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Abstract 

 

Object detection is one of the most popular areas in the field of computer vision and deep learning. 

Several advances have been reported in the literature showing promising object detection results. 

However, most of these results use databases of images that have been collected under almost ideal 

conditions and tested with input images mostly not representative of real life imagery. When tested 

with challenging data, most of these object detection models break down. 

The objective of this work is to quantify the performance of the most recent object detection 

models in the presence of realistic degradation in the form of differing levels of brightness, 

saturation, contrast, Gaussian blur, image size, sharpness, Gaussian noise, speckle noise, and salt 

and pepper noise. We have selected Faster RCNN as a typical model that is representative of the 

state of the art. We have used a binary class dataset from our laboratory for testing: Aphylla. We 

have also selected a popular multi-class dataset widely used by the community for our work: 

VOC2007. 

We have conducted the following experiments (1) ran the model on the original pristine dataset 

and recorded the mAP score result, (2) ran the model on nine methods of degradation with 12 

levels in each and recorded the mAP score results, and (3) compared the degradation results to one 

another to determine the model robustness. These experiments led to the clustering of the 

degradation models into three categories: high, medium, and low impact. These categories are 

based on the fluctuations within the results. The first class containing brightness and contrast 

resembles a Gaussian-like bell shaped curve with a plateau at the top. The second cluster contains 

Gaussian blur, image size, and all three types of noise resembles an exponential decay. The third 

category contains saturation and sharpness and has shown a small reduction in performance, which 

stays mostly uniform throughout the range. 

The value of this research comes from studying the results and providing consistent guidance to 

the user as to which level of image degradation needs to be dealt with at a pre-processing stage to 

alleviate the drop in performance.  
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1 Introduction 

This research develops a framework for creating a trained object detection based deep learning 

model given a dataset and then determines the robustness of the trained model on degraded 

imagery. The first part of this thesis is centered around using a custom dataset to train the target 

neural network to obtain object detection results. The second portion of the thesis is centered 

around training the target network on a typical object detection dataset and then determining the 

model robustness using a testing set of degrading images. 

In this thesis, we design a framework to be able to be interchangeable with different datasets, 

different deep learning neural networks, and different degradation models. We chose to test this 

framework on Faster RCNN using our custom dataset and the VOC2007 dataset with nine different 

degradation models separately. This allows us to prove this framework works for testing model 

robustness without having to be exhaustive in our work. This also allows our framework to be 

easily used in the future with different datasets, different CNNs, and other types of degradation 

models. 

 

1.1 Motivation 

The general goal for this research is to start by using a simple binary-class dataset for object 

detection, move onto a multi-class dataset, then, ultimately, perform a sensitivity analysis on the 

multi-class dataset. The overall motivation behind this is to determine the robustness and the 

impact of degraded images on object detection models. We start off using a binary-class object 

detection problem to see how well the model can perform given a simple problem. Then, we want 

to scale up the number of classes to produce more results. After we get multi-class working, we 

want to degrade the testing set of images and see how well the model from the last step performs 

on this non-pristine dataset. This will allow us to determine the robustness and impact of each 

method. 

The motivation for the first section of this thesis – training a neural network on a binary-class 

dataset – comes from the previous work being done in the Imaging, Robotics, and Intelligent 

Systems (IRIS) laboratory by a post-doctoral researcher named William Kuhn. His doctorate 

research work was centered around taxonomy – the field of naming and classifying organisms 

[66]. His main focus inside this field is on the Odonata, which are dragonflies and damselflies. 

This leads into the creation of the Aphylla dataset, which he allowed us to use for this thesis. The 

objective he wanted to accomplish in his post-doctoral research in the IRIS labs was to be able to 

accurately detect Odonata within images taken in nature. With this task in mind, we decided to 

help him accomplish this by training a neural network using the Aphylla dataset. The end result 

would be a trained model which could detect the dragonflies within the given image. The future 

extensions of this work is to be able to count the number of dragonflies and then classify each 

detection.  
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For the second section of this thesis – testing the robustness of an object detection based deep 

learning model – the motivation comes from a question sparked by the first section of the work: 

given an image taken by any type of camera where the image is likely to be degraded in some 

form, how well would a deep learning model detect the objects in that image? This question gave 

us the motivation to create our easy to use framework to solve this problem. We decide to use a 

multi-class dataset to perform this sensitivity analysis because it will allow us to gather more 

results and, therefore, more conclusions. We assume (1) the deep learning model is trained on a 

mostly pristine, typical object detection dataset containing multiple classes and (2) the image 

contains a random type of degradation. To simulate the random type of degradation, we create our 

own degradation model to accomplish this task.  

 

1.2 Pipeline 

The process pipeline that we are presenting in this thesis is broken into two parts: a binary class 

framework and a multi-class framework, as shown and explained in Figure 1.1.  

 

1.3 Contributions 

The main contributions in this work are three-fold: (1) creating the framework/pipeline for 

determining model robustness, the whole of Figure 1.1; (2) the creation of the degradation model 

that is applied to the testing set of images before testing the model, the purple box in Figure 1.1; 

and (3) consistent guidelines and recommendations for mitigating the performance drops from the 

degradations. The first contribution will allow future extensions of this work to flow smoothly and 

produce robustness results with minimal effort. The second will allow any type of degradation to 

be applied onto the testing images for testing model robustness. The third will provide the user 

with guidelines about how to alleviate the performance drops caused by the degradation functions. 

CONTRIBUTIONS: 

1. Creation of the framework/pipeline 

a. Allows any dataset 

b. Allows any network 

c. Allows any model 

2. Creation of the degradation model 

a. Nine degradation functions 

b. Allows any type of degradation 

3. Consistent guidelines and recommendations for mitigating performance drops 

The pipeline we created is the overarching contribution within this thesis. This includes the 

degradation model we created. This pipeline lays down the groundwork needed for testing model 

robustness with any base network and any object detection model available, whether that be in 

past, present, or future networks and models. This allows this thesis work to be used by anyone 

wanting to test for any type of model robustness on any kind of degradation techniques. In this  
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Figure 1.1. Both model frameworks used within this research work. The first framework is for 

binary class object detection, meaning a single object and the background. The second is for multi-

class object detection, which uses the VOC2007 dataset that contains 20 objects and the 

background. Both frameworks follow the same format. First, we split the dataset into training, 

validation, and testing sets. We, then, feed the training set into the target network, and we use the 

validation set to validate the current training iteration once it finishes to determine if the network 

should re-train on the training set. Once this process is finished, we have a trained model. We feed 

the testing set into the trained model to obtain a probability vector containing a probability for 

each detection. Then, we use the probabilities to determine the model score via using a 

benchmarking metric, the mean average precision score. The addition we include in the second 

framework is the degradation model that we created. We have, in total, nine different degradation 

models, which are all listed within the figure. 
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thesis, we choose to demonstrate our pipeline using our binary class, custom dataset – Aphylla – 

as well as using the multi-class PASCAL VOC2007 dataset and using the VGG16 base network 

with the Faster RCNN object detection model. These are examples of the pipeline being used, even 

though any network and model can be used. 

The degradation model we created sits in the pipeline between the testing set of images and the 

trained model and is our second major contribution. This model allows for any type of degradation 

to be applied to the testing images, and conversely, to the training and validation sets of images 

too. This will allow future works to be able to use our degradation model to test for many different 

types of model robustness beyond what we test in this research. This thesis applies 12 levels of 

nine different degradation types to the test set of images. We chose these nine types to demonstrate 

how our model integrates in the pipeline and show how simple it is to take one of the degradation 

techniques and change it to another. 

The consistent guidelines and recommendations for mitigating performance drops we provide is 

our third major contribution. The three categories we classify each degradation type into are high, 

medium, and low impact. These categories are based on the fluctuations within the results. The 

high category resembles a Gaussian-like bell shaped curve that has a plateau at the top. This plateau 

covers a decent portion in both the brightness and contrast graphs, from 50% to 200%. Outside of 

this plateau, the fringes of the graph resemble exponential decays. An example of the guideline we 

provide based on these characteristics is at which point in the range would a pre-processing step 

need to be performed on the images before object recognition can be performed in order to 

minimize the performance decrease. For instance, in the second category, the results resemble mild 

to severe exponential decays throughout the entire range. In order to delay the model performance 

effects of these types of degradation, a pre-processing step, such as median filtering, needs to be 

applied to the test images. For the third class, the results show a small reduction in object detection 

performance, which stays mostly uniform throughout the range. This means that no action is 

needed. 

 

1.4 Synopsis 

In Chapter 2, we discuss our custom dataset as well as study the previous work completed in this 

field related to public datasets, deep learning models, and sensitivity analysis. In Chapter 3, we 

discuss the methodology of training the network on the custom dataset as well as the process of 

determining model robustness on degraded imagery. In Chapter 4, we discuss our results obtained 

from both sections of our work and include recommendations that need to be taken based on the 

model performance on each degradation technique. Lastly, in Chapter 5, we conclude the thesis 

with the summary of our work as well as possibilities of future work.   
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2 Literature Review 

This chapter will consist of descriptions and background of the datasets used in this thesis, the 

history of CNNs, the background works related to object detection using deep learning networks, 

and related works pertaining to performing sensitivity analyses. The ordering of this chapter is 

based on the pipeline we created in Figure 1.1. The pipeline (and ordering of this chapter) starts 

with the datasets being used by the CNN. After the CNN is fully trained by the datasets, the object 

detection model uses the trained network, which produces the detection results. These results are 

used to perform the sensitivity analysis. We set this chapter up this way to help illustrate how and 

in what order the pipeline is being used. 

 

2.1 Datasets 

In the recent years, object recognition and detection tasks have become particularly popular, and 

these require large annotated image datasets to train. If the dataset is not sufficient in size, the 

model can quickly overfit the data, meaning it cannot be generalized to any new images since it is 

overly fine-tuned to the current images [53]. The datasets also must be annotated, which is an 

exceptionally tedious task because it requires a large amount of manual labor since the object 

outlines or bounding boxes have to be accurately created by humans. These two requirements, 

being large-scale and annotated, led to organizations creating privately owned only for in-house 

use as well as publicly available image datasets so there would be standardized ways to train object 

detection models. For the privately owned datasets, researchers were creating them for their own 

projects and would only publish the datasets if their work was published to a high profile journal 

[34], [45]. We have created our own private dataset as well. It is aptly named Aphylla after a genus 

of dragonfly since the dataset consists of only dragonflies.  For publicly owned datasets, three 

main image datasets, which are also annotated, have been made specifically for object detection 

tasks: PASCAL VOC (pattern analysis, statistical modeling, and computational learning visual 

object classes) [46], ImageNet [25], and COCO (Common Objects in Context) [33]. The CIFAR-

10 and CIFAR-100 datasets are publicly available as well [6], [27]. In this research, we use our 

dataset – Aphylla – as well as both the PASCAL VOC2007 and ImageNet datasets separately to 

train our model. 

 

2.1.1 Binary Class Dataset – Aphylla 

The dataset, compiled by William Kuhn, is named Aphylla after a genus of dragonfly and consists 

of 110,750 images containing at least one dragonfly or damselfly per image. A few example 

images are shown in Figure 2.1. All of the images in the dataset were copied with permission from 

OdonataCentral (OC) [58]. A portion of the dataset consists of 14,740 annotated images, which 

include all four corners of the bounding box that encompasses each dragonfly and damselfly. The 

annotations were created in the Zen of Dragons project on the crowdsourcing platform 

Zooniverse.org [59], where users drew a tight bounding box around each dragonfly and damselfly  
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Figure 2.1 Example images of the Aphylla dataset. A few example images from the Aphylla 

dataset. These images show close ups of dragonflies, which is what this dataset mainly consists of. 

It also contains many images showing multiple dragonflies in a single image. 
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in each of the 14,740 images. To make sure the annotations were accurate, each image was 

annotated by four users, and the coordinates of the bounding boxes represent the average of the 

two closest ones for each object. We use the annotated portion of the dataset to train our model. 

 

2.1.2 Multi-Class Datasets – PASCAL VOC and ImageNet 

We use the PASCAL VOC2007 and ImageNet datasets for training our model, so these are the 

only two groups of datasets we will discuss in this section. There are a vast amount of other 

publicly available, multi-class datasets used within the field of deep learning that we chose not to 

discuss in this section for clarity.  

The PASCAL  VOC and ImageNet datasets are multi-class and publicly available for anyone to 

use for research purposes. The model we use in our research is pre-trained with the ImageNet 

dataset and fine-tuned on the VOC2007 dataset, which is one of the many PASCAL VOC datasets. 

We chose to demonstrate the research work using the VOC2007 dataset to train the network even 

though any dataset can easily be used. We wanted to narrow down the work for the sake of time. 

The pipeline in Figure 1.1 makes changing the dataset in the future trivial. 

The following sub-sections are going to talk about the descriptions and background work behind 

the PASCAL VOC datasets – specifically VOC2007, the one used in the thesis – and the ImageNet 

dataset – the one used to pre-train our network. 

 

2.1.2.1 PASCAL VOC 

The PASCAL VOC datasets are some of the most widely used public datasets for object detection. 

A dataset was created for the PASCAL VOC challenge every year from 2005 to 2012, but the 

VOC2007 and the VOC2012 datasets are the most popular, e.g. [18], [44], [50], and more make 

use of these two specific datasets. The 2007 dataset encompasses 20 classes of objects (defined 

later), which has been a fixed number ever since [46]. All VOC datasets consist of the images with 

bounding box annotations, and the 2008 dataset and later also have segmentation annotations. The 

bounding box annotations include the coordinates for the four corners of the box in which the 

object is tightly encompassed as well as the class of the object. In contrast, the segmentation 

annotations include which object class each individual pixel is. The images and the annotations in 

the VOC datasets are broken into training, validation, and testing sets before they are made 

publicly available. Although the split can be arbitrary, the split used for the VOC dataset is 

25%/25%/50% (training/validation/testing), meaning 25% of the data is used to train the model, 

etc. [46]. The substantial portion of images in the testing set are used for rigorous evaluations of 

the models submitted to the PASCAL VOC challenge [46]. As of 2008, testing annotations were 

no longer released to prevent model fabrication via parameter tuning – creating a model to 

specifically perform well on the testing data and nothing else [46]. We chose to use the VOC2007 

dataset in this research as the testing annotations were needed to test our model without having to 

reduce the training and validation set sizes. 
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Each year, the VOC datasets were created by using images from the photo-sharing website Flickr 

(flickr.com), which are consumer images [46]. The search terms used in creating the datasets are 

exceedingly general, i.e. they include the “targeted” class name, synonyms, and scenes or 

situations where the class is likely to occur [46]. An example would be the class “cow” where they 

also use the terms beef, heifer, moo, dairy, milk, milking, and farm in the Flickr search [46]. This 

resulted in a seemingly unbiased dataset because the images were randomly selected from the site 

rather than an image scientist creating or selecting the images for the dataset with the sole purpose 

of object detection/recognition. Since they were randomly selected, the images consist of a variety 

of object sizes, orientations, poses/angles, and illumination [46]. The images also contain a 

variation of object placement or position, for example, there are images with dining tables and 

chairs in a room scene containing other objects, rather than the dining table and chairs being the 

focus of the image. A few of the images are shown in Figure 2.2. 

