 
10 -9.471±3.807 -16.528±7.198 -8.593±2.564 -12.440±5.804 -9.737±1.767 -9.134±0.474 
11 -4.152±0.406 -5.140±0.345 -5.195±0.230 -7.089±0.562 -7.196±0.772 -9.636±1.087 
12 -9.014±1.326 -15.315±2.194 -19.329±1.868 -27.867±7.574 -22.150±2.286 -25.389±1.248 
13 -12.252±1.865 -19.468±2.141 -17.652±1.110 -21.620±1.057 -18.144±1.248 -20.621±0.770 
14 -12.232±1.944 -14.869±1.534 -15.996±1.327 -17.434±3.216 -15.141±1.205 -13.963±1.810 
15 -11.696±2.153 -17.610±4.181 -8.916±2.329 -13.760±3.171 -7.580±1.337 -16.684±2.899 

Mean±STD -10.746±4.008 -14.624±5.508 -11.983±5.198 -15.372±6.360 -12.244±5.914 -15.637±7.517 
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Table 16: Individual mean peak ankle plantarflexion moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -24.270±0.803 -25.040±1.464 -23.851±1.430 -25.000±1.606 -25.641±4.645 -22.165±7.753 
2 -11.812±0.614 -17.698±2.888 -14.286±0.692 -17.815±0.546 -17.257±0.965 -19.222±0.765 
3 -24.042±3.583 -31.471±3.360 -25.909±4.082 -28.795±2.263 -28.846±1.841 -27.197±1.300 
4 -19.702±1.449 -18.392±0.608 -19.430±0.900 -26.150±1.109 -21.296±0.471 -23.939±1.669 
5 -22.912±2.243 -21.785±2.043 -19.437±0.940 -22.562±3.104 -19.694±3.728 -18.062±2.910 
6 -11.815±0.476 -12.276±0.526 -9.048±0.532 -11.708±0.828 -10.133±0.475 -12.986±0.641 
7 -19.612±2.394 -23.521±1.771 -19.513±1.071 -26.128±4.563 -17.874±1.916 -21.559±3.830 
8 -7.857±1.252 -10.957±0.442 -11.586±0.599 -13.045±0.993 -11.499±0.987 -14.887±1.605 
9 -10.084±1.075 -13.894±2.090 -9.620±1.043 -12.626±1.908 -9.815±0.607 -10.629±0.433 

10 -17.967±0.980 -21.152±1.120 -21.176±0.773 -20.720±1.497 -20.902±1.461 -20.845±1.352 
11 -19.371±0.680 -22.621±1.805 -18.543±0.748 -22.058±0.990 -19.867±0.843 -19.885±1.000 
12 -19.758±1.489 -19.097±2.298 -14.621±1.814 -17.100±1.763 -16.208±2.687 -16.218±1.439 
13 -16.504±0.607 -18.249±1.044 -19.598±0.702 -20.347±0.091 -18.777±0.561 -20.674±0.582 
14 -17.102±0.907 -20.120±0.698 -17.059±0.687 -21.294±4.282 -17.248±0.641 -16.513±1.543 
15 -20.120±3.994 -23.254±4.230 -23.459±6.330 -21.007±2.660 -21.823±1.355 -25.712±4.833 

Mean±STD -17.528±5.048 -19.968±5.222 -17.809±5.092 -20.424±5.167 -18.459±5.273 -19.366±4.600 
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Table 17: Individual mean peak ankle abduction moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -6.226±0.761 -6.109±0.200 -5.475±0.426 -5.471±0.381 -4.133±1.863 -5.904±1.316 
2 -1.226±0.540 -1.576±0.324 -0.382±0.573 -0.216±0.097 0.530±0.071 0.228±0.172 
3 -3.581±1.336 -4.104±1.088 -4.717±0.925 -4.377±0.578 -4.356±0.367 -4.994±0.845 
4 -4.602±0.234 -4.443±0.488 -4.293±0.318 -4.784±0.262 -4.249±0.248 -4.498±0.329 
5 -6.443±0.783 -5.835±0.568 -5.388±0.333 -6.374±0.827 -5.970±1.097 -6.080±0.854 
6 -0.662±0.225 -0.662±0.075 -0.455±0.234 -0.468±0.288 -0.861±0.285 -0.955±0.541 
7 -6.511±0.979 -8.772±0.385 -8.371±0.911 -9.447±0.806 -8.821±0.828 -11.274±2.096 
8 -0.788±0.271 -1.113±0.220 -0.803±0.255 -0.918±0.086 -1.016±0.126 -0.973±0.118 
9 -2.224±0.260 -3.427±0.755 -2.195±0.310 -2.867±0.457 -2.200±0.249 -2.247±0.338 
10 -2.864±0.884 -5.072±2.064 -3.836±0.432 -4.454±0.862 -3.758±0.666 -4.517±0.327 
11 -0.639±0.221 -0.021±0.575 -0.712±0.346 -0.749±0.152 -0.518±0.308 -0.119±0.193 
12 -4.619±0.342 -6.000±1.000 -6.001±0.730 -8.104±2.007 -6.208±0.444 -6.006±0.651 
13 -2.457±0.178 -3.263±0.255 -2.645±0.182 -4.338±0.299 -2.871±0.253 -2.955±0.111 
14 -3.493±0.458 -3.506±0.791 -4.520±0.198 -3.696±0.370 -3.799±0.620 -3.698±0.386 
15 -5.200±1.501 -4.716±1.078 -4.089±0.581 -5.209±1.734 -4.036±0.423 -5.458±1.654 

