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Abstract

The intersection of communication and machine learning is attracting increasing interest from

both communities. On the one hand, the development of modern communication system

brings large amount of data and high performance requirement, which challenges the classic

analytical-derivation based study philosophy and encourages the researchers to explore the

data driven method, such as machine learning, to solve the problems with high complexity

and large scale. On the other hand, the usage of distributed machine learning introduces

the communication cost as one of the basic considerations for the design of machine learning

algorithm and system.

In this thesis, we first explore the application of machine learning on one of the classic

problems in wireless network, resource allocation, for heterogeneous millimeter wave networks

when the environment is with high dynamics. We address the practical concerns by providing

the efficient online and distributed framework. In the second part, some sampling based

communication-efficient distributed learning algorithm is proposed. We utilize the trade-off

between the local computation and the total communication cost and propose the algorithm

with good theoretical bound. In more detail, this thesis makes the following contributions

• We introduced an reinforcement learning framework to solve the resource allocation

problems in heterogeneous millimeter wave network. The large state/action space

is decomposed according to the topology of the network and solved by an efficient

distribtued message passing algorithm. We further speed up the inference process by

an online updating process.

• We proposed the distributed coreset based boosting framework. An efficient coreset

construction algorithm is proposed based on the prior knowledge provided by

v



clustering. Then the coreset is integrated with boosting with improved convergence

rate. We extend the proposed boosting framework to the distributed setting, where

the communication cost is reduced by the good approximation of coreset.

• We propose an selective sampling framework to construct a subset of sample that could

effectively represent the model space. Based on the prior distribution of the model space

or the large amount of samples from model space, we derive a computational efficient

method to construct such subset by minimizing the error of classifying a classifier.
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Chapter 1

Introduction

The marriage of communication and machine learning is attracting increasing attention

currently. On one side, with its successful application on image recognition, nature language

process and game playing, machine learning is considered as the potential solution for many

modern communication problems that deal with large data volumes and high complexity.

Meanwhile, the machine learning community seeks to borrow tool from communication,

such as information theory [81], to tackle the bottleneck of the learning problem, such as

the model’s interpretability [142] and the communication efficiency in distributed learning

[? 170]. In this thesis, we explore the application of advanced learning algorithm on

complex communication system and provide communication efficient sampling framework

for distributed learning system. [82]

1.1 Motivation

1.1.1 Machine Learning for Communication

Modern machine learning research is focused on complex system with high dimensional data

and enjoy great breakthrough on various fields and different size, ranging from identifying

planet in atmospheric physics to analyzing genome sequencing data in genomics. Such

success encourages the researchers from different backgrounds to rethink the way of study

using machine learning technique.
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The application of machine learning techniques in communication network has a long

and continuous history covering almost all layers. For example, in network layer, machine

learning algorithms are used for optimal packet routing [86], traffic classification [5] and

network prediction [91] to improve the overall throughput of the network. In application

layer, the massive mobile data has been used for health care [90], anomaly detection[141] and

some privacy related issues [137]. The recent success of deep learning has further underpinned

new and powerful tools to solve those problems.

However, comparing to the data driven philosophy in machine learning, for the physical

layer study in communication networks, especially for the wireless communications study,

the previous studies are predominantly model based. A significant degree of analytical

derivations based on probabilistic models are well characterized. Besides, the transmit

signals in communication are designed by human, comparing to computer vision and

natural language processing problem, where there is no rigid mathematical models. Such

prior knowledge enables the research to design straightforward algorithms based on the

probabilistic models. Therefore, there is a high bar of performance for machine learning

technique to defeat to provide reasonable new benefits. For example, Polar Code provably

achieves the channel capacity for symmetric binary-input, discrete, memoryless channels.

With the emerge of the fifth generation (5G) cellular communications, massive new

features are introduced into the design of wireless communication, such as beamforming,

multiple-input and multiple-output (MIMO). The increasing features often entail consider-

able complexity for previous algorithms, which creates a serious gap between theoretical

design/analysis and real-time processing. Besides, some assumptions on the previous

probabilistic models may not be practical in 5G network. To address the challenge, the

machine learning techniques are reconsidered as the promising solutions, since it requires

little prior knowledge and assumptions and the model is directly trained from the labeled

data. In the first part of the thesis, we will propose a reinforcement learning based framework

to efficient solve a joint resource allocation in millimeter wave heterogeneous network.

2



1.1.2 Communication for Machine Learning

The big trend of modern machine learning research is about the scalability. The typical image

classification problem is trained on millions of labeled data, the machine translation service

from Google uses tens of millions of bilingual sentence pairs and the learning algorithm for

logs searching collects data from billions of users[153]. To improve the performance, the

corresponding learning model for those big data problem becomes huge. For example, the

DistBelief model has over 1010 weights [38]. The training of such large models would further

require large computation resource [29].

To process such big data, big model and big computation problem, the classic learning

framework is no longer practical. The massive data set may not be fitted into a single

computer’s storage and the computation resource on one computer is far from enough to

complete the training in reasonable time scale. It is also subject to the constraints of privacy

and data sovereignty laws that moving large amounts to process in a centralized way is

not practical. Thus, in recent years, the computational paradigm for large scale machine

learning has shifted towards massively large distributed systems, where the computation and

data are distributed over individually small and unreliable computational nodes. Then the

distributed machine learning algorithms are employed to process such problems.

In machine learning, the performance of the model is evaluated based on its accuracy

and computational efficiency. The former measures how accurate the prediction is made

on new instances and the latter focused on how much computation is needed to achieve

the corresponding accuracy. The common philosophy of designing a good machine learning

algorithm will require the consideration on both dimensions. In distributed machine learning,

as studied by a variety of distributed computing platforms, the communication cost becomes

the third dimension. In distributed learning, the massive message, including data and the

model parameters, would be transferred throughout the computer network. Although the

speed of Ethernet could achieve 10 megabits per second, it is still slow comparing to the

CPU’s operation time. In fact, the overhead for a single message exchange can be long

enough for thousands or more floating point operations. Besides, synchronization becomes

3



a big issue with the increase number of computing nodes. Recent studies confirmed that the

communication could be the bottleneck for the distributed learning system.

To design a good distributed learning algorithm, the trade off between accuracy,

computation and communication efficiency must be considered jointly. For the trade off

between communication and computation, higher level parallelization for the computation

would improve the computation efficiency as more distributed nodes are involved in the

training. The running time could be impressively reduced comparing to the serialized

pattern. In the meantime, the coordination and synchronization between the distributed

nodes would require more extra communication overhead with the increase of the distributed

nodes. The trade off between the communication and accuracy could be considered in

the view of information. Learning the optimal model distributedly is similar to collecting

information from separated nodes. The best solution is to aggregate all the local information

together for a centralized learning process using massive communication. In contrast, if no

communication is allowed to exchanged information among the distributed nodes, then the

learning can only be performed on single machine and the model could not guarantee a global

optimal solution.

Given the situation, in the second part of the thesis, we investigate some sampling

based approximate algorithms, which allow us to sample the inexact but good enough

approximation (subset) of the data for distributed learning.

1.2 Connection to Existing Work

In this section, we list some of the existing research that related to the topic in this thesis.

1.2.1 Resource Allocation in Wireless Cellar Network

In heterogeneous cellar network, multiple base stations (BS) are deployed within the cell to

serve the User Equipment (UE) simultaneously and increase the capacity. Since those BSs

share the same frequency, the signal from different BSs become interference to each other.

It is critical to manage the user association policy for each UE to maximize the network

throughput. On the BS side, the increasing number of UEs requires larger transmission power

4



according to the quality of service (QoS) requirement for each UE. The energy efficiency

becomes another key dimension such that each BS need to properly control its transmission

power to satisfy the QoS requirement while avoiding making large interference and costing

unnecessary transmission power. Such joint consideration on the user association and power

control within the cellar network is considered as the resource allocation problem.

In the existing Long Term Evolution (LTE) systems, the most prevalent solution for the

resource allocation problem is based on the received power [42], where the choice of connected

BS for each UE is determined when the signal power from the corresponding BS is the largest.

Although this policy works well in existing LTE system, previous study pointed out that this

could cause serious load balancing problem and the system’s total throughput is far from

optimal[161].

There are numerous of previous works focusing on the resource allocation problem

in heterogeneous networks. [8] attributed the heterogeneous networks’ success to seven

key factors, which are performance metric, topology, cell association, downlink vs uplink,

mobility, backhaul and interference management. The resource allocation problem is directly

related to two of them. [59] introduced new theoretical models for understanding the

heterogeneous cellular networks, identifying the practical constraints and challenges to tackle.

The authors pointed out that in heterogeneous networks most UEs would connect to the

BS with strongest transmission power while the picocells with smaller transmission power

have less connected UE. This is highly suboptimal from a network-wide point as moving

a UE from a heavily-loaded macro-base station to a nearby lightly loaded picocell would

benefit both that UE as well as the macrocell users by achieving better load balancing. The

detailed overview about the load balancing in heterogeneous networks could be found in [9]

and some potential strategy, such as biasing, blanking, small cell planning are discussed.

The energy efficiency, one of the key dimension in resource allocation, is discussed in [114]

for heterogeneous networks. The paper systematically reviewed and evaluated the various

studies performed in the area of energy efficient resource management in cellular networks.

The solution considering the long-term time scale and short-term time scale are introduced

while the former could be modeled as the user association problem and the latter could be

considered as the BS operation subproblem. They provided the analysis to jointly solve

5



the combined long and short term time scale problem by formulating weighted optimization

problem. [146] studied the mathematical modeling for network selection in heterogeneous

networks, where UE could switch between different radio access technologies rather than

connect to different base stations.

While all above comprehensive surveys provide thorough insight into the resource

allocation problem for classic heterogeneous networks, new challenges arise in 5G era.

Millimeter wave is introduced in 5G era to provide enormous spectrum. However, millimeter

wave communication suffers from high space path loss and is easy to be blocked. This unique

radio propagation characteristics introduces high dynamics and new feature to the channel

model. The communication may switch between the Line-Of-Sight, None-Line-Of-Sight and

even blockage state, where the channel model for each state is totally different, and the state

switch may happen in the order of hundreds of milliseconds or even less[113], much faster

than LTE and other previous technologies. Besides, in millimeter wave communication,

beamforming is used to provide higher transmission gain using narrow beam and antenna

arrays. Such directional transmission pattern could help suppress the interference arriving

from neighboring cells and the network could be considered as noise-limited, comparing to

the previous interference-limited networks. The above new features make it necessary to

rethink the resource allocation problem in 5G era.

The resource allocation problem in wireless networks could be generally considered as a

utility maximization problem subject to a resource or/and power constraint. In the 5G case,

the utility includes spectrum efficiency, energy efficiency, QoS with linear [157], logarithmic

[128], exponential [163], and sigmoidal [33] forms depending on the problem setting. Relaxed

optimization, game theory, stochastic geometry and Markov decision processes are the

popular tools to solve the utility maximization problem.

Relaxed Optimization

The typical user association for resource allocation could be modeled as constraint binary

association problem, where each UE is assigned for one BS. It is NP hard and not computable

even for modest-sized wireless networks. In 5G era, as the BS density and the number of UE

within the cellar is large and the high dynamics of the channel makes the problem even more
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complex as the handover cost or the re-association has to be considered, it is not practical

to solve the utility problem directly. One way to make the problem convex is to relax

the binary constraint. Instead of allowing the UE to connect to only one BS, the multi-

connectities is allowed for each UE, transforming the binary constraint to a real number

between 0 and 1. Although the multi-connectities assumption is not practical as it requires

large amount of overhead for the control, it could provides some insight into the system’s

performance. This is because the relaxed problem could upper bound the performance for

the binary constraint problem. Then the relaxed utility maximization could be solved by

some standard optimization tools, such as dual decomposition in a distributed manner, which

could efficiently converge to the near-optimal solution.

There are extensive of previous researches working on resource allocation problem for

5G network using relaxed optimization. [36] developed a new theoretical framework to

study cell association for the downlink of multi-cell networks and derive an upper bound

on the achievable sum rate. The heuristic based solution is proposed to achieve the near-

optimal solution. [53] leveraged the benefits of small cell network and proposed a cooperative

small cell network architecture that jointly considering the user handover, channel borrowing

sensing and base station coordination. [100] described new paradigms for design and

operation of heterogeneous cellular networks focusing on cell splitting , semi-static resource

negotiation, range expansion and fast interference management. They proposed a simple and

efficient solution to solve the problem. [156] modeled the resource allocation in millimeter

wave network as a novel multi-dimensional assignment problem, for which an original solution

method is established by a series of transformations that lead to a tractable minimum cost

flow problem. [155] considered a hybrid heterogeneous network, where macro cells adopt

massive MIMO, and small cells adopt millimeter wave transmissions. There simulation

proved that, compared with massive MIMO macro cells, millimeter wave small cells play a

dominant role in enhancing the throughput of the networks due to the larger bandwidths.

[14] converts the resource allocation problem to a minimum cost flow problem and allows to

design an efficient algorithm by a combination of auction algorithms. The solution algorithm

exploits the network optimization structure of the problem with much more powerful than
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computationally intensive general-purpose solvers. In [136], joint optimization of the long-

term base station sleep-mode activation, user association, and sub-carrier allocation was

considered for maximizing the energy efficiency or minimizing the total power consumption

under the constraints of maintaining the fairness for each UE within the network. The

utility function has been relaex to the convex function and the corresponding near-optimal

solution is obtained with significant gains in saving power and increasing energy efficiency.

[121] analyzes the impact of user mobility in multi-tier heterogeneous networks for 5G

communication.The optimal bias factors for user association is obtained to maximize the

coverage. From their simulation, when the user is mobile, and the network is sensitive to

handoffs, both the optimum tier association and the probability of coverage depend on the

users speed; a speed-dependent bias factor can then adjust the tier association to effectively

improve the coverage, and hence system performance. In [37], the authors consider a dynamic

control problem for mobile association and solved the problem using a Semi Markov Decision

Process framework. Numerical results showed that mobility can even be beneficial to the

system performance.

Game Theory

Game theory is the study of mathematical models, which focuses on the conflict and

cooperation between intelligent rational decision-makers. It has widely application ranging

from economics, political science to psychology and computer science. The optimal strategy

for all the players to achieve the maximum utility is known as equilibrium. The resource

allocation problem could be considered as the game, where all the UEs and/or BSs are

considered as the players. Game theory is a powerful tool since it provides tractable methods

for the investigation of very large decentralized optimization problems. While the Relaxed

Optimization model is used to maximize the overall utility for the whole system, game theory

provides more flexible. The problem could be considered as the competing game if all the

players seek to maximize their own utility and compete against each other with different

strategies. By contrast, when the target is to maximize the overall system’s utility, the

problem could be regarded as a cooperative game where players bargain with each other for

the sake of attaining mutual advantages [89]. However, it is important to note that game
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theory operates under the assumption that all the players are rational, which might not be

the case for wireless networks[80]. Another drawback for game theory approach is that the

convergence of the resulting algorithms is, in general, not guaranteed [66]. Besides, since

game theory only provide the decision making strategy, there is no closed form between

utility metric and the network’s parameters, it could provide less insight into the design of

the system, comparing the following stochastic geometry approach.

In [24], the author considered the optimal user-cell association problem for massive

MIMO heterogeneous networks and simple decentralized user-centric association schemes,

where each user individually and selfishly connects to the base station with the highest

promised throughput. The users make local association decisions in a probabilistic manner

can be viewed as games and are known to converge to Nash equilibria. [12] proposed two

general classes of throughput models that capture the basic properties of random access

and and scheduled access. Based on the proposed models, a non-cooperative game is

formulated and an efficient solution with good convergence is provided. [108] formulated the

dynamics of network selection problem in a heterogeneous wireless network using the theory

of evolutionary games. With the help of reinforcement learning, a user can gradually learn

and adapt the decision on network selection to reach evolutionary equilibrium without any

interaction with other users, such that the computation is totally distributed. [158] developed

a repeated game model, which leads to distributed user association algorithms with proven

convergence to the Nash equilibrium. [63] proposed a universal joint BS association and

power control algorithm for heterogeneous cellular networks where the algorithm iteratively

update the user association policy and transmission power based on previous iteration. They

proved that the proposed algorithm is the solution to a non-cooperative game. In [124], The

resource allocation problem is formulated as a many-to-one matching game in which the UE

and BS rank one another based on utility functions that account for both the achievable

performance, in terms of rate and fairness to cell edge users, as captured by newly proposed

priorities.
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Stochastic Geometry

For more than three decades, stochastic geometry has been used to model large-scale wireless

networks, and it has succeeded to provide tractable models to capture and better understand

the performance of the networks[49]. The BS and UE with the heterogeneous networks are

modeled by a point process, including Poisson point process (PPP), the Binomial point

process (BPP), the Hard core point process (HCPP), and the Poisson cluster process

(PCP). By using the Poisson point process and Rayleigh Fading assumption, we could

obtain the tractable expression for the key metric, such as the coverage probability, energy

efficiency. The Stochastic Geometry could provide the insight of some system parameters’

impact on the system performance based on the derived analytical expression. Another

advantage for Stochastic Geometry is its computation efficiency as calculating the closed

form expression require much less computation comparing to solving large scale relaxed

convex optimization. However, the performance of Stochastic Geometry is highly dependent

on the model assumption. When Poisson point process and Rayleigh Fading is not a good

approximation for the true system, the result from Stochastic Geometry may suffer from

large performance gap.

Modeling and analysis of heterogeneous cellular wireless networks is increasingly attract-

ing the attention of the research community. [39] develop a tractable, flexible, and accurate

model for a downlink heterogeneous cellular network consisting of K tiers of randomly located

BSs, where each tier may differ in terms of average transmit power, supported data rate

and BS density. An expression for the probability of coverage is derived over the entire

network under both open and closed access. In [132], the author considered a general and

tractable model that consists of multiple different radio access technology, each with different

tiers. The the distribution of rate over the entire network is then derived for a weighted

association strategy. [133] proposed a general and tractable millimeter wave cellular model

capturing high near-field path loss and poor diffraction for millimeter transmission. The BSs

backhauling in a mesh architecture is proposed. The analysis of the proposed framework

showed that increasing the system bandwidth does not significantly influence the cell edge

rate, although it boosts the median and peak rates. [16] proposes a general framework
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to evaluate the coverage and rate performance in millimeter wave cellular networks. The

locations of the LOS and non-LOS base stations are modeled as two independent non-

homogeneous Poisson point processes, to which different path loss laws are applied. The

results show that dense mmWave networks can achieve comparable coverage and much

higher data rates than conventional wireless networks. [73] derives the outage probability of

a typical user in the whole network or a certain tier, which is equivalently the downlink SINR

cumulative distribution function for heterogeneous networks under the implicitly assumption

all base stations have full queues. The result indicates that the biasing factor for user

association has large impact on various metrics of the system. A joint resource partitioning

and offloading in a two-tier cellular network is considered in [131]. It is shown that show that

load balancing, by itself, is insufficient, and resource partitioning is required in conjunction

with offloading to improve the rate of cell edge users in co-channel heterogeneous networks.

In [19], the average downlink user data rate is derived for the joint spectrum allocation

and user association in heterogeneous cellular networks. Then the data rate is employed as

the objective function in jointly optimizing spectrum allocation and user association and a

computationally efficient solution is proposed. A Surcharge Pricing Scheme is also presented,

such that the designed association bias values can be achieved in Nash equilibrium. In [120],

the author explored the optimality of the intuitive solution that the fraction of spectrum

allocated to each tier should be equal to the tier association probability in heterogeneous

networks.

Markov Decision Processes

The user association and power control in wireless networks could be considered as sequential

decision making problem of discrete time stochastic systems in the presence of uncertainty.

For the millimeter communication, the uncertainty has larger impact on the systems’

performance as

• Due to the high path loss, millimeter introduces multiple channel states, namely the

Line-Of-Sight (LOS), None-Line-Of-Sight (NLOS) and outage state, to characterize

the different transmission properties of the channel.
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• By deploying beamforming, the directional transmission technology, the alignment

between the transmitter and receiver would have an impact on the channel gain and

thus introduce extra randomness to the system model.

Markov decision processes is a powerful tool to model the sequential decision making

problem. The objective is to perform actions in the current state to maximize the future

expected reward. Under the assumption that the future state st+1 is only dependent on

the current state st and action st, the optimization problem defined by the sequential

decision making could be solved via dynamic programming and reinforcement learning. In

millimeter wave communication, the channel may switch between LOS and NLOS state on

the order of hundreds of milliseconds. This requires an efficient decision making framework.

Reinforcement learning is considered as the potential solution. For example, in Q-learning,

the optimal policy is learned via value iteration and the result is described by a Q-function.

The current state st and available action at are the parameters of Q-function and the optimal

decision in current state st is obtained by solving the

arg max
a∈A

Q(st, a) (1.1)

In most cases, the Q-function is a discrete table characterized by the state space s and action

space t and thus solving (1.1) is efficient.

