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Abstract

Connected and automated vehicles (CAVs) are expected to transform current transportation

systems into highly efficient, automated, and intelligent systems. CAVs, with various

levels of automation and connectivity, are expected to reduce travel time, improve travel

comfort, improve fuel efficiency, and decrease fatal accidents in the near future. CAVs

use a combination of cameras, ultrasonic sensors, and radar to build a digital map of

their surroundings and operate the vehicle accordingly. As a result, there are numerous

sources of information that can be manipulated, with malicious or non-malicious intent,

which may result in dangerous situations. Although the ever-increasing use of CAV

technologies in vehicles are expected to have numerous advantages, they can give rise to

new challenges in terms of safety, security, and privacy. As evident by recent crash records

and experiments successfully conducting cyber attacks on vehicles, the currently available

autonomous systems lack the ability to fully handle novel, complex situations. Hence, the

potential drawbacks of CAVs are not negligible and should not be ignored. In this research,

we investigate the real-time prediction and decision making in CAVs under cyber-security

and safety uncertainties.
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Introduction

In Chapter 1, we investigate real-time sensor anomaly detection and identification in

CAVs. To navigate roadways, CAVs need to heavily rely on their sensor readings and the

information received from other vehicles, i.e., vehicle-to-vehicle (V2V) communication, and

roadside units, known as vehicle-to-infrastructure (V2I) communication. Hence, anomalous

sensor behavior/data points caused by either malicious cyber attacks or faulty vehicle sensors

can result in disruptive consequences, and possibly lead to fatal crashes. As a result, before

the mass implementation of CAVs, it is important to develop methodologies that can detect

anomalies and identify their sources seamlessly and in real-time.

Next in Chapter 2, we focus on the limitations of semi-autonomous vehicles under

certain circumstances where it is safer for the human driver to be in control compared

to the automated driving system. Such circumstances may be caused due to technological

failures, complex road and environmental conditions, or infrastructure deficiencies (e.g., lack

of roadside units or high-definition maps in certain areas), to name a few. Hence, for the

foreseeable future, the need for the transition of authority between the human driver and

the autonomous entity would continue to complicate traveling through the road network.

Switching control back and forth between the human driver and the autonomous driving

entity to maximize safety may not be straightforward as every such switch can itself pose a

short-term, elevated risk, especially under highly dynamic and stochastic traffic conditions.

As a result, we investigate the transfer of control authority in semi-autonomous vehicles to

improve overall road safety.

Lastly, in Chapter 3 we investigate real-time dynamic thresholding in classification

algorithms to adapt to complex road and environmental conditions. The successful operation

of CAVs are dependent on a large number of information sources such as on-board sensors,

1



roadside units, cloud data, and other vehicles. As a result, these vehicles are susceptible

to false/incorrect information, originating from various sources. A classification algorithm

is therefore required to detect the false/incorrect information. Traditional classification

algorithms use fixed and a priori determined thresholds which determine if information

is anomalous or not. However, this approach does not allow for incorporating feedback

obtained during a trip on the performance of the classification algorithm which may result

in excessive false positive/negatives. It is therefore critical to dynamically alter this threshold

of the classification algorithm in real-time to respond to past performance and exogenous

factors to assure reliable and robust system operation.

Below are summaries of the methods developed in the three chapters to improve real-time

prediction and decision making in CAVs under cyber-security and safety uncertainties.

– Chapter 1. We develop a robust anomaly detection approach through combining

a deep learning method, namely convolutional neural network (CNN), with a well-

established anomaly detection method, Kalman filtering, to detect and identify

anomalous behavior in CAVs in real-time. Our numerical experiments demonstrate

that the developed approach can detect anomalies and identify their sources with high

accuracy, sensitivity, and F1 score. In addition, this developed approach outperforms

the anomaly detection and identification capabilities of both CNNs and Kalman

filtering methods alone.

– Chapter 2. We develop a generalizable framework that allows for adaptive balancing

of risks and benefits of having an autonomous entity navigate a complex environment.

Specifically, we develop a Markov decision process (MDP) model to prescribe the entity

in charge to minimize the expected safety risk of a trip, considering the dynamic

changes of the road/environment during the trip. We provide numerical experiments in

which we compare the expected cost/safety of trips under the optimal policy with a few

benchmark policies illustrating the benefits under the optimal policy. In addition, we

perform sensitivity analyses to investigate the calibrated parameters and the robustness

of the MDP model. As a result, we gain insights into the associated risks and

advantages of authority control transitions for semi-autonomous vehicles in certain

2



conditions. We also develop a partially observable Markov decision process (POMDP)

model to account for cases when only partial information of the environmental risk is

available. We solve the POMDP using a state of the art deep reinforcement learning

technique, namely the asynchronous advantage actor critic (A3C) algorithm.

– Chapter 3. We develop a mathematical framework in which we pair an anomaly

classification algorithm, based on CNN, with a partially observable Markov decision

process (POMDP) model to determine the optimal dynamic threshold of an anomaly

classification algorithm to maximize the safety of a trip. We solve the resulting POMDP

model using the asynchronous advantage actor critic (A3C) deep reinforcement learning

algorithm. We provide numerical experiments in which we compare the performance

of the benchmark model, i.e., the CNN model with a fixed threshold, to the developed

POMDP model utilizing a dynamic threshold. The numerical experiments suggest that

the addition of the POMDP model improves the anomaly detection performance of the

CNN model, resulting in high accuracy, sensitivity, and positive predictive value. As a

result, we gain insights into the associated benefits and disadvantages of implementing

a dynamic classification threshold in response to complex exogenous factors.
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Chapter 1

Real-Time Sensor Anomaly Detection

and Identification in Automated

Vehicles
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Disclosure: This chapter is based on a paper published by van Wyk et al. (2019) in IEEE

Transactions on Intelligent Transportation Systems.

van Wyk, F., Wang, Y., Khojandi, A. and Masoud, N., 2019. Real-Time Sensor Anomaly

Detection and Identification in Automated Vehicles. IEEE Transactions on Intelligent

Transportation Systems.

My contributions to this paper include: (i) the development of the problem and

methodology to investigate the problem, (ii) reviewing the appropriate literature, (iii) the

identification of study objectives, (iv) collection of data, (v) design and conducting of the

numerical experiments, (vi) majority of the writing responsibilities of the manuscript.

Abstract

Connected and automated vehicles (CAVs) are expected to revolutionize the transportation

industry, mainly through allowing for a real-time and seamless exchange of information

between vehicles and roadside infrastructure. Although connectivity and automation are

projected to bring about a vast number of benefits, they can give rise to new challenges in

terms of safety, security, and privacy. To navigate roadways, CAVs need to heavily rely on

their sensor readings and the information received from other vehicles and roadside units.

Hence, anomalous sensor readings caused by either malicious cyber attacks or faulty vehicle

sensors can result in disruptive consequences, and possibly lead to fatal crashes. As a result,

before the mass implementation of CAVs, it is important to develop methodologies that can

detect anomalies and identify their sources seamlessly and in real-time. In this work, we

develop an anomaly detection approach through combining a deep learning method, namely

convolutional neural network (CNN), with a well-established anomaly detection method,

Kalman filtering with a χ2-detector, to detect and identify anomalous behavior in CAVs.

Our numerical experiments demonstrate that the developed approach can detect anomalies

and identify their sources with high accuracy, sensitivity, and F1 score. In addition, this

developed approach outperforms the anomaly detection and identification capabilities of

both CNNs and Kalman filtering with a χ2-detector methods alone. It is envisioned that
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this research will contribute to the development of safer and more resilient CAV systems

that implement a holistic view towards intelligent transportation system (ITS) concepts.
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1.1 Introduction

Our current transportation system is on the brink of transforming into a highly connected,

automated, and intelligent system as a result of the rapid emergence of connected and

automated vehicles (CAVs) (Ran and Boyce, 2012). CAVs, with various degrees of

connectivity and automation, are expected to play an integral role in the next phase

of the transportation revolution, leading to more accessible, more efficient, safer, more

environmentally friendly, and hence sustainable, transportation options (Meyer and Beiker,

2014; Litman, 2017). CAVs use wireless technology to facilitate communication between

vehicles, with roadside units (RSUs), and with personal mobile devices. This will

allow them to continuously transmit and share information such as speed, position,

acceleration, and braking, enabling CAVs to warn their surrounding vehicles of potentially

unsafe circumstances. These vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communication technologies will provide unprecedented efficiency, safety, and mobility

advancements. For instance, CAV technologies are expected to decrease fatal traffic accidents

by as much as 80%, reducing their corresponding $870 billion cost, while also improving

traffic flow, cutting into the approximate 7 billion hours American motorists spend in traffic

annually (USDOT, 2016).

Although the ever-increasing use of CAV technologies in vehicles are expected to have

numerous advantages, the potential drawbacks are not negligible. CAVs use a variety of

sensors to build a virtual map of their surroundings in order to drive in the correct lane

within the speed limit, avoid collisions, and detect obstacles in their immediate physical

environment. Hence, anomalous sensor values caused by either malicious cyber attacks

or faulty vehicle sensors can result in disruptive consequences, and possibly lead to fatal

crashes. The increase in connectivity and automation has led to the scrutiny of in-vehicle

network architectures used by automotive manufacturers and evaluation of vulnerabilities

in their resiliency against such anomalous behavior (Koscher et al., 2010; Greenberg, 2015;

Weimerskirch and Gaynier, 2015). For instance, the dedicated short-range communication

(DSRC) technology is currently used to facilitate communication within connected networks.
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DSRC has a range of approximately 300 meters, hence it can protect vehicles from long-

range cyber attacks, e.g., a stationary attacker would only have a short time-window to

attack moving vehicles when they are in close proximity (Bai et al., 2010). Although such a

technology can prove useful, it is not comprehensive enough and leaves CAVs vulnerable to

non-stationary attackers, among others. Hence, it is necessary to better understand CAVs’

vulnerabilities and develop holistic, real-time methodologies that can mitigate them.

Various internal and external cyber attack surfaces exist in CAV systems, i.e., the

entry point of the attack, which may enable hackers to access and compromise the safety

and integrity of CAVs (Koscher et al., 2010; Checkoway et al., 2011; Greenberg, 2015;

Weimerskirch and Gaynier, 2015; Petit and Shladover, 2015; Yan et al., 2016; Field, 2017).

Typical internal attack surfaces include in-vehicle devices, GPS system, on-board diagnostics

(OBD) system, vehicle sensors including the controller area network (CAN) bus, and other

sensors required for CAV operation. For instance, Checkoway et al. (2011) demonstrated

through an OBD port attack, it is possible to disable the brakes, turn-off head-lights, and

take over steering for cars equipped with a low level of autonomy. Typical external attack

surfaces include information from RSUs, machine vision, data from other vehicles, security

system breaches of the vehicle, and navigation interference (Field, 2017; Jo et al., 2016;

Truong et al., 2005). For instance, Field (2017) demonstrated how an attacker could gain

access to the visual recognition software used in autonomous vehicles and manipulate it by

creating a simple alteration to RSUs that would cause the car to misinterpret them, possibly

putting vehicle occupants at risk. Similarly, several teams have hacked traffic light controller

systems, highway signs, and traffic surveillance cameras (Huq et al., 2017). For instance, in

2017, approximately 70% of the storage devices that record data from Washington D.C. police

surveillance cameras were infected with ransomware by hackers (Williams, 2017). Injection of

fake information and map database poisoning is considered to be one of the most dangerous

cyber attacks on CAVs (Petit and Shladover, 2015). Future CAVs are expected to have even

more attack surfaces than what has currently been investigated. Possible reasons for cyber

attacks on CAVs include financial gain, collecting private information, and gaining priority

access to infrastructure.
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Not all anomalous sensor behavior are due to malicious attacks. Sensor readings may

be influenced for a variety of reasons prompting the transmission of faulty information

(Checkoway et al., 2011; Realpe et al., 2015; Pous et al., 2017). For instance, sensors in

CAVs may be blinded by magnetic interference, signal outage, poor weather conditions,

and other environmental circumstances. Furthermore, as sensors age, inherent errors are

introduced which may result in sensor failure, therefore, affecting data availability. Faulty

sensors, therefore, pose significant risks to the operation of CAVs since their safe operation

depends on information obtained from sensors.

Sensor redundancy is a measure that can be implemented to protect CAVs against

anomalous sensor behavior. The majority of CAV manufacturers are expected to incorporate

multiple sensors that measure the same parameter (Darms et al., 2008). For instance, CAVs

may utilize various sensor systems such as cameras, radio detection and ranging (RADAR),

light detection and ranging (LIDAR), and ultrasonic sensors for lane keeping purposes as

well as GPS to assist navigation. To illustrate the importance of sensor redundancy, consider

a short-term loss of a GPS signal in a CAV as it passes through a tunnel. In such a scenario,

information from redundant sensors such as the inertial measurement unit (IMU), RADAR,

and LIDAR can be used to approximate vehicle location until all systems are online again.

In this example, sensor redundancy proves useful since sensors collecting the same data are

not affected similarly by environmental factors; e.g., the factors that lead to a lack of access

to GPS signal do not affect RADAR. Additionally, different types of sensors collecting the

same data may have various degrees of precision as well as various levels of vulnerability to

different cyber attack types. For instance, if a vehicle’s machine vision, used for obstacle

detection through video image processing, is attacked by using a high-brightness infrared

LED, the redundant obstacle detection sensors including RADAR and LIDAR would be

unaffected. Hence, sensor redundancy can lead to improved, dynamic sensor fusion in which

anomalous sensor readings, due to either faults or attacks, can be discarded while the normal

data is being fused to increase the reliability of the fused data.