After the VOC2007 dataset was created, a small bias was discovered in the creation of the dataset 

due to the way the images were collected. Flickr used (and may still use as default) a method called 

“recency” when it returned search results, which means the most recent images are returned first 

[46]. The VOC datasets were created by generating 100,000 images (100 pages of 1,000 images 

each) for each search term and selecting a random image from each page, and since the VOC2007 

dataset was created in January of 2007, it led to an abnormal number of Christmas/winter-related 

images being included. For example, the dataset contains a larger number of Christmas trees than 

it would have contained at any other time of the year. This was alleviated in the later years by 

including a randomized date in each search term, which would return a more normalized set of 

images [46]. 

Once the images were selected for the dataset, there were strict guidelines set in place for the 

creation of the annotations by Everingham et al., the creators of the dataset, in [46]. These 

guidelines lay out all of the specifics of the objects being annotated, such as what to label, image 

quality, bounding box details, accuracy, etc. The guidelines also break down the specifics of each 

class and what not to include, e.g. do not include lions in the “cat” class or benches/stools in the 

“chair” class. This was necessary to maintain consistency and accuracy throughout the entire 

dataset, which would guarantee accurate training and evaluation of models trained on this dataset. 

The dataset is divided into two main subsets: training/validation set (trainval) and test set, with the 

trainval set further divided into suggested training (train) and validation (val) sets [46]. In total, 

the dataset contains 9,963 images consisting of 24,640 annotated objects and are split with 50% in 

the trainval set (train: 2501; val: 2510) and 50% in the test set (test: 4952). These are already split 

beforehand, but the users are also able to combine, randomize, and split the images again as they 

see fit as long as the image sets contain a relatively equal number of images from each class in 

both the trainval and test sets. If the sets are not relatively equal in this regard, it could potentially 

lead to a biased model – able to classify certain objects really well but performs poorly on the rest. 

The splits as they are released is also how the submitted models into the challenge will be 

evaluated. 

The statistics for how the 20 classes in the VOC2007 dataset are broken down is as such: aeroplane 

(238 trainval images, 204 test images); bicycle (243, 239); bird (330, 282); boat (181, 172); bottle  
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Figure 2.2 Example images from the VOC2007 dataset. A few example images from the 

VOC2007 dataset showing cars, buses, boats, people, birds, dining table and chairs, horses, cats, 

and more. 
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(244, 212); bus (186, 174); car (713, 721); cat (337, 322); chair (445, 417); cow (141, 127); 

dining table (200, 190); dog (421, 418); horse (287, 274); motorbike (245, 222); person (2008, 

2007); potted plant (245, 224); sheep (96, 97); sofa (229, 223); train (261, 259); and tv/monitor 

(256, 229), adapted from Table 2 in [46]. The numbers in the trainval set versus the test set for 

all objects are as close in size to one another as the creators could get given there are multiple 

objects per image. 

 

2.1.2.2 ImageNet Description 

At over 15 million images with over 22,000 categories, ImageNet is the largest, public image 

dataset used for object recognition and detection research [25]. WordNet is used as the backbone 

of ImageNet, meaning the words in WordNet are first disambiguated, then the synonyms are 

combined together to create the object categories. ImageNet consists of all third party imagery that 

has been annotated using Amazon Mechanical Turk, or MTurk, where manual tasks can be posted 

for a small monetary reward [25], [57]. The ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) has been hosted every year since 2010 using a subset of the entire ImageNet database, 

which contains roughly 1.2 million images evenly broken down into 1,000 non-overlapping 

categories [25]. 

 

2.1.2.3 Dataset Summary 

In the previous sub-sections, we discuss the PASCAL VOC datasets as well as the ImageNet 

dataset. Within the thesis work, we specifically used the VOC2007 dataset to fine-tune the network 

and the ImageNet dataset as the pre-trained network. There are many other datasets not covered 

here because we chose to use these two datasets to prove that the aforementioned pipeline (shown 

in Figure 1.1) works. 

 

2.2 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a stepping stone into the field of deep learning, which 

is a category of machine learning that is used specifically for feature extraction. The extracted 

features can be acoustic models for speech recognition [10], [42], lexical items for natural language 

processing [2], visual cues for translating videos to natural sentences [47], or image features for 

image processing (among other tasks). In [31], [32], deep neural networks learned to master the 

game of Go using supervised learning from human expert games and reinforcement learning from 

games of self-play, called AlphaGo. This is only one of the many examples there are of deep neural 

networks achieving remarkable results. Arguably, the most popular application of CNNs is image 

processing. 

This section covers the history of CNNs starting off with the object recognition problems CNNs 

have faced, the structure of CNNs, and the many different networks covered in chronological 
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order. We ultimately decided on using the VGGNet as our base model and Faster RCNN as our 

object detection model. 

 

2.2.1 Object Recognition and Detection Problems 

CNN architectures that have been created for object recognition and detection are explicitly built 

with images as inputs, which allow certain assumptions to be made to make the CNNs more 

efficient by reducing the number of parameters. Traditional neural networks only allow the 

neurons to react to a single point in the input whereas convolutional neural networks allow the 

neurons to react to a region of the input. This region is determined by the convolutional kernel size 

and allows the CNN to learn object features from images. When CNNs were first introduced in 

1998 [21], the major drawback was the vast amount of computational power required to apply 

them to anything larger than 32x32x3 images. Today, that is not an issue, especially with how 

large GPU memory space has gotten due to Moore’s Law, which allows the training data to be 

much higher resolution imagery. Training data has grown in size significantly since then as well. 

These two reasons combined can help explain why CNNs have become immensely more popular 

since 1998.  

 

2.2.2 Structure of Convolutional Neural Networks 

The typical structure of a CNN is as follows: 

INPUT → CONV → ReLU → POOL → FC → OUT (2. 1) 

where INPUT is the input images; CONV stands for the convolutional layers within the 

architecture; ReLU means rectified linear unit, which is placed after each CONV; POOL is the 

pooling layer after each ReLU; FC stands for the fully connected layers used for classification at 

the end of the pipeline; and OUT is the output feature maps. The input image is fed into the network 

as an array, and the first layer is always a convolutional layer1. This layer uses the convolutional 

kernel to create the next layer of hidden neurons. The kernel determines the region of pixels in the 

input layer that will be connected to each neuron in the hidden layer, which is called the receptive 

field, shown in Figure 2.3. Almost all CNN networks contain a varying number of convolutional 

layers as well as varying sizes of the convolutional kernels within each layer. 

The next step in the CNN pipeline is the activation function, which is applied to the resulting 

hidden layer. One of the most popular activation functions, ReLU, is defined as 

 

𝑓(𝑥) = max(0, 𝑥) (2. 2) 

                                                 
1 There have been recent works using genetic algorithms to determine the best structure for the layers of a 

Deep CNN [19], [12].  
 



 

12 
 

 

Figure 2.3 Example of a 5x5 convolutional kernel being applied to a 28x28x1 image, from 

[54]. The convolutional kernel is used in the sliding window technique (more precisely, 

convolving). It moves one pixel to the right each iteration, and once it reaches the end, it starts 

again on the left side and moves one pixel down. This results in going from 28x28 in the input to 

24x24 in the first hidden layer. 

 

where x is the value in the hidden layer. The function thresholds the layer at 0, resulting in a feature 

map. The pooling layer comes right after the ReLU and reduces and simplifies the feature map for 

the next convolutional layer. The most common size of the pooling layer is 2x2, meaning the 

feature map would go from 24x24 to 12x12. The regularly used pooling method is called max 

pooling, which outputs the maximum value in the 2x2 grid to a single neuron in the next layer as 

shown in Figure 2.4. The classifications are usually handled with FC layers at the end of the 

network, but there have been studies trying to determine the effectiveness of using FC layers over 

using a SoftMax operation for the classification [13], [20], [37].  

 

2.2.3 Architectures of Convolutional Neural Networks 

2.2.3.1 LeNet 

The first successful attempt at developing and implementing a CNN architecture started in 1998. 

It was developed by Yann LeCun, aptly named LeNet [21]. This architecture heavily progressed 

the field of Deep Learning by laying the groundwork for building architectures. The best known 

LeNet framework was LeNet-5 developed in 1998 for document recognition, as shown in Figure 

2.5. The structure is 𝐼𝑁𝑃𝑈𝑇 → 𝐶𝑂𝑁𝑉 → 𝑃𝑂𝑂𝐿 → 𝐶𝑂𝑁𝑉 → 𝑃𝑂𝑂𝐿 → 𝐹𝐶 → 𝐹𝐶 → 𝑂𝑈𝑇. The 

network was used for zip code and digit recognition in documents, so the output vector is of length 

10 containing the probabilities of the input being one of the 10 digits [21]. 

 

2.2.3.2 AlexNet 

Based off of the LeNet framework and shown in Figure 2.6, Alex Krizhevsky et al. developed  
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Figure 2.4 Example of a 2x2 max pooling layer being applied to a hidden neuron layer, from 

[54]. 

 

 

Figure 2.5 Structure of LeNet. The architecture for LeNet-5 is shown here, from [21]. Each plane 

is a feature map created from the convolutional layers and the subsampling layers of the network. 

 

 

Figure 2.6 Structure of AlexNet. The architecture for AlexNet is shown here, from [23], [24]. 

This figure is specifically showing how each of the two GPUs are being used for the network. The 

top half is one GPU, and the bottom half is the other. The lines between the two halves are when 

the GPUs communicate, only being on specific layers. 
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AlexNet in 2012, which was a much deeper and wider version of LeNet-5 [23], [24]. AlexNet used 

two GPUs to significantly reduce training time. The network took first place in the very difficult 

ImageNet Large Scale Visual Recognition Competition (ILSVRC) by a massive margin of 10% 

error. AlexNet scored a 16% top 5 error while the runner up scored a 26% [26]. This resulted in a 

revolution in the Computer Vision world by proving how effective CNNs can be for image 

recognition. 

 

2.2.3.3 ZFNet 

With a slight modification to AlexNet, ZFNet was developed by Matthew Zeiler and Rob Fergus, 

which took first place in ILSVRC 2013 [9]. ZFNet expanded the size of the middle convolutional 

layers and made the kernel and the stride of the first conv layer smaller to gather more information 

compared to AlexNet. 

 

2.2.3.4 GoogLeNet 

In 2013, Christian Szegedy et al. from Google slightly modified AlexNet to perform better on 

object detection rather than just classification [11]. Then, they decided to build their own network 

in 2014, called GoogLeNet, to reduce the computational burden of typical CNNs [20], [37]. Their 

key goal was to get it to run efficiently on the Google servers at large scale while still achieving 

state-of-the-art performance. GoogLeNet won first place in ILSVRC 2014. The two main 

contributions to their architecture were the Inception module, shown in Figure 2.7, and using 

average pooling and a SoftMax classifier instead of the fully connected layers for classification, 

effectively reducing the operations significantly. There are currently four versions of GoogLeNet, 

each with slight modifications from the last. 

 

2.2.3.5 VGGNet 

Two people in the Visual Geometry Group at the University of Oxford, Karen Simonyan and 

Andrew Zisserman, created and implemented the CNN architecture that was runner up to 

GoogLeNet in ILSVRC 2014 called VGGNet, shown in Figure 2.8 [49]. They were the first to use 

stacked 3x3 convolutional layers throughout the entire network instead of the larger kernels used 

in previous architectures, which led to being able to simulate a larger receptive field. This meant 

more complex features could be extracted, and it also proved performance is reliant on the depth 

of the network. The only downside is the vast number of parameters that comes with using this 

many small kernels in sequence, ultimately increasing the computational cost for training this 

network. They made the pretrained network available on multiple different deep learning 

frameworks to combat this issue. 
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Figure 2.7 Structure of the Inception module in GoogLeNet. The 1x1 convolutions blocks 

significantly reduce the number of parameters in the network (4m compared to 60m in AlexNet), 

from [20]. These are used to condense the number of operations having to be applied by each 

parallel block. Having parallel operations and using 1x1 convolutional blocks help in achieving 

state-of-the-art performance with a lower computational cost compared to other networks.  

 

 

Figure 2.8 Structure of VGGNet. This shows the 6 different configurations of the network with 

D performing the best at 16 layers, from [49]. The convolutional layer parameters are denoted as 

“conv (receptive field size) – (number of channels)”. The ReLU activation functions are left out 

for brevity.   
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2.2.3.6 ResNet 

The winner of ILSVRC 2015 was ResNet, which was developed by He et al [13]. ResNet achieved 

an astounding 3.6% error rate, while human error rate is usually between 5% and 10%. Their 

innovations are skip connections (shown in Figure 2.9), dropping the FC layers off of the end and 

using a pooling layer then a SoftMax as the final classifier instead, and using substantial amounts 

of batch normalization. Batch normalization is the technique in which the inputs are normalized 

before feeding them into the network. In the case of ResNet, the network performs batch 

normalization in between each convolutional layer and activation function. ResNet was also the 

first time a network of more than 100 layers was ever trained [13]. 

 

2.2.3.7 Summary 

There are many different architectures of CNNs that are prominent within the field of deep 

learning. Most of the aforementioned CNNs have each won awards based on their performance 

and are the main CNNs used within deep learning models today. We have not performed a fully 

exhaustive review over all types but wanted to highlight the frequently used ones. 

In this research project, we have decided to use the VGGNet as the base CNN within our model. 

We chose this network based on the accuracy performance of this network and the compatibility 

with the model we chose – Faster RCNN – as well as based on previous knowledge of using the 

network. We chose to use Faster RCNN as our object detection model because it was the latest 

model at the time that showed the highest object detection performance. 

 

2.3 Object Detection using Deep Learning 

For the last few years, deep learning architectures have vastly outperformed other methods, such 

as handcrafted features like Scale-Invariant Feature Transform (SIFT) [15], on various tasks within 

computer vision, with the most popular being object detection and recognition. The largest  

 

 

Figure 2.9 Structure of a skip connection used in ResNet. The skip connection feeds the output 

of two convolutional layers along with the input into the next layer effectively becoming a small 

classifier, from [13].  
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competition for computer vision tasks is ILSVRC, talked about in Section 2.2. ILSVRC evaluates 

algorithms for object detection and classification at a very large scale using a subset of the 

ImageNet dataset, which consists of more than 1.2 million images with 1,000 categories [25]. The 

competition started in 2010, and since 2012, the winners have been deep learning architectures. 

This is due to the fact CNNs are able to directly learn object features from large scale datasets, 

which ImageNet provides. Outside of the competition, there has been progress on creating deep 

learning models that are used specifically for objection detection and recognition. The models 

consist of the typical CNN architecture that is pretrained on ImageNet as the core along with 

another algorithm used either before or after or, in some cases, both before and after to help fine-

tune the localization and classification of the object. Next, we will discuss the most prominent 

models for object detection as well as each one’s innovations in the order in which they were 

developed. 

The first ground-breaking model for object detection was developed by Girshick et al. in 2014 

called Region-based Convolutional Neural Network (RCNN) [36], [38]. As an alternative to 

exhaustive search, RCNN uses selective search to propose object containing regions in the image 

[40]. Selective search initializes around 2,000 small regions in an input image and combines them 

based on hierarchical measures such as color spaces and similarity metrics. Once all of the regions 

have been proposed, a CNN is run on top of each one, which equates to running about 2,000 CNNs. 

The output from all of them are fed into Support Vector Machines (SVMs) to classify the objects 

and a linear regressor to tighten the bounding boxes. There is one SVM used per output class. The 

best version of this model achieved 62.4% mAP on the PASCAL VOC2012 test dataset, which 

was state-of-the-art performance at the time. 

