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Abstract

In this dissertation, we present and analyze a discrete ordinates (SN) discretization of a

filtered radiative transport equation (RTE). Under certain conditions, SN discretizations of

the standard RTE create numeric artifacts, known as “ray-effects”; the goal of using a filter

is to remove such artifacts. We analyze convergence of the filtered discrete ordinates solution

to the solution of the non-filtered RTE, taking into account the effect of the filter as well as

the usual quadrature and truncation errors that arise in discrete ordinates methods.

We also present a hybrid spatial discretization for the radiative transport equation that

combines a second-order discontinuous Galerkin (DG) method and a second-order finite

volume (FV) method. The strategy relies on a simple operator splitting that has been used

previously to combine different angular discretizations. Unlike standard FV methods with

upwind fluxes, the hybrid approach is able to accurately simulate problems in scattering

dominated regimes. However, it requires less memory and yields a faster time to solution

than a standard DG approach. In addition, the underlying splitting allows naturally for

hybridization in both space and angle.

We demonstrate, via the simulation of two benchmark problems, the effectiveness of

the filtering approach in reducing ray effects. In addition, we also examine efficiency of

both methods, in particular the balance between improved accuracy and additional cost of

including the filter, and the ability of the spatial hybrid to leverage its efficiency to produce

more accurate results.
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ṽN`,k Discrete moment for continuous function v w.r.t bilinear operator (·, ·)N

An Discrete averaging operator w.r.t quadrature of order Nn, n ∈ {u, c}

F P,N Filtering matrix of degree D w.r.t quadrature of order N

f c
h Solution satisfying the discretized collided equations

fu
h Solution satisfying the discretized uncollided equations

fP,Ni,j Non-weighted i, j component of matrix F P,N

gD,Ni,j Non-weighted i, j component of matrix QD,N

LN Streaming matrix w.r.t quadrature of order N

LD,N Streaming matrix of degree D w.r.t quadrature of order N

Lc
ε Discrete streaming operator for the collided equations

Lu
ε Discrete streaming operator for the uncollided equations

m`,k Real-valued normalized spherical harmonic function of degree ` and order k

n(r) Normal vector at point r

N∗ Number of points or weights for quadrature of order N

Nc Order of quadrature for collided equations

Nu Order of quadrature for uncollided equations

P` Legendre polynomial of degree `

QN Scattering source matrix w.r.t quadrature of order N

QD,N Scattering source matrix of degree D w.r.t quadrature of order N

r Point in space (x, y, z) ∈ R3

xiv



S Known external source

t Time

X Spatial domain

xv



Chapter 1

Introduction

1.1 Review of works

Radiative transport equations (RTEs) are kinetic equation models that are used to describe

the movement of particles—including neutrons [15, 53], photons [63, 66], neutrinos [60–62, 74]

and charged particles [79]—through a surrounding material medium. As they pass through,

these particles interact with the material via scattering and emission/absorption processes.

Depending on the particles, several numerical methods have been used to simulate

the transport equation. In many situations, numerical solutions are sought for the

time-independent transport equation. However for certain problems like pulsed neutron

experiments, photon transport in stellar atmospheres, and nuclear reactors, it becomes

necessary to follow the time-dependent behavior of particle transport problems [53]. These

particles have a wide range of different time scales. In particular, for nuclear reactors

the time scale for neutrons produced by fission is on the order of 10−4 to 10−8 seconds

while the characteristic half lives of delayed neutrons range from a few to several seconds

[44]. Because of these wide disparities in characteristic times, many different approximation

methods have been developed that allow for longer time steps. These include different forms

of the kinetic equations that ignore certain time scales. For example, many multi-group

kinetic equations are reduced to a prompt neutron transport equation to avoid the slower

time scales of particles [53]. This form is also applicable to non-fissionable materials and

photon transport. From this point many established time integration methods are used

1



to discretize the time variable. These include explicit methods (forward Euler, explicit

Runge-Kutta, Adams-Bashforth) that have easy implementations of high order accurate

methods at short time steps, and implicit methods (backward Euler, diagonolly implicit

Runge-Kutta, Adams-Moulton, BDF) that allow for stable implementations at much longer

time steps. When slower characteristic behaviors must be considered, then certain semi-

implicit methods (TIMEX) are used to preserve some of the stability benefits of implicit

methods without costly iteration methods for the inversion of the transport operator [36].

More details of certain time differencing methods are given in Chapter 2.

Many angular discretization methods exist for transport equations. In one dimensional

geometries, spectral methods such as the PN method approximate the solution with a

truncated series of Legendre polynomials [25]. In the double PN or DPN , different expansions

are used dependent on the direction of travel. It can be shown that under certain conditions

these methods are equivalent to the discrete ordinates method which only requires the

solution to be valid on a finite set of directions [53]. This is not the case for multi-dimensional

geometries though. Discussion of the discrete ordinates method is left for later. Integral

transport methods are another type of discretization [5, 21, 43, 70]. These are based on

integrating out the angular dependence from the transport equation. These methods are

almost exclusively used in neutron transport, but they are rarely used for photons as well

[53]. The most widely used technique to solve the resultant integral transport equations is

the method of collision probabilities [5, 21, 43, 70]. Even-parity transport methods are yet

another way to discretize the radiation transport equation [42, 52, 78], although they are

not as widely used as discrete ordinates or integral transport methods. They are derived

by splitting the boundary into two pieces, one with a vacuum boundary condition and

one with a reflective condition, and then dividing the solution into even and odd angular-

parity components [53]. Other techniques include finite-element methods [55, 56, 68] and

variational methods [9, 41]. Additionally, the Monte Carlo method [26, 73, 73] is a very

popular technique for solving the transport equation for a variety of particles, in which a

finite set of particles are simulated through the use of a pseudo random number generator.

Spatial discretization methods are highly dependent on the geometry of the problem

being simulated, and in some cases, the angular discretization chosen. In one-dimensional,

2



or slab geometry, methods like finite difference and diamond difference are very popular,

requiring very little computer memory when compared to other methods. However these

methods have low accuracy in scattering dominated regimes with under resolved meshes.

These methods have also been shown to be susceptible to negative fluxes. Remedies of

this issue include the step method and the negative-flux-fixup used in conjunction with the

diamond difference formulation [14]. Additionally, linear discontinuous methods [35, 68] are

very popular as they are more accurate than aforementioned methods and are less susceptible

to negative fluxes. Many of these methods have extensions in non-Cartesian geometries,

where the representation of the direction a particle travels changes over a straight line. For

multi-dimensional Cartesian geometries using discrete ordinates, we try to limit our choices

to procedures that allow for the formation of a solution by sweeping the spatial grid in the

direction of neutron travel.

1.2 Motivation

One of the methods discussed to discretize solutions to RTEs is the discrete ordinates

(SN) method [7, 31, 45, 48, 50, 64, 77]. This is a collocation method that approximates

the radiative transport equation on a predefined set of directions and uses an associated

quadrature rule to approximate integrals. The SN method benefits from being easy

to implement with good accuracy and flexibility, leading to algorithms of reasonable

computational efficiency [53, 64]. There are, however, limitations. In problems with

scattering dominated regions, the convergence of iterative solvers may become unacceptably

slow [53]. Also, solutions obtained from the SN method are not invariant under coordinate

rotations. This lack of rotational invariance leads to “ray-effects”: numerical artifacts aligned

with the ordinate directions, often appearing in problems with regions of little scattering or

localized sources [10, 49, 58]. These artifacts are demonstrated through a benchmark problem

called the line source problem [23], where an initial pulse of particles distributed isotropically

along an infinite line in space moves through a purely scattering material medium as time

evolves. The density of particles for the initial condition and the analytic solution at t = 1

are shown in Figure 1.1. When the line source problem is solved using discrete ordinates,

3
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(b) Semi-analytic solution, t = 1

Figure 1.1: Initial condition and semi-analytic solution for the line source benchmark.

then ray-effects are formed throughout the solution process, as demonstrated in Figure

1.2. Several attempts to remedy ray effects have been considered, including increasing the

number of ordinates [49, 54], selecting particular quadrature sets [49, 54, 75], introducing

trial functions which produce a direction-to-direction coupling in the representation of the

streaming operator [40], modifying the differential operator to become similar to that of

spherical harmonic operators [49], and use of bilinear and piece-wise constant finite element

angular discretization[10].

This dissertation proposes to use a filtering technique applied to the discrete ordinates

method to reduce the occurrence of ray-effects. The filtering technique is based on a

modification of the solution algorithm to the spherical harmonics (PN) method [58], which

is known to have solutions with non-physical oscillations in regions of very little scattering.

The method was further developed in [22, 67], where a modified hyperbolic system for the

expansion coefficients is derived from a modified RTE with an additional term in the form of

an anisotropic scattering operator. The benefit of this filtered RTE is that one can apply to

it any type of angular discretization. We choose to modify the technique for the application

of discrete ordinates simulations since discrete ordinates is the standard method to discretize
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Figure 1.2: Discrete ordinates numerical solutions for the line source benchmark.
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the angular component of transport equations. Figure 1.3 shows an example of a filtered

discrete ordinates solution for the line source benchmark.

Another challenge in simulating the solution of the transport equation is capturing

the diffusion limit numerically, where in scattering dominated regimes, the solution of the

transport equation is accurately approximated by the solution of a diffusion equation. To

accomplish this many numerical methods choose the discontinuous Galerkin (DG) method

for spatial discretization. It was originally formulated in [68] for the purpose of solving

neutron transport problems. Additionally, it offers better accuracy for problems with

scattering dominated regimes over traditional discretizations like finite difference or finite

volume (FV) methods allowing DG to capture the diffusion limit without resolving the

mesh size to the minimal mean free path [2, 28, 47]. This however comes at the cost

of increased computational time and memory usage. This dissertation proposes a spatial

hybrid discretization strategy to reduce memory expenditure and accurately capture the

diffusion limit in scattering dominated regimes (i.e. multiple mean free paths per cell). The

strategy is based on a splitting scheme that separates the equation into two components:

one for the first collision or collided component and one for streaming particles, which we

will refer to as the uncollided component [3]. We note that the splitting scheme has been

used to combine different angular discretizations [18, 59], but that it allows for the flexibility

to discretize any of the variables of the phase space in each equation separately. Therefore,

we choose to simulate the collided equation with discontinuous Galerkin and the uncollided

equation with finite volume. This has the effect of reducing the number of degrees of freedom

in the overall scheme and leads to a less computationally complex code. Figure 1.4 gives

several comparisons between different spatial discretizations to the line source benchmark.
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Figure 1.3: Filtered discrete ordinates numerical solutions for the line source benchmark.
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Figure 1.4: Comparison of different spatial discretizations in both non-scattering dominated, (a),
and scattering dominated regimes, (b) and (c).

Figure 1.4 (a), shows numerical solutions using the DG and FV methods in a non-scattering

dominated regime. In Figure 1.4 (b), the DG and FV methods are compared against each

other in a scattering dominated regime. The figure also shows what the solution to the

diffusion equation is. We see that the FV method is unable to capture this limit. In Figure

1.4 (c), the proposed spatial hybrid is compared against the solution of the diffusion equation,

demonstrating that the spatial hybrid method is able to capture the diffusion limit.

1.3 Scope of dissertation

The remainder of this work is organized as follows. In Chapter 2, we discuss the general

background information for the topics of this dissertation. This includes the general form

of the radiative transport equation and brief explanations of its notation. We include a few

reductions of the equation that will serve as the focus for the development and applications

of several numerical strategies and analysis. These reductions include the unit-speed, mono-

energy form and a reduction to two-dimensional space. We also discuss the conditions in

which the solution to a scaled form of the transport equation can be approximated by the

solution of a diffusion equation. This discussion also includes a selection of numerical spatial

discretizations and under which conditions will the methods preserve the diffusion limit.

Finally, a few angular discretizations are presented. In the case of discrete ordinates, the

discussion serves as a setting for the remainder of this work as it will be the main angular
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discretization used throughout. For spherical harmonics and filtered spherical harmonics,

the discussion gives further insight into the development of the method used in Chapter 3.

In Chapter 3, we apply the discrete ordinates method to a filtered modified form of

the radiative transport equation proposed by Radice, Abdikamalov, Rezzolla, and Ott [67],

and further developed by Frank, Hauck, and Kupper [22]. The work of these authors,

expanded from the work of Hauck and McClarren [58], involved using a filtering process on

a spectral method based discretization of the radiative transport equation, whose solution

is represented as moments of the angular flux distribution. It was therefore necessary to

achieve something similar but with a notion of discrete moments instead, leading to the

filtered discrete ordinates equations. After discretizing the time and space variables, the

resulting equations can be reformulated into a set of equations in the discrete moments,

and then an appropriate iterative solver can be employed to solve the system. My research

shows that the filtered discrete ordinates equations are stable and consistent to the solution

of the radiative transport equation in the L2 norm. My main result from the chapter is

in the form of analysis that shows that the convergence order is highly dependent on the

accuracy of the chosen quadrature rule, as well as the regularity of the solution and order

of the filter. In the event that a quadrature rule with sufficient accuracy is chosen, then

the minimum of the regularity and order of the filter would be an upper bound for the

convergence of the numerical solution. Through some benchmark problems assuming 2-D in

space simplification, we show that under certain circumstances the filtered discrete ordinates

method is effective at reducing the occurrences of ray-effects. In most situations, the addition

of the filter operator resulted in smaller errors in the L2 norm. In the case where the

scattering source term involved anisotropic scattering, where the direction a particle travels

after a collision is dependent on the angle it was traveling before, the method proved to be

efficient, as it did not add a significant amount of computational time to get a numerical

solution with accuracy the same or better than a non-filtered simulation.

In Chapter 4, we formulate a spatial hybrid discretization strategy to reduce memory

expenditure and accurately capture the diffusion limit in scattering dominated regimes (i.e.

multiple mean free paths) using both DG and FV spatial discretizations. This has the effect

of reducing the number of degrees of freedom in the overall scheme and leads to a less
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computationally complex code. For the proposed spatial hybrid scheme, we show that it

preserves the asymptotic diffusion limit in scattering dominated regimes. We also show that

it can be combined with existing angular hybrid methods. Finally, we show that this method

is more efficient, in terms of memory usage and computational time, than the standard DG

discretization of the transport equation as well as the angular hybrid method using DG in

both collided and uncollided equations while giving similar results.

In Chapter 5, we draw final conclusions and also propose any future work that had been

considered, but was unable to be expanded upon fully.

1.4 Summary of main contributions

In Chapter 3, a set of filtered discrete ordinates equations are presented as a means to reduce

the occurrence of ray-effects found in standard discrete ordinates solutions to radiation

transport problems. We have investigated convergence properties of the filtered discrete

ordinates equations (3.2) and have demonstrated how they can be discretized in time

implicitly using a standard Krylov framework.

Following the analysis of the filtered PN equations in [22], we show that the convergence

rates depend on both the regularity of the solution to the transport equation and the order

of the filter. According to our analysis, since the numerical solution is based on point-wise

approximations, we expect slightly worse convergence rates than the ones in [22] when the

order of the filter is not the limiting factor. Convergence rates also depend implicitly on the

underlying precision of the quadrature rule. Numerical results also show that the choice of

the expansion index P in the filter operator is important for both obtaining good qualitative

results.

We have investigated the efficiency of filtered discrete ordinates when compared with

standard SN methods. Although the filter is effective at reducing errors, including the

occurrence of ray-effects, the cost associated with producing a filtered result shows that the

method may be ill-advised for problems with isotropic scattering. Indeed, using a standard

method with more ordinates may produce a solution with sufficient accuracy in less time.
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However, in problems involving anisotropic scattering, the filtered results achieve significantly

better accuracy in a more efficient manner.

In Chapter 4, we present a hybrid spatial discretization of the radiation transport

equation (RTE) based on the formulation introduced in [59]. Following the approach in

[28], we show that, like standard DG, the hybrid spatial discretization converges, in the limit

of infinite scattering, to a consistent discretization solution of the diffusion limit (2.52). We

also demonstrate the hybrid approach is more efficient, in terms of memory usage and time

to solution than the standard DG. The formulation in [59] allows for hybridization in both

space and angle, and we show how a combination of the two can improve the efficiency of

simulations for two benchmark problems.
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Chapter 2

Background

2.1 Radiative transport equation

2.1.1 Formulation

According to [53], a general transport equation describing particles interacting with a

material medium through scattering and emission/absorption processes at time t, position

r = (x, y, z), speed c, angle Ω = (Ωx,Ωy,Ωz), and energy level E is described in the following

way. Suppose V is a measurable subset of the phase space with differential drdΩdE, and

f(t, r,Ω, E) is a function such that

∫
V

f(t, r,Ω, E) drdΩdE (2.1)

describes the total number of particles at time t with (r,Ω, E) ∈ V . Then the angular flux

ψ(t, r,Ω, E) is defined as

ψ(t, r,Ω, E) = cf(t, r,Ω, E), (2.2)

and satisfies the following:

1

c

∂

∂t
ψ(t, r,Ω, E) + Ω · ∇rψ(t, r,Ω, E) + σt(r, E)ψ(t, r,Ω, E) = S(t, r,Ω, E). (2.3)
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Here the total cross section σt(r, E) is the probable number of collisions per unit path length

per particle. Additionally, S(t, r,Ω, E) dtdrdΩ is the emission concentration defined as the

number of particles emitted from collisions and sources with direction dΩ about Ω with

energies dE about E and in the incremental volume dr during the time increment dt. The

three contributions:

S = Sex + Ss + Sf (2.4)

are attributed to external sources, scattered particles, and fission neutrons respectively. By

external sources, we refer to a known distribution of source particles independent of the

angular flux ψ, whereas both Ss and Sf are functions of ψ.

For this thesis, we consider the case Sf = 0, implying that fission does not occur within the

system. This case is referred to as a nonmultiplying system. For the scattering contribution,

we introduce the differential scattering cross section Σs(r,Ω · Ω′, E → E ′), where Σs(r,Ω ·

Ω′, E → E ′) dΩdE is the probability per unit path length that particles at position r with

energy E ′ traveling in direction Ω′ scatter into dE about E and into the cone of directions

dΩ about Ω. Since ψ(t, r,Ω, E) dtdrdΩdE is the total number of path lengths traveled by

particles in the differential phase space during dt, we integrate over E ′ and Ω′ and define the

scattering source contribution as

Ss(t, r,Ω, E) =

∫
E′

∫
Ω′

Σs(r,Ω · Ω′, E → E ′)ψ(t, r,Ω′, E ′) dΩ′dE ′. (2.5)

For the remainder of this thesis, we consider a reduction to a form concerning the systems

of mono-energetic particles moving with unit speed. This implies that c = 1 and ψ, q and

σt are independent of E. We also assume that the differential scattering cross section is

separable over its independent variables r and Ω · Ω′ into the product of two functions:

Σs(r,Ω · Ω′) = σs(r)g(Ω · Ω′), (2.6)

where the scattering cross section σs is the probable number of collisions that result in a

change of direction per unit path length per particle, and the phase function g is dependent
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on only the angle between two directions and gives the probability of a particle traveling in

direction Ω′ to change to direction Ω after a collision.