A large body of work exists that examines various methods to detect anomalies, if they

occur, and/or identify their source; however, only a limited number of these studies are

focused on CAVs and ITS. Table A.1 in Appendix A summarizes some of the important
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works related to anomaly detection and identification in CAVs. Several studies employ

distance-related metrics such as the Mahalanobis distance, affinity propagation clustering,

and graph theory to detect in-vehicular network intrusions and faulty sensors (Yang et al.,

2016; Lin et al., 2010; Khalastchi et al., 2011; Park et al., 2015). Also, Kalman filtering

Kalman (1960) has been used in numerous applications for fault detection (Foo et al.,

2013; Wei et al., 2010). In addition, some recent studies have employed deep learning

techniques such as convolutional neural network (CNN) (Schmidhuber, 2015), recurrent

neural network (RNN) (Taylor et al., 2016), and multilayer perceptron (MLP) models to

detect anomalies in autonomous agriculture equipment vision and malicious CAN packets in

modern vehicles (Christiansen et al., 2016; Kang and Kang, 2016). Deep learning techniques

can be implemented on raw data and therefore do not require data abstraction. Lastly,

Bezemskij et al. (2017) and Müter and Asaj (2011) employed Bayesian networks and signal

entropy to detect anomalies in in-vehicular networks and autonomous robotic vehicles.

However, these methods require synchronized data sources and high-volume attacks to

perform well.

Several gaps are apparent in the literature. First, to the best of our knowledge, there is a

lack of deep learning implementations in anomaly detection and identification for CAVs.

Data are becoming more readily available and deep learning models are renowned for

their performance using large datasets, therefore such models may be able to outperform

traditional anomaly detection techniques such as Kalman filtering with failure detectors. In

addition, there is a lack of comprehensive frameworks combining different anomaly detection

and identification methods that incorporate the strengths and negate the weaknesses of the

individual anomaly detection methods in CAVs. Lastly, applications focusing on real-time

detection and identification of anomalous information (such as cyber attacks and/or faulty

sensors) are limited.

Before mass implementation of CAVs into the transportation system, we need to ensure

that the design of CAVs is resilient to cyber attacks and faulty equipment. This study

assumes that the participating vehicles are of levels 4 and 5 automation, as defined by

the National Highway Traffic Safety Administration (NHTSA) (NHTSA, 2013). Our main

objective in this study is to detect anomalous sensor behavior and identify the source
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anomalous sensor in real-time for CAVs to assure the high reliability of fused data. Our

framework is generic in that a ‘sensor’ may refer to any of the on-board sensors in a CAV, or

another connected vehicle or roadside unit (RSU) that is communicating with the CAV.

Specifically, we develop a holistic and generic framework by combining a deep learning

technique, i.e., CNN, and Kalman filtering with a χ2-detector, and investigate their ability to

detect and identify various types of anomalous behavior in real-time. In addition, we perform

various experiments to investigate the effects of anomaly type, magnitude, and duration.

Anomalous sensor readings, caused by attacks or failures, can present themselves in

different ways. Several network attack taxonomies are available in the literature. Bhuyan

et al. (2014) summarize the taxonomy of intrusions or attacks in computer network systems,

which encompass CAVs. Also, several faulty sensor behaviors are discussed in (Sharma

et al., 2010). We consider the anomalous sensor behavior resulting from both false injection

attacks and sensor failures. According to the literature, anomalous sensor behavior can be

represented by the five main following types:

1. Instant: A sharp, unexplained change in the observed data between two successive

sensor readings.

2. Constant: A temporarily constant observation that is different from the “normal”

sensor readings and is uncorrelated to the underlying physical phenomena.

3. Gradual drift: A small and gradual drift in observed data during a time period. It

can result in a large discrepancy between the observed data and the true state of the

system in time.

4. Bias: A temporarily constant offset from the sensor readings.

5. Miss: Lack of available data during a time period.

In this work, consistent with literature (Bhuyan et al., 2014; Sharma et al., 2010), we

focus on detection and identification of anomalous behavior, caused by either cyber attacks

or faulty sensors, resulting in ‘instant,’ ‘constant,’ ‘gradual drift,’ and ‘bias.’ These types of

anomalies are some of the most dangerous for CAVs (Petit and Shladover, 2015; Mo et al.,
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2010). In this work, we do not explicitly account for ‘miss,’ which can result from DoS

attacks preventing the exchange of information. However, note that ‘miss,’ depending on

its duration, can be viewed as ‘instant’ or ‘constant’ behaviors, where the sensor reading is

non-existent instead of showing a wrong value. Hence, it can partially be addressed using the

same methods for detecting ‘instant’ or ‘constant’ behaviors. Regardless, we acknowledge

that the considered anomaly types may not encapsulate all possible types of anomalies

expected to occur in CAVs.

In this work, we develop an anomaly detection approach through combining a deep

learning method, namely convolutional neural network (CNN), with a well-established

anomaly detection method, Kalman filtering with a χ2-detector, to detect and identify

anomalous behavior in CAVs. Our main contributions are as follows: (1) We develop

an anomaly detection and identification approach based on convolutional neural networks

(CNN), applied to time-series data obtained from multiple sensors. Our use of the CNN

for anomaly detection in time-series data is novel, where we generate ‘images’ from a

continuous feed of real-time raw sensor data from a fixed-width sliding window and classify

these images as anomalous or normal; (2) We develop a new generic anomaly detection and

identification approach through combining CNN with a well-established anomaly detection

method, i.e., Kalman filtering with a χ2-detector. The resulting CNN-empowered KF (CNN-

KF) framework can effectively detect and identify sensor anomalies.

1.2 Methods

In this section, we first discuss the two models that form the building blocks of our framework,

namely the CNN model and the Kalman filter with a χ2-detector model (referred to as the KF

model throughout), developed independently to detect anomalies caused by cyber attacks

and/or faulty equipment, in a CAV trip. Next, we develop a framework that combines

the two methods in order to improve detection and identification capabilities by relying on

their respective individual strengths. CNN was mainly selected due to its ability to capture

temporal patterns, relationship between various sensors, and its capability to automatically

extract features while weight sharing. All these make CNN particularly suitable as large
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amounts of data are becoming available. However, there is always a risk of unknown/unseen

patterns going undetected when relying only on CNNs. Hence, using an architecture that

combines CNN and KF can provide an additional level of reliability for the task at hand, as

CNN and KF are complementary in their ability to detect anomalies. It is worth noting that

we also explored recurrent neural networks (RNNs) with long short-term memory (LSTM)

units; however, CNN consistently outperformed RNN in all preliminary experiments. This

is partly because in this particular application, there are many normal values between

consecutive anomalous values, which generally makes it hard for RNN to distinguish between

anomalous and normal values in an extended sequence of data (Malhotra et al., 2015).

In general, the inputs to the model are the data collected from sensors, reading the

same or highly correlated physical quantities. Based on the input data, at every time step,

e.g., a few milliseconds (ms), outputs are generated as to whether anomalies are present

(detection) and if so, which sensor reading(s) are erroneous (identification). Consequently,

erroneous data can be excluded and normal data can be seamlessly fused to support CAV

operation. Please note that all notation used are summarized in Table A.2 in Appendix A.

1.2.1 Kalman Filter

As discussed, Kalman filter combined with a failure detector is a well-established, widely

used method for fault detection and identification in time-series data. In order to detect and

identify anomalous sensor readings, we use an adaptive Kalman filter with a χ2-detector to

filter out process and measurement noise. Specifically, we assume our physical system is a

discrete-time linear time-invariant system in the following form:

x(k) = Ax(k − 1) + w(k − 1) (1.1)

where x(k) ∈ Rm is the vector of state variables at time k, w(k) ∈ Rm is the process noise

at time k, and A ∈ Rm×m is the state-transition matrix.

As discussed, we consider redundant sensor in this study. Let n denote the number of

these sensors. That is, we consider n local subsystems, corresponding to the redundant
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sensors, with measurement matrices H(k) ∈ Rp×m and sensing model:

zi(k) = H(k)x(k) + vi(k), i = 1, 2, ..., n (1.2)

where vi(k) ∈ Rp is zero mean Gaussian white noise sequences associated with the process

and the measurement. The covariance matrices of vi(k) ∈ Rp and w(k) are Ri(k) and

Q(k), respectively. We assume vi(k) and w(k) are independent. In equation (1.2),

zi(k) = [zi,1(k), zi,2(k), ..., zi,p(k)]T ∈ Rp is a vector of sensor measurements for subsystem

i ∈ {1, ..., n}. We assume all n subsystems have the same measurement matrix H(k) and

the readings across all subsystems are synchronized.

For each subsystem, a Kalman filter is used to estimate the state vector x(k) from

sensor reading zi(k). Kalman filter consists of two phases, i.e. prediction and update. The

prediction phase advances the state estimate before the next measurement, and the update

phase corrects the state estimate based on the measurement.

Let ẑ(k|k − 1) denote the predicted value of measurement at time k, P (k|k − 1) denotes

the error covariance matrix of predicted state, and ν(k) denote the innovation, i.e., the

difference between the measurement z(k) and the predicted value of measurement at time k,

ν(k) = z(k)− ẑ(k|k − 1). (1.3)

Also let S(k) denote covariance matrix of innovation. In practice, covariance matrices R and

Q are generally unknown a priori. Thus, we apply an adaptive Kalman filter to approximate

these matrices (Mohamed and Schwarz, 1999). Specifically, we use a moving estimation

window of size M to adaptively estimate R and Q matrices according to the innovation

sequence within the time window, i.e.,

R̂(k) = Ĉν(k)−H(k)P (k|k − 1)H(k)T ,

Q̂(k) = K(k)Ĉν(k)K(k)T ,
(1.4)

where

Ĉν(k) =
1

M

k−1∑
j=k−M

ν(j)ν(j)T . (1.5)
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We use a χ2-detector to construct χ2 test statistics, to determine whether the new

measurement falls into the gate region with the probability determined by the gate threshold

γ, defined as

Vγ(k) = {z :(z − ẑ(k|k − 1))TS(k)−1(z − ẑ(k|k − 1)) ≤ γ}. (1.6)

The χ2 test statistics for each local subsystem is defined as

t(k) = ν(k)TS(k)−1ν(k) (1.7)

It is easy to show that under Gaussian assumption the test statistic has a χ2 distribution

with p degrees of freedom, where p is the number of components of the measurement vector.

However, in practice, usually w and vi do not follow Gaussian distributions, and parameter

γ has to be selected empirically. Hence, the threshold γ for t(k) and the time window size

M can be tuned.

Selection of the threshold γ is a trade-off between sensitivity of the trained model (i.e., the

proportion of correctly identified anomalies), and the false-alarm rate. For each experiment

in our experiment section, we select γ using a grid search within the range {1, 2, ..., 50}, and

select the value of γ resulting in the highest F1 score.

The window size M is a parameter that allows for the control of smoothing short-term

fluctuations in the detector. To select the best value for M , we performed a grid search.

Specifically, for various values of M in our grid search, we computed the Area Under the

ROC Curve (AUC) on a validation dataset. The results suggested that M ∈ {10, 15, 20}

provides robust results and high AUC (≈ 0.96). The AUC values within this range are

similar. Hence, consistent with previously published work (e.g., Loebis et al. (2004)), we

selected the window size M = 15 epochs for our experiments.

Once a faulty measurement stream has been identified, in order to ensure the future

estimate is reliable, the measurement stream should be rejected at once and not fused with

other measurements to ensure that the information generated through data fusion is not

contaminated.
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1.2.2 CNN

To apply CNN for real-time detection and identification of anomalous sensor behavior, we use

a fixed-width sliding window on input data from all sensors measuring the same quantity,

either directly or indirectly, where conversions or combining with other sensors may be

required to infer the value of the quantity. At every epoch, as new observations are collected

from sensors, the sliding window shifts to include these latest observations. Hence, the input

to CNN is a series of ‘images’ from the continuous feed of raw sensor data during a CAV

trip. For instance, consider three sensors (e.g., GPS, accelerometer, and transmission vehicle

speed sensor) measuring vehicle speed at the sampling interval of 0.1 seconds. Hence, an

image of size 3×10 would include the data collected from the three sensors during the last one

second of the trip. The CNN therefore utilizes the data from multiple sensors simultaneously

for detection and identification of anomalous values.

CNN models are trained to evaluate these images to detect and identify anomalies in real-

time. Specifically, a sliding window is used on retrospectively collected data from sensors to

produce images for training and testing. Because the goal is both to detect and to identify

anomalies, for each sensor we train a separate model using labeled images, i.e., supervised

learning. That is, if an anomaly is present in an image constructed with the data from the

sensor of interest, the response variable is set to 1; otherwise, it is set equal to 0. Once

separate models are trained to identify anomalies for each sensor, a logical OR operator on

the outcomes of the all such models determines whether anomalous readings are detected

across all sensors.

In our experiments, for each CNN model, a popular image recognition architecture

from the literature is adopted (Krizhevsky et al., 2012). The parameter values for this

architecture are then selected based on a number of experiments performed to maximize

anomaly detection and identification performance on a validation set. In short, we used

three convolution layers with max-pooling, followed by two fully connected layers with

random dropout between the layers. A 1 × 2 pool size is used and 40, 60, and 60 filters

are used for convolutional layers one to three, respectively. Also, a random dropout rate of

0.1 and batch size of 128 is used to train the CNN models. Furthermore, rectified linear
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unit (ReLU) activation functions are used and the Adam optimizer for Tensorflow in Python

is implemented to minimize binary cross-entropy (Kingma and Ba, 2014). The following

parameters were used for the Adam optimization algorithm: learning rate, α = 0.001,

exponential decay rates, β1 = 0.9, β2 = 0.999, and a fuzz factor, ε = 10−8.