In the following year, Girshick was able to identify and address the two glaring problems in RCNN, 

having to run thousands of CNNs and having to run an SVM for each class. To solve the first 

problem, he created the technique called Region of Interest Pooling (RoIPool). RoIPool consists 

of streamlining three distinct functions: applying one CNN to the full input image, applying 

selective search to the outputted feature maps, and reducing the feature map size using a maxing 

pooling layer, which output valid RoIs for the input. The second issue was much simpler to 

address; he substituted the SVM classifiers for a single SoftMax layer for classification. Both of 

these modifications combined increased the speed considerably over RCNN, and Girshick 

appropriately named it Fast RCNN [17]. 

The last bottleneck to address in the RCNN family of models was selective search. In 2016, just 

one year later, one of the teams at Microsoft Research decided to address this issue by creating the 

Region Proposal Network (RPN), which uses anchor boxes as well as a sliding window on the 

feature maps of the CNN to generate an objectness score and the coordinates for each bounding 

box. The output from the RPN along with the feature maps from the CNN are fed into a Fast 

RCNN model to perform the classification and adjust the bounding boxes. The team decided to 

call this model Faster RCNN [18], which is shown in Figure 2.10. It reached much better speeds 

than Fast RCNN (about 10 times faster) while still maintaining state-of-the-art accuracy. The best 

version of this model has achieved 78.8% mAP on the PASCAL VOC 2007 test dataset as well as  
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Figure 2.10 Structure of the Faster RCNN model. This model is a single, unified network for 

object detection. The RPN module serves as the ‘attention’ of the model, from [18]. 

 

75.9% mAP on the PASCAL VOC 2012 test dataset. This model concluded the lineage of RCNN 

models used solely for bounding box detection in images. 

Later that year, another model was developed with the sole purpose of being able to detect objects 

in real time named You Only Look Once (YOLO) [52]. This model predicts bounding boxes and 

class probabilities with a single CNN in a single evaluation. The model takes an input image and 

divides it into an S by S grid (default: S = 7). For each cell in the grid, multiple bounding boxes 

are predicted, each with a confidence score, and non-maximum suppression is applied at the end 

to merge the overlapping bounding boxes that contain the same class. This results in a model which 

can perform object detection at 45 frames per second (using a titan X GPU) while maintaining a 

63.4% mAP on the PASCAL VOC 2007 test dataset. 

At the end of 2016 (same year Faster RCNN and YOLO were released), YOLOv2 was developed 

by Redmon et al. with the focus of improving the accuracy of YOLO while still maintaining the 

speed [50]. The new additions in this model include using a slightly larger input image to be able 

to detect marginally smaller objects, using batch normalization instead of dropout to prevent 

overfitting, removing the final FC layer to reduce the number of parameters in the model, and 

adapting the anchor boxes from Faster RCNN. They also decided to use a ResNet like structure to 

be able to stack both high resolution and low resolution features. Combining all of these 

modifications, they were able to achieve a 78.6% mAP at 40 frames per second (again on a titan 

X GPU) on the PASCAL VOC 2007 test dataset when they used both the VOC 2007 and 2012 

training and validation datasets to train their model. 
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A few months later, in March 2017, a research team in Facebook AI developed a model to extend 

the capabilities of Faster RCNN, called Mask RCNN, to be able to perform image segmentation, 

which is locating each pixel of each object within an image [30]. The key innovation of this model 

was called RoIAlign, which computes the subpixel values of the location of pixels within the 

feature maps and uses those calculations for the region proposals. This subpixel calculation allows 

for more precise bounding box detections, which leads to being able to associate each pixel with 

an object. Mask RCNN outperformed the current state-of-the-art model in multiple different 

challenges.  

In 2018, YOLOv3 was created by Redmon et al. trying to address the main complaint about 

YOLOv2 not detecting small objects [51]. The new model trades speed for accuracy, which is 

accomplished by adding more layers and performing the object detection at three separate places 

within the network. In total, there are 106 layers being used with the last 53 of those being used 

specifically for object detection. The three detections are made at three different sizes in the 

network, which, in turn, help with detecting small, medium, and large objects. The model also uses 

3 anchor boxes per detection (9 in all), which leads to 10-12x more bounding boxes than YOLOv2. 

This is one of the reasons this version is slower. YOLOv3 runs at 30 frames per second. 

 

2.4 Sensitivity Analysis 

In this section, we discuss a general overview of the degradation problem, previously attempted 

solutions, how a sensitivity analysis can be used to mitigate this problem, how one is performed, 

and then, we review the current state of the art in sensitivity analysis applied to object detection 

deep learning models. We will also discuss what will be performed in this thesis, and why this is 

an extension to the previous works. 

In the context of computer vision, performing a sensitivity analysis is applying degradation 

techniques to images before testing a deep learning model and analyzing the results to determine 

how robust the model is. Currently, deep CNNs are trained on pristine images, implying there is 

an assumption the test images will also be pristine with no artifacts. This means the model will not 

perform well on images taken by a mobile phone or a non-high quality camera, which would make 

it useless for everyday images. One sub-optimal solution to this problem is using denoising 

methods as a preprocessing step in the model, which has proven to not work effectively unless a 

specific form of noise has been applied to the images beforehand [16], [48]. In a general sense, 

denoising methods typically consist of smoothing out the image while trying to maintain the edges 

and the fine details of objects. The main problem with these methods is they do not generalize to 

other types of noise well. If a test set contains a mixture of naturally noisy images, pristine images, 

and images with a specific form of noise applied to them, a denoising method used as a pre-

processing step would most likely prove useless while extending the time it takes for the model to 

test. This is because the artifact-free images would be fed through the denoising method even 

though it is not needed, providing poor results. The naturally noisy images would also provide 

poor results, since most denoising methods cannot effectively reduce natural noise [16], [48]. 

Sensitivity analysis, as it is being used in this project, can be a viable method for testing the 
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robustness of the deep learning model to determine how effective the model is when given low 

quality images. 

In previous works, a relatively small number of degradation techniques have been applied to 

images before model inference has been performed to test the model robustness. In [48], the 

authors applied blur, noise, contrast scaling, and JPEG compression to the dataset they used. These 

techniques were used in such a way that humans would still be able to identify the objects within 

the images. Their results showed how each of these methods significantly decreased the 

performance of their model and how this issue cannot be addressed properly by existing 

convolutional layers. Blur, noise, and JPEG compression – a smaller subset of the aforementioned 

techniques – were used in [22] showing similar results on the degraded imagery as [48]. The unique 

approach they applied to the models is image quality assessment based label smoothing. This 

proved to significantly improve the results of the model, although this only applies to image 

classification, not object detection. In addition, [16] decided to take it one step further and apply 

various levels of three different types of noise as well as multiple levels of JPEG compression to 

their images. Their results were very similar to [48], so they created a version of denoising to use 

on the images as a preprocessing step before testing the model. Although, the results were better 

than if no denoising method was used, their results proceeded to not have a significant enough 

impact on the performance to warrant using an extra step in the model. Yim et al. concluded the 

method they used lost too many details in the smoothing process since deep learning models rely 

on more than just the object edges to perform well.  

In this research, we are going to use nine degradation functions to perform our sensitivity analysis, 

which is more than the previous papers applied to their image sets. We wanted to use the same 

methods the previous papers used as well as adding more functions to increase the variation in the 

overall results. The functions we chose are changing the amounts of brightness, saturation, 

contrast, Gaussian blur, image size, sharpness, Gaussian noise, speckle noise, and salt and pepper 

noise. The reason we chose this many functions is to produce more results than the previous works 

and allow us to more accurately determine which functions the model is more robust towards and 

which have greater impacts. Using this many functions within a single sensitivity analysis has not 

been performed by any other researchers at this time, which makes this thesis unique in that aspect. 
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3 Training and Sensitivity Analysis 

The main goal of this project is to apply the Faster RCNN model to a custom dataset and to perform 

a sensitivity analysis on the model. The objectives of executing these two tasks are (1) to observe 

the performance of Faster RCNN given a new object class to detect and (2) to assess the robustness 

of the model on artificially degraded imagery. The following sections are divided into four parts: 

applying the model to the binary class dataset, applying the model to the multi-class dataset, an 

example of applying the model to the binary class dataset combined with multi-class, and the 

sensitivity analysis on the VOC2007 dataset.  

 

3.1 Training Faster RCNN using Aphylla 

In this research, we chose to use the Faster RCNN model to perform object detection on our binary 

class custom dataset. This is because Faster RCNN is more accurate compared to the competition 

[43], and our focus was on accuracy and not speed. The implementation of the model we used in 

this project uses VGG16 as the base network [35]. This network was provided in the torchvision 

package within PyTorch as a network pre-trained on ImageNet. PyTorch is a deep learning 

framework that is built using the Python coding language [60]. Torchvision includes various 

models and popular datasets that can be used freely within PyTorch to train and test different 

networks. Both the architecture of VGG16 and the ImageNet dataset were described in chapter 2. 

The implementation of Faster RCNN we used was ported to PyTorch from another framework. In 

that process, [3] decided to make a few modifications for the ease of translation. The major 

modifications made were three-fold: (1) instead of using RoIPool, they used crop_and_resize, a 

new module they created; (2) they decided not to aggregate the gradients; and (3) they decided to 

keep the small region proposals. Following the work of [43], the crop_and_resize module is used 

in the place of RoIPool in the model. This module crops and resizes the resulting feature map that 

would normally be fed into RoIPool down to the proper size and performs max pooling to resize 

the feature map, which is then fed into the fully connected layer for classification. This change in 

modules appears to have a slight advantage over the original. The next modification made is not 

aggregating the gradients, which requires extra operations when ported into PyTorch. These extra 

operations noticeably slow down the model. The last major change is the decision to keep the small 

region proposals, which were originally discarded if they were under 16 pixels in height or width. 

This allows the new model to be able to detect marginally smaller objects. Overall, these 

modifications to the original model only slightly effect the performance. Refer to [3] to view the 

rest of the modifications and the results. 

 

3.1.1 Modifications to Run Faster RCNN 

Many modifications needed to be made on the model for our dataset to work. The first pre-

processing step we needed to make was to randomly split our custom dataset into training, 

validation, and testing sets. We decided to use 50%/25%/25% for our ratios since they closely 
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relate to the split of the original VOC2007 dataset, which is 25%/25%/50%. The only difference 

is we decided to make the training set larger than the validation and testing sets to ensure our model 

would have enough data to train on. Another step that needed to be made was converting the 

annotations for the images to the proper format the model requires, which is based on the original 

VOC2007 dataset. When converting the annotations, we discovered VOC uses 1-based indexing 

while Aphylla uses 0-based indexing for the starting points of the bounding boxes. This means the 

bounding boxes in our dataset were not being correctly interpreted by the model. Once we fixed 

this error, we started getting correct results.  The other modifications have been adapted from [62], 

[63]. These two solutions have been significantly helpful in the process of getting Faster RCNN 

to work on our custom dataset. 

 

3.1.2 Model Training with Aphylla 

Using the custom dataset, we trained and tested the Faster RCNN model using the default 

parameters found in [18], [3]. The key parameters from those papers are the batch size, the loss 

function, the optimizer, and the epochs. The batch size is one image instead of a typical batch size 

greater than one, e.g. [20], [24], [52] etc. This is to account for the model being able to train on 

varying sizes of images without having to pad the edges of the images to make them the same size. 

The next significant parameter is the cross entropy loss (CEL) function. This function calculates 

the loss, which is the performance of classifying the objects. The equation for CEL is as follows: 

𝐶𝐸𝐿 =  − ∑ 𝑦𝑜,𝑐 log(𝑝𝑜,𝑐)

𝑀

𝑐=1

(3. 1) 

where 𝑀 is the number of classes; 𝑙𝑜𝑔 is the natural log; 𝑦 is the binary indicator based on if 𝑐, 

the class label, is correct based on 𝑜, the observed class; and 𝑝 is the predicted probability 𝑜 is of 

class 𝑐 [61]. Next, the model tries to minimize the CEL using stochastic gradient descent (SGD), 

which is the optimizer. The SGD algorithm in this model uses an initial learning rate (LR) of 0.001 

with a momentum of 0.9. The LR is decayed by 0.1 to 0.0001 after 30,000 epochs. SGD is the 

main contributor to the model being able to learn to correctly detect objects. The last main 

parameter we want to mention is the number of total epochs we train the model for, which is 

70,000. This is the default number of epochs used to fine-tune Faster RCNN on the original dataset 

[3], and we decided to use this with our custom dataset since it produced notable results. 

 

3.2 Training Faster RCNN using VOC2007 

The next task we needed to perform before we could start on the sensitivity analysis is training 

Faster RCNN on the VOC2007 dataset, which is the multi-class dataset we decided to use. We 

wanted to produce our own trained model on this dataset rather than using the trained model 

provided by [35]. This proved to be a much simpler task than training on the binary class dataset 

since the model was already adjusted to train properly on the VOC2007 dataset beforehand. We 

used the default parameters as stated in [3] to train the model. We also used the default number of 
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epochs stated in [3], which is 70,000. This worked without any issues and produced a fully trained 

Faster RCNN model. 

 

3.3 Dataset used for Sensitivity Analysis 

The sensitivity analysis performed in this project determines the robustness of the Faster RCNN 

model on degraded images. Deep learning models, in general, are trained on pristine images to 

detect objects, meaning the model will perform poorly when tested on naturally degraded images, 

i.e. from a smartphone or a non-high quality camera, [16], [48]. The techniques we chose to use 

will simulate naturally degraded images and will allow us to determine how degraded an image 

can be before the performance of the model significantly decreases. In the following sections, we 

will describe how the number of images in the image set was chosen, present the equations and 

ranges for each degradation technique with examples of each, and explain how we tested the model 

on these degraded image sets.  

A smaller test set size needed to be chosen for the VOC2007 dataset to reduce the computational 

time in both applying each degradation function to the test set and testing the model. To accomplish 

this task, we started by creating test sets beginning at 1,024 images and decreasing by a factor of 

two to 64. We chose to use the Gaussian blur function as the technique to apply to each set since 

our preliminary results showed the output of the model when using this function had a more 

predictable output curve compared to the other techniques. In our attempt of finding the best test 

set size, we graphed the mean average precision (mAP) scores for each size and compared them 

to determine how small the set could be while still maintaining within 5% error rate of the mAP 

scores for the entire set – 67.6% mAP using our 512 testing set versus the baseline score of 71.1% 

mAP using the entire 4,952 image set. This turned out to be 512 images, which also allowed us to 

reduce the computational time significantly as compared to the original test set size of 4,952 

images. 

Once we chose 512 images as the optimal set size, the images contained in the initial random 

sample of 512 needed to be checked for any bias. A bias in the smaller dataset would result in the 

object detections not closely matching other randomized 512 image datasets. To check for this, we 

randomly sampled 1,536 images from the overall test set, divided them into three 512 image sets, 

and tested the model on each set with visualized results, as shown in Figure 3.1. The comparison 

showed that the three sets we created were all within one standard deviation of each other, which 

concludes there is no bias. 

 

3.4 Degradation Techniques used for Sensitivity Analysis 

In this project, we used degradation techniques to attempt to cover the majority of possible artifacts 

found naturally in noisy images. The techniques include adjusting nine different functions: 

brightness, saturation, contrast, gaussian blur and noise, image resizing, sharpness, speckle noise, 

and salt and pepper noise. These functions are applied separately to each image set, and then the 
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Figure 3.1 Comparison between the three 512 image datasets to determine bias. This graph 

is of the results of creating three 512 image test sets, applying Gaussian blur to each image, and 

then getting the results of the model. This graph shows the mAP scores vs. the Gaussian blur radius 

in pixels. The error bars on each bar are one standard deviation above and below the mAP score. 