Let X ⊂ R3 be an open domain with Lipschitz continuous boundary ∂X, let S2 be the

unit sphere in R3, and let Γ := X × S2. Define the following sets:

∂Γ := ∂X × S2, ∂Γ− := {(r,Ω) ∈ ∂Γ: Ω · n(r) < 0}, ∂Γ+ := {(r,Ω) ∈ ∂Γ: Ω · n(r) > 0},

where n(r) is the unit normal vector at r. We consider a linear radiative transport equation

(RTE) [16] with complete initial-boundary value problem taking the form

(∂t + L)ψ(t, r,Ω) = σs(r)(Qψ)(t, r,Ω) + S(t, r,Ω), (t, r,Ω) ∈ (0, T )× Γ, (2.7a)

ψ(t, r,Ω) = ψ0(r,Ω), (t, r,Ω) ∈ {0} × Γ, (2.7b)

ψ(t, r,Ω) = ψb(t, r,Ω), (t, r,Ω) ∈ (0, T )× ∂Γ−, (2.7c)

where

(Lψ)(t, r,Ω) = Ω · ∇rψ(t, r,Ω) + σt(r)ψ(t, r,Ω), (2.8)

and ψ0 and ψb are the initial condition and boundary data respectively. Here we have

relabeled

S(t, r,Ω) := Sex(t, r,Ω) and σs(r)(Qψ)(t, r,Ω) := Ss(t, r,Ω) (2.9)

where the source S is a known function and the total cross section σt and the scattering cross

section σs are non-negative functions. Additionally we define the absorption cross section

σa(r) = σt(r)− σs(r) (2.10)

to also be non-negative. We let Q be a scattering source operator and define it as

(Qv)(Ω) =

∫
S2
g(Ω · Ω′)v(Ω′) dΩ′, ∀ v ∈ L2(S2), (2.11)
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where the phase function g : [−1, 1]→ R+ is a non-negative L1 function, normalized so that

∫
S2
g(Ω · Ω′) dΩ′ = 2π

∫ 1

−1

g(µ) dµ = 1, ∀ Ω ∈ S2. (2.12)

The existence and uniqueness of the solution of (2.7) are discussed in [19]. When ψb = 0,

the main result is the following.

Theorem 2.1. [19, XXI. 2.3]. Suppose the data for (2.7) satisfies

σs, σa ∈ L∞((0, T )×X), S ∈ Lp((0, T )× Γ), ψ0 ∈ Lp(Γ), p ∈ [1,∞).

Then (2.7) has a unique weak solution ψ ∈ C0([0, T ];Lp(Γ)). If in addition,

Ω · ∇xψ0 ∈ Lp(Γ), ψ0|∂Γ− = 0, and S ∈ C1([0, T ];Lp(Γ)),

then ψ is a strong solution of (2.7) with

ψ ∈ C1([0, T ];Lp(Γ)), Ω · ∇xψ ∈ C([0, T ];Lp(Γ)), ψ(t)|∂Γ− = 0, ∀ t ∈ [0, T ].

Extending this result to the case that ψb 6= 0 requires some additional technical assumptions,

which are discussed in more detail in [19].

2.1.2 Properties of Q

Many of the properties of the scattering source operator Q are described using spherical

harmonics and Legendre polynomials. Let m`,k be the real-valued spherical harmonic of

degree ` and order k[7, 65], normalized such that

∫
S2
m`,k(Ω)m`′,k′(Ω) dΩ = δ`,`′δk,k′ , (2.13)
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where δ is the Kronecker delta function. According to [7, Eqn. 2.36], these functions have

the following bound

‖m`,k‖L∞(S2) ≤
√

2`+ 1

4π
, ∀ ` ≥ 0, −` ≤ k ≤ `. (2.14)

For any non-negative integer M , the set {m`,k : 0 ≤ ` ≤M, |k| ≤ `} forms a basis of PM(S2),

the space of polynomials on S2 with degree M or less. Additionally, let P` be the Legendre

polynomial of degree ` [1, Ch. 8], normalized such that

∫ 1

−1

P`(µ)P`′(µ) dµ =
2δ`,`′

2`+ 1
, ∀ `, `′ ≥ 0. (2.15)

This normalization of the Legendre polynomials ensures that

‖P`‖L∞([−1,1]) ≤ 1, ∀ ` ≥ 0. (2.16)

Using these polynomials, the moments of a generic function u ∈ L2[−1, 1] and v ∈ L2(S2),

are given by

û` = 2π

∫ 1

−1

u(µ)P`(µ) dµ, and v̂`,k =

∫
S2
v(Ω)m`,k(Ω) dΩ. (2.17)

When u = g, (2.12) and (2.16) imply, respectively, that

ĝ0 = 1 and |ĝ`| ≤ 1, ∀ ` ≥ 0. (2.18)

The operator Q satisfies the following properties:

• Q is bounded in L2(S2):

‖Qv‖L2(S2) ≤ ‖v‖L2(S2), ∀ v ∈ L2(S2). (2.19)

This can be shown using Jensen’s inequality with respect to the measure g(Ω ·Ω′) dΩ′.
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• Q is self adjoint with respect to the usual inner product on L2(S2):

∫
S2
vQu dΩ =

∫
S2
uQv dΩ, ∀ u, v ∈ L2(S2). (2.20)

• Q is conservative: ∫
S2
Qv dΩ =

∫
S2
v dΩ, ∀ v ∈ L2(S2). (2.21)

• Q has a sparse L2 expansion [53, Sec. 1-4]:

Qv =
∞∑
`=0

∑̀
k=−`

ĝ`v̂`,km`,k(Ω), ∀ v ∈ L2(S2). (2.22)

• The spherical harmonics are eigenfunctions of Q:

Qm`,k = ĝ`m`,k, ∀ ` ≥ 0, −` ≤ k ≤ `. (2.23)

This is a direct consequence of (2.22) with normalization (2.13).

For numerical purposes, the expansion in (2.22) is often truncated at some finite degree

D ∈ N. This gives rise to a truncated scattering source operator QD, given by

(QDv)(Ω) :=
D∑
`=0

∑̀
k=−`

ĝ`v̂`,km`,k(Ω), ∀ v ∈ L2(S2). (2.24)

2.1.3 2-D reduction

In this thesis many experiments reference a form of (2.7) where X ⊂ R2. However, Ω is still

represented as a vector in 3-D space, Ω = (Ωx,Ωy,Ωz). Specifically, Ω can be represented as

a function of two parameters: an azimuthal angle ϕ ∈ [0, 2π] and a polar angle θ ∈ [0, π]. If

we define µ = cos(θ), then

Ω =
(√

1− µ2 cos(ϕ),
√

1− µ2 sin(ϕ), µ
)
. (2.25)
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To formulate the 2-D reduction of (2.7), we let ψ be independent of the third spatial

component z. This leads the transport operator L in (2.8) to become.

(Lψ)(t, r,Ω) = (Ωx∂x + Ωy∂y)ψ(t, r,Ω) + σt(r)ψ(t, rΩ), (2.26)

In this 2-D reduction, the solution ψ is even in the polar parameter µ, (i.e. ψ(t, r, ϕ, µ) =

ψ(t, r, ϕ,−µ)). For the the scattering source term Qψ from (2.22), this leads to several

moments being zero. This will occur when the matching spherical harmonic is odd in µ, or

ψ̂`,k = 0 when `+ k ≡ 1 (mod 2).

2.2 Angular discretization

In this section several angular discretizations of (2.7) are presented. The discrete ordinates

method will serve as one of the main focuses of this thesis, as the methods developed in this

work all use this discretization for the angular component of (2.7). The other discretizations,

spherical harmonics and filtered spherical harmonics, serve as motivation for one of the

methods developed in this thesis. They are presented here for completion.

2.2.1 Discrete ordinates (SN)

We consider a family of quadrature rules indexed by a positive integer N . A quadrature

rule of order N is defined by a set of N∗ discrete angles {ΩN
i }N

∗
i=1 ⊂ S2 and weights {wNi }N

∗
i=1.

Here N∗ = N∗(N) is a positive integer that is monotonically increasing as a function of N ;

the exact form of this relationship depends on the quadrature choice. At a minimum, we

require that

wNi > 0, ∀ i ≥ 1 and
N∗∑
i=1

wNi = 4π. (2.27)

The discrete ordinates (SN) equations [48, 50, 53] approximate the solution of the RTE at a

fixed set of points in S2 and approximate any integrals by some quadrature using the same
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set of points. Then the vector-valued function

ψN(t, r) = [ψN1 (t, r), ψN2 (t, r), . . . , ψNN∗(t, r)]
T (2.28)

satisfies the SN approximation of (2.7)

(∂t + LN)ψN(t, r) = σs(r)Q
NψN(t, r) + SN(t, r), (t, r) ∈ (0, T )×X (2.29a)

ψN(t, r) = ψN
0 (r), (t, r) ∈ {0} ×X (2.29b)

ψNi (t, r) = ψb(t, r,ΩN
i ), (t, r) ∈ (0, T )× ∂X−i , 1 ≤ i ≤ N∗

(2.29c)

where

(LNψN)(t, r) = ΥNψN(t, r) + σa(r)ψN(t, r) + σs(r)R
NψN(t, r) (2.30)

and the entries of the N∗ ×N∗ matrices ΥN , QN , RN , and gN are

ΥN
i,j = δi,jΩ

N
i · ∇r, QN

i,j = wNj g
N
i,j, RN

i,j = δi,j

N∗∑
k=1

QN
i,k, gNi,j = g(ΩN

i · ΩN
j ), 1 ≤ i, j ≤ K.

(2.31)

Additionally

(SN)i = S(t, r,ΩN
i ), (ψN

0 )i = ψ0(r,ΩN
i ), ∂X±i := {x ∈ ∂X : ± ΩN

i · n(r) > 0} (2.32)

are, respectively, the discretized source, initial condition, and outflow/inflow boundaries

with respect to ΩN
i . The matrix operator QN inherits many of the properties of Q seen in

Subsection 2.1.1. Define the weighted inner product and the associated norm as follows:

〈u,v〉N =
N∗∑
i=1

wNi uivi, ‖u‖`2N =
√
〈u,u〉N , ∀ u,v ∈ RN∗ . (2.33)
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Then since gN is symmetric, and QN is a self adjoint operator with respect to the inner

product 〈·, ·〉N , i.e., 〈
QNv,u

〉
N

=
〈
v, QNu

〉
N
, ∀ u,v ∈ RN∗ . (2.34)

The presence of RN in (2.29a) is to ensure a discrete form of the conservation property (2.21):

〈
eN , QNv

〉
N

=
〈
eN , RNv

〉
N
, ∀ v ∈ RN∗ , (2.35)

where eN = (1, . . . , 1)T ∈ RN∗ . Ideally RN is the identity matrix, but this is not the case

when the quadrature approximation of the integral of g is not exact.

2.2.2 Spherical harmonics (PD)

The spherical harmonics method is another way to discretize the transport equation in angle.

It is formed by approximating the solution of (2.7a) with a finite linear combination of the

angular moments, seen in (2.17), and the spherical harmonic basis functions. For any D ∈ N,

ψ(t, r,Ω) ≈ ψPD(t, r,Ω) :=
D∑
`=0

∑̀
k=−`

ψ̂`,k(t, r)m`,k(Ω). (2.36)

Although traditionally referred to as the PN equations, we will instead use the index D when

referencing the expansion of the approximate solution so as to remain consistent with the rest

of the thesis. As a spectral method, the PD equations have been shown that if the solution

to (2.7) is smooth enough, then the appoximation ψPD will have formal spectral convergence

and will preserve rotational invariance in the solution ψ [29, 34, 53]. The method then takes

the inner product on L2(S) of (2.7) with the orthonormal basis of the space

PD =

{
D∑
`=0

∑̀
k=−`

c`,km`,k : c`,k ∈ R for 0 ≤ ` ≤ D, |k| ≤ `

}
. (2.37)

Let m` be the vector of the 2`+ 1 spherical harmonics in PD with degree ` and let m be the

vector of all m` where ` ≤ D. Then we can write the expansion of the approximate solution
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(2.36) as

ψPD = mTuPD , (2.38)

where uPD solves the following:

(
(∂t + L)mTuPD(t, r),m

)
= σs(r)G

DuPD(t, r) + S(t, r), (t, r) ∈ (0, T )×X, (2.39a)

uPD(0, r) = (ψ0(r, ·),m) , r ∈ X, (2.39b)

where (·, ·) is the inner product on L2(S2), S(t, r) = (S(t, r, ·),m), and GD is a diagonal

matrix with components GD
(`,k),(`,k) = ĝ`. This is a consequence of the finite expansion of the

solution ψPD and the fact that the basis functions m are eigen functions of Q (2.23). Using

a recursion relation of the spherical harmonics

Ωjm` = a
(j)
`+1m`+1 +

(
a

(j)
`−1

)T
m`−1, a

(j)
` ∈ R(2`−1)×(2`+1), j ∈ {x, y, z}, (2.40)

we can form (2.39) explicitly as

∂tuPD + Υ · ∇ruPD + σtuPD = σsG
DuPD + S, (2.41)

where Υ = (mΩ,m), and the inner product between Υ and the gradient is

Υ · ∇r = Υx∂x + Υy∂y + Υz∂z (2.42)

where Υx,Υy and Υz have the following form:

Υj =



0 a
(j)
1(

a
(j)
1

)T
0 a

(j)
2

. . . . . . . . .(
a

(j)
D+1

)T
0


, j ∈ {x, y, z}. (2.43)

Exact expression for a
(j)
` are discussed in [22, App. A].
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2.2.3 Filtered Spherical harmonics (FPD)

One of the issues with the spherical harmonic equations is that it is known to produce

solutions with non-physical oscillations when the problem includes regions of very little

scattering and absorption. This is a result from Gibbs phenomena, where a non-smooth

function is approximated by a smooth basis [58]. One of the methods used to alleviate this

issue is to use a filtering method. The filtered transport equation suggested in [22] is a

modification of (2.7) that depends on a non-negative integer D and takes the form

∂tψ
D(t, r,Ω) + (LψD)(t, r,Ω) = σsQψD(t, r,Ω) + σfFDψD(t, r,Ω) + S(t, r,Ω). (2.44)

Here the constant σf > 0 is a filter strength,

(FDv)(Ω) =
D∑
`=0

∑̀
k=−`

fD` m`,k(Ω)v̂`,k, ∀ v ∈ L2(S2), and fD` = log

(
f

(
`

D + 1

))
,

(2.45)

where the filter function f is defined as follows:

Definition 2.2. A filter of order α ∈ N is a real-valued function f ∈ Cα(R+) that satisfies

(i) f(0) = 1, (ii) f (a)(0) = 0, ∀ a ≤ α− 1, a ∈ N, (iii) f (α)(0) 6= 0,

(iv) f(η) ∈ (0, 1] for any η ∈ [0, 1), (v) f is monotonically decreasing.

In the literature there are somewhat different definitions of a filter [12, 34, 58, 67, 76].

Typically, all definitions require conditions (i) and (ii). Condition (iii) is added to ensure

the order of the filter is a unique property, and conditions (iv) and (v) are added to ensure

stability. In [58], a filtering process was introduced as an update to the time integration

scheme. After each time step, each term in the spherical harmonic expansion (2.36) is

multiplied by an order-dependent coefficient. This usually results in filtering the higher

order moments of the expansion more so than the low order ones. With a chosen filter
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strength σf , this gave the new expansion

ψFPD :=
D∑
`=0

∑̀
k=−`

(
f

(
`

D + 1

))σf
ψ̂`,km`,k. (2.46)

This formulation has the benefit of remaining rotationally invariant as it treats all moments

of degree ` the same. Later in [22, 67], it was shown that if the filter process was changed

to depend on the time step, then the new expansion would be consistent with a system of

modified equations:

∂tuFPD + Υ · ∇ruFPD + σtuFPD = σsG
DuFPD + σfG

D
f uFPD + S, (2.47)

where GD
f is a diagonal matrix with entries (GD

f )(`,k),(`,k) = fD` .

In [22], the analysis shows that the method is stable and consistent, and depending on the

regularity of the solution of (2.7a) and the order of the filter, the analysis also shows what

convergence order one could expect. In Chapter 3, we will show how this technique can be

leveraged to a discrete ordinates formulation of (2.7a), and through similar analysis we will

show under what conditions the method is stable and consistent. Additionally, convergence

orders are determined when the order of the quadrature, N , the expansion index D of the

scattering operator, and the expansion index P of the filter operator are all allowed to be

independent of each other.

2.3 Diffusion limit

A well known approximation to the solution of (2.7) in scattering dominated regions is the

diffusion limit. Consider an isotropic scaled version of (2.7) for dimensionless parameter ε:

(ε∂t + Lε)ψ(t, r,Ω) = (Qs,εψ)(t, r) + εS(t, r,Ω), (t, r,Ω) ∈ (0, T )× Γ, (2.48a)

ψ(t, r,Ω) = ψ0(x,Ω), (t, r,Ω) ∈ {0} × Γ, (2.48b)

ψ(t, r,Ω) = ψb(t, r,Ω), (t, r,Ω) ∈ (0, T )× ∂Γ−, (2.48c)
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where

(Lεψ)(t, r,Ω) = Ω · ∇rψ(t, r,Ω) +
σt(r)

ε
ψ(t, r,Ω), σs,ε =

σt(r)

ε
− εσa(r), (2.49)

and

(Qs,ε)(r) =

(
σt(r)

ε
− εσa(r)

)
A, with Av =

1

4π

∫
S2
v dΩ, ∀ v ∈ L1(S2). (2.50)

In scattering dominated regions, (2.48a) can be approximated by the solution of a diffusion

equation [30, 46]; that is, if

inf
r∈X

σs(r) > 0 and inf
r∈X

σa(r) > 0, (2.51)

then for any compactly embedded subset X0 b X, there is an ε small enough that ψ(t, r,Ω) =

φ(t, r) +O(ε) for all r ∈ X0, where φ satisfies the following diffusion equation

∂tφ(t, r)−∇r

(
1

3σt(r)
∇rφ(t, r)

)
+ σa(r)φ(t, r) = (Aq)(t, r). (2.52)

Here X0 must be bounded away from ∂X due to the boundary layers of width O(ε) which

can appear in the solution of (2.48a) but not the solution of (2.52) [47].

For this thesis, we are interested in numerical methods that can capture the (interior)

diffusion limit. In other words, we seek discretizations of (2.48a) that in the limit ε → 0,

become a stable and consistent discretization of (2.52). In addition, we would like to capture

the steady-state limit, which naturally lends itself toward an implicit time integration scheme.

DG methods with sufficiently rich trial spaces [2, 28, 47] and finite volume methods with

modified fluxes [27, 33, 38, 39] are two common spatial discretizations strategy for capturing

the diffusion limit. Modifying the flux precludes the use of mesh sweeping techniques that

rely on upwind information. Such techniques are a common tool for the iterative solution of

steady-state and implicitly integrated problems. Hence DG methods with upwind fluxes are

often preferable, even though they require more unknowns than a finite volume approach

having the same formal order of accuracy.
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Several angular discretizations have been shown to work well with upwind DG. The

initial analysis of the diffusion limit can be found in [47]. There the discrete ordinates

method is employed in a one-dimensional slab geometry. This analysis was later extended

to the multi-dimensional setting in [2] for a variety of the different geometries. In [28], a

finite element discretization is used for the angular variables, and the authors re-establish

the results from [2] using functional analytic tools. Specifically, it is shown that the upwind

DG approximation can capture the (interior) diffusion limit as long as the trial space is

rich enough to support global linear functions. In [57], a spherical harmonic (PN) angular

discretization is combined with an upwind DG spatial discretization and a semi-implicit time

integration scheme in order to achieve the diffusion limit. Due to its popularity and easy

implementation, we use discrete ordinates for angular discretization in the paper.