However, as the size of the network increases, the state space and the action space

increases exponentially, which makes it hard to solve exactly. Besides, since Q-function is

modeled as the discrete table, it has limitations when dealing with continuous state spaces.

Besides, the performance of MDP based approach is highly dependent on the choice of states

and a reasonable state transition mode. As the resource allocation problem in heterogeneous

networks is always complex and unstructured, it is still an open question to find the good

state space.

Recent breakthrough in machine learning community helped to overcome the limitation

of MDP based approach. The deep reinforcement learning framework approximates the

Q-function with the multi-layers neural network. Using stochastic gradient descent, the

network could be trained to have good representation for the Q-function. The striking
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success of Alpha Go [129] proves that such framework could handle the state/action space

with size of more than one billion. Since neural network could use continuous input, it could

be extended to the control task with continous state space.

[159] gave an extensive overview on the application of reinforcement learning on wireless

network. [135] studied the choice of wireless network with Markov decision process. The

objective is to maximize the total expected reward per connection. The problem is solved

via decomposing the complicated MDP problem into a hierarchy of simpler and more

manageable subproblems. [32] determined the conditions under which a mobile terminal

switches from one network to another should be performed. The value iteration algorithm

is used to compute a stationary deterministic policy. [48] propose hybrid schemes where the

wireless users are assisted in their decisions by the network that broadcasts aggregated load

information. The equilibria is obtained using a Bayesian framework. In [47] an alternative

channel allocation scheme is proposed in mobile cellular networks that supports multiple

heterogeneous traffic classes. It is asymptotically optimal, computationally inexpensive,

model-free, and can adapt to changing traffic conditions. The goal of [82] is to maximize the

secondary users’ performance while bounding the performance degradation of the primary

users. The secondary user is modeled as the agent and its instantaneous is based on long-

term impact on the temporal evolution of the network. An iterative method is proposed

to calculate the optimal strategy with no a prior knowledge of the statistics of the Markov

process.

1.2.2 Communication Efficient Distributed Learning

Most machine learning problems could be formulated as the statistical optimization problem.

The generalized target function could be defined as

f(θ) =
1

n

n∑
i=1

l(θ, zi) (1.2)

where l(θ, zi) is the loss function for data zi and n is the size of training set. The goal is

to find the minimizer of E[f(θ)]. Here the expectation is over the distribution of zi. Since

the distribution of the data is unknown, instead of minimizing the generalization risk, the
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empirical risk minimization of (1.2) is computed. The performance of the empirical minimizer

could be further bounded by VC theory [143] or Rademacher complexity [20].

The optimization in (1.2) could be convex or even none convex. For the convex problem,

the gradient descent method[106, 107] could be applied to calculate the global empirical risk

minimizer. Further advanced method based on gradient descent have been proposed to speed

up the convergence [123]. Although it is easy to parallelize the gradient descent method in

distributed setting [21], it requires to go through the entire data set for each iteration, which

makes it less efficient to complete one iteration on the massive data set.

The stochastic gradient method and its variants are considered as the solutions for

large scale optimization in machine learning, as for each iteration, only a subset of the

data is required to calculated the stochastic gradient while it could still achieve the same

accuracy[167, 154, 26, 65], comparing to the full gradient version. The power of stochastic

gradient has been extensively studied. Some recent researches reveal that empirically, by

adding noise to the stochastic gradient, the performance of stochastic gradient could be

improved such that we could escape the poor local minima[105] even for none-convex target

function. [58] proved that by adding isotropic noise n and choosing the sufficiently small

step size η, the iterative update

θ = θ − η(5f(θ, z) + n) (1.3)

could guarantee to escape strict saddle points. [72] shown that a perturbed form of gradient

descent can converge to a second-order-stationary point at almost the same rate as standard

gradient descent converges to a first-order-stationary point. [170] analyzes the hitting time

of such noise gradient based algorithm could finds an approximate local minimum of the

population risk in polynomial time, escaping suboptimal local minima that only exist in the

empirical risk.

We denote the communication complexity for distributed learning as

B = N ∗M ∗ T (1.4)
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where B is total communication complexity, N is the number of message for each iteration,

M is the size for each message and T is the number of iteration required for the convergence.

We could design the communication efficient distributed learning algorithm by

• Modify the Communication Pattern: As synchronization is required in the distributed

learning framework, the simple solution is in each iteration, every node broadcast its

local information to all the other nodes. Then the total communication is in the order of

O(n2), where n is the number of total nodes. By modifying the pattern for exchanging

message among the distributed nodes, we could improve the communication efficiency

while maintaining the good statistical performance.

• Decrease the Message Size: In stochastic gradient framework, the message is the

gradient itself and thus the message size is proportional to the model complexity.

When the model is large, it is necessary to utilize the structure of the gradient, for

example, the sparsity, to reduce the message size.

• Speed up the convergence: Comparing to the communication, the computation is cheap

in the distributed setting. By increasing the computation cost on the distributed node,

for example, using advanced sampling instead of random sampling, we could speed up

the convergence of the distributed learning algorithm.

In this subsection, we survey some of the existing lines of research that explore themes

related to communication efficient distributed learning.

Modify the Communication Pattern

Because of the incremental nature of the stochastic gradient, where individual update relies

on the outcome of all previous updates, it is none-trivial to extend the stochastic gradient

to the distributed learning setting. For example, the momentum based stochastic gradient

descent need to remember the momentum in each iteration as follows

θt+1 = θt + ∆θt (1.5)
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where

∆θt = α∆θt−1 − η5 fi(θ, z) (1.6)

Although each distributed node could calculated 5fi(θ, z) based on its local data set, the

update include the previous direction in the parameter space θt−1. This requires all the

distributed nodes share the parameters for θt−1 and they have frequently access to the

shared parameters while when they perform the computation to refine it [83]. When the

size for the model θ is large, for example, the complex model for modern deep learning

application may have 109 to 1012 parameters, the previous assumption is not practical.

Accessing the parameters requires an enormous amount of network bandwidth and the cost

of synchronization is high.

Some recent theoretical result proved that the distributed stochastic gradient with asyn-

chronous update to the parameters could asymptotically achieve comparable performance

as synchronized version, which reduced the total communication cost by allowing less access

to the global parameters for each distributed nodes. [1] showed that for smooth stochastic

problems, the delays are asymptotically negligible, where a master node performs parameter

updates while worker nodes compute stochastic gradients based on local information in

parallel. [117] proposed an update scheme which allows processors access to shared memory

with the possibility of overwriting each other. When the associated optimization problem

is sparse, meaning most gradient updates only modify small parts of the decision variable,

the proposed method achieves a nearly optimal rate of convergence. [45, 168] establish

lower bounds on minimax risks for distributed statistical estimation under a communication

budget. The lower bounds reveal the minimum amount of communication required by any

procedure to achieve the centralized minimax-optimal rates for statistical estimation.

Another line of study focus on the incremental sub-gradient methods, which involve every

machine minimizing its own objective function instead of calculating the global minimizer.

Then the information is exchanged locally with other machines in the network over a time-

varying topology, very similar to the message passing model in belief propagation [162].

[112] consider a distributed multi-agent network system where the goal is to minimize a
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sum of convex objective functions of the agents subject to a common convex constraint

set. Each agent combines weighted averages of the received message from the neighboring

agent with its local update, and adjusts the update by using subgradient information (known

with stochastic errors) of its own function and by projecting onto the constraint set. [74]

presents an algorithm that generalizes the randomized incremental subgradient method with

fixed step size. The stochastic component in the algorithm is described by a Markov chain,

which can be constructed in a distributed fashion using only local information. [104] study

the case where each agent has a locally known, different, convex and potentially non-smooth

cost function. The global objective of the agent is to cooperatively minimize the cost function

via exchanging the local information with the neighbors.

Decrease the Message Size

Another dimension for the design of communication-efficient distributed learning framework

is to reduce the amount of information required to transmit in each iteration while

maintaining the accurate result. The idea for this area of research is similar to the data

compression in information theory, where the structure of the information is utilized to

design the communication protocol. More specifically, it is observed from the empirical

experiment that the messages transmit in each iteration are always sparse. For example,

when training the Deep Neural Network, 99.9% of the gradient exchange in distributed

stochastic gradient descent is redundant. Such sparsity makes it possible to reduce the

communication cost for training via gradient sparsification and gradient quantization. [3]

map the 99% of smallest updates to zero and update the parameters. [57] adopt the similar

idea to sparsify the gradient and prove the convergence to the correct solution in constant

number of iterations. [151] aggressively reduce the communication cost by setting the value of

the gradient to {−1, 0, 1} only. The layer-wise ternarizing and gradient clipping is proposed

to improve its convergence. [31] proposes a gradient compression based on localized selection

of gradient residues and automatically tunes the compression rate depending on local activity.

[148] propose a convex optimization formulation to minimize the coding length of stochastic

gradients. Several simple and fast algorithms are proposed for approximate solution, with

theoretical guaranteed for sparseness. In [160], the advanced coding method is introduced
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to mitigate the effect of stragglers in gradient computation to the gradient. the computation

load, straggler tolerance and communication cost are considered and an explicit coding

scheme that achieves the optimal trade-off based on recursive polynomial constructions

is proposed. As there are lots of overlap of communication and computation during the

training and inference of deep neural network, [67] develop a system for communication

scheduling which realizes near-optimal overlap of communication and computation in graph-

based models. Thorough review for this line of study could be found in [23].

Speed up the convergence

Since the total communication is related to the number of iteration needed for convergence

and the information required for each iteration. Some previous utilized the trade-off between

communication and computation. By allowing more computation cost for each iteration, the

convergence could be accelerated. Communication is critical to the system’s performance

while the computation is reletively cheap comparing to the communication. [127] presents

novel Newton-type method for distributed optimization, which is particularly well suited

for stochastic optimization. The method enjoys a linear rate of convergence which provably

improves with the data size, requiring an essentially constant number of iterations under

reasonable assumptions. [22] propose a distributed Frank-Wolfe algorithm. In each iteration,

each node finds largest entry of the local gradient in absolute value. Then the system

compute index of node with largest overall gradient. The update for each iteration depends

on largest overall gradient instead of the average of all the distributed gradient. [126]

introduce an accelerated mini-batch version of stochastic dual coordinate ascent and prove a

fast convergence rate for this method. The results indicates its outperformance over vanilla

stochastic dual coordinate ascent and to the accelerated deterministic gradient descent

method. The algorithm in [171] is based on an inexact damped Newton method, where

the inexact Newton steps are computed by a distributed preconditioned conjugate gradient

method.

In statistical optimization setting, we assume that the data zi among all the distributed

nodes are i.i.d. This assumption may not be accurate for practical problem. Consider the

case where the user data from China and England may stored distributedly and we want
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to calculate the global optimizer based on these data. It is easy to verify that the data

distributions from China and England may have large difference and the i.i.d assumption no

longer hold. To speed up the convergence, the discussion in last paragraph may not be valid

when the distribution on each distributed node are not i.i.d.

For such more general case, [152] considers a number of fundamental statistical and

graph problems in the message-passing model. They show shows that exact computation of

many statistical and graph problems in this distributed setting requires a prohibitively large

amount of communication, and often one cannot improve upon the communication of the

simple protocol in which all machines send their data to a centralized server. Considering the

speed of communication through the cable could not achieve the comparable performance

to the CPU’s computation time, to design the communication-efficient distributed learning

algorithm, we need to allow approximation of the data sets.

Random sampling is a good baseline approach for data set approximation. In [17],

instead of being in the statistical estimation framework, the authors consider the problem

of PAC-learning from distributed data and analyze fundamental communication complexity

questions involved. The general upper and lower bounds on the amount of communication

needed to learn well with random sampling is provided. [164] consider the case when the

distributions for the distributed nodes are arbitrary and potentially adversarial. They

develop distributed learning algorithms that are provably robust against such adversarial

distributions with a focus on achieving optimal statistical performance. The proposed

algorithm is median-based with random sampling such that it is robust to a small fraction

of adversarial distributions.

In the stochastic framework for distributed setting, a subset of data (batch) via random

sampling is handled instead of the whole data set. However, random sampling is not a good

approximation when the size of the subset is small. Fig 1.1 demonstrates the case when we

run clustering based on a subset of data and fail to find the correct clusters for the whole

data set.

When random sampling could not provide good approximation, extra iterations are

necessary to achieve the good performance, which decreases the convergence rate.
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(a) Original Dataset (b) Random Sampling (c) Coreset Sampling

Figure 1.1: When only a subset of data is sample, random may fail to find the accurate
structure of the data set while reweighting the data set according to the prior may improve
the performance.

Coreset, the small and weighted summary of large data set, is proposed as the solution for

efficient approximation. In many applications, the size of the coreset is independent to the

size of the whole data set. For large scale problem in distributed setting, by allowing more

computation on constructing the coreset, we could speed up the convergence by utilizing the

advantage of coreset over random sampling and consequently reducing the communication

cost.

The applications of coreset on general machine learning problems have been widely

studied. [27] give deterministic, low-order polynomial-time algorithms to construct the

coreset with approximation guarantees, together with lower bounds. [97] propose a

single, practical algorithm to construct strong coresets for a large class of hard and soft

clustering problems based on Bregman divergences. Their theoretical results further imply a

randomized polynomial-time approximation scheme for hard clustering. [98] shows that

Gaussian mixtures admit coresets of size polynomial in dimension and the number of

mixture components, while being independent of the data set size and one can harness

computationally intensive algorithms to compute a good approximation on a significantly

smaller data set. [118] studied the coreset construction in classification. They present a

general framework for analyzing coreset-based optimization and provide interesting insights

into existing algorithms from this perspective. A new coreset construction is proposed and

a wide class of problems that include logistic regression and support vector machines is

discussed to integrate with the proposed coreset construction.
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Distributed Learning System

The progress of theoretical breakthrough encourage the develop of distributed learning

system for large scale machine learning problem. The engineering challenges for the design

of distributed learning system includes the following key features [83].

• Communication efficiency: As synchronizing costs massive amount of communi-

cation, for the real distributed system, the asynchronous communication model is

required. The message for each iteration should be carefully designed to further reduce

the communication overhead.

• Flexible consistency models: Maintaining the consistency of the model among all

the distributed nodes will block parallel computation and therefore cause large latency.

• Elstic scalability: New nodes can be added without restarting the running

framework.

• Fault tolerance and durability: Recovery from the failed running machine and

interrupting computation is required.

• Ease of Use: The system should support multiple kinds of machine tasks.

Recent years witnessed a flurry of research on the design of distributed machine learning

system. [84] offers two relaxations to balance system performance and algorithm efficiency

for the proposed distributed learning system, asynchronous task dependency and flexible

consistency model. The workload is decomposed to into multiple tasks and the tasks are

executed asynchronously. Each distributed node would first pull the parameters from the

server and then complete its local computation in parallel. The results are pushed back to

the server. The worker nodes do not stop pulling the new parameters from the server

unless the parameters on the server have not been update since τ seconds ago. This

delay bounded pattern could make sure all the distributed nodes could keep running for

most of time. The convergence analysis is provided. [69] introduce a new, general geo-

distributed ML system that decouples the communication within a data center from the

communication between data centers, enabling different communication and consistency

21



models for each. The key idea is to dynamically eliminate insignificant communication

between data centers while still guaranteeing the correctness of ML algorithms. [169]

propose a general framework for parallelizing stochastic algorithms on multi-node distributed

systems. Using the programming interface, the user develops sequential stochastic algorithms

without concerning any detail about distributed computing

1.3 Contributions of this Thesis

This section highlight the our contributions to address the problems in Section 1.2

• In Chapter 3, we propose an efficient distributed message passing algorithm to solve

the resource allocation problem in heterogeneous mmWave networks. To utilize the

dynamics of the mmWave networks, the Q-learning approach is considered to find the

optimal policy to maximize the overall throughput of the system while reducing the

energy cost. The large state/action space in Q-learning is decomposed according to the

coordination graph defined by the network topology. Then the max-sum problem in the

decomposed Q-learning problem is solved by distributed message passing algorithm.

We further speed up the learning process by introducing the prior of the channel

dynamics and inference process by modifying the message passing algorithm such that

it could be updated in an online manner.

• In chapter 4, we propose an communication efficient coreset construction algorithm

for distributed boosting framework. By utilizing the prior structure of the data set by

clustering in the preprocessing stage, we could efficiently construct the coreset with

the size independent of the total data set. Then the proposed coreset construction

algorithm is integrated with boosting framework, which is robust to the outliers and

enjoys good convergence property. Then we extend the proposed coreset boosting to

the distributed setting, where we prove it is robust to the adversary distribution.

• In chapter 5, we propose an selective sampling framework to construct a subset of

sample that could effectively represent the model space. The sample space and the

model space are considered as two mutually dual spaces. Based on the prior distribution
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of the model space or the large amount of samples from model space, we derive a

computational efficient method to construct such subset by minimizing the error of

classifying a classifier.

1.4 Previously published works

This dissertation has greatly benefited from collaboration with several colleagues. In

particular, my adviser, prof. Husheng Li was actively involved in all the work presented

in this dissertation. Chapter 3 was done in close collaboration with Zhiyang Zhang. Chao

Tian provided insight discussion for the work in Chapter 5.
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Chapter 2

Background

In chapter, we introduce the basic concepts for the problems discussed in this thesis. The

readers are encouraged to read this chapter before going to the details in the following

chapters.

2.1 Millimeter Wave Communication

Millimeter wave is the band of radio frequencies from 30 to 300 gigahertz(GHz). With

the overwhelming capacity demands for current wireless deployed wireless technologies, the

millimeter wave communication is considered as the new solution for its orders of magnitude

greater bandwidths, further gains via beamforming and spatial multiplexing from multi-

element antenna arrays.

The millimeter communication is not a new concept as it is first investigated in the

1890s by Bengali-Indian scientist Jagadish Chandra Bose [25, 113]. The near 60 GHz

millimeter wave is used for satellite-based remote sensing to determine temperature in

the upper atmosphere [119]. In Europe, millimeter wave was considered for the backhaul

communication [6, 64].

Previously, the wireless engineering community considered the millimeter wave to be

useless for mobile communication for its absorption by atmospheric gases and additional

attenuation by raindrops as their wavelengths are the same order of size. However, recent

studies with extensive field measurements [116] revealed that the rain attenuation and
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atmospheric absorption characteristics does not create significant path loss for millimeter

wave when the transmission distance is in the order of 200m. Since today’s cell sizes in

urban area are with the similar size, there are tentative plans to use millimeter waves in

future 5G mobile communication.

2.1.1 Advantages for Millimeter Communication

To understand the advantage of millimeter communication, we could first look at the channel

capacity. With the development of the modern coding theory, the engineers are able to

design the communication system that approach this channel capacity and thus it is a good

indicator for the performance of communication system. ShannonHartley theorem provides

the channel capacity for an additive white Gaussian noise (AWGN) channel

C = B log2(1 + SINR) (2.1)

where B is the total bandwidth and SINR is the signal-to-noise-plus-interference ratio. It is

straightforward to conclude that increasing the bandwidth B and improving the SINR could

improve the system’s performance and millimeter wave could provide enormous improvement

on these two features.

• Millimeter wave could provide 200 times more specturm than the current technologies

[110]. This is because over 90% of the allocated radio spectrum falls in the millimeter

wave band. According to equation (2.1), increasing the bandwidth B could linearly

improve the system’s throughput.

• Since its wavelength is smaller, it is possible to deploy large numbers of antennas

on the devices and base stations for directional communication. On the one hand, the

increased number of antennas could used to form very high gain arrays and increase the

received signal quality. On the other hand, the antenna arrays enables the directional

transmission, which effectively reduces the interference from neighboring transmitters.

As a result, the SINR for the communication links would be improved.
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2.1.2 Challenges for Millimeter Communication

Despite the potential of millimeter communication, there are a few key challenges for the

implementation of millimeter communication system.

• High path loss. According to the Friis transmission law [115], the the free space

omnidirectional path loss grows with the square of the frequency. Thus the increased

frequency requires larger transmission power or gain to compensate.

• Blockage. Millimeter wave is easily to be blocked. For example, the attenuation caused

by brick could be as high as 40-80 dB [110] and even for human body the blockage

could cause 20-35 dB [94]. Besides, the reflection from human body and other outdoor

material should be considered when designing the millimeter communication system.

• High dynamics. For a given mobile velocity, channel coherence time is linear in the

carrier frequency [115]. One mobile device with speed of 60 km/h, its channel may

suffer the change in the order of hundreds of microseconds. Besides, the blockage

would further increase the dynamics of the millimeter wave’s channel in the urban

area, where the density of building is high and the moving object would frequently

block the channel.

• Power consumption. Although the antenna array could help provide larger transmission

gain, maintaining the operation of such antenna array would require more power

consumption. Due to the high dynamics of the channel, the devices may switch between

different directions to maintain good channel quality, which would further increase the

power consumption.