 

model is tested on each individually.  

To perform an effective sensitivity analysis, one of the first things we needed to consider was how 

to choose the ranges for each function. For consistency purposes, we created a set of criteria for 

choosing the ranges, which stated the ranges needed (1) to include the extrema for each technique 

and (2) to be significantly visually different from image to image. The extrema for each technique 

are the minimum value for each range and the maximum value. In some cases, we only were able 

to get as close as possible to the extrema since the actual extrema points were infeasible. This will 

be explained in the next part of this section. 

The second criterion we needed to meet was to make sure the ranges contained an adequate amount 

of visual differences in each iteration. We did not want to space out each step too close or too far 

from one another, in other words, trying to cover the best possible range for each technique. For 

us to achieve this, the ranges needed to be a mixture of linear spacing and log spacing for a couple 

of reasons. First, we had to make sure to include the original image within the range and to include 

both the extrema. The second reason is we had to make sure each step in the ranges had enough 

visual differences to warrant including them. We did not want wasted space in each range. We 

also made sure these rules did not produce duplicates in the ranges, since duplicates would add to 

the computational time in both creating the image and testing the model. Along with these two 

standards, we ultimately decided to make each range contain 12 different steps to ensure proper 

coverage of each technique. All of this allowed us to obtain meaningful results when testing the 

model. 
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3.4.1 Brightness  

The first technique we apply to the image set is adjusting the brightness. This allows us to generate 

images that are ranging from pitch black to white-washed, which attempt to replicate a type of 

non-pristine image. We adjust the levels of brightness by using the following transformations: 

 

𝑔𝑟(𝑥, 𝑦) =  𝑓𝑟(𝑥, 𝑦) ∗  𝑟𝑎𝑡𝑖𝑜

𝑔𝑔(𝑥, 𝑦) =  𝑓𝑔(𝑥, 𝑦) ∗  𝑟𝑎𝑡𝑖𝑜 (3. 2)

𝑔𝑏(𝑥, 𝑦) =  𝑓𝑏(𝑥, 𝑦) ∗  𝑟𝑎𝑡𝑖𝑜

 

𝑟𝑎𝑡𝑖𝑜 = [0%, 3000%] 

 

where 𝑔(𝑥, 𝑦) is the output RGB values, 𝑓(𝑥, 𝑦) is the input RGB values, and 𝑟𝑎𝑡𝑖𝑜 is the desired 

brightness over the original brightness of the image [55], [56]. The 𝑟𝑎𝑡𝑖𝑜 values used for the first 

portion of the range start at 0% and go to 100% using the log space, which allowed us to obtain 

more images with low brightness and fewer with close to original brightness. The second set of 

𝑟𝑎𝑡𝑖𝑜 values start at 100% and go to 3000% using the log space again. Breaking the values into 

two sets allowed us to make sure the original image (at 100%) would be included and to have more 

images at lower brightness levels than higher, which would meet the second criterion. An example 

of this range of brightness is shown in Figure 3.2. The range of 𝑟𝑎𝑡𝑖𝑜 values is 0%, 10%, 15%,  

 

 

Figure 3.2 Example image displaying the various levels of brightness, indicated in the top left 

in cyan as a percentage. Brightness levels ranging from 0% (all black) to 3000% (white-washed), 

including 100% (untransformed). 
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22%, 32%, 46%, 68%, 100%, 234%, 546%, 1282%, and 3000%. 

 

3.4.2 Saturation 

The second technique we utilize is adjusting the saturation levels in the image. This task is 

accomplished by, first, calculating 𝑔𝑝(𝑥, 𝑦), pixel luminance: 

 

𝑔𝑝(𝑥, 𝑦) =  0.299 ∗ 𝑓𝑟(𝑥, 𝑦) +  0.587 ∗ 𝑓𝑔(𝑥, 𝑦) +  0.114 ∗ 𝑓𝑏(𝑥, 𝑦) (3. 3) 

 

where 𝑓𝑟(𝑥, 𝑦) is the red value, 𝑓𝑔(𝑥, 𝑦) is the green value, and 𝑓𝑏(𝑥, 𝑦) is the blue value of each 

pixel in the image. The second equation, which is directly controlling the saturation and returns 

the new RGB values, is as follows: 

 

𝑔𝑟(𝑥, 𝑦) =  𝑓𝑟(𝑥, 𝑦)– ((𝑓𝑟(𝑥, 𝑦)– 𝑔𝑝(𝑥, 𝑦)) ∗  𝑟𝑎𝑡𝑖𝑜)

𝑔𝑔(𝑥, 𝑦) = 𝑓𝑔(𝑥, 𝑦)– ((𝑓𝑔(𝑥, 𝑦)– 𝑔𝑝(𝑥, 𝑦)) ∗  𝑟𝑎𝑡𝑖𝑜) (3. 4)

𝑔𝑏(𝑥, 𝑦) =  𝑓𝑏(𝑥, 𝑦)– ((𝑓𝑏(𝑥, 𝑦)– 𝑔𝑝(𝑥, 𝑦)) ∗  𝑟𝑎𝑡𝑖𝑜)

 

𝑟𝑎𝑡𝑖𝑜 = [0%, 750%] 

 

where 𝑟𝑎𝑡𝑖𝑜 is the desired saturation over the original saturation in the image [55], [56]. Saturation 

is the amount of gray mixed in with the pure colors in each pixel. A highly saturated image would 

contain more pure colors with less gray in them while an undersaturated image would tend to be 

grayer overall. As shown in Figure 3.3, the range used for adjusting the saturation attempts to cover 

the full range from grayscale to heavily saturated. The first set of 𝑟𝑎𝑡𝑖𝑜 values start at 0% 

saturation, which is a grayscale image, and goes to 100% (untransformed). This section of the 

range uses linear spacing, increasing by 25%. The second part of the range starts at 100% and goes 

to 750% using the log space. This allowed us to accurately depict the higher saturation values 

while also maintaining a visual difference in each image. The range of 𝑟𝑎𝑡𝑖𝑜 values is 0%, 25%, 

50%, 75%, 100%, 133%, 178%, 237%, 316%, 422%, 562%, and 750%. 

 

3.4.3 Contrast 

The next technique we apply to the images is adjusting the contrast level. Contrast in an image is 

the difference between the maximum and minimum pixel values. In other words, it determines 

how distinguishable an object is within the image. Maximum contrast would mean every object in 
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Figure 3.3 Example image displaying the various levels of saturation, indicated in the top left 

in cyan as a percentage. Saturation levels ranging from 0% (grayscale) to 750% (heavily 

saturated), including 100% (untransformed). 

 

the image significantly stands out with all the colors overly exaggerated – much deeper than 

normal. Minimum contrast would mean the image is completely gray. The equations used to adjust 

the contrast levels are as follows: 

 

𝑓𝑎𝑐𝑡𝑜𝑟 =  
259 ∗ (𝑐 + 255)

255 ∗ (259 − 𝑐)
(3. 5) 

𝑔𝑟(𝑥, 𝑦) =  𝑓𝑎𝑐𝑡𝑜𝑟 ∗  (𝑓𝑟(𝑥, 𝑦) −  124) +  124

𝑔𝑔(𝑥, 𝑦) =  𝑓𝑎𝑐𝑡𝑜𝑟 ∗  (𝑓𝑔(𝑥, 𝑦) −  124) +  124 (3. 6)

𝑔𝑏(𝑥, 𝑦) =  𝑓𝑎𝑐𝑡𝑜𝑟 ∗  (𝑓𝑏(𝑥, 𝑦) −  124) +  124

 

 

where,  

𝑐 =  {
𝑟𝑎𝑡𝑖𝑜 ∗ 255;  𝑖𝑓 𝑟𝑎𝑡𝑖𝑜 ≥ 1

𝑟𝑎𝑡𝑖𝑜 ∗ −255;  𝑖𝑓 𝑟𝑎𝑡𝑖𝑜 < 1
(3. 7) 

𝑟𝑎𝑡𝑖𝑜 = [0%, 2000%] 
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and 𝑟𝑎𝑡𝑖𝑜 is the desired contrast over the original contrast [39]. Equation 3.5 is the contrast 

correctional factor equation, which allows the contrast to be user controlled with a simple ratio 

percentage [56]. The value of 259 in the equation is an experimental number the creators of this 

particular python package found to work nicely within the equation [56]. In the equations 

calculating the new RGB values, 124 is used as the middle value of the image or pure gray. The 

middle value is typically 127, since that is the true gray value, but the package we used in Python 

put its own mark on the equation [56]. The first portion of the values used in adjusting the contrast 

starts at 0% and goes to 100% using linear spacing. The second set starts at 100% and goes to 

2000% using log space. Using this range allowed us to have a greater amount of differences in 

each image, as shown in Figure 3.4. The 𝑟𝑎𝑡𝑖𝑜 values used in this range are 0%, 5%, 21%, 37%, 

52%, 68%, 84%, 100%, 211% 447%, 946%, and 2000%. 

 

3.4.4 Gaussian Blur 

After adjusting different image intensity factors, we decided to apply a Gaussian blur to the image 

set. This simulates viewing an image through a semi-transparent screen, which makes the entire 

image appear out of focus. The equation used for applying Gaussian blur is as follows: 

𝑔𝐺𝐵(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 (3. 8) 

𝜎 = [0, 9] 

 

 

Figure 3.4 Example image displaying the various levels of contrast, indicated in the top left 

in cyan as a percentage. Contrast levels ranging from 0% (all gray) to 2000% (heavily 

contrasted), including 100% (untransformed). 
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where 𝑥 is the distance from the origin on the x-axis, 𝑦 is the distance from the origin on the y-

axis, and 𝜎 is the standard deviation (blur radius) [55], [56]. The blur radius is the variable factor 

in this equation that controls how much blur the resulting image will have. The range used in this 

technique starts at 0 pixel radius and goes to 2 in increments of 0.5, and then starts again at 3 and 

goes to 9 in increments of 1, as shown in Figure 3.5. The increments of half of a pixel in the first 

set of values are considered a sub-pixel, which is still calculatable as a blur radius. This range 

allowed us to demonstrate the differing amounts of blur that could be present in an image. The 

blur radius values used are 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, and 9. 

 

3.4.5 Image Size 

The next technique we used is resizing the image and scaling it back up to the original height and 

width. This simulates a pixelated or low resolution image. Resizing the image with a small 

percentage based off the original size would result in the image containing very few pixels. A large 

percentage would be mostly unnoticeable since the image would only be resized slightly. Instead 

of using an equation, this technique uses an algorithm to resize the image with the variable being 

the percentage of the original image size [56]. We tested multiple different resampling filters, but 

ultimately decided to use the nearest neighbor filter. This resampling filter simulates a lower 

resolution image better than the others. The range used for the scaling percentage started at 100% 

and decreased to 4% in log space as this allows for more images on the lower side of the range. 

An example image with this range applied is shown in Figure 3.6. The range of levels of image 

resizing is 100%, 75%, 56%, 42%, 31%, 23%, 17%, 13%, 10%, 7%, 5%, and 4%. 

𝑔𝑖𝑠(𝑥, 𝑦) = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑓(𝑥, 𝑦) ∗ 𝑟𝑎𝑡𝑖𝑜) 𝑢𝑠𝑖𝑛𝑔 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

 

 

Figure 3.5 Example image displaying the various radii of Gaussian blur, indicated in the top 

left in cyan. Gaussian blur with radii ranging from 0 (untransformed) to 9 pixels (heavily blurred). 
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Figure 3.6 Example image displaying the various levels of image resizing, indicated in the 

top left in cyan as a percentage. Sizes ranging from 100% (untransformed) to 4% (pixelated). 

Resizing replicates pixelization by reducing the image by a given percentage of the original image 

size using the nearest neighbor filter, then upscaling the image to the original size. 

 

3.4.6 Sharpness 

Image sharpness is related to image intensity as well, but it is not as directly related as the first 

three image characteristics mentioned above. For this technique, we adjust the sharpness within 

the image, which is the equivalent of enhancing the edges of the objects. At 0% sharpness, the 

resulting image is the original. At increasingly higher percentages, the output image has artificially 

enhanced edges around every object in the image. The calculation used for this is as follows: 

 

𝑔𝑠(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + (𝑓(𝑥, 𝑦) − 𝑔𝐺𝐵(𝑥, 𝑦)) ∗ 𝑎𝑚𝑜𝑢𝑛𝑡 (3. 9) 

𝑎𝑚𝑜𝑢𝑛𝑡 = [0%, 374%] 

 

where  𝑔𝑠(𝑥, 𝑦) is the sharpened image, 𝑓(𝑥, 𝑦) is the original image, 𝑔𝐺𝐵(𝑥, 𝑦) is the Gaussian 

blurred image with radius = 2, and 𝑎𝑚𝑜𝑢𝑛𝑡 is the percentage of sharpness desired [55], [56]. The 

values we used for adjusting the ratio of sharpness start at 0% and go to 374% using a linear 

spacing, as shown in Figure 3.7. We chose these values to attempt to depict visual differences 

throughout the range. These values were the most difficult for us to attempt to apply the criteria 

to, because there are not many visual differences at higher percentages of sharpness as it is difficult  
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Figure 3.7 Example image displaying the various levels of sharpness, indicated in the top left 

in cyan as a percentage. Sharpness levels ranging from 0% (untransformed) to 374% (over-

sharpened). 

 

for a human viewer to differentiate them. The 𝑎𝑚𝑜𝑢𝑛𝑡 values used in this range are 0%, 34%, 

68%, 102%, 136%, 170%, 204%, 238%, 272%, 306%, 340%, and 374%. 

 

3.4.7 Gaussian Noise 

The last artifact typically found in images that we decided to manipulate is adding different types 

of noise. We chose three different variations: Gaussian noise, speckle noise, and salt and pepper 

noise. These three types help simulate noisy images taken by non-high quality or malfunctioning 

cameras. The equations for applying the first type of noise – Gaussian noise – to the images are as 

follows: 

 

𝑝𝐺(𝑧) =  
1

√2𝜋𝜎2
𝑒

−
(𝑧−𝜇)2

2𝜎2 (3. 10) 

𝑔𝐺𝑁(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑝𝐺(𝑧) (3. 11) 

𝜎2 = [0, 2.56] 
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where 𝑝𝐺(𝑧) is the Gaussian noise output, 𝑧 is the gray level of the current pixel (uses luminance 

equation stated above in saturation), µ is the mean value (default: 0), 𝜎2 is the variance, and 𝑓(𝑥, 𝑦) 

is the original image [39]. Variance is the variable factor for this technique, while the mean value 

was left at its default. The resulting noise in the images follows the statistical normal distribution, 

which is also called the Gaussian distribution [55]. The range used for adding Gaussian noise 

started at 0 variance, which is the original image, and increased to 2.56 variance using the log 

space, as shown in Figure 3.8. The log space allowed the range to contain more images with lower 

amounts of noise. Higher amounts of noise are harder for a human viewer to visually differentiate 

between, which would have meant using a linear spacing would have broken our criteria since this 

would have contained a higher quantity of noisier mages. The range used for the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is 0, 

0.01, 0.02, 0.03, 0.05, 0.09, 0.16, 0.28, 0.49, 0.84, 1.47, 2.56. 