2.4 Temporal and spatial discretizations

Part of the difficulty of solving transport equations numerically is making sure all the various

discretizations that are employed work well together and serve to achieve certain objectives.

The type of methods used in transport equations tend to be very problem dependent. One

of my objectives is to develop a more robust strategy capable of solving a wider range of

problems. For temporal discretizations, the methods can be described as either explicit, semi-

implicit, or implicit. Explicit methods do very well in regimes that are not very diffusive or

for problems that have a short time scale. They also lead to methods that are very easily

parallelizable. However, certain problems require small CFL conditions which can become

impractical at longer time scales. For semi-implicit methods, the multi-scale nature of certain

problems can require an explicit discretization with an impractical time step restriction in

the diffusion limit [59]. With a fully implicit method, the collisional, steady-state, and

diffusive time scales can be resolved without restriction to the time step. Throughout this

thesis, many of the methods are formulated using the backward Euler method. However, to

increase the accuracy of the numerical solutions showcased in this work, the second-order

diagonally implicit Runge Kutta method is used [4]. Further details of the form of the stages

of the method using discrete ordinates can be found in Appendix A.
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Two spatial discretizations used to get the diffusion limit are DG [2, 28, 47] or modified

FV [38]. High-order finite volume approximations have been shown to give accurate results in

streaming regimes with minimal computational cost; however, modifying the flux to achieve

the diffusion limit prevents the use of sweeping based on upwind information. Another

consideration is the upwind DG approximation using at least linear polynomial spaces when

restricted to a spatial cell. This has been shown [2, 28, 47] to converge to the correct diffusion

limit away from any boundary layers and maintains the ability to sweep through the spatial

computational cells.

2.5 Benchmark Problems

In this section we discuss the details for two benchmark problems that are used throughout

this thesis.

2.5.1 Line source benchmark

The line source is a benchmark problem that was first formulated in [23] as means to verify

various time-dependent particle transport methods and assess any strengths or weaknesses.

A robust review of various angular discretization techniques for the line source problem can

be found in [24]. The problem describes an initial pulse of particles distributed isotropically

along an infinite line in space moving through a purely scattering material medium as time

evolves. In the reduced two-dimensional geometry, the initial pulse is expressed as a delta

function at the origin of the two dimensional domain.

In order to simulate the line source, we approximate the initial condition with a Gaussian

distribution with small standard deviation β:

ψ(0, x, y,Ω) =
1

8β2π2
e
−(x2+y2)

2β2 . (2.53)

This problem is simulated to final time t = 1 with an absorption cross section σa = 0,

scattering cross section σs = 1, and source S = 0. All filtered numerical solutions use a filter
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strength σf = 1.0 and a 4th-order exponential filter function

f(η) = exp(ln(ε)× η4) (2.54)

where ε = 2−52 is the machine epsilon using double precision. The semi-analytic solution to

the line source with Gaussian initial condition (2.53) is described in [24] and is computed by

convolution with a Green’s function.

2.5.2 Lattice benchmark

The lattice test was first proposed in [11] as a cartoon loosely based on a nuclear reactor core

assembly. The problem is a checkerboard of highly scattering and highly absorbing regions

with vacuum boundaries as shown in Figure 2.1. The computational domain is a 7×7 square

divided into smaller squares with side length one. The middle square is an isotropic source,

surrounded by a checkerboard of purely scattering and purely absorbing squares as shown in

Figure 2.1(a). The value at the locations given in Figure 2.1(a) are presented in Table 2.1.

The reference solution, unless stated otherwise, is simulated on a 504× 504 spatial grid

using the code StaRMAP [71], which uses a spherical harmonics approximation in angle, a

staggered grid in space, and operator splitting in time. The reference solution was run with

a high angular resolution using polynomials up to degree 129.
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(a) problem layout
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(b) P129 reference solution

Figure 2.1: Lattice problem layout and reference solution.

Graph (a) lists the locations for material cross-sections and source. Graph (b) shows cell-averaged
particle concentrations at t = 2.8 on a logarithmic scale for the P129 reference.

Table 2.1: Material properties of Figure 2.1a.

Location σa σs S

red squares 10 0 0

blue squares 0 1 0

white square 0 1 1
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Chapter 3

Filtered discrete ordinates equations

for radiative transport

In this chapter the filtered discrete ordinates equations are formulated by modifying (2.29a)

with an additional filter operator that severs as a new scattering operator for the higher

discrete moments. The stability and convergence of this new equation is analyzed, and

several numerical examples are given to demonstrate the effectiveness of the filter, in terms

of qualitative improvement and efficiency.

3.1 Formulation

Let Θ = {D,P,N} be a shorthand notation for given choices of non-negative integers D and

P and positive integer N . Here D is the truncation index in the expansion of the collision

operator QD, P is the expansion index of the filter operator, and N is the index of the SN

quadrature for a particular solution. Then let

ψΘ = [ψΘ
1 , . . . , ψ

Θ
N∗ ]

T (3.1)
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be the solution to the filtered discrete ordinates equations

(∂t + LD,N)ψΘ(t, r) = (σs(t, r)Q
D,N + σfF

P,N)ψΘ + SN(t, r), (t, r) ∈ (0, T )×X (3.2a)

ψΘ(t, r) = ψN
0 (r), (t, r) ∈ {0} ×X (3.2b)

ψΘ
i (t, r) = ψb(t, r,ΩN

i ), (t, r) ∈ (0, T )× ∂X−i , (3.2c)

for 1 ≤ i ≤ N∗ where

(LD,NψΘ)(t, r) = ΥNψΘ(t, r) + σa(t, r)ψΘ(t, r) + σs(t, r)R
D,NψΘ(t, r). (3.3)

The matrices QD,N , RD,N , F P,N ∈ RN∗×N∗ approximate Q, the identity operator, and FP ,

respectively , and are given by

QD,N
i,j = wNj g

D,N
i,j , RD,N

i,j = δi,j

N∗∑
k=1

QD,N
i,k , F P,N

i,j = wNj f
P,N
i,j , 1 ≤ i, j ≤ N∗, (3.4)

where

gD,Ni,j :=
D∑
`=0

∑̀
k=−`

ĝ`m`,k(Ω
N
i )m`,k(Ω

N
j ), and fP,Ni,j :=

P∑
`=0

∑̀
k=−`

fP` m`,k(Ω
N
i )m`,k(Ω

N
j ). (3.5)

Let v := [v1, v2, . . . , vN∗ ]
T . Then in terms of the discrete moments

v̂N`,k =
N∗∑
i=1

wNi m`,k(Ω
N
i )vi, (3.6)

(QD,Nv)i =
D∑
`=0

∑̀
k=−`

ĝ`m`,k(Ω
N
i )v̂N`,k, (F P,Nv)i =

D∑
`=0

∑̀
k=−`

fP` m`,k(Ω
N
i )v̂N`,k. (3.7)

These formulas are discrete analogs of (2.24) and (2.45).
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3.2 Stability and convergence analysis

3.2.1 Stability

In this subsection, we show L2 stability of the filtered discrete ordinates equations (3.2). The

proof is a straight-forward energy estimate, but it requires properties of QD,N , RD,N , and

F P,N that are established in the following two propositions.

Proposition 3.1. Suppose that the components of gD,N , defined in (3.5), are non-negative.

Then 〈
QD,Nv,v

〉
N
≤
〈
RD,Nv,v

〉
N
, ∀ v ∈ RN∗ . (3.8)

Proof. The proof is a simple application of the Cauchy-Schwarz inequality:

〈
QD,Nv,v

〉
N

=
N∗∑
i=1

N∗∑
j=1

wNi w
N
j g

D,N
i,j vivj (3.9)

≤

(
N∗∑
i=1

N∗∑
j=1

wNi w
N
j g

D,N
i,j v2

i

)1/2( N∗∑
i=1

N∗∑
j=1

wNi w
N
j g

D,N
i,j v2

j

)1/2

=
N∗∑
i=1

wNi v
2
iR

D,N
i,i =

〈
RD,Nv,v

〉
N
.

Remark 1. Given any D > 0, it should be possible to find a set of points {ΩN
i }N

∗
i=1 ⊂ S2

such that the non-negative condition is satisfied for all 1 ≤ i, j ≤ N∗.

Proposition 3.2. For any set of points {ΩN
i }N

∗
i=1 ⊂ S2 and the set of associated weights

{wNi }N
∗

i=1, 〈
F P,Nv,v

〉
N
≤ 0, ∀ v ∈ RN∗ . (3.10)

Proof. Using the formula for F P,Nv in (3.7) gives

〈
F P,Nv,v

〉
N

=
N∗∑
i=1

wNi vi

P∑
`=0

∑̀
k=−`

fP` m`,k(Ω
N
i )v̂N`,k =

P∑
`=0

∑̀
k=−`

fP`
(
v̂N`,k
)2 ≤ 0. (3.11)
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For the following lemma we require a bit more notation. Let ub : ∂Γ→ R, u : X → RN∗ ,

and uNb : ∂X → RN∗ be measurable functions where uNb := [ub(r,ΩN
1 ), ub(r,ΩN

2 ), . . . , ub(r,ΩN
N∗)]

T .

We define the following norms:

‖u‖L2
N (X) =

√∫
X

〈u,u〉N dr, ‖uNb ‖2
L2
N (∂X±) =

N∗∑
i=1

wNi

∫
∂X±i

|ΩN
i · n(r)| |ub(r,ΩN

i )|2dr.

(3.12)

Lemma 3.3 (L2 Stability). Suppose the data in (3.2) satisfies the following:

• σs(t, r) ≥ 0, 0 < a ≤ σa(t, r), ∀ t ∈ [0, T ], x ∈ X; SN ∈ L∞([0, T ];L2
N(X));

• ‖ψN
b ‖2

L2
N (∂X±)

∈ L∞[0, T ], where ψN
b (t, r) := [ψb(t, r,ΩN

1 ), ψb(t, r,ΩN
2 ), . . . , ψb(t, r,ΩN

N∗)]
T ,

and the components of gD,N , defined in (3.5), are non-negative. Then for t ∈ [0, T ], the

following bound holds1

‖ψΘ(t)‖2
L2
N (X) ≤ e−at‖ψΘ(0)‖2

L2
N (X) +

1

a2

(
1− e−at

)
‖SN‖2

L∞([0,t];L2
N (X)) (3.13)

+
1

a

(
1− e−at

)
‖ψN

b ‖2
L∞([0,t];L2

N (∂X−)).

Proof. We begin by taking the inner product of (3.2a) with ψΘ, integrating over X, applying

the chain rule, and integrating by parts where appropriate to get the following:

1

2
∂t‖ψΘ‖2

L2
N (X) +

1

2
‖ψN

b ‖2
L2
N (∂X+) +

∫
X

〈
σaψ

Θ,ψΘ
〉
N
dr − σf

∫
X

〈
F P,NψΘ,ψΘ

〉
N
dr

+

∫
X

〈
σs(R

D,N −QD,N)ψΘ,ψΘ
〉
N
dr =

∫
X

〈
SN ,ψΘ

〉
N
dr +

1

2
‖ψN

b ‖2
L2
N (∂X−). (3.14)

Propositions 3.1 and 3.2 imply that

∫
X

〈
σs(R

D,N −QD,N)ψΘ,ψΘ
〉
N
dr ≥ 0 and

∫
X

〈
−σfF

P,NψΘ,ψΘ
〉
N
dr ≥ 0. (3.15)

1Given a generic time-dependent function u : t 7→ u(t) ∈ B, with B a normed vector space, we abuse
notation slightly by writing ‖u(t)‖B = ‖u‖B(t).
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Removing appropriate terms in (3.14) and applying the lower bound of σa, we get

1

2
∂t‖ψΘ‖2

L2
N (X) + a‖ψΘ‖2

L2
N (X) ≤

∫
X

〈
S,ψΘ

〉
N
dr +

1

2
‖ψN

b ‖2
L2
N (∂X−). (3.16)

By Young’s inequality,

∫
X

〈
S,ψΘ

〉
N
dr ≤ a

2
‖ψΘ‖2

L2
N (X) +

1

2a
‖SN‖2

L2
N (X). (3.17)

Therefore,

1

2
∂t‖ψΘ‖2

L2
N (X) +

a

2
‖ψΘ‖2

L2
N (X) ≤

1

2a
‖SN‖2

L2
N (X) +

1

2
‖ψN

b ‖2
L2
N (∂X−). (3.18)

Multiplying by 2eat and integrating both sides from 0 to t gives

eat‖ψΘ(t)‖2
L2
N (X) ≤ ‖ψ

Θ(0)‖2
L2
N (X) +

∫ t

0

eas
[

1

a
‖SN(s)‖2

L2
N (X) + ‖ψN

b (s)‖2
L2
N (∂X−)

]
ds (3.19)

≤ ‖ψΘ(0)‖2
L2
N (X) +

1

a

[
eat − 1

](1

a
‖SN‖2

L∞([0,t];L2
N (X)) + ‖ψN

b ‖2
L∞([0,t];L2

N (∂X−))

)
.

Multiplying both sides by e−at gives the desired result.

3.2.2 Preliminaries and notation

Define the evaluation operator EN : C0(S2)→ RN∗ by

ENv = [v(ΩN
1 ), v(ΩN

2 ), . . . , v(ΩN
N∗)]

T , ∀ v ∈ C0(S2). (3.20)

For any u, v ∈ C0(S2) define the bilinear form and associated semi-norm:

(u, v)N =
〈
ENu, ENv

〉
N

and |v|N =
√

(v, v)N . (3.21)
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Definition 3.4. Let N be a positive integer and M be a non-negative integer. The operator

IN,M : C0(S2)→ PM is given by

IN,Mv(Ω) =
M∑
`=0

∑̀
k=−`

ṽN`,km`,k(Ω), ∀ v ∈ C0(S2), where ṽN`,k = (v,m`,k)N . (3.22)

Definition 3.5. Let N be a positive integer, and let (v)N := (v, 1)N be a quadrature rule

with abscissas {ΩN
i }N

∗
i=1 and weights {wNi }N

∗
i=1. We say the rule (·)N has precision p if

(v)N =

∫
S2
v(Ω) dΩ, ∀ v ∈ Pp(S2), (3.23)

and there exists some v ∈ Pp+1(S2) such that

(v)N 6=
∫
S2
v(Ω) dΩ. (3.24)

The following lemma generalizes the result in [29, Lem. 8.5] to the case when N 6= M .

The proofs are similar.

Lemma 3.6. Let N be a positive integer and M be a non-negative integer. If the quadrature

rule (·)N has precision p ≥ 2M , then for any v ∈ C0(S2) and u ∈ PM(S2),

(i) IN,Mu = u, (ii) (IN,Mv, u) =
(
IN,Mv, u

)
N

= (v, u)N , (iii) |v − IN,Mv|N ≤ |v − u|N ,

(3.25)

where (·, ·) is the usual inner product in L2(S2).

Proof. For any u ∈ PM(S2), the precision of the quadrature rule implies that û`,k = ũN`,k for

all `, k such that |k| ≤ ` ≤M . Hence

IN,Mu =
M∑
`=0

∑̀
k=−`

ũN`,km`,k =
M∑
`=0

∑̀
k=−`

û`,km`,k = u, (3.26)

which proves (i).
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The first equality in (ii) is a direct consequence of the assumption on the quadrature

precision. For the second equality in (ii), a direct calculation gives, for any u ∈ PM(S2) and

v ∈ C0(S2),

(
IN,Mv, u

)
N

=

(
M∑
`=0

∑̀
k=−`

ṽ`,km`,k, u

)
N

=
M∑
`=0

∑̀
k=−`

ṽ`,k (m`,k, u)N =
M∑
`=0

∑̀
k=−`

ṽ`,kû`,k,

(3.27a)

(v, u)N =

(
v,

M∑
`=0

∑̀
k=−`

û`,km`,k

)
N

=
M∑
`=0

∑̀
k=−`

û`,k (v,m`,k)N =
M∑
`=0

∑̀
k=−`

ṽ`,kû`,k,

(3.27b)

where in the first line above, we have again used the fact that û`,k = ũN`,k when |k| ≤ ` ≤M .

To show (iii), we use the fact that
(
v − IN,Mv, u− IN,Mv

)
N

= 0, which follows from (ii).

When combined with the Cauchy-Schwarz inequality, this gives

|v − IN,Mv|2N =
(
v − IN,Mv, v − u

)
N

+
(
v − IN,Mv, u− IN,Mv

)
N
≤ |v − IN,Mv|N |v − u|N .

(3.28)

If v = IN,Mv, (iii) holds trivially. Otherwise, dividing both sides by |v − IN,Mv|N gives the

desired result.

Let PM : L2(S2) → PM(S2) be the orthogonal projection with respect to the standard

inner product, and define Hr(S2) to be the completion of C∞(S2) with respect to the norm

[7, Def. 3.23]

‖v‖2
Hr(S2) =

∞∑
`=0

∑̀
k=−`

(`+ 0.5)2r|v̂`,k|2, ∀ r ≥ 0. (3.29)

Since the unit sphere is a compact 2-D manifold, by Sobolev Embedding Theorem [8, Thm.

2.10 and Thm. 2.20], for any r > 1, Hr(S2) ⊂ C0(S2). As a consequence, IN,M is well-defined

for functions in Hr(S2) when r > 1. Moreover there exists a constant C = C(r) such that

‖v‖L∞(S2) ≤ C‖v‖Hr(S2), ∀ v ∈ Hr(S2). (3.30)

33



Lemma 3.7. Let N be a positive integer, and suppose (·)N is a quadrature rule with precision

p ∈ N. Then for any non-negative integer M ≤ p/2 and for any v ∈ Hr(S2), r > 1, there

exists a constant C, independent of M , such that

‖PMv − IN,Mv‖L2(S2) ≤ CM1+δ−r‖v‖Hr(S2), (3.31)

with δ an arbitrary positive constant.

Proof. Let v ∈ Hr(S2) for some r > 1. The Sobolev Embedding Theorem implies that v is

continuous; hence so are v − IN,Mv and v − PMv. If p ≥ 2M , then

‖PMv−IN,Mv‖L2(S2) = |PMv−IN,Mv|N ≤ |v−IN,Mv|N+|v−PMv|N ≤ 2|v−PMv|N , (3.32)

where the last inequality follows by applying Lemma 3.6 (iii) with u = PMv. A direct

calculation using the definition of the semi-norm | · | shows that

|v − PMv|N ≤
√

4π‖v − PMv‖L∞(S2). (3.33)

Substituting (3.33) into (3.32) and then applying (3.30) gives

‖PMv − IN,Mv‖L2(S2) ≤ C‖v − PMv‖H1+δ(S2), (3.34)

where the constant C does not depend on M and δ is an arbitrary positive constant. Lastly,

according to [29, Lem. 8.1 and Thm. 8.2],

‖v − PMv‖H1+δ(S2) ≤ CM1+δ−r‖v‖Hr(S2), ∀v ∈ Hr(S2). (3.35)

Together (3.34) and (3.35) give the desired result.

