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Abstract

The downscaling of CMOS technology and the benefits gleaned thereof have made it the

cornerstone of the semiconductor industry for many years. As the technology reaches its

fundamental physical limits, however, CMOS is expected to run out of steam instigating the

exploration of new nanoelectronic devices. Memristors have emerged as promising candidates

for future computing paradigms, specifically, memory arrays and neuromorphic circuits.

Towards this end, this dissertation will explore the use of two memristive devices, namely,

Transition Metal Oxide (TMO) devices and Insulator Metal Transition (IMT) devices in

constructing neuromorphic circuits.

A compact model for TMO devices is first proposed and verified against experimental

data. The proposed model, unlike most of the other models present in the literature,

leverages the instantaneous resistance of the device as the state variable which facilitates

parameter extraction. In addition, a model for the forming voltage of TMO devices is

developed and verified against experimental data and Monte Carlo simulations. Impact of

the device geometry and material characteristics of the TMO device on the forming voltage

is investigated and techniques for reducing the forming voltage are proposed. The use of

TMOs in syanptic arrays is then explored and a multi-driver write scheme is proposed that

improves their performance. The proposed technique enhances voltage delivery across the

selected cells via suppressing the effective line resistance and leakage current paths, thus,

improving the performance of the crossbar array.

An IMT compact model is also developed and verified against experiemntal data and

electro-thermal device simulations. The proposed model describes the device as a memristive

system with the temperature being the state variable, thus, capturing the temperature

dependent resistive switching of the IMT device in a compact form suitable for SPICE

v



implementation. An IMT based Integrate-And-Fire neuron is then proposed. The IMT

neuron leverages the temperature dynamics of the device to deliver the functionality of the

neuron. The proposed IMT neuron is more compact than its CMOS counterparts as it

alleviates the need for complex CMOS circuitry. Impact of the IMT device parameters on

the neuron’s performance is then studied and design considerations are provided.

vi



Table of Contents

1 Introduction 1

1.1 Memristive Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Memristive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Neuromporhic Circuits from Memristive Devices . . . . . . . . . . . . . . . . 4

1.4 Research Goal and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Memristors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Physical Realizations of Memristors . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Memristor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Tansition Metal Oxide (TMO) models . . . . . . . . . . . . . . . . . 11

2.3.2 Insulator Metal Transition devices . . . . . . . . . . . . . . . . . . . . 16

2.4 Crossbar arrays of memristive devices . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Crossbar Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Crossbar Neuromorphic Arrays . . . . . . . . . . . . . . . . . . . . . 20

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 A Practical Memristor Model Suitable for Circuit Design and Simulation 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Memristor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Physics-inspired Memristor Models . . . . . . . . . . . . . . . . . . . 24

vii



3.2.3 Resistance-based Memristor Models . . . . . . . . . . . . . . . . . . . 25

3.3 Proposed Memristor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 PWL Model for HfO2 Memristors . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Proposed Memristor Device Model . . . . . . . . . . . . . . . . . . . 27

3.3.3 Comparison Between the PWL and proposed Models . . . . . . . . . 28

3.4 Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Hafnium Oxide Device Structure . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Parameter Extraction from DC sweeps . . . . . . . . . . . . . . . . . 33

3.4.3 Parameter Extraction from Transient tests . . . . . . . . . . . . . . . 33

3.5 Comparison with other Models . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Model Convergence in Circuit Simulation . . . . . . . . . . . . . . . . . . . . 37

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Modeling Electroforming in Transition Metal Oxide Memristors 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Forming Voltage model derivation . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Model Verification Against Experimental Data . . . . . . . . . . . . . 43

4.3.2 Model Verification Against Monte Carlo Simulations . . . . . . . . . 45

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Circuit Techniques for Robust and Energy Efficient Synaptic Arrays in

Neuromorphic Systems 50

5.1 The Crossbar Array as a Synaptic Memory . . . . . . . . . . . . . . . . . . . 51

5.2 The Multi-Driver Write scheme . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Performance of the Multi-Driver Write Scheme . . . . . . . . . . . . . . . . . 55

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Modeling Insulator Metal Transition Devices for Circuit Simulation 57

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The proposed IMT SPICE model . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



6.3 IMT Model Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Extracting Model Parameters for the Output Equation . . . . . . . . 62

6.3.2 Extracting Model Parameters for the State Equation . . . . . . . . . 63

6.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Discussions and Future prospects . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Design of Insulator Metal Transition based Integrate And Fire Neurons 69

7.1 The IAF and LIF Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Proposed IMT-based IAF Neuron . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Impact of Device parameter on the Properties of the IMT Neuron . . . . . . 73

7.3.1 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.2 Firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.3 Refractory Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Comparison between the Conventional CMOS IAF Neuron and the Proposed

IMT Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusions and Future Prospects 79

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 82

Appendices 95

A RRAM Model Verilog-A code 96

B IMT Model Verilog-A code 101

C Crossbar Reduction Algorithm Using Delta-to-Wye Conversion 104

D Forming Circuit 108

A Forming Circuit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ix



B Forming Circuit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 Version I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Version II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Vita 116

x



List of Tables

2.1 Comparison between nonvolatile memristive devices . . . . . . . . . . . . . . 10

3.1 Existing Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 HfO2 memristor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Model Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Effect of the model smoothness on the simulation time . . . . . . . . . . . . 38

7.1 CMOS-based neurons vs. IMT-based neurons . . . . . . . . . . . . . . . . . 78

D.1 Signal description for the test structures . . . . . . . . . . . . . . . . . . . . 113

D.2 Pin assignment of the test structures . . . . . . . . . . . . . . . . . . . . . . 113

D.3 Forming and programming scheme . . . . . . . . . . . . . . . . . . . . . . . 114

xi



List of Figures

1.1 Crossbar array structure adapted from [1]. Two sets of orthogonal wires with

the memristor device integrated at the intersection of each row and column. 3

1.2 Demonstration of the 4F 2 area occupancy of the TMO device. . . . . . . . . 3

1.3 Comparison between conventional computing and neuromorphic computing

illustrating the memory wall problem. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Layout of the four fundamental electric quantities . . . . . . . . . . . . . . . 9

2.2 Hysteresis in the V-I plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Visualization of the Oxygen vacancy dynamics in the linear ion drift model.

Figure is adapted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Filament formation in TMOs. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Visual representation of the approximate model of filament formation in

[3](left) and [4] (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 The crossbar array with memristors integrated at each junction. . . . . . . . 17

2.7 Write (left) and Read (right) operation in ReRAM arrays. . . . . . . . . . . 18

2.8 1T1R ReRAM arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Bias schemes in 1S1R arrays during the write operation. . . . . . . . . . . . 20

2.10 Write and read operation in neuromorphic crossbar arrays. . . . . . . . . . . 21

3.1 Physics-inspired models vs. resistance-based models . . . . . . . . . . . . . . 26

3.2 I-V plots of the linear and polynomial model against experimental data.

Experimental data was extracted from [5]. . . . . . . . . . . . . . . . . . . . 29

3.3 Change in resistance vs applied voltage for both the proposed model and the

PWL model. Experimental data was extracted from [6]. . . . . . . . . . . . . 29

xii



3.4 Resistance vs.time plots of both models against experimental data. . . . . . 30

3.5 Hafnium Oxide device physical structure. . . . . . . . . . . . . . . . . . . . . 31

3.6 Image taken from the probe station while testing memristor devices. . . . . . 32

3.7 Characterization of the memristor device. Multiple SET/RESET cycles were

executed after an initial forming step. . . . . . . . . . . . . . . . . . . . . . . 32

3.8 DC parameter extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Resistance vs. number of pulses for different applied voltage magnitudes.

Experimental data (symbols) and line slope (solid). . . . . . . . . . . . . . . 34

3.10 Rate of Change of resistance vs. voltage plot. . . . . . . . . . . . . . . . . . 35

3.11 Resistance evolution with time for a fixed voltage amplitude. . . . . . . . . . 36

3.12 Benchmark circuit for the convergence test [7]. . . . . . . . . . . . . . . . . . 38

4.1 Oxygen Filament structure in TMO devicecs. . . . . . . . . . . . . . . . . . 41

4.2 Forming Voltage vs. Oxide thickness for constant Oxide area. The

experimental data is drawn from [8]. Experimental data (symbols) and

proposed model (dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Forming Voltage vs. Oxide Area for various oxide thicknesses. The

experimental data is drawn from [9]. Experimental data (symbols) and

proposed model (dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Grid model for the Oxide layer. Each square represents a viable location of

an Oxygen vacancy. Vacancy (black) and No Vacancy (white). . . . . . . . . 45

4.5 Monte Carlo Simulation framework. . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Forming Voltage vs. grid area for various grid thicknesses. Monte Carlo

simulation results (symbol) and Analytic model (solid). . . . . . . . . . . . . 47

4.7 Forming voltage vs. grid thickness for various grid areas. Monte Carlo

simulation results (symbol) and Analytic model (solid). . . . . . . . . . . . . 48

4.8 Grid Area vs. Forming Voltage. Impact of the local field enhancement. Monte

Carlo simulation results (symbol) and Analytic model (solid). . . . . . . . . 48

5.1 Synaptic Crossbar Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Synaptic array under the half bias scheme. . . . . . . . . . . . . . . . . . . . 52

xiii



5.3 Synaptic array under the multi-driver write scheme . . . . . . . . . . . . . . 53

5.4 Equivalent circuit of the crossbar array under worst case cell write condition. 54

5.5 RH and RV vs. Crossbar array size . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Change in resistance per spike versus crossbar array size. V = 1.2V and the

pulse width is 100ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Voltage delivered across the worst case selected cell versus crossbar array size. 56

6.1 Thermal coefficients extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Thermal resistance and capacitance extraction . . . . . . . . . . . . . . . . . 64

6.3 Model fitting against experimental data . . . . . . . . . . . . . . . . . . . . . 65

6.4 Model fitting against experimental data . . . . . . . . . . . . . . . . . . . . . 65

6.5 Model fitting against experimental data . . . . . . . . . . . . . . . . . . . . . 66

6.6 Demonstration of device Hysteresis in the V-I plane which demonstrates the

memristive dynamics of the IMT device. . . . . . . . . . . . . . . . . . . . . 66

6.7 Model (solid line) fitting against electro-thermal simulations (markers).

Plotting the Device local temperature against time for three applied voltage

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.8 Model (solid line) fitting against elector-thermal simulations (markers).

Plotting the Device resistance against time for three applied voltage values. . 67

7.1 Equivalent circuit models of IAF and LIF neurons . . . . . . . . . . . . . . . 70

7.2 Simulation of IAF (solid) and LIF (dashed) neurons. Vmem decreases in LIF

neurons when no spike arrive while it remains constant in the case of IAF

neurons (circled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 schematic of the proposed IMT IAF neuron. (a) A synaptic netwrok driving

neurons. (b) Circuit under consideration. . . . . . . . . . . . . . . . . . . . . 72

7.4 Simulation of the proposed IMT IAF neuron. L denotes the neurons leakage

and RP denotes the refractory period. . . . . . . . . . . . . . . . . . . . . . 74

7.5 Schematic of the simplified IMT Neuron. . . . . . . . . . . . . . . . . . . . . 74

xiv



7.6 Equivalent circuit model of the simplified IMT neuron. The electrical model

is the Thevenin equivalent circuit of the simplified neuron shown in Fig 7.5.

The thermal model is based on equation (2). . . . . . . . . . . . . . . . . . . 75

7.7 Relationship between the proposed IMT neuron’s firing rate and the input

current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.1 Equivalent circuit of the crossbar array under worst case write operation. . . 105

C.2 Visual representation of circuit reduction using Delta-to-Wye conversion. . . 106

C.3 Reduced equivalent circuit of the crossbar array. . . . . . . . . . . . . . . . . 107

C.4 RH and RV vs. array size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.1 Proposed in-field forming circuit . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.2 Non-overlapping clock generator . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.3 Critical Voltage nodes during forming . . . . . . . . . . . . . . . . . . . . . . 110

D.4 Current Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D.5 Parametric analysis run over a wide range of pre-forming resistance values . 111

D.6 12X2 probe pad structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.7 Forming and Programming circuit I . . . . . . . . . . . . . . . . . . . . . . . 114

D.8 Forming and programming of 4 ReRAM devices. M0, M2, M3 are pro-

grammed to LRS while M1 is kept at HRS . . . . . . . . . . . . . . . . . . 114

D.9 Forming and Programming circuit II. . . . . . . . . . . . . . . . . . . . . . . 115

D.10 Forming the memristor device to LRS then switching it to HRS. . . . . . . 115

xv



Chapter 1

Introduction

With Moore’s law plateauing, new nanoelectronic devices are explored that are capable of

perpetuating the gains previously gleaned by CMOS downscaling by either replacing CMOS

in some applications or complementing them in others. One particular application where

memristive devices offer a significant potential is neuromorphic circuits due to their miniature

feature size and incremental resistance programming. To this end, the work considered

here explores memristive devices and their application in building neuromorphic memory

architectures. Device models and circuit techniques are proposed in this work to improve

the robustness and performance of memristive neuromorphic circuits.

1.1 Memristive Devices

Memristive devices are amongst the novel devices that have been heavily explored over

the past few years. Their existence was theoretically predicted by Leon Chua in 1971 [10]

but hadn’t been physically realized until 2008 when HP announced the first manufactured

memristor based on Titanium dioxide TiO2 [2]. Leon Chua argues, however, that any two

terminal device exhibiting a pinched hysteresis loop in the I-V plane that passes through

the origin is a memristor and that memristive dynamics are not exclusive to a particular

material or process but rather it is a system theory [11, 12]. A memristor can be viewed as

an electrically programmable resistor where the resistance is modulated based on the applied

voltage.