 

3.4.8 Speckle Noise 

Speckle noise is inherently found in radar images and medical ultrasound images [1], [41]. Given 

this, we decided to add multiple levels of speckle noise to the image set to simulate the levels 

found in the aforementioned types of images. The equations used for adding speckle noise are as 

follows: 

 

𝑝𝐺(𝑧) =  
1

√2𝜋𝜎2
𝑒

−
(𝑧−𝜇)2

2𝜎2 (3. 12) 

𝑔𝑆𝑝(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + (𝑓(𝑥, 𝑦) ∗ 𝑝𝐺(𝑧)) (3. 13) 

𝜎2 = [0, 15] 

 

where 𝑝𝐺(𝑧) is calculated using Equation 3.10, 𝑧 is the grey level of the current pixel (uses 

luminance equation stated above in saturation), µ is the mean value (default: 0), 𝜎2 is the variance, 

𝑓(𝑥, 𝑦) is the original image [39]. Like in the Gaussian noise equation, variance is the variable we 

changed to control how much noise is present in the image, which ranges from 0 to 15 as shown 

in Figure 3.9. The range of 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 values is 0, 0.03, 0.06, 0.1, 0.19, 0.36, 0.67, 1.25, 2.32, 4.33, 

8.06, and 15. 

 

3.4.9 Salt and Pepper Noise 

The last technique is adjusting the amount of salt and pepper (S&P) noise in the images, also 

known as impulse noise. This type is commonly found in images produced by a faulty memory 

storage device or a faulty camera sensor [14]. We use this technique to simulate images taken 

while using the faulty equipment mentioned above. There is no simple equation for this type of 

noise. It is implemented with an algorithm, which can be found in [39]. S&P noise is randomly  
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Figure 3.8 Example image displaying the various levels of Gaussian noise, indicated in the 

top left in cyan as the variance. Gaussian noise with variance ranging from 0 (untransformed) 

to 2.56 (very noisy). 

 

 

Figure 3.9 Example image displaying the various levels of speckle noise, indicated in the top 

left in cyan as the variance. Speckle noise with variance ranging from 0 (untransformed) to 15 

(very noisy). 
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distributed within the image and can only be the minimum (pepper) or the maximum (salt) values 

in the typical image range of [0, 255]. We manipulated the amounts of S&P noise within the images 

using a random, uniform distribution of half salted pixels and half peppered pixels based on a given 

percentage using [39]. The range for this starts at 0% noisy pixels and increases to 50% using 

linear spacing as shown in Figure 3.10. The percentages used in this range are 0%, 5%, 9%, 14%, 

18%, 23%, 27%, 32%, 36%, 41%, 45%, and 50%. 

 

𝑔𝑠𝑛𝑝(𝑥, 𝑦) =  {
0, 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚(0.5 ∗ 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑓(𝑥, 𝑦))

255, 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚(0.5 ∗ 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑓(𝑥, 𝑦))
 

𝑟𝑎𝑡𝑖𝑜 = [0, 0.5] 

 

3.5 Model Testing – Degraded Image Sets 

We applied the model onto each resulting image set to test the robustness using the default model 

parameters provided in [18]. In total, there are 55,296 images split into 108 different image sets. 

These were created from the nine different functions with 12 values in each range. We decided to 

combine all of the images into one image folder, so we would be able to test the model 108 different 

times in series. Using this method for testing allowed all the results to be stored in separate log 

files, which enabled us to graph and compare each iteration of each technique separately. If we  

 

 

Figure 3.10 Example image displaying the various levels of salt and pepper noise, indicated 

in the top left in cyan as a percentage. Salt and pepper noise levels ranging from 0% 

(untransformed) to 50% (very noisy). The percentage is the amount of salt and pepper to add to 

the image with half being “salt” or 1s and the other half being “pepper” or 0s.  
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would have tested the model on all of the images at the same time, the model would have only 

produced one log file. This would have added significantly more post-processing time to separate 

each of them to be able to compare. Also, this would have taken more computational time as the 

model would have had to perform and store more computations in the cache from the significant 

increase in dataset size. This was observed when training and testing on multiple different dataset 

sizes (custom dataset, VOC2007). These results are discussed in the next chapter. 
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4 Experimental Results and Discussion 

This chapter is split into three parts: training the model on the custom dataset, performing the 

sensitivity analysis on the VOC2007 dataset, and discussion of the overall results. The first section 

covers the different approaches we took on experimenting with our custom dataset. The second 

section includes a demonstration of how the model performs when trained on our dataset combined 

with the original VOC2007 dataset. In the third section, we examine the results of applying the 

various degradation techniques on the VOC2007 testing set and the effects on the model. The last 

section is the discussion, which includes comparisons and relationships amongst all results. 

The metrics used in this chapter for comparison purposes are the average precision (AP) score and 

the mean average precision (mAP) score. Both of these scores are a combination of using the 

precision and recall scores of a model. Precision is how accurate (or precise) the model predictions 

are, while recall is the percentage of correctly detected results over all of the correct results. The 

AP score is calculated by taking the average of the maximum precision values at each recall value. 

Then, the mAP score is the mean of all of the different AP scores for each object class within the 

model. 

 

4.1 Results from Training the Object Detection Model 

This section includes the results using our binary class dataset – Aphylla – by itself and then 

combining Aphylla with the VOC2007 dataset. The Faster RCNN model we used in this work is 

trained on the ImageNet dataset and fine-tuned using the VOC2007 dataset. We decided to fine-

tune the model using our dataset alone as well as fine-tuning on a combination of both datasets 

together. This allows us to observe how viable our dataset would be if combined with another and 

if the model would perform adequately still. 

While modifying the Faster RCNN model to accept our custom dataset for training, we ran into 

multiple problems. While some were significant, we were able to solve all of them. Once we were 

able to get the model to correctly train using the custom dataset alone, we decided to combine the 

training set of our custom dataset with the training set of the VOC2007 dataset to train the model. 

The results of both of these training sets will be discussed in the following sections. 

 

4.1.1 Experiments with Aphylla 

Our first experiment consists of training the model using only our custom dataset – Aphylla. We 

used a Faster RCNN model pre-trained on the ImageNet dataset and fine-tuned the model with our 

custom dataset. We split our dataset into 50% training, 25% validation, and 25% testing, as 

previously mentioned in Chapter 2, which is 7370 training, 3685 validation, and 3685 testing 

images. Fine-tuning the model using this training set achieved 98.5% mAP score on the testing set 

with dragonfly as the only object class, as shown in Table 4-1. This is an astounding result for 

using a custom dataset for fine-tuning. 
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Table 4-1. Accuracy and timing results while training and testing Faster RCNN. 

Dataset 
Test 

Accuracy 

Train Time 

(sec / epoch) 

Train 

(FPS) 

Test Time 

(sec / image) 

Test 

(FPS) 

VOC2007 71.1% mAP 0.824 1.2136 0.32 3.125 

Aphylla 98.5% mAP 0.873 1.1455 0.291 3.4364 

Aphylla + 

VOC2007 
57.3% mAP 0.821 1.218 0.281 3.5587 

Aphylla + 

VOC2007 

96.8% AP on 

“dragonfly” 
- - - - 

 

The first row is the baseline experiment from [46]. The second row is the results from only using 

the Aphylla dataset to fine-tune the model. The third and fourth rows are the results when using 

a combination of the Aphylla and VOC2007 datasets. The fourth row is highlighting the AP 

score for the “dragonfly” object class. The Faster RCNN model resizes all images to 600 pixels 

along the shortest size and retains the image scale. The longer side varies per image. 

 

4.1.2 Demonstration of Combining Aphylla and VOC2007 Datasets 

The next experiment we performed involves training the Faster RCNN model using a combination 

of our binary class dataset – Aphylla – and the multi-class dataset – VOC2007. Our intention with 

this demonstration is to extend the multi-class dataset by one object class by including our binary 

class dataset. The VOC2007 dataset contains 20 object classes and the background, so we wanted 

to extend this to 21 object classes by adding the “dragonfly” class from Aphylla to VOC2007. We 

use the split mentioned above for the custom dataset and the original split of 25% training, 25% 

validation, and 50% testing for the VOC2007 dataset. After combining both datasets together, we 

used them to fine-tune the ImageNet pre-trained weights in the model. This resulted in a 57.3% 

mAP score, which is much lower than the baseline result. The “dragonfly” object class scored 

96.8% AP. These results are shown in Table 4-1. This is an odd mAP score given how well the 

model performed when training on the custom dataset alone. This prompted us to do a few more 

experiments and testing on both models – trained on Aphylla alone and trained on Aphylla and 

VOC2007 combined – to try to figure out why this happened. 

 

4.1.3 Determining the Cause of Disparity in mAP Scores 

After testing both models on various example images, we concluded that both models were 

overfitted on the custom dataset. When a model overfits the data, it means the model has learned 

the given data so much that it cannot generalize well to any other images. This means the custom 

dataset model generalizes to other images not containing the “dragonfly” object class very poorly 

by detecting dragonflies if the features remotely resemble a “dragonfly”. Similarly, the model 

trained on both datasets over-trained on the “dragonfly” images, which resulted in the majority of 

the objects being detected as “dragonfly” instead of their actual object class. 



 

38 
 

After discovering the overfitting, we went back through our methodology to find the mistake we 

made. This error was caused by not adjusting the sizes of the datasets before combining them. Our 

custom dataset is 7370 training, 3685 validation, and 3685 testing images. The VOC2007 dataset 

is 2501 training, 2510 validation, and 4952 testing images. The VOC2007 dataset contains 20 

object classes while our dataset contains only one object class. This leads to the combination 

dataset being very heavily weighted towards the “dragonfly” class versus all other classes. That is 

why the combination model is overfitted. The custom dataset model works as it should even though 

it is overfitted, because the ultimate goal beyond that portion of the thesis work is to be able to 

count the number of detected dragonflies within the images. The images on which the model would 

be tested are images that only contain the “dragonfly” class, similar to the dataset it was trained 

on. The next step after counting the number of dragonflies would be to classify each species within 

the images. 

In the future, we would like to be able to fix the combination model so the training dataset would 

not be heavily skewed towards one single class. We would even out the custom dataset to make 

the size comparable to the VOC2007 dataset, which would create a non-overfitted model. A more 

detailed explanation of how we would fix this is in Section 5.3. 

 

4.2 Sensitivity Analysis Results 

We tested the model on many different ranges for each technique trying to find the perfect 

combination to reach the criteria mentioned in Chapter 3 – contain all critical points in the range 

and significant visual differences between each point. We started creating the ranges for each 

degradation function with 30 points, and we determined this was too computationally expensive. 

This would have taken multiple days to test the network a single time since there are nine functions 

being applied to 512 images with 30 points in each range. This totals to be 138,240 images to 

perform model inference on. So, we lowered the range down to 16 points, which was still too 

computationally expensive with 73,728 images. Ultimately, we decided on using 12 points, 

because this lowered the number of images down to 55,296, which is 2.5 times smaller than the 

original range size. This allowed us to still have an adequate number of images to determine if the 

test images were visually different enough to meet the criteria. 

After we determined how many points would be in the ranges, we started to apply generic ranges 

for each of the functions onto the test images, but these were all visually inadequate. After the 

initial testing, we decided including the extremum was the simpler criterion to achieve first. We 

broke the majority of the ranges up into two parts to be able to include the original image (usually 

close to the middle of the range) as well as both extremes. Once we met the first part of the criteria, 

we had to fine-tune the parameters to meet the second criterion, which was being visually different. 

This part took quite a bit of testing and visualizing the test images to see if it would work properly. 

Note: we only made sure the test images had significant visual differences. After making sure they 

met the criteria, we proceeded to generalize this difference to the rest of the dataset and assume all 

images would be at least marginally different visually. Also, the whole dataset would be 
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guaranteed to be mathematically different at each iteration of each function given the equations 

mentioned in Chapter 3. 

Once we determined the lengths of the ranges and met the criteria, we proceeded to test the model 

on all 55,296 images. This took roughly 10 hours to complete the 512 test images, 9 degradation 

functions, and 12 iterations of each function. For benchmark purposes, we tested the model on a 

single set of 512 degraded images. This took 3 minutes on average to complete. Extrapolating that 

average time out to all 12 functions and 9 levels of degradation each, this would come out to be 

5.4 hours. This means there is about 4.6 hours’ worth of overhead, which can be most likely 

explained by the memory usage of running 55,296 images without clearing memory between each 

run. In the future, we would like to be able to minimize this overhead to maximize efficiency. 

 

4.2.1 Brightness Results 

The first function we applied to the dataset for testing the robustness of the model can be found in 

Equations 3.2, which changes the level of brightness in the images. The range used for this 

technique starts at 0% (all black) and ends at 3000% (white-washed), making sure to include 100% 

(untransformed), as shown in Figure 4.1. While keeping our previously mentioned criteria in mind 

–including the midpoint and the extrema in the range and being visually different from image to 

image – we split the range into two sections, before and after 100% with both sections using the 

logarithmic space. This allows us to guarantee the range would include the original image at 100% 

while also extending to both extrema. This also means that we are not confined to having the same 

number of points before and after 100%, which allows us to have more points where the images 

are the most visually different from one another. The range contains the points 0%, 10%, 15%, 

22%, 32%, 46%, 68%, 100%, 234%, 548%, 1282%, and 3000%.  

The drawback of splitting the range into two sections is the results are difficult to coherently 

display on a graph, as shown in Figure 4.2. Graph (A) shows the results in the linear space, which 

is the hardest graph to read of the three since the majority of the points are too close together at 

the beginning of the graph. This graph also does not make sense to use for the brightness since 

both sections of the range are in the log space, which will also hold true for either section of the 

range for the later functions. The second graph, (B), shows the results in the log space, which is 

slightly clearer than the other two with the exception of the starting point being 0 which is not in 

the log space since 𝑙𝑜𝑔(0) is undefined. Graph (C) shows the results with equidistance spacing 

between the points which is not proportional to the actual spacing between values. Although 

having this artifact, we are choosing to use this spacing because the ranges of the later functions 

consist of a mixture of linear and log space and we want to keep the graphs consistent between 

one another. This graph is also the easiest to read of the three and objectively more aesthetically 

pleasing to the eye. Based on these conclusions, we have chosen to use the spacing of graph (A) 

on all subsequent result graphs to maintain consistency when presenting the results of each 

function.  

Starting with the pitch black images (0% brightness), the majority of the AP scores for each object 

class are 0, which means no detections could be made. The outlier at 0% is the “TV monitor” class 



 

40 
 

 

 

Figure 4.1 Effect of image brightness on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images ranging in brightness from 0% (all 

black) to 3000% (white-washed), including 100% (untransformed, vertical dashed line). As the 

brightness increases from 0% to 10%, performance increases rapidly since the model is able to 

distinguish features even before objects become visible to a human viewer, due to the image 

normalization pre-processing used by the model. From 10% to 100%, performance increase 

steadily as object features become more visible. Above 100%, model performance decreases 

markedly as images become white-washed. Note: On (B), log space on both sides of 100% 

indicates two different log spaces scales being used. 

  

A 

 

B Log space Log space 
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Figure 4.2 Three different graphs displaying the brightness results using (A) linear space, 

(B) log space, (C) equidistant spacing between points. The vertical dashed line is the 

untransformed image in each graph. The first graph is very difficult to read because all of the 

points are too close together at the beginning. The log space graph is a better representation of 

the data except 0 is not on the log space graph, which is the first point in the range, and this graph 

would not be feasible for the later functions since they use a mixture of linear space and log space. 

The last graph is the easiest to read even though the spacing is not proportional to the distance 

between each point.  