It is widely acknowledged that deep learning models such as CNNs are often subject

to ‘overfitting’ during the training process (Krizhevsky et al., 2012; Srivastava and

Salakhutdinov, 2014). To reduce the risk of overfitting, in addition to random dropouts,

we use early stopping to monitor the accuracy of the validation set with a patience of 200

epochs. Therefore, when training a CNN model, starting from any training epoch, if the

validation accuracy during the following 200 epochs does not increase, training is terminated

and the model corresponding to 200 training epochs ago, which resulted in the highest

validation accuracy, is selected.

1.2.3 CNN-Empowered Kalman Filter (CNN-KF)

In order to further improve upon the detection and identification performances of the

individual KF and CNN models, we develop a new framework that relies on both CNN

and Kalman filter as shown in Figure 1.1. In this framework, first CNN models process the

images of raw data from all sensors, which are obtained by using a sliding window over all

sensor readings, to identify whether the readings from each sensor are normal or anomalous.

Consequently, the sensors with anomalous behavior are excluded and the readings from

normal sensors are separately fed into adaptive Kalman filters with failure detectors for

further examination and anomaly detection. If Kalman filter detects anomalies that are

missed by CNN, the readings from the corresponding sensors are excluded and the remaining

normal data are fused in order to achieve a higher degree of reliability. As time passes and the

vehicle continues its trip, if the sensors that presented anomalies go back to normal behavior,

as verified by both CNN models and Kalman filters, the exclusion is no longer necessary and

hence, the readings of the previously excluded sensors would be used in fusion again. In

this study, we use a CNN-empowered Kalman Filter (CNN-KF), as opposed to a Kalman

Filter empowered CNN (KF-CNN), mainly because having the Kalman filter in the last layer

of learning allows for the reliable fusion of the non-anomalous sensor values (Schmidhuber,
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Figure 1.1: Overview of the CNN-KF Framework. At each time epoch, the sensor readings
collected within the past several time epochs are used as an input ‘image’ to the CNN-KF
Framework. The data are first processed with a CNN to detect and identify sensors with
anomalous readings. Next, the CNN-verified non-anomalous data are fed to the KF model
to further detect and identify anomalies to increase reliability.

2015), which is important from a practical perspective for the application considered. In

addition, based on our preliminary experiments, CNN-KF generally outperforms KF-CNN.

Hence, we opted to present the results for CNN-KF only.

1.3 Data

The data for this study is obtained from the research data exchange (RDE) database for the

Safety Pilot Model Deployment (SPMD) program (Bezzina and Sayer, 2014). This program

was conducted with the primary objective of demonstrating CAVs, with the emphasis on

connectivity technologies such as V2V and V2I communications in real-world conditions.

The program recorded detailed and high-frequency (collected every 100ms) data for more

than 2,500 vehicles over a period of two years. The data features extracted from the SPMD

dataset used in this study include the in-vehicle speed (denoted as sensor 1), GPS speed

(sensor 2), and in-vehicle acceleration (sensor 3) for one of the test vehicles with a trip

length of 2,980 seconds. Note that the in-vehicle speed and GPS speed sensors observe
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the same quantity, namely, speed, whereas the acceleration sensor observes the vehicle’s

acceleration which can be used to infer speed.

Since there are no publicly available datasets for CAVs that include anomalies in sensor

measurements, due to either attacks or faults, and the ground truths, we used simulation to

generate datasets for our experiments. Specifically, we accounted for the four major anomaly

types including instant, constant, gradual drift, and bias. We inject all four types of anomaly

into each of the three speed-related (redundant) sensors. We assume the onset of anomalous

values in sensors, due to either attacks or faults, occur independently. That is, we do

not explicitly train models on datasets containing interdependent sensor failures or systemic

cyber attacks on vehicle sensors. Additionally, we assume that no more than one anomaly can

start in every time epoch, which is indeed very unlikely considering that sensors are generally

reliable, and attacks/faults to sensors occur independently. However, dependent on the types,

onset times, and durations of anomalies, multiple sensors may be anomalous at the same time.

There is existing work that illustrates the sensors considered in our numerical study, i.e.,

speed and acceleration sensors, are vulnerable to cyber attacks or faults (e.g., see Petit and

Shladover (2015), Trippel et al. (2017), Currie (2015)). For in-vehicle speed and acceleration

sensors, an injection attack through the CAN bus or the on-board diagnostics (OBD) system,

could give rise to the four types of anomalies considered in this work. Also, for the in-vehicle

acceleration sensor, an acoustic injection attack could result in anomalous sensor values.

Lastly, for the speed measurement from the GPS, both the operating environment of the

vehicle and GPS spoofing/jamming attacks may result in anomalous sensor values.

We generate various datasets for our experiments at 1% or 5% rates of anomalies, denoted

by α. We simulate the anomalies to occur at randomly selected onset times (discretized

into 100ms) to randomly selected sensors. To simulate the corresponding attacks/faults,

these anomalies are then added to each affected sensor’s ‘base value,’ i.e., the normal sensor

readings in the original dataset indicating the traveling speed of the CAV at the time that

the anomaly was introduced. Algorithm 1 presents the pseudo code used for simulating

the anomalies. Note that vectors Vi and V ′i , i ∈ {1, 2, . . . , n}, denote non-anomalous and

anomalous readings for sensor i, respectively. To facilitate thorough experiments, we vary

the simulated anomalies in type, magnitude and/or duration when generating the datasets.
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In addition, dependent on the experiment, we generate datasets where we randomly sample

from a set of one or all anomaly types. The exact types of anomalies considered as well as

their magnitude (and duration) will be discussed in detail for each experiment in Section

1.4.

Algorithm 1 Anomaly generation process

1: α← anomaly rate; n← number of sensors
2: for time epoch t ∈ T do
3: if U(0, 1) ≤ α then
4: ζ ← U(0, 1)
5: for i ∈ {1, 2, . . . , n} do
6: if ζ ≥ i−1

n
and ζ < i

n
then

7: Generate anomaly; V ′i ← Vi + anomaly
8: end if
9: end for

10: else
11: V ′i ← Vi, i ∈ {1, 2, . . . , n}
12: end if
13: end for

1.4 Results

In this section, we perform various analyses to investigate the anomaly detection and

identification performance of the three models discussed in Section 1.2. Specifically, we

present the results obtained when using Kalman filter (KF) and CNN alone, and compare

their performance to highlight their respective capabilities. In addition, we present the results

obtained using CNN-KF framework and compare and contrast its performance with those

of KF and CNN alone. We first investigate the detection performance of all three models

when trained and tested for a single anomaly type in Section 1.4.1. We then investigate the

detection and identification performance of the three models when trained and tested in the

presence of all anomaly types in Section 1.4.2.

In our analyses, we use various datasets in which we simulate various types of anomalies

of different durations and magnitudes to draw insights from the use of CNN, KF, and the

CNN-KF models to detect/identify anomalies in real-time. Note that we need to select
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the parameter γ for KF models and also extensively train CNN models and tune their

many parameters. Hence, for any given dataset, we use a training/validation/testing split of

60%/20%/20%. We use the training and validation sets to tune the model parameters. Next,

to objectively evaluate their performance levels, we use the separate test sets for testing.

We evaluate the performance of the models in terms of accuracy, sensitivity, precision,

and F1 score. Accuracy measures the overall proportion of correct predictions for normal and

anomalous sensor values. Sensitivity assesses the proportion of correctly identified anomalous

sensor values from the total number of anomalous sensor values. Precision measures the

proportion of anomalous sensor values among those predicted as anomalous. Lastly, F1

score is the harmonic mean of sensitivity and precision. These metrics are particularly

chosen as they measure the ability of the models to correctly differentiate between normal

and anomalous sensor behavior. Note that these metrics are commonly used to evaluate the

performance of classification models. Here, for consistency and to enable comparison of all

models, we use the same metrics to evaluate the performance of CNN, KF, and CNN-KF

models.

1.4.1 Models Under a Single Anomaly Type

In this section we compare the detection performance of the three models for the specific

types of anomalies, as discussed in Section 1.1, namely, instant, constant, gradual drift, and

bias. We generate various datasets, each with a specific type of anomaly, with anomaly rate

α = 5%. For each dataset, we train and test CNN models to measure their performance in

detecting the specific anomaly type. Because each sensor reading in our experiment is one

dimensional, the state transition matrix A and measurement matrix H for KF are simply

single values.

Instant

The instant anomaly type is simulated as a random Gaussian variable with mean and variance

of zero and 0.01, respectively, that is scaled by a scalar c ∈ {25, 100, 500, 1,000, 10,000},
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i.e., c × N (0, 0.01), to capture various magnitudes. The resulting simulated value is added

to the base value of sensor measurement for one epoch, i.e., 100 ms.

Table 1.1 illustrates the anomaly detection performance of the KF, CNN, and CNN-KF

models. Considering the detection performance of KF and CNN models, the following is

noted. In general the detection performance of the KF and CNN models increases across all

metrics in the magnitude of the instant anomaly type, which is consistent with the intuition.

For small magnitudes of anomalous sensor values, i.e., the first two rows in Table 1.1, the

detection performance of the models are poor. However, in these cases the difference between

the anomalous sensor values and non-anomalous sensor values are generally too small to

pose any substantial risks to the operation of the vehicle. For magnitudes that may pose

significant risk to the operation of the vehicle, i.e., rows 3–5, the models are able to detect

anomalous behavior with high performance. As seen in the table, KF and CNN models

have similar performance for instant anomalies with large magnitudes. The CNN models

generally outperform KF models in terms of sensitivity, precision, and F1 score. Particularly,

sensitivity is higher in CNN models, which can directly impact the reliability and safety of

fused data in CAVs. A reason for this higher performance of CNN models compared to KF

models is that when the anomalies are small enough, the attack will fall into the region of

gating for the KF model, therefore it cannot be detected by the chi-square test, which results

in a low sensitivity measure. Additionally, unlike the KF models that use the readings by a

single sensor over time to detect any potential anomalies on that sensor, the CNN models use

the readings from all sensors within a time window to detect anomalous behavior by each

individual sensor. This redundancy in information improves the CNN performance when the

anomaly magnitudes are small and therefore harder to detect.

Considering the anomaly detection performance of the CNN-KF model for the instant

anomaly type, the following is noted. Similar to the results for KF and CNN models, the

detection performance across all metrics increases in anomaly magnitude. Furthermore, it

is seen that, in general, the CNN-KF model improves upon the detection performance of

both KF and CNN models as reported in Table 1.1. For instance, for instant anomalies of

magnitude 25×N (0, 0.01) added to the base value (row 1), it is seen that sensitivity and F1

score of the CNN-KF model respectively increase by 13.1% and 18.9% over the KF model,
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Table 1.1: Detection performance of instant anomaly type for the KF, CNN and CNN-KF
models.

KF (%) CNN (%) CNN-KF (%)
Anomaly Magnitude Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1
base value + 25×N (0, 0.01) 95.7 38.4 65.8 48.5 79.1 49.9 97.7 66.0 80.0 51.5 97.6 67.4
base value + 100×N (0, 0.01) 98.6 78.4 93.6 85.3 93.5 85.7 98.1 91.5 93.6 86.2 97.9 91.7
base value + 500×N (0, 0.01) 99.7 95.6 99.0 97.3 98.2 95.8 99.8 97.8 98.3 96.0 99.7 97.8
base value + 1,000×N (0, 0.01) 99.8 96.2 100 98.1 98.7 97.1 99.8 98.4 98.8 97.1 99.8 98.4
base value + 10,000×N (0, 0.01) 99.9 100 99.7 99.8 99.6 99.1 100 99.5 99.7 99.2 99.8 99.5

Table 1.2: Detection performance of constant anomaly type for KF, CNN and CNN-KF
models.

KF (%) CNN (%) CNN-KF (%)
Anomaly Magnitude Dur Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1
base value + U(0, 5) 3 98.5 91.4 98.8 95.0 94.5 89.1 99.8 94.1 94.9 89.9 99.6 94.5
base value + U(0, 5) 5 98.5 94.9 98.5 96.7 94.6 90.7 99.2 94.8 95.1 91.7 99.0 95.2
base value + U(0, 5) 10 97.8 96.0 98.5 97.3 95.5 93.7 99.2 96.4 96.2 94.9 99.1 97.0
base value + U(0, 3) 10 95.7 92.5 96.9 94.6 94.8 92.9 98.8 95.8 95.3 93.9 98.7 96.2
base value + U(0, 1) 10 88.8 78.8 92.4 85.1 90.1 85.2 99.1 91.6 91.2 87.8 98.6 92.7

and by 1.6% and 1.4% over the CNN model. Note that the F1 scores of CNN-KF are larger

that those of CNN in rows 4–5; these numbers only appear to be the same as the numbers in

the table are rounded to one decimal place. Lastly, note that for anomalies with very large

magnitudes (row 5), high performance is found in all models, especially for KF.

Constant

The constant anomaly type is simulated as a temporarily constant observation that is

different compared to the “normal” sensor readings. Similar to the previous case, we simulate

the magnitude of the anomaly that is added to the base value at the onset of the anomaly

using a random variable to capture various magnitudes in any given experiment. Specifically,

the magnitude of a given anomaly is sampled from a uniform distribution U(0, c), where

c ∈ {1, 3, 5}. In addition, here we account for various durations of the anomalous behavior.

Let d denote the number of epochs during which the anomalous behavior is present, where

we use d ∈ {3, 5, 10}.