2.2 Heterogeneous Network

In heterogeneous network, shown in Fig 2.1, there is a few base stations located at the central

area of the cell with strong transmission power. Small cells, such as picocells, femtocells and

relays, are located at the edge or crowded area and transmit at a low power for the traffic

offloading.
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Figure 2.1: A 3-tier heterogeneous network, where the BSs are located in the center of the
cell with the pico and femto BSs located along the BSs.

Increased density of BS could improve the coverage quality and enhance the edge

users’ performance. Besides, many previous studies confirmed that the heterogeneous could

improve the spectral efficiency and the energy efficiency [93].

Although heterogeneous introduces many benefits, the increased complexity would

challenge the design and control of the network. The resource allocation problem is addressed

in many previous studies. Since it requires large overhead for each UE to main multi-links to

more than one BSs, in practice, each UE is assigned with one BS. It is important to design

the good user association policy. For example, if all the UEs choose to connect to the BS

that provides the largest transmission power, most of the UEs would connect to the macro

BS, which would potentially resulting in inefficient small cell operation [42].

New challenges are introduced for the resource allocation problem in millimeter wave

network. Since the channel suffers high dynamics, the link between the UE and BS because

unstable. Tho user association policy should not only consider the long term expected

channel quality for each link, but also consider the power consumption as frequent switch

between different BS may lead to a better channel quality and more power cost. In mobile

communication, such trade-off should be carefully handled. Due to the large path loss, in

millimeter wave heterogeneous network, large densities of BSs are required to deploy.

27



2.3 Boosting

Boosting is a machine learning ensemble meta-algorithm that combines a set of weak learners

into a strong learner by assigning weight to the result of each learners and outputting their

majority votes. The first successful boosting algorithm, AdaBoost, was proposed by [56] and

the authors were awarded by prestigious Gdel Prize in 2003. The boosting based algorithm

gained a great success for its generalization performance. It is the choice for the winners

of the KDD Cup from 2007 to 2014 and it still plays an important roles in many fields

with unstructured data or data with limited size, where the deep learning method failed to

provide convincing results [173].

As a meta-algorithm, the framework of boosting is described in Algorithm 1. The

performance of boosting depends on the choice of how to find the weak learner, how to

calculate αt for each weaker and how to update to weight for the data set.

Algorithm 1 The Boosting Framework

1: Initialize the weight for the whole dataset D
2: for t = 1 : T do
3: Normalize the weight
4: Calculate the weak learner ht based on the current weight
5: Calculate the weight αt for the current weak learner ht based on its performance on D
6: Update the weight for D
7: end for
8: Output the strong learner by weighed sum HT =

∑T
t=1 α

tht

2.3.1 Relation to Functional Gradient Descent

Although the motivation of boosting is to answer the question posed by Kearns and Valiant

that if a set of weak learners create a single strong learner, recent studies revealed that

boosting could be fitted into the Loss Minimization framework, where the learning problem

is formulated as an optimization problem on the data set D

L(F ) =
1

|D|

|D|∑
i=1

l(F, xi) (2.2)
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where l(F, x) is the loss function and F is the function describing the learner. For

example, in Adaboost, l(F, x) is an exponential function that upper bounds the 0-1 loss.

To optimize (2.2), gradient descent is a standard approach, where in every iteration we

take the small steps in the direction of steepest descent.

F t = F t−1 − αt5 L(F t−1) (2.3)

Therefore, find one weak learner in boosting is equal to calculating the gradient in the

function space F . However, since the weak learner always fall into some certain family of

function, for example the decision tree or linear classifier, it may not be feasible to find a

weak learner f that is in the direction of the gradient. Instead, we could choose the weak

learner that is closest to the negative gradient by maximizing the inner product with the

negative gradient on the whole training data set

−5 L(F t−1) · f = −
|D|∑
i=1

∂l(F, xi)

∂F (xi)
f(xi) (2.4)

2.3.2 Difficulty in Distributed Boosting

Although the Boosting algorithm provides good generalization performance and easy

implementation, there remain challenges to design the distributed boosting algorithm. In

essential, boosting is a sequential algorithm, where in each iteration, the calculation of the

current weak learner is based on the previous learners. Besides, to guarantee the convergence,

as mentioned in (2.4), calculating the weak learner requires to go through the entire data

set, which makes it hard to distribute the computation.

To overcome the difficulty, we could borrow from the idea of stochastic gradient descent.

Instead of calculating the weak learner that maximize (2.3), we seek to construct a small

data set S that could approximate the whole data set D, such that by solving

−5 L(F t−1) · h = −
|S|∑
i=1

∂l(F, xi)

∂F (xi)
h(xi) (2.5)
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h is close to the f in (2.3). Since we only need to transmit the small subset S, it is

possible to design the communication efficient distributed boosting.

2.4 Coreset

Coresets are small, weighted summaries of large data sets that has close performance

on specific metric comparing to the full data set. Coresets originated in the field of

computational geometry and are closely related to the fundamental concepts of ε-net and

ε-approximation. Due to strong composability properties, coresets is suitable for parallel

constructions which leads to practical implementations in the context of large data sets.

The coreset construction is similar to the importance sampling. In importance sampling,

given a random variable X with known distribution P and target function f(x), we want to

estimate E[f(X)]. If we have i.i.d sample generated according to P , then we could calculated

the unbiased estimator

E[f(x)] =
1

n

n∑
i=1

f(xi) (2.6)

When it is hard to generate the sample according to P , instead, we use another

distribution Q to generate the sample and calculate the expectation as the weighted sum

E[f(x)] =
1

n

n∑
i=1

p(xi)f(xi)

q(xi)
(2.7)

We could prove that (2.7) is the unbiased estimator for E[f(x)]. In coreset construction,

we carefully select the sample from the whole data set such that the desired metric (gradient,

distance, cluster center) on the select sample S is close enough to that on the whole data

set D for a family of functions f ∈ F , as described in (2.8),

| 1

|D|

|D|∑
i=1

f(xi)−
1

|S|

|S|∑
i=1

wif(xi)| ≤ ε, ∀f ∈ F (2.8)
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with high probability.

While importance sampling is optimized to find the sampling weight to minimize the

variance of the estimator for one fixed function f and the distribution of the data is known,

the coreset construction requires the sample to have close performance to the whole data

set for a family of functions and we only have the access to the data set. The coreset

approaches were impractical as the naive construction of coreset requires the computation

exponential to the order of data dimension. Recent breakthrough by [79] enabled efficient

coreset construction algorithms via random sampling and encouraged the researchers to

explore its application on machine learning problem.
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Chapter 3

Message Passing Based Distributed

Learning for Joint Resource

Allocation in Millimeter Wave

Heterogeneous Networks

3.1 Introduction

The millimeter wave (mmWave) technology is expected to be the new frontier for 5G

communication cellular systems that offers greater bandwidths and faster data rates.

However, the unique radio propagation characteristics of mmWave are challenging the design

of wireless communication systems. The high space path loss and the blockage effect may

require high densities of transmitters, while the latter, along with the highly directional

transmission, can cause rapid quality variations. The mmWave channel may change between

Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) in the order of hundreds of milliseconds

or even less [113], much faster than comparable technologies such as 4G LTE or IEEE

802.11. The link between base station(BS) and user equipment(UE) may therefore suffer

serious instability.
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Heterogeneity is expected to be the one of the key features of mmWave networks for the

above issues. As demonstrated by recent channel measurements[116], mmWave could be

used for outdoor communications over a transmission range of about 150-200 meters. Thus

the high-power and low-density macro-cell BSs could be replaced along with denser but lower

power small-cell BSs, which could help cover the NLOS region for large-cell BSs and provide

load balancing via user association.

The resource allocation in mmWave HetNets is a critical problem. Due to the large

density of BSs, the intercell interference requires proper power control for BSs to maximize

the system throughput while avoiding substantial interference. Moreover, the rapid switch

between LOS and NLOS states demands advanced user association strategy that considers

the BS selection cost and decision-making efficiency. Since separate power control and user

association may lead to a suboptimal resource allocation [161], the theoretically optimal

approach is to solve the problem jointly.

Several recent studies have addressed the related topic in mmWave networks [134]. For

user association in mmWave networks, [60] investigates the user association by deriving an

optimal and fair cell selection policy and considering the reallocation cost. The authors

assumed that a UE is connected to the nearby BSs simultaneously, and the data rates for

each link between the BSs and the UE are calculated by solving an optimization problem

with a bandwidth constraint. [147] considered the BS selection in mmWave HetNets by

modeling a multi-armed bandit problem and developing an online learning policy to connect

UEs to the optimal BSs. The distribution of throughput of BS is fixed and the UE is required

to estimate the expectation with the minimum samples. An extensive survey about the user

association in mmWave is detailed in [89]. For the interference coordinated scheduling in

mmWave networks, [40] proposed a generic mathematical framework to analyze the multi-tier

mmWave cellular networks. In [30] the spatial-time domain resource allocation is performed,

which gives consideration to throughput and fairness. [54] explored the potential gain of

ultra-densification for enhancing mmWave communications from a network-level perspective.

The reinforcement learning (RL) approach has been applied in a variety of schemes such

as routing, resource allocation and dynamic channel selection in wireless networks [159]. Due

to the stochastic nature of the channel, many problem in wireless network that modeled by
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stochastic optimization could be considered as a Markov decision process. Reinforcement

learning could solve the MDP in an online manner with little prior knowledge. A framework

for handover decisions based on MDP for mmWave is proposed in [102]. It models the

channel state as a Markov chain and uses dynamic programming to solve the bandwidth

allocation problem. However, it does not consider the power control, and the state space is

exponential with respect to the number of UEs, which limits its practical application. [130]

proposed decentralized procedures for joint interference management and cell association for

LTE network. [88] applied reinforcement learning to implement a dynamic channel selection

by minimizing external interference. [101] proposed a rigorous and unified framework for

simultaneously utilizing both physical-layer-centric and system-level techniques to achieve

the minimum possible energy consumption, under delay constraints and [92] applied multi-

agent methods for spectrum sensing.

However, since for joint resource allocation problem the number of agents (BSs and

UEs) is large and the size of state space is exponential in terms of the number of agents,

it is impractical to handle the learning process with traditional RL approach. To reduce

the complexity, some previous work that employed RL for the resource allocation problem

suffered from two major drawbacks, which prevent their applications in mmWave networks.

[88], [101] modeled UEs and BSs as independent agents without collaboration, which fall

in the single-agent reinforcement learning (SARL) framework. Previous theoretical analysis

revealed that in SARL the agents may change their respective actions frequently, or oscillate

between actions, such that the convergence to the optimal solution is not assured [159].

[99] applied the multi-agent method to solve the problem. However, their solution is in a

centralized style where the policy could be updated after the BS obtaining all the channel

states from all the possible links. As mmWave channel may change in the order of hundreds

of milliseconds or less, there is little time to aggregate the channel state information of

all UEs. For efficient decision making, we believe such centralized learning method is not

suitable in mmWave networks.

In this paper, by employing the tools of RL along with the distributed message passing

method, we study the downlink of heterogeneous mmWave cellular networks with the
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incorporation of the distinguishing features of mmWave. Our main contributions can be

summarized as follows:

• We model the interference coordination and user association problem jointly in HetNets

to minimize the time averaged risk-averse rate by considering the reallocation cost,

which is later transformed into a multi-agent RL problem.

• A sparse coordination graph is constructed according to the connectivity of the BSs

and UEs within the cell. The state/action space is decomposed based on the structure

of the graph. BS-centric and UE-centric decomposition are proposed separately to deal

with different setups in mmWave HetNets, where the efficiency or power consumption

is the priority.

• The distributed message passing method is introduced to solve the multi-agent RL

problem based on the sparse coordination graph, which is motivated by the approach

of belief propagation in probabilistic graphical models. We use an efficient approximate

algorithm for inference with incremental changes in the graphical model.

• We utilize the prior knowledge about the mmWave network, as well as the transition

probability of the link state, to generate good exploratory behaviors using planning.

The learning process is further accelerated by combining the resulted behavior and

environment interaction.

• We collect real-world measurements for the channel statistics, using our mmWave

testbed, for simulations. The performance of the proposed framework is presented

both in throughput and power consumption.

The remainder of the paper is organized as follows. In Section 3.2, system model is

introduced. In Section 3.2.4, we model the wireless network as a coordination graph and

introduce the decomposition of the state/action space according to the graph. In Section 3.4,

the distributed message passing method is applied to solve the max-sum problem introduced

by the decomposition. In Section 3.5, we propose the model based method to accelerate the

learning procedure. Numerical results are provided in Section 3.6. Finally, conclusions and

future work are provided in Section 3.7.
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3.2 System Model

In this section, a model is built for a two-tier heterogeneous downlink mmWave network.

3.2.1 Deployment Model

We assume that a macrocell B is located at the origin and multiple picocell BSs P operate in

the same frequency band with different transmission powers. The picocell BSs are deployed

in the edge region and denote byM = P ∪B all the BSs within the macrocell. We consider

a number of UEs distributed uniformly in R2, according to homogeneous Poisson point

processes (PPSs) with density λU .

3.2.2 Channel Model

In this paper, we assume each link between UE ui and BS mj is characterized by two state

variables {lij, Gij}.

• lij ∈ {LOS,NLOS, outage} indicates if there is a direct mmWave link between UE

i and BS j. However, according to recent results on mmWave channel modeling

[4], an additional outage state should be considered for the link state when no link

is established between the BS and the UE due to the blockage. Given the link of

length r, define pl(r), pn(r), po(r) as the probability that the link is LOS, NLOS

and outage accordingly. Similar to the 3GPP-based models[95], we approximate the

probability function with a ball model. If rij is within the radius R, the distribution

for lij is {p1
L, p

1
N , p

1
O} and if rij is larger than R, the corresponding distribution is

{p2
L, p

2
N , p

2
O}. Based on lij’s distribution and previous measurements, the transition

probability matrix for link state lij

P l =


pLOS|LOS pLOS|NLOS pLOS|Out

pNLOS|LOS pNLOS|NLOS pNLOS|Out

pOut|LOS pOut|NLOS pOut|Out

 (3.1)

could be calculated accordingly.
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• Gij ∈ {G0, G1, G2} indicates the beam alignment state for the link. From the realistic

point of view, since the set of beam patterns is discrete, perfectly tracking the beam

with arbitrary direction may be too costly or even impossible, we assume that the

alignment state may switch between multiple discrete states: When both transmitter

and receiver are well aligned, G = G0. When either transmitter or receiver is well

aligned, G = G1 and when none of transmitter or receiver is well aligned, G = G2. We

assume Gij is a random variable and its distribution could be estimated as prior from

previous measurements.

In practice UE is able to estimate the LOS/NLOS link states the neighboring BSs between

two time slots by channel estimation and acquire the alignment information by checking the

tracking error of the beam direction, for example, in [165].

The path loss between UE ui and BS mj is

L(rij, lij)(dB) = ρ+ αlij log10(|rij|) + χlij (3.2)

where αlij is the path loss component and χlij ∼ N (0, ξ2
lij

) is the shading random variable

given link state lij. ρ is the path loss at 1m. Note that LOS and NLOS have different path

loss components and fading variables and outage has infinity path loss.

The received signal power for UE ui from BS mj is given by

Pij = GijPjL
−1(rij) (3.3)

where Pj is the transmission power from mj and is could be controlled with multiple discrete

levels.

3.2.3 Interference Model

Assume that UE ui is connected to BS mj, then the signal-to-inference-noise-ratio (SINR)

for ui is given by

SINRij =
Pij

σ2 +
∑

k 6=j Pik
. (3.4)
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The corresponding instantaneous rate is given by

cij =
W

Nj

log(1 + SINRij) (3.5)

where W is the total available bandwidth, and Nj is the number of UEs connected to BS

mj. It is assumed that the bandwidth is shared equally among all UEs connected to that

BS, for simplicity. Define xi,j as the variable indicating the connectivity between UE ui and

BS mj. xi,j = 1 if ui is connected to mj. The instantaneous rate for ui could be

Ri =
∑
mj∈M

xi,jcij (3.6)

The time averaged rate to UE ui is given by

E[Ri] =
1

T

T∑
t=1

Rt
i (3.7)

In LTE networks, the time averaged rate could be a good metric for system performance

since the channel is steady, which is not the case in mmWave networks. A UE may suffer

from a short-time poor channel, if the link is NLOS or the beams are not well aligned, even

though the overall rate is high. We thus use a time averaged risk averse rate given by

ARi := −1

θ
logE[exp(−θRi)] (3.8)

when θ → 0, ARi → E[Ri], the time averaged rate. When θ → +∞, ARi → minRt
i, the

minimum rate. Increasing θ may increase penalty to the short-term drops in rate.

We assume that each UE is connected a single BS at one time slot. In this paper, we want

to find the optimal user association policy as well as the transmission power for each BS such

that the overall time averaged risk averse rate is maximized. Since frequent handovers may

increase the power consumption for UE, we add the penalty term in the objective. Define

qti as the variable indicating if the UE ui’s association is changed in time slot t. Then, the

optimization problem is formulated as
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max
Pj ,xi,j

∑
ui∈U

(ARi − γE(qi))

s.t.
∑
mj∈M

xi,j = 1,∀ui ∈ U

xi,j ∈ {0, 1}

Pj ∈ [0, Pmax]

, (3.9)

Solving (5.2) directly is NP-hard. In previous research, to solve such utility maximization

problem, the unique association constraint is relaxed to multi-connectivities[161]. However,

this may require more overhead to implement and may not be practical. As the non-

deterministic transitions between individual link states are Markovian, it is suitable to apply

RL approach to solve this problem.

3.2.4 Q-learning

Q-learning [150] is used to find the optimal state-action policy for finite state MDPs. It has

been applied to many fields for its guaranteed convergence to the optimal policy. Q-learning

problems are characterized by the agent with its state S, the set of action A per state and

the reward R. A policy is the agent’s choice of actions for each state. The goal of Q-learning

is to find the optimal policy that maximizes the expected value of the total reward over all

successive steps, namely

Q(s, a) = E

{ +∞∑
t=0

β(t)r(st, at)|s0, a0

}
(3.10)

where Q(s, a) is the metric of the state-action pair (s, a), β(t) = βt and 0 < β < 1 is a

discounting factor. r is the reward function. For the system considered in this paper, the

basic definition of the agent, state, action and reward functions are as follows.

• Agent: UEs and BSs.
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• State: Each type of agent has its own state space as su and sm. For BS j, the state

is its transmission power and the number of connected UEs.

smj = {Pj, Nj} (3.11)

The transmission power is assumed to be discrete.

For UE, the state is its link state to the nearby BS, which is given by

sui = {li,1, ...li,n, Gi,0, ...Gi,n} (3.12)

where Gij and lij is the alignment state and link state between ui and mj introduced

in Section 3.2.2. n is the number of nearby BSs which ui is within their transmission

ranges.

• Action:

{amj , aui} = {Pj, (xi,1..., xi,n)} (3.13)

where BS could control its transmission power with multiple discrete levels and UE

could choose which BS to connect.

• Reward: The total rewards at time slot t is

r(st, at) =
∑
ui∈U

 ∑
mj∈M

xi,jARi − γqti

 (3.14)

The Q-learning problem is solved by updating the Q-function based on the interaction

with the environment. The standard algorithm for updating the Q-function at iteration t is

given by

Q(st, at)

= (1− α)Q(st, at) + α
[
r(st, at) + βmax

at+1
Q(st+1, at+1)

]
(3.15)
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where α is the learning rate. At iteration t, the agent explores the environment by the

optimal action and get the reward when entering the next state st+1. Then it searches the

Q-table given st+1 and finds the optimal action at+1
opt . The current Q-function for st is updated

according to (3.15).

Standard Q-learning considers the system as a single agent. For the HetNet considered

in this paper, if we model the whole system as the single agent, the overall state space is

given by

S = sM × sU (3.16)

where

sM = sm1 × sm2 ...× sm|M| (3.17)

and

sU = su1 × su2 ...× su|U| (3.18)

.

Similarly the overall action space is given by

A = aM × aU (3.19)

The state/action space size increases exponentially with the number of UEs. For a cell

with 100 UEs, the overall size for the state space could be more than 1030. Finding the

globally optimal action becomes computational intractable as the Q-table is too large to

handle. In the next two sections, we will solve the problem in multi-agent reinforcement

learning framework and decompose the state/action space according to the topology of the

mmWave network.