A 

 

B 

 

C 
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 (0.0456 AP score). This can be explained because TV monitors (when turned off) are mostly black 

rectangles, which means the deep learning model may detect a false positive with a very low 

chance anywhere in the image since it is all black. Over the next few points, from 0% to 100%, 

the curve follows a very sharp increase and tapers off when approaching 100% as shown in Figure 

4.2a. This increase is occurring as the objects become steadily more visible. Once the images 

exceed 100% brightness, the mAP score rapidly decreases because the images are becoming 

increasingly white-washed, which in turn make the objects harder to detect. 

There are a few oddities within the results of this function. The first one is the “potted plant” class, 

which is the main outlier. This object class performs the worst in the majority of our experiments, 

including the initial VOC experiment [46]. This is caused by the training set not having enough 

images of this class (5.3% of the training set [46]) for the model to perform adequately on this 

object. The next peculiarity is a few of the object class detections start outperforming the original 

image before the images reach 50% brightness. This could be explained by the darker (lower 

brightness) images improving the distinguishability between the objects. This helps the model 

more easily detect those objects because the object textures are slightly enhanced, even though the 

overall images are not optimally displayed for a human viewer. Another interesting result is the 

“car” object class, which seems to perform the best towards both ends of the range. This occurrence 

happens because the “car” object class is the second largest class in the VOC dataset with “person” 

being the highest [46]. The reasoning behind “car” performing better than “person” at the ends of 

the range is because “car” objects have a single shape, whereas “person” objects can be various 

shapes. 

Adjusting the brightness is among the most fundamentally important functions for testing the 

robustness of the model since brightness is one of the core attributes of an image along with the 

saturation and contrast. The results from applying the brightness adjustments meet our 

expectations almost completely: the model performing well between 50% and 200% brightness 

and the performance sharply decreasing outside of this range. This means the model is robust 

enough to detect objects in images where the lighting is not as perfect as the majority of computer 

vision images. Corrective actions will have to be taken outside of this range, which would include 

pre-processing steps performed on the images before deploying the deep learning model on the 

imagery. These steps would include lowering or raising the brightness based on the results and the 

image. 

In conclusion, varying the levels of brightness within the test images proved to be a useful 

technique in determining robustness. The results showed the range between 50% and 200% as 

performing the best. This is intuitively expected since having ideal image intensity is a key factor 

for model robustness. 

 

4.2.2 Saturation Results 

The next method we used for testing the model is applying the saturation adjustment equations to 

the testing images, which can be found in Equations 3.3 and 3.4. This was a difficult method to 

determine the range to meet our criteria while obtaining good results simultaneously. After testing 
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many ranges and not being able to see a significant difference between the images for the majority 

of them, the one we ultimately decided to use starts at 0% (grayscale) and goes to 750% (heavily 

saturated) making sure to contain 100% (untransformed), as shown in Figure 4.3. We split the 

range into two sections for the same reasons as we did previously – to maximize the visual 

difference between images and to make sure to capture the three critical points. For the section 

before 100%, we used linear spacing by increasing the amount of saturation by 25% until 100%, 

creating a total of five points. After 100%, we used the logarithmic space from 100% to 750%, 

which created the last seven points. The points contained in this range are 0%, 25%, 50%, 75%, 

100%, 133%, 178%, 237%, 316%, 422%, 562%, and 750%.  

As shown in Figure 4.3b, the mAP score of the results start slightly lower at 0% (0.627) than they 

are at 100% (0.677). This is because the model does not rely solely on the color features of the 

objects but on a combination of the color and texture features. Past 100% saturation, the highest 

mAP score is 0.686 at 133%. This is because the colors in the images are easier to differentiate 

from one another than in the original images. This marginally boosts the mAP scores since the 

model can more easily detect the objects. After 133% saturation, the mAP scores steadily decrease 

down to 0.473 at the last point in the range (750%). At this point, the objects are much less 

distinguishable since all the reds and greens are overly exaggerated and mixing together between 

similarly colored objects. 

Similar to the brightness adjustment, the “potted plant” object class performs very poorly 

compared to the other classes. This result is unique because “potted plant” is lower than any other 

class at every point in the graph. This can be explained using the same explanation as before – the 

object class is under-represented in the VOC training set at only 5.3% [46]. Another interesting 

result is the “bicycle” object class, because it performs the same or better than all of the other 

classes at each different saturation level. The reasoning behind this is a bicycle is a rigid object. It 

almost never changes shape, which would also imply the texture features would generally stay the 

same for each “bicycle” object. This allows the model to almost always detect bicycles within 

saturated images since only the background behind the bicycle can change within the detected 

bounding box. The rest of the results fall within the expected range for each point. 

Varying the levels of saturation in the test images is another fundamental way to test the robustness 

of the model. This is because the saturation is one of the components of image intensity along with 

brightness and contrast. These three attributes are the main controllers of how an image is visually 

perceived, giving the model a good benchmark for testing to determine the performance. The range 

where the model performs the best on saturated images is between 50% and 200% saturation, same 

as the brightness. The mAP results stay above 65% within this range, which means the model will 

be able to detect the majority of objects even though the saturation is not perfect. Corrective actions 

need to be taken outside of this image saturation range, which should include raising or lowering 

the saturation given the initial results and visual cues within the images.  

Overall, saturation plays a lesser role than the other image intensity factors in determining how 

robust the model is. This is intuitively not expected because brightness and contrast both contribute 

heavily to robustness, which are the other two main attributes on image intensity. 
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Figure 4.3 Effect of image saturation on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images ranging in saturation from 0% 

(grayscale) to 750% (heavily saturated), including 100% (untransformed, vertical dashed line). 

As the saturation increases from 0% to 133%, performance increases gradually indicating the 

model does not rely solely on color features. Above 133%, model performance decreases steadily 

as images become saturated.  

  

A 

B Linear  Log space 
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4.2.3 Contrast Results 

The third attribute of image intensity is contrast. We applied Equations 3.5, 3.6, and 3.7 to the test 

images for adjusting the contrast. The range we decided to use starts at 0% (all gray) increasing to 

2000% (heavily contrasted), while making sure to include 100% (untransformed). Using the same 

criteria as before, we had to split the range into two sections again. Before 100%, we used the 

linear space to determine the points, which comprises of seven points. The point at 0% was 

included into the range after we created the initial range to make sure the low-end of the spectrum 

was covered. The reasoning for this is because starting the linear spacing at 5% and going to 100% 

was clearer to see the visual differences than starting at 0%, as shown in Figure 3.4. The second 

reason for doing it this way is from 0% to 5% contrast is already significantly visually different. 

The second section of the range uses the logarithmic space for determining the points. This allows 

this section to be able to show higher values of contrast and still maintain the needed 12 points 

within the range. The range consists of the points 0%, 5%, 21%, 37%, 52%, 68%, 84%, 100%, 

211%, 447%, 946%, and 2000%. 

The model performance was abysmal from 0% contrast to 5%, as shown in Figure 4.4, which is to 

be expected since the objects are almost indistinguishable from one another on account of how 

gray the image is. From 5% to 37%, there was a steep increase in the mAP scores explained by the 

objects in the images becoming more distinguishable, but not fully yet. After that, the results 

become much more stable until 211% where the results start sharply declining. Within this range, 

the objects are at the best contrast for the model to detect, as shown in Figure 4.4b, with 100% 

contrast giving the best detections. 

There are a couple irregularities within the contrast results, namely the “cat” and “potted plant” 

object classes. We will not go in-depth on the “potted plant” class since the explanation for why it 

is gives a lower than usual result holds true for each function – the training set of images only 

contains 5.3% of the “potted plant” class in the entire set [46]. As for the “cat” object class, it has 

a 0.09 AP score at 0% contrast, which is within the range of random guessing for 20 classes. The 

most reasonable explanation for this artifact in the results is the same reasoning as for the “potted 

plant” class, the training set only contains 6.5% of the “cat” object class [46]. There is also a lower 

number of “cat” objects in the training set than there are “potted plant” objects, 186 cats vs 248 

potted plants. 

Contrast is one of the core characteristics of image intensity, which is why adjusting the levels of 

contrast in the testing images is a crucial function in testing model robustness. The contrast results 

adhere to the same overall curvature of the brightness results since both are directly related to 

image intensity. The section of the range where the results are the most optimal is from about 50% 

to 200% contrast, which falls in line with the optimal ranges for both brightness and saturation. 

Brightness, saturation, and contrast are the main contributors to image intensity, which validates 

why the optimal ranges for all three coincide with each other. Outside of this range, pre-processing 

steps would need to be taken on the testing images to equalize the contrast based on the results 

from the model. 

In summary, contrast performs similarly to brightness (Section 4.2.1), which are both key factors 

in image intensity. This means adjusting the contrast is also an essential method for determining 
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Figure 4.4 Effect of image contrast on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images ranging in contrast from 0% (all 

gray) to 2000% (heavily contrasted), including 100% (untransformed, vertical dashed line). At 

0% contrast, the class “cat” stands out as unusual having an AP score of 0.09, which is within the 

range of random guessing with 20 classes. As the contrast increases from 0% to 5%, performance 

only slightly increases since the model is not able to distinguish features from the low contrasted 

images. From 5% to 21%, performance sharply increases as the model is able to differentiate 

objects from one another. Above 21%, model performance behaves analogous to brightness (fig. 

10), due to both being related to image intensity. 
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robustness. This is intuitively expected because image intensity is a large influence in deep 

learning models. 

 

4.2.4 Gaussian Blur Results 

Another method we used to create non-pristine images is applying Gaussian blur to the test images 

using Equation 3.8. This function allowed us to simulate blurry, out-of-focus images to test how 

robust the model is to this situation. After initially testing a range that used linear spacing from 0 

to 12, we determined that this would not fill the visually different criteria for the upper end of the 

range. Also, in the lower end of the range, going from 0 to 1 pixel blur radius was too large of a 

difference. This led us to split the range into two sections, 0 (original image) to 2 in increments 

of0.5 and 2 to 9 in increments of 1. This keeps the range spanning 12 points, and each iteration is 

much more visually different than the aforementioned range. The points in the range (all in pixels 

for the blur radius) are 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, and 9. 

The results after applying the varying amounts of Gaussian blur to the test images are displayed in 

Figure 4.5. The mAP curve in Figure 4.5b follows our intuition of what the results should be. 

Intuitively, the performance of the model should have started at the maximum AP scores for each 

object since the first point in the range is the original image. After that, it should degrade 

marginally as the images become slightly blurry. Then, the performance should sharply decrease 

until the image is completely out of focus. Finally, the end of the curve should continue steadily 

decreasing until the AP scores of each object reach almost 0. The actual results follow our intuition 

completely. 

As per usual, the “potted plant” object class performs the worst of the classes. Another irregularity 

is the “person” class is detected the best at the end of the range, and it stays stable around 0.10 AP 

score. This is an odd result since 0.10 AP is higher than expected given that the image is almost 

completely blurred by the ending of the range. The only plausible explanation for this is the 

“person” object class is the best trained object class in the model. The VOC training set is 

composed of 41% of the images containing one or more of the “person” object class [46]. Also, 

37.4% of all of the objects in the dataset are “person” objects. For perspective, the next largest 

object class is “car” at 15% of the dataset. Given how large the “person” class is, this explains why 

the AP score is abnormally high given that the images at the end of the range are not completely 

blurred. 

One of the key factors in testing the robustness of the model is testing how well it will perform on 

blurry images. This is because blurry or out-of-focus images are a typical type of non-pristine 

image to test an object recognition model on. Based on the results, the model performance starts 

heavily degrading after a 1 pixel blur radius. This is where the edges of the objects start becoming 

hard to distinguish for the model even though the objects themselves are easy to distinguish with 

the human eye. This means the acceptable range of usage is trivial. The recommended corrective 

actions to be taken when needing to detect objects in blurry imagery is to apply image sharpening. 

In short, applying Gaussian blur to the test images provides great insight into model robustness, 
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Figure 4.5 Effect of Gaussian Blur on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images applied with Gaussian blur with radii 

ranging from 0 (untransformed) to 9 pixels (heavily blurred). As the radius increases from 0 to 0.5 

pixels, overall performance stays the same since applying a Gaussian blur with radius of 0.5 pixels 

is analogous to anti-aliasing. From 0.5 pixel radius to 4 pixels, performance sharply decreases as 

features become less visible from the blurring. After 4 pixels, model performance steadily 

decreases to nearly 0.00 AP score, which indicates the object features are becoming 

unrecognizable. 
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showing how quickly the performance degrades as the blurriness increases. This result is 

intuitively expected, since the objects become harder for the model to detect within very few steps. 

 

4.2.5 Image Size Results 

Another method we chose to apply as a pre-processing step while testing for robustness is resizing 

the images to simulate poor resolution. The function we used to accomplish this can be found in 

[56]. The range we chose for this technique starts at 100% resolution and decreases to 4% using 

the logarithmic space, as shown in Figure 4.6. The way we implemented the range emphasizes the 

lower percentages more than the higher. This is because the lower percentages show a much larger 

visual difference between the images, which is our first criterion for the range. Our second criterion 

was also much easier to adhere to because there are only two critical points for this method, 100% 

resolution and 0%. This allowed us to not have to split the range into two sections. The points 

within the range are 100%, 75%, 56%, 42%, 31%, 23%, 17%, 13%, 10%, 7%, 5%, and 4% image 

resolution. 

The results of this function, shown in Figure 4.6, uniformly decrease as image resolution decreases. 

Beginning with the original resolution image, the mAP score starts rapidly decreasing until 42%, 

at which point, the results slow to a steady decrease. These results show that the model is not able 

to detect objects adequately when there is a large amount of pixelation in the image. The mAP 

score starts at 0.677 at 100% resolution, and at the next point (75%), the mAP drops to 0.575. This 

is a very noticeable decrease in the amounts of correct detections. When the range reaches 42% 

resolution, the mAP score is significantly lower at 0.185. After this position in the range, the mAP 

score gradually decreases to 0.009 by the last point in the range (4%). By the end, the objects are 

also entirely indistinguishable given how low resolution the images are. 

There are a couple anomalies in these results, which are similar to the previous techniques. The 

typical one is the “potted plant” object class. This class has scored marginally lower than all of the 

other classes in the majority of the techniques so far, and for the same reason – it is under-

represented in the VOC dataset [46]. Another object class with a greater difference than the rest is 

the “tv monitor” object class, which has been mentioned in Section 4.2.1. Towards the end of the 

range, this class has a higher AP score than most of the others. This has a similar explanation as 

the brightness results as well – a tv monitor is mostly a black/gray rectangle when turned off, so 

the model is detecting the lower resolution images as containing the “tv monitor” object class when 

the enlarged pixels are darker than the other pixels in the images. An example of these enlarged 

pixels is shown in Figure 3.6. The remaining results fall within the expected range for each point. 

Varying the pixelation within the images gives us insight into how the model detects objects. This 

understanding is given by showing us the relationship between how pixelated or low resolution an 

image is versus how well the objects are being detected. As the pixelation increases, the object 

detection rate markedly decreases. This occurs because a deep learning model is trained on three 

key features of an object (as well as many other features): the texture, outline, and color of the 

object. The object texture vanishes as soon as the resolution of the image starts to decrease. 
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Figure 4.6 Effect of image size on model performance: (A) AP by VOC class and (B) mAP 

overall. Model performance was measured for images ranging in size from 100% (untransformed) 

to 4% (extremely pixelated), which were resized back to the original size to replicate pixelated 

images. As the image size decreases from 100% to 42%, performance decreases markedly due to 

the model not being able to distinguish features even though objects are still easily detectable by 

a human viewer. Below 42%, model performance decreases steadily as the images become more 

pixelated. 
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Similarly, the outline of the object starts to get pixelated, which in turn blurs the edges of the 

object. The color features stay intact until the lower levels of the image resizing, which reinforces 

the idea mentioned in Section 4.2.2 – deep learning models do not rely solely on color features, 

but rather, they rely on a combination of the object features. The acceptable amount of pixelation 

in the test images is almost too minuscule to mention given the model does not perform well after 

the original image size. Corrective actions would need to be taken on pixelated imagery, but at this 

point in time, we are not sure on how to go about fixing pixelation. There are only methods to help 

mitigate pixelated images such as applying a small Gaussian blur filter or applying a sharpening 

filter. 