Table 1.2 shows the results of the constant anomaly type for the KF, CNN, and CNN-

KF models. As seen in rows 1–3, the performance of the KF and CNN models generally

increases in anomaly duration, given that anomaly magnitudes are drawn from the same

random variable. In these cases, because the anomaly magnitude can be somewhat large, KF
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generally outperforms CNN. Similarly, as seen in rows 3–5, given a fixed anomaly duration

(with d = 10), the performance of both KF and CNN models are typically better when the

anomaly magnitudes are generally larger. In general, similar to the detection performance

of the instant anomaly type, the KF model slightly underperforms compared to the CNN

model in the case of low magnitude anomalies (rows 4–5) and slightly outperforms the CNN

model in detecting anomalies with stochastically larger magnitudes (rows 1–3). In addition,

the CNN model generally illustrates a more consistent detection performance across various

anomaly magnitudes and durations compared to KF.

Considering the anomaly detection performance of the CNN-KF model for the constant

anomaly type, the following is noted. The results illustrate that the CNN-KF model

outperforms the KF model when the magnitude of anomalies is relatively small, i.e., in

rows 4–5. In addition, the CNN-KF model clearly outperforms the CNN model with respect

to accuracy, sensitivity, and F1-score across all experiments. Note that the magnitude of gain

in performance is larger when comparing CNN-KF with KF, as opposed to when comparing

CNN-KF with CNN. For instance, in row 5, using the CNN-KF model, as opposed to the KF

model, increases the sensitivity and F1 score by up to 9% and 7.6%, respectively. Compare

these numbers, respectively, with the observed increases of up to 2.6% and 1.1% when using

the CNN-KF model, as opposed to the CNN model. Note that the improved performance

of CNN-KF model over the CNN model is mainly due to the ability of the Kalman filtering

aspect of the CNN-KF model to detect the onset of anomalous behavior faster than that of

the CNN model, especially for larger anomaly magnitudes. Lastly, similar to the results in

Table 1.1, it is seen that KF outperforms CNN-KF for anomalies with large magnitudes.

Gradual drift

The gradual drift anomaly type is simulated by adding a linearly increasing set of values to

the base values of the sensors. Specifically, we use a vector of linearly increasing values from

0 to c ∈ {2, 4}, corresponding to 2 m/s and 4 m/s, respectively, denoted by the function

linspace(0, c). In addition, here again we account for various durations of the anomalous

behavior, namely, d ∈ {10, 20}. For instance, when c = 4 and d = 20, a linearly increasing
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Table 1.3: Detection performance of gradual drift anomaly type for the KF, CNN and
CNN-KF models.

KF (%) CNN (%) CNN-KF (%)
Anomaly Magnitude Dur Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1
base value + linspace(0, 4) 10 94.7 91.4 95.3 93.4 94.4 92.0 99.3 95.5 94.7 93.1 99.2 96.1
base value + linspace(0, 4) 20 92.2 93.0 94.7 93.8 95.7 95.1 99.4 97.2 96.0 95.6 99.3 97.4
base value + linspace(0, 2) 10 90.3 86.5 89.3 87.9 92.7 89.1 99.4 94.0 93.0 89.6 99.3 94.2
base value + linspace(0, 2) 20 83.1 86.5 86.9 86.7 92.8 92.0 98.7 95.3 93.7 93.2 98.7 95.9

Table 1.4: Detection performance of bias anomaly type for KF, CNN and CNN-KF models.

KF (%) CNN (%) CNN-KF (%)
Anomaly Magnitude Dur Acc Sens Prec F1 Acc Sens Prec F1 Acc Sens Prec F1
base value + U(0, 5) 3 98.7 93.4 98.1 95.7 94.0 87.8 99.8 93.4 94.6 89.3 99.5 94.2
base value + U(0, 5) 5 98.2 94.6 97.5 96.0 94.2 89.2 99.9 94.3 94.8 90.6 99.6 94.9
base value + U(0, 5) 10 97.3 95.3 98.0 96.6 94.4 91.3 99.8 95.4 95.9 94.4 99.1 96.7
base value + U(0, 3) 10 95.9 93.2 96.5 94.8 92.4 88.4 99.6 93.7 94.4 92.6 98.6 95.5
base value + U(0, 1) 10 90.1 81.0 93.8 86.9 85.0 77.6 98.6 86.8 88.0 84.8 95.9 90.0

speed of up to 4 m/s (i.e., with an intercept of 0 and a slope of 4/19) is added to the base

speed of the CAV over the next 20 epochs (i.e., 2 seconds).

Table 1.3 shows the results of the gradual drift anomaly type for the KF, CNN, and CNN-

KF models. Gradual drift is one of the most difficult anomalies to detect since it increases

sensor values gradually, therefore making it challenging to detect the onset of anomalous

sensor behavior and differentiating it from normal behavior. Nevertheless, KF and CNN

perform reasonably well across various values of magnitude and duration considered. Similar

to the constant anomaly type, the detection performance of the CNN model increases in

duration and magnitude of the anomalous sensor behavior. Furthermore, as seen in the table,

CNN models consistently outperform KF models across all magnitudes and durations for the

gradual drift anomaly type. That is mainly because the sliding window implementation of

CNN provides additional opportunities to detect gradual drift anomalies compared to KF.

This generally leads to an improved detection performance, even if the anomaly onset is

missed by CNN, which is often the case for gradual drift anomalies.

Considering the anomaly detection performance of the CNN-KF model for the gradual

drift anomaly type, the following is noted. As seen in Table 1.3, this model outperforms

both KF and CNN models across all experiments. For instance, in row 4, using the CNN-

KF model, the sensitivity and F1 score respectively increase by 6.7% and 9.2% compared to

the KF model, and by 1.2% and 0.6% compared to the CNN model.
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Bias

The bias anomaly type is simulated as a temporarily constant offset from the baseline sensor

readings. Similar to the previous cases, we simulate the magnitude of the anomaly using

a random variable to capture various magnitudes in any given experiment. Specifically,

the magnitude of a given anomaly is sampled from a uniform distribution U(0, c), where c ∈

{1, 3, 5}. In addition, here we account for various durations of the anomalous behavior, where

the sampled magnitude is added to all true sensor readings during the specified duration to

generate the anomalous readings. Let d denote the number of epochs during which the

anomalous behavior is present, where we use d ∈ {3, 5, 10}.

Table 1.4 shows the results of the bias anomaly type for the KF, CNN, and CNN-KF

models. As seen in rows 1–3, the performance of the KF and CNN models generally increases

in anomaly duration, given that anomaly magnitudes are drawn from the same random

variable. Similarly, as seen in rows 3–5, given a fixed anomaly duration (with d = 10),

the performance of both KF and CNN models generally decrease when the magnitude of

anomalies stochastically decrease. Interestingly, different from previous cases, in this case

the KF model consistently outperforms the CNN model in all cases examined.

Considering the anomaly detection performance of the CNN-KF model for the bias

anomaly type, the following is noted. The results illustrate that the CNN-KF model

outperforms the KF model when the magnitude of anomalies is relatively small and their

duration is relatively long, i.e., in rows 3–5. In addition, the CNN-KF model clearly

outperforms the CNN model with respect to sensitivity and F1-score across all experiments.

The improved performance of CNN-KF model over the CNN model is mainly due to the

ability of the Kalman filtering aspect of the CNN-KF model to detect the onset of anomalous

behavior faster than that of the CNN model, especially for larger anomaly magnitudes.

In conclusion, as seen in Table 1.1, CNN-KF generally outperforms both CNN and KF

in detecting the instant anomaly type. KF only outperforms CNN-KF when the magnitude

of the anomaly is very large. As seen in Table 1.2, the CNN and CNN-KF models perform

better for anomalies with smaller magnitudes. Similar to Table 1.1, KF performs better for

anomalies with large magnitudes but less so for anomalies with small magnitudes. This is due
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to the fact that when the anomalies are small enough, they fall into the gating region of the

KF model; therefore, they cannot be detected by the chi-square test. Also, as seen in Table

1.3, the CNN-KF model outperforms both KF and CNN models across all magnitudes and

durations considered for the gradual drift anomaly type. This is mainly because CNN-KF

combines the strength of CNN where the sliding window implementation provides additional

opportunities for detection and the ability of KF in detecting the first few epochs of these

anomalies. Lastly, as seen in Table 1.4 for the bias anomaly type, consistent with the results

in Tables 1.1–1.3, the CNN-KF models perform well for anomalies with small magnitudes

and long duration whereas KF performs better for anomalies with large magnitudes and a

small duration.

1.4.2 Models Under Mixed Anomaly Types

In this section we investigate the performance of the models when applied in detection and

identification of various types of anomalies as opposed to the single anomaly types considered

in Section 1.4.1. First, we investigate the generalizability of the models presented in Section

1.4.1 with respect to unseen anomaly types to motivate the need to develop CNN-based

models under mixed anomaly types. Next we develop new models, trained and tested in the

presence of all four anomaly types, where the simulation is run multiple times to provide

confidence intervals (CIs). Specifically, we present the mean performance along with the 95%

CIs, and perform statistical tests to establish whether or not the observed improvements

across models are significant. In addition, we analyze the effect of the rate at which anoma-

lous sensor values may occur (at α = 5% and α = 1%) on the performance of the models.

As seen in Section 1.4.1, CNN and CNN-KF models generally outperform KF models.

However, note that in contrast to CNN models, KF models do not require much effort for

training and they generalize well; only parameters γ and M need to be calibrated for KF

models. Additionally, as we will demonstrate in this section, for CNN models to generalize

well and correctly classify previously unseen observations, they require to be trained on

representative training sets. However, in practice, CAV anomaly detection systems may

encounter various instances of anomalies for which the models are not explicitly trained.

This is particularly important for CAVs since these vehicles will be faced with numerous
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unfamiliar circumstances. Here we present the results of using the trained CNN models

from Section 1.4.1 and testing them on datasets where all types of anomalous sensor values

are present. We break down the results to present the performance of the models in terms of

anomalous sensor values identification. The main objective of this analysis is to investigate

the degree to which each of these models can generalize to detect/identify unseen anomalies.

Table 1.5 presents the performance of training CNN models on one type of anomaly and

using them to identify anomalous sensor values where all anomaly types are present. Each

case presented across three rows provides the performance of a trained model on a particular

training set with the given anomaly type. In the test dataset, the instant, constant, gradual

drift, and bias anomalies are all present and are modeled using 1,000×N (0, 0.01), U(0, 5)

with d = 10 epochs, linspace(0, 4) with d = 20 epochs, and U(0, 5) with d = 10 epochs,

respectively. For instance, for the first case illustrated in Table 1.5, we train the CNN with

the instant anomaly type where anomalies are sampled from 1,000×N (0, 0.01) and we test

the model on the test set where all four anomaly types are present.

As seen in Table 1.5, training the CNN model using only instant anomalous sensor

values results in poor performance, and particularity low sensitivity. This is expected, since

the constant, gradual drift, and bias anomaly types are very different from the instant

anomaly type in both magnitude and duration. Also, note that the identification performance

generally varies across sensors. Specifically, for sensor 3 (i.e., in-vehicle acceleration), across

all experiments, it is seen that the performance metrics are worse than those for the other

two speed sensors. This is partly due to the large variability in consecutive acceleration

measurements compared to the other two speed sensors that tends to report much smoother

readings over time. Lastly, as seen in the table, using the CNN model that is trained on

either constant, gradual drift or bias anomaly type results in reasonable performance across

all sensors with an F1 score of up to 90.1%.

In the next set of experiments, we train the models using datasets in which all types

of anomalous sensor values are present, to estimate the models’ anomaly identification

performance in practice. Table 1.6 illustrates the identification performance and the 95%

CIs across 10 simulation runs, when the anomaly rate is set to 5% (α = 5%) and all types of

anomalies are present. Similar to the results obtained for the specialized models in Section
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Table 1.5: Identification performance of training CNN models on one type of anomalous
sensor values and testing them to identify anomalous sensor values where all anomaly types
are present. The reported values are in percentages.

Anomaly Type
Used in Training

Sensor Acc Sens Prec F1

Instant, 1,000×N (0, 0.01)
1 91.1 64.1 99.3 77.9
2 88.1 59.0 95.0 72.8
3 85.4 44.1 99.9 61.2

Constant, U(0, 5), d = 10
1 95.3 87.0 93.4 90.1
2 90.9 70.8 94.0 80.7
3 89.2 65.2 91.1 76.0

Gradual drift,
linspace(0, 4), d = 20

1 92.5 76.4 91.5 83.3
2 90.6 70.2 93.5 80.2
3 88.2 66.7 85.0 74.7

Bias, U(0, 5), d = 10
1 94.8 88.3 90.4 89.3
2 91.7 70.6 98.1 82.1
3 89.3 61.7 96.2 75.1

1.4.1, as seen in Table 1.6, the CNN model generally outperforms the KF model, especially

with respect to sensitivity and F1 score. Furthermore, the CNN-KF model improves upon the

performance of both KF and CNN models, especially with regard to F1 score as highlighted in

the table. We perform paired t-tests and one-way ANOVA tests to investigate the statistical

significance between the identification performance with respect to F1 score between all

pairs of models, i.e., KF and CNN models, KF and CNN-KF models, and CNN and CNN-

KF models. The p-values obtained indicate statistical significance at 5% level (p-value <

0.05) across all tests performed.

Figure 1.2 presents the in-vehicle speed sensor readings, with and without superimposed

anomalous sensor values, during a 3-second time window of a CAV trip in one of the test sets,

and illustrates the instances at which the anomalous sensor values were detected by each of

the three models. In this example, the anomaly is of type constant, has a relatively small

magnitude of 0.17 m/s (i.e., results in anomalous sensor readings of 18.66 m/s compared to

the base speed of 18.49 m/s at the anomaly onset), and lasts for a period of d = 10 epochs

or 1 second, i.e., from 980 to 989 time epochs, into the CAV trip. As seen in the figure,

the KF and CNN models both fail to identify all anomalous sensor readings during this 1

second period. In contrast, CNN-KF model identifies all anomaly instances. Note that, in

this case, the anomalous sensor values caused by the constant anomaly type are very small
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Table 1.6: Identification performance and the 95% CIs across 10 different executions for all
three models, at the anomaly rate of α = 5% and in the presence of all types of anomalies.
P-values indicate statistical significance at 5% level using paired t-test and one-way ANOVA
tests, between the identification performance of all pairs of models. The reported values are
in percentages.