Assumption 1. Hereafter, we make the additional assumption that the filter f satisfies

(vi) f(η) ≥ C(1− η)k, η ∈ [η0, 1] (3.36)

for some k ≥ 0, some constant C, and some η0 ∈ (0, 1).
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3.2.3 Convergence of the filtered discrete ordinates equations

We now show L2 convergence of the solution of the filtered discrete ordinates equations (3.2)

to the solution ψ of the RTE (2.7). Let

eΘ = ψ −ψΘ, where ψ = ENψ, (3.37)

be the error on the quadrature points {ΩN
i }N

∗
i=1. Our main result is the following:

Theorem 3.8. Assume that ψ ∈ C0([0, T ];L2(X;Hr(S2))) for r > 3/2 and that g satisfies

the following additional regularity condition:

∞∑
`=0

(`+ 0.5)2sĝ2
` <∞, (3.38)

where s ≥ 1, and the components of gD,N , defined in (3.5), are non-negative. Additionally,

suppose the quadrature rule (·)N associated to the discrete ordinates equation (2.29) has

precision p ≥ max{2D, 2P} and the filter function f used to define FP in (2.45) is of order

α. Then for any t ∈ [0, T ], there exists a constant C, which depend on g and ψ, such that

‖eΘ(t)‖L2
N (X) ≤ C

[
‖ENQDψ −QD,Nψ‖L∞([0,t];L2

N (X)) (3.39)

+ ‖ENQψ − ENQDψ‖L∞([0,t];L2
N (X)) + ‖F P,Nψ‖L∞([0,t];L2

N (X))

]
,

where the terms above satisfy the following bounds:

‖ENQDψ −QD,Nψ‖L∞([0,t];L2
N (X)) ≤ C(D + 1)−(r− 3+δ

2 ), (3.40a)

‖ENQψ − ENQDψ‖L∞([0,t];L2
N (X)) ≤ C(D + 1)−(r+s−(1+δ)), (3.40b)

‖F P,Nψ‖L∞([0,t];L2
N (X)) ≤

C(P + 1)−(r−3/2−δ), α > r − δ − 3/2,

C(P + 1)−α+ε, α ≤ r − δ − 3/2,

(3.40c)

for any δ, ε > 0.

Remark 2. Lemma 3.11 provides a more general estimate for the quadrature error in (3.40a)

when p ≥ 2D. The estimate in (3.40a) is obtained by letting p = 2D in Lemma 3.11. The
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error will decrease if p is allowed to be greater than 2D. Additionally, the estimates in

Theorem 3.8 depend implicitly on N , as the precision of the quadrature will need to increase

if D and P increase. This implies that the theorem is not valid for any quadrature whose

precision does not increase when N increases.

According to Theorem 3.8, the discrete L2 error created by approximating the solution of

the RTE using filtered discrete ordinates has three contributions: a quadrature error (3.40a),

a truncation error (3.40b) due to the polynomial approximation of the phase function, and

an error due to the filter (3.40c). The truncation error decays much more rapidly than the

other two terms due to the regularity of the phase function. Indeed for an even integer s, the

condition on (3.38) implies that g ∈ Hs[−1, 1]. What Theorem 3.8 does not do is to explain

why the filtered equations in practice have better accuracy than the non-filtered ones. This

analysis will be left to future work.

Proof of Theorem 3.8. Applying EN to (2.7) and subtracting the equations for ψΘ in (3.2),

we see that eΘ satisfies

(∂t + LD,N)eΘ(t, r) = (σs(t, r)Q
D,N + σfF

P,N)eΘ(t, r) + Se(t, r), (t, r) ∈ (0, T )×X

(3.41a)

eΘ(t, r) = 0, (t, r) ∈ {0} ×X (3.41b)

(eΘ)i(t, r) = 0, (t, r) ∈ (0, T )× ∂X−i ,

(3.41c)

for 1 ≤ i ≤ N∗ where

Se(t, r) = σs(t, r)(R
D,N − IN)ψ(t, r) + σs(t, r)(ENQψ(t, r)−QD,Nψ(t, r))− σfF

P,Nψ(t, r).

(3.42)

The inequality in (3.39) is then achieved by applying Lemma 3.3 to (3.41) and treating Se as

a new source, which is in L∞([0, T ], L2
N(X)) if ψ ∈ L∞([0, T ];L2(X;Hr(S2))). Application

of the triangle inequality and Lemma 3.9 give the right-hand side of (3.39). Estimates of

each term are shown in the lemmas below.
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Lemma 3.9. Suppose that the quadrature rule (·)N has precision p ≥ D. Then,

RD,N = IN . (3.43)

Proof. The proof is a calculation using the definitions of QD,N and RD,N in (3.4):

(RD,N)i,i =
N∗∑
j=1

QD,N
i,j =

D∑
`=0

∑̀
k=−`

ĝ`(m`,k)Nm`,k(Ω
N
i ). (3.44)

As a result of the quadrature precision,

(m`,k)N =

∫
S2
m`,k(Ω) dΩ = m−1

0,0δ`,0. (3.45)

Since ĝ0 = 1, plugging (3.45) into (3.44) gives the desired result.

Lemma 3.10 (Estimate of truncation error). Suppose that for some r > 1 and s ≥ 0,

v ∈ Hr(S2) and
∞∑
`=0

(`+ 0.5)2s ĝ2
` <∞. (3.46)

Then there exists a constant C depending on r and s such that

‖ENQv − ENQDv‖`2N ≤ C(D + 1)−(r+s−(1+δ))‖v‖Hr(S2) (3.47)

for any δ > 0.

Proof. For any u ∈ C0(S2), it is straightforward to show that

‖ENu‖`2N ≤
√

4π‖u‖L∞(S2). (3.48)

Let r > 1. If v ∈ Hr(S2), then Qv −QDv ∈ Hr(S2) ⊂ C0(S2) so that point-wise evaluation

makes sense and ENQv − ENQDv is well-defined. Moreoever, (3.48) implies that

‖ENQv − ENQDv‖`2N ≤ C‖Qv −QDv‖L∞(S2) ≤ C‖Qv −QDv‖H1+δ(S2) (3.49)

37



for any δ > 0. A direct calculation using the norm definition in (3.29) gives

‖Qv −QDv‖2
H1+δ(S2) =

∞∑
`=D+1

∑̀
k=−`

(`+ 0.5)2(1+δ) ĝ2
` v̂

2
`,k. (3.50)

From assumption (3.46), there exists a constant C such that ĝ2
` ≤ C (`+ 0.5)−2s. Applying

this bound to (3.50) gives

‖Qv−QDv‖2
H1+δ(S2) ≤ C

∞∑
`=D+1

∑̀
k=−`

(`+ 0.5)−2(s−(1+δ)) v̂2
`,k (3.51)

≤ C(D + 1)−2(r+s−(1+δ))

∞∑
`=D+1

∑̀
k=−`

(`+ 0.5)2r v̂2
`,k ≤ C(D + 1)−2(r+s−(1+δ))‖v‖2

Hr(S2).

Taking the square root of both sides gives the desired result.

Lemma 3.11 (Estimate of quadrature error). Suppose for some r > 3
2
, v ∈ Hr(S2), and

∞∑
`=0

(`+ 0.5)2ĝ2
` <∞. (3.52)

Let D ≥ 0 and let the quadrature rule (·)N have precision p ≥ 2D. Then there exists a

constant C depending on r and g such that

‖ENQDv −QD,NENv‖`2N ≤ C(p−D + 1)−(r− 3+δ
2

)‖v‖Hr(S2) (3.53)

for any δ > 0.

Proof. Let D′ = p−D + 1. A direct calculation gives

‖ENQDv −QD,NENv‖2
`2N

=
D∑
`=0

∑̀
k=−`

ĝ2
`

∣∣v̂`,k − v̂N`,k∣∣2 , (3.54)

where as a result of the quadrature precision,

∣∣v̂`,k − v̂N`,k∣∣2 =

∣∣∣∣∣
∞∑

`′=D′

`′∑
k′=−`

v̂`′,k′ (m`,k,m`′,k′)N

∣∣∣∣∣
2

, (3.55)
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Using the Cauchy-Schwarz inequality, (3.48), and the bound in (2.14) gives

(m`,k,m`′,k′)N ≤ ‖E
Nm`,k‖`2N‖E

Nm`′,k′‖`2N ≤ 4π‖m`,k‖L∞(S2)‖m`′,k′‖L∞(S2) (3.56)

≤
√

2`+ 1
√

2`′ + 1.

Substituting (3.56) into (3.55) gives

∣∣v̂`,k − v̂N`,k∣∣2 ≤ (2`+ 1)

∣∣∣∣∣
∞∑

`′=D′

`′∑
k′=−`′

v̂`′,k′
√

2`′ + 1

∣∣∣∣∣
2

. (3.57)

We factor the square root above as

√
2`′ + 1 = (2`′ + 1)r1(2`′ + 1)r2 , (3.58)

where r1 + r2 = 0.5. Then application of the Cauchy-Schwarz inequality gives

∞∑
`′=D′

`′∑
k′=−`′

v̂`′,k′
√

2`′ + 1 =
∞∑

`′=D′

`′∑
k′=−`′

v̂`′,k′(2`
′ + 1)r1(2`′ + 1)r2 (3.59)

≤

(
∞∑

`′=D′

`′∑
k′=−`′

v̂2
`′,k′(2`

′ + 1)2r1

)1/2( ∞∑
`′=D′

(2`′ + 1)2r2+1

)1/2

.

In order to bound the second term above, we set r2 = −1 − δ/2 for some arbitrarily small

δ > 0. Substituting (3.59) into (3.57) with this value of r2 gives

∣∣v̂`,k − v̂N`,k∣∣2 ≤ C(2`+ 1)
∞∑

`′=D′

`′∑
k′=−`′

v̂2
`′,k′(2`

′ + 1)3+δ. (3.60)

Substituting (3.60) into (3.54) gives

‖ENQDv −QD,NENv‖2
`2N
≤ C

(
D∑
`=0

∑̀
k=−`

(2`+ 1)ĝ2
`

)(
∞∑

`′=D′

`′∑
k′=−`′

v̂2
`′,k′(2`

′ + 1)3+δ

)
(3.61)

≤ C(D′)−2(r− 3+δ
2 )

(
D∑
`=0

(2`+ 1)2ĝ2
`

)(
∞∑

`′=D′

`′∑
k′=−`′

v̂2
`′,k′(`

′ + 0.5)2r

)
.
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The second sum above can be bounded by the Hr(S2) norm of v (cf. (3.29)). Thus with the

assumption in (3.52), (3.61) becomes

‖ENQDv −QD,NENv‖2
`2N
≤ C(D′)−2(r− 3+δ

2 )
D∑
`=0

(2`+ 1)2ĝ2
`‖v‖2

Hr(S2) (3.62)

≤ C(D′)−2(r− 3+δ
2 )‖v‖2

Hr(S2).

Taking the square root on both sides gives the desired result.

Lemma 3.12 (Estimate of filter error). Suppose the filter function f is of order α and

satisfies Assumption 1. Let v ∈ Hr(S2) for some r > 1, and suppose the quadrature rule (·)N
has precision p ≥ 2P . Then

‖F P,NENv‖`2N ≤

C(P + 1)−r+δ+3/2‖v‖Hr(S2), α > r − δ − 3/2,

C(P + 1)−α+ε‖v‖Hr(S2), α ≤ r − δ − 3/2,

(3.63)

for any ε > 0 and δ > 0.

Proof. We show that

‖F P,NENv‖2
`2N
≤ C

P∑
`=1

(fP` )2`−2(r−δ−1)‖v‖2
Hr(S2) (3.64)

for some constant C and any δ > 0. The result then follows from the proof of the filter

error estimate for [22, Thm. 3.3], which shows that for all q > 0,

P∑
`=1

(fP` )2`−2q ≤ C(P + 1)1−θ (3.65)

where θ = min{2q, 2α + 1 − 2ε} and ε > 0 is arbitrary. The bound in (3.65) relies on

Assumption 1; see [22] for details.
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Since v ∈ Hr(S2) with r > 1, v ∈ C0(S2). Using the definition of F P,N in (3.4) and (3.5),

a direct calculation gives

‖F P,NENv‖2
`2N

=
N∗∑
i=1

wNi

(
P∑
`=0

∑̀
k=−`

fP` m`,k(Ω
N
i )ṽN`,k

)(
P∑
`′=0

`′∑
k′=−`′

fP`′m`′,k′(Ω
N
i )ṽN`′,k′

)
(3.66)

=
P∑
`=0

∑̀
k=−`

P∑
`′=0

`′∑
k′=−`′

fP` f
P
`′ ṽ

N
`,kṽ

N
`′,k′ (m`,k,m`′,k′)N

=
P∑
`=0

∑̀
k=−`

(fP` )2(ṽN`,k)
2.

where the last line follows from the quadrature assumption, i.e., (m`,k,m`′,k′)N = δ`,`′δk,k′ for

all terms in the above sum. This term can be further decomposed as follows:

P∑
`=0

∑̀
k=−`

(fP` )2(ṽN`,k)
2 =

P∑
`=1

(fP` )2‖(IN,` − IN,`−1)v‖2
L2(S2) (3.67)

≤ C
P∑
`=1

(fP` )2
[
‖(P` − P`−1)v‖2

L2(S2) + ‖(IN,` − P`)v‖2
L2(S2)

]
,

where the ` = 0 case is dropped since fP0 = 0. Consequently, the error is exactly zero when

P = 0. The last inequality above follows from two applications of the triangle inequality

and the fact that

‖(IN,`−1 − P`−1)v‖2
L2(S2) ≤ ‖(IN,` − P`)v‖2

L2(S2). (3.68)

The first term in (3.67) satifies the bound

‖(P` − P`−1)v‖2
L2(S2) ≤ ‖(I − P`−1)v‖2

L2(S2) ≤ C`−2r‖v‖2
Hr(S2), (3.69)

where I is the identity operator and the second inequality is a standard result. (See, for

example, [7, Eqn. 3.105].) For the second term in (3.67), Lemma 3.7 implies

‖(IN,` − P`)v‖2
L2(S2) ≤ C`−2(r−δ−1)‖v‖2

Hr(S2) (3.70)
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for any positive δ. Substituting (3.69) and (3.70) into (3.67) leads to (3.64). Letting q =

r − δ − 1 concludes the proof.

3.3 Numerical results

In the following numerical sections, we use norms based on the integral of the solutions in

angle as proxies for the norm in Theorem 3.8. In Subsection 3.3.1, for a given uniform mesh

Th of domain X we use an approximation to the continuous L2 norm for every K ∈ Th to

measure the error between the particle concentrations of the true solution φ(t, r) and the

numerical solution ΦΘ,h(t, r) at a time t. Therefore

||φ(t, ·)− ΦΘ,h(t, ·)||L2(X) =

√∑
K∈Th

||φ(t, ·)− ΦΘ,h(t, ·)||2L2(K), (3.71)

where || · ||L2(K) is approximated with a high resolution quadrature.

In Subsection 3.3.2 the discrete L2 and L∞ norms used to measure the error between

the numerical and true solutions at a time t are calculated for the cell-averaged particle

concentration as follows. Given a uniform mesh Th of domain X with cells Ki,j having size

|Ki,j| = ∆x∆y for all 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, let ΦΘ,h
i,j (t) be the numerically computed

cell-averaged particle concentration on cell Ki,j at time t, whose calculation is dependent on

the method used, and let

φi,j(t) =
1

∆x∆y

∫
Ki,j

∫
S2
ψ(t, x, y,Ω) dΩ dx dy (3.72)

be the exact cell-averaged particle concentration on cell Ki,j. Then the discrete L2 norm we

use for a vector ΦΘ,h(t) of numerically computed cell-averaged particle concentrations and

a vector φ(t) of cell-averaged particle concentrations of the exact solution is

‖ΦΘ,h(t)− φ(t)‖L2(X) =

(
∆x∆y

N1∑
i=1

N2∑
j=1

|ΦΘ,h
i,j (t)− φi,j(t)|2

)1/2

(3.73)
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and the L∞ norm is

‖ΦΘ,h(t)− φ(t)‖L∞(X) = max
i,j
|ΦΘ,h

i,j (t)− φi,j(t)|. (3.74)

Three different quadrature families are employed in the following numerical results: a

product quadrature [6] with Gauss points and weights for the polar component and equally

spaced points and equal weights for the azimuthal component, the Lebedev quadrature [51],

and a standard two-dimensional triangular SN quadrature [13, 64]. For product and Lebedev

quadrature indexed by N , the precision is 2N − 1. For triangular quadrature indexed by

N ≥ 2, the precision is 3. The number of quadrature points associated with each quadrature

family is given in Table 3.1, both in the full three-dimensional setting and in the reduced

two-dimensional geoemetry in which we test the method. Solutions to problems using any of

these quadratures with a particular set indexed by N are labeled as an SDN solution, where

D is the truncation index in the expansion of the collision operator (see (2.24)). Likewise, if

said solution is also filtered using a filter operator with expansion up to P as seen in (2.45),

then those solutions are labeled as an FSDN,P solution. If D = 0 in either case, then the index

is suppressed, i.e. SN := S0
N , and FSN,P := FS0

N,P . This is the case when isotropic scattering

is considered.

3.3.1 Filter order effect on convergence

In this section, we investigate the effect that the filter has on convergence order for smooth

solutions. We will use the approximation to the continuous L2 norm described in (3.71) for

the calculations in this section. In absence of other errors, we expect the numerical solutions

to converge with the order of the filter. In order to isolate the error due to the filter, we

Table 3.1: Scaling of quadrature points.

Lebedev Product Triangular

3-D 4N2/3 2N2 N(N + 2)

2-D 2N2/3 N2 N(N + 2)/2

Number of quadrature points associated with an order N quadrature rule of each quadrature family.
Numbers for the Lebedev family are asymptotic approximates.
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consider isotropic scattering:

g(µ0) =
1

4π
, µ0 ∈ [−1, 1], (3.75)

and a smooth manufactured solution:

v(x, y,Ω) = 900x2y2(1− x)2(1− y)2m2
1,1(Ω), m1,1(Ω) =

√
3

4π
Ωx. (3.76)

The constant phase function ensures that the truncation error in (3.40b) is zero, while a

smooth solution ensures that regularity is not the limiting factor for the convergence order

in (3.40c).

Let X = (0, 1)× (0, 1) ⊂ R2. Then v satisfies the following boundary-value problem

Lψ(x, y,Ω) = σs(x, y)(Qψ)(x, y,Ω) + S(x, y,Ω) (x, y,Ω) ∈ Γ (3.77a)

ψ(x, y,Ω) = 0 (x, y) ∈ Γ−, (3.77b)

where S(x, y,Ω) = Lv(x, y,Ω)− σs(x, y)(Qv)(x, y,Ω) and σt = σs = 1.

We choose to simulate the solution of this equation with an N = 16 Lebedev quadrature

with 185 ordinates. This quadrature is chosen to make the error in (3.40a) negligible with

respect to the filter error (see Lemma 3.11). Additionally, a spatial resolution for a 2nd-order

DG discretization is chosen fine enough to make the associated errors small: the spatial grid

is 501× 501 cells.

We use an exponential filter function of order α

f(η;α) = exp(ln(ε)× ηα), (3.78)

where ε = 2−52 is the machine epsilon using double precision. Additionally, the filter strength

is σf = 1 for all runs. In Table 3.2, the errors and convergence orders for two sets of filtered

numerical solutions using filter orders of α = 2 or α = 4 are given.

We observe that the order of convergence is bounded by the order of the filter and

increases as P increases. However it does not approach the filter order. We expect that if P
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Table 3.2: Filter convergence test.