1



Memristive devices can be broadly classified into two categories: volatile memristors

and nonvolatile memristors. Volatile memristors, as their name suggests, do not possess a

long term memory and lose their state (memory) as the applied voltage is removed unlike

nonvolatile memristors which can, ideally, maintain their state indefinitely.

Nonvolatile memistors are typically employed in two applications, namely: memory and

neuromorphic systems. In memory architectures, memristors are used as resistive binary

switches where the logic value of the cell is encoded in the devices resistance. For example,

a High Resistance State (HRS) may represent a logic 0 while a Low Resistance State (LRS)

may represent a logic 1. On the other hand, the full resistance range of the device (i.e. analog

programming) is leveraged in neuromorphic applications to represent synaptic weights.

Similar to nonvolatile memristors, volatile memristors are also employed in memory

and neuromorphic systems but deliver different functionality. In memory arrays, volatile

memristors are typically used as selector devices to provide high cell non-linearity and

suppress sneak path currents. In neuromorphic systems, volatile memristors can be used

as neurons.

1.2 Memristive Circuits

Memristors are often organized in a nanoelectronic structure known as the crossbar array

shown in Fig 1.1. They are integrated at the intersection of two orthogonal wires and,

typically, assume the size of a via as shown in Fig 1.2. This enables high level of integration

density which is critical in all of the aforementioned applications.

Accessing memristive devices in the crossbar array requires robust and energy efficient

read and write techniques. Ideally, accessing a memristor cell for either read or write

operation involves biasing the row and column connected to this cell while floating all other

lines. This, however, may lead to unwanted current flow through the unselected cells, since

the crossbar array is a passive structure, which may result in erroneous operation. To

address this limitation, intelligent write and read schemes have been proposed. In the write

operation, the V/2 and the V/3 bias schemes [13, 14, 15] have been proposed where the

unselected cells are biased with half or third the write voltage, respectively.

2



Figure 1.1: Crossbar array structure adapted from [1]. Two sets of orthogonal wires with
the memristor device integrated at the intersection of each row and column.

Figure 1.2: Demonstration of the 4F 2 area occupancy of the TMO device.
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In the read operation, techniques such as the ones proposed in [16] have been adopted to

limit sneak path currents flowing in the crossbar array, thus, boosting the read margin.

1.3 Neuromporhic Circuits from Memristive Devices

The small feature size and analog resistance programming of memristive devices make them

promising candidates for neuromorphic applications. A typical neuromorphic system consists

of two components: synapses and neurons. Memristive synapses can be integrated in a

crossbar array structure and carry synaptic weights. Neurons are processing elements that

fire should the synaptic input cross (inputs multiplied by their respective synaptic weights)

a certain threshold. In analogy to conventional Von Neumann architecures, the synaptic

array represents the memory while the neurons represent the processors. However, unlike in

Von Neumann architectures, the processors in neuromorphic systems are distributed which

alleviates the memory wall bottle neck found in modern micro-architectures [17] as shown

in Fig 1.3.

Figure 1.3: Comparison between conventional computing and neuromorphic computing
illustrating the memory wall problem.
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Currently, state-of-the-art CMOS-based neuromorphic systems such as IBM’s TrueNorth

[18], MIT’s Eyeriss [19] and other Convolutional Neural Network (CNN) accelerators

[20, 21, 22] use SRAM cells as synaptic elements. This, however, leads to increased power

consumption and area occupancy since each analog synaptic weight is represented by multiple

bits. This limitation gave rise to memristive neuromorphic systems where the memristive

device can be leveraged as the synaptic element[17]. The synaptic weight can be, thus,

programmed in the device’s resistance reducing the dot product operation to simple Ohm’s

law. However, designing robust memristive neuromorphic circuits still require accurate

modeling of memristive synaptic elements for circuit design and simulation as well as robust

write schemes for programming these devices. On the neuron front, more compact neurons

that the currently used CMOS neurons may be required to further improve the performance

of the neuromorphic circuit which entice the exploration of new devices that can deliver the

neuron’s functionality with less hardware [23].

1.4 Research Goal and Scope

The goal of this work is to explore the application of non-volatile and volatile memristors

in the construction of neuromorphic circuits. Two devices are explored, namey: Transition

Metal Oxide (TMO) devices (non-volatile memristor) and Insulator Metal Transition (IMT)

devices (volatile memristor).

This work follows a bottom-up approach and is mainly concerned with the device and

circuit abstractions. On the device front, this work focuses on SPICE level modeling and

does not delve deeper into the device physics except when needed such as in the case of

electroforming where atomistic level simulations were performed. Even at this level, many

of the device details were abstracted and only the characteristics of interest were studied.

On the circuit front, all simulations were performed using Spectre circuit simulator from

Cadence and the device models used are all fitted to real devices weather BSIM models

describing the CMOS part of the system or the memristor models developed by the author.
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1.5 Research Contributions

This work develops techniques and methodologies to improve the performance of the

memristive neuromorphic circuits. Specifically, device models of the two memristive devices

studied in this dissertation are first developed to provide better understanding of their

behavior when integrated in neuromorphic circuits. The models are SPICE compatible to

enable efficient circuit design and simulation. Circuit techniques to effienctly access/write

these devices are also developed.

First, a compact model for TMO memristors is developed. Unlike the previously proposed

models that are peculiar to some specific switching mechanism, the proposed model is

generic and is based on physically accessible parameters which makes it readily amenable

for parameter extraction. The model ensures smoothness across all regions of operation to

facilitate convergence during circuit simulation. The Verilog-A model of the TMO device is

provided in Appendix A.

TMO memristors often require a one time process known as electroforming. Electroform-

ing requires high forming voltages, higher than the nominal voltages used in state-of-the-art

CMOS technology nodes, which severely hampers the compatibility of TMO memristors with

the CMOS process. Efforts have been undertaken to reduce the forming voltages to levels

that are compatible with CMOS at the device level. Those efforts, however, are mostly

experimental studies and do not provide a model that help understand how the different

device parameters can affect the forming voltage. Thus, this work investigates the physical

mechanisms involved in electroforming at the atomistic level. A Monte Carlo simulation

framework and a physical closed form model are developed that identify the key physical

and structural parameters that can be varied to lower the forming voltage.

The application of TMO memristors in synaptic arrays is then explored and circuit level

issues are analyzed. It is shown that the line resistance and the leakage current paths result

in voltage degradation across the selected cell which can severely hamper the performance

of synaptic crossbar arrays. A multi-driver write scheme is proposed that improves voltage

delivery to the selected cells via reducing the effective line resistance and leakage current

paths.
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A novel volatile memristor known as Insulator Metal Transition (IMT) device is then

studied. IMT devices exhibit temperature controlled resistive switching. Several efforts have

been made in modeling IMT devices. However, most compact models are behavioral and do

not describe the temperature dynamics of the IMT device. On the other hand, the models

that describe the role of temperature in IMT switching are TCAD models and cannot be

integrated in SPICE-like simulators. This work proposes an IMT SPICE model verified

against experimental data and electrothermal device simulations. The Verilog-A model of

the IMT device is provided in Appendix B.

An Integrate And Fire (IAF) neuron is then proposed that leverages the switching

dynamics of the IMT device and is simulated using the proposed model. The operating

principle is explained and design expressions are derived. Impact of the IMT device

parameters on the performance of the neuron is also investigated.
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Chapter 2

Background

2.1 Memristors

The memristor concept was first proposed by Leon Chua [10] as the fourth fundamental

circuit element along with resistors, capacitors and inductors. Voltage and current, voltage

and charge and current and flux are connected via resistance, capacitance and inductance,

respectively. Voltage is the time derivative of the flux and, similarly, current is the time

derivative of the charge. A missing link between the flux and charge existed, as shown in Fig

2.1, which Chua postulated as the memristor element and can be mathematically described

as follows:

I = G(w, V )V, (2.1)

dw

dt
= f(w, V ), (2.2)

where equation (2.2) is the state equation, (2.1) is the output equation and w is the state

variable. Chua also argues that any device that exhibits hysteresis in the V-I plane is a

memristor as shown in Fig 2.2. He later generalized his theory into memristive systems [11]

to encompass a myriad set of other elements that had not been considered memristors before.
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Figure 2.1: Layout of the four fundamental electric quantities
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Figure 2.2: Hysteresis in the V-I plane
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2.2 Physical Realizations of Memristors

The first memristor to be physically realized was developed by HP in 2008 when they

announced the first working memristor based on Titanium dioxide process [2, 24] which

exhibits resistive switching based on oxygen vacancy creation and annihilation. Other

memristive devices, however, were later proposed based on different properties and/or

switching mechanisms. Broadly speaking, memristors can be classified into nonvolatile and

volatile memrsitors depending on whether they possess or lack memory.

The three main nonvolatile memristors are: Transition Metal Oxides (TMOs) (also

referred to as RRAMs), Phase Change Memory (PCM) and Magnetic RAM (MRAM). The

switching mechanism in TMOs is based on the dynamics of oxygen vacancies. Resistive

switching in PCM relies on switching between amorphous and crystalline phases [25] while

in MRAMs switching relies on device magnetization [26]. Table 2.1 compares the three

different nonvolatile memristor devices.

One can readily observe that PCM devices might be best suited for neuromorphic

applications for they provide intermediate resistance states. MRAM devices, on the other

Table 2.1: Comparison between nonvolatile memristive devices

Property PCM TMO MRAM

Switching mechanism
crystalline to

amorphous transition

Oxygen vacancy

creation and annihilation

Spin Transfer

Torque (STT)

Resistance range 10kΩ to 200kΩ 10kΩ to 100kΩ 2kΩ to 10kΩ

Resistance ratio 103 to 106 1 to 1000 1.5 to 3

Write latency 150ns 10ns to 50ns 2ns to 20ns

Tunability Intermediate states Stochastic Bistable

Endurance < 108 108 to 1012 > 1012
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hand, are bistable and are more suitable for memory applications. TMO devices

may provide intermediate states yet their switching dynamics are highly stochastic which

introduces challenges in circuit applications. Despite these challenges, TMO devices are

widely used for they possess low operating voltages [27] which facilitates their integration in

standard CMOS processes.

Volatile memristors encompass devices such as Mott devices [28], Insulator Metal

Transition (IMT) devices [29], Dipole Induced Bilayer (DIB) devices [30, 31] and Thermistors

[11]. The state dynamics of these devices are very similar to nonvolatile ones except that

a leakage mechanism is often present which results in the device losing its state (memory)

over time. For example, in Thermistors and IMTs, the state dynamics are controlled by

the temperature evolution of the device resulting from Joule heating. A leakage mechanism

exists, however, induced by conduction and/or convection [32]. This class of devices are also

sometimes referred to as diffusive memristors and have been shown to exhibit interesting

characteristics that can be leveraged in neuromorphic computing [33, 34]. The IMT in

particular has recently shown a significant potential for use in neuromorphic structures

[23, 32]. SPICE models, however, are still needed to enable the full exploration of these

devices in circuit environment.

2.3 Memristor models

Transition Metal Oxides (TMO) and Insulator Metal Transition (IMT) devices, as mentioned

earlier, warrant attention by neuromorphic circuit designers for the interesting dynamics

they can deliver. This, however, requires accurate yet computationally efficient SPICE

compatible models to facilitate circuit design and simulation. This section will review some

of the commonly used models for both devices and address some of the existing challenges.

2.3.1 Tansition Metal Oxide (TMO) models

Transition Metal Oxides in their pristine state possess few or no Oxygen vacancies to enable

cycling (i.e. switching or regular operation). An electroforming step [35] is first required
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before the device can be used for cycling. This said, this discussion will be divided into two

parts: switching models and electroforming models.

TMO Switching Models

Several models have been proposed in the literature since 2008. In [2], the linear ion drift

model was proposed in which oxygen vacancies were assumed to undergo a linear drift with

the applied electric field. The linear ion drift model was modified later in [36, 37, 38] where

an empirical window function was added to account for the non-linear vacancy dynamics

near the device boundaries. In [39], the non-linear ion drift model was proposed where an

exponential dependence of the vacancy drift velocity on the electric field was assumed. Other

works such as [40, 41, 42, 43] proposed models based on the Simmon’s barrier tunneling model

[44]. Models in [45, 46] are also based on [44] but followed simpler formulation to enable

faster and simpler execution in SPICE simulators. In [3, 47], models based on reaction

rate equations were proposed where the dynamics of oxygen vacancies were described by

Arrhenius law. To the best of the author’s knowledge, these models are the closest to the

actual physical dynamics taking place within TMOs as agreed by the community.

The stochastic dynamics of Oxygen vacancies in TMOs have posed significant challenges

on the device modeling front. Unlike conventional semiconductor devices, memristors are

dynamic devices that possess an internal state variable controlling their state evolution.

For example, in expressions (2.1) and (2.2) the state variable w controls the conductance

(reciprocal of memristance) of the device. Thus, the validity of the device model is dependent

on the correct physical interpretation of the state variable controlling the switching and its

relationship to the external excitation as well as the relationship between the state variable

and the device’s resistance. For example, the first TMO model proposed in [2] was described

as in expressions (2.3) and (2.4):

V = (Ron
w(t)

D
+Roff (1−

w(t)

D
))I, (2.3)

dw

dt
= µv

Ron

D
I, (2.4)
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Fig 2.3 depicts a visualization of the physical picture posed by the HP model. This model, as

alluded to before, assumed a linear drift of the Oxygen vacancies under the applied electric

field. The state variable w is chosen to be the length of the oxygen vacancy rich region and

its rate of change (i.e. velocity of the vacancies) is linearly dependent on the applied electric

field such that v = µE. The relationship between the the state variable and the device’s

resistance is a weighted average of the oxygen rich and oxygen deficient regions as shown

in expression (2.3). This physical interpretation was later proven to be inaccurate which,

accordingly, limited the validity of the model.