Model Sensor Acc Sens Prec F1

KF
1

97.8
±0.2

90.5
±1.4

95.9
±1.1

93.1
±0.7

2
98.0
±0.2

90.6
±1.1

96.0
±1.1

93.2
±0.8

3
96.1
±0.3

85.1
±2.6

89.0
±1.8

86.9
±1.4

CNN
1

98.0
±0.3

93.3
±0.7

99.5
±0.2

96.3
±0.4

2
97.0
±0.2

90.4
±0.6

98.7
±0.3

94.4
±0.4

3
94.7
±0.5

83.3
±1.3

97.6
±1.0

89.8
±0.8

CNN-KF
1

98.1
±0.2

94.2
±0.5

99.4
±0.2

96.7
±0.3

2
97.6
±0.2

92.9
±0.5

98.4
±0.4

95.5
±0.4

3
95.7
±0.4

87.3
±1.0

97.3
±0.7

92.0
±0.8

compared to the base speed value, illustrating the effectiveness of the CNN-KF framework

in detecting/identifying the anomalous sensor values.

Lastly, we investigate the effect of the anomaly rate α on the identification performance

of the trained models. Table 1.7 illustrates the identification performance and the 95%

CIs when the previously trained models are tested across 20 different test sets in which the

anomaly rate is set to 1% (α = 1%) and all anomaly types are present. In this experiment we

use a larger number of test sets compared to the previous experiment due to the low anomaly

rate. Similar to the α = 5% case illustrated in Table 1.6, the CNN model outperforms the KF

model, and the CNN-KF model outperforms both the KF and CNN models. Specifically,

the p-values obtained using paired t-test and one-way ANOVA tests indicate statistical

significance at 5% level between the identification performance of all pairs of models with

respect to F1 score. As seen in Tables 1.6 and 1.7, model accuracy increases when the rate

of anomalous sensor values is at α = 1%, compared to α = 5%, as there are fewer anomalous

instances to misclassify; however, F1 score generally decreases at α = 1%, compared to α

= 5%. Note that these results are in general better than those obtained if the training sets
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Figure 1.2: An example illustrating the performance of KF, CNN, and CNN-KF models
in identifying anomalous sensor values of in-vehicle speed sensor readings during a 3-second
time window of a CAV trip.

used were at α = 1% anomaly rate, particularly for CNN and CNN-KF models. This is

mainly because if the training set is highly unbalanced, classification models tend to favor

the more representative class (in our case ‘normal’ readings) and hence, do not generalize

well to detect anomalous sensor values. This is why when training a model on an unbalanced

set, either oversampling or undersampling is utilized (Chawla et al., 2004; Park et al., 2016).

1.5 Discussion

The main objective of this study is to improve safety of CAVs and robustness of their

decisions in the presence of faulty sensors or cyber attacks, which may pose significant risks

to transportation network users. CAVs are expected to use a number of redundant sensors

measuring the same parameters, e.g. speed or location, which can be used to detect and

identify anomalous sensor values by comparing the data collected from the corresponding

sensors. In addition, CAVs collect large volumes of data, often at 100ms or finer intervals,

enabling the use of deep learning techniques to learn complex, nonlinear patterns in the data

to improve overall detection/identification performance. We take advantage of these two
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Table 1.7: Identification performance and the 95% CIs across 20 different executions for all
three models, at the anomaly rate of α = 1% and in the presence of all types of anomalies.
P-values indicate statistical significance at 5% level using paired t-test and one-way ANOVA
tests, between the identification performance of all pairs of models. The reported values are
in percentages.

Model Sensor Acc Sens Prec F1

KF
1

99.3
±0.1

84.5
±2.8

92.1
±1.3

88.0
±1.7

2
99.3
±0.1

84.8
±3.1

92.7
±1.8

88.5
±2.3

3
98.7
±0.2

70.6
±3.6

86.9
±3.4

77.3
±1.9

CNN
1

99.3
±0.1

90.7
±1.0

97.1
±1.1

93.8
±0.9

2
99.1
±0.1

89.8
±1.3

95.0
±1.5

92.2
±0.9

3
98.2
±0.4

79.1
±1.9

94.8
±2.0

86.1
±1.1

CNN-KF
1

99.3
±0.1

91.3
±0.9

96.7
±1.1

93.9
±0.8

2
99.1
±0.1

90.9
±1.0

94.8
±1.4

92.8
±0.9

3
98.5
±0.3

83.2
±1.9

95.0
±1.9

88.6
±1.1

important features of CAVs by combining a deep learning technique, CNN, and a traditional

anomaly detection technique, KF with a failure detector, to address the real-time anomalous

sensor value detection and identification for CAVs. Our approach improves upon both CNN

and KF models, when they are used separately, as it integrates their strengths.

Note that the developed models are able to perform detection and identification, not

prediction. That is, they do not have the capability to preventively detect anomalous sensor

values. However, the models are expected to be used in an online fashion, on high-frequency

data (with the sampling frequency of approximately 100ms) to detect and identify anomalous

sensor values. Therefore, if a sensor starts to transmit anomalous data, it can be identified

and actions may be implemented within a fraction of a second to mitigate its effects.

Introducing sliding windows in CNN and KF-CNN models allows for evaluating sensor

readings holistically and more than once, hence providing additional opportunities for

detection and identification of anomalous sensor values. For instance, all models are at

risk of missing bias and gradual drift anomaly types, particularly if the anomaly magnitudes
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are small. However, in CNN and CNN-KF, even if the onset of anomaly is initially missed,

the anomaly is detected/identified after only a few time epochs, e.g., approximately in 300ms.

1.6 Conclusion and Future Work

The goal of this study is to develop an approach to detect/identify anomalous behaviors in

CAVs to improve their safety. Our results show that the use of deep learning models such as

CNN to detect/identify anomalous sensor values in CAV systems in real-time is a viable path

and it can improve upon the well-established methods such as Kalman filtering with failure

detectors. In addition, our results show that because of the inherent differences between

CNN and KF, combining these approaches can build upon their individual strengths and

hence result in an improved performance. More specifically, we show that by using a CNN-

empowered KF on raw sensor data, it is possible to detect and identify anomalous sensor

values in real-time with high accuracy, sensitivity, precision, and F1 score. This research

contributes to the field of ITS safety as a whole since the success of ITS operations is

heavily dependent on the safe operation of all its respective elements. In addition, CAV

manufacturers and policy-makers may benefit from the observations in this study with

regards to the value of having redundant information for a specific parameter such as the

speed of a vehicle. As a result, more redundant sensors and information gathering devices

may be implemented and considered in CAVs to increase their resiliency against anomalous

sensor values. It is also expected that the CNN-KF framework presented in this study will

be applied to various other sources of information in CAVs to increase their safety.

The study is subject to limitations. First, the anomalous sensor values used in the

experiments, consistent with previous studies in the literature, are simulated, mainly because

this type of data are not yet readily available. In addition, due to paucity of data on

connected vehicles, the experiments are limited to on-board sensors. Although the framework

is generic and can address anomaly detection/identification regardless of the data source,

additional testing is needed as real data becomes readily available. To that end, it should

be noted that the reported performance of the proposed CNN-based methods are only valid
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for those attack types whose effects can be reflected by the four anomaly types considered

in this study.

Furthermore, in this study, we assume the onset of anomalous values in sensors, due to

either attacks or faults, occur independently. Although we do not explicitly train models on

datasets containing interdependent sensor failures or systemic cyber attacks on a vehicle’s

sensors, the framework is expected to still be able to detect such faults/attacks. To improve

model performance under such scenarios, however, additional training using such data is

required. Indeed, it is envisioned that real-world data would be available in the near future

as a result of various ongoing pilot studies (Michigan, Wyoming, New York City, and Tampa)

as well as the introduction of CAVs into society by companies such as Waymo, Uber, Audi,

and Tesla.

In future work, it may be useful to distinguish between anomalous and malicious

information, since this will influence the action taken to mitigate their effects. Also, it

may be beneficial to also identify the type of anomaly occurring. This, in turn, will enable

the development of certain real-time actions to minimize the impact of cyber attacks and/or

faulty sensors, therefore contributing to the development of effective counter-measures.
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Chapter 2

Optimal Switching Policy Between

Driving Entities in Semi-Autonomous

Vehicles
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Abstract

In the future, autonomous vehicles are expected to safely move people and cargo around.

However, as of now, automated entities do not necessarily outperform human drivers under

all circumstances, particularly under certain road and environmental factors such as bright

light, heavy rain, poor quality of road and traffic signs, etc. Therefore, in certain conditions

it is safer for the driver to take over the control of the vehicle. However, switching control

back and forth between the human driver and the automated driving entity may itself pose

a short-term, elevated risk, particularly because of the out of the loop (OOTL) issue for

humans. In this study, we develop a mathematical framework to determine the optimal

driving-entity switching policy between the automated driving entity and the human driver.

Specifically, we develop a Markov decision process (MDP) model to prescribe the entity

in charge to minimize the expected safety cost of a trip, considering the dynamic changes

of the road/environment during the trip. In addition, we develop a partially observable

Markov decision process (POMDP) model to accommodate the fact that the risk posed by

the immediate road/environment may only be partially observed. We conduct extensive

numerical experiments and thorough sensitivity and robustness analyses, where we also

compare the expected safety cost of trips under the optimal and single driving entity policies.

In addition, we quantify the risks associated with the policies, as well as the impact of miss-

estimating road/environment condition risk level by the driving entities, and provide insights.
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2.1 Introduction

It is expected that connected and autonomous vehicles (CAVs) will increase road safety,

reduce travel time, improve comfort, improve fuel efficiency and decrease fatal accidents by

as much as 40% in the future (Fagnant and Kockelman, 2015; Guler et al., 2014). However,

before transportation systems are fully connected and automated, there will be a transition

period where the driver is required to retake control of the vehicle from the autonomous

system at certain times under various circumstances (Campbell et al., 2018).

The Society of Automotive Engineers (SAE) has identified 6 levels of autonomy (levels

0 through 5) that reflect the nature of interactions between an automated vehicle and the

driving environment as well as the degree of driver involvement (SAE, 2016). Level 0 refers

to the driver performing all dynamic driving tasks. Level 1 automation entails assisted

automation where advanced driver assistance systems (ADAS) perform steering, acceleration

or deceleration. Level 2 automation is present if one or more assisted automation tasks are

performed by the autonomous system where the driver is responsible for the monitoring of

the driving environment and ultimately the control of the vehicle.

In level 3 and higher automation levels, the autonomous system continuously monitors the

environment using sensors, cameras, radars, and a global positioning system (GPS) feeding

information to the control software. A typical autonomous system in a vehicle acquires

information, analyzes the information, and then implements the optimal action/decision.

Specifically, in level 3 automation the vehicle can autonomously drive for the most part;

however, drivers are encouraged to monitor the driving environment at all times and are

expected to take over the control when requested by the autonomous system in certain

situations. In level 4 automation, the autonomous driving system is able to perform all

driving tasks under certain conditions and the driver has the option to control the vehicle.

In level 5 automation, the autonomous driving system is able to perform all driving tasks in

all conditions.

It is often argued that fully autonomous vehicles (level 5) will be able to outperform

human drivers and hence relying on autonomous driving technology will improve safety;

however, many experts argue that there is still a long way ahead. First, for the foreseeable
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future, the presence of human drivers will be required in all autonomous vehicles due to

technology limitations and certain legislative factors (Goodrich and Boer, 2000; Parasuraman

and Manzey, 2010; Kyriakidis et al., 2015). In addition, autonomous vehicles consist of

highly complex electronic systems interacting with hardware and the environment making

them vulnerable to certain threats that may pose risk to people in the vehicle as well as

pedestrians and other road users (Petit and Shladover, 2015). As evident by the recent

crash records for vehicles with varying degrees of autonomy, one major threat is extreme

road and immediate environmental conditions which may affect the integrity and reliability

of autonomous technologies. Road and environmental factors such as bright light, heavy rain,

snow, or fog and poor road and traffic signs quality may affect the ability of autonomous

systems to function properly (Tesla, 2017). For instance, in 2016, a fatal accident occurred

when a level 2 autonomous vehicle was in control and collided with a tractor-trailer that was

making a turn. The autonomous system sensors failed to recognize the difference between

the truck and bright sky, causing the collision. In 2017, another vehicle with autonomous

capabilities crashed into a road construction barrier after it failed to recognize the roadway

and merge into another lane (Lambert, 2017). This occurred as a result of various factors

including poorly implemented road construction and failure in the ability of the autonomous

system to recognize the upcoming wall.