3.3 State/Action Space Decomposition

In this section, we model the mmWave network as a coordination graph based on the

connectivity of the agents and then decompose the large Q-function as the sum of multiple
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Q(s,a) =
∑
ui∈U

Q(si, sΓ(ui), ai, aΓ(ui)) +
∑
mj∈M

Q(sj, sΓ(mj), aj, aΓ(mj)). (3.20)

Q(sti, a
t
i) = (1− α)Q(sti, a

t
i) + α[r(sti, a

t
i) + βQ(st+1

i , a′i)] (3.21)

Q(st,at) = α
∑

i∈U∪M

r(sti, a
t
i) + (1− α)Q(st,at) + αβ

[∑
ui∈U

Q(st+1
i , a′i) +

∑
mj∈M

Q(st+1
j , a′j)

]
(3.22)

Q(s,a) = (1− α)Q(s,a) + α
∑
li,j∈E

[
r(si, si, ai,j) + βQ(si, si, a

′
i,j)
]

(3.23)

Q(si, sj, ai,j) = (1− α)Q(si, sj, ai,j) + α
[
r(si, si, ai,j) + βQ(si, si, a

′
i,j)
]

(3.24)

small Q-functions.

Q(s,a) =
∑
i

Qi(si,ai) (3.25)

We call Q(s,a) Global Q-function as it contains the whole state/action space while

Qi(si,ai) is called Local Q-function as it only contains a subset of state/action space.

The decomposition is further classified into two categories: the agent based and the edge

based decomposition. The former results in a UE-centric pattern which requires more

computation cost but provides faster convergence. It is suitable for mobile communications

since UE, usually the smart phone, could provide sufficient computational power. The latter

decomposition results in the BS centric pattern where the BS collects all the state information

from UEs and completes all the computation. This is especially desirable for the application

of Internet of Things (IoT) where the UEs are more power limited.
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3.3.1 Coordination Graph

Coordination graph [61] exploits the fact that in many multi-agent problems only a few

agents depend on each other and thus the large problem could be decomposed to simpler

sub-problems. In a coordination graph, each node represents an agent and each edge defines

the coordination dependency between the connected nodes[62, 78]. As shown in Fig 3.1, in

mmWave networks, UEs and BSs are the nodes in the graph. Each UE’s association policy

only has the direct dependency on the channel conditions corresponding to their nearby BSs

due to the high path loss and blockage in mmWave network. Therefore in coordination graph,

the UE nodes are only connected to its nearby dependent BSs. To manage the interference,

the power control of the BS also relies on the transmission power of the nearby BSs. Thus

we also have the BS-BS edge within the coordination graph. Although we omit most of the

UE-BS edges in Fig 3.1 for clear demonstration, the true connection of the graph is still

sparse. This is because no edge exists between two UEs as they have no direct dependency.

The averaged degree of the node is less than n+1 when we assume that each UE is visible to

n nearby BSs. We will utilize the graph’s sparsity and design the message passing algorithm

to solve the RL problem in a distributed manner in next section. In this section, we first

introduce agent-based and edge-based decomposition to handle the large state/action space

in mmWave networks and formulate the distributed multi-agent RL problem.

3.3.2 Agent-Based Decomposition

In agent-based decomposition, each node has its own local Q-function Q(si, sΓ(i), ai, aΓ(i)),

which is defined by the state of local agent {si, ai}, its nearby agents’ states as well as their

actions {sΓ(i), aΓ(i)}. Here Γ(i) are the set of neighboring nodes for node i and sΓ(i) is the

state space of all the nearby nodes of node i:

sΓ(i) = {sn × ...× sm}, n,m ∈ Γ(i) (3.26)

This is shown in Fig 3.2 for an example of an agent-based decomposition for a 4-agent

problem.

43



Figure 3.1: Coordination graph for macrocell mmWave network

Figure 3.2: Agent-based Decomposition
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In the coordination graph considered in this paper, we have two classes of agents: UE

and BS. Thus the global Q-fucntion Q(s,a) could be written as (3.20), where Γ(ui) is the

set of BSs near UE ui and Γ(mj) is the set of UEs near BS mj. We denote (si, sΓ(i), ai, aΓ(i))

by (si, ai) for notational simplicity. Note that in (3.20), the optimal action is obtained based

on the Global Q-function.

a′ = arg max
a

Q(st+1,a) (3.27)

In next section, we prove that it is non trivial to solve (3.27) and design the efficient

distributed message passing algorithm to find a′. In this section, we assume that each

agent has the access to the solution of (3.27).

Then for each local Q-function, the update follows the similar procedure to the classic

Q-learning as in (3.21). Since the network gains reward when UE chooses to connect to one

of its neighboring BSs, while each agent receives penalty if it switches to a different BS, the

reward functions for UE ui and BS mj in (3.21) are

r(sj, aj) =
1

2

∑
ui∈Γ(j)

xi,jARi (3.28)

and

r(si, ai) =
1

2

∑
mj∈Γ(i)

xi,jARi − γqi (3.29)

The reward is equally allocated to ui and mj and there is a 1/2 factor in (3.28) and (3.29).

Note that in (3.21) the agent needs to collect the current state information si, local

reward r(si, ai) and the global optimal action a′i. There is no need for the agent to know

the state information from all other nodes. The update of local Q-function is based on local

observations; therefore the computation is completely distributed.

Now we prove that given the definition of the reward function in (3.28), (3.29), updating

the local Q-function in a distributed manner is equivalent to updating the global Q-function.
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Theorem 3.1. Suppose that each agent in the coordination graph only stores its local Q-

function and receives the local reward and states from neighboring agents. All the distributed

agents have the access to the globally optimal action a′. Then the sum of local updating

procedure defined in (3.21) is equivalent to updating the global Q-function in (3.15).

Proof (3.22) is the direct result of (3.20) and (3.21). Then we have

∑
i∈U∪M

r(sti, a
t
i) =

∑
i∈U

r(sti, a
t
i) +

∑
j∈M

r(stj, a
t
j)

=
∑
ui∈U

(ARi − γqi) (3.30)

is the global reward and

∑
ui∈U

Q(st+1
i , a′i) +

∑
mj∈M

Q(st+1
j , a′j)

= Q(st+1,a′) (3.31)

Since a′ satisfies (3.27), we could prove that (3.22) and (3.15) are equivalent.

Algorithm 2 summarizes the implementation of the proposed RL framework.

Remark: It is not practical for BSs to keep track of all the neighboring UEs’ states and

rewards, especially when the BS does not transmit data to the UE or the link is not stable.

However, as long as the UE is connected to one of the BSs, its state information could be

exchanged between BSs through backhaul communication links. On the other hand, since

typically the number of neighboring BSs for one UE is 3-6 in urban area [116], we assume

that the UE is able to track the link states for all nearby BSs.

The direct advantage of the agent-based decomposition is that agents use the local

rewards instead of the global reward to update the local Q-function. In comparison, [92] uses

the global reward to update the local Q-function and the agents are unable to distinguish

which agents are responsible for the received global reward. The propagation of the globally

optimal action a′ delivers the global information throughout the graph. Besides, the update

of the Q-function is completely distributed. This is suitable for the UE centric control when

the UE is capable of computing the Q-function.
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Algorithm 2 Distributed Collaborative Q-learning

1: Initialize s0 for all agents.
2: ∀i, find {j| argj maxPi,j} and set xi,j = 1.
3: for t = 1:T do
4: for Each UE do
5: if Agent-based then
6: Obtain (sti, s

t
Γ(i)) from neighboring BSs.

7: else if Edge-based then
8: Transmit sti to the neighboring BSs.
9: end if

10: end for
11: Obtain the globally optimal action a′ = MessageQ(st).
12: if Agent-based then
13: UEs and BSs execute a′ with ε-greedy.
14: else if Edge-based then
15: BSs inform UEs a′. a′ is executed with ε-greedy.
16: end if
17: Obtain reward rt from the measurement.
18: if Agent-based then
19: UE and BS calculate the local Q-function based on the reward.
20: else if Edge-based then
21: BSs calculate the local Q-function based on the reward from UEs.
22: end if
23: if Use model-based acceleration then
24: Q(s,a) = Acce(s,a,M).
25: end if
26: end for
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3.3.3 Edge-based Decomposition

Although the agent-based decomposition could efficiently reduce the overall state/action

space, the computation for updating local Q-function still requires the summation over all

possible state/action pairs for each UE. For a typical UE with 3 neighboring BSs, the size for

local Q table is O(|s|3), where s is the size of the state space. This could be easily handled

by modern mobile devices. However, for the application of mmWave communication in IoT,

the power consumption becomes the critical issue. In this case, it is preferable that the BS

could complete all the computation and send the control signal back to UE. We propose an

edge-based decomposition RL framework for such a context.

In edge-based decomposition, the global Q-function is the sum of all the local Q-functions

defined on the edges of the graph, as shown in Fig 3.3, namely

Q(s,a) =
∑
xi,j∈E

Q(si, si, ai,j) (3.32)

where E is the set of edges in the graph. The updating rule for local Q-function is given by

(3.23), where

a′ = arg max
a

∑
xi,j∈E

Q(si, sj, ai,j) (3.33)

Here, ai,j = {ai, aj} is the joint action for agent i and j. Similarly, combining (3.32) and

(3.23) we have (3.24)

The reward function is given by

r(si, sj, ai,j) = −γ 1

Nm

qi + ARi (3.34)

where Nm is the number of neighboring BSs for each UE.

The key difference between the agent-based and edge-based decomposition is that the

former requires all the nodes (UEs and BSs) to collect the neighboring nodes’ state and

update the local Q-functions in a distributed manner, while the latter only requires the UEs
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Figure 3.3: Edge-based Decomposition

to send their states and rewards to the associated BSs and the computation is completed by

the BSs. BS is less sensitive to the power consumption for computation. The disadvantage for

the edge-based decomposition is that the number of local Q-functions is equal to the number

of edges in the graph, which could be larger than the number of local Q-functions in the

agent-based decomposition. Since the response time is directly related to the computation

cost, the edge-based framework provides lower power consumption cost for UEs at the cost

of slower response time.

3.4 Distributed Message Passing on Coordination Graph

3.4.1 Max-sum Problem

Although the update of local Q-functions in Section 3.2.4 is based on local reward and state,

the globally optimal action a′ under the next state st+1 is required, as mentioned in (3.21)
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Table 3.1: Comparison between Markov random field and coordination graph

Markov Random Field Coordination Graph
Problem Sum-Product Max-Sum

Node Random Variable Agent(BS,UE,etc)
Connection Between dependent variables Between linked agents

Sparsity Yes Yes

and (3.23). Finding a′ is equal to solving the follow max-sum problem:

arg max
a

∑
k

Q(sk,ak) (3.35)

where sk and ak are the subsets of the overall state/action set. We drop s in the notation

since it is fixed when solving the max-sum problem.

Local Q-functions in the coordination graph share joint variables a if they are connected

in the graph. It is nontrivial to find the global action a to maximize the global Q-function as

maxa

∑
Q(ai, aj) ≥

∑
maxai,aj Q(ai, aj). To solve the problem, the straightforward idea is

to transfer all the local Q-functions to one BS and solve it in a centralized manner by variable

elimination. This is inefficient, since it requires transferring all the local Q-function tables

through communications, and the computation cost of variable elimination is exponential in

the degree of node.

However, observing that our graph is sparse and inspired by the fact that the coordination

graph is similar to a Markov random field, as shown in Table 3.1, we propose a message

passing algorithm to solve the max-sum problem in proposed distributed RL framework.

This is similar to the belief propagation in marginalizing the joint distribution of Markov

random fields, as shown in Fig 3.4.

The message passing method has achieved substantial success in many statistical inference

problems, such as LDPC decoding [96] and image denoising [138]. Briefly speaking, the

message passing method is carried out by iteratively sending locally optimized messages to

neighboring nodes. Although in theory it only guarantees to converge when the graph is free

of cycles, its empirical results on graphs with cycles in practical problems are surprisingly

excellent.

50



Figure 3.4: Coordination graph and Markov random field

Algorithm 3 Message Passing Algorithm

1: Required: The current state st

2: Initialize all the message µi,j(a)
3: while Have not converged for all agents do
4: for Every agent i do
5: Send message to neighboring agent j according to (3.36)
6: if µi,j differs from previous less than the threshold then
7: Agent i converges
8: end if
9: end for

10: end while
11: Output: Compute the optimal action using (3.37)
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Since we use Q-table to represent the Q-function, the message from agent i to agent j is

a table of the action, which is defined as

µi,j(aj) = max
ai

{
Qi,j(ai, aj) +

∑
k∈Γ(i)/j

µk,i(ai)

}
− ci,j (3.36)

where Γ(i)/j is the neighbor of i except j, and ci,j is the normalizing factor [145] to guarantee

the convergence. After the convergence, the globally optimal action for agent i is obtained

by locally solving

a∗i = arg max
ai

∑
k∈Γ(i)

µk,i(ai) (3.37)

With message passing, instead of sending the whole local Q-table, the node communicates

with each other by sending the message µi,j(ai), whose size is equal to the number of possible

actions for single node. This efficiently reduces the communication cost.

Algorithm 4 Belief Propagation for Repeated Inference

1: Required: The graph initially solved by Algorithm 3 and a set of changed nodes ∆
2: while ∆ is not empty do
3: for Every node i in ∆ do
4: Generate message µi,j and compare with previous
5: if messi differs from previous larger than threshold then
6: Node i sends µi,j to its neighbors j and add its neighbors Γ(i) to ∆
7: end if
8: end for
9: end while

3.4.2 Efficient Belief Propagation for Repeated Inference

Assume that each UE is connected to one BS at any time slot and is assigned dedicated uplnk

control resources similar to the Physical Uplink Control Channel (PUCCH) in LTE. These

resources can be used for UE to periodically report the SNR and other channel characteristics,

such as the alignment state G, link state l to BS. As indicates in [71] and our simulation,

the belief propagation may takes 80 to 100 iterations to converge given the scale of typical

mmWave network.
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As in mmWave communication it is expected that the length of subframe is less than 1ms,

the total delay caused by the message passing is less than 100 ms. Although the proposed

framework is only sensitive to the link state(LOS/NLOS) instead of the exact SNR and thus

it is robust to the short-term fading as the link state within 100ms could be considered as

fixed[55], it is still possible that some of the links may switch their link states within the

inference process. The system is thus suboptimal if the inference is slow. To further speed

up the belief propagation, we apply the similar idea in [103] utilizing the fact that when

some link states change, they typically only affect a small region of the graph and it is not

necessary to update the whole graph.

The algorithm starts after the graph is initially solved by a standard BP. Each time some

nodes’ states change, it maintains the set of changed node ∆. In the following iterations,

only the nodes in ∆ send messages. Neighbors of ∆ receive the messages and calculate their

own messages. If those nodes’ messages differ by more than a threshold from the previous

messages they sent, they are added to ∆. Although in worst case, all the nodes may be add

to ∆ and we would recalculate the graph, empirically only a small region of graph would be

influenced and the BP would be converged quickly.

The discussion of the convergence analysis is detailed in [103].

3.5 Model-based Acceleration

Q-learning is the model-free RL learning framework. It utilizes no prior knowledge about the

environment. Although it guarantees to converge with unchanged model and stable learning

parameters, the sample complexity tends to limit its applicability to practical systems. As

in standard RL, integrating the prior knowledge about the model has generally been more

efficient [87][139]. In this section, we will accelerate the learning procedure by incorporating

the prior knowledge about the link state with the Q-learning framework.

We could use the simulated experience in a learned ’model’ to supplement real-world on-

policy rollouts. The ’model’, in the context of RL, is characterized by {S,A,P ,R}, where P

is the set of transition probabilities P (st+1|st, at) and R is the corresponding rewards. Given

the initial state st and action at as the input, the model M could generate the sample state
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st+1 and corresponding reward r(st, at, st+1) according to the transition probability. With

the known model M , the updating for Q-function could be modified by

Q(st, at) = R(st, at)

+ γ
∑
st+1

P (st+1|st, at) max
at+1

Q(st+1, at+1) (3.38)

In Q-learning, the agent will take the action at under st, and obtain reward rt and the next

state st+1 from the environment. It updates Q(st, at) by minimizing the temporal difference

at time slot t, as described in (3.15). In the model based learning framework, the agent

could simulate the environment by generating all the possible future states st+1, rt based on

’model’ M , namely

{st+1, rt} ←M(st, at) (3.39)

Algorithm 5 Accelerating Q-Learning

1: Required: The current state st, action at and the model M
2: Generate all possible st+1 by st+1 ←M(st,at)
3: Obtain r(st,at) by M or historic measurements.
4: Update Q(s, t) by (3.38)
5: for j = 1 : N do
6: bms← random previously observed state
7: bma← random action in s
8: s′, r ←M(s,a)
9: Update Q(s, t) by (3.38)

10: end for

Then the current Q-function is updated in a Value Iteration (VI) way that considers the

contribution of all the possible future states instead of the single sample state in Q-learning.

This could speed up the convergence and guarantee to converge to the optimal [140]. The

procedure of the accelerating framework is in Algorithm 5, which is based on Dyna Q [139].

For mmWave networks, the dynamics of the link state is stable and thus the transition

probability between the state could be estimated. As mentioned in Section 3.2, the state

transition probability could be obtained given the distribution of {lij, Gij}.
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In agent-based decomposition, for UE node, the transition probability could be calculated

as

P (st+1
i , st+1

Γ(i)|s
t
i, s

t
Γ(i), a

t
i)

= P (st+1
i |sti, ati)

∏
mj∈Γ(i)

P (st+1
j |stj, atj) (3.40)

Here, we assume that the state transition is only dependent on the local state/action pair.

Since the action of BS mj is to control the transmission power and its state sj is the

transmission power itself, then we have

P (st+1
j |stj, atj) =

 1 atj = st+1
j

0 atj 6= st+1
j

(3.41)

For the transition probability of the UE ui, since the UE’s state is the product of its

alignment and link state, we have

P (st+1
i |sti, ati) = P (st+1

l |s
t
l , a

t
i) ∗ P (st+1

G |s
t
G, a

t
i) (3.42)

where P (st+1
l |stl , ati) and P (st+1

G |stG, ati) are characterized by the mmWave channel as the prior

knowledge, as described in Section 3.2. ai is the UE’s choice of the connected BS. Since the

link state l is dependent on the relative position, we have

P (st+1
l |s

t
l , a

t
i) = P (st+1

l |s
t
l) (3.43)

which could be calculated from (3.1).

The beamforming alignment state is dependent on UE’s choice of BS. If UE ui decides

to connect to BS mj, where xi,j = 1, then with a high probability, the link between them

will be well aligned. Therefore, we will estimate the conditional transition matrix T |xi,j=0
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and T |xi,j=1 separately, namely

T |xi,j=0 =


pG0|G0,xi,j=0 pG0|G1,xi,j=0 pG0|G2,xi,j=0

pG1|G0,xi,j=0 pG1|G1,xi,j=0 pG1|G2,xi,j=0

pG2|G0,xi,j=0 pG2|G1,xi,j=0 pG2|G2,xi,j=0

 (3.44)

Here G is defined in Section 3.2.

To complete the implementation, we need to compute the expected reward under (sj, aj),

namely

R(stj, a
t
j) =

∑
st+1
j

p(st+1
j |stj, atj)r(st+1

j , stj, a
t
j) (3.45)

We store the value of r(st+1
j , stj, a

t
j) when system interacts with real environment and transits

into the state {stj, atj, st+1
j }.

3.6 Experiment and Simulation Result

In this section, we first check the performance for the message passing algorithm introduced in

Section 3.4 for the coordination graph. Then we introduce our mmWave hardware platform,

from which we obtain the parameters of the channel for the simulation. The numerical

results are provided to evaluate the performance of the proposed RL framework.

3.6.1 Max-Sum Result

The results on the simple synthetic graph are summarized in Table 3.2. QES, QAMP , QEMP

are the values of the maximum Q-function calculated by an exhaustive search, agent-based

decomposition with message passing and edge-based decomposition with message passing

respectively.

We normalize the result by setting the maximum global Q-value as 1. For the synthetic

graph, the message passing method can find the optimal Q-value using the exhaustive search

method QES. For the large graph, since it is impossible to find the exhaustive result, we only
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Table 3.2: Max-Sum result

Synthetic Graph Macro Graph

Number of edge 3 306

Number of node 4 108

maxQES 1 /

maxQAMP 1 1

maxQEMP 1 0.84

compare the result between the agent-base and edge-based result. As mentioned in Section

3.2, the UE’s decision is dependent on the nearby BSs when there exist edges between them.

When two UEs are dependent on two identical BSs, there a loop between two UEs in the

graph. It is well known that the message passing method can find the exact solution in the

tree structure while may not find the optimal solution in the loopy case [162]. However, the

exhaustive search method requires the computational cost in the order of O(AN) while for

the message passing method the computational cost is O(AN). Here A is the number of

actions for each node and N is the number of nodes. We improve the scalability at the cost

of accuracy, whereas we will show in the next subsection that it can find the near-optimal

result in the multi-agent reinforcement learning.

In Fig 3.5, the convergence result on a HetNet graph for proposed BP is shown. For

vanilla BP (Agent, Edge), it takes more than 50 iterations to converge while for Efficient BP

(E-Agent, E-Edge) proposed in Section 3.4.2, the inference could be converged in less than

20 iterations.