The models in [3, 4] presented the most accurate physical interpretation known to date

for TMO memristors based on Arrhenius law. These models use the reaction rate equation to

model oxygen vacancy dynamics. The challenge, however, rests in choosing a state variable

that accurately represents resistive switching!

Resistive switching in TMOs occur due to filament formation. A filament is a chain

of oxygen vacancies. The reaction rate equation only describes the dynamics of Oxygen

vacancies, and not the filaments. Fig 2.4 depicts the structure of Oxygen vacancy filaments

in TMOs. In order to model filament formation accurately given the reaction rate equation, a

Monte Carlo simulation framework needs to be employed [48, 49]. SPICE models, however,

need to be more compact and closed form. Hence, an approximation to the geometric

structure of the filament is usually employed. For example, the model in [3] assumed that

resistive switching occurs due to creation and annihilation of oxygen vacancies near the

electrode and, accordingly, the state variable was chosen to be the gap between the tip

of the filament and the electrode. On the other hand, the model in [4] assumed that the

filament already shunts both electrodes and that resistive switching occurs due to change in

the filament size and, therefore, the cross sectional area of the filament was chosen as the

state variable. Fig 2.5 depicts a visual representation of both models.
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Figure 2.3: Visualization of the Oxygen vacancy dynamics in the linear ion drift model.
Figure is adapted from [2].

Figure 2.4: Filament formation in TMOs.

14



Figure 2.5: Visual representation of the approximate model of filament formation in [3](left)
and [4] (right).

Given the stochastic nature of filament formation, it is usually challenging to ensure that

either picture is the correct one. In fact, both might occur in the same device [50, 51].

This dilemma gave rise to resistance based models which leverage the instantaneous

resistance of the device as the state variable [52, 6, 50, 51]. These models are motivated by

the fact that experimental data is often reported in the form of I-V sweeps as a function

of the external excitation from which a direct relation between the applied stimulus and

the resistance can be drawn. These models are often empirical and although may not be

predictive nor scalable, they are often preferred by circuit designers since they are simple,

intuitive and, most importantly, based on measurable parameters which facilitates parameter

extraction.

Electroforming of Transition Metal Oxide memrsitors

Transition Metal Oxides, despite their merits such as low operation voltage, fast switching

times and high data retention, suffer a major drawback which is the requirement of

electroforming. Electroforming typically requires voltages that are higher than the voltages

used in most of the advanced CMOS processes. Several experimental studies have been

presented trying to lower the forming voltages of TMO devices to enable their integration

in standard CMOS processes. Those studies focused on varying devices geometry and/or
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process parameters and study their impact on the forming voltage. In [8, 53], impact of

scaling the device’s thickness and area on the forming voltage was studied. It was shown

that decreasing the device’s thickness and/or increasing the device’s area results in reducing

the forming voltage. Other factors such as local field enhancement may also impact the

forming voltage [27].

On the modeling front, Kinetic Monte Carlo (KMC) simulation studies were conducted

in [54, 55, 56] to study the characteristics of electoforming in TMO devices. To the best

of the author’s knowledge, little has been done on the analytic modeling of electroforming.

While KMC simulation is a useful numerical vehicle that helps provide better understanding

of the forming process, analytic models may be preferable for they provide more insight into

the parameters affecting the forming voltage which will be addressed in this dissertation.

2.3.2 Insulator Metal Transition devices

Insulator Metal Transition (IMT) devices are thermally driven resistive switches [28]. Their

switching behavior can be described as a volatile memristor device [12]. Several experimental

studies have been reported on IMTs. Works in [57, 58] argue that temperature due to Joule

heating is the main source of resistive transition in those devices while [59, 60, 61] suggest

that Joule heating is insufficient and that electric field is the main cause of phase transition.

Few models have been also proposed such as the models in [32, 62] which are TCAD-

like models that rely on solving coupled differential equations. The work in [23] presented

a behavioral model that is compatible with SPICE. Yet, the model did not consider the

temperature dynamics of IMT devices. A SPICE compatible model that captures the

temperature dynamics of IMT switching is still lacking which will be addressed in this work.

2.4 Crossbar arrays of memristive devices

The crossbar array is the basic nanoelectronic structure in which memristors are integrated.

Crossbars consist of two sets of perpendicular wires with memristors integrated at the

intersection between each horizontal and vertical wire as shown in Fig 2.6
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Figure 2.6: The crossbar array with memristors integrated at each junction.

In memory arrays, each cell represents a bit which can take either logic high or logic

low depending on whether the device is at low resistance state (LRS) or high resistance

state (HRS), respectively. In neuromorphic arrays, on the other hand, each cell represents a

synaptic weight and can, ideally, take any intermediate resistance value.

2.4.1 Crossbar Memory Arrays

Crossbar memory arrays based on memristive devices are often referred to as Resistive RAMs

or simply: ReRAMs. Fig 2.7 depicts the crossbar array under read and write operations.

The write operation can be either SET or RESET:

• SET: Vwr/ground are applied across the row/column of the selected cell.

• RESET: ground/Vwr are applied across the row/column of the selected cell.

where Vwr is the write voltage. In the read operation, Vread is applied to the row of the

selected cell while a load resistance Rload is connected to the column of the selected cell. The

voltage drop across Rload, Vsense, is then fed to a sense amplifier to interpret the logic value
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Figure 2.7: Write (left) and Read (right) operation in ReRAM arrays.

of the cell. In both scenarios, all unselected cells are left floating which gives rise to sneak

path current. Sneak paths are unintended paths for current flow which are inherent to the

crossbar structure. The arrows in Fig 2.7 depict the sneak path. Sneak paths may result in

erroneous read/write operations.

1T1R ReRAM arrays

One way to eliminate sneak paths is adding a series FET device to the memristor at each

cell as shown in Fig 2.8, thus, known as: One-Transistor One-Resistor (1T1R). The gate

terminal of the FET device is used as a selector terminal such that only the FET connected

to the selected device is activated while all other FETs are deactivated. Given the high

OFF resistance of the FET devices (usually Giga Ohm range), sneak path currents are

significantly suppressed. The drawback, however, is that the introduction of a FET device

limits the Back-End-Of-Line (BEOL) of ReRAM arrays and increases the footprint of each

memory cell. These challenges lead to the development of 1S1R arrays which are considered

in this work.
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Figure 2.8: 1T1R ReRAM arrays.

1S1R ReRAM arrays

One-Selector One-Resistor (1S1R) arrays combine advantages from both 1R arrays and

1T1R arrays. A two terminal selector element is added in series with the memory device to

circumvent sneak paths. The selector element typically possess a high ON/OFF ratio and

switches from OFF to ON only when selected. Hence, it delivers the same functionality as

the FET device while maintaining the same cell area and the BEOL compatibility which are

critical in accomplishing the ultimate goal of 3D integration [63].

Two bias schemes exist in 1S1R arrays which are: 1/2 bias scheme and the 1/3 bias

scheme depicted in Fig 2.9. In the 1/2 bias schemes, all unselected rows and columns are

biased with Vwr/2 while in the 1/3 bias scheme the rows are biased with Vwr/3 and the

columns are biased with 2Vwr/3. This technique eliminates sneak path current from flowing

while ensuring only Vwr/2 and Vwr/3 drop across the cells in the same row and column of

the selected cell which is typically lower than the cell switching threshold.
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Figure 2.9: Bias schemes in 1S1R arrays during the write operation.

2.4.2 Crossbar Neuromorphic Arrays

Neuromorphic crossbar arrays adopt the same structure as Memory arrays. In the write

operation, similar challenges are encountered as those found in memory arrays and, therefore,

the same write techniques and methodologies are adopted. Unlike memory arrays, however,

neuromorphic arrays store synaptic weights as opposed to bits and, hence, they are often

referred to as synaptic arrays. The read operation, however, is somewhat different. During

reading, the columns are connected to the output neurons and the weighted sum of the

inputs is evaluated. Fig 2.10 depicts the write and read operation in neuromorphic crossbar

arrays

2.5 Conclusions

This section reviewed some of the literature on memristive neuromorphic arrays. The

theory of memristive devices was first introduced followed by memristor models for

circuit simulation. Memristive crossbar arrays were then discussed in both memory and

neuromorphic applications. Read and write techniques were also investigated and design

challenges were demystified.
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Figure 2.10: Write and read operation in neuromorphic crossbar arrays.
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Chapter 3

A Practical Memristor Model Suitable

for Circuit Design and Simulation

3.1 Introduction

Memristors have emerged as strong candidates for future computing paradigms. Their

switching dynamics and small footprint have made them suitable candidates in applications

such as memory and neuromorphic systems. Since the realization of the first physical

memristor by HP in 2008, a surge of memristor based applications and architectures have

been proposed which requires accurate yet computationally efficient compact models to

enable the simulation of memristor based circuits in SPICE environment. Several memristor

models have been proposed that range from simple behavioral models [2, 36] that are

derived from the original equations proposed by Chua in [10] to complex physics-inspired

phenomenological models [40, 39, 3] which are usually peculiar to some specific switching

mechanism. The difficulty in modeling memristive devices lies in their dynamic behavior.

Unlike most other semiconductor devices, memristor modeling relies on defining a state

variable which can either be an abstract quantity in the case of behavioral models or

a physical quantity in physical models. The challenge is that neither approach reflects

measurable parameters that experiments report. Physical data is usually presented in terms

of V-I sweeps from which the instantaneous resistance can be extracted. Connecting the

resistance to the state variable is often challenging!
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While it is necessary to build a generalized physical SPICE compatible memristor model

that can model any generic memristive device based on its material characteristics and

geometry, the lack of such a model has motivated the development of empirical models that

are easily fitted to measurable parameters extracted from experimental data. In [52], Pino

et al. developed an empirical model for a chalcogenide memristor. The model is a piece wise

model which divides the switching operation into a subthreshold region where no change

in resistance is allowed and an operation region where the change in resistance exhibits an

exponential relation with the applied voltage. This model, however, did not account for

the resistance saturation near the boundaries. Models in [6, 50] captured all the switching

characteristics of the device but had too many fitting parameters. In these empirical models,

unlike most other models, the state variable is the resistance of the device itself which makes

them amenable to parameter extraction.

In this chapter, an empirical compact model for TMO memristors is proposed. The

proposed model builds off the model used in [64] and is based on measurable parameters.

The model parameters are chosen such that they can be easily tweaked to fit experimental

data which facilitates parameter extraction.

3.2 Background

This section reviews few of the most commonly used models available in the literature.

3.2.1 Memristor Modeling

The existence of the memristor element was theoretically predicted in 1971 by Leon Chua

[10]. It wasn’t until 2008, however, that the first physical realization of a memristor was

reported when HP announced the first recognized working memristor prototype based on a

Titanium Dioxide process [2]. Memristors are generally modeled by a system of two coupled

equations as expressed in (3.1) and (3.2), respectively:

I = G(w, V )V, (3.1)
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dw

dt
= f(w, V ), (3.2)

where (3.1) is the output equation that describes the relationship between the voltage applied

across the device and current flowing through the device and (3.2) is the state equation that

describes the state dynamics of the memristance. A simple memristor model was proposed

by HP for the TiO2 device [2]. It assumes a linear ion drift of the oxygen vacancies and is

described as shown in (3.3) and (3.4):

V = (Ron
w(t)

D
+Roff (1−

w(t)

D
))I, (3.3)

dw

dt
= µv

Ron

D
I, (3.4)

where w is the length of the oxygen vacancy rich region, D is the total thickness of the

switching layer of the memristor device, µv is the average mobility of oxygen vacancies and

Ron is the low resistance state of the device. This model describes the memristor as two

series resistors where Ron is the resistance of the oxygen vacancy rich region, Roff is the

resistance of the oxygen vacancy deficient region and w is a state variable that modulates

the memristance of the device based on the applied voltage. This model, however, failed to

capture the experimental data which limited its validity [39, 40]. Specifically, the assumption

that oxygen vacancies drift with constant velocity under the action of the electric field was

proven to be inaccurate and that a nonlinear dependence is more likely to occur.

3.2.2 Physics-inspired Memristor Models

Several physical memristor models have been proposed in the literature. Those models can be

divided into three categories based on their switching and conduction mechanisms. Table 3.1

summarizes the existing models and their respective switching and conduction mechanisms

they assume.
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Table 3.1: Existing Physical Models

Model Stukov et al. [2, 39]
Pickett et al.

Shahar et al.[40, 41, 42]

Yu et al.

[3, 47]

Switching

mechanism
Ion drift

Simmon’s barrier

tunneling
Arrhenius Law

Conduction

mechanism
Ohmic+tunneling tunneling Ohmic+tunneling

Strukov et al. proposed the very first models which assumed that oxygen vacancies drift

under the action of electric field [2, 39]. The drift velocity of oxygen vacancies can be a

linear function of the electric field (i.e. v = µE) in linear ion drift models as in [2, 36] or

an exponential function (i.e. v = µE0e
E/Et) as in [39]. Models in [36, 37, 38] capitalized

on the model in [2] and added window functions to capture the nonlinear dynamics near

the boundaries. Pickett et al. [40] and Shahar et al. [41, 42] proposed models based on

the Simmon’s barrier tunneling model [44] where the device is modeled as a tunneling

barrier modulated by the applied electric field. Models in [3, 47] are based on the reaction

rate equation which assume that the creation and annhilation of oxygen vacancies follow

Arrhenius law.