Overall, implementing intermediate levels of automation, i.e., levels 2 through 4, is seen

as the next phase in the mass adoption of autonomous driving technologies. Indeed, over

the past decade, there has been a rapid increase in the development of vehicles equipped

with advanced driver assistance systems. Vehicle manufacturers such as Tesla, Toyota,

BMW, Nissan, Audi, General Motors, and Volvo have equipped vehicles with autonomous

technologies such as autonomous emergency braking (AEB), adaptive cruise control (ACC),

lane keeping assist (LKA), and automatic parking constituting various levels of autonomy

as specified by the SAE (SAE, 2014; Lu and de Winter, 2015). Manufacturers like Audi and

Tesla already have implemented level 3 automation in recently released models. In levels 2

through 4, it is envisioned that the human driver has the option to take over the control of

vehicle. Therefore, if high risk circumstances are anticipated, there is a possibility to pass

the control to the human driver in a timely manner to reduce the overall safety risk.
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Switching control back and forth between the human driver and the autonomous driving

entity to maximize safety may not be straightforward as every such switch can itself pose

a short-term, elevated risk. With intermediate levels of automation, drivers are expected to

engage in various activities (e.g., smartphone and tablet use) while the autonomous system is

in control, but will be required to take control of the vehicle at certain times or based on feed-

back from the system. Hence, one of the factors that makes the transition of control between

the two driving entities challenging is the potentially long transition time for transferring the

control from the autonomous system to the driver due to a phenomenon known as the ‘out-of-

the-loop’ (OOTL) problem, caused by the disengagement of the driver from the environment.

After being disengaged from the driving environment during the period where the

autonomous system is in control, drivers are naturally expected to have higher reaction

times (RT). Even in levels 0-2 autonomy, drivers need time to recognize the occurrence of

an out-of-the-ordinary event, decide on an appropriate action, and act upon this decision.

Research shows that RT can vary widely, ranging from 0.7 seconds when an event is expected,

to 1.5 seconds when it is not (e.g., sudden braking from the lead vehicle) (Green, 2000). Even

when drivers have full control of the car during the entire trip, their “expectation” can affect

reaction times by as much as a factor of 2 (Green, 2000). With the promise of freedom

from constant engagement with the driving environment, level 3 autonomy can have more

dramatic affects on driver reaction times, increasing the time it takes to regain the driver’s

attention to 3 to 7 seconds, even with visual and verbal warnings, according to a study by

Audi (Davies, 2015).

To that end, OOTL problems arise when the driver has to re-take control of the vehicle

from the automated system after engagement with secondary tasks over a period of time.

De Winter et al. (2014) showed that the workload of drivers and situation awareness are

vastly different for driving with assisted autonomy, i.e., levels 1 and 2 autonomy, compared to

highly automated driving (HAD), i.e., level 3 and higher autonomy. More specifically, mental

workload and situation awareness generally decrease with increasing levels of automation

and the brake reaction time of drivers increase for automated systems compared to manual

driving (Young and Stanton, 2007; Kaber and Endsley, 2004; Merat et al., 2014b). Other

studies have investigated the effect of the transition of control authority on the way drivers
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reclaim control of the vehicle, also known as ‘take-over quality’ (Miller et al., 2015; Merat

et al., 2014a; Strand et al., 2014; Koo et al., 2016). In general, these studies conclude that for

higher levels of autonomy drivers need more time to re-obtain full control over the vehicle. In

addition, for short warning times it was found that the take-over quality drastically decreases,

therefore illustrating that accidents and near-accidents are likely to occur when the driver

resumes control. In poor quality take-overs, it was found that the transition process may

result in situations where drivers accidentally swerve, brake harshly, or perform sudden lane

changes (Eriksson and Stanton, 2017). Automation may therefore often reduce the workload

during non-dangerous driving conditions, but sudden control changes may be detrimental to

driving safety (Rudin-Brown and Parker, 2004; Koo et al., 2016).

Therefore, it is necessary to balance the short-term risks of switching entity and the

long-term risks of continuing with the entity in charge, given the dynamic changes of

road/environment. In this study, we develop a mathematical framework to optimally

plan a trip by dynamically switching the control between the human driver and self-

driving technology to provide the safest driving profile. Specifically, first we develop a

Markov decision process (MDP) model to prescribe the driving entity in charge and the

timing of transfers as a function of the road condition and environmental changes. The

objective is to determine the optimal driving-entity switching policy to minimize the total

expected discounted cost of possible accidents, considering the dynamic changes of the

road/environment during the trip. This model is relatively compact and provides an

opportunity to easily investigate the impact of switching driving entities and draw insights

about the risks involved.

However, note that in this MDP model, we assume the road/environment condition is

completely observable, i.e., both driving entities can accurately assess the road/environment

condition during the trip and determine its exact safety risk level. Clearly, this implies that

the vehicle is equipped with an algorithm that can accurately evaluate the road/environment

condition and determine its exact safety risk level. Given the advances in machine learning

and image processing, this may soon become a reality. However, most existing algorithms,

as well as human drivers, are not always one hundred percent accurate in their evaluations.

Hence, we also relax this assumption and develop a partially observable Markov decision
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process (POMDP) model, in which the risk posed by the road/environment condition is

only ‘partially’ observed and is prone to erroneous estimations.

The chapter is organized as follows. We formulate the model under complete and partial

information in Section 2.2. In Section 2.3, we provide extensive computational studies to

illustrate the benefits of switching control authority and investigate the model sensitivity

and robustness with respect to those model parameters that are most difficult to calibrate.

Lastly, we conclude in Section 2.4 and provide insights.

2.2 Model Formulation

In this section, we formulate models under different conditions to determine the optimal

driving entity. First, we assume the model has complete information regarding the state of

the system in which case we formulate a Markov decision process (MDP). That is, we assume

the model has perfect information regarding the location, environment, and driving entity in

charge. Next, we assume partial information regarding the state of the environment where

it is assumed that the environmental risk is obtained through a separate algorithm. In this

case, we formulate the system as a partially observable Markov decision process (POMDP).

2.2.1 Under Full Information

In this section, we develop an MDP model to optimally plan a trip by dynamically switching

the control between the human driver and the autonomous driving entity to minimize the

total expected cost of accidents throughout a trip. In this study, three types of consequences

for a motor vehicle crash are considered, namely, vehicle damage, bodily injury, and fatality,

to each of which a cost is assigned. Every time period (e.g., every second), a decision is

made as to whether the human driver or the car needs to take control of the vehicle. It is

assumed that the car can immediately take over the vehicle control from the human driver

once a decision for this switch is made. However, dependent on the driver’s reaction time,

it may take up to a few seconds for the human driver to take over the vehicle control if such

a decision is made.
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Let st = (µ, φ, d) ∈ S denote the state of the process at time t ≤ T , where T <∞ denotes

the length of the time horizon. Let the vector µ = [`, ξ] denote the location-environment

vector. Specifically, the vector ` ∈ L denotes the location of the vehicle, where the set

L includes the location of the origin and destination, denoted by `O and `D, respectively,

and all other locations in the path between the origin and the destination. In addition, the

vector ξ ∈ Ξ denotes the state of the road/environment, e.g., weather, number of pedestrians,

quality of the road segment, etc. Furthermore, we let φ ∈ {I, C} denote the entity in charge

of driving the vehicle, where I refers to the ‘individual’ and C refers to the ‘car.’ Lastly, we

let d denote the time to the next scheduled switch in the driving entity from the car to the

individual, if it is previously scheduled, and assign to it the value -1, otherwise.

We discretize time into periods, e.g., seconds. At the beginning of every time period, a

decision is made as to whether the human driver or the car needs to take control of the vehicle.

Let a ∈ A = {I, C} denote the action taken in each decision epoch. Recall that although

the car can immediately take over the vehicle control from the individual, dependent on the

individual’s reaction time, it may take up to a few seconds for the individual to take over the

vehicle control. Let k > 0 denote the length of time it takes for the driver to take over the

vehicle control from the car once a decision is made to switch the control. Also, we let cA

denote the cost of alerting the individual to take over the control, and cP denote the penalty

of foregoing a previously made decision to hand over the control to the individual before it

is implemented. These costs penalize unnecessary alerts that may cause alarm fatigue in the

long run.

Let pφ(µ) denote the probability of accident for the driving entity φ at location-

environment µ, and let q0(φ,µ), q1(φ,µ), and q2(φ,µ) denote the conditional probability

of damage, injury and fatality, given an accident occurs for driving entity φ at location-

environment µ, respectively. Similarly, let ζφ(µ) denote the probability of accident at

location-environment µ as a result of a switch of the vehicle control to entity φ, and let ρ0(µ),

ρ1(µ), and ρ2(µ) denote the conditional probability of damage, injury and fatality, given an

accident occurs at location-environment µ following the switch in driving entity, respectively.

Let c0, c1, and c2 denote the cost of damage, injury and fatality of an accident,

respectively. Consequently, let β(φ,µ) denote the expected immediate cost of accident for
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driving entity φ at location-environment µ, given an accident occurs for this entity. Also,

let γ(φ,µ) denote the expected immediate cost of an accident after switching the vehicle

control to entity φ at location-environment µ. These costs are given by

β(φ,µ) =
2∑
i=0

qi(φ,µ)ci and γ(φ,µ) =
2∑
i=0

ρi(µ)ci. (2.1)

Let p(ξ′|ξ) denote the probability that the road/environment state transitions from vector

ξ to ξ′. In addition, it is assumed that the location of the vehicle along the path from the

origin to the destination is fully observed through the GPS system at every time period. Let

`′ denote the location of the vehicle at the end of a time period. Let α denote the discount

factor.

Finally, let V ∗t ([`, ξ], φ, d) denote the minimum expected discounted cost-to-go starting

at time t with the driving entity φ at location ` under the road/environment state ξ, when

the next switch to individual is scheduled in d time periods. The problem terminates when

t = T or ` = `D, i.e.,

V ∗T ([`, ξ], φ, d) = 0 ∀`, ξ, φ, d and V ∗t ([`D, ξ], φ, d) = 0 ∀t, ξ, φ, d. (2.2)

For t < T and ` 6= `D, when φ = I, the minimum expected discounted cost starting from

the location-environment vector µ is given by

V ∗t (µ, I,−1) = min
a∈A

(2.3)pI(µ) · β(I,µ) + (1− pI(µ)) ·
∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], I,−1),

ζC(µ) · γ(C,µ) + (1− ζC(µ)) ·
[
pC(µ) · β(C,µ) + (1− pC(µ)) ·

∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C,−1)
]
.

Starting from state st = (µ, I,−1), the first expression in equation (2.3) gives the total

expected discounted cost when the decision is to allow the individual to continue driving,

i.e., a = I. In this case, if an accident occurs with the individual in control, a lump-sum cost

incurs and the problem terminates. Otherwise, the process continues starting from the next

period, with an updated location and a new road/environment state where the individual

is driving and no switches are scheduled. Starting from state st = (µ, I,−1), the second
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expression in equation (2.3) gives the total expected discounted cost when the decision is

to hand over the control to the car, i.e., a = C. In this case, the car can immediately take

over the control of the vehicle; however, such a switch can pose an instantaneous, elevated

risk of accident. If an accident occurs as a result of the switch, a lump-sum cost incurs

and the problem terminates. If the switch does not result in an accident, an accident can

still occur with the new entity, i.e., the car, in charge. If such an accident occurs, again

a lump-sum cost incurs and the problem terminates. Finally, if no accident occurs in this

period, the process continues starting from the next period, with an updated location and a

new road/environment state where the car is driving and no switches are scheduled.

For t < T and ` 6= `D, when φ = C and d = −1, the minimum expected discounted cost

starting from the location-environment vector µ is given by

V ∗t (µ, C,−1) = min
a∈A

(2.4)
cA + pC(µ) · β(C,µ) + (1− pC(µ)) ·

∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C, k − 1),

pC(µ) · β(C,µ) + (1− pC(µ)) ·
∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C,−1).

Equation (2.4) is similar in structure to equation (2.3). Starting from state st = (µ, C,−1),

the first expression in equation (2.4) gives the total expected discounted cost when the

decision is to hand over the control to the individual, i.e., a = I. In this case, the individual

is immediately alerted about the decision at the immediate cost of cA; however, the individual

would not take over the control until k periods later. Meanwhile, the car remains in charge.

If an accident occurs while the car is in charge, a lump-sum cost incurs and the problem

terminates. Otherwise, the process continues starting from the next period, with an updated

location and a new road/environment state where the car is still in charge but a switch is

scheduled for k− 1 periods later. Starting from state st = (µ, C,−1), the second expression

in equation (2.4) gives the total expected discounted cost when the decision is to allow the

car to continue driving, i.e., a = C. This expression is similar to the first expression in

equation (2.3), with the exception of setting φ to be C instead of I throughout.
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For t < T and ` 6= `D, when φ = C and d > 0, the minimum expected discounted cost

starting from the location-environment vector µ is given by

V ∗t (µ, C, d) = min
a∈A

(2.5)
pC(µ) · β(C,µ) + (1− pC(µ)) ·

∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C, d− 1),

cP + pC(µ) · β(C,µ) + (1− pC(µ)) ·
∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C,−1).

Analogous to equations (2.3) and (2.4), the first and second expressions in equation (2.5)

give the total expected discounted cost starting from state st = (µ, C, d) for a = I and a = C,

respectively. If a = I, because a switch in control is previously scheduled, the car continues

driving until the end of the period, at which point the remaining time to the scheduled

switch is decreased by 1 unit to d−1. If a = C, it overrides the previously scheduled switch,

an immediate penalty incurs and the vehicle remains the entity in charge with no switches

scheduled.

Finally, for t < T and ` 6= `D, when φ = C and d = 0, the minimum expected discounted

cost starting from the location-environment vector µ is given by

V ∗t (µ, C, 0) = min
a∈A

(2.6)
ζI(µ) · γ(I,µ) + (1− ζI(µ)) ·

[
pI(µ) · β(I,µ)+

(1− pI(µ)) ·
∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], I,−1)
]
,

cP + pC(µ) · β(C,µ) + (1− pC(µ)) ·
∑
ξ′∈Ξ p(ξ

′|ξ) · α · V ∗t+1([`′, ξ′], C,−1).