Mean±STD -3.436±2.110 -3.908±2.370 -3.592±2.351 -4.098±2.738 -3.484±2.453 -3.964±2.978 
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Table 18: Individual mean peak hip flexion moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -28.878±2.729 -30.215±1.322 -25.716±2.338 -24.566±2.348 -31.575±1.180 -28.341±0.688 
2 -24.847±2.045 -27.996±1.223 -34.854±1.777 -40.502±2.251 -33.568±1.724 -35.642±1.357 
3 -16.323±6.874 -30.669±2.287 -21.237±3.712 -26.781±0.733 -34.863±2.528 -22.915±3.084 
4 -25.515±1.680 -27.518±4.933 -16.454±0.886 -16.614±1.385 -15.271±1.216 -15.742±1.426 
5 -23.934±3.422 -22.738±3.344 -28.577±3.430 -30.393±3.263 -38.156±4.082 -37.391±5.881 
6 -15.483±1.579 -24.805±1.969 -11.741±2.952 -17.499±4.425 -21.727±2.365 -22.790±1.805 
7 -10.174±5.123 -25.980±3.218 -20.303±5.843 -10.989±4.890 -8.671±3.799 -12.075±2.086 
8 -10.625±1.803 -15.112±2.427 -14.095±0.805 -12.678±2.933 -14.684±1.706 -11.854±2.764 
9 -3.144±0.944 -2.720±3.470 -7.027±1.217 -5.367±1.970 -14.344±1.858 -8.236±2.272 

10 -1.544±3.462 -6.213±3.594 -24.765±1.388 -21.635±5.109 -30.100±1.558 -24.406±1.858 
11 -18.574±3.615 -20.735±1.284 -24.559±4.347 -19.224±1.748 -25.259±3.042 -21.602±2.298 
12 -22.762±3.766 -13.350±8.303 -8.540±3.599 -10.537±4.148 -11.638±2.039 -8.871±1.865 
13 -18.565±2.101 -17.566±1.977 -16.458±1.644 -19.840±1.147 -19.961±1.337 -21.530±1.871 
14 -11.987±3.793 -13.248±1.289 -10.794±0.481 -12.226±3.227 -5.569±0.921 -12.245±2.243 
15 -17.904±6.084 -3.252±5.172 -12.511±4.927 -7.068±4.100 -4.272±1.759 -5.939±0.000 

Mean±STD -16.684±8.048 -18.808±9.536 -18.509±8.050 -18.395±9.425 -20.644±11.121 -19.305±9.701 
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Table 19: Individual mean peak hip abduction moment (Nm). 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 -19.174±3.099 -18.116±8.285 -15.628±1.719 -19.876±3.143 -16.074±2.950 -17.016±2.062 
2 -6.921±1.645 -9.869±1.062 -4.794±0.562 -7.441±0.566 -6.429±0.613 -5.971±0.576 
3 -20.074±3.527 -25.928±3.497 -20.786±1.947 -24.569±2.304 -22.032±1.313 -28.912±2.727 
4 -19.814±0.746 -16.649±1.501 -16.332±1.733 -20.200±1.076 -13.059±2.332 -19.034±2.924 
5 -28.163±4.247 -31.422±3.508 -26.975±2.779 -32.344±4.105 -25.335±2.458 -28.151±4.600 
6 -3.490±1.531 -5.517±0.444 -3.408±0.934 -7.011±2.084 -0.988±0.466 -2.417±0.775 
7 -16.567±2.587 -22.622±1.722 -20.633±3.842 -21.610±5.091 -28.481±6.791 -32.451±10.307 
8 -16.207±1.485 -22.161±1.870 -14.559±2.745 -19.000±3.176 -11.829±0.800 -18.030±1.338 
9 -17.705±2.966 -25.479±4.473 -12.766±3.828 -19.361±2.955 -12.973±2.585 -14.903±1.967 

10 -12.804±3.694 -22.394±10.108 -13.795±1.133 -18.275±6.738 -15.180±2.326 -16.327±0.987 
11 3.059±0.860 2.063±1.500 3.030±0.551 3.601±0.942 1.848±0.645 2.038±0.953 
12 -16.181±2.991 -22.271±3.452 -24.152±2.205 -29.113±5.839 -22.756±2.475 -26.425±0.813 
13 -17.628±1.310 -24.957±0.966 -19.197±1.065 -26.240±0.497 -19.442±1.459 -22.213±1.544 
14 -19.365±3.695 -24.506±2.688 -22.061±1.978 -25.584±2.797 -17.082±2.010 -17.520±1.695 
15 -2.218±3.519 1.513±1.209 0.955±1.486 0.564±4.044 -0.801±1.982 .±. 

Mean±STD -14.217±8.285 -17.888±10.256 -14.073±9.157 -17.764±10.572 -14.041±9.192 -17.707±10.135 
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Table 20: Individual RPE scores. 

Subject  Far Medium Close 
60 W 100 W 60 W 100 W 60 W 100 W 

1 11 12 9 11 9 10 
2 8 12 6 12 7 11 
3 6 8 6 6 6 6 
4 14 15 12 13 13 13 
5 6 8 6 7 11 13 
6 11 13 9 11 9 11 
7 6 10 6 10 6 11 
8 7 8 6 7 6 7 
9 6 7 6 7 6 8 

10 6 6 6 7 6 7 
11 10 12 7 10 7 12 
12 7 10 9 10 9 11 
13 7 8 8 9 8 9 
14 11 13 9 11 8 10 
15 7 10 7 8 8 12 

Mean±STD 8.20±2.54 10.13±2.62 7.46±1.81 9.27±2.15 7.93±2.05 10.07±2.22 
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