In conclusion, testing the model on low resolution imagery is essential for assessing model 

robustness since this type of degradation is typical in natural images. This method shows how the 

performance decreases as the pixelation increases. The overall result is intuitively expected 

because the object features become indistinguishable to the model quickly. 

 

4.2.6 Sharpness Results 

The next function we applied to the testing set is image sharpness adjustment using Equation 3.9. 

This technique uses the Gaussian blur equation (Equation 3.8) and subtracts that from the original 

image. This enhances the object edges within the image, making them sharper. This was the most 

difficult technique to find a suitable range for. We created and tested many ranges and still could 

not get substantial results. All of this was using multiple different spacings in both the linear and 

the logarithmic space. We also could not get them to meet our two criteria. So, we decided to keep 

this range simple. The final range starts at 0% sharpness (untransformed) and increases linearly to 

374% (very sharp) in increments of 34%. This allowed us to maintain a very loose interpretation 

of our criteria – visually different and including the critical points. The points in this range are 0%, 

34%, 68%, 102%, 136%, 170%, 204%, 238%, 272%, 306%, 340%, and 374%, as shown in Figure 

4.7. 

The mAP at 34% sharpness (0.6883) is slightly higher than the mAP at 0% (0.6765), as shown in 

Figure 4.7b. This is because increasing the image sharpness enhances all of the edges within the 

image. This makes the objects slightly more distinct, which in turn allows the model to detect the 

objects easier. After 34% sharpness, the results become almost completely linear, decreasing at a 

rate of 0.0082 mAP per 34% increment. In other words, the model performance decreased by 0.091 

mAP by the end of the range. This means the mAP for the model decreases at an extremely low 

rate while increasing the sharpness.  

Similar to the saturation results in Section 4.2.2, the “bicycle” object class scores the same or 

higher for all points except at 68% sharpness. The reason for this is explained in Section 4.2.2 – 

the “bicycle” object class is typically a rigid object. The other notable result is the “potted plant” 

object class, which scored significantly worse at all points than any other class. The explanation 

for this has been mentioned in each section before this one – under-represented in the VOC dataset 

[46]. The rest of the results fall with the margin of error at each point. 
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Figure 4.7 Effect of image sharpness on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images ranging in sharpness from 0% 

(untransformed) to 374% (very sharp). For the entire range of the sharpness, model performance 

stays the same within the margin of error with a slight decrease in performance with increased 

sharpness. This can be explained by the sharp images not being too different from the original 

images. The only thing that gets amplified in this operation is the edges become more visible, and 

the color stays the same, which are the two key features the model relies on. 
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Image sharpness is related to image intensity comparable to brightness, saturation, and contrast, 

although sharpness is not as tightly bound to the intensity as the others. This is why the results are 

much less similar. Also, varying the levels of sharpness within the test images is not an adequate 

assessment for model robustness, because the model is able to handle significant levels of 

sharpness before performing poorly. Ultimately, this means our model is adept at detecting objects 

in overly sharp imagery. Once the model performance drops to unacceptable levels, the corrective 

action that would need to be taken is to apply Gaussian blur to the images which are overly sharp. 

This should fix the majority of the detection issues in those images. 

To summarize, image sharpness is not a core factor for determining model robustness since the 

object features do not undergo a significant change as the other degradation methods we use in our 

experiments. This allows the model to be robust towards all tested amounts of sharpness, which is 

intuitively to be expected. 

 

4.2.7 Gaussian Noise Results 

The next method we use for assessing the robustness of the model is Gaussian noise, as shown in 

Equations 3.10 and 3.11, which uses a similar equation to Gaussian blur. This type of noise is easy 

to visually detect within an image, which made the visually different part of our criteria trivial to 

achieve. The second part of the criteria – include the critical points within the range – was also 

very simple to attain since there is no midpoint, like in Section 4.2.1 with 100% brightness needing 

to be encompassed within the range. The critical points are only the beginning and ending of the 

range, or the untransformed image and the noisy image respectively. This also means we did not 

have to split the range into two different sections. We used the logarithmic space to create all of 

the points needed. The variances used for the range are 0, 0.01, 0.02, 0.03, 0.05, 0.09, 0.16, 0.28, 

0.49, 0.84, 1.47, and 2.56. 

As shown in Figure 4.8, the model performance rapidly declines from 0 to 0.09 variance, 

decreasing from 0.677 mAP to 0.05. The reasoning behind this is as small amounts of noise are 

introduced to the images, the features that the model relies on get distorted, which in turn quickly 

decrease the detection rate. After 0.09 variance, the performance continues to decrease steadily 

until it reaches 0.01 mAP at 2.56 variance. By this point, the images are extremely noisy even 

though a human viewer might still be able to detect certain objects, the model cannot.  

There are not any major outliers within the results of the Gaussian noise. The ones that stand out 

are the “car” and “bus” object classes in the beginning and the “dog” and “person” classes towards 

the end of the graph in Figure 4.8a. The “car” object class consistently scores higher than most 

other classes from 0 to 0.49 variance. One reason behind this could be because “car” is the second 

largest class in the VOC dataset at 15% [46]. This means the model is trained to detected cars than 

most of the other object classes. Another reason could be that cars have many different 

appearances, for example, size, shape, and color, which would make the model more robust when 

adding noise to the images. The “bus” object class does not stand out as much as the “car” since it 

only scores higher than most classes from 0.01 to 0.05 variance. This could be explained with the 

same reasoning as the second portion as “car” although to a lesser extent – different appearances, 
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Figure 4.8 Effect of Gaussian noise on model performance: (A) AP by VOC class and (B) 

mAP overall. Model performance was measured for images applied with Gaussian noise with 

variance ranging from 0 (untransformed) to 2.56 (very noisy). As the Gaussian noise variance 

increases from 0 to 0.09, performance decreases sharply due to low levels of noise distorting the 

object features quickly. After 0.09 variance, model performance keeps decreasing steadily as 

features are almost unrecognizable by the model even though objects are distinguishable by a 

human viewer. 
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making the model slightly more robust towards detecting them. The classes at the end that score 

higher than the rest are the “dog” and “person” classes. They only score slightly higher than the 

others at 1.47 for “dog” and 2.56 for “person”. These are both within the range of randomness, 

which is the best explanation since both are still below 0.04 mAP. 

Overall, adding Gaussian noise is a beneficial test for model robustness because it allows us to see 

how quickly the model performance degrades at the first signs of noise. The acceptable amount of 

this type of noise before the model performance significantly degrades is non-existent, since 0.01 

variance decreases the mAP score from 0.677 to 0.503. There are not many corrective actions that 

can be applied to noisy imagery. The ones that do exist do not fix the problem well, such as 

adjusting the luminance or color of the image to simulate changing the exposure. Gaussian noise 

is an additive type of noise, whereas the next test we perform is on speckle noise, which is 

multiplicative. 

In conclusion, Gaussian noise is one of the three types of noise we use for testing the model 

robustness. The model performs poorly after applying this type of noise to the test images. This is 

intuitively expected, because adding small amounts of noise to images alters the object features 

significantly. 

 

4.2.8 Speckle Noise Results 

Speckle noise is the second type of noise we applied to the testing set of images using Equation 

3.13. This form of noise is multiplicative as mentioned at the end of the previous section, Section 

4.2.7. Gaussian noise is calculated by adding the result of Equation 3.10 into the original image, 

whereas speckle noise is calculated by multiplying the result of the same equation (3.10) with the 

original image and adding that result to the original image. The two types of noise only have subtle 

differences as can be expected with how similar the equations are. Another parallel between the 

two is how the criteria is met – noise is inherently easy to visually see within images and no 

midpoint needs to be included in the range. This allows the range to be one consistent string of 

numbers using the logarithmic space starting at 0 variance and increasing to 15, as shown in Figure 

4.9. These points are 0, 0.03, 0.06, 0.1, 0.19, 0.36, 0.67, 1.25, 2.32, 4.33, 8.06, and 15 variances. 

The mAP score gradually decreases as the variance increases from 0 to 0.36, as shown in Figure 

4.9b. After 0.36 variance, the model performance decreases at a slower pace. The marked decrease 

in the first half of the range can be explained by the noise altering the object features on which the 

model is trained, thus, in turn, decreasing model performance very quickly. This indicates the 

model is not robust in terms of speckle noise, which shares a similar conclusion as Gaussian noise.  

The two classes that stand out the most in the AP score results are “potted plant” and “car”. The 

“potted plant” object class is the class that stands out by scoring lower than the others in the 

majority of the different functions we have tested so far. The reasoning has also been explained 

multiple times – this class is under-represented in the dataset [46]. As for the second class, “car”, 

the AP score is higher than most of the other classes at almost the entire range. This class is the 

second largest object class in the VOC dataset, meaning the model has been trained to detect “car” 
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Figure 4.9 Effect of speckle noise on model performance: (A) AP by VOC class and (B) mAP 

overall. Model performance was measured for images applied with speckle noise with variance 

ranging from 0 (untransformed) to 15 (extremely noisy). As the speckle noise variance increases 

from 0 to 0.36, performance decreases gradually due to low levels of noise distorting the object 

features quickly. After 0.36 variance, model performance keeps decreasing steadily as features 

are almost unrecognizable by the model even though objects are distinguishable by a human 

viewer. 
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objects more adequately [46]. Speckle noise also seems to increase the contrast at the same time 

as adding noise compared to Gaussian noise as can be compared in Figures 3.8 and 3.9. This 

explains why the overall results are marginally higher than the results after applying Gaussian 

noise towards the ends of the ranges. 

Adding differing amounts of speckle noise is an important method to use when testing the 

robustness of a deep learning model, because speckle noise introduces the effects of noise and 

contrast simultaneously. The acceptable amount is nonexistent since the performance drops when 

small amounts of speckle noise are added to the test images. As mentioned in Section 4.2.7, there 

are not many actions that can be taken towards fixing noisy imagery. The ones that do exist only 

slightly mitigate noise – adjusting color/luminance to simulate changing the exposure of the image. 

Briefly, speckle noise adds both noise and contrast to the images. This results in the model 

performing slightly better than it did on Gaussian noise, which is intuitively expected because 

adding contrast in small amounts makes the objects slightly more distinguishable while adding the 

noise sharply decreases performance. 

 

4.2.9 Salt and Pepper Noise Results 

Salt and pepper noise is the final method we applied to the images for testing the robustness of the 

model. The algorithm we use for applying this function can be found in [39] since it is not given 

by a simple equation. Similar to the previous two types of noise, this method was simple for us to 

choose a range to meet our criteria – visual differences are inherently easy to see by a human 

viewer and no midpoint needs to be included in the range. This allows us to keep the range 

continuous rather than having to split it into two sections. We create the range using the linear 

space starting at 0% and increasing to 50% using 4.17% increments. The points are 0%, 4.17%, 

8.33%, 12.5%, 16.67%, 20.83%, 25%, 29.17%, 33.33%, 37.5%, 41.67%, 45.83%, and 50%. These 

values are rounded in Figure 4.10 for visual purposes. 

The mAP scores for this function decrease sharply between 0% and 14% and slow down to a steady 

decrease for the reminder of the range, as shown in Figure 4.10b. The significant decrease in 

performance at the beginning is caused by the small amounts of salt and pepper noise distorting 

the object features within the image quickly. Once 14% of the noise is introduced to the images, 

the mAP score has markedly decreased from 0.677 at 0% noise to 0.116. Referencing back to 

Figure 3.10 in Chapter 3, the objects are still clearly recognizable by a human viewer at this level 

of noise. This indicates how quickly the noise alters the object features and how poorly the model 

handles this alteration. By the end of the range at 50% noise, the objects within the images are still 

mostly recognizable by humans, yet the model has a mAP score of 0.008, which means the model 

cannot correctly detect the majority of objects within the test imagery. 

There are multiple unique results within Figure 4.10a, with the most notable being “car”, “bicycle”, 

“motorbike”, “bus”, “train”, and “tvmonitor”. The first five classes within those six all have a 

higher AP score from 5% noise to 18%. This is interesting because all of these are either vehicles 

or modes of transportation, and this phenomenon can be explained by the fact that all of these are 
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Figure 4.10 Effect of salt and pepper noise on model performance: (A) AP by VOC class and 

(B) mAP overall. Model performance was measured for images applied with salt and pepper 

noise ranging from 0% (untransformed) to 50% (extremely noisy). As the salt and pepper noise 

increases from 0% to 14%, performance decreases sharply due to low levels of noise distorting 

the object features quickly. Above 14%, model performance keeps decreasing steadily as features 

are almost unrecognizable by the model even though objects are distinguishable by a human 

viewer. 
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rigid objects in almost every case. This means that noise would not have as high of a detrimental 

effect on these object classes versus the others. The sixth class mentioned above – “tvmonitor” –  

stands out as well because it has the largest decrease in AP score when the salt and pepper noise 

is first introduced from 0% to 5%, dropping a total of 0.632 from 0.719 to 0.087. This is the largest 

amount a single object class has dropped within one time step in all of our experiments. There are 

two reasons for this: The VOC dataset only consists of 5.1% of the “tvmonitor” class in the training 

set [46], which is a small portion when checking for robustness; and as the salt and pepper noise 

is first introduced to the test imagery, the “tvmonitor” objects change from being a solid black or 

dark gray rectangle (when off) to having multiple pixels of differing colors from the noise, which 

would completely throw off the model. Outside of these six object classes, the other outliers exist 

towards the end of the range. These few classes that score higher than the others randomly, like 

“tv monitor” and “person” at 36% noise, can be mainly explained by the randomness within the 

GPU training on the VOC set [35]. 

Applying salt and pepper noise to the testing set of images is the last method we use to assess the 

model robustness. This method shows how inept the model is when this type of noise is introduced 

to the imagery. The performance quickly decreases as soon as the salt and pepper noise is included, 

unlike the previous noises, where the performance decreases much slower at first. The performance 

degrading this quickly indicates there is no range of acceptable salt and pepper noise levels. Similar 

to the Gaussian and speckle noises, the corrective actions to fix noisy imagery is almost non-

existent. The actions that can slightly mitigate the noise are adjusting the color and luminance of 

the images, which would simulate changing the exposure. Overall, adding salt and pepper noise to 

the test imagery allows us to draw the following conclusions: the model is incapable of handling 

this type of noise adequately, and the model performs better on the other two previously mentioned 

types of noise than this one, but not by a large margin.  

In short, as soon as the salt and pepper noise is added to the test images, the model performance 

degrades very quickly. This is to be expected since this type of noise is much more aggressive at 

changing the object features, as shown within the example image in Figure 3.10. 