3.2.3 Resistance-based Memristor Models

The resistance-based approach to memristor modeling relies on using the instantaneous

resistance, measured at a non-disturbing bias voltage, as the state variable. This approach

alleviates the difficulty of finding a state variable that best reflects the switching dynamics

of a particular memristor device and draws a direct connection between the applied stimulus

and the resistance as illustrated in in Fig 3.1. This approach facilitates parameter extraction

as will be shown in the later sections.
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Figure 3.1: Physics-inspired models vs. resistance-based models

3.3 Proposed Memristor Model

The proposed model builds off a previously developed Piece Wise Linear (PWL) model first

proposed in [65]. This section, therefore, starts by discussing the PWL model. Then, the

proposed polynomial model is discussed.

3.3.1 PWL Model for HfO2 Memristors

The PWL model considered in this section was originally used to model HfO2 devices

fabricated in-house at SUNY Polytechnic Institute. This model is adapted from another

model developed by McDonald et al. in [65] and is expressed as:

dM

dt
=


−∆rV (t)
tswpVtp

, V (t) > Vtp

∆rV (t)
tswnVtn

, V (t) < Vtn

0, otherwise

(3.5)
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where Mt+1 = Mt + dM
dt

∆t which captures the evolution dynamics of the resistance and the

output equation is assumed to follow Ohm’s law V = IM . The model clips the resistance

at HRS(LRS) if it goes above/below HRS(LRS). Parameters tswn(tswp) capture the time

taken to switch from LRS to HRS(HRS to LRS). Parameter ∆r is the difference between

HRS and LRS. Parameters Vtn(Vtp) are the negative (positive) thresholds. All parameters

are measurable parameters and are extracted from physical data. The measured parameters

for the fabricated HfO2 devices are shown in Table 3.2.

3.3.2 Proposed Memristor Device Model

Despite the simplicity of the PWL model, physical measurements deviated significantly from

the model predictions. Specifically, the PWL model failed to capture two main characteristics

of the memristor switching dynamics which are:

• Nonlinear dependence of the rate of change of resistance on the applied voltage

• Plateauing of the resistance near the boundaries

Table 3.2: HfO2 memristor parameters

Parameter Value

LRS 3kΩ

HRS 45kΩ

∆r HRS − LRS

Vtp 0.75V

Vtn −0.5V

tswp 10ns

tswn 1us
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These characteristics were added to the proposed model:

dM

dt
=


−CLRS(V (t)−Vtp

Vtp
)PLRSfLRS(M(t)), V (t) > Vtp

CHRS(V (t)−Vtn
Vtn

)PHRSfHRS(M(t)), V (t) < Vtn

0, otherwise

(3.6)

where the ∆r
tsw

term is absorbed in the C coefficient. fHRS and fLRS capture the resistance

saturation (commonly referred to as window functions). Expression (3.7) presents the

proposed window function that can be easily fitted to measurable parameters.

f(M(t)) =


1

1+e
M(t)−θHRSHRS

βHRS∆r

, V (t) < Vtn

1

1+e
θLRSLRS−M(t)

βLRS∆r

, V (t) > Vtp

(3.7)

In the Verilog-A code provided in Appendix A, M(t) is still clipped to either HRS or LRS

should the resistance reach either boundary for modeling convenience.

3.3.3 Comparison Between the PWL and proposed Models

In order to show the improvement posed by our proposed model over the PWL model, both

models are compared against experimental data. Fig 3.2 depicts the I-V sweeps for both

simulation and experimental measurements from [5]. It is readily shown that both models

exhibit hysteresis in the V-I plane - a fingerprint of memristive devices. Fig 3.3 captures the

change in resistance with respect to the applied voltage for both the PWL model and the

proposed model. It is readily observed that the PWL model fails to capture the non-linearity

exhibited by the device. The proposed model, however, captures such non-linearity with a

control parameter P which can be tweaked to fit any memristive device. Another drawback

with the PWL is the high discontinuity of the model around the memrsitor threshold. This

discontinuity not only hampers the accuracy of the model, as shown in Fig 3.3, but also

results in convergence difficulties during circuit simulation which will be addressed in the

next section.
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Figure 3.2: I-V plots of the linear and polynomial model against experimental data.
Experimental data was extracted from [5].
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Oxide based memrisors are characterized by resistance saturation near the boundaries (i.e.

HRS and LRS). This phenomenon has been conventionally captured by window functions.

In this work, a sigmoid window function with two fitting parameters θ and β is employed.

Fig. 3.4 depicts the resistance evolution with time for the PWL model and the proposed

model. Pulses with equal magnitude and widths were applied across the device yielding

and incremental increase in the resistance from 3kΩ to 18kΩ . As expected, experimental

data shows that the pulse response plateaus. Unlike the PWL model which predicts a

linear increase in resistance over time, the proposed model captures the plateauing effect.

Parameters θ and β were selected such that the model accurately fits the experimental data.

A more detailed explanation about how these parameters are selected is provided in the next

section.

3.4 Parameter Extraction

This section presents the parameter extraction methodology for the proposed model. The

model contains six parameters: HRS/LRS, Vtp/Vtn, CLRS/CHRS, PLRS/PHRS, θHRS/θLRS

and βHRS/βLRS.
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Figure 3.4: Resistance vs.time plots of both models against experimental data.
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Two of the parameters, namely: HRS/LRS and Vtp/Vtn, can be extracted from DC

sweeps while the rest of the parameters require transient testing as shown in the next

subsections. The experimental data used for parameter extraction is extracted from a hybrid

CMOS/memristor chip available at UTK and fabricated at SUNY Polytechnic.

3.4.1 Hafnium Oxide Device Structure

The Hafnium Oxide memristor device is integrated between the first and second metal layers.

Fig 3.5 depicts the physical structure of the device. Fig 3.6 shows an image of the memristor

device under test extracted from the probe station. Fig 3.7 depicts DC I-V sweeps of the

device under test. A forming step is first applied to electroform the device. The forming

voltage for this particular device is around 1.6V . Multiple Set and Reset cycles are then

applied demonstrating reliable operation.

Figure 3.5: Hafnium Oxide device physical structure.
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Figure 3.6: Image taken from the probe station while testing memristor devices.

Figure 3.7: Characterization of the memristor device. Multiple SET/RESET cycles were
executed after an initial forming step.
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3.4.2 Parameter Extraction from DC sweeps

Parameters HRS/LRS and Vtp/Vtn can be extracted from the hysteresis loop achieved by

running a dual sweep on the memristor device. As mentioned earlier, the device switches

between HRS and LRS states when the voltage applied across the device reaches the

threshold voltage. Since DC sweeps report V-I plots, HRS and LRS can be extracted

from the hysteresis loop where the line with the higher slope represents LRS and the line

with the lower slope represents HRS. The voltages at which the transition happens between

the two lines are the threshold voltages. Fig 3.8 depicts the DC parameter extraction.

3.4.3 Parameter Extraction from Transient tests

The other parameters cannot be extracted from DC sweeps but require pulse based testing.

Equation (3.6) can be expressed as follows:

dM

dt
= g(V (t))f(M(t)), (3.8)
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Figure 3.8: DC parameter extraction.
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The rate of the change of the memristance is a function of both the applied voltage and

the current resistance state. The extraction procedure is divided into two phases such that

only one variable is changed at a time:

• Phase I: extract g(V (t)) while f(M(t)) = 1.

• Phase II: extract f(M(t)) while g(V (t)) = constant.

The following subsections discuss phases I and II of the transient parameter extraction

procedure.

Phase I: Extracting g(V (t))

With f(M(t)) = 1, one can write dM
dt

= g(V (t)). Hence, g(V (t)) can be extracted from the

line slope of memristance vs. time (or pulse number) plots. However, for f(M(t)) = 1 to

hold, this test should be executed before the plateauing effect takes place. Fig 3.9 depicts

the resistance vs. number of pulses plot for V = 1.2V and V = 1.3V .
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Figure 3.9: Resistance vs. number of pulses for different applied voltage magnitudes.
Experimental data (symbols) and line slope (solid).
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After extracting the slopes for multiple voltage magnitudes, dM
dt

vs. V can be plotted.

Note, however, that the extracted slope from Fig 3.9 reflects dM
dN

, where N is the pulse

number. dt, however, can be extracted from dN such that dt = dN ∗ PW , where PW is

the pulse width. The pulse width used in this work is 1.5ns. parameters CHRS/CLRS and

PHRS/PLRS are then extracted from dM
dt

vs. V plot as shown in Fig 3.10.

Phase II: Extracting f(M(t))

This test requires g(V (t)) to be held constant such that M(t) = k∆tf(M(t)) where g(V (t)) =

k. f(M(t) can then be extracted from the resistance vs. time (or number of pulses as

mentioned earlier) plot as shown in Fig 3.11. Parameter θ captures the plateauing point and

β captures the sharpness of the plateauing.

3.5 Comparison with other Models

Table 3.3 compares the proposed model to other resistance based models in the literature.
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Figure 3.10: Rate of Change of resistance vs. voltage plot.
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Table 3.3: Model Comparisons

Model Threshold dM
dt

vs. voltage Plateauing no. of parameters

PWL YES Linear No 1

Pino [52] YES non-Linear No 2

Bayat [50] YES non-Linear YES 6

Proposed YES non-Linear YES 4
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3.6 Model Convergence in Circuit Simulation

Memristive circuits are typically dense networks and, hence, might be computationally

demanding in circuit simulation. Thus, the convergence of the proposed model is assessed and

compared against the previous PWL model via a benchmark circuit proposed in [7] in which

the authors compare the performance of various models for large networks of memristors.

The advantage of this circuit is:

• It has no other devices but memristors. This makes the convergence of the simulation

highly dependent on the memristor model.

• All memristors are updated periodically since all node voltages are updated for every

transient step.

The circuit under consideration has 840 memristive elements. A 10kHz sinusoidal signal

was applied at the input and the simulation was run for various transient times according to

the applied test. All models are implemented in Verilog-A and simulations were executed on

Spectre circuit simulator from Cadence . The proposed benchmark is depicted in Fig. 3.12.

A major drawback of the PWL model is the discontinuity of the model about the

memristor threshold. It is not unusual in compact models to split the domain of operation

into multiple regions with model equations specific to each region. It is important, however,

to ensure that the model is smooth at the region boundaries to facilitate convergence

during circuit simulation. Circuit simulators use the Newton-Raphson method to find the

DC operating point of the circuit which is an iterative numerical method that requires at

least first order continuity: the model equations and their first derivatives are continuous

across the boundaries. The PWL model is not even zeroth order continuous around the

memristor threshold: below Vt, the change in memristance is forced to zero while at Vt, the

change in memristance is ∆r/tsw. This abrupt transition at the memristor threshold causes

convergence difficulties. In our modified polynomial model, this problem was resolved which

improved the convergence notably. Table 3.4 depicts the simulation times for both the PWL

model and the proposed model. A significant difference between the simulation times of the

both models is observed. This difference is mainly attributed to the model smoothness.
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Figure 3.12: Benchmark circuit for the convergence test [7].

Table 3.4: Effect of the model smoothness on the simulation time

Model PWL Proposed

Simulation time 4m < 10s
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3.7 Conclusions

In this work, an empirical memrsitor model was proposed. The proposed model builds off

a previously proposed piece wise linear model and uses the instantaneous resistance as the

state variable. The proposed model captures the three main characteristics of oxide based

memristors and is amenable to parameter extraction. The model equations are smooth across

the different regions of operation to facilitate convergence during circuit simulation.
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Chapter 4

Modeling Electroforming in

Transition Metal Oxide Memristors

4.1 Introduction

Memristors based on Transition Metal Oxides (TMOs) materials [2] are widely used

in nanoelectronic structures such as crossbar arrays. The requirement of a one time

electroforming process, however, makes it challenging to integrate such devices in state-of-

the-art CMOS processes. Electroforming typically requires higher than nominal voltages

which bring about significant design challenges [66] and area constraints due to the

introduction of a forming circuit that ultimately degrades the density advantage of crossbars.

Efforts have been made to lower the forming voltages down to a level compatible with

standard CMOS processes to enable seamless integration of TMO devices. Experiments have

shown successful reduction in the forming voltage with device scaling and/or varying process

parameters such as local field enhancement [67, 9, 8] achieved by structural modification of

the oxide material. Yet, little has been done towards modeling this relationship. In this work,

a physical model of electroforming in TMOs is proposed. The developed model identifies

key geometric and material characteristics that impact the forming voltage. It is shown

that there exists a linear dependence of the forming voltage on the oxide thickness and a

logarithmic dependence on the oxide area. Local enhancement may also play a key role in
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lowering the forming voltage. The proposed model provides insight into the key material

and geometric characteristics that can be varied to reduce the forming voltage.