3.6.2 Simulation Parameters

The channel gain for blockage and beamforming is obtained from our own mmWave hardware

platform.

Experiment Setup

We first introduce the setup for the experiment. The 56.5 GHz mmWave link is provided by

Analog Devices EK1HMC6350 evaluation kit, which includes HMC6300 with the TX module
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Figure 3.5: Convergeence for BP

and HMC6301 with the RX module. Tektronix TSG4102A, an RF vector signal generator,

provides baseband signal. A Tektronix DPO70404C oscilloscope, with 4 GHz bandwidth and

25 GS/s sample rate, captures the waveform for offline analysis. Its four analog channels

support differential signaling in quadrature modulation. The antenna is omnidirectional with

a gain of 24 dBi. The antennas are rotated in the azimuth plane. The field experiment is

shown in Fig 3.6.

Parameters

We first check the pathloss factor τ . The measurement is displayed in Fig. 3.7. By fitting

the curve, we obtain τLOS = 1.4 and τNLOS = 2.2. Then the overall pathloss is given by

LL(r) = 61.4 + 14 log10(ri,j) + χL (3.46)

and

LN(r) = 72.0 + 22 log10(ri,j) + χN (3.47)

The gain for beamforming alignment is displayed in Fig 3.8. The misalignment could

cause up to 20dB loss when the angle deviation is 40 degrees. Thus in our simulation, we set
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Figure 3.6: Image of outdoor measurement for LOS
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Figure 3.7: Measured path loss values relative to distance of 20m.
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Figure 3.8: Angle Gain

the beamforming gain Gi,j = −20dB when the UE and BS are not aligned and Gi,j = −10dB

when UE and BS are partially aligned.

The Markov transition matrix for link state l is

Pl =


0.6 0.2 0.1

0.3 0.6 0.1

0.1 0.2 0.8

 (3.48)

and the transition matrix for alignment state G is

PG =


0.7 0.25 0.05

0.2 0.75 0.05

0.05 0.45 0.5

 (3.49)

Note that the transition probability is not small between two different states, assuming a

high dynamics of the channel.
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3.6.3 Simulation Results

For simulation, we randomly generate the UE according to the PPS. One simulation contains

1000 time slots and the environment is simulated according to the Markov transition matrix

in Section 3.6.2. We repeat the simulation for 1000 times and get the averaged result.

The remainder of simulation parameters are given in Table 3.3.

Simulation results for the system level performance are presented in Fig 3.9 in terms

of the UE rate distribution. We implement the mulit connectivity framework, where each

UE is allowed to connect to multiple BSs in one time slot [166]. It could be considered as

the upper bound for the proposed problem since connecting to multiple BSs provides more

flexibility for UE and thus obtain more resource. Besides, we use some baseline setting for

comparison. In the baseline setting, there is no bias for UE and each UE connects to the

transmitter with the highest received power. We use the grid search to find the optimal

bias factor for each BS. We call them greedy and optimal correspondingly. The transmission

power in the baseline setting is unchanged. We implement the agent-based decomposition,

agent-based decomposition with acceleration and edge decomposition to find the optimal

resource allocation policy.

Fig 3.9 demonstrates that the proposed framework has close performance to the multi-

connectivities method. Comparing to the multi-connectivities method, more UEs could

obtain more than 0.5 bits/s/Hz in the proposed framework than multi-connectivities method
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Table 3.3: Simulation Parameters

Variable Value

Macro cell radius 100m

Carrier Frequency 56.5 GHz

Bandwidth 1 GHz

Number of BS 1

Number of pico transmitters 8

Number of UE 80

BS power 53 dBm

Pico transmitter power 23 dBm

Learning rate α 0.9

Discount factor β 0.9

PPS density λU 0.4

Reversed factor θ 1

Switch penality γ 1000

while the latter could help more UEs obtain rate larger than 1.5 bits/s/Hz. This indicates

that the proposed framework could improve the fairness of the resource allocation while the

multic-onnectivities is more greedy. This is because we add the penalty when UE switch

from on BS to another such that when its rate is good, it may not choose to switch. It

can also be observed that all the proposed learning frameworks obtain better performance

than the purely greedy policy. Here, the performance is approximately 25 percent more

significant for agent-based approach compared to the pure greedy policy. The agent-based

approach is better than the edge-based approach, which results from the better Q-function

approximation via message passing, as shown in Table 3.2. Comparing to the greedy optimal,

for the low rate region where the achievable rate is less than 0.4 bits/s/Hz, the UEs obtain

less transmission rates from the BS while for the high rate region, the average transmission

rate is higher.

Fig 3.10 compares the average achievable rate (normalized by the bandwidth) by different

resource allocation schemes with different transmission powers. We could observe that the

proposed framework could achieve similar performance to the multi-connectivities method
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Figure 3.10: Transmission rate versus transmission power

while avoiding frequent switching for UEs. Besides, a remarkable performance gap can be

seen in the figure between the proposed scheme and the baseline approach. Notably the gain

goes larger as the transmit power of each mmWave BS increases, as could be explained by

the fact that the proposed learning framework could manage the interference by flexible user

association. We could obtain the similar conclusion by comparing the results of the greedy

optimal and the proposed framework. When the transmission power is small, the greedy

optimal and the agent-based approaches have similar performances since there is no need

to coordinate the interference. With increased transmission power, since the BS in greedy

optimal always work on the full transmission power, it becomes more difficult to manage

the interference while in the learning framework, the transmission power could be adjusted

according to the current state.

We simulate the dynamics of the mmWave networks for a fixed period of time. The states

of the links between BS and UE change over time according to the transition probability

we defined in Section 3.5. In Fig 3.11, we compare the switching frequency and the power

consumption regarding the transmission power in the fixed time period. We normalized the

value for a better demonstration. In the greedy optimal scheme, the BSs keep the maximum

transmission power, while in the learning framework, the transmission power could change

according to the environment. It proves that the proposed scheme could save the power

while providing the comparable performance. Besides, it could be observed that in the

greedy optimal scheme, the UE may change the connected BS frequently. This is because of
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Figure 3.11: Switching cost and power cost

the dynamics of the mmWave network. Since we add a penalty term in the reward function,

the agent will reluctantly change the associated BS. This will benefit the system in the power

consumption since the switching is frequent for UE.

Finally, we check the performance of the proposed model-based acceleration in Fig

3.12. The computation time consists of two parts: Q-table update and message passing.

It could be observed that most computation cost is on the message passing. This is

because, in each iteration, the agent is required to update the local Q-function of small

size. The length of total running time reflects the number of iterations required to converge.

From our simulation, the agent-based decomposition with model acceleration converges 25-

percent faster than the agent-based decomposition. The model based acceleration requires

more computation to update Q-tables, since in each iteration it calculates the sum of the

contributions from all the possible future states.

3.7 Conclusion

We propose a scalable and distributed RL framework for joint power control and user

association in mmWave HetNet, where we consider the blockage and beamforming effects

and model the link state as an MPD. We formulate the problem by maximizing the overall
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Figure 3.12: Running time for different RL frameworks

system throughput considering the switching cost for each UE. Using coordination graph,

we decompose the problem into multiple local sub-problems based the topology of mmWave

HetNet. UEs and BSs solve the local problems in a distributed manner while using the

message passing algorithm to exchange the local information. We further accelerate the

learning process by combining the prior knowledge about the dynamics of mmWave link state.

We use statistics of our real world measurements to simulate the proposed framework. The

performance of our proposed framework proves that it could increase the system throughput

while reducing the overall transmission power comparing to the baseline approach.

Undoubtedly, the proposed framework still requires prior knowledge about the dynamics

of the link state. We believe incorporating more features to the state space would further

improve the performance. Besides, since we did not consider the fairness of the transmission,

the proposed framework is more likely to allocate most the resource to good link. More

comprehensive cost models can be taken into consideration, and practical implementation

will be considered in the future.
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Chapter 4

Distributed Coreset Boosting

4.1 Introduction

The rapid growth in the size and scale of modern data sets has fueled a lot of interest

in solving machine learning tasks in a distributed manner. In the distributed setting, the

bottleneck is often the communication capacity between computing machines [17]. Some

recent researches have studied the communication efficiency in the distributed learning

context from multiple aspects, including distributed optimization [44, 172], Probably

Approximatedly Correct (PAC) learning [17, 34] and information theory [7, 168].

Meanwhile, in real-world distributed applications, the simplified assumption of indepen-

dent and identically distribution for all samples breaks down, and labels can have structured,

specific character on each distributed node [46]. For example, the model learnt from one

mobile user could not be directly applied to another mobile user. When learning a global

classifier on such different distributions with limited communication, the efficient convergence

could not guarantee [174].

In this paper, we improve the communication efficiency and robustness to distribution in

distributed learning by utilizing the redundancy of the data set, which is similar to source

coding in communication theory. For a large scale data set, there may be only a small subset

of data that is informative to the learning due to redundancy. We construct a coreset [2],

namely a small and weighted subset of the data, to approximate the full dataset.
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Coreset is widely studied for unsupervised learning, especially for clustering problems

[15, 52]. Previous works [28] have provided elegant theoretical bound for coreset when

the objective function is unbounded. Recent studies [70] have designed efficient coreset

construction algorithms from the Bayesian point of view. It generates the coreset with

the similar likelihood to the whole dataset for logistic regression classifiers. The coreset

construction in this paper is the generalized framework that bridges the coreset with

supervised learning. It shows that, by mining the structure of data using unsupervised

learning, the efficiency of supervised learning can be significantly improved regarding the

sample complexity.

We design a coreset construction algorithm that approximates the loss of the whole

dataset for all concerned base functions h ∈ H with high probability. We will show that the

proposed algorithm can ’compress’ the data set by assigning sampling weight to different

samples, similarly to traditional source coding in communication.

Then we will build the connection between the proposed coreset construction algorithm

and the traditional Boosting algorithm. We prove coreset is a good choice to generate the

’weak’ learner in boosting and its generalization performance bound could help analyze

such additive learning model. A smooth coreset boosting algorithm is designed with

computational efficiency and robustness to prevent overfitting. We show that the coreset

boosting algorithm is easy to be adapted to distributed setting, effective in communication

and robust to adversary distribution, which leads to its potential practical applications.

The remainder of this paper is organized as follows. We first formulate the problem and

propose the coreset construction algorithm. Based on the coreset, the boosting algorithms

in centralized and distributed setting are introduced. Numerical results are provided in the

end.

4.2 Problem Setting

Let D =
{

(Xn, Yn)
|D|
n=1

}
be a dataset, where Xn ∈ Rd is the d-dimensional feature vector and

Yn ∈ {−1, 1} is the corresponding label. Assume that the feature vector is rescaled to [0, 1]d,

which is widely used as a preprocessing. A given function class F , in which each function
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maps from Rd to R, is said to be η−bounded if, for all x ∈ Rd and all f ∈ F , |f(x)| ≤ η.

We denote by h(x) : Rd → R the corresponding base function whose sign predicts the label

of sample x. The set of all possible base functions is denoted by H. l(x) is a loss function if

it is non-negative and nonincreasing. The overall loss for h(x) on D is defined as

L(h) =

|D|∑
i=1

wil(Yih(Xi)) (4.1)

where wi is the normalized weight for sample (Xi, Yi) such that
∑|D|

i=1wi = 1. wi can be

considered as a discrete probability distribution over the |D| samples. In the initialization,

we can set wi = 1
|D| . In the subsequent processing, the weights could be updated.

Similarly, the empirical loss for a sample subset M is given by

L̂M(h) =

|M |∑
i=1

uil(Yih(Xi)) (4.2)

ui is the weight for (Xi, Yi) in M , similarly to wi for D.

The whole dataset D is clustered into K clusters based on feature X using k-means

clustering. Denote by Gn
k the set of samples in cluster k having the same label as that

of (Xn, Yn) excluding (Xn, Yn) itself. Let G−nk be the set of samples that have different

labels from that of (Xn, Yn) in cluster k. Ww,n
k =

∑
(Xj ,Yj)∈Gnk

wj, namely the sum of the

sample’s distribution who have the same label with (Xn, Yn). Similarly, we have Ww,n−
k =∑

(Xj ,Yj)∈G−nk
wj.

4.3 Generalized Coreset Construction

In this section, an efficient coreset construction algorithm will be proposed, such that with

probability 1− δ, we could sample the subset M such that

∣∣∣L(h)− L̂M(h)
∣∣∣ ≤ ε|L(h)|, ∀h ∈ H, (4.3)

where ε ∈ (0, 1).

68



Algorithm 6 Coreset Construction

1: Input: data (X, Y ) ∈ D, distribution {wi}|D|i=1, K-clustering, tolerance ε, failure rate δ
2: for n = 1 : |D| do
3: Calculate mn using equation (4.5)
4: end for
5: for n = 1 : |D| do
6: Calculate the sampling probability pn = mn∑|D|

n=1mn

7: end for
8: Sample M from D using pn
9: Output: Subset M

Essentially, the coreset construction algorithm updates the weights of samples in D and

carries out the sampling in a single-round manner. The detailed algorithm is summarized in

Algorithm 6. The detailed expressions for the algorithm and the performance are given in

the following theorem.

Theorem 4.1. Assume that the base function h(x) is λ-Lipschitz and η-bounded. The

dataset D is clustered into K clusters. The loss function l(x) is nonincreasing, non-negative,

convex and satisfies
l(a)

l(b)
≤ e|a−b| (4.4)

Given the distribution for each sample (Xn, Yn) is wn. Then, if the sampling weight for each

point (Xn, Yn) is pn = mn∑|D|
i=1mi

, where

mn =

[
1

wn +
∑K

k=1

(
Ww,n
k dXn +Ww,n−

k e−4η2
)] (4.5)

with dXn = e−λ‖X̄
n,w
G,k−Xn‖

2

and

X̄n,w
G,k =

∑
(Xi,Yi)∈Gnk

wiXi∑
(Xi,Yi)∈Gnk

wi
(4.6)

by sampling the subset M with size

|M | = c

∑|D|
n=1mn

|D|ε2

[
dim(H) log

(∑|D|
n=1mn

|D|

)]
+ log

1

δ
, (4.7)
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with probability 1− δ, the sampled subset M satisfies (4.3).

Remark 1. A typical choice for the base function h(x) could be linear classifier or decision

stumps. Strictly speaking, these functions do not satisfy the Lipschitz continuity assumption

in Theorem 4.1 as they contain indicator function to generate the output label. However, the

indicator function could be approximated by tanh(x), which satisfies the Lipschitz continuity

assumption. We further assume that the loss function l(x) does not change too fast (not faster

than the exponential function). This assumption holds for the widely used loss functions such

as hinge, quadratic or linear loss.

Proof We first define the sensitivity σn(H) similarly in [51]

σn(H) := sup
h∈H

l(Ynh(Xn))∑|D|
l=1wll(Ylh(Xl))

(4.8)

[28] provides Theorem 4.2 to construct coreset

Theorem 4.2. Fix β > 0. Θ is the parameter space. F is a set of function and ∀f ∈

F , f(θ) > 0. For n ∈ [N ], let mn ∈ R+ be chosen such that

mn ≥ σn(Θ)

There is a universal constant c such that if M is sample from F of size

|M | ≥ c
∑N

n=1mn

Nβ2

[
dim(F)log(

∑N
n=1 mn

N
)
]

+ ln(1/δ) (4.9)

such that the probability each element of M is selected independently from F with probability

mn∑N
n=1mn

that fn ∈ F is chosen, then with probability at least 1− δ, for all θ ∈ Θ,

∣∣∣∣f̄(θ)− m̄N

|M |
∑
fn∈M

fn(θ)

mn

∣∣∣∣ ≤ βf̄(θ)

In this paper, fn(θ) = l(Ynh(Xn)) and the selection of f is equal to sampling (Xn, Yn)

from D. mn could be chosen arbitrarily large to satisfy the condition in Theorem 4.2 but

this will result in a large coreset size according to (4.9). To complete the proof, we need to
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find the tight upper bound of σn(θ) with Lemma 4.11. The detailed proof of Lemma 4.11 is

in the appendix.

Lemma 4.3. For any k-clustering Q,

σn(H) ≤
[

1

wn +
∑k

m=1(Ww,n
k dXn +Ww,−n

k e−4η2)

]
where dXn = e−λ||X̄

n,w
G,k−Xn||

2

.

Combining Lemma 4.11 and Theorem 4.2, with the fact h(x) is η-bounded such that

e−|h(E[X])+h(Xn)|2 ≥ e−4η2 , we complete the proof.

The sampling weight pn could be considered as the ’votes’ from all the cluster centers.

It is different from the discrete distribution wn, which is determined by prior knowledge or

learning framework. Two main conclusions could be obtained from the expression of mn in

(4.5):

• mn is large if (Xn, Yn) is far away from all the clusters.

• mn is large if (Xn, Yn) is near the cluster center while its label is inconsistent with most

samples in this cluster.

Therefore, those samples that are consistent with the neighbors have smaller sampling

weights, while those different from the neighbors have larger weights. The isolated samples

are more likely to be sampled into the coreset. This is similar to data compression algorithms

where fewer bits are needed to represent the more frequent messages while more bits are

required for the rare ones. Regarding the cluster size, if the data is closely clustered, the

distance |Xn−X̂| between the sample and its parent cluster center is small, the corresponding

e−|Xn−X̂| will dominate the overall sum in the denominator of mn and the weight for sample

will be greatly determined by the number of samples and their labels in the same cluster.

When the data is not closely clustered, the weight for each sample will be influenced by the

centers of multiple clusters.

In the proof of Lemma 4.11, we assume the average of all samples in each cluster is

identical to the cluster center. If the clustering result does not satisfy such condition, we
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need to add a small positive term in (4.5) to secure the upper bound, which results in larger

coreset.

The proposed coreset construction algorithm is computationally efficient. The clustering

can be obtained efficiently via the k-means++ algorithm in O(|D|K) time [11]. The

computation complexity for mn is also in O(|D|K). This is desirable for the design of scalable

learning system. Only O(K) extra memory is needed to store the number of positive and

negative samples, respectively, in each cluster.

We also obtain the following corollary, where the concept of ε-approximation can be found

in [70].

Corollary 4.4. Define the logistic likelihood by

P (Yn|Xn, h) =
1

1 + exp(−Ynh(Xn))
, (4.10)

and the log-logistic-likelyhood for D as L(h,D) =
∑|D|

n=1 logP (Yn|Xn, h). By Theorem 4.1, the

constructed coreset M could approximate the log-logistic-likelyhood of D when loss function

in Theorem 4.1 is l(Ynh(Xn)) = logP (Yn|Xn, h).

Therefore, from the Bayesian perspective, the coreset could be considered as a useful

approximation for the original samples. Given the base function h generated by the coreset

with small size, its performance has a certain assurance on the original dataset D. This

is especially desirable in the setting of distributed learning, where communication is the

bottleneck, the exchanged messages are limited and we prefer to extract the information

from subset using sample as little as possible. In the next section, we will show that the

coreset construction algorithm is a natural choice to generate weak learner [122] for boosting,

and that by utilizing the property of coreset, high convergence rate and sample efficiency in

learning could be achieved.

4.4 Coreset Boosting

In this section, the proposed coreset construction algorithm will be integrated into the

Boosting algorithm. The learning process for boosting could be considered as the coordinate
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descent in the function space H [122]. In iteration t, the booster generates a weak learner

ht(x) such that

ht = argh∈HminL
(
H t−1(X) + γth(X)

)
(4.11)

In the centralized setting, the base function h(x) is generated based on the whole dataset

while in distributed setting, to save the communication cost, we prefer to learn ht(x) with

the subset M in each iteration [17]. Thus we are only able to find ĥt(x) based on evaluating

L̂M(h). The Hoeffding inequality [68] enables us to bound L(ĥt(x)) with L̂M(h) for random

sampling if loss function l(x) is bounded. The bounded L(ĥt(x)) could guarantee that ĥt leads

to a lower value of loss in the coordinate direction. But this is not the case for most boosting

algorithms. For example, in AdaBoost l(x) is the exponential function. When L(ĥt(x)) is

unbounded, it’s hard to determine if ĥt could decrease the loss in (4.11). By contrast, the

coreset could approximate L(ĥt(x)) with L̂M(ĥt(x)) for unbounded loss function. In this

section, we show the bounded L(ĥt(x)) could lead to the decrease of objective function and

accelerate the convergence.

Corollary 4.5. The coreset constructing algorithm generates subset M such that with

probability 1− δ,

|LAda(h)− L̂MAda(h)| ≤ β|LAda(h)|, (4.12)

where LAda(h) =
∑|D|

n=1 e
−h(Xn)Yn.

In AdaBoost, the loss function lAda(x) = e−x satisfies the assumptions in Theorem 4.1

and thus the coreset for AdaBoost could be constructed by replacing the l(x) with lAda(x)

in Theorem 4.1.