P L2 Error Order

3 0.2650 -

5 0.2165 0.3962

7 0.1611 0.8783

9 0.1185 1.2224

11 0.0888 1.4347

13 0.0684 1.5671

15 0.0540 1.6544

(a) Second order filter

P L2 Error Order

3 0.1889 -

5 0.0466 2.7407

7 0.0148 3.3997

9 0.0061 3.5320

11 0.0029 3.6319

13 0.0016 3.6931

15 0.0009 3.7359

(b) Fourth order filter

L2 errors and order of convergence for numerical solutions FS16,P to a steady-state problem using
a manufactured solution. The filter strength for all runs is σf = 1.

was increased further then it would approach the filter order. Due to limitations of resources

we cannot confirm this conjecture.

3.3.2 Line source

Isotropic scattering

In this section we simulate the line source problem defined in Subsection 2.5.1 using a

constant phase function defined in (3.75). We simulate the problem with a 301 × 301 grid

on domain [−1.5, 1.5] × [−1.5, 1.5]. We impose a zero boundary condition and choose the

standard deviation in (2.53) to be β = 0.03. The time step is ∆t = 0.9∆x. Although the

implicit time-stepping algorithm allows for a much larger stable time step, we have observed

that the filter does not perform well in this problem when exceeding the explicit hyperbolic

time-step.

Figure 3.1(a) shows the cell-averaged particle concentration, φ(0), for the initial condition

(2.53). The semi-analytic solution to the line source problem with the aforementioned data

is shown in Figure 3.1(d) and is computed with the code used in [24]. The remaining plots in

Figure 3.1 show two (non-filtered) SN solutions and their associated radial line-outs, directed

along two different angles that are measured with respect to the x-axis. These line-outs
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Figure 3.1: Line-source solutions with line-outs.

Cell-averaged particle concentrations for the isotropic line-source problem on a 301 × 301 grid.
Graphs (b)-(f) show solutions at t = 1. Graphs (b) and (c) demonstrate the presence of ray-effects
in non-filtered discrete ordinates numerical solutions. Graphs (e) and (f) show plots along two
angles: the x-axis, represented as Deg = 0, and in one of the direction where ray-effects appear in
Graphs (b) and (c), represented as Deg = 37.5
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clearly demonstrate the lack of rotational invariance and the occurrence of ray-effects.

Figures 3.2 and 3.3 show results using different quadratures with the filter while varying

the filter index P in the filter operator. We observe that P must be chosen carefully with

regards to N : if P is significantly different from N , then qualitatively poor solutions are

produced as seen in Figures 3.2(a)-(c) and Figures 3.2(g)-(i); if P is approximately N , both

the product and Lebedev quadratures give reasonable results as seen in Figures 3.2(d) and

(e). This seems to be related to both having enough moments in the filter term to resolve

the ray-effects, and having enough precision in the quadrature to accurately calculate those

moments. This is demonstrated more clearly in Figures 3.3(d) and (e) where P = N − 1

resulting in numerical solutions that are more radially symmetric. The triangular quadrature

solution 3.2(f) still shows non-physical defects even when P ≈ N . This may be due to the

triangular quadrature never having the necessary precision to calculate the higher degree

moments.

Anisotropic scattering

In this section we repeat the line source benchmark with a non-constant phase function. We

use the Henyey-Greenstein phase function [31]:

g(µ0; η) =
1− η2

4π(1 + η2 − 2ηµ0)1.5
, η ∈ (−1, 1), (3.79)

where η is called the anisotropy factor. With this choice of phase function

ĝ`(η) = 2π

∫ 1

−1

g(µ0; η)P`(µ0) dµ0 = η`. (3.80)

We perform simulations for two different anisotropy values: η = 0.2 and η = 0.5. The

data for these simulations is given in Table 3.3. The line-out in Figure 3.4(c) shows how the

solution changes when the initial condition and anisotropy changes.
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Figure 3.2: Line-source FSN,P solutions.

Cell-averaged particle concentrations for the isotropic line-source problem when t = 1 on a 301×301
grid. Numerical solutions are computed with order N = 12 quadrature rules of three different
types and a varying number of moments (P ) in the filter. Numerical solutions with P ≈ N give
qualitatively reasonable results, with the exception of triangular quadrature solutions.
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Figure 3.3: Radial line-outs of the solutions in Figure 3.2.

Line-outs show how rotationally invariant the numerical solutions are and how close they are to
the semi-analytic solution. The line-outs show plots along two angles: the x-axis, represented as
Deg = 0, and in one of the direction where ray-effects appear in the corresponding graph in Figure
3.2, represented as Deg = 45 or Deg = 37.5. Graphs (d) and (e) show a more radially symmetric
solution and relatively good accuracy. Although graph (h) is nearly rotationally invariant, the
additional oscillations reduces accuracy.
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Table 3.3: Data for line-source problem with anisotropic scattering.

η β spatial mesh

0.2 0.03 504× 504

0.5 0.09 505× 505
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Figure 3.4: Reference solutions for line-source problem with anisotropic scattering.

Graphs (a) and (b) are generated using Lebedev quadrature S66 and S54 respectively with
corresponding line-outs shown in (c). Solutions are at t = 1.
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In Figure 3.5, we present lower resolution in angle simulations. We observe in Figure

3.5(b) that the filter is effective at reducing the occurrence of ray-effects when compared to

Figure 3.5(a). We observe in Figure 3.5(c) that even when the standard deviation in the

initial condition is increased to 0.09 ray-effects are still slightly apparent; in Figure 3.5(d)

the filter is still effective at reducing even minor fluctuations.

Efficiency

In this section we explore the efficiency of the filter to the line source problem. For isotropic

simulations, a filtered numerical solution will have a greater computational cost than its non-

filtered equivalent. This is because the iterative solver takes up most of the computational

time in the simulation, and it increases with the number of moments in the expansion of the

scattering source term and filter term (see (3.7)). Since non-filtered simulations with isotropic

scattering have only one moment, the solution process is relatively quick and may result in a

more efficient method. However, an advantage of the filtered simulations is that they require

fewer ordinates to get a comparable solution. This will result in smaller memory requirement
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Figure 3.5: Numerical solutions to line-source problem with anisotropic scattering.

Solutions use product quadratures. Simulations are run to time t = 1. Top row: cell-averaged
particle concentration. Bottom row: corresponding line-outs. The line-outs show plots along two
angles.
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for holding the solution at each time step, but may still require additional memory to store

the iterated values in each Krylov solve.

We examine the relative errors of the cell-average particle concentration at t = 1, defined

by

Lp Error =
‖ΦΘ,h(1)− φ(1)‖Lp(X)

‖φ(1)‖Lp(X)

, (3.81)

where || · ||Lp(X) is defined in (3.73) and (3.74) for p = 2 and p =∞ respectively. Define the

efficiency by

Lp Efficiency = Lp Error× Run Time. (3.82)

Thus a smaller value means that the method is more efficient. Table 3.4 shows the relative

L2 errors and computational time as well as the efficiency of the method.

We observe that FSN,N−1 yields smaller errors than its non-filtered SN counterpart.

However a better result can be obtained more efficiently by increasing the number of ordinates

in the non-filtered method. Table 3.5 lists the solutions from each respective category with

the fastest computational time that meets the given tolerance. The most efficient method

in each column is shown in bold.

Table 3.5 shows that in terms of effiecincy, the standard runs are able to achieve better

results for the isotropic line source problem in most cases.

In Table 3.6, we show the efficiency of the filter with respect to the L2 and L∞ relative

errors when applied to the anisotropic line source benchmark with anistropy factor η = 0.2

and the product quadrature. Table 3.7 is generated similarly and suggests that in every case

the filtered methods are more efficient.

In Table 3.8, we report the results of a similar test with η = 0.5. For this experiment we

use the same expansion in the collision operator for all simulations, truncating the expansion

at D = 10.

We observe that in some situations, it is possible for the filtered run to complete faster

than its non-filtered equivalent. This may be due to the iterative solver being able to converge

faster when a filter is applied. From Tables 3.7 and 3.9 we observe that the filtered runs are

much more efficient than the non-filtered runs in almost all cases.
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Table 3.4: Line source (isotropic) results.

Method Time L2 Error L2 Efficiency

S4 4.7700 1.8520 8.8340

S6 9.2200 1.3130 12.1058

S8 10.0900 0.9689 9.7762

S10 10.3800 0.7377 7.6573

S12 10.1500 0.5656 5.7408

S14 11.1600 0.5326 5.9438

S16 14.2100 0.4182 5.9426

S18 15.6800 0.2897 4.5425

S20 22.7100 0.2062 4.6828

S22 21.7600 0.1449 3.1530

S26 28.1200 0.1011 2.8429

S30 31.9300 0.0710 2.2670

FS4,3 7.9970 0.9292 7.4308

FS6,5 13.2478 0.4405 5.8357

FS8,7 18.8374 0.2718 5.1200

FS10,9 27.9849 0.1687 4.7211

FS12,11 41.9300 0.1064 4.4613

FS14,13 49.3566 0.0689 3.4007

(a) Lebedev Quadrature

Method Time L2 Error L2 Efficiency

S4 5.7700 1.8305 10.5620

S6 8.8100 1.1708 10.3147

S8 7.9200 0.8368 6.6275

S10 14.0900 0.6512 9.1754

S12 13.7600 0.5270 7.2515

S14 16.8200 0.4426 7.4445

S16 19.1200 0.3654 6.9864

S18 22.2800 0.3063 6.8244

S20 22.8900 0.2537 5.8072

S22 26.1200 0.2113 5.5192

S26 34.4300 0.1378 4.7445

S30 45.3700 0.0907 4.1151

FS4,3 9.8364 0.7232 7.1137

FS6,5 13.3181 0.4251 5.6615

FS8,7 19.8163 0.2693 5.3365

FS10,9 35.7738 0.1696 6.0672

FS12,11 39.9741 0.1063 4.2492

FS14,13 56.8318 0.0685 3.8930

(b) Product Quadrature

Run times (in minutes), relative error, and efficiency for the line source problem for various filtered
and non-filtered runs with isotropic scattering and solution time t=1.0. Results suggest that adding
more ordinates is computationally more efficient than filtering with fewer ordinates.
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Table 3.5: Efficiency comparison (isotropic).

Tolerance

Angular Method 1.0 0.8 0.6 0.4 0.2 0.1

SN (Lebedev) S8(9.8, 49, 1) S10(7.7, 77, 1) S12(5.7, 105, 1) S18(4.5, 229, 1) S22(3.2, 401, 1) S30(2.3, 621, 1)

FSN,N−1 (Lebedev) FS4,3(7.4, 17, 10) FS6,5(5.8, 29, 21) FS6,5(5.8, 29, 21) FS8,7(5.1, 49, 36) FS10,9(4.7, 77, 55) FS14,13(3.4, 141, 105)

SN (Product) S8(6.6, 64, 1) S10(9.2, 100, 1) S12(7.3, 144, 1) S16(7.0, 256, 1) S26(4.7, 676, 1) S30(4.1, 900, 1)

FSN,N−1 (Product) FS4,3(7.1, 16, 10) FS4,3(7.1, 16, 10) FS6,5(5.66, 36, 21) FS8,7(5.3, 64, 36) FS10,9(6.1, 100, 55) FS14,13(3.9, 196, 105)

Efficiency comparison between filtered and non-filtered solutions with error meets the given tolerance. Each row corresponds to a
particular type of angular discretization. Each column corresponds to an error tolerance. Values in parentheses are (Efficiency, number
of ordinates (N∗), number of moments (M∗)). Bold indicates the most efficient method (in terms of run time) for given tolerance.
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Table 3.6: Line source (anisotropic) results.

Method Time L2 Error L∞ Error L2 Efficiency L∞ Efficiency

S3
4 32.5650 1.9614 17.7025 63.8730 576.4819

S5
6 60.3333 1.2217 7.4867 73.7092 451.6973

S7
8 88.6500 0.8672 3.9349 76.8773 348.8289

S9
10 131.5500 0.6721 2.3562 88.4148 309.9581

S13
14 267.9500 0.4537 1.5284 121.5689 409.5348

S15
16 408.9833 0.3780 1.2231 154.5957 500.2275

FS3
4,3 31.5833 0.7811 4.5019 24.6697 142.1849

FS5
6,5 66.2333 0.4525 0.9529 29.9706 63.1137

FS7
8,7 103.8833 0.2750 0.7060 28.5679 73.3416

FS9
10,9 146.3167 0.1638 0.4499 23.9667 65.8279

FS13
14,13 325.3667 0.0545 0.1623 17.7325 52.8070

FS15
16,15 666.7833 0.0306 0.0935 20.4036 62.3442

Run times (in minutes), relative error, and efficiency for the line source problem for various filtered
and non-filtered runs with anisotropic scattering, η = 0.2, and final time t=1.0. Results suggest
that filtering with fewer ordinates is more efficient than adding ordinates without filtering.

Table 3.7: Efficiency comparision (anisotropic).

Tolerance

Angular Method 1.0 0.8 0.6 0.4 0.2

Product SN−1
N S7

8(77, 64, 36) S9
10(88, 100, 55) S13

14(122, 196, 105) S15
16(155, 256, 136) — —

Product FSN−1
N,N−1 FS3

4,3(25, 16, 10) FS3
4,3(25, 16, 10) FS5

6,5(30, 36, 21) FS7
8,7(29, 64, 36) FS9

10,9(24, 100, 55)

Efficiency comparison between filtered and non-filtered solutions when error meets the given
tolerance. Each row corresponds to a particular type of angular discretization. Each column
corresponds to an error tolerance. Values in parentheses are (Efficiency, number of ordinates (N∗),
number of moments (M∗)). Bold indicates the most efficient method for the given tolerance.
Missing data in tolerance 0.2 column shows that a non-filtered method with many more ordinates
would have been required to achieve the given tolerance.
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Table 3.8: Line source (anisotropic, D = 10) results.

Method Time L2 Error L∞ Error L2 Efficiency L∞ Efficiency

S10
4 61.5068 0.7106 2.1486 43.7067 132.1535

S10
6 77.0854 0.3509 0.6765 27.0493 52.1483

S10
8 91.5962 0.1844 0.3558 16.8903 32.5899

S10
10 121.4340 0.0889 0.1756 10.7955 21.3238

S10
12 132.1840 0.0388 0.0858 5.1287 11.3414

FS10
4,3 66.9561 0.5445 0.9841 36.4576 65.8915

FS10
6,5 92.9296 0.1849 0.3280 17.1827 30.4809

FS10
8,7 102.0970 0.0643 0.1197 6.5648 12.2210

FS10
10,9 111.8940 0.0232 0.0445 2.5959 4.9793

FS10
12,11 150.6420 0.0093 0.0181 1.4010 2.7266

Run times (in minutes), relative error, and efficiency for the line source problem for various filtered
and non-filtered runs with anisotropic scattering, η = 0.5, and final time t=1.0.

Table 3.9: Efficiency comparison (anisotropic, D = 10).

Tolerance

Angular Method 0.8 0.4 0.2 0.1 0.05

Product S10
N S10

4 (44, 16, 66) S10
6 (27, 36, 66) S10

8 (16.9, 64, 66) S10
10(11, 100, 66) S10

12(5.1, 144, 66)

Product FS10
N,N−1 FS10

4,3(36, 16, 66) FS10
6,5(17.2, 36, 66) FS10

6,5(17.2, 36, 66) FS10
8,7(6.6, 64, 66) FS10

10,9(2.6, 100, 66)

Efficiency comparison between filtered and non-filtered solutions with error meets the given
tolerance. Each row corresponds to a particular type of angular discretization. Each column
corresponds to an error tolerance. Values in parentheses are (Efficiency, number of ordinates (N∗),
number of moments (M∗)). Bold indicates the most efficient method for given tolerance.
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3.3.3 Lattice

In the section we use the more real world lattice benchmark, (see Subsection 2.5.2), to

demonstrate the effectiveness of the filtered discrete ordinates equations. We use a 504×504

spatial grid with domain [−3.5, 3.5] × [−3.5, 3.5], set ∆t = 10∆x, and run to a final time

t = 2.8. Unlike the line source, for this problem we are able to take advantage of the implicit

discretization in time with a relatively large time step, without destroying the benefits of

the filter. The filter strength and filter function are the same as for the the line source tests;

see (2.54).

In Figures 3.6 (a) and (b), we have run the lattice test using a S8 and S12 discrete

ordinates method respectively. The line-outs in Figures 3.6 (e) and (f) show a cross-section

of the solutions in Figures 3.6 (a) and (b) at the line y = 0.6. We observe in both cases that

ray-effects are very apparent. When the test is run with a 4th-order filter as in Figures 3.6

(c), (d) we observe that the occurrence of ray-effects have been reduced significantly.
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Figure 3.6: Non-filtered and filtered solutions of the lattice problem

Cell-averaged particle concentrations for lattice problem when time t = 2.8 using a logarithmic
scale. Simulations are run on a 504 × 504 grid with a 4th-order filter. Line-outs are taken at the
line y = 0.6.
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Chapter 4

Hybrid solver for the radiative

transport equation using finite volume

and discontinuous Galerkin

In the following sections, we introduce and analyze a hybrid spatial discretization for the

RTE. The underlying formulation is based on the idea of first collision source [3] and has

been used in [59] as a way to combine different angular discretizations in a fully implicit

time integration scheme. Here we combine DG discretization, which performs well in the

diffusion limit, with FV discretization, which uses less memory per computational cell, into

a single discretization strategy.

4.1 General hybrid formulation

The basic idea of first collision source is to separate ψ into the sum ψ = ψu + ψc where the

uncollided flux ψu and the collided flux ψc satisfy

(ε∂t + Lε)ψu = εS, (4.1a)

(ε∂t + Lε)ψc = Qs,ε (ψu + ψc) . (4.1b)
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Equation (4.1) is an exact splitting of (2.48). The hybrid method evolves these equations

for a time-step and then re-initalizes the values ψu and ψc. For illustration, with a backward

Euler discretization these steps (in reverse order) give

ψn+1/2
u = ψnu + ψnc and ψn+1/2

c = 0 (4.2)

and then

ε
ψn+1

u − ψn+1/2
u

∆t
+ Lεψn+1

u = εSn+1, (4.3a)

ε
ψn+1

c − ψn+1/2
c

∆t
+ Lεψn+1

c = Qs,ε

(
ψn+1

u + ψn+1
c

)
, (4.3b)

where Sn+1 = Sn+1(r,Ω) = S(tn+1, r,Ω). In practice, ψu is often approximated by a high-

order angular discretization, while ψc uses a low-order discretization. Thus the point of the

reinitialization step (4.2) is to maintain the benefits of the high-resolution discretization.