 

4.3 Sensitivity Analysis Discussion 

Based on the overall results of our sensitivity analysis, we can place the nine degradation functions 

into three categories – high, medium, and low – based on the amount of effect or impact they had 

on model robustness. The high impact category contains brightness and contrast, shown in Figures 

4.1 and 4.4 respectively. The medium effect group contains Gaussian blur, image size or 

pixelation, and all three types of noise – Gaussian, speckle, and salt and pepper – shown in Figures 

4.5, 4.6, and 4.8-10. The low impact category contains saturation and sharpness, shown in Figures 

4.3 and 4.7. 

We chose these three categories based on how much variation there is within the graphs of each 

function. The functions which had a high impact on the model robustness are brightness and 

contrast. The graphs of both of these functions have almost the same derivative, which can be 

easily inferred from Figure 4.11. This follows what was mentioned in Chapter 3 about these being  
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Figure 4.11 High impact degradation methods’ results displayed in one graph. Both the 

brightness and contrast results placed into one graph to allow a clearer depiction of why they are 

categorized as high impact. Both methods sharply decrease at the low and high ends of the range 

with a plateau in the middle. 

 

directly related to image intensity. The methods which had a medium amount of variation within 

their graphs are Gaussian blur, image size, and the three types of noise. The reason as to why they 

are categorized as having a medium effect on the model is because each of these functions only 

degrade the model performance rather than enhance it at some point. This is clearly depicted in 

Figure 4.12. The functions which had a low effect are saturation and sharpness, which are shown 

in Figure 4.13. These functions are also related to image intensity, but they do not follow the same 

amount of variation within their graphs as brightness and contrast – the other two components of 

image intensity. The most reasonable explanation for this occurrence is saturation and sharpness 

do not fundamentally have the same effect as brightness and contrast in an image. At high levels 

of saturation, the colors become purer, yet they are still distinguishable by the human eye. This is 

similar to high levels of sharpness where the edges of the objects become more distinct. At higher 

levels of brightness and contrast, the objects become vastly more undistinguishable.  

Overall, these nine functions help determine which kinds of degradation are more important to 

consider when performing model inference to detect objects. The two most important functions 

are brightness and contrast, because these have the most impact on how well the model detects 

objects. The least important functions are saturation and sharpness since these techniques have 

negligible effects on the model. 
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Figure 4.12 Medium impact degradation methods’ results displayed in one graph. All five of 

the methods’ results placed into one graph to allow a clearer depiction of why they are categorized 

as medium impact. The Gaussian blur, image size, Gaussian noise, speckle noise, and salt and 

pepper noise results are all very similar to an exponential decay curve with salt and pepper noise 

being the most similar. 

 

 

Figure 4.13 Low impact degradation methods’ results displayed in one graph. Both the 

saturation and sharpness results placed into one graph to allow a clearer depiction of why they 

were categorized as low impact. Both methods’ results contain only a small variation through the 

entire range, which means they do not impact the model scores much at all. 
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5 Conclusions and Recommendations 

During the course of this research, we have shown how an object detection model performs with 

a custom dataset and how it performs when faced with degraded imagery. This chapter will discuss 

the actions we have taken and the results we have achieved throughout our work. After this, we 

will include further improvements for making our pipeline more robust in the future. 

 

5.1 Key Points 

In this thesis, we created two pipelines, as shown in Figure 1.1. The first is for training and testing 

an object detection deep learning model on a custom dataset. The second pipeline is similar to the 

first except we apply a degradation model to the testing images before we test the model, and we 

also use a publicly available dataset rather than our custom dataset in an attempt to provide results 

on more object classes. Both pipelines are implemented with the final result telling us how robust 

the model is. In this section, we will be giving an overview of both pipelines. 

The first process pipeline starts with splitting our custom dataset – Aphylla – into training, 

validation, and testing sets. Once we get the three sets, we feed the training set into the object 

detection network to train it. We use the validation set to validate how well the network is trained 

and to determine if the network needs to be re-trained. We repeat this process until the network 

has adequately learned the object features, which results in the trained model. Then, we apply the 

trained model onto the testing set of images to determine how well the model performs on a set of 

images, which have not been seen by the model. This process outputs the detection results, which 

we then perform benchmarking on to determine the overall accuracy of our trained model. The 

final results we achieved are listed in Table 4-1, with the most notable result being we achieved a 

98.5% mAP score using our custom dataset.  

After training the network solely on our custom dataset, we decided to take it one step further and 

combine our dataset with the VOC2007 dataset to train the network on a combination of both. We 

repeat the same process mentioned above to obtain the mAP score of the model, which is 57.3% 

mAP as shown in Table 4-1. This result was surprising compared to the previous results. We 

determined the issue causing such a low mAP score, which is model overfitting, because the 

“dragonfly” class alone got a 96.8% AP score. The overfitting comes from the non-proportionate 

combination of the two datasets. There will be a recommendation in the Section 5.3 pertaining to 

the future work idea that could appropriately fix this. We did not have enough time to fix this issue 

once we determined the root cause of it. 

The second pipeline we created follows a similar path as the first except we use the VOC2007 

dataset for training the network and apply multiple different degradation models to the testing set 

of images to determine the overall robustness of the trained model on degraded imagery. We 

decided to use the VOC2007 dataset because it has a total of 20 object classes plus the background 

class, whereas our custom dataset consists of one object class – “dragonfly” – plus the background. 

This allowed us to obtain overall more results – 20 object classes versus one. We train the network 

using non-degraded imagery to obtain a trained model, similar to the first pipeline. Our main goal 
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for this pipeline is to determine the robustness of this model when performing inference on 

degraded imagery. We chose nine different degradation models to apply to the testing set of 

images, which are brightness, contrast, saturation, Gaussian blur, image resizing, sharpness, 

Gaussian noise, speckle noise, and salt and pepper noise.  

After choosing the types of degradation we were going to apply, we decided on using 12 different 

levels in each function based on the computational time it would take. The computational time was 

still far too long since we needed to apply nine different degradation functions with 12 different 

levels each onto the entire VOC2007 testing set of 4,952 images. So, to reduce the number of 

computations even further, we decided to reduce the number of images in the testing set. After 

doing some analysis and testing, we determined using 512 testing images produced a mAP score 

within 5% of the original baseline mAP score – 67.6% mAP using 512 images versus 71.1% using 

the original 4,952 images. This meant after applying all degradation functions with 12 levels each, 

we had a total of 55,296 images rather than having 534,816 images to perform inference on. We 

reduced the number of images down to almost 10% of the original amount. The computational 

time this many images take to perform inference on is about 10 hours. 

Once we finished performing inference on all of the images, we obtained the detection results on 

the degraded imagery. With these detection results for each degradation type, we applied the 

benchmarking metrics to obtain the AP scores for each object class as well as the mAP scores. We 

graphed all of these results to visualize the impact each of these functions have on the model. We, 

then, sorted all of the degradation techniques into three categories: high impact, medium impact, 

and low impact. Brightness and contrast are the two most impactful functions on model robustness, 

having both a positive and negative impact on the mAP score over the 12 levels. The degradation 

techniques having a medium impact on the model are all three types of noise, image resizing, and 

Gaussian blur. These functions had a negative impact on the mAP score over the 12 different 

levels. The two functions having a low impact on model robustness are saturation and sharpness. 

These only varied the mAP scores very slightly over the entire range. 

 

5.2 Contributions 

The main contributions in this work are three-fold: (1) creating the framework/pipeline for 

determining model robustness, the whole of Figure 1.1; (2) the creation of the degradation model 

that is applied to the testing set of images before testing the model, the purple box in Figure 1.1; 

and (3) consistent guidelines and recommendations for mitigating the performance drops from the 

degradations. The first contribution will allow future extensions of this work to flow smoothly and 

produce robustness results with minimal effort. The second will allow any type of degradation to 

be applied onto the testing images for testing model robustness. The third will provide the user 

with guidelines about how to alleviate the performance drops caused by the degradation functions. 

CONTRIBUTIONS: 

1. Creation of the framework/pipeline 

a. Allows any dataset 
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b. Allows any network 

c. Allows any model 

2. Creation of the degradation model 

a. Nine degradation functions 

b. Allows any type of degradation 

3. Consistent guidelines and recommendations for mitigating performance drops 

The pipeline we created is the overarching contribution within this thesis. This includes the 

degradation model we created. This pipeline lays down the groundwork needed for testing model 

robustness with any base network and any object detection model available, whether that be in 

past, present, or future networks and models. This allows this thesis work to be used by anyone 

wanting to test for any type of model robustness on any kind of degradation techniques. In this 

thesis, we choose to demonstrate our pipeline using our binary class, custom dataset – Aphylla – 

as well as using the multi-class PASCAL VOC2007 dataset and using the VGG16 base network 

with the Faster RCNN object detection model. These are examples of the pipeline being used, even 

though any network and model can be used. 

The degradation model we created sits in the pipeline between the testing set of images and the 

trained model and is our second major contribution. This model allows for any type of degradation 

to be applied to the testing images, and conversely, to the training and validation sets of images 

too. This will allow future works to be able to use our degradation model to test for many different 

types of model robustness beyond what we test in this research. This thesis applies 12 levels of 

nine different degradation types to the test set of images. We chose these nine types to demonstrate 

how our model integrates in the pipeline and show how simple it is to take one of the degradation 

techniques and change it to another. 

The consistent guidelines and recommendations for mitigating performance drops we provide is 

our third major contribution. The three categories we classify each degradation type into are high, 

medium, and low impact. These categories are based on the fluctuations within the results. The 

high category resembles a Gaussian-like bell shaped curve that has a plateau at the top. This plateau 

covers a decent portion in both the brightness and contrast graphs, from 50% to 200%. Outside of 

this plateau, the fringes of the graph resemble exponential decays. An example of the guideline we 

provide based on these characteristics is at which point in the range would a pre-processing step 

need to be performed on the images before object recognition can be performed in order to 

minimize the performance decrease. For instance, in the second category, the results resemble mild 

to severe exponential decays throughout the entire range. In order to delay the model performance 

effects of these types of degradation, a pre-processing step, such as median filtering, needs to be 

applied to the test images. For the third class, the results show a small reduction in object detection 

performance, which stays mostly uniform throughout the range. This means that no action is 

needed. 
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5.3 Conclusions 

In regard to training the model using our custom dataset, the mAP score turned out to be very high 

at 98.5%. After performing this test, we decided to combine our dataset with the VOC2007 dataset, 

which resulted in a much lower mAP score at 57.3%. The AP score for the “dragonfly” class alone 

was 96.8%. The conclusion we were able to draw from these results is both the models overfitted 

on the datasets. This was discovered too late for us to be able to fix this issue within this research. 

We have highlighted a way to fix this issue in the next section. 

In the second section of the thesis, based on the overall results of our sensitivity analysis, we can 

place the nine degradation functions into three categories – high, medium, and low – based on the 

amount of effect or impact they had on model robustness. We chose these three categories based 

on how much variation there is within the graphs of each function. The high impact category 

contains brightness and contrast. The medium effect group contains Gaussian blur, image size or 

pixelation, and all three types of noise – Gaussian, speckle, and salt and pepper. The low impact 

category contains saturation and sharpness.  

Overall, these nine functions help determine which kinds of degradation are more important to 

consider when performing model inference to detect objects. The two most important functions 

are brightness and contrast, because these have the most impact on how well the model detects 

objects. The least important functions are saturation and sharpness since these techniques have 

negligible effects on the model. 

 

• High impact methods performed exactly as expected 

o Rising up from 0% 

o Plateauing in the middle 

o Dropping at the end 

• Medium impact methods did not perform as expected 

o Resemble an exponential decay 

o Expected to perform well over the majority of the range, then steeply drop off at 

the end once human viewers are not able to recognize the objects 

▪ Human viewers are able to distinguish the objects throughout the entire 

range until the last couple steps 

▪ Deep learning model performs the exact opposite of human viewers in this 

category 

• Low impact methods are mixed in meeting expectations 

o Sharpness did perform as expected 

▪ Objects do not get degraded in a similar fashion as the other methods 

▪ Edges are enhanced as the sharpness increases 

o Saturation did not perform as expected 

▪ Resembles a nearly linear line with a slight decline at the beginning and end 

▪ Expected to perform similarly to brightness and contrast since they are all 

related to image intensity 
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5.4 Future Work 

While researching and developing this pipeline, we came up with many ideas for future 

improvements to our work. We will present them in this section, such as other types of object 

detection models, reducing model overfitting, minimizing model inference overhead, applying the 

degradation techniques simultaneously to the test images, and more degradation methods. 

We designed our pipeline with the idea of being able to change the object detection we used with 

other object detection models rather than only being able to use Faster RCNN. We chose Faster 

RCNN to prove that our pipelines work (1) for training on a custom dataset and (2) for testing 

model robustness over degraded imagery. In the future, the other models to integrate into our 

pipeline would be YOLO [52], SSD [64], R-FCN [65], and maybe even Mask RCNN [30] even 

though it is an instance segmentation model. There are many other object detection models not 

mentioned here that could work also. Using different models would allow us to potentially get 

better detection results as more and more models come out and proceed to obtain higher and higher 

detection rates. 

The next recommendation we had is balancing the image set sizes to reduce the chances of 

overfitting the model on the current dataset. This would allow the model to have better 

performance on a variety of different datasets rather than only the dataset the model was trained 

on. The model we trained using our custom dataset combined with the VOC2007 dataset overfitted 

to the point where it would detect dragonflies on almost all objects, including some parts of the 

background of the VOC2007 images. This idea of balancing the datasets would include splitting 

the custom dataset into more appropriately sized training, validation, and testing sets. VOC2007 

uses a 25%, 25%, 50% split, whereas we used a 50%, 25%, 25% split. Another factor would also 

be the number of images within the dataset. The largest object class in the VOC2007 dataset is the 

“person” class with 2008 training and validation images [46]. Our custom dataset only contains 

the “dragonfly” class, and with how we split the dataset, there are 11,055 training and validation 

images. This skewed the model heavily towards the “dragonfly” class rather than the 20 classes in 

VOC. In the future, we would like to proportionately split the custom dataset to match the 

VOC2007 dataset in size and object class instances, which would take many more training attempts 

and many more tests to determine the optimal size to not overfit.  

Computational overhead is a major obstacle in the field of deep learning, image processing, and 

computer vision. Computational overhead increases how long computations take and how many 

resources are consumed during the computation. The overhead in our project mostly comes into 

play when we perform model inference on the degraded test images. We have a total of 55,296 

degraded images, which comes from our nine degradation functions, 12 iterations of each function, 

and 512 testing images. It takes about 3 minutes to run 512 degraded images through the model, 

which is one iteration of one degradation function. When we ran all 55,296 images through the 

model in one sequential run, it took about 10 hours to perform inference. This is almost double 

what it would have taken if we manually ran the model on each 512 image set. This overhead is 

from memory usage not be cleared properly after each run. In the future, one way to mitigate this 

would be to add a few seconds between each inference for Python to natively clear the memory. 

Other ways to mitigate this issue would need to be researched more extensively to find a solution. 
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The last two ideas relate specifically to the degradation model portion of our pipeline. The first 

recommendation would be to apply multiple different methods simultaneously to the images. In 

our work, we only applied the methods separately to the testing set of images to reduce the 

computational time performing model inference over all the images would take. Applying the 

methods in different combinations on the testing images would allow us to gather more results, 

which would give us a deeper understanding of model robustness. The second idea would be to 

implement multiple different degradation functions not used in this thesis. These would include 

bokeh blur, different methods of image compression, modifying the HSV color space in more 

ways, performing more variations of Gaussian blur and all types of noises, as well as any other 

degradation technique not mentioned here. This would provide more results and allow us to draw 

more conclusions about model robustness and how to overcome bad performance on degraded 

imagery.  
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