Unfortunately, AdaBoost is vulnerable to the outliers and overfitting [41]. The most

commonly given explanation is that, in each iteration, AdaBoost assigns too much weight

on the outliers. To fix the problem, a smooth loss function lsm(x) is used in this paper that

is similar with MadaBoost [43]

lsm(x) =

 e−x, x ≥ 0

1− x, x < 0
(4.13)
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Algorithm 7 Coreset Boosting

1: Input: Dataset (X, Y ) divided into K clusters with size N , H0(X) = 0
2: for t = 1 : T do
3: Construct the coreset (Xs, Ys) with size |M |
4: Solve ht = arg minh∈H L̂M(h)
5: Update

wtn = −l′(H t−1(Xn)Yn)

and W t =
∑
wtn. Calculate γt = W tEt[ht(X)Y ]

NK2

6: Update H t(X) = H t−1(X) + γth
t(X)

7: end for
8: Output: HT (X) =

∑T
t=1 γth

t(Xn)

Note that lsm(x) decreases linearly when x < 0. Optimizing lsm(x) over |D| is equal to

maximizing the soft margin [149].

By applying the similar proof in Corollary 4.5, it is straightforward to construct the

coreset for lsm(x) such that with probability 1− δ

|Lsm(h)− L̂Msm(h)| ≤ β|Lsm(h)|, ∀h ∈ H (4.14)

We first propose the centralized version of coreset boosting in Algorithm 7 and show it

could converge efficiently.

Theorem 4.6. Suppose the feature X is scaled to [0,1]. Assume h(X) is η-bounded and the

empirical loss for ht(x) satisfies L̂Msm(ht) ≤ (1 + β)(1 − α), then with probability 1 − δ, the

output of Algorithm 7 could achieve error rate minh∈H Err(h) + ε and converges in O( 1
ε2−2c )

iterations.

Note that in boosting, the distribution wn for each sample is updated in each iteration

and the sampling probability for generating the coreset mn is calculated based on wn.

Proof. The 0-1 loss ErrD(h) is upper bounded by Lsm(h) since lsm(yh(x)) ≥ 1h(x)6=y.

Instead of handling the 0-1 loss directly, we will prove in each iteration, LM(h) decreases

by larger than O(ε2−2c) with high probability. First apply Taylor expansion on l(x) with

l′′(x) ≤ 1

l(x)− l(x+ ∆x) ≥ −∆xl′(x)− ∆x2

2
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Let x be
∑T−1

t=1 γtYnh
t(Xn) and ∆x be γTYnh

T (Xn),

l(HT−1(Xn)Yn)− l(HT−1(Xn)Yn + γTYnh
T (Xn))

≥ γTYnh
T (Xn)[−l′(HT−1(Xn)Yn)]−

γ2
T (Ynh

T (Xn))2

2

≥ γTYnh
T (Xn)wTn −

γ2
T η

2

2

This is the direct result of the definition for wTn in Algorithm 2 and the fact that Ynh
T (Xn) ≤

η. Take the expectation of both sides and assume the initial distribution for each sample is

1
|D| . Then we have

Lsm(HT−1)− Lsm(HT )

= E0

[
l(HT−1(Xn)Yn)

]
− E0

[
l(HT (Xn)Yn)

]
≥ γTW

TET [Y hT (X)]

|D|
−
γ2
T η

2

2

By choosing γT = WTET [Y hT (X)]
Nη2

, the maximum value for the right side of the equation could

be achieved.

To complete the proof, we need to verify that given the assumption ht is generated on

the coreset, 2 (WTET [Y ht(X)])2

|D|2η2 is in the order of O(ε2−2c).

Lemma 4.7. Assume in each iteration t we could always find a base function ht based on

the coreset such that the corresponding smooth loss L̂Msm(ht) ≤ (1 + β)(1 − α). Then with

probability 1− δ,

W tEt[ht(X)Y ] ≥ |D|α(min
h∈H

Err(h) + ε)1−c (4.15)

Proof. Combining the property of coreset in Theorem 1 and the assumption, we have

Lsm(ht) ≤ 1− α (4.16)

with probability 1− δ.

For simplicity, denote Zh
n = ht(Xn)Yn. pn is the distribution. Then we have the

classified/misclassified set of points as Z+ = {(Xn, Yn)|Zh
n > 0} and Z− = {(Xn, Yn)|Zh

n <
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0}. We first consider Et[Zh].

Et[Zh] =
∑

(Xn,Yn)∈Z−
pnZ

h
n +

∑
(Xn,Yn)∈Z+

pnZ
h
n

Since

Lsm(ht) =
∑

(Xn,Yn)∈Z−
pnl(Z

h
n) +

∑
(Xn,Yn)∈Z+

pnl(Z
h
n)

=
∑

(Xn,Yn)∈Z−
pn(1− Zhn) +

∑
(Xn,Yn)∈Z+

pne
−Zhn

= −Et[ht(X)Y ] +
∑

(Xn,Yn)∈Z−
pn

+
∑

(Xn,Yn)∈Z+

pn(e−Z
ht
n + Zh

t

n )

Applying the inequality x+ e−x > 1 and (4.16),

−Et[ht(X)Y ] +
∑

(Xn,Yn)∈Z−
pn +

∑
(Xn,Yn)∈Z+

pn ≤ 1− α

As pn is the distribution for each sample such that

∑
(Xn,Yn)∈Z−

pn +
∑

(Xn,Yn)∈Z+

pn = 1

we have Et[ht(X)Y ] ≥ α.

Consider W t =
∑

Zn∈Z− wn +
∑

Zn∈Z+ wn. In iteration t, H t−1 is not good enough which

implies Err(H t−1) > minh∈H Err(h) + ε. According to the weighting function in Algorithm

1, for (Xn, Yn) ∈ Z−, wn = 1, (Xn, Yn) ∈ Z+, wn ≥ 0, total weight is upper bounded by

W t ≥ |D|(min
h∈H

Err(h) + ε) +
∑

(Xn,Yn)∈Z+

wn

≥ |D|(min
h∈H

Err(h) + ε)1−c
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where c is the positive constant factor. The second term is lower bounded as we assume the

error rate for H t−1 is less than 0.5 and therefore implies

1− (min
h∈H

Err(h) + ε) ≥ (min
h∈H

Err(h) + ε)

As we initialize H0(X) = 0, Lsm(H0) = 1. Given in each iteration the loss function

Lsm(H) decreases at least by (minh∈H Err(h)+ε)2−2cα2

η2
, we could conclude the algorithm converges

in O( 1
ε2−2cα2 ) iterations. This convergence rate is better than the previous boosting

algorithm’s O( 1
ε2γ2

) [76], when they have the access to γ weak learner. Observe that the

convergence rate depends on the correlation of base function E[ht(X)Y ]. This indicates the

larger correlation ht(x) has, more useful information it brings to the booster and sequently

the algorithm will converge faster.

A major concern for the proposed boosting algorithm is computational efficiency. In

boosting, it takes O(|D|) to update the weight, O(|D|) for constructing the coreset and extra

O(|M |a) for generating the weak base function ht in each iteration. |M | is small comparing

to |D|. The base function h(x) is not necessary to be accurate, which implies a ≤ 2 [10].

Therefore, the overall computation in each iteration is linear to the size of dataset and the

overall computation cost is O( |D|
ε2−cα2 ). As mentioned in previous section, the computation

cost for clustering is O(|D|). Although both of them are linear to the data size, empirically,

the boosting requires much more computation than clustering. In the next section, we

will demonstrate that the benefit of the clustering, which makes the learning framework

communication efficient and robust to distribution in distributed setting.

4.5 Distributed Coreset Boosting

Learning in distributed excels at processing large scale data while the communication cost for

the shared information may limit the overall performance. Our coreset boosting algorithm

could be adapted to distributed setting with small communication cost. Assume there are r

clients over which the data is randomly partitioned, with Di the set of index of data points

on client i and ni = |Di|. From the observation in [50], we have
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Algorithm 8 Distributed Coreset Boosting

1: Input: data (X, Y ), r worker nodes each with dataset size ni and master node.
2: Distributedly cluster the data set.
3: for t = 1 : T do
4: Worker nodes locally construct and send the coreset Mi to master node.
5: Master node finds ht using the received coreset and broadcasts.
6: Worker node i locally updates wt,in and sends to the master node.
7: Master node calculates and broadcasts γt and W t.
8: Update H t(X) = H t−1(X) + γth

t(X).
9: end for

10: Output: HT (X).

• If Mi is the coreset for Di, then ∪Mi is the coreset for ∪Di.

Therefore, the master node could construct the global coreset by collecting and merging the

local coresets generated by distributed nodes. Since there is no assumption that the sample

in each node is i.i.d. in coreset framework, which is always the assumption in other sampling

methods, the proposed coreset constructing algorithm is robust to adversary distribution

where Di could be extreme different to each other. The cost for robustness is r − 1 extra

small coresets. We will prove in Theorem 4.8 that the extra r − 1 coresets are small. The

distributed coreset boosting is described in Algorithm 9

The overall communication in Algorithm 9 contains two parts.

• Clustering. k-means clustering is needed as preprocessing. The typical communication

cost for efficient distributed k-means clustering is O(rm), where r is the number of

distributed nodes and m is the number of connections between the nodes[18].

• Learning. Specifically, in each iteration, the coreset has to be transmitted through the

communication channel from the worker nodes. After that, the master node broadcasts

the classifier ht(x) back to the worker. There is extra communication for transmitting

γt and W T
i , which is the ignorable overhead.

The size of coreset in each iteration is
∑k

i |Mi| in (4.7), where |D| is replaced by |Di|.

Notice that mn in Theorem 4.1 depends on the data size |Di|. We will prove that when the

|Di| is large, mn is upper bounded by the factor that is independent of |Di|.
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Theorem 4.8. Suppose the base function h(x) is λ-Lipschitz and η-bounded. The

distribution for each sample is 1
|D| . If |D| is large enough such that |D| > emax (2λ,4η2), then

mn is upper bounded by O(emax (2λ,4η2)).

Proof From Theorem 1, we have

mn =

[
1

1
|D| +

∑K
k=1(Ww,n

k dXn +Ww,n−
k e−4η2)

]

where dXn = e−λ||X̄
w,n
G,k−Xn||

2

.

For normalized vector Xn, we have ||X̄G,i −Xn|| ≤ 2. As

K∑
k=1

(Ww,n
k +Ww,n−

k |) = 1− 1

|D|

mn is further upper bounded by

mn ≤
1

1
|D| + e−max (4λ,4η2)

Given the assumption |D| > emax (4λ,4η2), we have the desired upper bound for mn as

O(emax (4λ,4η2)).

The upper bound for the coreset size depends on h(x)’s lipschitz constant λ and maximum

value η (If the data is not the normalized vector, then it is also related to the dimension d

for X). Generally speaking, if h(x) has broader range and sharper derivative, which capture

the complexity of h(x), then larger sample size |M | is required. If the base function is too

complicated that exceeds the descriptive capacity of D, the coreset will approach D itself.

Insert the upper bound of mn into (4.7), the upper bound of the coreset size is in the

order of Ô( e
max (4λ,4η2)

β2 dim(H)r). Here dim(H) could be considered as the VC dimension

of the weak classifier h(x). The communication cost for transmitting ht(x) is O(dim(H)).

Since we prove in Theorem 4.6 that the algorithm converges in O( 1
ε2−2c ) iterations, the total

communication for the distributed coreset boosting is Ô( e
max (4λ,4η2)

β2ε2−2c dim(H)).

The proposed algorithm contains sampling in each iteration. It is possible that some

samples are selected for multiple times throughout the learning. We set cache in both
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Table 4.1: Classification accuracy on various data sets using subset.

Data set WebSpam CovType Yahoo!

SmoothBoost Coreset Sampling

Acctr % 91.54 (0.2) 75.45 (0.4) 62.90 (0.3)
Accte % 90.19 (0.3) 75.15 (0.3) 62.35 (0.2)
Time 104.1s 200.9s 1200.3 s
Clustering 14.1s 30.2s 198.3 s
Boosting 90 s 170.7s 1002.0 s

SmoothBoost Random Sampling

Accutr % 89.49 (0.2) 73.06 (0.3) 60.11 (0.4)
Accute % 88.75 (0.2) 72.90 (0.5) 60.01 (0.2)
Time 82.1s 84.1s 903.5s

AgnosticBoost with Subset

Accutr % 90.16 (0.2) 74.32 (0.2) 61.14 (0.5)
Accute % 90.00 (0.1) 73.09 (0.4) 61.01 (0.4)
Time 93.1s 210.1s 1223.5s

AdaBoost with Random Sampling

Accutr % 89.38 (0.1) 73.32 (0.3) 59.14 (0.5)
Accute % 88.97 (0.1) 71.09 (0.4) 58.11 (0.4)
Time 84.1s 75.3s 870.2s

worker nodes and master node. We stored the index of transmitted sample in work node.

If such samples are repeated sampled to construct the coreset, work node will inform the

master and they are no longer transmitted. Since in boosting most distribution is assigned to

the outliers throughout learning, those points would be repeatedly chosen in high frequency.

We expect the cache mechanism could reduce the communication cost efficiently.

Synchronization is critical in the distributed learning. The proposed framework could

mitigate the straggler problem since the worker nodes are only responsible for updating the

weight and sampling. Learning the base function is the computational expensive part, which

could be well handled by the proposed framework as the sample size |M| for learning base

function is small. We further manange the straggler problem by implementing the proposed

algorithm with MapReduce framework.
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Table 4.2: Classification accuracy on various data sets using all the training set.

Data set WebSpam CovType Yahoo!

Dimension 127 54 10
Size 350000 581012 5811883

SmoothBoost with whole data set

Accutr % 92.46 (0.2) 75.46 (0.1) 63.00 (0.2)
Accute % 89.99 (0.1) 75.25 (0.2) 62.58 (0.2)

AdaBoost with whole data set

Accutr % 92.14 (0.2) 73.31 (0.1) 62.90 (0.2)
Accute % 89.71 (0.1) 72.91 (0.1) 62.80 (0.1)

AgnosticBoost with whole data set

Accutr % 91.00 (0.1) 72.31 (0.2) 61.90 (0.3)
Accute % 89.78 (0.2) 71.91 (0.2) 61.80 (0.2)

4.6 Result

In this section, we evaluated the empirical performance of the proposed coreset boosting

algorithm on 2 middle size datasets of varying type, Web, CovType1 and one large dataset

Yahoo! [35], as summarized in Table 1. All the features are rescaled to [0, 1]. The lipschitz

constant λ is set to 10 as we approximate the step function with tanh(x) and η = 2. The

hyperparameters for sampling, β and δ, are set as 0.08 and 0.05 respectively. The cluster

number k is 16 and the dataset is distributed to 16 workers.

4.6.1 Approximation Quality

Since the ultimate goal is to use the coresets to approximate the true loss of the dataset, we

first check the performance on the approximation factor

ε =
|L(h)− L̂(h)|
|L(h)|

The approximation factor measure the relative difference between the loss on the subset and

the loss on the whole dataset. We randomly generate 5000 η-bouned linear base functions

1The Web dataset could be required from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html and the CovType could be required from https://archive.ics.uci.edu/ml/

datasets/Covertype

81

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype


0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

C
D

F

Coreset Sampling

Random Sampling

Figure 4.1: Cumulative distribution for ε

h(x) and evaluate the approximation factor ε. The experiment is repeated for 100 times. Fig

4.1 shows our result on Web data. The size for the coreset and the random subset is 250. The

distribution of approximation factor ε for coreset is centered largely around the origin while

the distribution for random sampling has the relatively fat tail. We have V ar(εcore) = 0.0979

and V ar(εrandom) = 0.1308. The result suggests we are able to construct coreset whose loss

is close to the whole dataset for most possible clasiifiers we concerned. Besides, the coreset

outperformas the random sampling regrading the approximation quality

4.6.2 Learning Quality

We use decision stumps as our weak learners. The simulations are repeated for 20 times

and we showed the standard deviation of the accuracy for the randomness of sampling.

70 percent of the data is assigned for training. We compare the performance of proposed

SmoothBoost to the classic AdaBoost and the AgnBoost introduced in [34]. We first check

the centralized version while we have the access to all the training data. The result is shown

in Table 4.2. These three algorithms achieve similar result when trained on all the training

data. Then we compare the performance in the distributed setting, where in each iteration,

we only sample a subset of the training data with the same size such that the communication

cost for each algorithm is the same. The results are shown in Table 4.1. The bold entries
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Figure 4.2: WebSpam training process

indicates the best error rate. One can see that the proposed CoresetBoosting outperforms

the SmoothBooster who has the access to random sampling subset. Meanwhile, it has the

competitive performance with the SmoothBooster who has the access to the whole dataset.

Besides, the proposed algorithm is scalable as the running time is near linear to the overall

dataset size. Fig 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 demonstrate the learning process during the

boosting. The coreset boosting has better generalized performance than random sampling

version and it is more efficient at reducing the loss Lsm(HT ). As we mentioned, the clustering

will not introduce too much extra compuation (about 15 percent) while the performance is

improved.

83



0 10 20 30 40 50

Iteration

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
o
s
s

CoresetBoost

SmoothBoost

Figure 4.3: WebSpam training loss

84



0 10 20 30 40 50

Iteration

0.66

0.68

0.7

0.72

0.74

0.76

0.78

A
c
c
u
ra

c
y

CoresetBoost

SmoothBoost

AgnBoost

AdaBoost

Figure 4.4: CovType training process
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Figure 4.9: Peformance on adversary distribution

4.6.3 Communication Cost

Fig 4.8 shows the communication cost for the proposed distributed coreset boosting regarding

the number of transmitted samples throughout the learning process on Web. The dataset

is randomly split into four parts. In each iteration, the master node asks for the coreset

with |M | = 2000 from the distributed nodes. As expected, the total communication cost is

reduced by cache and the improvement is strengthened in boosting comparing to random

sampling.

4.6.4 Robustness

At last we check the robustness of the proposed algorithm when the distribution of the sample

is adversary. We sort the samples based on their first feature and split the data accordingly.

This is the extreme case where the distribution on each node is totally different. As shown

in Fig 4.9, the proposed learning framework could still achieve the high accuracy while the
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other three baseline approach suffer large performance loss. Besides, the convergence rate

for CoresetBoost is larger than the other three methods.

4.7 Proof

Here, the sensitivity σn(H) is defined similarly in [51]

σn(H) := sup
h∈H

l(Ynh(Xn))∑|D|
l=1wll(Ylh(Xl))

(4.17)

Lemma 4.9. Define F1(x) = l(h(x)) and F2(x) = l(−h(x)). F1(x) and F2(x) are convex.

Proof.

F1(x)− F1(y) = l(h(x))− l(h(y))

≥ l′(h(y))[h(x)− h(y)] + l′(h(y))h′(y)T |x− y|

− l′(h(y))h′(y)T |x− y| (4.18)

≥ −λl′(h(y))||x− y||2 + l′(h(y))h′(y)T |x− y|

− l′(h(y))h′(y)T |x− y| (4.19)

≥ l′(h(y))h′(y)T |x− y|

− l′(h(y))[λ|x− y|+ h′(y)]T |x− y| (4.20)

≥ l′(h(y))h′(y)T |x− y|

≥ F ′1(y)T (x− y) (4.21)

(4.18) is obtained from the convexity of l(x). (4.19) is because h(x) is λ-Lipschitz such that

h(x)− h(y) ≥ −λ||x− y||2

As l(x) is nonincreasing and h′(x) ≥ −λ|x−y|, the second term in (4.20) is smaller than 0.

By similar manipulation, we could prove that F2(x) is convex.
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Lemma 4.10. For all a random vector Z ∈ RD with finite mean Z̄ = E[Z] and a fixed

vectors V ,

inf
h∈H

EZ

[
l(h(Z))

l(h(V ))

]
≥ e−λ||Z̄−V ||

2

(4.22)

where h(x) has the Lipschitz constant λ.

Proof.

First since l(h(x)) is convex, using Jensen’s inequality,

inf
h∈H

EZ

[
l(h(Z))

l(h(V ))

]
≥ inf

h∈H

l(h(E[Z]))

l(h(V ))

Insert l(a)
l(b)
≥ e−|a−b|,∀a, b ∈ R, we have

inf
h∈H

l(h(E[Z]))

l(h(V ))
≥ inf

h∈H
e−|h(E[Z])−h(V )|

≥ e−λ||E[Z]−V ||2

Lemma 4.11. For any k-clustering Q,

σn(H) ≤
[

1

wn +
∑k

m=1(Ww,n
k e−λ||X̄

n,w
G,k−Xn||2 +Ww,−n

k e−4η2)

]

Proof.