The reinitialization step (4.2) can be substituted into (4.3) to obtain a closed rule for

updating ψnu and ψnc :

L∆t
ε ψ

n+1
u = ε

(
ψnu + ψnc

∆t
+ Sn+1

)
, (4.4a)

L∆t
ε ψ

n+1
c = Qs,ε

(
ψn+1

u + ψn+1
c

)
, (4.4b)

where

L∆t
ε = Ω · ∇r +

σt(r)

ε
+

ε

∆t
. (4.5)

Although (4.4) is not exactly a backward Euler discretization of (4.1), adding (4.4a) and

(4.4b) together does yield a backward Euler discretization of (2.48a):

L∆t
ε ψ

n+1 = Qs,εψ
n+1 + ε

(
1

∆t
ψn + Sn+1

)
, (4.6)

where ψn = ψnu + ψnc and ψn+1 = ψn+1
u + ψn+1

c . However, the hybrid strategy is to

approximate (4.4a) and (4.4b) in angle and space using different discretizations, in which

case the approximations for ψn+1
u and ψn+1

c cannot be added directly.
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For the remainder of this section we fix n and ∆t and focus on finding a hybrid

approximation for ψn+1. Since it is implicit, this update can be reformulated as a steady-

state problem. Let V u and V c be two finite dimensional vector spaces and let fu ∈ V u and

f c ∈ V c satisfy

Lu
ε f

u = εS, (4.7a)

Lc
εf

c = Qc,u
s,ε f

u +Qc,c
s,εf

c. (4.7b)

Here S ∈ V u is an approximation of
(

1
∆t
ψn + Sn+1

)
; Qc,u

s,ε : V u → V c and Qc,c
s,ε : V c → V c are

both approximations of Qs,ε; and Lu
ε : V u → V u and Lc

ε : V c → V c are both approximations

of L∆t
ε .

The next step is to compute an approximation f ∈ V u of ψn+1 from fu and f c. The

strategy in [18, 59] is to let f = fu +Rf c, where R : V c → V u is a “relabeling operator”.

Here, we instead follow [17] and solve the following approximation of (4.6):

Lu
ε f =

(
Qu,u

s,ε f
u +Qu,c

s,ε f
c
)

+ εS, (4.8)

where Qu,u
s,ε : V u → V u and Qu,c

s,ε : V c → V u both approximate Qs,ε.

While the formulation above uses backward Euler for the temporal discretization, we use

a second-order diagonally implicit Runge-Kutta method [4] for the time dependent numerical

experiments in Section 4.4. However, like backward Euler, each stage can be written into a

steady state form.

4.2 Finite Volume / Discontinuous Galerkin Hybrid

One of the important features of the hybrid method is that it is allows for different

discretizations of each component of (4.7) as well as (4.8). While the focus of this work

is on the hybridization in space, we also allow for discrete ordinate angular discretizations of

different orders. Specifically, we use finite volume (FV) with (possibly) high-order discrete

ordinates to solve (4.7a) and (4.8), and we use discontinuous Galerkin (DG) with (possibly)

low-order discrete ordinates to solve (4.7b). The FV and DG discretizations will both be
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formally second-order and, to allow for sweeping, will use upwinding to define numerical

traces at cell interfaces.

Let the high-order quadrature be of order Nu with N∗u points and weights. Likewise, let

the low-order quadrature be of order Nc with N∗c points and weights. For the remainder of

this thesis, we will use the simplified notation

{Ωu
i , w

u
i }

N∗u
i=1 := {ΩNu

i , wNu
i }

N∗u
i=1, {Ωc

i , w
c
i}
N∗c
i=1 := {ΩNc

i , wNc
i }

N∗c
i=1, (4.9)

and define the component boundaries

∂Xn,±
i = {r ∈ ∂X : ± Ωn

i · n(r) > 0}, for n ∈ {u, c}. (4.10)

We denote a hybrid angular discretization by SNuSNc and by X-Y a spatial discretization

that uses method X to discretize the uncollided component ψu and method Y to discretize

the collided component ψc. In Table 4.1, we summarize the leading order terms in the flop

count and degrees of freedom, for both Cartesian and triangular meshes. The values are

given per iteration per spatial mesh cell and their derivation is explained in greater detail in

Appendix C.

We formulate the spatial discretization using bilinear and linear operators common to

DG discretization [31]. Let {Th}h>0 be a regular family of partitions of X into open elements

K, with hK = diam(K) and h = maxK∈Th hK . Let Qi(K) be the set of polynomials with

support K with maximum degree i in each spatial dimension, and let Pi(K) be the set of

Table 4.1: Comutational scaling for Cartesian and triangular mesh cells.

Cartesian Triangular

Flops DOF Flops DOF

FV N∗ N∗ N∗ N∗

DG (2d + 22d)N∗ 2dN∗ (d+ 1)2N∗ (d+ 1)N∗

DG-DG (2d + 22d)(N∗u +N∗c ) 2d(N∗u +N∗c ) (d+ 1) (d+ 2) (N∗u +N∗c ) (d+ 1)(N∗u +N∗c )

FV-DG N∗u + (2d + 22d)N∗c N∗u + 2dN∗c N∗u + (d+ 1) (d+ 2)N∗c N∗u + (d+ 1)N∗c

Leading order operations (Flops) and degrees of freedom (DOF) per iteration per cell. Here, d is
the dimension of the spatial domain. DG methods on Cartesian grids use polynomials in Q1 for
each cell, and on triangular grids use polynomials in P1. Further details can be found in Appendix
C.
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polynomial with support K with total degree less than or equal to i. Let E in
h be the set of

all interior edges of Th; let Eex
h be the set of exterior edges; and let En,±

h,i = Eex
h ∩ ∂X

n,±
i for

n ∈ {u, c}. For each edge e, let ne be a fixed normal vector with respect to e. For interior

edges, the direction of ne is chosen by convention. For exterior edges, we assume that ne

points outward from the domain. Given an edge e, let v be any scalar-valued function that

is smooth on the cells adjacent to e. Then

v+(r) = lim
ε→0+

v(r + εne), v−(r) = lim
ε→0+

v(r − εne), (4.11)

and the jump of v at r is JvK(r) = v+(r)− v−(r).

For i ∈ {0, 1}, define

Xh,i = {v ∈ L2(X) : ∀K ∈ Th, v|K ∈ Zi(K)} (4.12)

where Z = Q for Cartesian grids and Z = P for triangular grids. Let Wu
h,0 = (Xh,0)N

∗
u and

Wc
h,1 = (Xh,1)N

∗
c , and for all vu ∈ Wu

h,0 or vc ∈ Wc
h,1

vu = [vu
1 , . . . , v

u
N∗u

]T , vc = [vc
1, . . . , v

c
N∗c

]T . (4.13)

For finite volume methods, polynomial approximations are generated from cell averages in

neighboring cells. In particular, approximations in Xh,1 for the uncollided equations are

generated using elements of Xh,0.

For the uncollided equation,the bilinear form Bu
ε : Wu

h,0 × Wu
h,0 → R, corresponding to

the left-hand side of (4.7a), is given by

Bu
ε (g, v) =

N∗u∑
i=1

wu
i Bu

ε,i(g, v), (4.14)
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where Bu
ε,i : Wu

h,0 ×Wu
h,0 → R is given by

Bu
ε,i(g, v) =

∑
K∈Th

∫
K

σt

ε
givi dr +

∑
e∈E inh

∫
e

Ωu
i · ne(Rg)↑i JviK dr +

∑
e∈Eu,+h,i

∫
e

Ωu
i · ne(Rg)↑i vi dr,

(4.15)

R : Wu
h,0 →Wu

h,1 is a reconstruction operator, and for any v ∈ Wn
h,1,

v↑i =

v
−
i , Ωn

i · ne > 0

v+
i , Ωn

i · ne < 0,

n ∈ {u, c}. (4.16)

Details of the operator R, for the case Zi(K) = Q0(K) and d = 2, are given in Appendix D.

The linear operator Fu
i : Wu

h,0 → R, corresponding to the right-hand side of (4.7a), is

given by

Fu(v) =

N∗u∑
i=1

wu
i Fu

i (v), (4.17)

where Fu
i : Wu

h,0 → R is given by

Fu
i (v) =

∑
K∈Th

∫
K

εSivi dr +
∑
e∈Eu,−h,i

∫
e

|Ωu
i · ne|ψb,ivi dr, (4.18)

Si = SNu
i (r), and ψb,i = ψb(r,Ωu

i ).

For the collided equations, the bilinear form Bc
ε : Wc

h,1 ×Wc
h,1 → R corresponding to the

left-hand side of (4.7b) is given by

Bc
ε(g, v) =

N∗c∑
i=1

wc
iBc

ε,i(g, v), (4.19)
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where Bc
ε,i : Wc

h,1 ×Wc
h,1 → R is given by

Bc
ε,i(g, v) =

∑
K∈Th

∫
K

−giΩc
i · ∇rvi +

σt

ε
givi dr (4.20a)

+
∑
e∈E inh

∫
e

Ωc
i · neg

↑
i JviK dr +

∑
e∈Ec,+h,i

∫
e

Ωc
i · neg

↑
i vi dr.

Additionally, the bilinear form Cc,c
ε : Wc

h,1 ×Wc
h,1 → R corresponding to the first term of the

right-hand side of (4.7b) is

Cc,c
ε (g, v) =

N∗c∑
i=1

wc
iC

c,c
ε,i , (4.21)

where Cc,c
ε,i : Wc

h,1 ×Wc
h,1 → R is given by

Cc,c
ε,i (g, v) =

∑
K∈Th

∫
K

(
Qc,c

s,εg
)
i
vi dr, (4.22)

and Qm,n
s,ε :Wn

h,1 →Wm
h,1 is a linear operator given by (cf. (2.50))

Qm,n
s,ε v = σs,ε(A

nv)1m, Anv :=
1

4π
〈v,1n〉N , ∀ v ∈ W

n
h,1, m, n ∈ {u, c}. (4.23)

Here σs,ε = (σt/ε− εσa) and 1
m ∈ RN∗m is a vector whose component are all one. Finally, the

bilinear form Cu,c
ε : Wu

h,1 ×Wc
h,1 → R and the generic bilinear form Cn,u

ε : Wn
h,1 ×Wu

h,0 → R

are given by

Cu,c
ε (g, v) =

N∗c∑
i=1

wc
iC

u,c
ε,i , Cn,u

ε (g, v) =

N∗u∑
i=1

wu
i C

n,u
ε,i , n ∈ {u, c}, (4.24)

where Cu,c
ε,i : Wu

h,1 ×Wc
h,1 → R and Cn,u

ε,i : Wn
h,1 ×Wu

h,0 → R are given by

Cu,c
ε,i (g, v) =

∑
K∈Th

∫
K

(
Qc,u

s,ε g
)
i
vi dr, Cn,u

ε,i (g, v) =
∑
K∈Th

∫
K

(
Qu,n

s,ε g
)
i
vi dr, n ∈ {u, c}. (4.25)
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Using these bilinear forms, our method is to find fu
h ∈ Wu

h,0, f c
h ∈ Wc

h,1, and fh ∈ Wu
h,0 such

that the following holds:

Bu
ε (fu

h , v) = Fu(v), ∀ v ∈ Wu
h,0, (4.26a)

Bc
ε(f

c
h, v)− Cc,c

ε (f c
h, v) = F c(v), ∀ v ∈ Wc

h,1, (4.26b)

Bu
ε (fh, v) = F(v), ∀ v ∈ Wu

h,0, (4.26c)

where the linear operators F c : Wc
h,1 → R and F : Wu

h,0 → R are given by

F c(v) = Cu,c
ε (fu

h , v), (4.27a)

F(v) = Fu(v) + Cu,u
ε (fu

h , v) + Cc,u
ε (f c

h, v). (4.27b)

To assemble the matrix components for the operator form of (4.26), let Mu = dim(Xh,0)

and Mc = dim(Xh,1). Then dim(Wu
h,0) = MuN

∗
u and dim(Wc

h,0) = McN
∗
c . Let

{bu,(i,k) : i = 1, . . . N∗u , k = 1, . . .Mu} and {bc,(i,k) : i = 1, . . . N∗c , k = 1, . . .Mc} (4.28)

be two sets of vector-valued basis functions for Wu
h,0 and Wc

h,0, respectively, and set

fu
h =

N∗u∑
i=1

Mu∑
k=1

αu
(i,k)b

u,(i,k), f c
h =

N∗c∑
i=1

Mc∑
k=1

αc
(i,k)b

c,(i,k) and fh =

N∗u∑
i=1

Mu∑
k=1

α(i,k)b
u,(i,k).

(4.29)

Then the matrix form of (4.26) is an equation for the coefficient vectors

αu
h = [αu

(1,1), α
u
(1,2), . . . , α

u
(1,Mu), α

u
(2,1), . . . , α

u
(N∗u ,Mu)]

T ∈ RN∗uMu , (4.30)

αc
h = [αc

(1,1), α
c
(1,2), . . . , α

c
(1,Mc), α

c
(2,1), . . . , α

c
(N∗c ,Mc)]

T ∈ RN∗cMc , and (4.31)

αh = [α(1,1), α(1,2), . . . , α(1,Mu), α(2,1), . . . , α(N∗,Mu)]
T ∈ RN∗uMu , (4.32)
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that takes the form

Lu
εα

u
h = Su

h, (4.33a)

Lc
εα

c
h − Cc,c

ε α
c
h = Cc,u

ε α
u
h, (4.33b)

Lu
εαh = Cu,c

ε α
c
h + Cu,u

ε αu
h + Su

h (4.33c)

where the components of Ln
ε : R(N∗nMn) → R(N∗nMn) for n ∈ {u, c} are

(Ln
ε )(i,k),(i′,k′) = Bn

ε (bn,(i′,k′),bn,(i,k)), 1 ≤ i, i′ ≤ N∗n , 1 ≤ k, k′ ≤Mn, (4.34)

the components of Cn,m
ε : R(N∗mMm) → R(N∗nMn), for m, n ∈ {u, c} are

(Cn,m
ε )(i,k),(i′,k′) = Cm,n

ε (bm,(i′,k′),bn,(i,k)), (4.35)

for 1 ≤ i′ ≤ N∗m, 1 ≤ i ≤ N∗n , 1 ≤ k′ ≤ Mm, 1 ≤ k ≤ Mn, and the (i, k)-th component of

the source vector Su
h is

Su
(i,k) = Fu(bu,(i,k)), ∀ i ≤ Nu, k ≤Mu. (4.36)

Solving (4.33a) and (4.33c) can be solved easily by inverting the streaming operator

Lu
ε , assuming the right-hand side of each respective equation is known. To solve (4.33b),

we reformulate it into a Krylov framework by inverting the streaming operator Lc
ε,h and

applying the discrete average operator Ac to both sides. Here we overload the operator so

that Ac : RMcN∗c → RMc where

(Acv)k =
1

4π

N∗c∑
i=1

wc
i v(i,k), ∀ 1 ≤ k ≤Mc, ∀ v ∈ RMcN∗c . (4.37)

Additionally, let βu
k and βc

k be basis functions such that span{βu
k}

Mu
k=1 = Xh,0 and

span{βc
k}

Mc
k=1 = Xh,1. We assume that

bn,(i,k) = [b
n,(i,k)
1 , . . . , b

n,(i,k)
N∗n

]T , n ∈ {u, c}, (4.38)
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where b
n,(i,k)
i′ = βn

kδi,i′ , in which case

(Cc,c
ε α

c
h)i,k =

Mc∑
k′=1

wc
i

∫
X

σs,εβ
c
k′β

c
k (Acαc

h)k′ . (4.39)

Let ϕn
h = Anαn

h, and let Σn,m
ε : RMm → R(N∗nMn) for m, n ∈ {u, c}, where

(Σn,m
ε )(i,k),k′ = w`i

∫
X

σs,εβ
m
k′β

n
k , 1 ≤ i ≤ N∗n , 1 ≤ k ≤Mn, 1 ≤ k′ ≤Mm, (4.40)

Then

Cn,m
ε αm

h = Σn,m
ε ϕm

h , m, n ∈ {u, c}. (4.41)

Using (4.41), we invert the transport operator Lc
ε in (4.33b) and apply the discrete average

operator Ac to both sides of the equation. Then (4.33b) can be written in the following form:

(
Ic − Ac(Lc

ε)
−1Σc,c

ε

)
ϕc
h = Ac(Lc

ε,h)
−1Σc,u

ε ϕ
u
h, (4.42)

where Ic ∈ R(N∗cMc)×(N∗cMc) is the identity matrix, and (4.33c) simplifies to

Lu
εαh = Σu,c

ε ϕ
c
h + Σu,u

ε ϕ
u
h + qu

h. (4.43)

In summary, (4.33) can be solved using (4.42) and (4.43) as outlined in Algorithm 1 below.

Algorithm 1 Steady State Spatial Hybrid Solution Algorithm.

Initial Data: σt ≥ 0, σa ≥ 0, ε > 0, ψb.

qu(i,k) ← F
u(bu,(i,k)), ∀ i ≤ N∗u , ∀ k ≤Mu, // Initialize Source, (4.36)

αu
h ← (Lu

ε )
−1

qu
h, // Solve (4.33a)

ϕu
h ← Auαu

h, // Form ϕu
h

ϕc
h ←

(
Ic +Ac (Lc

ε)
−1

Σc,c
ε

)−1
Ac (Lc

ε)
−1

Σc,u
ε ϕu

h, // Solve (4.42) using GMRES

αh ← (Lu
ε )
−1

(Σu,c
ε ϕc

h + Σu,u
ε ϕu

h + qu
h), // Solve (4.33c)
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4.3 Diffusion limit, steady state

In this section, we show that (4.26) converges to a consistent discretization of the steady-

state form of the diffusion limit (2.52). The analysis here closely follows [28]. The scaling

of time in (2.48a) ensures that the steady-state analysis applies also to the time-dependent

problem (4.4).

We expand the solutions fu
h , f

c,
h , and fh of (4.26) in formal Hilbert expansions:

fu
h = f

u,(0)
h + εf

u,(1)
h + ε2f

u,(2)
h +O(ε3), (4.44a)

f c
h = f

c,(0)
h + εf

c,(1)
h + ε2f

c,(2)
h +O(ε3), (4.44b)

fh = f
(0)
h + εf

(1)
h + ε2f

(2)
h +O(ε3), (4.44c)

where f
u,(j)
h , f

(j)
h ∈ Xh,0 and f

u,(j)
h ∈ Xh,1 for all j ∈ {0, 1, 2}. The problem solved by the

leading term f
(0)
h is obtained by substituting the expansions (4.44a) into (4.26) and matching

powers of ε. In order to perform the analysis, we assume that ψb = 0, that σt ∈ Xh,0, and that

all quadratures employed use positive weights and are exact for polynomials up to degree

two:

N∗n∑
i=1

wn
i = 4π,

N∗n∑
i=1

wn
i Ωn

i = 0,

N∗n∑
i=1

wn
i (Ωn

i ⊗ Ωn
i ) =

4π

3
I, n ∈ {u, c}, j ∈ {1, 2, 3}, (4.45)

where ⊗ is the outer product and I ∈ R3×3 is the identity matrix. To simply the presentation,

we set f̄
n,(j)
h = Anf

n,(j)
h for j ∈ {0, 1, 2} and n ∈ {u, c}, we denote test functions in Wu

h,0 and

Wc
h,1 by vu and vc, respectively, and we assume that jumps across edges in Eex

h are computed

assuming a zero value on the exterior of X. This last assumption allows us to combine terms

over Eh = E in
h ∪ Eex

h . After substituting the expansions (4.44a) into (4.26), the terms that

69



balance at ε−1 are

N∗u∑
i=1

wu
i

∫
X

σtf
u,(0)
h,i vu

i dr = 0, (4.46a)

N∗c∑
i=1

wc
i

∫
X

σt

(
f

c,(0)
h,i − f̄

c,(0)
h

)
vc
i dr =

N∗u∑
i=1

wu
i

∫
X

σtf̄
u,(0)
h vc

i dr, (4.46b)

N∗u∑
i=1

wu
i

∫
X

σtf
(0)
h,i v

u
i dr =

N∗u∑
i=1

wu
i

∫
X

σt

(
f̄

u,(0)
h + f̄

c,(0)
h

)
vu
i dr, (4.46c)

the terms that balance at ε0 are

N∗u∑
i=1

wu
i

∫
X

σtf
u,(1)
h,i vu

i dr +
∑
e∈Eh

∫
e

Ωu
i · ne

(
Rf

u,(0)
h

)↑
i
Jvu
i K dr = 0, (4.47a)

N∗c∑
i=1

wc
i

∫
X

−f c,(0)
h,i Ωc

i · ∇vc
i + σt

(
f

c,(1)
h,i − f̄

c,(1)
h

)
vc
i dr (4.47b)

+
∑
e∈Eh

∫
e

Ωc
i · ne

(
f

c,(0)
h,i

)↑
Jvc
i K dr =

N∗c∑
i=1

wc
i

∫
X

σtf̄
u,(1)
h vc

i dr,

and the terms that balance at ε are

N∗u∑
i=1

wu
i

∫
X

σtf
u,(2)
h,i vu

i +
∑
e∈Eh

∫
e

Ωu
i · ne

(
Rf

u,(1)
h

)↑
i
Jvu
i K dr =

N∗u∑
i=1

wu
i

∫
X

Siv
u
i , (4.48a)

N∗c∑
i=1

wc
i

∫
X

−f c,(1)
h,i Ωc

i · ∇vc
i + σt

(
f

c,(2)
h,i − f̄

c,(2)
h

)
vc
i + σaf̄

c,(0)
h vc

i dr (4.48b)

+
∑
e∈Eh

∫
e

Ωc
i · ne

(
f

c,(1)
h,i

)↑
Jvc
i K dr =

N∗c∑
i=1

wc
i

∫
X

(
σtf̄

u,(2)
h − σaf̄

u,(0)
h

)
vc
i dr.