Analogous to equations (2.3)-(2.5), the first and second expressions in equation (2.6) give

the total expected discounted cost starting from state st = (µ, C, 0) for a = I and a = C,

respectively. If a = I, because d = 0, the driving entity immediately switches to the

individual, due to which an accident can occur. In this case, if an accident occurs either as

a result of the switch or after the individual takes complete control, a lump-sum cost incurs

and the problem terminates. Otherwise, the process continues starting from the next period

with the individual in charge, where no switches are scheduled. If a = C, it overrides the
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previously scheduled switch and the same expression as the second expression in equation

(2.5) follows.

2.2.2 Under Partial Information

In this section, we assume that the state of the environment, ξ, is only partially observed.

That is, we assume the vehicle is equipped with an algorithm, e.g., a sequential image

classification algorithm, that can estimate the degree of risk in the environment. Clearly,

such an algorithm is subject to error and does not necessarily have 100% sensitivity or

specificity. Hence, we assume the information only partially informs the authority switching

decision making process.

We assume the set Ξ is countable, and let πt = [πξt (ξ1), πξt (ξ2), . . . , πξt (ξ|Ξ|)] denote the

belief state of the environment, where πξt (ξj) ≥ 0 is the probability that the vehicle is in

road/environment state ξj ∈ Ξ at time t and
∑|Ξ|

j=1 π
ξ
t (ξj) = 1. At every time epoch, the

algorithm is used to observe the state of the environment, where the observation is later

incorporated to update the belief vector. Let oξt denote the observation made about the

state of the environment at time t.

Let zt = (`,π, φ, d) denote the state of the process, including the fully known information

and partially informed state of the environment, at time t ≤ T , where T < ∞ denotes the

length of the time horizon. Let W ∗
t (`,π, φ, d) denote the minimum expected discounted cost-

to-go starting at time t, the driving entity φ in charge, at location ` under the environment

belief vector π, when the next switch to individual is scheduled in d time periods. Similar

to Section 2.2.1, the problem terminates when t = T or ` = `D, i.e.,

W ∗
T (`,π, φ, d) = 0 ∀`,π, φ, d and W ∗

t (`D,π, φ, d) = 0 ∀t,π, φ, d. (2.7)
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For t < T and ` 6= `D, when φ = I, the minimum expected discounted cost starting from

any location ` and environment belief vector π is given by

W ∗t (`,π, I,−1) = min
a∈A

(2.8)

∑
ξ∈Ξ π

ξ
t (ξ) · pI(µ) · β(I,µ)+∑

ξ∈Ξ π
ξ
t (ξ) · (1− pI(µ)) ·

∑
ξ′∈Ξ

∑
oξt+1∈Ξ

p(ξ′|ξ)p(oξt+1|ξ′) · α ·W ∗t+1(`′,π′, I,−1),∑
ξ∈Ξ π

ξ
t (ξ) ·

[
ζC(µ) · γ(C,µ) + (1− ζC(µ)) · pC(µ) · β(C,µ)

]
+
∑
ξ∈Ξ π

ξ
t (ξ)·

(1− ζC(µ)) · (1− pC(µ)) ·
∑
ξ′∈Ξ

∑
oξt+1∈Ξ

p(ξ′|ξ) · p(oξt+1|ξ′) · α ·W ∗t+1(`′,π′, C,−1),

where π′ = [πξt+1(ξ1), πξt+1(ξ2), . . . , πξt+1(ξ|Ξ|)] and

πξt+1(ξi) =
p(oξt+1|ξi)

∑
ξj∈Ξ p(ξi|ξj)π

ξ
t (ξj)∑

ξi∈Ξ p(o
ξ
t+1|ξi)

∑
ξj∈Ξ p(ξi|ξj)π

ξ
t (ξj)

∀ξi ∈ Ξ. (2.9)

Equation (2.8) is analogous to equation (2.3) in Section 2.2.1, where the first and second

expressions in the equation give the total expected discounted cost when the decisions are to

allow the individual to continue driving, i.e., a = I, and to hand over the control to the car,

i.e., a = C, respectively. Similarly, analogous to equations (2.4), (2.5), and (2.6) in Section

2.2.1, Bellman equations can be written for t < T and ` 6= `D, when φ = C and d = −1,

d > 0, and d = 0, respectively.

To solve the developed POMDP model, we use the asynchronous advantage actor critic

(A3C) algorithm (Mnih et al., 2016). In summary, the A3C algorithm is a deep reinforcement

learning (DRL) algorithm where a global control network employs multiple agents (each

having their own set of network parameters) interacting with an environment to maximize

the total expected discounted rewards resulting from their actions. At the start of each

training epoch, the agents reset their network parameters to that of the global network.

The agents then interact with the environment, calculating the value loss and policy loss

in the process. Each agent then gets new learning gradients from these losses, after which

the global network is updated asynchronously with these gradients. In the A3C algorithm,

being an actor-critic method, a critic learns the value function while the actor interacts

with the environment attempting to learn a policy to maximize/minimize a given objective
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function. The global network is updated asynchronously to learn more efficiently and to

reduce correlation between training episodes. This leads to an overall more diverse set of

training samples where the learning experience of each agent is independent. The A3C

algorithm uses advantage, as opposed to Q-values used by numerous other DRL methods

(e.g., see Van Hasselt et al. (2016); Gu et al. (2016)). The benefit of using advantage rather

than discounted rewards is that the agent can determine how much better certain actions

are for a particular system state.

2.3 Computational Study

In this section, we present various numerical experiments under both full- and partial

information regarding the environment. Under full/complete information, we assume the

model has perfect information regarding the state of the system in which the MDP model is

utilized. Under partial information, we assume the environmental risk is obtained through a

separate algorithm (such as a convolutional neural network) and is therefore only partially

observable to the system in which case we use the POMDP model.

2.3.1 Computational Study Under Full Information

In this section we first present an illustrative example, for which we find an optimal policy

and examine the impact of its implementation during an example trip. We then introduce

a number of additional metrics to quantify the risks associated with different driving entity

switching policies. Finally, we perform extensive sensitivity and robustness analyses to

investigate the effect of model parameters on the total expected discounted cost and risk

under the optimal and benchmark policies. The models are calibrated using simulated data.

For detailed information on model calibration refer to Appendix B.

In our computational study, to facilitate the presentation of the results, without loss

of generality, we use a one-dimensional map where we set the vehicle to advance a unit

of distance per time period. This also eliminates the need to include both t and ` in the

model. Consequently, we simplify the state definition to s = ([`, ξ], φ, d), where the process

transitions from s to s′ = ([` + 1, ξ′], φ′, d′) in every time period and it terminates when
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` = `D. In addition, for simplicity, in our computational study the road/environment vector,

ξ, is summarized into three ‘risk levels,’ namely, ξ = 0, 1, 2, corresponding to low, average,

and high risk, respectively. To obtain the optimal policy, i.e., the cost-minimizing driving

entity switching policy, the backward induction algorithm is executed (see Puterman (1994),

page 92).

To put the total expected discounted cost under the optimal policy in perspective, two

benchmark policies are used throughout the computational study, corresponding to cases

when only the car or the individual can drive throughout the entire path from the origin to

the destination. We let π∗ denote the optimal policy, and πC and πI denote the policies where

only the car or the individual can drive, respectively. In addition, we let V χ(s) denote the

total expected discounted cost obtained starting from state s under policy πχ ∈ {π∗, πC , πI}.

An Illustrative Example

In this section, we present an example optimal policy and the impact of its implementation

during an example trip. We then compare the total expected discounted cost under the

optimal and benchmark policies.

In this example, a destination on the line segment [0,500] is randomly generated and then

links are randomly selected on the path from the origin at location 0 to the destination. The

path and its junction points are as follows: [0, 18, 90, 144, 202, 231, 253], with the following

link lengths from the origin to the destination: [18, 72, 54, 58, 29, 22]. This path may be

interpreted as follows: Starting from the origin, i.e., location 0, the vehicle first needs to

traverse a link of length 18 units to reach location 18. From this location, the vehicle needs

to travel through a link of length 72 units to reach location 90, etc. Finally, the vehicle

reaches the destination at location 253. Note that the definition of a link in this context is

different from the typical link definition in transportation networks. A link here is defined

as a path that is distinct from its connecting links in at least one of the following criteria:

Speed limit, road curvature, road quality, etc. For more details on parameter values, see

Appendix B.

In general, in this illustrative example, the car is considered to be a safer driving entity

than the individual, and the probabilities pφ(µ) and ζφ(µ) are generated to reflect this
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Figure 2.1: An example MDP-generated optimal authority switching policy.

assumption. On the fourth link, however, the probability distributions are changed so as to

create a situation in which an individual driver would be the safer choice to possibly trigger

a change in driving entity. In addition, the probability pC(µ) is increased by 50 and 100

folds for average and high risk conditions, respectively, on this specific link. In real-world

conditions, this increase in risk of accident for the automated driving entity may be related to

a road section in which lane changes are poorly implemented due to construction activities.

It has been shown that such circumstances can cause major uncertainty in the autonomous

system’s decision-making capabilities (Lambert, 2017). For more details on the probability

distributions, refer to Appendix B.

Figure 2.1 presents the optimal MDP-generated authority switching policy for the

calibrated model. The optimal driving entity switching policy prescribes the optimal action

for every state of the system. Specifically, Figures 2.1(i)-(ii) present the optimal policy

plots when the individual (I) and the car (C) are in control, respectively, and no switch is

50



scheduled, i.e., d = −1. Figures 2.1(iii)-(iv) present the optimal policy plots when the car is

in control, but a switch is scheduled in d seconds. The horizontal axes in the figure display

the set of locations alongside the trip, and the vertical axes show the road/environment

conditions. At a given location and under a given risk level, a dark-shaded (blue) dot

indicates that the optimal policy is for the human driver to be in control, while a light-

shaded (gold) dot indicates that it is optimal for the autonomous entity to be in control.

It is interesting to observe and interpret optimal control policies to find structures that

would be present regardless of parameter values. Similar to the example policy plots in

Figure 2.1, in our numerical experiments, we consistently observe that the plots are identical

for all d ∈ {1, . . . , k − 1}. This is because when the car is in control, but a non-imminent

switch to the individual is scheduled (φ = C and d > 0), the car must retain control for d

time epochs, which translates into a distance of d units under a constant speed, while issuing

an alert to the individual to minimize the effect of OOTL problems. Hence, foregoing the

alert at d > 0 does not hold any additional value as there is still an opportunity to forgo

the alert until d reaches 0. Therefore, the model prescribes the vehicle to issue an alert as

planned and only forgo the alert at the last decision epoch prior to the switch, i.e., when

d = 0, if needed to assure that the best decision is made considering the dynamic changes

of the road/environment.

In addition, we also observe intuitive behavior with respect to changes in total expected

discounted cost. For instance, across all our experiments, we observe that the total expected

discounted cost V ([`, ξ], φ, d) is non-increasing in ` for a trip, for any given ξ, φ, and d values.

This is mainly because the shorter the remaining length of the trip, the smaller the overall

likelihood of getting involved in an accident, hence the observed decreasing behavior in total

expected discounted cost-to-go starting from any state along the path. Also, we observe

that the total expected discounted cost V ([`, ξ], φ, d) is non-decreasing in ξ for any given

`, φ, and d values. This is also consistent with intuition, which suggests that starting from

any state, the higher the risk of the road/environment state (as a result of bad weather,

traffic congestion, pedestrians in the immediate physical environment, etc.), the higher the

total expected discounted cost-to-go, mainly because of the greater likelihood of getting

involved in an accident right away due to the higher risk.
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Figure 2.2: A sample path of states under the optimal policy starting from state s =
([0, 0], I,−1).

Figure 2.2 illustrates the optimal actions for a sample path of road/environment condition

along this trip, starting from state s = ([0, 0], I,−1). Specifically, the figure depicts the

observed state of the road/environment during the trip from the origin to destination, where

the shade of the points represent the entity in control as prescribed by the optimal policy,

illustrated in Figure 2.1. The light- and dark-shaded points represent the individual and the

car are in control, respectively. Lastly, the plus-shaped markers indicate that an alert is being

issued for the driver to take over the control from the car, while the car is still in control.

As seen in the figure, the individual is in charge at the origin. However, consistent

with the optimal policy in Figure 2.1(i), the control is immediately handed over to the car.

Based on the optimal policy in Figure 2.1(ii), the car remains in charge throughout the

first three links, namely, (0, 18) and (18, 90), and (90, 144). During this part of the trip

the car occasionally faces average and high risk conditions. Finally, consistent with the

optimal policy in Figure 2.1(ii), and intuition, starting from location 140, as the vehicle

approaches link 4 (in which the individual is the safer control authority), it becomes optimal

for the vehicle to prepare for passing the control to the individual. Hence, consistent with

the optimal policy in Figures 2.1(iii)-(iv), the car remains in control for the next k = 5

seconds while an alert is being issued to the individual to prepare to take over the control.

Consequently, the control is passed to the individual. Consistent with the optimal policy

in Figure 2.1(i), the individual remains in control during the high risk link (144, 202) until

the car takes back the control at location 202. Lastly, consistent with the optimal policy in

Figure 2.1(ii), the vehicle continues the trip during the final two links with the car in control,

until it reaches the destination at location 253. Note that no accident occurred during this

trip as the vehicle started from the origin and reached the destination.
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Table 2.1: Comparison of the optimal policy with the two benchmark policies πI and πC .