4.2 Forming Voltage model derivation

It was shown in [68] that, similar to gate oxide breakdown in FET devices [69], electroforming

can be modeled using Poisson statistics as follows:

P (k,A) =
(DA)k

k!
e−DA, (4.1)

where k is the number of breakdown paths, A is the area of the oxide and D is the density

of the breakdown paths. Electroforming follows the weakest link character where formation

is accomplished once a single filament is formed between both electrodes [70, 68] as shown

in Fig 4.1. Hence, prior to forming, no path has yet been formed and, accordingly, one can

write:

P (D,A) = e−DA, (4.2)

Figure 4.1: Oxygen Filament structure in TMO devicecs.
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Expression (4.2) models the probability of having no forming paths between the top

and the bottom electrodes. According to Poisson statistics, expression (4.1) captures the

probability that k breakdown paths exist in an area A while expression (4.2) captures the

area needed to form one breakdown path and, hence, can be used to model the formation of

the percolating path between both electrodes in electroforming of TMOs. From a reliability

modeling standpoint, expression (4.2) can be interpreted as oxide reliability as a function of

area R(A) with parameter D. Therefore, one can define Mean Area To Failure (MATF) as

the average area required for the oxide to break down, formally derived as follows:

Af =

∫ ∞
0

R(A)dA =

∫ ∞
0

e−DAdA =
1

D
, (4.3)

where Af is the MATF. During electroforming, vacancies are induced based on the applied

electric field which can be described using Arrhenius law [48, 71, 72]:

r = νe
− (EA−αE)

kbT = r0e
Kα

VF
tox , (4.4)

where K is 1/kbT , r is the generation probability of oxygen vacancies, ν is a characteristic

frequency of generation, EA is the average activation energy of oxygen vacancy generation, α

is a barrier lowering coefficient reflecting the local field enhancement, E is the applied electric

field across the oxide which can be described as the forming voltage divided by the oxide

thickness such that E = VF/tox, kb and T are the Boltzmann constant and temperature,

respectively.

By definition, D is the density of breakdown paths. Hence, D can be viewed as a chain

of oxygen vacancies from the top to the bottom electrode whose length is proportional to

the oxide thickness and, accordingly, D can be approximated as follows D ≈ rtox . This can

be formally described according to Poisson statistics by the following expression:

P (k, dA) ≈


1−DdA, k = 0

DdA, k = 1

0, k > 1

(4.5)
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where in any arbitrary area ∆A, multiple paths to ground can exist. However, as ∆A

becomes infinitesimally small such that ∆A approaches dA, one path can exist and the

Poisson distribution can be approximated according to the above expression. From (4.3)

and (4.4), the following forming voltage model can be derived:

VF =
ln(1/r0)

Kα
tox −

ln(Af )

Kα
, (4.6).

4.3 Model Validation

The proposed model is validated against experimental data drawn from the literature as well

as Monte Carlo simulations.

4.3.1 Model Verification Against Experimental Data

To validate the proposed model, two essential features need to be captured, namely:

the linear dependence of the forming voltage on the oxide thickness and the logarithmic

dependence of the forming voltage on the oxide area.

Fig 4.2 plots the forming voltage against the oxide thickness. The experimental data is

drawn from the work in [8]. It is shown that the linear relationship between the forming

voltage and the oxide thickness is captured by the proposed model.

Fig 4.3 plots the forming voltage against the oxide area for different oxide thicknesses.

The experimental data is drawn from the work in [9]. Its is shown that the proposed model

captures the logarithmic relationship between the forming voltage and the oxide area. The

proposed model is fitted to the device with tox = 5.2nm to extract ro and Kα. Using the

extracted model parameters (ro and Kα), the model is used to predict the forming voltage

for the two other oxide thicknesses. A decent match between the model prediction and the

experimental data is observed.
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4.3.2 Model Verification Against Monte Carlo Simulations

A numerical simulation framework is also developed in order to provide further validation of

the analytic model. Numerical simulations allow better control over the model parameters,

thus, helping with the investigation of the impact of each parameter on the forming voltage

separately. In this work, Monte Carlo simulation is used as the numerical simulation vehicle

since the governing equation, Arrhenius law, needs to be solved in a statistical framework.

The Monte Carlo simulation algorithm is based on the work in [48]. First, the device is

modeled on a 2D grid as shown in Fig 4.4 where each point on the grid represents a

viable location for an oxygen vacancy. The length of the grid corresponds to the oxide

thickness while the width of the grid corresponds to the oxide area. The presence/absence of

oxygen vacancy is then determined by comparing the voltage dependent switching probability

derived from Arrhenius law with a random test number. Finally, the algorithm checks if a

continuous path of oxygen vacancies is formed between the top and bottom electrodes and

a forming event is registered should this condition be met. Fig 4.5 depicts a flow chart of

the Monte Carlo simulation framework developed in this work.

Figure 4.4: Grid model for the Oxide layer. Each square represents a viable location of an
Oxygen vacancy. Vacancy (black) and No Vacancy (white).
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Figure 4.5: Monte Carlo Simulation framework.
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Fig 4.6 plots the forming voltage against the grid area (grid width for a 2D model) for

various grid thicknesses. The logarithmic relationship is still captured by the proposed model

for the various grid thicknesses. Fig 4.7 plots the forming voltage against the grid thickness

for various grid areas. The linear relationship between the forming voltage and the grid

thickness is also captured for the various grid areas.

An important device parameter that can play a key role in lowering the forming voltage

is the local field enhancement factor captured by the parameter α. While scaling the

oxide thickness can lower the forming voltage, it comes at the expense of degrading the

the ON/OFF ratio of the device which is critical to many applications. Scaling the oxide

area might not yield significant improvement due to the weak (logarithmic) dependence of

the forming voltage on the oxide area. Thus, local field enhancement may be a viable option

for reducing the forming voltage. Fig 4.8 plots the forming voltage against grid area for

different local enhancement factors. Higher local enhancement weakens the sensitivity of the

forming voltage to the grid area. This characteristic is captured by the model as the the

local enhancement factor controls the slope of the forming voltage versus grid area line plot.
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4.4 Conclusions

In this chapter, impact of the Transition Metal Oxide device parameters on the forming

voltage was investigated. An analytic model is first developed. The proposed model is based

on the reaction rate equation and uses reliability modeling techniques to arrive at a closed

form expression. The model was validated against experimental data drawn from multiple

sources in the literature and shows decent results. The proposed model is also validated

against Monte Carlo simulation for further validation. It is shown that the forming voltage

linearly decreases with increasing oxide thickness while it logarithmically decreases with

increasing oxide area. Local field enhancement can play a key role in reducing the forming

voltage. This model can be used by device designers to identify process parameters that can

be changed in order to lower the forming voltage.
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Chapter 5

Circuit Techniques for Robust and

Energy Efficient Synaptic Arrays in

Neuromorphic Systems

Neuromororphic systems based on memristive devices have emerged as promising hardware

platforms for implementing emerging computing architectures. A typical neuromorphic

system consists of a synaptic array wherein synaptic elements are organized in a crossbar

structure and neurons connected to the rows and columns of the synaptic array [17]. Several

studies have shown that device and circuit level constraints may impact the performance

of the neuromorphic crossbar array. In [73, 74], effect of the selector non-linearity on

the performance of the neuoromorphic array was investigated. Impact of the IR drop on

neuromorphic arrays was also investigated in [75, 76, 77, 78] and system level solutions were

provided. This work, however, focuses on providing design solutions at the circuit level to

mitigate the effects of crossbar array parasitics. Two parasitic sources are identified at the

circuit level, namely: sneak paths (leakage paths) and line resistance [15, 79].These parasitic

sources result in voltage degradation across the selected cell which ultimately hampers the

performance of the synaptic array.

To this end, a multi-driver write scheme is proposed to improve voltage delivery across

the selected cell. The proposed write scheme reduces the effective line resistance and number

of leakage current paths thereby boosting the voltage delivery across the selected cell.
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5.1 The Crossbar Array as a Synaptic Memory

Synaptic arrays adopt the same crossbar structure as memory arrays wherein each cross point

represents a memory element. Unlike memory arrays where each memory element represents

one bit of information, the full analog resistance range of the memory element is utilized in

synaptic arrays to represent a synaptic weight. Hence, in layman terms, one can think of

synaptic arrays as analog crossbar memory arrays. Synaptic weights are programmed into

synaptic arrays via similar write techniques as those used in conventional memory arrays.

In this work, we adopt the V/2 write scheme [13] for its lower energy consumption. Fig 5.1

depicts the synaptic array and Fig 5.2 depicts a circuit model of the synaptic array under the

half bias scheme. Similar to memory arrays, the synaptic array exhibits voltage degradation

across the selected cell due to (I) the voltage drop across the interconnect resistance of each

segment, Rint, of the lines connecting the row and column drivers to the selected cell and (II)

leakage current flow through the unselected cells on the same row and column of the selected

cell. The combined effect of these two parasitic sources results in significant degradation in

voltage delivery [80].

Figure 5.1: Synaptic Crossbar Array.
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Figure 5.2: Synaptic array under the half bias scheme.

5.2 The Multi-Driver Write scheme

The write operation in the work considered herein involves writing the synaptic weights of

the pre-trained network. A pre-trained network assumes that the synaptic weight values

are determined offline using a software algorithm and does not require online update (i.e.

during regular operation) of the synaptic weights. Due to leakage paths and line resistance,

the voltage delivered to the designated synaptic element may be insufficient to effect a

resistance change which could hamper the performance of the neuromorphic array. In the

multi-driver design approach, the crossbar array is driven from all four sides reducing the

effective leakage paths and line resistance, thus, boosting the voltage delivered to the selected

cells. It is important, however, to note that the each driver is halved and distributed on both

side of the array, thus, maintaining the same overall driver size. Fig 5.3 depicts the circuit

model of the synaptic array under the multi-driver write scheme. The half bias scheme is

assumed in this circuit model and the worst case cell is selected (the circled cell) for write

operation.
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Figure 5.3: Synaptic array under the multi-driver write scheme

Fig 5.4 depicts the equivalent circuit of the crossbar array with the worst case cell being

selected for write operation. RH and RV represent the horizontal and vertical resistances,

respectively, which togther model the impact of the line resistance and leakage current. This

circuit model is derived using Delta-to-Wye conversion as shown in Appendix C. It is readily

shown in Fig 5.5 that as the crossbar size increases, RH increases while RV decreases which

result in degrading the voltage delivered across the selected cell. In the multi-driver write

scheme, however, the advantage is twofold: (1) only half the distance is traversed between

the driver and the worst case selected cell compared to the single driver scheme and (2)

two branches are driving the crossbar array in parallel which further strengthens the driving

capability. In the single driver scheme, the selected cell, Rcell, is driven by branches ARow

and ACol. In the multi-driver write scheme, on the other hand, branches ARow and ACol are

connected in parallel with branches B and C, respectively. In addition, one can readily see

that the equivalent driver resistance in the multi-driver scheme is halved or, alternatively, the

the same driver resistance can be maintained if the driver size is halved, thus, maintaining

the same overall driver area.
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Figure 5.4: Equivalent circuit of the crossbar array under worst case cell write condition.

Figure 5.5: RH and RV vs. Crossbar array size
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5.3 Performance of the Multi-Driver Write Scheme

In this section, the impact of the multi-driver design is investigated. In a synaptic array,

weights are typically programmed using a sequence of pulses with constant magnitude and

width until each weight reaches its designated value. The pulse magnitude and width used in

this work are 1.2V and 100ns, respectively. Hence, in order to evaluate the performance of

the synaptic array, we use the change in resistance per spike ∆R/spike as a figure of merit.

The larger the ∆R/spike the better since the designated weight values can be reached faster

which eventually reduces the energy consumed during programming. It is shown in Fig 5.6

that the multi-driver approach outperforms the conventional approach. This improvement

is attributed to the enhanced voltage delivery across the selected cell as shown in Fig 5.7.

It is also shown that the improvement becomes more pronounced as the crossbar array size

increases as the parasitic resistance begin to dominate the driver resistance.

5.4 Conclusions

This chapter investigated the impact of crossbar array parasitics on the performance of

synaptic arrays in neuromorphic systems. The line resistance and leakage path current result

in voltage degradation across the selected cell. A multi-driver write scheme was proposed that

improves voltage delivery via reducing the effective line resistance and number of leakage

current paths. This enhancement in voltage delivery leads to better performance while

maintaining the same overall driver area.
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Chapter 6

Modeling Insulator Metal Transition

Devices for Circuit Simulation

Insulator Metal Transition (IMT) devices have attracted significant interest in the research

community [81, 28] owing to their switching dynamics that have shown to be suitable for

applications such as neuromorphic circuits and memory arrays. The high ON/OFF ratio of

IMT devices makes them good candidates for use as selector devices in memory arrays. In

addition, their Back-End-Of-Line compatibility (BEOL) helps achieve the ideal 4F 2 density

of crossbar arrays [82, 83]. On the neuromorhpic front, it has been shown that IMTs can be

used in building Integrate-And-Fire neurons while alleviating the need for complex CMOS

circuitry, thus, providing a significant density advantage [32, 23].

A decent body of work has been presented on IMT devices trying to understand the

underlying physical mechanisms contributing to resistive switching. Several studies have

shown that temperature is the main cause of resistive switching such as the work in [57, 58]

while others have attributed it to the electric field [59] with temperature playing a collateral

role. A more in depth study about the switching mechanism is presented in [60, 61] which

show that Joule heating may not be sufficient for resistive switching and an electric field

assisted switching is more plausible. The authors in [60] hypothesize that a certain threshold

voltage is required to effect a phase transition which decreases with increasing temperature.

In [84], the authors have classified IMT devices into two categories: Thermally-driven IMT

(T-IMT) and Electronic IMT (E-IMT) and the characteristics of each type has been studied.
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The lack of a physics-inspired SPICE model, however, has prohibited the full exploration

of IMT devices in circuit applications. Specifically, understanding the interplay between

temperature and electric field has been the main barrier to the development of such a

model [84]. In [32], an IMT electro-thermal model was developed that leverages the positive

electro-thermal feedback to effect a phase transition of the device. The model was validated

against vanadium oxide (VO2) experimental data and could reproduce the data with sufficient

accuracy. The model in [62] followed similar lines and is based on Mott insulator theory.