The contributions of (4.26c) to the balance equations at order ε0 and ε are omitted in (4.47)

and (4.48) as they will not be used in the analysis that follows.

Define Ch,1 to be the subspace of Xh,1 where every element is continuous, and define the

following:

J
(0)
c,h =

N∗c∑
i=1

wc
iΩ

c
if

c,(1)
h,i . (4.49)
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Let S = [S1, S2, . . . , SN∗u ]T and S̄ = AuS. Let P0 be the orthogonal projection from L2(X)

onto Xh,0 with respect to the usual inner product. Then our main result is the following.

Theorem 4.1. Let f
u,(j)
h , f

(0)
h ∈ Xh,0 and f

c,(j)
h ∈ Xh,1 solve (4.46), (4.47), and (4.48) for

j ∈ {0, 1, 2}. Additionally, let σt ∈ Xh,0 and σt ≥ σa > 0. Then f
(0)
h,i = P0f̄

c,(0)
h for all i ≤ N∗u

where P0 is the orthogonal projection from Xh,1 onto Xh,0 with respect to the inner product

on L2(X). Moreover, for all ϑ ∈ Ch,1 and ϕ ∈ (Xh,1)3, J
(0)
c,h and f̄

c,(0)
h satisfy

∫
X

−J (0)
c,h · ∇ϑ+ 4πσaf̄

c,(0)
h ϑ dr = 4π

∫
X

(
P0S̄

)
ϑ dr, (4.50a)∫

X

(
4π

3
∇f̄ c,(0)

h + σtJ
(0)
c,h

)
· ϕ dr = 0. (4.50b)

Theorem 4.1 is a consistent discretization of the first-order, steady-state form of the

diffusion limit (2.52). To prove it we first require some preliminary lemmas.

Lemma 4.2. Let f
u,(0)
h , f

c,(0)
h , and f

(0)
h solve (4.46). Then f

u,(0)
h,i = 0 for all i ≤ N∗u , f

c,(0)
h,i =

f̄
c,(0)
h for all i ≤ N∗c , and f

(0)
h,i = P0f̄

c,(0)
h for all i ≤ N∗u where P0 is the orthogonal projection

from Xh,1 onto Xh,0 with respect to the inner product on L2(X).

Proof. Let vu
i = f

u,(0)
h,i for all i ≤ N∗u in (4.46a). Then

N∗u∑
i=1

wu
i

∫
X

σt

(
f

u,(0)
h,i

)2

dr = 0. (4.51)

Since σt > 0 and wu
i > 0 for all i ≤ N∗u , it follows from (4.51) that f

u,(0)
h,i = 0 for all i ≤ N∗u .

We now show that f
c,(0)
h,i = f̄

c,(0)
h for all i ≤ N∗c . Let vc

i = f
c,(0)
h,i − f̄

c,(0)
h for all i ≤ N∗c .

Then (4.46b) becomes
N∗c∑
i=1

wc
i

∫
X

σt

(
f

c,(0)
h,i − f̄

c,(0)
h

)2

dr = 0. (4.52)

Since σt > 0 and wc
i > 0 for all i ≤ N∗c , (4.52) implies f

c,(0)
h,i = f̄

c,(0)
h for all i ≤ N∗c .
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We now show that f
(0)
h,i = P0f̄

c,(0)
h for all i ≤ N∗u . Let vu

i = f
(0)
h,i − P0f̄

c,(0)
h for all i ≤ N∗u .

Since f̄
u,(0)
h = 0, σt ∈ Xh,0, and P0 is the orthogonal projection onto Xh,0, it follows then that

N∗u∑
i=1

wu
i

∫
X

σt

(
f

(0)
h,i − P0f̄

c,(0)
h

)2

dr = 0. (4.53)

Since σt > 0 and wu
i > 0 for all i ≤ N∗u , (4.53) implies f

(0)
h,i = P0f̄

c,(0)
h for all i ≤ N∗u .

Lemma 4.3. Let f
u,(1)
h and f

c,(1)
h solve (4.47) where f

u,(0)
h and f

c,(0)
h are solutions to (4.46a)

and (4.46b) respectively. Then f
u,(1)
h,i = 0 for all i ≤ N∗u , and f̄

c,(0)
h is continuous on X.

Proof. Because f
u,(0)
h = 0, (4.47a) becomes

N∗u∑
i=1

wu
i

∑
K∈Th

∫
K

σtf
u,(1)
h,i vu

i = 0. (4.54)

Similar to the proof of Lemma 4.2, this implies f
u,(1)
h,i = 0 for all i ≤ N∗u .

We now show that f̄
c,(0)
h is a continuous function on X, in particular by showing that

it is continuous on the cell edges. Let vc
i = f̄

c,(0)
h for all 1 ≤ i ≤ N∗c . From Lemma 4.2,

f
c,(0)
h,i = f̄

c,(0)
h for all i ≤ N∗c . Using the accuracy of the quadrature, which calculates the

integral of degree one polynomials exactly, the first term in (4.47b) becomes

N∗c∑
i=1

wc
i

∫
X

−f̄ c,(0)
h Ωc

i · ∇f̄
c,(0)
h dr =

∫
X

−f̄ c,(0)
h

(
N∗c∑
i=1

wc
iΩ

c
i

)
· ∇f̄ c,(0)

h dr = 0. (4.55)

The next term in (4.47b) becomes

N∗c∑
i=1

wc
i

∫
X

σt

(
f

c,(1)
h,i − f̄

c,(1)
h

)
f̄

c,(0)
h dr =

∫
X

σt

(
N∗c∑
i=1

wc
i

(
f

c,(1)
h,i − f̄

c,(1)
h

))
f̄

c,(0)
h = 0. (4.56)

With the results in (4.55) and (4.56), (4.47b) becomes

0 =

N∗c∑
i=1

wc
i

∑
e∈Eh

∫
e

Ωc
i ·ne

(
f̄

c,(0)
h

)↑ r
f̄

c,(0)
h

z
dr =

∑
e∈Eh

∫
e

(
N∗c∑
i=1

wc
i |Ωc

i · ne|

)r
f̄

c,(0)
h

z2

dr. (4.57)

Since wc
i > 0, it follows from (4.57) that

r
f̄

c,(0)
h

z
= 0 for every edge in Eh.
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Proof of Theorem 4.1. We first show that f
u,(2)
h,i = P0Si

σt
for all i ≤ N∗u . By Lemma 4.2 and

4.3, f
u,(0)
h = 0 and f

u,(1)
h = 0. This implies that (4.48a) becomes

N∗u∑
i=1

wu
i

∫
X

(
σtf

u,(2)
h,i − Si

)
vu
i = 0. (4.58)

Let vu
i = σtf

u,(2)
h,i − P0Si for all i ≤ N∗u . Since P0 is the orthogonal projection onto Xh,0,

(4.58) implies
N∗u∑
i=1

wu
i

∫
X

(
σtf

u,(2)
h,i − P0Si

)2

= 0. (4.59)

Similar to the proof of Lemma 4.2, (4.59) implies

f
u,(2)
h,i =

P0Si
σt

. (4.60)

As a consequence of this,

f̄
u,(2)
h =

P0S̄

σt

. (4.61)

We now show that f̄
c,(0)
h and J

(0)
c,h satisfy (4.50a). Lemma 4.3 implies f̄

c,(0)
h ∈ Ch,1. Let

vc
i = ϑ ∈ Xh,1 for all 1 ≤ i ≤ N∗c . Then the first term of (4.48b) becomes:

N∗c∑
i=1

wc
i

∫
X

−f c,(1)
h,i Ωc

i · ∇ϑ =

∫
X

−

(
N∗c∑
i=1

wc
if

c,(1)
h,i Ωc

i

)
· ∇ϑ =

∫
X

−J (0)
c,h · ∇ϑ. (4.62)

The subsequent terms involving f
c,(2)
h,i and f̄

c,(2)
h in (4.48b) will cancel owing to the definition

of f̄
c,(2)
h . The next term involving f̄

c,(0)
h is simply

N∗c∑
i=1

wc
i

∫
X

σaf̄
c,(0)
h ϑ dr =

∫
X

4πσaf̄
c,(0)
h ϑ dr. (4.63)

We now restrict the test functions to be continuous on X. As a result

∑
e∈Eh

∫
e

Ωc
i · ne

(
f

c,(1)
h,i

)↑
JϑK dr = 0. (4.64)
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Using the fact that f
u,(0)
h,i = 0, (from Lemma 4.2), and (4.61), the right side of (4.48b)

becomes
N∗c∑
i=1

wc
i

∫
X

σtf̄
u,(2)
h ϑ dr =

∫
X

4πP0S̄ϑ dr. (4.65)

Combining these results, (4.48b) implies

∫
X

−J (0)
c,h · ∇ϑ+ 4πσaf̄

c,(0)
h ϑ dr =

∫
X

4πσtP0S̄ϑ dr. (4.66)

Now we show that f̄
c,(0)
h and J

(0)
c,h satisfy (4.50b). Let vc

i = ϕ · Ωc
i for all 1 ≤ i ≤ N∗c ,

where ϕ ∈ (Xh,1)3 is arbitrary. Using integration by parts and recalling that f
c,(0)
h,i = f̄

c,(0)
h

for all 1 ≤ i ≤ N∗c , (from Lemma 4.2), and f
u,(1)
h,i = 0 for all i ≤ N∗u , (from Lemma 4.3), we

can rewrite (4.47b) as the following:

N∗c∑
i=1

wc
i

∫
X

(
Ωc
i · ∇f̄

c,(0)
h + σt

(
f

c,(1)
h,i − f̄

c,(1)
h

))
(ϕ · Ωc

i ) dr (4.67)

+
∑
e∈Eh

∫
F

−Ωc
i · n1

r
f̄

c,(0)
h

z
(ϕ · Ωc

i )
↓ dr = 0.

We can infer that the first term of (4.67) is

N∗c∑
i=1

wc
i

∫
X

∇f̄ c,(0)
h ·(Ωc

i ⊗ Ωc
i )ϕ dr =

∫
X

∇f̄ c,(0)
h ·

(
N∗c∑
i=1

wc
iΩ

c
i ⊗ Ωc

i

)
ϕ dr =

∫
X

4π

3
∇f̄ c,(0)

h ·ϕ dr.

(4.68)

Computing the contribution of f
c,(1)
h we have,

N∗c∑
i=1

wc
i

∫
X

σt

(
f

c,(1)
h,i − f̄

c,(1)
h

)
(ϕ · Ωc

i ) dr =

∫
X

σt

(
N∗c∑
i=1

wc
if

c,(1)
h,i Ωc

i

)
· ϕ dr =

∫
X

σtJ
(0)
c,h · ϕ dr.

(4.69)

All edge flux terms are zero since f̄
c,(0)
h ∈ Ch,1. Combining these results give (4.50b).
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4.4 Numerical results

In this section, we compare the performance of the spatial hybrid to standard DG and FV

approaches, as well as the angular hybrid DG-DG approach. We also investigate the benefits

of hybridization in both the angular and spatial variable. In Section 4.4.1 we examine the

diffusion limit. In the remaining subsections, we use benchmark problems to assess efficiency

and accuracy of the method.

Remark 3. For the angular hybrid DG-DG approach, some experiments were run with the

angular resolution set to the same value for both the uncollided and collided equations. We

acknowledge that this selection is mathematically equivalent to a standard DG method using

the same angular resolution, but that the resultant hybrid does not have any computational

advantages. It is included in some of the figures for the purpose of consistency.

All numerical simulations use the discrete ordinates method with the product quadrature

[6] to discretize the angular components of (4.1) or (2.48a). The number of ordinates used in

any SN simulation is N∗ = N2. All of the numerical simulations are performed on a reduced

spatial geometry that assumes no variations in the z direction. In all cases, the domain is

Cartesian, the mesh is square, and the DG elements are Q1. The finite volume discretization

uses a second-order reconstruction with slopes computed using only upwind information (see

Appendix D). For time-dependent problems, a second-order strongly S-stable DIRK scheme

is used (see Appendix A).

4.4.1 Diffusion Limit Test

We solve a steady-state version of (2.48a), for standard discretization, or (4.1), for hybrid

discretizaiton, in x-y geometry with zero boundary condition on Γ−, σt = 4.0, σa = 0.5, and

S(x, y,Ω) = 900x2y2(1− x)2(1− y)2m2
1,1(Ω), where m1,1(Ω) =

√
3

4π
Ωx.

Using an S8 angular discretization, we compare numerical results using standard DG,

FV, and a DG-FV hybrid. We examine errors and order of convergence with respect to the

spatial mesh h as ε varies, using a DG spatial discretization with h = 1/256 as a numerical

reference. Results are shown in Tables 4.2–4.4. The DG-DG scheme maintains second-order

convergence in h for large and small ε, although it loses order for intermediate values of ε.
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Table 4.2: Diffusion limit: DG S8.

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

ε Error Ord. Error Ord. Error Ord. Error Ord. Error Ord.

1 8.55E-3 - 2.24E-3 1.93 5.90E-4 1.92 1.52E-4 1.95 3.71E-5 2.04

2−1 8.05E-3 - 2.18E-3 1.88 6.34E-4 1.78 1.78E-4 1.83 4.51E-5 1.98

2−5 1.22E-2 - 2.79E-3 2.12 6.63E-4 2.07 1.90E-4 1.80 6.57E-5 1.54

2−9 1.40E-2 - 3.45E-3 2.02 8.41E-4 2.04 1.99E-4 2.08 4.28E-5 2.22

2−13 1.42E-2 - 3.52E-3 2.01 8.72E-4 2.01 2.11E-4 2.05 4.62E-5 2.19

Table 4.3: Diffusion limit: FV S8.

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

ε Error Ord. Error Ord. Error Ord. Error Ord. Error Ord.

1 6.84E-2 - 1.69E-2 2.02 4.35E-3 1.96 1.10E-3 1.98 2.79E-4 1.98

2−1 9.18E-2 - 2.17E-2 2.08 5.29E-3 2.03 1.31E-3 2.01 3.34E-4 1.98

2−5 3.98E-1 - 9.53E-2 2.06 1.67E-2 2.51 2.79E-3 2.59 5.14E-4 2.44

2−9 9.03E-1 - 5.67E-1 0.67 1.57E-1 1.86 1.40E-1 0.16 1.93E-1 -0.46

2−13 9.93E-1 - 9.54E-1 0.06 8.39E-1 0.19 6.40E-1 0.39 8.84E-1 -0.47

Table 4.4: Diffusion limit: FV-DG S8 S8.

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

ε Error Ord. Error Ord. Error Ord. Error Ord. Error Ord.

1 3.65E-2 - 1.01E-2 1.86 2.54E-3 1.98 6.35E-4 2.00 1.58E-4 2.00

2−1 2.65E-2 - 6.53E-3 2.02 1.56E-3 2.07 3.81E-4 2.03 9.36E-5 2.02

2−5 1.59E-2 - 3.36E-3 2.24 7.36E-4 2.19 1.97E-4 1.90 6.62E-5 1.58

2−9 1.71E-2 - 3.96E-3 2.11 9.19E-4 2.11 2.09E-4 2.14 4.39E-5 2.25

2−13 1.72E-2 - 4.03E-3 2.10 9.51E-4 2.08 2.22E-4 2.10 4.75E-5 2.22
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Reductions in order of this type are common in multiscale problems [37]. The finite

volume method performs well for large values of ε, but the convergence is lost as ε gets

smaller. As expected, the new FV-DG hybrid performs similarly to the DG-DG method,

with a similar drop in convergence order for intermiate values of ε. However, errors for the

FV-DG hybrid are 2–3 times larger than the DG-DG scheme for larger ε.

4.4.2 Linesource Benchmark

Efficiency of the spatial hybrid method

This experiment is meant to demonstrate the efficiency gains of spatial hybridization. We

solve (2.48a) or (4.1) with ε = 1 and approximate the initial condition (2.53) with small

standard deviation β = 0.09. We consider problem with an absorption cross section σa = 0,

scattering cross section σs = 1, source q = 0, and boundary condition ψb = 0. For reference,

a semi-analytic solution is computed using the algorithm described in [24]; see Figure 4.1.

We simulate the problem using a 301×301 grid on domain [−1.5, 1.5]× [−1.5, 1.5]. The time

step is ∆t = 5∆x and the final time t = 1. Several different orders of angular discretization

are considered.

The results in Figure 4.2 show that the numerical solution changes dramatically based

on the number discrete ordinates used. However, the choice of spatial discretization makes

little difference in the qualitative solution. What is different is the computational time and

memory usage. The quantities, both real and predicted, are depicted in Figure 4.3. Further

details for the predicted values in Figure 4.3 are shown in Appendix C.

(a) Initial Condition
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Figure 4.1: Initial Condition and Semi-Analytic Solution for t = 1.0, β = 0.9.
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(b) DG S4.

-1 0 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
c
e
n
tr

a
ti
o
n
(M

a
s
s
)

(c) DG-DG S4S4
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(d) FV-DG S4S4
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(e) FV S8
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(f) DG S8
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(g) DG-DG S8S4
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(h) FV-DG S8S4,
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(i) FV S24
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(j) DG S24,
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(k) DG-DG S24S4,
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(l) FV-DG S24S4

Figure 4.2: Discrete ordinates solutions of the line-source problem with various spatial
discretizations.