σn(H)−1

= inf
h∈H

D∑
j=1

wjl(Yjh(Xj))

l(Ynh(Xn))

= inf
h∈H

[
wn +

∑
j 6=n

wjl(Yjh(Xj))

l(Ynh(Xn))

]
= inf

h∈H

[
wn +

∑
Yj=1

wjl(h(Xj))

l(Ynh(Xn))
+
∑
Yj=−1

wjl(−h(Xj))

l(Ynh(Xn))

]

(4.23)
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Algorithm 9 Coreset Sampling

1: Input: data (Xi, Yi) ∈ D, the discrete distribution p such that
∑|D|

i=1 pi = 1 calculated
by coreset construction and the required number of samples |M |

2: for t = 1 : |M | do
3: Independently sample one point according to the distribution p
4: end for
5: Output: The coreset M

For all (Xj, Yi = 1) within cluster k, given |G+
k | is sufficiently large and using Lemma 4.10

with Jensen’s inequality

∑
(Xj ,Yi)∈G+

k

wjl(h(Xj)) = |Ww,+
k |E[l(h(X))]

≥ |Ww,+
k |l(h(E[X]))

≥ |Ww,+
k |l(h(X̄n,w

G,k ))

Similarly we have

∑
(Xj ,Yi)∈G−k

wjl(−h(Xj)) ≥ |Ww,−
k |l(−h(E[X̄n−,w

G,k ]))

Here

Ww,+
k =

∑
(Xi,Yi)∈G+

k

wj (4.24)

Insert into (4.23)

σn(H)−1

≥ inf
h∈H

[
wn +

k∑
m=1

|Ww,+
k | l(h(X̄G,m))

l(Ynh(Xn))

+
k∑

m=1

|Ww,−
k | l(−h(X̄G,m))

l(Ynh(Xn))

]
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4.7.1 Proof for Theorem 2

The 0-1 loss ErrD(h) is upper bounded by Lsm(h) since lsm(yh(x)) ≥ 1h(x)6=y. Instead of

handling the 0-1 loss directly, we will prove in each iteration, LM(h) decreases by larger than

O(ε2−2c) with high probability. First apply Taylor expansion on l(x) with l′′(x) ≤ 1

l(x)− l(x+ ∆x) ≥ −∆xl′(x)− ∆x2

2

Let x be
∑T−1

t=1 γtYnh
t(Xn) and ∆x be γTYnh

T (Xn),

l(HT−1(Xn)Yn)− l(HT−1(Xn)Yn + γTYnh
T (Xn))

≥ γTYnh
T (Xn)[−l′(HT−1(Xn)Yn)]− γ2

T (Ynh
T (Xn))2

2

≥ γTYnh
T (Xn)wTn −

γ2
Tη

2

2

This is the direct result of the definition for wTn in Algorithm 2 and the fact that Ynh
T (Xn) ≤

η. Take the expectation of both sides and assume the initial distribution for each sample is

1
|D| . Then we have

Lsm(HT−1)− Lsm(HT )

= E0

[
l(HT−1(Xn)Yn)

]
− E0

[
l(HT (Xn)Yn)

]
≥ γTW

TET [Y hT (X)]

|D|
− γ2

Tη
2

2

By choosing γT = WTET [Y hT (X)]
Nη2

, the maximum value for the right side of the equation could

be achieved.

To complete the proof, we need to verify that given the assumption ht is generated on

the coreset, 2 (WTET [Y ht(X)])2

|D|2η2 is in the order of O(ε2−2c).

Lemma 4.12. Assume in each iteration t we could always find a base function ht based on

the coreset such that the corresponding smooth loss L̂Msm(ht) ≤ (1 + β)(1 − α). Then with

probability 1− δ,

W tEt[ht(X)Y ] ≥ |D|α(min
h∈H

Err(h) + ε)1−c (4.25)
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Remark. ht is K-bounded. The typical value for K is 1 as weak classifier and the

assumption in Lemma 4.12 holds in this case. For larger K, it is not hard to find the

required ht(x) by solving arg minh∈H L̂
M
sm(h).

4.7.2 Definition of ε-Approximation

This is defined in [70]. Suppose that D =
{

(Xn, Yn)
|D|
n=1

}
is a dataset. Let H be the set of

classifiers. We first define the likelihood of observation (Xn, Yn) given the classifier h ∈ H as

p(Yn|Xn;h) =
1

1 + exp(−Ynh(Xn))
(4.26)

Then the likelihood of the whole datset D given classifier h(x) could be calculated as

L(h,D) =

|D|∏
n=1

p(Yn|Xn;h) (4.27)

and the log-likelihood as

L(h) =

|D|∑
n=1

log p(Yn|Xn;h(Xn)). (4.28)

The target of coreset is to construct the subset of the whole dataset M such that

|L̂(h)− L(h)| ≤ ε,∀h ∈ H (4.29)

with high probability, where

L̂(h) =
∑

(Xn,Yn)∈M

rn log p(Yn|Xn;h) (4.30)

We say that M is an ε-approximation of D given the classifier space H.
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4.7.3 Proof of Corollary 1

It is straightforward to prove h(X) satisfies the assumption. Since ‖θ‖ ≤ r and ‖X‖ = 1,

we have h(X) ≤ r.

Then we have

‖h(X1)− h(X2)‖ = |θ(X1 −X2)|

≤ ‖θ‖‖(X1 −X2)‖

≤ r‖(X1 −X2)‖ (4.31)

Therefore we prove h(x) is r-Lipschit and r-bounded. Now we move to prove that l(x)
l(y)
≤

e|x−y|. Let ρ(x) = l(a)
l(a+∆)

. We have

ρ′(x) =
(1 + ex)log(1 + e−x)− (1 + ex+∆) log(1 + e−x−∆)

(1 + ex)(1 + ex+∆)log2(1 + e−x−∆)
(4.32)

We see that sgn(ρ′(x)) = sgn(∆). For ∆ > 0

sup
x

l(x)

l(x+ ∆)
= lim

x→+∞

l(x)

l(x+ ∆)

= lim
x→+∞

l′(x)

l′(x+ ∆)

= lim
x→+∞

e−x

1 + e−x
1 + e−x−∆

e−x−∆

= e∆ (4.33)

Similarly for ∆ < 0,

sup
x

l(x)

l(x+ ∆)
= lim

x→−∞

l(x)

l(x+ ∆)

= lim
x→−∞

l′(x)

l′(x+ ∆)

= lim
x→−∞

e−x

1 + e−x
1 + e−x−∆

e−x−∆

= 1 (4.34)
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Then we prove that l(x)
l(y)
≤ e|x−y|.
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Chapter 5

Selective Sampling Based Efficient

Classifier Representation in

Distributed Learning

5.1 Introduction

Modern machine learning system aims to solve practical problems with large data size and

high dimension. However, using a single machine to store and compute such large scale data

set becomes prohibitively difficult. Distributed learning has recently attracted substantial

interest. Some distributed learning frameworks ([85][168][22][111]) have been proposed to

speed up the learning process by parallelizing the computation among the data distributed

across different locations or entities. In such a setting, the communication within the network

becomes a bottleneck for the design of stable and efficient distributed learning. Usually these

frameworks apply the techniques of distributed learning, which decentralizes the traditional

algorithms and finally obtains the optimal classifier at a master node.

In our paper, we consider a novel approach: each node storing a portion of the data

sends out a message indicating the scope of locally good classifiers based on the local data,

such that the set of globally good classifiers is obtained by the intersections of sets of locally
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good classifiers. Such a scheme has the following two advantages when compared with the

traditional approaches:

• It provides an intuitive and straightforward framework for distributed learning.

• Such a scheme can provide a set of good classifiers, instead of a single one, similarly

to the list decoding in channel coding.

The challenge here is how to efficiently represent the sets of locally good classifiers, which

can essentially be viewed as a source coding problem in communication systems. The task is

difficult in the setting since the classifiers are usually functions (e.g., the linear classifiers are

the linear functions), thus requiring the representation in the function space. One approach

is to parameterize the classifiers and describe the sets of locally good classifiers in the real

parameter space. However, it could be prohibitively difficult to describe a complicate region

in real spaces.

In this paper, we carry out the source coding using selective sampling of local data,

namely for any node a subset of samples in the local database is selected and then sent to

other nodes. A classifier is locally good if it performs well over these selected samples. If we

consider the hypothesis space (namely the space of the classifiers) and the sample space as

being mutually dual spaces, essentially we are using a dual space to describe the space under

study. Such a dual space based description has widely been used in mathematics (e.g., the

definition of weak convergence in probability theory).

Under this selective sample based source coding framework, the main challenge is how to

efficiently select the samples, in order to achieve a good tradeoff between the communication

requirement (since more samples require more communication resources) and the description

distortion (since less samples bring more errors to the set of locally good classifiers). Our

approach is to formulate the sample selection as an optimization problem, and then simplify

it by approximations such that a simple greedy algorithm can be applied. Note that once

these samples are selected, it is possible to further consider the compression of these samples.

The possible compression is not considered in this paper, but will be studied in our future

research.

In more details, our main contributions to the framework of source coding include
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• We define an innovative probability to measure the quality of the selected sample in

classification.

• A weight based optimization problem is formulated to minimize the upper bound of the

proposed probability and the optimal weight could be used to select the informative

samples. An efficient algorithm is proposed to find the optimal weight. With high

confidence, the learning result from the sampled data is close to the optimal result.

• Detailed performance analysis, implementation concerns and simulation results on

synthetic and real world data are provided.

The remainder of the paper is organized as follows. Studies related to this paper is

introduced in Section 5.2. The system model is briefed in Section 5.3. Then, the proposed

framework of source coding for distributed learning is detailed in Section 5.4. The numerical

results and conclusions are provided in Sections 5.5 and 5.6, respectively.

5.2 Related Work

Balcan et al. [17] are the first to consider communication as one of the fundamental resources

in distributed learning, and they applied a theoretical analysis on the communication

complexity based on Probably Approximately Correct (PAC) theory [77]. [34] extends [17]

to design a noise-tolerant distributed boosting algorithm with communication complexity

O(log 1
ε
), which shares the similar idea with our work, since in each iteration the algorithm

adaptively changes the weight of each sample according to its importance. [109] proposed a

screening algorithm for support vector machine (SVM) to eliminate the non-support point

before learning, and to efficiently decrease the the training sample size. However, their

algorithm utilizes the structure of SVM and could not be applied to other classifiers. In

the field of database, to improve the efficiency of each query and maintain a fixed sampling

budget, similar sampling algorithms are proposed. [75] introduces the Horvitz-Thompson

(HT) estimator and formulates an optimization problem to allocate distribution to the

available data. The data center selects a subset of samples according to the distribution

for the future coming queries. Although their work is similar to our as both formulate a
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weight based optimization problem, the concerns and the target functions are substantially

different in these two papers.

5.3 System Model

In this section, we introduce the system model in this paper.

5.3.1 Classification

In the classification setting, we consider learning with respect to a distribution over X × Y

and assume X to be countable and Y = {−1, 1}. The learning is with respect to some

class of functions, H, where each h ∈ H is a binary classifier h : X → {−1, 1}. Generically

speaking, the goal is to find the optimal classifier hopt with the least error R(h)

hopt = min
h∈H

E(x,y)[1h(x) 6=y] = min
h∈H

R(h). (5.1)

Usually the true distribution of X and Y is unknown and we are able to access the data D

generated by the distribution. To solve the classification problem, typically, an optimization

problem based on the available data is formulated as

hem = min
h∈H

∑
(xi,yi)∈D

L(xi, yi), (5.2)

where L(x, y) is the cost function depending on the model of the classifier. (5.2) could be

solved by some standard gradient descent method like [26]. The computation cost increases

with the size of the training data |D|.

5.3.2 Network

In the distributed learning setting, the training data is not stored at a centralized location.

Communication between the distributed nodes then becomes the bottleneck for the learning

problem. For simplicity, we assume that there are only two separated nodes storing samples,

D1 and D2 (hence D = D1∪D2), generated by the same distribution and the same mapping
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from x to y. The principle adopted in this paper can be extended to more generic networks

having more nodes and arbitrary network topology. Since there are only two nodes, we can

consider a single round of transmission from node 1 to node 2; then, node 2 can feed back

its learning result, based on both the message from node 1 and its local data, back to node

1, which results in very light communications.

5.3.3 Division of Classifier Space

In typical classification problems, the space of classifier is continuous, since the parameters

of classifiers are usually real numbers. For example, the linear classifiers with n weights form

an n-dimensional vector space; if normalization of the weights are taken into consideration,

the classifier space is the n-dimensional sphere.

Although the classifiers could be continuous functions, the classifier space can be

considered as being countable due to the limited number of samples; i.e., the classifier space

can be partitioned to finitely many subsets {Hn}n=1,...,N1 such that

h(x1) = h(x2), ∀x1, x2 ∈D1, h ∈ Hn, n = 1, ..., N1, (5.3)

namely the classifiers within the same subset generate the same classification results for all

the samples. Hence, the classifiers within the same subset Hn can be considered as being

equivalent. The corresponding error probability of classification is then denoted by En for

Hn. For simplicity, we assume

E1 ≤ ... ≤ EK1 < α < EK1+1 ≤ ... ≤ EN1 . (5.4)

This assumption is similar with the assumption of finite Vapnik-Chervonenkis (VC)

dimension [144] for the classifier. Under this assumption and H is countable, we introduce

a discrete probability space ({Hn}n=1,...,N1 , P ), where P is the prior probability of the

equivalence classes of classifiers. Due to the finiteness of H, the probability is well defined.

We further assume a uniform prior distribution for each subset such that P (Hn) = 1
N1

due

to the lack of prior information on the classifiers.
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5.3.4 Learning Goal: Good Classifiers

Slightly different from many traditional algorithms, we change the goal of finding the optimal

classifier to looking for a set of good classifiers. We say that a classifier is globally good if its

error probability R(h) over the whole data set D is smaller than threshold α. Suppose node

1 selects a subset of samples S ⊂D1. The classifier is locally good on the selected sample

S if its error RS(h) is smaller than threshold α, where RS(h) = 1
|S|
∑

(xi,yi)∈S 1h(xi) 6=yi
. Then

subsets Ĥ0(S), Ĥ1(S), H0 and H1 are defined to represent globally/locally good classifier

set and bad classifier set, or more precisely

H0 = {h ∈ H|R(h) ≤ α}

H1 = {h ∈ H|R(h) > α}

Ĥ0(D1) = {h ∈ H|RD1(h) ≤ α}

Ĥ1(D1) = {h ∈ H|RD1(h) > α}

Ĥ0(D2) = {h ∈ H|RD2(h) ≤ α}

Ĥ1(D2) = {h ∈ H|RD2(h) > α}

Ĥ0(S) = {h ∈ H|RS(h) ≤ α}

Ĥ1(S) = {h ∈ H|RS(h) > α}

. (5.5)

To measure the quality of the selected sample S, we use the probability measure

mentioned in 5.3.3 and define the error probability of the classification of classifiers as

Perr(S) = P (h ∈ Ĥ0(D1), h ∈ Ĥ1(S))

+ P (h ∈ Ĥ1(D1), h ∈ Ĥ0(S)). (5.6)

Note that this error rate is different from the classification errors: Perr is over the classifiers

h and R is over the data (x, y).

Intuitively, this probability indicates the confidence of the classifier h generated by the

sample S. A large Perr(S) indicates that if the classifier h has a good performance on S,

with high confidence, it has good performance on D and vice versa. We will use Perr(S) to

measure the quality of the selected samples.
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5.3.5 Learning and Communication Model

Based on the above definitions, the procedure of learning is: node 1 chooses a subset of

samples S ∈ D1 such that Perr(S) can well approximate RD1 (or equivalently Ĥ0(S) is

very similar to Ĥ0(D1); then node 2 estimates the set of globally optimal classifiers using

Ĥ0(S) ∩ Ĥ0(D2).

5.4 Classifier Representation Via Sample Selection

In this section, we formulate the sample selection based Classifier Representation into an

optimization problem. We focus on node 1 which has the data set D1.

5.4.1 Formulation and Simplification

Our goal is finding a subset of samples in D1 that minimizes the proposed error probability

Perr

Dopt = arg min
S∈D1

Perr(S). (5.7)

However, the optimization problem (5.7) is difficult to solve since it is essentially a discrete

optimization due to the limited number of samples in D1. Hence, we change to find a

mathematically and algorithmically tractable upper bound and then optimize the upper

bound. To that goal, as H0 = ∩K1
n=1Hn and H1 = ∩N1

n=K1+1Hn, we rewrite the expression of

Perr as

Perr(S) =

K1∑
n=1

P (h ∈ Ĥ1(S)|h ∈ Hn)P (Hn)

+

N1∑
n=K1+1

P (h ∈ Ĥ0(S)|h ∈ Hn)P (Hn), (5.8)

where P (Hn) = P (h ∈ Hn) is the prior probability of the classifier.

Next, we handle the first probability in (5.8). As h ∈ H0, we have

E(h,D1) < α, ∀h ∈ H0. (5.9)

103



Here we define the gap KS(h) between the classification error rates over the entire data

D1 and sampled data S as

KS(h) = RS(h)−R(h)

≥ α− E(h,D1). (5.10)

We consider KS(h) as a random variable whose randomness stems from the random

selection of h. Fix S and suppose h ∈ Hn, then E(h,D1) = En. Hence, the conditional

expectation of KS(h) is given by

E[KS(h)|h ∈ Hn] = E

 1

|S|
∑

(xi,yi)∈S

1h(xi)6=yi

− En, (5.11)

while its variance is bounded by

V [KS(h)|h ∈ Hn] ≤ E[K2
S(h)|h ∈ Hn]

≤
(

max

{
|D1|
|S|
− 1, 1

}
En
)2

, (5.12)

where the last inequality is due to

 1

|S|
∑

(xi,yi)∈S

1h(xi)6=yi −
1

|D1|
∑

(xi,yi)∈D1

1h(xi)6=yi

2

=

(
1

|S|
− 1

|D1|
)
∑

(x,y)∈S

1h(x)6=y −
1

|D1|
∑

(xi,yi)/∈S

1h(xi)6=yi

2

≤

max

{
1

|S1|
− 1

|D1|
,

1

|D1|

} ∑
(xi,yi)∈D1

1h(xi)6=yi

2

=

(
max

{
1

|S|
− 1

|D1|
,

1

|D1|

}
|D1|En

)2

=

(
max

{
|D1|
|S|
− 1, 1

}
En
)2

. (5.13)

We believe that the uniform distribution is reasonable for P (Hn) and thus it has no impact

on our choice of sample. Then we focus on the first part of the equation. By applying the
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Chebyshev’s Inequality, we have

P (RS(h) ≥ α|h ∈ Hn)

= P (KS(h) ≥ α− En|h ∈ Hn)

≤ V [KS(h)|h ∈ Hn]

(α− En − (E[KS(h)|h ∈ Hn]))2 . (5.14)

We denote V [KS(h)|h∈Hn]

(α−En−(E[KS(h)|h∈Hn]))2
by MS(h), which is given by

MS(h) =
V [KS(h)|h ∈ Hn]

(α− En)2

1

(1− E[KS(h)|h∈Hn])
α−En )2

. (5.15)

The upper bound for MS(h) is obtained in the following lemma.

Lemma 5.1. If En ∈ [Emin, α+Emin
2

], n = 1, 2, . . . K1, where Emin is the error rate of the

optimal classifier on the selected sample, then the value of MS(h) is upper bounded by

MS(h) ≤ 2E[KS(h)|h ∈ Hn])

(α− En)3
. (5.16)

Proof. As indicated in (5.15), given a fixed set of classifier Hn, the first part is bounded by

a constant provided by (5.12). For the second part, according to the definition of KS(h) in

(5.10), we have

E[KS(h)|h ∈ Hn]

= E[RS(h)|h ∈ Hn]− E[R(h)|h ∈ Hn]

= E[RS(h)|h ∈ Hn]− En. (5.17)

Given (5.9) and the upper bound in Lemma 5.1, E[KS(h)|h∈Hn])
α−En ∈ (−1, 1) for all

E[RS(h)|h ∈ Hn] ∈ [Emin, 1). Applying the Taylor’s expansion to the second term of (5.15),

we have

MS(h) =
V [KS(h)|h ∈ Hn]

(α− En)2
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+
2V [KS(h)|h ∈ Hn]E[KS(h)|h ∈ Hn])

(α− En)3

+
∞∑
i=2

O

(
Ei[KS(h)|h ∈ Hn])

(α− En)2+i

)

≤
(

max

{
|D1|
|S|
− 1, 1

}
En
)2

×
(

1

(α− En)2
+

2E[KS(h)|h ∈ Hn])

(α− En)3

)
+

∞∑
i=2

O

(
Ei[KS(h)|h ∈ Hn])

(α− En)2+i

)
. (5.18)

As the the other part of (5.18) is predefined when the sample size is fixed, the selection

of sample only influences 2E[KS(h)|h∈Hn]
(α−En)3

which consequently controls the upper bound of

P (h ∈ Ĥ1(S)|h ∈ Hn).