In this chapter, an IMT SPICE model is proposed and implemented in Verilog-A. The

proposed model describes the IMT device as a memristive system with the local temperature

of the device acting as the internal state variable. Spectre from Cadence is used to simulate

the model and shows a close match to experimental data and device simulations based on

the models in [32, 62].

6.1 Background

Two IMT device models were proposed in [32, 62]. The model in [32] used an elaborate

thermal model to capture the temperature evolution of the IMT device along with a look

up table that captures the relationship between the device’s resistance and temperature.

This look up table based approach is not very popular in SPICE models which are often

represented in a closed form functional form.

The model in [62] built off the previous model in [32] but presented a more physical

picture based on band theory. The IMT device is modeled as a low bandgap semiconductor

where the bandgap of the device decreases with increasing temperature. This reduction in the

bandgap increases the carrier concentration which ultimately results in decreasing the device

resistance. A model is also presented which captures the change in the thermal conductivity

with temperature. Both models are then solved in a self consistent fashion to effect a phase

transition as a function of temperature. This model, similar to the previous one, is best used

in a TCAD simulation flow and is not well-suited for SPICE level simulators.

The SPICE model proposed in this work build off both models while employing some

simplifications to enable its seamless implementation in SPICE environment. A lumped
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element thermal model is used to describe the temperature dynamics of the device. An

empirical function is also employed to describe the evolution of the device’s resistance with

temperature.

6.2 The proposed IMT SPICE model

IMT’s resistive switching has been attributed to the interplay between the electric field

applied across the device and the change in the device’s local temperature resulting from

Joule heating. As the current flows through the device, the device’s temperature rises until

it reaches a critical temperature at which point the device’s resistance switches from a high

resistance state to a low resistance state. The resistance relaxes back to its initial high

resistance state as the temperature of the device drops below the critical temperature.

Here we leverage the memristor theory [2, 10, 11] to describe the IMT device. The

memristive dynamics of the IMT device can be described as follows [12]:

I = G(x).V, (6.1)

dx

dt
= g(x, V ), (6.2)

where (6.1) and (6.2) describe the output and state equations, respectively, and x is the

internal state variable. The proposed model has two main governing equations: (I) the

resistance change equation that corresponds to the output equation (here the resistance is

used for modeling convenience ) and (II) the temperature evolution equation that corresponds

to the state equation, with the temperature being the state variable such that x = T (t).

The relationship between the device’s resistance and local temperature is captured by

two empirical functions: (I) a thermistor function that captures the resistance evolution

with temperature before and after switching and (II) a sigmoid function that captures the

device’s switching. The two thermistor states are expressed as exponential functions of the

temperature such that RLRS = RLRSF e
−BLRS(T (t)−TF ) and RHRS = RHRS0e

−BHRS(T (t)−T0).

RLRSF is the low resistance state defined at temperature TF (a reference temperaure) and

RHRS0 is the high resistance state defined at the ambient temperature T0. BLRS and BHRS

59



are the temperature coefficients which are extracted from the slope of the thermistance vs.

temperature plot and the negative sign describes Negative Temperature Coefficient (NTC)

thermistors. This implementation, however, requires clipping of the RLRS and RHRS at some

minimum and maximum values to avoid any unphysical behavior during circuit simulation.

Clipping, however, requires the use of conditionals which hamper the ”smoothness” of the

model yielding potential convergence difficulties during circuit simulation. Hence, the model

equations are reformulated such that RLRS and RHRS smoothly plateau to RLRSF and RHRS0

at high and low temperatures, respectively.

This relationship between the temperature and the resistance can be expressed as follows:

RLRS = RLRSF (1 +KLRS
A)

1
A , (6.3a)

RHRS = RHRS0(
KHRS

(1 +KHRS
A)

1
A

), (6.3b)

RIMT = RLRS +
(RHRS −RLRS)

1 + e
T (t)−Tc
Tx

, (6.3c)

where KLRS = e−BLRS(T (t)−TF ) and KHRS = e−BHRS(T (t)−T0). Tx is a fitting parameter that

captures the sharpness of the resistive transition. Tc is the critical temperature which is

around 340K in the case of VO2 devices [23]. RLRS and RHRS are the Low Resistance State

and High Resistance State, respectively. A is a conrol parameter which governs how the two

thermistor states approach the asymptotes [85]. In this work, A = 104 is used. However, this

parameter can be varied by the user as needed. While the model might seem complicated

at first glance, the principal equations are simple exponential functions as aforementioned.

This formulation is only employed to abide by compact modeling practices as suggested

in [86, 85]. Section 6.3 provides a more thorough explanation for (6.3) and describes the

parameter extraction procedure.

The temperature evolution dynamics are described by the lumped element thermal model

presented in [3] as expressed in (6.4):

Cth
dT (t)

dt
= VIMT IIMT −

(T (t)− T0)

Rth

, (6.4)
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where VIMT IIMT is the Joule heating, Cth and Rth are the effective thermal capacitance and

the effective thermal resistance, respectively, and T0 is the ambient temperature.

Listing 6.1 depicts Verilog-A code snippet of the core model equations. Suggested

compact modeling techniques are adopted based on the work in [87, 88]. Expressions (6.3a)

and (6.3b) are each divided into two expressions. This model formulation helps avoiding

numerical overflow as the values for KLRS and KHRS become significantly large; see [85] for

more elaborate discussion on this point. The expressions in each conditional are, however,

identical and, therefore, do not cause any discontinuities during the model’s execution.

Listing 6.1: Verilog-A code snippet

Iwr = I(p,n);

V(p,n) <+ Iwr*Rm;

K_HRS=exp(-B_HRS*(tem-T_0));

K_LRS=exp(-B_LRS*(tem-T_F));

if (tem>T_F) begin

LRS=LRSF*pow((1+pow(K_LRS,A)),1/A);

end

else begin

LRS=LRSF*K_LRS*pow((1+pow(K_LRS,-A)),1/A);

end

if (tem>T_0) begin

HRS=HRS0*K_HRS/(pow((1+pow(K_HRS,A)),1/A));

end

else begin

HRS=HRS0/(pow((1+pow(K_HRS,-A)),1/A));

end

Rm= LRS + (HRS-LRS)/(1+exp((tem-Tc)/Tx));

Pwr(temp)<+ ddt(Temp(temp));

Pwr(temp)<+ -pow(Iwr,2)*Rm/Cth;

Pwr(temp)<+(Temp(temp)-T0)/(Rth*Cth);
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6.3 IMT Model Parameter Extraction

In this section, we develop the parameter extraction procedure for the proposed model. The

parameter extraction procedure extracts the model parameters in expressions (6.3) and (6.4)

representing the output and state equations, respectively.

6.3.1 Extracting Model Parameters for the Output Equation

Parameters BHRS and BLRS are first extracted from the output equation. The simplified

form of equation (6.3) is used in the extraction procedure, described in section III, which

can be expressed in the following form:

ln(RLRS) = ln(RLRSF )−BLRS(T (t)− TF ), (6.5)

ln(RHRS) = ln(RHRS0)−BHRS(T (t)− T0), (6.6)

four data points are then used to extract the thermal coefficients (BHRS and BLRS) as shown

in Fig 6.1. The thermal coefficients can be expressed as follows:

BLRS =
ln(RLRSF )− ln(RLRS)

T2 − TF
, (6.7)

BHRS =
ln(RHRS0)− ln(RHRS)

T1 − T0

, (6.8)

As alluded to before, the value chosen for A in this work is A = 104. The higher the value of

A, the faster RHRS and RLRS saturate to RHRS0 and RLRS0 beyond T0 and TF , respectively.

The sigmoidal function contains only one parameter, Tx which captures the steepness

of the resistive transition about the critical temperature. This parameter can be formally

extracted from the line slope of at the transition temperature are simply chosen such the the

model accurately fits the the experimental data.
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Figure 6.1: Thermal coefficients extraction

6.3.2 Extracting Model Parameters for the State Equation

Parameters Rth and Cth are then extracted from the state equation. Fig. 6.2 depicts the

temperature evolution with time. Note that the temperature does not reach the critical

temperature and, accordingly, the IMT electric resistance RIMT does not switch. Hence, we

chose this specific curve for parameter extraction since the electrical resistance of the device

is constant throughout the simulation. First, the steady state solution of the temperature

equation is solved and expressed as follows:

TSS = T0 +Rth
V 2
IMT

RIMT

, (6.9)

Knowing the applied voltage across the IMT device VIMT and the device’s resistance RIMT ,

Rth can be extracted. Cth is then extracted from the transient solution to fit the curve. The

transient solution for the temperature evolution can be expressed as follows:

T (t) = T0 +Rth
V 2
IMT

RIMT

(1− e
−t

RthCth ), (6.10)
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Figure 6.2: Thermal resistance and capacitance extraction

6.4 Model Validation

The proposed model is validated against experimental results drawn from [32]. Fig. 6.3, 6.4

and 6.5 depict the resistive transition about the critical temperature which is about 340K

in VO2 devices for three device samples with different high and low resistance states. Fig.

6.6 depicts the hysteresis in the V-I plane (a fingerprint of memristive systems) exhibited by

the IMT device as shown in [23, 32] and fitted against the experimental data from [32].

Figures 6.7 and 6.8 depict the time dependence of temperature and resistance evolution,

respectively, fitted against electrothermal simulations from [32]. Three voltage levels, based

on the values used from [32], were applied across the device: 1.4V , 1.6V and 1.8V . One

can readily observe in Fig 6.7 that the local temperature of the device saturates at a higher

temperature value for higher voltages due to increased Joule heating. In Fig 6.8, higher

voltages result in faster transition time due to faster rate of joule heating.
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Figure 6.3: Model fitting against experimental data
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Figure 6.4: Model fitting against experimental data
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Figure 6.7: Model (solid line) fitting against electro-thermal simulations (markers).
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6.5 Discussions and Future prospects

The values selected for RHRS and RLRS in this work are extracted from the devices used in

[32]. These values are considered relatively low and may not be compatible with many of

the applications that employ IMT devices. For example, in memory arrays, IMT devices are

often used as selector elements to circumvent sneak path current. This requires the selector

device to possess a high on/off ratio which may not be accomplished with the resistance

values used in this work. In neuromorphic arrays, on the other hand, IMTs are used as

neurons. The neuron firing relies on the IMT switching from RHRS to RLRS as the local

temperature of the device exceeds the critical temperature by means of Joule heating. This

condition, however, may not be achieved if the RHRS is high as will be shown on the next

chapter.

Models for IMT devices also still require constant refinements as more investigation

of these devices are conducted. The lack of a complete understanding of their switching

dynamics necessitate the inclusion of a significant empirical content in IMT models to capture

the observed behavior, specifically, compact models. This empiricism, however, hinders the

model’s predictability and scalability.

6.6 Conclusions

This work presented a SPICE compatible compact model for Insulator Metal Transition

devices validated against experimental data and electrothermal simulations from the

literature. The proposed model describes the IMT device as a memristive system and

captures the role of temperature and electric field in the resistive transition of the device. A

lumped element thermal model was employed to capture the temperature evolution of the

IMT device resulting from Joule heating and an empirical model was developed to capture

the functional relationship between the device’s resistance and temperature. This model

can be used by circuit designers who wish to explore the use of IMT devices in designing

nanoelectonic circuits in SPICE environment.
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Chapter 7

Design of Insulator Metal Transition

based Integrate And Fire Neurons

The switching dynamics of Insulator Metal Transition (IMT) devices can be leveraged in

realizing Integrate And Fire (IAF) neurons. An IMT-based oscillating neuron was proposed

in [23] along with a behavioral IMT model used to simulate the neuron. The proposed

model, however, did not capture the role of temperature in IMT switching and, accordingly,

did not study how the temperature dependent resistive switching can be leveraged to deliver

the functionality of an IAF neuron. In [32], an IMT-based IAF neuron was designed that

captures the temperature dynamics of the device. That design, however, is basic and was

studied in isolation without insight into how the proposed neuron circuit can be included in

a fully fledged neuromorphic crossbar array.

This work proposes an IMT-based IAF neuron [89]. The proposed design capitalizes on

the design proposed in [32] and introduces an output buffer to enable driving other stages.

Impact of the IMT devices parameters on the operation of the IAF neuron is also studied.

It is shown that, unlike CMOS neurons, the properties of the IMT neuron are dependent on

the IMT device parameters.
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7.1 The IAF and LIF Neurons

IAF neurons are characterized by three phases of operation: (I) accumulation, (II) fire

and (III) refractory period. The neuron integrates the incoming current from the synaptic

network Iin = ΣiViGi during accumulation and, consequently, the membrane potential Vmem

increases. The neuron then fires should Vmem exceed some threshold voltage Vth and Vmem is

reset to its resting potential. In the case of ideal IAF neurons, if no inputs are accumulated

from the synaptic network, the membrane potential remains unchanged and no charge is

leaked as predicted by the governing equation Iin = Cmem
dVmem

dt
. Biological neurons,

however, are leaky due to their finite membrane resistance Rmem and their governing equation

can be expressed as follows: Iin − Vmem/Rmem = Cmem
dVmem
dt

. This type of IAF neurons is

often referred to as Leaky IAF neuron or simply: LIF. Fig 7.1 depicts the equivalent circuit

of both IAF and LIF neurons. Linear circuit techniques such as Thevinin and Norton

equivalent circuits were employed to develop these circuit models for the integration stage.

Fig 7.2 depicts the SPICE simulation of the schematic in Fig 7.1. Current pulses were fed

into the neuron from an ideal current source. Both neurons experience an increase in the

membrane potential Vmem when a current pulse is fed to the neuron input. When the neuron

is idle, however, Vmem in the IAF neuron remains constant while it drops gradually (leaks)

in the case of the LIF neuron. This leakage can be readily explained by the RC discharge

present in the equivalent circuit of the LIF neuron.