Solutions to the line source problem with initial condition (2.53). Simulations are run on a 301 ×
301 grid with time step ∆t = 5∆x. Occurrence of ray-effects is strongly related to the angular
resolution of the uncollided equations. Qualitative results of each method are similar, regardless of
the angular resolution of the collided equations in the hybrid methods. Figure (c) is included here
for consistency. See Remark 3.
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Figure 4.3: Wall time and maximum memory usages for solutions in Figure 4.2.

Wider bars (blue) represent the actual (measured) quantities in each graph for each method. For
graphs showing time, internal timings were used within each program. An external script [72] was
used to query the machine as to how much memory was being used for the method in question.
The thinner bars (teal) were generated based on the predicted values that the method should take
when compared to the DG equivalent. All predictions are based on the low resolution DG S4 values.
Timings and memory usage for DGDG S4S4 are included here for consistency. See Remark 3.
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Accuracy of spatial hybrid method

In this experiment, we demonstrate that the computational advantages of the spatial hybrid

demonstrated in Figure 4.3 can be leveraged using hybridization in angle to produce solutions

with errors comparable to established methods in less run time. The numerical parameters

used are the same as in Subsection 4.4.2, except β = 0.045 in (2.53) and ∆t = 3∆x. Here we

are able to use the computational speed gains that the spatial hybrid has over a DG method

to produce a more accurate solution in less time.

The results from Figure 4.2 have shown that the angular hybrid allows for more resolution

in the uncollided equation and less resolution in the collided equation. We have used this to

our advantage as shown in Figure 4.4. Table 4.5 shows that this strategy produces a better

solution, but the run time is still a factor of two greater. The spatial hybrid brings down the

run time significantly with comparable errors. In this case the errors are smaller, this result

may not be the case in different experiments using different ratios of ∆t to ∆x.

4.4.3 Lattice Problem

In this experiment, we use a more real world example (see Subsection 2.5.2) to demonstrate

that the spatial hybrid method is able to use hybridization in angle to produce solutions

with errors comparable to established methods but in less time.

The initial data is void and the and boundary conditions are absorbing, i.e., ψ0 = 0 and

ψb = 0. We simulate the problem with 504 × 504 spatial grid on the domain [−3.5, 3.5] ×

[−3.5, 3.5], set ∆t = 10∆x, and run to a final time t = 2.8.

The solutions shown in Figure 4.5 and the results in Table 4.6 show again that the angular

hybrid is capable of producing a better solution by increasing the resolution in the uncollided

equation, without increasing the resolution of the collided equation. However, this comes at

the cost of increased run time. The spatial hybrid is able to reduce the run time significantly

while producing a solution with comparable errors.
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(a) Semi-Analytic
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(b) DG S16
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(c) FV-DG S32S4
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(d) DG-DG S32S4
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Figure 4.4: Accuracy comparison for solutions of the line-source problem.

Simulations are run on a 301 × 301 grid to t = 1. Top row: Particle densities. Bottom row:
corresponding line-outs for numerical solutions only. The line-outs show plots along two angles:
the x-axis, represented as Deg = 0, and in one of the direction where ray-effects appear in the
corresponding graphs.

Table 4.5: Run times and errors for numerical solutions in Figure 4.4.

Method DG S16 DG-DG S32S4 FV-DG S32S4

Run time (mins) 14.8 30.6 5.0

L2 Error 0.18 0.067 0.031

L∞ Error 0.46 0.18 0.11
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(a) DG S8
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(b) FV-DG S16S4
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(c) DG-DG S16S4

Figure 4.5: Accuracy comparison for solutions of the lattice problem.

Solutions are on a logarithmic scale. Simulations are run on a 504× 504 grid to t = 2.8.

Table 4.6: Run times and errors for numerical solutions in Figure 4.5.

Method Reference DG S8 DG-DG S16S4 FV-DG S16S4

Run time (mins) 569.1 7.5 14.5 4.2

L2 Error - 0.0094 0.0029 0.0032

L∞ Error - 0.015 0.0062 0.011
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Chapter 5

Future Works

Our current analysis for the convergence of the filtered discrete ordinates equations is based

on the global L2 norm. Our results also suggest convergence in the L∞ norm; therefore,

future work would include analysis in this norm. Also, the filter process has been based on

the modified equations in [67], where the filtering depends on a polynomial expansion of the

numerical solution. Determining a filtering process without the use of an angular polynomial

basis is also the scope of future work.

As in [22], the current analysis shows only how the filter affects the asymptotic error in the

solution. It does not show how or why the filter helps for low-order angular approximations,

where it is most needed and useful. To this end, a more refined estimate can be derived

in Theorem 3.8 by using the filter term on the right-hand side of (3.41a) to improve the

stability of the operator on the left-hand side, rather than just removing the term altogether.

Such an estimate would highlight the effect of the filter at low-order. The choice of filter

strength is then a matter of balancing between damping and the size of the consistency

error introduced in the source term of (3.42). This issue is common for regularized inverse

problems; see for example [32]. A more detailed analysis of this balance, including strategies

for local, automated tuning is the subject of future work. Currently the filter strength is first

tuned by hand at low resolution (so that numerical solution are cheap) and then applied to

simulations at higher resolution.

Our current analysis for the diffusion limit of the spatial hybrid method suggests that the

choice of spatial discretization is inconsequential to the overall scheme achieving the diffusion
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limit. Future work would include testing other spatial discretizations (finite difference,

diamond difference, finite element) to see if these new combinations would be more efficient.

Additionally, although not shown in this dissertation, attempts have been made to

combine a filtering process with the hybrid method. Results showed that the combination

is ill-advised in the case of the isotropic line source benchmark where the order of the

quadrature used in the uncollided equations Nu is significantly greater than the order of

the quadrature used in the collided equations Nc. In the case where the degree of the

filter operator is close the order of the quadrature in the collided equations P ≈ Nc − 1,

the resultant solutions were similar to the solutions shown in Figure 3.2 (a), (b), and (c).

However, this may not be the case with other problems, especially those with non-point

sources or anisotropic scattering. Tests involving the conditions described would be the

subject of future work.
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A Second order diagonally implicit Runge-Kutta

We begin with the time discretization of (3.2). For simplicity we suppress the indices

associated with the superscript Θ as well as the variable r, and we assume that S, σa,

and σs are independent of t. Then (3.2) can be written as

∂tψ(t) = G(t,ψ), G(t,ψ) := S−Υψ(t)− σaψ(t)− σs(R−Q)ψ(t) + σfFψ(t). (1)

The temporal domain [0, T ] is divided into uniform intervals with time step ∆t. Let n

be the time step index. The numerical solution at time tn = n∆t is given by ψn ≈ ψ(tn).

It is obtained by using a second-order, diagonally implicit, Runge-Kutta (DIRK) method [4]

with the following Butcher tableau:

c1 D1,1 D1,2

c2 D2,1 D2,2

b1 b2

=

γ γ 0

1 1− γ γ

1− γ γ

, γ = 1− 1√
2
. (2)

Given ψn, the stages are

ψ(s) = ψn + ∆t
s∑
r=1

Ds,rG(tn + cr∆t,ψ
(r)), s = 1, 2, (3)

and ψn+1 = ψ(2). Rearranging (3) yields the steady-state form

Υψ(s) − σsQψ
(s) − σfFψ

(s) + Λ(s)ψ(s) = q(s), (4)

where

q(s) = S +
1

Ds,s

(
ψn

∆t
+

s−1∑
r=1

Ds,rG(tn + cr∆t,ψ
(r))

)
, Λ(s) = σsR+

(
σa +

1

Ds,s∆t

)
I. (5)
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B Discontinuous Galerkin

Let (3.2) be discretized in time using the second-order DIRK method, (See Appendix A).

For simplicity we drop the stage index (s) and right (4) in the form

Lψ = Cψ + q, (6)

where L = Υ + Λ and C = σsQ+ σfF .

Let M = max {D,P}, and let M∗ be the number of moments associated with M . For a

single ordinate ΩN
i , (6) can be written as

Liψi = (SPψ)i + qi, (7)

where SP = C and

P : RN∗ → RM∗ , s.t. P(`,k),i = wNi m`,k(Ω
N
i ), (8a)

S : RM∗ → RN∗ , s.t. Si,(`,k) = ( σsĝ` + σff
P
` )m`,k(Ω

N
i ). (8b)

We discretize (7) using the discontinuous Galerkin (DG) method [20] with upwind

numerical fluxes. Our presentation follows [18] closely. We assume X is a rectangular

domain and create a uniform partition Th of X with rectangular cells K of maximum length

h and a fixed aspect ratio. We let Eh be the collection of interior edges in Th, and for each

e ∈ Eh, we let ne be the associated normal vector with orientation chosen beforehand.

Let Vh be a finite dimensional function space over the spatial variable such that for each

v ∈ Vh, v|K is a polynomial for each K ∈ Th. The DG method is then to find ψhi ∈ Vh for

each i ≤ N∗ satisfying

Bhi (ψhi , v
h) = B̄h(SPψh, vh) + Fhi (vh), ∀ vh ∈ Vh, (9)
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where ψh = [ψh1 , ψ
h
2 , . . . , ψ

h
N∗ ]

T . The bilinear and linear forms are given by

Bhi (u, v) =−
∑
K∈Th

∫
K

(
ΩN
i · ∇xv

)
u dx+

∑
K∈Th

∫
K

Λi,ivu dx (10a)

−
∑
e∈Eh

∫
e

(ΩN
i · ne)[v]û dx+

∑
e∈∂X+

i

∫
e

(ΩN
i · ne)v−u− ds,

B̄h(u, v) =
∑
K∈Th

∫
K
vu dx, (10b)

Fhi (v) =
∑
K∈Th

∫
K
qiv dx−

∑
e∈∂X−i

∫
e

(
ΩN
i · ne

)
ψBi v

− dx, (10c)

where ψBi = ψBi (x) is the inflow on ∂X−i ,

v±(x) = lim
ε→0+

v(x± εne), [v] = v+ − v−, and ûi = lim
ε→0+

ui(x− εΩN
i ). (11)

To formulate a matrix equation from (9), let bh be a vector whose components form a basis

of Vh, and let αhi be a real vector such that ψhi = bThα
h
i . Then (9) can be reduced to

LhΨh = ShPhΨh + qh, (12)

where Lh is a block diagonal matrix with blocks {Lhi }N
∗

i=1, (Ψh)T =
[
(αh1)T , (αh2)T , . . . , (αhN∗)

T
]
,

(qh)T =
[
(qh1)T , (qh2)T , . . . , (qhN∗)

T
]
, Sh = S ⊗ S̄h, and

Lhi = Bhi (bTh ,bh), qhi = Fhi (bh), S̄h = B̄h(bTh ,bh), (PhΨh)`,k =
N∗∑
i=1

wNi α
h
im`,k(Ω

N
i ).

(13)

With Φh := PhΨh, (12) is equivalent to

(
1− Ph(Lh)−1Sh

)
Φh = Ph(Lh)−1qh; Ψh = (Lh)−1

(
ShΦh + qh

)
. (14)

Here we use GMRES [69], a Krylov solver for non-symmetric systems, to solve the first

equation in (14) and obtain Φh. We then recover Ψh using the second equation.
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C Computational scaling

In this appendix, we explain the details behind the numbers in Table 4.1 and the charts

in Figure 4.3. All computational methods rely on four main subroutines: source(4.36),

integrate(4.37), copy(4.40), and sweep(4.34). In the source subroutine, a known source

function is used to compute a coefficient for every unknown in a mesh cell and every angle.

In the integrate over angle subroutine, the angular unknowns associated to each spatial

unknown are mapped to a single value. In the copy routine, a single value of each spatial

unknown is copied across all angles. The sweep routine requires a matrix-vector product

and the inversion of a linear system (both of a size equal to the number of unknowns) for

every angle and mesh cell. When the cross-sections are constant, which we assume for the

experiment in Subsection 4.4.2, the matrix used in the inversion can be pre-factored. The

result is that the usual O(n3) operation count for an n×n matrix is reduced to O(n2), where

n is the number of unknowns.

The cost of each of the subroutines above depends on the number of angles, number of

mesh cells, and number of unknowns per mesh cell. In standard DG or FV codes, we use

N∗ angles and M cells. In hybrid DG-DG and FV-DG we use N∗u and N∗c points for the

uncollided equations and collided equations respectively on M cells. FV methods will use

one unknown per angle per cell for both quadrilateral and triangular cells, and DG methods

will use 2d unknowns for quadrilateral cells and (d+ 1) unknowns for triangular cells where

d is the dimension of the spatial domain. With these values the number of flops for each

subroutine is given in Table C.1 and C.2. The results in Table 4.1 are obtained by summing

across each row in Table C.1 or C.2.

Table C.1: Computational scaling leading orders per rectangular element.

Source Integrate Copy Sweep

FV N∗ N∗ N∗ N∗

DG 2dN∗ 2dN∗ 2dN∗ 22dN∗

DG-DG 2dN∗u 2d(N∗u +N∗c ) 2d(N∗u +N∗c ) 22d(N∗u +N∗c )

FV-DG N∗u N∗u + 2dN∗c N∗u + 2dN∗c N∗u + 22dN∗c
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Table C.2: Computational scaling leading orders per triangular element.

Source Integrate Copy Sweep

FV N∗ N∗ N∗ N∗

DG (d+ 1)N∗ (d+ 1)N∗ (d+ 1)N∗ (d+ 1)2N∗

DG-DG (d+ 1)N∗u (d+ 1)(N∗u +N∗c ) (d+ 1)(N∗u +N∗c ) (d+ 1)2(N∗u +N∗c )

FV-DG N∗u N∗u + (d+ 1)N∗c N∗u + (d+ 1)N∗c N∗u + (d+ 1)2N∗c

To generate the predictions in Figure 4.3, we use the leading orders in Table C.1 and the

knowledge of how many times each subroutine is called within a program, which is shown in

Table C.3. Let Tref be the minutes it takes to compute the standard DG reference, and let

nso, nint, ncp and nsw be the total occurrences of the source, integrate, copy, and sweep

subroutines respectively in the reference simulation. These are acquired by knowing either

how many times these subroutines are performed in the code per iteration of the iterative

solver or per time step. We assume the total number of time steps and iterations of the

iterative solver are known. Then Tref = (2dnso + 2dnint + 2dncp + 22dnsw)kN∗M , where k is

an unknown conversion constant that is assumed to be independent of the type of method

used. This implies that

kN∗M =
Tref

(2dnso + 2dnint + 2dncp + 22dnsw)
, (15)

Let nint,m, ncp,m and nsw,n be the total occurrences of the integrate, copy, and sweep

subroutines respectively with a loop structure involving N∗m angles for m ∈ {u, c}. With

the constant k determined, we assume the total number of time steps and iterations of the

iterative solver in the other simulations are the same as in the reference simulation. The

predicted times for the other three methods in Figure 4.3 are calculated as follows:

TFV = (nso + nint + ncp + nsw)kN∗M (16)

TDG-DG =
(
(nso + nint,u + ncp,u + 2dnsw,u)N∗u + (nint,c + ncp,c + 2dnsw,c)N

∗
c

)
2dkM (17)

TFV-DG =
(
(nso + nint,u + ncp,u + nsw,u)N∗u + 2d(nint,c + ncp,c + 2dnsw,c)N

∗
c

)
kM, (18)

where N∗u and N∗c are known proportions of N∗. For the simulations in Figure 4.3, the values

for the number of times each subroutine is performed is as follows.
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Table C.3: Number of occurrences of subroutines used to compute solutions of the simulations in
Figure 4.3.

nso nint ncp nsw nint,u ncp,u nsw,u nint,c ncp,c nsw,c

42 124 124 166 42 42 84 124 124 124

The memory predictions are easier to compute. Using the DG S4 simulation as a reference,

we measure the maximum memory expenditure during the run of the simulation. We assume

that the majority of the memory expenditure is taken up by the largest vectors in the code

and we know ahead of time how many vectors are needed to run the simulation. During

the run of the code, we require 4 vectors of size 2dN∗M and 4 vectors of size 2dM to hold

various forms of the solution and source at every time step. During the iterative solver step a

number of temporary vectors are created, one of size 2dN∗M and 2 of size 2dM . Additionally,

at iteration k of the GMRES solver it requires k + 1 vectors of size 2dM to construct the

Krylov space. The maximum iterations the solver took was 2 throughout all our runs, so the

code required an additional 3 vectors. The codes used eight bytes of memory (7.63 × 10−6

MB) for every entry in a vector and the product quadrature has N∗ = N2 ordinates. The

computational domain uses 301×301 = M mesh cells and d = 2. This leads to the following:

267.8 MB =
(
5 ∗ 2dN∗M + 9 ∗ 2dM

)
∗ 7.63× 10−6 MB + x =⇒ x = 21.7 MB. (19)

This x value is attributed to the overhead of the code and various other values that are held

in memory that does not scale with M or N∗. We assume that this x value is relatively

constant for every simulation we ran. To predict the other values in Figure 4.3 we simply

count all the total entries from all relevant vectors, multiply by 8 bytes, (7.63 ∗ 10−6 MB),

and then add x. The number of relevant vectors for each method is shown in Table C.4
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Table C.4: Number and type of relevant vectors in each method.

Method Relevant vectors

DG 5 vectors of size 2dN∗M , 9 vectors of size 2dM

FV 5 vectors of size N∗M , 9 vectors of size M

DG-DG 4 vectors of size 2dN∗uM , 1 vector of size 2dN∗cM , 12 vectors of size 2dM

FV-DG 4 vectors of size N∗uM , 1 vector of size 2dN∗cM , 12 vectors of size 2dM
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D Finite volume second-order reconstruction

In this section, we give the specific form of reconstruction operator R, (cf. (4.15)) for the

calculations performed in Subsection 4.2, which were done in two-dimensional geometries

using quadrilateral elements. Let Th be a partition of X ⊂ R2 into J∗ ×K∗ mesh cells. Let

Cj,k ∈ Th be a quadrilateral with cell center (xj, yk) and cell size ∆x∆y for all 1 ≤ j ≤ J∗,

1 ≤ k ≤ K∗. Let N∗ ∈ N and let {Ωi}N
∗

i=1 ⊂ S2 where Ωi := (Ωi,x,Ωi,y,Ωi,z). Let f =

[f1, f2, . . . , fN∗ ]
T ∈ (Xh,0)N

∗
, where fi ∈ Xh,0 for all 1 ≤ i ≤ N∗. Denote the value of fi on

cell Cj,k as fi,j,k, and suppose fb,i ∈ L2(∂X) is a function on the boundary of X for each

1 ≤ i ≤ N∗. Then

(Rf)i (x, y)|Cj,k = fi,j,k + sxi,j,k(x− xj) + syi,j,k(y − yk), ∀ (x, y) ∈ Cj,k, (20)

where

sxi,j,k =



fi,j,k−fi,j−1,k

∆x
, Ωi,x ≥ 0, j > 1,

2(fi,j,k−fi,j−1/2,k)

∆x
, Ωi,x ≥ 0, j = 1,

fi,j,k−fi,j+1,k

∆x
, Ωi,x ≤ 0, j < J∗,

2(fi,j,k−fi,j+1/2,k)

∆x
, Ωi,x ≤ 0, j = J∗,

(21)

and syi,j,k is defined similarly. The boundary terms are defined as

fi,1/2,k = fb,i(x1/2, yk), fi,J∗+1/2,k = fb,i(xJ∗+1/2, yk), (22a)

fi,j,k−1/2 = fb,i(xj, y1/2), fi,j,K∗+1/2 = fb,i(xj, yK∗1/2). (22b)
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