The upper bounder of the first part in (5.6) is obtained as follows:

P (h ∈ H0, h ∈ Ĥ1(S))

≤ C + 2

(
max

{
|D1|
|S|
− 1, 1

})2

×
K1∑
n=1

E2
nP (Hn)

(α− En)3
E

 1

|S|
∑

(x,y)∈S

1h(x) 6=y|h ∈ Hn


+

K1∑
n=1

∞∑
i=2

O

(
Ei[KS(h)|h ∈ Hn])

(α− En)2+i

)
, (5.19)

With similar manipulation and the assumption En ∈ [α+1−Emin
2

, 1 − Emin] on the second

part of Perr, we can also prove

P (h ∈ H1, h ∈ Ĥ0(S))

≤ C ′ − 2

(
max

{
|D1|
|S|
− 1, 1

})2

×
N1∑

n=K1

E2
nP (Hn)

(En − α)3
E

 1

|S|
∑

(x,y)∈S

1h(x)6=y|h ∈ Hn


+

N1∑
n=K1

∞∑
i=2

O

(
Ei
S[D(h)|h ∈ Hn]

(En − α)2+i

)
, (5.20)
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Remark 2. In the proposed framework, the classifier sets with error rate En ∈ (α+Emin
2

, 1+α−Emin
2

)

are not considered. This assumption also promises the Taylor approximation in (5.18).

As the purpose of sampling is to find the subset of data that well describes the classifier

space and to use these samples from distributed nodes to find the globally optimal classifier,

this is acceptable if we set α to be large enough. This is because the discrimination of

classifier between {h ∈ Hn|En ∈ (α+Emin
2

, α)}, which could be considered as good classifier,

and {h ∈ Hn|En ∈ (α, 1+α−Emin
2

)}, which could be considered as bad classifier, is less related

to the optimal classifier, and the corresponding samples are less informative therefore.

Based on the above analysis, we obtain an upper bound for Perr in the following theorem,

which is more mathematically tractable.

Theorem 5.2. For the setup in this paper, the error rate of classifying the classifiers is

upper bounded by

Perr ≤ C ′′ +

N1∑
n=1

cnE

 1

|S|
∑

(x,y)∈S

1h(x)6=y|h ∈ Hn


+

N1∑
n=1

∞∑
i=2

O

(∣∣∣∣Ei[KS(h)|h ∈ Hn])

(En − α)2+i

∣∣∣∣) , (5.21)

where

cn =

 min(β(En), E
2
nP (Hn)

(α−En)3
), n ≤ K1

−min(β(En), E
2
nP (Hn)

(En−α)3
), n > K1

, (5.22)

Remark 3. Here we introduce a hard constraint on cn. This is because the upper bound of

(5.18) is no longer tight when En and α are close. Instead, we apply the Hoeffdings inequality

[125] to (5.18) and obtain

P (RS(h) ≥ α) = P (RS(h)−R(h) ≥ α− En)

≤ e−2|S|(α−En)2 . (5.23)
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This upper bound is independent of the selection of h and S and only dependent on En, which

could be estimated by 1
|D|
∑

(xi,yi)∈D 1h(xi) 6=yi.

Since the first term is a constant independent of the selection of S while the remaining

higher order term is hard to handle, we can choose to minimize the linear term; i.e.,

D∗ = arg min
S⊂D1

N1∑
n=1

cnE

 1

|S|
∑

(xi,yi)∈S

1h(xi) 6=yi |h ∈ Hn

 . (5.24)

Note that the coefficients cn is positive when n ≤ K1 and negative when n > K1. Hence,

the selection of samples desires to shrink the classification error for good classifiers while

enlarge it for bad classifiers. Another point we notice is that |cn| is large when En is close

to α; however, as En ∈ (α+Emin
2

, 1+α−Emin
2

) is not considered in the proposed algorithm, we

avoid handling the case when cn →∞.

5.4.2 Algorithm of Sample Selection

The advantage of the new metric is due to the following equivalent form:

N1∑
n=1

cnE

 1

|S|
∑

(xi,yi)∈S

1h(xi)6=yi |h ∈ Hn


=

1

|S|
∑

(xi,yi)∈S

N1∑
n=1

cnE[h(xi) 6= yi|h ∈ Hn]

=
1

|S|
∑

(xi,yi)∈S

w(xi, yi), (5.25)

where w(xi, yi) is the weight of sample (xi, yi):

w(x, y) =

N1∑
n=1

cnE[h(x) 6= y|h ∈ Hn]. (5.26)

Then, the problem becomes choosing |S| samples in D1 such that the sum of weights

corresponding to the selected samples is minimized. This can be achieved by the greedy

algorithm, namely simply selecting the samples having first |S| smallest weights.
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Note that the weights concern the conditional expectations which are difficult to evaluate,

due to the lack of mathematically tractable distributions. We can use empirical processes

to approximate the conditional expectation. That is, we randomly choose samples in the

classifier space and use the average to approximate w(xi, yi) for each (xi, yi) ∈ D. The

detailed procedure can be found in Algorithm 10.

Algorithm 10 Procedure of Sample Section for Representing Good Classifiers

1: Choose a large number M and randomly select M samples in H.
2: for Each sample of classifier h do
3: Evaluate the classification error E(h,D1) over the sample set D1.
4: Calculate the coefficient c(h) using (5.22).
5: end for
6: for Each sample (x, y) ∈D1 do
7: Initialize the weight w(x, y) = 0.
8: for Each classifier sample h do
9: if h(x) 6= y then

10: w(x, y) = w(x, y) + c(h).
11: end if
12: end for
13: end for
14: Sort all samples with the ascending order of their weights {w(x, y)}.
15: Choose the |S| samples having the smallest weights.

Remark 4. α is used to define what a good classifier is. This is a model specific parameter.

The choice of α determines which subset of classifiers could not be considered. In our

numerical simulations, α could be 1.3 to 1.5 times of Emin such that the sets of locally good

classifiers do have an intersection.

5.5 Numerical Results

In this section, we provide numerical simulation results to demonstrate the performance of

the proposed framework and algorithm.

5.5.1 Synthetic Data

We first test our algorithm on a synthetic data set. Consider two different classes of sets C1

and C2 with labels 1 and -1. C1 and C2 are equiprobable and consist of random vectors drawn
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Figure 5.1: Accuracy comparison between the proposed sampling algorithm and random
sampling on synthetic data

from a two-dimensional Gaussian distribution with mean vector m1 = [0, 0], m2 = [2, 3] and

covariance matrix Σ1 = [3, 0; 0, 4] and Σ2 = [3, 0; 0, 2]. The total size of the data set |D|

is 8000. We implement the proposed algorithm using various sample sizes |S|. The linear

SVM is considered as the target classifier. The minimum value of |S| is estimated from

the VC dimension of the classifier. We calculate the accuracy rate 1 − Perr and the result

is averaged over 30 independent simulations with random generated data set and classifier

samples. For comparison, we randomly sample data with the same size and check its accuracy

of representing the classifier space.

As displayed in Fig. 5.1, for the synthetic data, the proposed algorithm (Selective

Sampling) outperforms the random sampling when the sample size is small. The performance

of random sampling becomes similar to the proposed algorithm when the sample size becomes

large. Fig. 5.2 illustrates the distribution of the sampled data, from which we observe that

most selected samples are close to the boundary and thus provide more critical information

for the classification.

Note that, as shown in Table 5.1, even if sample size is small (|S| = 30 ) compared to the

total data size |D1| = 8000, we can still use these small amount of samples to describe the

set of good classifiers with a high accuracy. Furthermore, the optimal classifier found from

the selected samples achieves a performance close to the globally optimal one. This implies

that a simple strategy for distributed nodes to learn a globally optimal classifier is to collect
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Figure 5.2: Illustration of informative data close to the boundary

Table 5.1: Learning result for the synthetic data

Selective Sampling Random Sampling
RS(h) R(h) RS(h) R(h)

Synthetic 0.1 ±0.017 0.0913 ±0.015 0.1 ±0.021 0.0935±0.017
Magic 0.23 ±0.034 0.21 ±0.031 0.22 ±0.043 0.20 ±0.041

a small number of samples to a center in a single communication round and let the center

learn using these samples.

5.5.2 Real World Data

Here the proposed algorithm is tested on the MAGIC Gamma Telescope Data Set from UCI

Machine Learning Repository [13]. The data is generated to simulate the registration of high

energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope using

the imaging technique. There are 10 attributes describing the image of each sample and

one label indicating whether it is signal or background noise. The overall data size |D1| is

19020. For the convenience of generating sample classifiers, we normalize the feature of each

sample.

Fig 5.3 shows the performance comparison between the proposed approach and random

sampling, along with two other baseline approaches, namely the distributed boosting [34] and

HT estimator [75]. The proposed sampling algorithm outperforms these baseline approaches

as expected. The reasons include
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Figure 5.3: Accuracy comparison on real world data

• The distributed boosting selects the samples that are misclassified by most good

classifiers with high probability. In this case, P (h ∈ H0, h ∈ Ĥ1(S)) is large since

most classifiers have bad performance on these noisy samples while some of them

could have globally good performance.

• In the HT estimator, the sampling algorithm is proposed to minimize the geometric

distance of RS(h) and R(h), where the target function could be described as

min
S∈D

∑
h∈H

(RS(h)−R(h))2, (5.27)

with some other constraints on S. When the sample size is small, the resolution

of error rate is low and even the difference between RS(h) and R(h) is minimized.

It is possible that they fall in different categories. Besides, (5.27) requires solving a

quadratic optimization problem, which requires substantial computation cost compared

to the sampling algorithm proposed in this paper.

5.5.3 Computational Cost

The proposed algorithm is robust on the simple synthetic data where the dimension of each

sample is small. However, when applying it to data set with high dimensions, there are

some practical issues degrading its efficiency and accuracy. With the increasing dimension,
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Figure 5.4: Influence of threshold α on the learning performance

it becomes more difficult to generate sufficient classifiers since a large number of hn’s are

required to describe the classifier space H. An alternative solution is to apply the dimension

reduction algorithm such as Principle Component Analysis (PCA) to find the main feature

of data before learning.

5.5.4 Selection of α

As for the only tuning parameter in the proposed framework, we claim that with the moderate

assumption that α is not close to R(hopt), the learning result is not controlled by the selection

of α. As shown in Fig. 5.4, when R(hopt) = 0.09, the accuracy is satisfying once α is larger

than 0.2.

5.5.5 Performance of Classification of Classifiers

For further analysis, we demonstrate the performance of the proposed algorithm on the real

world data with respect to the ingredient of Perr(S). In Fig. 5.5, the Type 1 error indicates

the number of good classifiers that perform bad on the selected sample. Meanwhile, the

Type 2 error indicates the number of bad classifiers have poor local performance. We can

observe from the figure that, when α is small, most errors are of Type 1 as a result of high

threshold for good classifiers. With the increase of α, the number of Type 1 errors decreases.
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Figure 5.5: Analysis of Perr(S) with respect to different α’s.

α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r 

R
a

te

0

0.1

0.2

0.3

0.4

0.5

0.6

False Alarm

Miss Detection
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Meanwhile, the Type 2 error rate is always small compared to the Type 1 error, and achieves

its maximum when the threshold α is moderate. The false alarm and miss detection rates of

the proposed algorithm are shown in Fig 5.6, Since α ≥ 0.5 provides little information about

the connection between the sample space and the classifier space, we conclude that 0.3 is a

good choice for α.
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5.6 Conclusion

The paper has proposed a sample selection based source coding scheme in the context of

distributed learning. An efficient sampling algorithm has been implemented to optimize the

upper bound of the proposed metric. The simulation results have indicated its advantage

over random sampling and other related sampling methods, either in accuracy or efficiency.

With the reduced sample size, the communication and computation cost is reduced with

slight degradation of the machine learning performance.
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Chapter 6

Open Problems and Future Work

The goal of this chapter is to discuss advantages and weaknesses of the algorithms developed

in this dissertation and highlight several promising avenues for future research.

Reinforcement learning in resource allocation

Our proposed framework solved the user association and power control in HetNets jointly

by applying the Q learning approach. To acchieve the satisfying running time performance,

we need the prior knowledge about the channel dynamics. When the channel dynamics

is fixed over time, the proposed is efficient since the training process is required for once.

However, if the channle dynamics changes over time, the proposed framework requires the

system to train a new Q table, which is not practical. Besides, we assume that the number

of users in the cell is fixed. This assumption is not valid for practical system as the number

of users in the cell could change frequently. In the future, it is possible to introduce the

learning Q learning approach to handle the problem and consider the number of the user as

the system state. With the development of modern machine learning, there are more efficient

deep learning frameworks and the computation efficiency would no longer be the contraint

for the problem that requiring low latency.

Communication efficient distributed learning The proposed coreset construction

algorithm is scalable to the size of the data set. However, since the computation complexity of

coreset construntion is linear to the dimension of the data set, it is hard to apply the proposed

algorithm to the modern machine learning problem, such as language processing or image

classification proble,]m, where the dimension is high. It is worthy of further investigation on
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the design of computational efficient algorithm that is scalable to the dimension of the data

set.
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maximizing the soft margin. In Advances in Neural Information Processing Systems,

pages 1585–1592. 74

[150] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

39

[151] Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li, H. (2017). Terngrad:

Ternary gradients to reduce communication in distributed deep learning. In Advances in

Neural Information Processing Systems, pages 1508–1518. 17

[152] Woodruff, D. P. and Zhang, Q. (2017). When distributed computation is

communication expensive. Distributed Computing, 30(5):309–323. 19

134



[153] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,

M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144. 3

[154] Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online

optimization. Journal of Machine Learning Research, 11(Oct):2543–2596. 14

[155] Xu, B., Chen, Y., Elkashlan, M., Zhang, T., and Wong, K.-K. (2016a). User association

in massive mimo and mmwave enabled hetnets powered by renewable energy. In Wireless

Communications and Networking Conference (WCNC), 2016 IEEE, pages 1–6. IEEE. 7

[156] Xu, Y., Athanasiou, G., Fischione, C., and Tassiulas, L. (2016b). Distributed

association control and relaying in millimeter wave wireless networks. In Communications

(ICC), 2016 IEEE International Conference on, pages 1–6. IEEE. 7

[157] Xu, Y., Hu, R. Q., Wei, L., and Wu, G. (2014). Qoe-aware mobile association

and resource allocation over wireless heterogeneous networks. In Global Communications

Conference (GLOBECOM), 2014 IEEE, pages 4695–4701. IEEE. 6

[158] Xu, Y. and Mao, S. (2017). User association in massive mimo hetnets. IEEE Systems

Journal, 11(1):7–19. 9

[159] Yau, K.-L. A., Komisarczuk, P., and Teal, P. D. (2012). Reinforcement learning for

context awareness and intelligence in wireless networks: Review, new features and open

issues. Journal of Network and Computer Applications, 35(1):253–267. 13, 33, 34

[160] Ye, M. and Abbe, E. (2018). Communication-computation efficient gradient coding.

arXiv preprint arXiv:1802.03475. 17

[161] Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., and Andrews, J. G. (2013).

User association for load balancing in heterogeneous cellular networks. IEEE Transactions

on Wireless Communications, 12(6):2706–2716. 5, 33, 39

135



[162] Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003). Understanding belief propagation

and its generalizations. Exploring artificial intelligence in the new millennium, 8:236–239.

16, 57

[163] Yi, Y., Zhang, J., Zhang, Q., and Jiang, T. (2011). Spectrum leasing to

multiple cooperating secondary cellular networks. In Communications (ICC), 2011 IEEE

International Conference on, pages 1–5. IEEE. 6

[164] Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P. (2018). Byzantine-robust

distributed learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498.

19

[165] Zhang, C., Guo, D., and Fan, P. (2016). Tracking angles of departure and arrival in

a mobile millimeter wave channel. In Communications (ICC), 2016 IEEE International

Conference on, pages 1–6. IEEE. 37

[166] Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., and Poor, H. V. (2017a).

Energy efficient user association and power allocation in millimeter-wave-based ultra

dense networks with energy harvesting base stations. IEEE Journal on Selected Areas

in Communications, 35(9):1936–1947. 61

[167] Zhang, T. (2004). Solving large scale linear prediction problems using stochastic

gradient descent algorithms. In Proceedings of the twenty-first international conference

on Machine learning, page 116. ACM. 14

[168] Zhang, Y., Duchi, J., Jordan, M. I., and Wainwright, M. J. (2013). Information-

theoretic lower bounds for distributed statistical estimation with communication

constraints. In Advances in Neural Information Processing Systems, pages 2328–2336.

16, 66, 97

[169] Zhang, Y. and Jordan, M. I. (2015). Splash: User-friendly programming interface for

parallelizing stochastic algorithms. arXiv preprint arXiv:1506.07552. 22

[170] Zhang, Y., Liang, P., and Charikar, M. (2017b). A hitting time analysis of stochastic

gradient langevin dynamics. arXiv preprint arXiv:1702.05575. 1, 14

136



[171] Zhang, Y. and Lin, X. (2015). Disco: Distributed optimization for self-concordant

empirical loss. In International conference on machine learning, pages 362–370. 18

[172] Zhang, Y., Wainwright, M. J., and Duchi, J. C. (2012). Communication-efficient

algorithms for statistical optimization. In Advances in Neural Information Processing

Systems, pages 1502–1510. 66

[173] Zhou, Z.-H. (2014). Boosting 25 years. CCL. 28

[174] Zhou, Z.-H., Sun, Y.-Y., and Li, Y.-F. (2009). Multi-instance learning by treating

instances as non-iid samples. In Proceedings of the 26th annual international conference

on machine learning, pages 1249–1256. ACM. 66

137



Vita

Yawen Fan was born on October 15, 1990. He graduated from Fudan University, China in

June 2013, with a B.S. in Electrical Engineering. In August 2013 he entered the doctoral

program in Electrical Engineering at The University of Tennessee, Knoxville. He worked as

software engineer in Google from September to December in 2018. His paper got best paper

award of IEEE Globecom 2017.

138


	On the Intersection of Communication and Machine Learning
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Machine Learning for Communication
	1.1.2 Communication for Machine Learning

	1.2 Connection to Existing Work
	1.2.1 Resource Allocation in Wireless Cellar Network
	1.2.2 Communication Efficient Distributed Learning

	1.3 Contributions of this Thesis
	1.4 Previously published works

	2 Background
	2.1 Millimeter Wave Communication
	2.1.1 Advantages for Millimeter Communication
	2.1.2 Challenges for Millimeter Communication

	2.2 Heterogeneous Network
	2.3 Boosting
	2.3.1 Relation to Functional Gradient Descent
	2.3.2 Difficulty in Distributed Boosting

	2.4 Coreset

	3 Message Passing Based Distributed Learning for Joint Resource Allocation in Millimeter Wave Heterogeneous Networks
	3.1 Introduction
	3.2 System Model
	3.2.1 Deployment Model
	3.2.2 Channel Model
	3.2.3 Interference Model
	3.2.4 Q-learning

	3.3 State/Action Space Decomposition
	3.3.1 Coordination Graph
	3.3.2 Agent-Based Decomposition
	3.3.3 Edge-based Decomposition

	3.4 Distributed Message Passing on Coordination Graph
	3.4.1 Max-sum Problem
	3.4.2 Efficient Belief Propagation for Repeated Inference

	3.5 Model-based Acceleration
	3.6 Experiment and Simulation Result
	3.6.1 Max-Sum Result
	3.6.2 Simulation Parameters
	3.6.3 Simulation Results

	3.7 Conclusion

	4 Distributed Coreset Boosting
	4.1 Introduction
	4.2 Problem Setting
	4.3 Generalized Coreset Construction
	4.4 Coreset Boosting
	4.5 Distributed Coreset Boosting
	4.6 Result
	4.6.1 Approximation Quality
	4.6.2 Learning Quality
	4.6.3 Communication Cost
	4.6.4 Robustness

	4.7 Proof
	4.7.1 Proof for Theorem 2
	4.7.2 Definition of -Approximation
	4.7.3 Proof of Corollary 1


	5 Selective Sampling Based Efficient Classifier Representation in Distributed Learning
	5.1 Introduction
	5.2 Related Work
	5.3 System Model
	5.3.1 Classification
	5.3.2 Network
	5.3.3 Division of Classifier Space
	5.3.4 Learning Goal: Good Classifiers
	5.3.5 Learning and Communication Model

	5.4 Classifier Representation Via Sample Selection
	5.4.1 Formulation and Simplification
	5.4.2 Algorithm of Sample Selection

	5.5 Numerical Results
	5.5.1 Synthetic Data
	5.5.2 Real World Data
	5.5.3 Computational Cost
	5.5.4 Selection of 
	5.5.5 Performance of Classification of Classifiers

	5.6 Conclusion

	6 Open Problems and Future Work
	Bibliography
	Vita