Figure 7.1: Equivalent circuit models of IAF and LIF neurons
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Figure 7.2: Simulation of IAF (solid) and LIF (dashed) neurons. Vmem decreases in LIF
neurons when no spike arrive while it remains constant in the case of IAF neurons (circled).

7.2 Proposed IMT-based IAF Neuron

The IMT IAF neuron presented in this work leverages the switching physics of the IMT

device to deliver the functionality of a spiking neuron. Neuromorphic circuits consist of

input neurons, a synaptic network organized in a crossbar structure and output neurons.

Non-volatile resistive devices are often used as synaptic devices along with selector devices

to boost the cell non-linearity and suppress sneak path current. In this specific design,

selectors are also required to prohibit any current flow back from the neuron to the synaptic

network. This can be accomplished by employing either FET transistors or diodes as selector

elements.

This work focuses on the analysis and design of the IMT neuron and, hence, we consider

one column of the synaptic crossbar array driving the IMT neuron. Fig. 7.3a depicts a

crossbar array neuromorphic structure and Fig. 7.3b presents the circuit under consideration.
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Figure 7.3: schematic of the proposed IMT IAF neuron. (a) A synaptic netwrok driving
neurons. (b) Circuit under consideration.

CMOS neurons are typically comprised of two operational amplifiers [90, 91]. The first

acts as an integrator to integrate the incoming current from the synaptic network while the

other acts as a comparator to compare the membrane voltage with the threshold voltage. A

feedback circuit is usually employed to implement the refractory period which prohibits the

neuron from accumulating the incoming current from the synaptic network.

The proposed IMT neuron, unlike CMOS neurons that process voltage information,

accumulates, compares to a threshold and fires, and implements the refractory period

via processing thermal information. The neuron’s thermal dynamics, however, are still

dependent on the applied electrical signals since they’re governed by Joule heating. This

electro-thermal coupling is what distinguishes IMT neurons from conventional CMOS

neurons and will be discussed in more detail in the next section. The core of the neuron

lies in the parallel combination of the IMT device and the capacitor as depicted in Fig 7.3b.
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As the input spikes are fed to the neuron, the device’s temperature gradually increases due

to Joule heating, thereby, accumulating inputs from the synaptic network. The IMT then

switches from high resistance state to low resistance state once the temperature exceeds the

critical temperature, thereby, firing. Lastly, the neuron does not accumulate inputs from the

synaptic network until it relaxes back to the high resistance state, thereby, implementing a

refractory period.

Fig. 7.4 depicts the simulation of the proposed IMT neuron. In this simulation,

two identical input voltage pulses were fed to the neuron with magnitude 2V . The

device’s temperature rises as more pulses are fed to the neuron until it reaches the critical

temperature. At this point, the IMT device switches from a high resistance state to a low

resistance state and a current spike is generated. To enable the neuron to drive other stages,

an output buffer needs to be employed. The output buffer is comprised of two blocks: a

CMOS inverter and a spike generator circuit. The CMOS inverter converts the current spike

into a voltage pulse. The spike generator circuit then modulates the pulse width of the spike

depending on the designer’s choice.

7.3 Impact of Device parameter on the Properties of

the IMT Neuron

As mentioned earlier, the dynamics of the IMT neuron are governed by electro-thermal

coupling. First, the circuit in Fig 7.3b is simplified to the circuit shown in Fig 7.5.

The input voltage pulses and the input synapses are represented by an equivalent voltage

source Vin(t) and an equivalent synapse resistance Rw. These simplifications enable the

development of closed form expressions that help provide insight into the properties of the

IMT neuron. Similar to the analysis conducted on the ideal neuron, The equivalent circuit

models developed in this section are based on Thevenin and Norton equivalent circuits and

assumes quasi-static conditions (i.e. the analysis is conducted when the resistance is at either

HRS or LRS without considering the transition state) to ensure that the analyzed circuits

are linear.
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Figure 7.4: Simulation of the proposed IMT IAF neuron. L denotes the neurons leakage
and RP denotes the refractory period.

Figure 7.5: Schematic of the simplified IMT Neuron.
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To enable better understanding of dynamics of the proposed IMT neuron, equivalent

circuit models were derived as shown in Fig 7.6. These models help describe the coupling

taking place between thermal and electrical domains during the neuron’s operation. The

electrical circuit model is the Norton equivalent of the circuit in Fig. 7.5 and can be described

by the following differential equation:

C0
dVIMT (t)

dt
= Iin −

VIMT (t)

RIMT//Rw

, (7.1)

such that Iin = Vin/Rw. The thermal circuit model, on the other hand, can be described by

the lumped element thermal model presented in expression (7.2).

7.3.1 Accumulation

This analysis applies to both accumulation and idle states. In these phases, RIMT = HRS.

The IMT neuron is inherently leaky as shown on Fig 7.4. Leakage, however, takes place

in both thermal and electrical domains. Leakage in the thermal domain results from the

finite thermal resistance Rth of the IMT device. In the electrical domain, on the other hand,

leakage results from the parallel combination of the synaptic network equivalent resistance

Rw and the IMT device resistance: RIMT//Rw.

Figure 7.6: Equivalent circuit model of the simplified IMT neuron. The electrical model
is the Thevenin equivalent circuit of the simplified neuron shown in Fig 7.5. The thermal
model is based on equation (2).
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7.3.2 Firing

In this phase, RIMT = HRS. The IMT neuron fires when the device’s temperature exceeds

the critical temperature. Hence, the critical temperature here serves as the threshold voltage

in the case of CMOS neuron. To enable fair comparison with CMOS neuron, however, the

neuron’s threshold is expressed in terms of a threshold voltage as shown in the following

equations:

VIMT (acc) =
HRS

HRS +Rw

Vin, (7.2)

The steady state temperature can be expressed as follows:

TIMT = T0 +Rth
V 2
IMT

HRS
, (7.3)

Substitute TIMT = Tc and VIMT = Vth and, thus, the threshold voltage can be expressed as:

Vth =

√
HRS

Rth

(Tc − T0), (7.4)

Therefore, the neuron fires when VIMT (acc) > Vth. The neuron’s threshold in IMT based

neurons is a function of the IMT device parameters and cannot be controlled by the designer.

The neuron’s firing rate also, similar to CMOS neurons, increases with increasing the

current coming from the synaptic network as shown in Fig. 7.7. Unlike CMOS neurons,

however, the relationship is not linear due to the serial connection of Rw and RIMT .

7.3.3 Refractory Period

In this phase, the device’s resistance is at LRS and the capacitor does not accumulate any

charge. The device’s temperature, accordingly, starts to decrease as the leakage mechanism

dominates Joule heating. It is critical, however, that the steady state temperature at LRS

drops below the critical temperature for the device to relax back to HRS and allow the

neuron to accumulate for the next cycles. Using steady state analysis, one can derive the

following expression:

VIMT (postfire) =
LRS

LRS +Rw

Vin, (7.5)

76



4 4.2 4.4 4.6 4.8 5

I
in

(mA)

0

5

10

15

20

f fi
re

(s
p

ik
e

-1
)

No

fire

Figure 7.7: Relationship between the proposed IMT neuron’s firing rate and the input
current.

Therefore, to enable robust operation of the neuron, the following condition has to be

met: VIMT (postfire) < Vth

In addition, unlike CMOS neurons where the duration of the refractory period can be

controlled by the designer, the refractory period here depends on the thermal time constant

τth = RthCth and the electrical time constant τelec = (Rw//LRS)C0.

7.4 Comparison between the Conventional CMOS IAF

Neuron and the Proposed IMT Neuron

Table 7.1 summarizes the differences between the conventional CMOS IAF neuron and the

proposed IMT neuron with respect to each neuron property. IMT neurons, as mentioned

before, are more compact than their CMOS counterparts for they do not require dedicated

CMOS circuitry for each phase of operation. This, however, comes at the expense of limited

design options as the neuron properties are governed by not only the device parameters of
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Table 7.1: CMOS-based neurons vs. IMT-based neurons

Property CMOS Neuron IMT Neuron

Accumulation
Rm =∞, IAF

Rm = Rmo, LIF

Rm(elec) = RIMT//Rw

Rm(th) = Rth

Fire Vth = Vtho Vth =
√

HRS
Rth

(Tc − Ta)

Refractory Period Tref = Trefo Tref = f(τth, τelec)

the IMT, but also circuit variables such as synaptic weights. This dependency on synaptic

weights results in the neuron properties, leakage in this case, changing for each set of

programmed weights. These limitations should be carefully studied should the designer

choose to employ and IMT neuron in a neuromorphic circuit design.

7.5 Conclusions

This chapter proposed a Leaky Integrate And Fire (LIF) spiking neuron based on IMT

devices. The proposed neuron leverages the switching physics of the device which alleviates

the need for complex CMOS circuitry. The neuron properties, however, are function of the

device parameters. Design expressions were derived to help with the design space exploration

of IMT based LIF neurons.
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Chapter 8

Conclusions and Future Prospects

8.1 Conclusions

Neuromorphic computing has emerged as a promising alternative for conventional Von

Neumann architectures. The inherent parallelism it provides due to the distributed nature

of memory (synapses) and processors (neurons) alleviates the memory wall problem and

promises significant advances in computing. Several neuromorphic hardware platforms

have been proposed each with its merits and demerits. Memristive devices, in particular,

have attracted significant interest owing to their electrical characteristics that make them

suitable for neuromorphic hardware. To this end, this dissertation investigated the design of

neuromorphic crossbar arrays using emerging memristive devices. Two memristive devices

were studied, namely, Transition Metal Oxide (TMO) devices and Insulator Metal Transition

(IMT) devices. This work adopted a bottom-up approach and focused on the device and

circuit abstractions. Compact models for both devices were first developed and verified

against experimental data followed by proposing circuit design techniques for integrating

those devices in neuromorphic circuits. The contributions presented in this work can be

summarized as follows:

• A compact model of TMO memristors was first developed and implemented in Verilog-

A. The proposed model is compatible with SPICE simulators and based on measurable

parameters which facilitates parameter extraction. The model was verified against
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experimental data extracted from TMO devices available at UTK as well as data

drawn from the literature.

• Transition Metal Oxide (TMO) devices require a one step electroforming process

before the device can be used for regular operation. The forming voltage of TMO

devices is typically high which hinders their integration with state-of-the-art CMOS

technologies. A model for the forming voltage is presented in this work and

validated against experimental data and Monte Carlo simulations. It is shown that

decreasing/increasing the device thickness/area results in reducing the forming voltage.

Local field enhancement may also help reducing the device’s forming voltage.

• The integration of TMO devices as synapses in neuromorphic arrays is then investi-

gated. It is shown that the line resistance and the leakage currents present in syanptic

arrays hamper the voltage delivery to the selected cells which results in performance

degradation. A multi-driver write scheme is proposed that enhances voltage delivery

via reducing the effective line resistance and leakage current paths. This enhancement

in voltage delivery ultimately improves the performance of the synaptic array while

maintaining the same overall crossbar area.

• Insulator Metal transition (IMT) devices are also studied. A SPICE model is proposed

that captures the electro-thermal coupling involved in the resistive transition of the

device. The proposed model is validated against experimental data and electro-thermal

device simulations.

• An IMT-based Integrate-And-Fire (IAF) neuron is then proposed which leverages the

IMT switching dynamics to deliver the neuron’s functionality. Impact of IMT device

parameters on the proposed neuron is also studied and design guidelines are presented.

It is shown that, unlike CMOS-based neurons, the IMT neuron parameters such as the

firing threshold and the refractory period depend on the device parameters as well as

circuit variables.

80



8.2 Future Prospects

The work presented in this dissertation addressed some of the existing challenges at both

device and circuit levels that hinder the realization of robust and reliable memristive

neuromorphic systems. Solutions at both levels of abstraction were provided but there is

obviously still more room for improvement. The author would advise further exploration of

the following:

• The high forming voltages of TMO devices hinders the seamless integration of such

devices with state-of-the-art CMOS technology. Currently, techniques such as the

ones presented in [66] may be required to form TMO devices in-field should the

forming voltage of the TMO devices exceed that of the CMOS devices. Otherwise,

old CMOS nodes may be deployed to solve this compatibility issue at the cost of

increased area occupancy and potentially power consumption. The author would

suggest two future directions to address this limitation: (I) work on reducing the

forming voltage at the device level. This may include structural modification of the

device or exploring new materials and (II) compare the performance of All-CMOS

neuromorphic circuit implemented in a modern CMOS node to the performance of a

hybrid CMOS/memristor neurmorphic circuit implemented in an older CMOS node.

This study can help determine the necessity of integrating TMO devices with advanced

CMOS nodes to outperform their All-CMOS counterparts or the lack thereof.

• The work presented in this dissertation on IMT devices is a first step towards the

integration of IMT devices in neuromorphic circuit applications. More efforts should

be undertaken to further explore the use of IMTs in that direction. This includes:

(I) working on developing more accurate device and SPICE models that better reflect

the switching physics of the device, (II) explore the use of IMT devices in synaptic

networks to provide short term plasticity and (III) develop high level models of IMTs

to explore their impact at the application level.
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Appendix A

RRAM Model Verilog-A code

Listing A.1: RRAM Verilog-A code

// VerilogA for demo, memr_TMO_switching, veriloga

//Model Developed by: Sherif Amer

//This model only includes memrsitor switching equations. It does not include

any secondary effects such as variations, temperature dependence or aging.

//Copyright of the model is maintained by the developers. This model is

distributed under the terms of the Creative Commons Attribution-NonCommercial

4.0

//International Public License

https://creativecommons.org/licenses/by-nc/4.0/legalcode. If you choose to

use this model, you are kindly requested to cite.

//the following paper: Sherif Amer, Sagarvarma Sayyaparaju, Karsten Beckmann,

Nathaniel C. Cady and Garrett S. Rose, "A Practical Hafnium Oxide Memristor

//Model suitable for cirucit design and simulation", in International Symposium

in Circuits and Systems (ISCAS), May 2017, pp. 1-4, DOI:10.1109/ISCAS.2017.8

050 790.

‘include "constants.vams"

‘include "disciplines.vams"

module memr_TMO_switching(p,n,r);
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inout p; //positive pin

inout n; //negative pin

inout r; //Resistance terminal. This is not a physical terminal

of the device. It is just there to facilitate the computaion of resistance.

electrical p, n, r;

// global parameters

parameter real window = 0;

// model parameters

parameter real HRS = 1.5e5; // high resistance state

parameter real LRS = 1e4; // low resistance state

parameter real Vtp = 0.75; // positive Voltage below which the change in

resistance is zero

parameter real Vtn = -1.0; // negative Voltage below which the change in

resistance is zero. Must be a negative value.

parameter real tsw_p = 1e-8; // time to switch under +V bias

parameter real tsw_n = 1e-6; // time to switch under -V bias

//window parameters

parameter real theta_HRS = 0.85; // transition boundary at HRS

parameter real beta_HRS = 0.2; // transition sharpness at HRS

parameter real theta_LRS = 2.1; // transition boundary at LRS

parameter real beta_LRS = 0.05; // transition sharpness at LRS

//Fitting parameters

parameter real CLRS = 1; // speed parameter while transitioning to LRS

parameter real CHRS = 1; // speed parameter while transitioning to HRS
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parameter real P_LRS = 3; // non-linearity parameter while transitioning to LRS

parameter real P_HRS = 3; // non-linearity parameter while transitioning to HRS

parameter real Rinit = 1e4; //initial resistance

real delR;

real time_last;

real Vwr;

real delt;

real Rm;

real Rm_tmp;

analog begin

@ ( initial_step or initial_step("dc") ) begin

delt = 0;

time_last = 0;

Rm = Rinit;

delR = HRS - LRS;

end

delt = $abstime - time_last;

time_last = $abstime;

Vwr = V(p,n);

/////////////////////////// Model equations////////////////////////////////

// window == 0, window function is deactivated

if(window == 0)begin

if (Vwr >= Vtp && Rm != LRS) begin

Rm_tmp = Rm - delt* CLRS* (delR/tsw_p)*( pow(((Vwr-Vtp)/Vtp), P_LRS));

//switching equation while transitioning from HRS to LRS
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if (Rm_tmp <= LRS) begin

Rm_tmp = LRS; //clipping the resistance at LRS

end

end

else if (Vwr < Vtn && Rm != HRS) begin

Rm_tmp = Rm + delt* CHRS * (delR/tsw_n) *(pow(((Vwr-Vtn)/Vtn), P_HRS)) ;

//switching equation while transitioning from LRS to HRS

if (Rm_tmp >= HRS) begin

Rm_tmp = HRS; //clipping the resistance at HRS

end

end

else begin

Rm_tmp = Rm;

end

end

// window == 1, window function is activated

if(window == 1)begin

if (Vwr >= Vtp && Rm != LRS) begin

Rm_tmp = Rm - delt* CLRS* (delR/tsw_p)* pow(((Vwr-Vtp)/Vtp), P_LRS)

/(1+exp((theta_LRS*LRS-Rm)/(delR)/beta_LRS));

if (Rm_tmp <= LRS) begin

Rm_tmp = LRS;

end

end

else if (Vwr <= Vtn && Rm != HRS) begin

Rm_tmp = Rm + delt* CHRS* (delR/tsw_n)* pow(((Vwr-Vtn)/Vtn),

P_HRS)/(1+exp((Rm-theta_HRS*HRS)/(delR)/beta_HRS));

if (Rm_tmp >= HRS) begin

Rm_tmp = HRS;

end

end

else begin
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Rm_tmp = Rm;

end

end

////////////////////////End Model Equations///////////////////////////

Rm = Rm_tmp;

I(p,n) <+ Vwr / Rm;

V(r) <+ Rm; //This is not a physical terminal

end // end analog

endmodule
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Appendix B

IMT Model Verilog-A code

Listing B.1: IMT Verilog-A code

// VerilogA for demo, IMT_newmodel_simple, veriloga

‘include "constants.vams"

‘include "disciplines.vams"

module IMT_newmodel_simple (p,n,tempV,r,temp);

inout p; //positive pin

inout n; //negative pin

inout tempV; //negative pin

inout r; //negative pin

electrical p, n,r,tempV;

thermal temp;

//parameters

parameter real HRS0 = 4e3;

parameter real LRSF = 4e1;
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parameter real B_HRS=0.0035;

parameter real B_LRS=0.0025;

parameter real A=1e2;

parameter real Cth = 3.174e-12;

//parameter real tau_th = 2.3e-7*0.53;

parameter real Rth = 4.1667e4;

parameter real T0 = 300;

parameter real Rinit = 4e3;

parameter real Tinit=300;

parameter real T_0=300;

parameter real T_F=400;

parameter real Tc = 330;

parameter real Tx = 2;

//variables

real Vwr;

real Iwr;

real Rm;

real K_HRS,K_LRS,HRS,LRS;

real tem;

analog begin

tem=Temp(temp);

Rm=V(r);

Iwr=I(p,n);

V(p,n) <+ Iwr*Rm;
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//Resistance evolution

K_HRS=exp(-B_HRS*(tem-T_0));

K_LRS=exp(-B_LRS*(tem-T_F));

if (tem>T_F) begin

LRS=LRSF*pow((1+pow(K_LRS,A)),1/A);

end

else begin

LRS=LRSF*K_LRS*pow((1+pow(K_LRS,-A)),1/A);

end

if (tem>T_0) begin

HRS=HRS0*K_HRS/(pow((1+pow(K_HRS,A)),1/A));

end

else begin

HRS=HRS0/(pow((1+pow(K_HRS,-A)),1/A));

end

// Thermal Model

Rm= LRS + (HRS-LRS)/(1+exp((tem-Tc)/Tx));

Pwr(temp)<+ ddt(Temp(temp));

Pwr(temp)<+ -pow(Iwr,2)*Rm/Cth;

Pwr(temp)<+(Temp(temp)-T0)/(Rth*Cth);

V(r) <+ Rm;

V(tempV)<+tem;

end

endmodule
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Appendix C

Crossbar Reduction Algorithm Using

Delta-to-Wye Conversion

To enable better understanding and faster analysis of the multi-driver write scheme, it is

important to develop a technique to reduce the crossbar array into a tractable circuit for

which circuit analysis concepts can be applied. The algorithm developed herein is based on

Delta-to-Wye conversion. The algorithm executes iterative Delta-to-Wye conversions on the

target circuit to help arriving at a tractable circuit from which one can gain insight about

the the circuit under consideration. It is important, however, to note that the algorithm

derived in this work is exclusively applicable to the work discussed in this dissertation and

may not be generalized to other problems involving crossbar arrays.

The equivalent circuit of the crossbar array under the V/2 bias scheme during the write

operation is depicted in Fig C.1. This analysis considers the worst case cell defined as the

cell farthest from the row and column drivers. Driving this cell results in the highest leakage

current through the half selected cells and the highest drop across the line resistance and,

hence, exhibits the worst voltage delivery.
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Figure C.1: Equivalent circuit of the crossbar array under worst case write operation.

The first step in the algorithm is to reduce the equivalent circuit in Fig C.1 to a tractable

circuit for which closed form expressions for the voltage and currents can be derived. This

reduction is executed via an iterative Delta-to-Wye conversion as shown in fig C.2. For N

branches, N − 1 half selected branches are reduced in (N − 1) − 1 steps. The reduction

algorithm is applied for both rows and columns.

Fig C.3 depicts the reduced circuit of the crossbar array where RH and RV represent the

line resistance and the leakage path resistance (resistance of the half selected cells). Fig C.4

depicts RH and RV versus the arrays size.

Kirchhoff Voltage Law (KVL) is then applied to the three loops depicted in Fig C.3

to find the current flowing in the circuit. The voltage across the selected cell Vcell is then

calculated.
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Figure C.2: Visual representation of circuit reduction using Delta-to-Wye conversion.
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Figure C.3: Reduced equivalent circuit of the crossbar array.

Figure C.4: RH and RV vs. array size.
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Appendix D

Forming Circuit

Forming TMO devices in-field is necessary when memristors are integrated in the CMOS

process flow. The process considered in this work is a hybrid CMOS/memristor flow

developed by SUNY where Hf0x devices are integrated in the 65nm CMOS process available

at SUNY. The forming voltage, however, of the Hf0x devices is higher than the nominal

voltage of the the 65nm node available at SUNY which requries dedicated circuitry to execute

in-field forming of the TMO devices.

Two forming circuits were designed in this work. The first forming circuit is presented in

A and only considers forming the devices in-field. The second is presented in B and considers

in-field forming as well as programming. The forming circuit in B was fabricated by SUNY

Polytechnic institute as a part of a collaborative project.

A Forming Circuit I

The circuit presented in this section is based on the work in [66] and is shown in Fig

D.1. The circuit operates in two phases: (φ1) operation phase and (φ2) forming phase.

In φ1, the forming circuit is isolated and the device is connected to the pre and post neuron

circuits (could be any other circuit depending on the application. In this work, we consider

neuromorphic circuits). In In φ2, the forming circuit is activated and the pre and post neuron

circuits are isolated. The voltages used for forming are typically higher than the nominal

operating voltages and, therefore, the devices used for forming are DGXFET available in
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the Process Design Kit (PDK) used at SUNY which can take up to 3.3V. The nominal

voltages of the devices used in the pre and post neuron circuits is 1.2V. During forming, two

pull down FET devices are activated to protect the pre and post neuron circuits. Also, a

current compliance mechanism is activated to limit the current through the TMO device.

φ1 and φ2 are controlled by a non-overlapping clock circuit to ensure that both paths are

not simultaneously activated. The non-overlapping clock circuit is shown in Fig D.2.

Figs D.3, D.4 and D.5 depict the operation of the proposed circuit. In Fig D.3, during

the forming phase, the pre and post neuron nodes are pulled down to 0V and the voltage

across the TMO device exceeds 2.1V - the forming voltages of the devices used in this work.

Fig D.4 shows that the current does no exceed 72µA which is the compliance current used for

this design. Fig. D.5 shows successful forming for a wide range of pre-forming resistances.

Figure D.1: Proposed in-field forming circuit

109



Figure D.2: Non-overlapping clock generator

Figure D.3: Critical Voltage nodes during forming
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Figure D.4: Current Compliance

Figure D.5: Parametric analysis run over a wide range of pre-forming resistance values

111



B Forming Circuit II

Two versions of the forming/programming circuit were fabricated. Fig D.6 depicts the pin-

out of the 12X2 probe pads. Table D.1 describes the various signals applied to the test

structures. Table D.2 depicts the pin assignment. Note that duplicates of each version

are present on the 12X2 probe pads. Hence, signal X(2) refers to signal X , replica (2).

Versions I and II of the forming/programming circuits are discussed in subsections B.1 and

B.2, respectively.

B.1 Version I

This forming/programming circuit executes both forming and programming of the memristor

device. Table D.3 depicts the truth table for the proposed forming/programming circuit. Fig

D.7 and Fig D.8 depict the schematic and simulation of the forming/programming circuit,

respectively.

B.2 Version II

This circuit is another variation of the forming and programming circuit. Fig D.9 and Fig

D.10 depict the circuit schematic and simulation, respectively. S = 1 corresponds to the

Forming/SET path while S = 0 corresponds to the RESET path. V bias can be set to control

the current through the device. V pad and V pad2 are used to SET and RESET the device,

respectively.

Figure D.6: 12X2 probe pad structure
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Table D.1: Signal description for the test structures

Pin Attribute Pin Type Signal Description

In DC pulse learning path

In DC pulse (inout) learning path

Out DC pulse (inout) learning path

VF DC (in) Forming signal, 3.3V

VP DC (in) Programming signal, 3.3V

VPin DC pulse (in) Programming pin

S DC (in) MUX selector, 3.3V

Vpad DC pulse (inout) learning path

Vpad2 DC pulse (inout) learning path

Vbias DC (input) current compliance

Table D.2: Pin assignment of the test structures

Pin name Pin Connection Pin Direction Pin name Pin Connection Pin Direction

t1 In inout b1 Out inout

t2 Vpin input b2 VP input

t3 VF input b3 Out(2) inout

t4 VP(2) input b4 In(2) inout

t5 VF(2) input b5 Vpin(2) input

t6 Vpad inout b6 S input

t7 Vbias input b7 Vpad2 inout

t8 Vpad(2) inout b8 S(2) input

t9 Vbias(2) input b9 Vpad2(2) inout

t10 Vpad(3) inout b10 S(3) input

t11 Vbias(3) input b11 Vpad2(3) inout

t12 VDD - b11 GND -
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Table D.3: Forming and programming scheme

VF VP F

0 X learning

1 0 Forming/SET

1 1 RESET

Figure D.7: Forming and Programming circuit I

Figure D.8: Forming and programming of 4 ReRAM devices. M0, M2, M3 are programmed
to LRS while M1 is kept at HRS
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Figure D.9: Forming and Programming circuit II.
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Figure D.10: Forming the memristor device to LRS then switching it to HRS.
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