Road/environment

condition, ξ

Starting driving

entity, φ

Total expected discounted cost

Under the

optimal policy, V ∗

When only the

individual can

drive, V I

When only

the car can

drive, V C

Low risk
Individual 462.89 1,623.23 -

Car 456.29 - 937.81

Average risk
Individual 593.57 1,985.05 -

Car 579.73 - 1,061.04

High risk
Individual 1,087.46 2,582.09 -

Car 1,046.90 - 1,527.81

Table 2.1 presents the total expected discounted cost obtained starting from the

origin when no switch is scheduled, i.e., d = −1, under various initial road/environment

conditions, ξ, and entities in charge, φ. First note that, as expected, the worse the initial

road/environment condition, the higher the total expected discounted cost of the trip under

any given policy. More importantly, as seen in the table, the cost under the optimal policy

is much lower, compared with that under the two benchmark policies. Note that the cost

corresponding to πI is generally higher than under πC as the model calibration renders the

car as the generally safer option, except in the fourth link (144, 202).

Additional Metrics

In the following, we introduce a number of additional metrics to quantify risks associated

with different policies and facilitate their comparison.

Total expected discounted risk of accidents under policy πχ, Rχ(µ, φ, d). This

metric calculates the total expected discounted likelihood of accident during a trip, starting

from the state s = (µ, φ, d), under a given driving entity switching policy πχ ∈ {π∗, πC , πI}.

The risks consist of the probability of accident while driving with the entity in charge due

to location/environment-related reasons and when switching the driving entity.

To calculate the total expected discounted risk, we first slightly modify the formulations

presented in Section 2.2 to allow the model to accumulate risks, instead of costs. Then,

we conduct policy evaluation where we fix the input policy and use the new formulation to
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recursively calculate the total expected discounted risk starting from any starting state. We

let aχ(s) denote the action in state s under policy πχ.

First note that we set the risk-to-go equal to 0 when the problem terminates. Hence,

analogous to equation (2.2) we have

Rχ([`D, ξ], φ, d) = 0 ∀ξ, φ, d. (2.10)

Recall that starting from Section 2.3, we set the vehicle to advance a unit of distance per time

period, hence the removal of dependency on time. Furthermore, we modify the immediate

cost functions to capture immediate risks. That is, we set the cost vector [c0, c1, c2] to an

all-ones vector, i.e., [1, 1, 1], in equation (2.1). This results in β(φ,µ) = 1 and γ(φ,µ) = 1,

simply capturing risk instead of cost. Hence, for instance, analogous to equation (2.3), the

total expected discounted risk under policy πχ, starting from state s = (µ, I,−1), is given

by

Rχ(µ, I,−1) = (2.11)
pI(µ) + (1− pI(µ)) ·

∑
ξ′∈Ξ p(ξ

′|ξ) · α ·Rχ([`+ 1, ξ′], I,−1) if aχ(s) = I,

ζC(µ) + (1− ζC(µ))
[
pC(µ) + (1− pC(µ)) ·

∑
ξ′∈Ξ p(ξ

′|ξ) · α

·Rχ([`+ 1, ξ′], C,−1)
]

if aχ(s) = C.

In addition, we set the cost of alerting the individual to take over the control, cA, and the

penalty cost of foregoing a planned switch in authority, cP , to 0, i.e., cA = cP = 0. Hence,

equations (2.4)-(2.6) may also be re-written to only account for risks.

Total expected discounted risk of accidents due to location/environment-related

reasons under policy πχ, Rχ
e (µ, φ, d). This metric calculates the total expected discounted

likelihood of accident during a trip due to location/environment-related reasons, starting

from state s = (µ, φ, d), under a given driving entity switching policy πχ ∈ {π∗, πC , πI}.

Similar to the previous metric, we calculate this metric by modifying the formulations

presented in Section 2.2. Specifically, to calculate Rχ
e (s), we use the formulations used

to calculate Rχ(s) where we also set γ(φ,µ) equal to zero to only account for the

location/environment-related risks.
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Total expected discounted risk of accidents due to switching driving entities

under policy πχ, Rχ
s (µ, φ, d). Lastly, this metric calculates the total expected discounted

likelihood of accidents during a trip due to switching the driving entity, starting from the state

s = (µ, φ, d), under a given driving entity switching policy πχ ∈ {π∗, πC , πI}. Similar to the

previous metric, we calculate this metric by modifying the formulations presented in Section

2.2. Specifically, to calculate Rχ
s (s), we use the formulations used to calculate Rχ(s) where

we also set β(φ,µ) equal to zero to only account for the driving entity switching-related risks.

Note that in this study we overall define two categories of risks, i.e., Rχ(s) = Rχ
s (s) +

Rχ
e (s). In addition, note that starting any state s, under policies πχ ∈ {πC , πI}, Rχ(s) =

Rχ
e (s) and Rχ

s (s) = 0 because these policies are single entity driving policies, without any

possibilities for switching.

Sensitivity and Robustness Analyses

In this section, we investigate the effect of various model parameters on the results under the

optimal and benchmark policies. Specifically, we first investigate the impact of trip length

on the results. We then fix the trip length and examine the impact of parameters such as

road-environment dynamics and probability of accident by the driving entities. To facilitate

these comparisons, we use various performance metrics, including cost and risks, during

entire trips by using starting states so = ([0, 0], φ,−1), i.e., starting at location `O = 0 under

a low risk road/environment state ξ = 0, with driving entity φ, when no switch in authority

is scheduled, d = −1. Note that under the benchmark policies πI and πC , we use the starting

states in which the value of φ equals to I and C, respectively. Under the optimal policy

π∗, we report the best performance metric obtained starting with either φ = I or φ = C.

Because the models are calibrated with simulated data, we repeat all analyses 25 times to

assure that the results are not biased and to also provide a 95% confidence interval (CI) for

the reported means.

First, we investigate the impact of trip length on the results, when all else is held constant.

To do so, we simulate a trip, consisting of a given number of equal length links, where

accident-related probabilities are randomly generated (see Appendix B). We then scale the

links to generate three sets of trips with lengths 500, 1000, and 1500 units. As a result, any
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Table 2.2: Mean percentage difference in total expected discounted cost, under the optimal
and benchmark policies for the 25 sample trips, starting from state so. The 95% CI for the
means are provided.

Trip length V C(so)−V ∗(so)
V ∗(so)

V I(so)−V ∗(so)
V ∗(so)

500 3.9% ± 3.2% 84.4% ± 28.6%

1000 3.9% ± 3.3% 84.3% ± 29.6%

1500 3.9% ± 3.3% 84.3% ± 29.7%

observed difference in total expected cost under the examined policies would be associated

with the differences in trip lengths. We repeat the process 25 times, where we use 5 links

per trip, and report the means and the associated CIs under the optimal and benchmark

policies. Specifically, Table 2.2 presents the mean percentage difference in total expected

discounted cost under the optimal and benchmark policies for these 25 trips, starting from

state so. In addition, the 95% CI for the means are reported. First, note that the mean

percentage difference between the car-only policy and the optimal policy is consistently lower

than that between the individual-only policy and the optimal policy. This is mainly because

the car is generally considered (and calibrated in the model) to be the safer driving entity.

Also, as seen in the table, the mean difference in total expected discounted cost between the

optimal and benchmark policies essentially remains the same across all trip lengths. This

suggests that the benefits of switching between driving authorities persist regardless of the

trip length. Hence, in the remainder of the computational study, we use the fixed length

of 1000 for the trips to maintain a low computational time, while allowing for long enough

individual links. Specifically, in the remainder of the computational study, we use a sample

of 25 randomly generated trips, each with 10 links, and a total trip length of 1000. During

each experiment, we only modify one factor at a time and consequently, evaluate the impact

of its change on the results.

Next, we investigate the impact of changes in transition probability between road and/or

environment states, p(ξ′|ξ). As discussed in Appendix B, we let the matrix P denote the

one-step transition probability matrix (TPM) of the road/environment state, where each

row presents the conditional probability distribution of the state of the road/environment in
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Table 2.3: Mean total expected discounted cost, and mean percentage difference in total
expected discounted cost, under the optimal and benchmark policies for the sample 25 trips,
starting from state so, under Pl, P , and Ph. The 95% CI for the means are provided.

TPM V ∗(so) V C(so) V I(so)
V C(so)−V ∗(so)

V ∗(so)
V I(so)−V ∗(so)

V ∗(so)

Pl 431.7 ± 48.5 449.0 ± 55.0 761.6 ± 63.2 3.5% ± 2.6% 92.5% ± 32.8%

P 521.2 ± 52.0 536.0 ± 50.4 894.4 ± 82.3 3.1% ± 2.4% 80.3% ± 26.7%

Ph 1499.3 ± 73.3 1525.8 ± 106.7 2469.7 ± 174.6 1.7% ± 2.2% 70.0% ± 19.0%

the next time period, i.e.,

P =


0.95 0.04 0.01

0.6 0.35 0.05

0.25 0.7 0.05

 . (2.12)

We allow this TPM to represent the baseline/average risk profile and use stochastic ordering

to generate low and high risk profiles (Levy, 2015). Specifically, we let Pl and Ph denote

the TPM of low and high risk profiles, respectively, where the conditional road/environment

random variables are stochastically smaller and larger than those under the baseline/average

scenario, respectively, i.e.,

Pl =


0.96 0.03 0.01

0.72 0.25 0.03

0.35 0.6 0.05

 ,Ph =


0.85 0.1 0.05

0.5 0.4 0.1

0.15 0.75 0.1

 . (2.13)

With reference to real-world situations, a low risk profile may refer to conditions where the

weather is conducive to safe driving or when traffic is not congested. In contrast, a high risk

profile may refer to conditions where the vehicle is, on average, more likely to transition to

high risk conditions and remain there, such as in urban areas where there is higher levels

of interaction between vehicles and pedestrians, and numerous factors may influence the

performance of sensors required for automated driving.

Table 2.3 presents the mean total expected discounted cost, and the mean percentage

difference in total expected discounted cost, under the optimal and benchmark policies for

the 25 sample trips, starting from state so, under Pl, P , and Ph. In addition, the 95%
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Table 2.4: Mean percentage difference, and the corresponding 95% CI, in total expected
discounted risk of accident associated with the optimal and benchmark policies of the
sample 25 trips, starting from state so, under Pl, P , and Ph.

TPM RC(so)−R∗(so)
R∗(so)

RI(so)−R∗(so)
R∗(so)

Pl 16.7% ± 12.9% 123.9% ± 163.6%

P 20.8% ± 15.8% 99.4% ± 124.7%

Ph 10.0% ± 9.9% 29.4% ± 38.7%

Table 2.5: The breakdown of risk of accident (mean and the corresponding 95% CI)
associated with the optimal policy for the sample 25 trips, starting from state so, under
Pl, P , and Ph.

TPM % location/environment risk,
R∗

e(so)
R∗(so) % switching driving entity risk,

R∗
s(so)

R∗(so)

Pl 98.2% ± 1.0% 1.8% ± 1.0%

P 97.9% ± 1.1% 2.1% ± 1.1%

Ph 97.0% ± 1.4% 3.1% ± 1.4%

CI for the means are reported. First, note that the costs under the car-only policy, πC ,

are much lower than those under the individual-only policy, πI . This is mainly because the

car is generally considered (and calibrated in the model) to be the safer driving entity (see

Appendix B for more details). In addition, consistent with intuition, the mean total expected

discounted cost under all policies increase in the risk profile. This is because of the elevated

risk of accident during high risk road/environment conditions. Interestingly, the results show

a higher average difference in total expected discounted cost between the optimal policy and

the benchmark policies, for the low risk profile compared with the high risk profile. This

suggests that, under the calibrated TPMs, in lower risk profiles, if switching between driving

entities occurs optimally, it can provide even more benefits.

As noted in Table 2.3, the optimal policy results in costs lower than those under the

single-entity driving policies πI and πC . This is mainly because the risk of accident due to

road/environment are lowered through switching driving entities when appropriate. Table 2.4

quantifies the magnitude of change in risk of accident under the three risk profiles for the 25

sample trips, evaluated using the metric Rχ(·), under the switching policy πχ ∈ {π∗, πI , πC}

introduced in Section 2.3.1. As seen in the table, the mean risk of accident consistently
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decreases by following the optimal policy, as opposed to the benchmark policies, resulting

in a much safer trip on average. Consistent with the results in Table 2.3, the magnitude of

change in risk of accident is larger when following π∗ as opposed to πI , compared with when

following π∗ as opposed to πC , as in the model, the car is considered to generally be safer

than the individual.

Table 2.5 further investigates the breakdown of risk of accident under the optimal policy

for the sample 25 trips. Specifically, it provides the distribution of risk of accident, i.e.,

due to location-environmental-related reasons R∗e(·) or switching driving entity R∗s(·), under

the optimal policy for the sample 25 trips, starting from state so, under Pl, P , and Ph.

Similar to previous tables, mean and 95% CI for the mean are provided. First, note that

the distribution of risk under benchmark policies are not provided in Table 2.5 as they are

trivial; under these policies, a single entity is always in charge and hence, all risks arise due

to location-environmental-related reasons. As seen in the table, under the optimal policy,

location-environmental-related reasons are responsible for the majority of risk. However,

switching also occurs, which, despite introducing new risks, reduces the overall risk of

accident as previously seen in Table 2.4. In addition, as seen in Table 2.5, the percentage of

switching driving entity risk slightly increases in risk profile. Based on additional experiments

conducted, this increase is not necessarily caused by an increase in the average number of

switches per trip. Rather, the increase is mainly due to the fact that under a high risk profile,

the road/environment condition, ξ, is on average more often in the high risk condition, and

based on model calibration, the conditional probability of accident severity following the

switch in driving entity, ρ(µ), is set to be increasing in road/environment condition, ξ (see

Appendix B).

Note that so far all results in Section 2.3.1, presented in Tables 2.2-2.5, are obtained

where the total expected discounted cost of trips are minimized to obtain the optimal policy.

In Tables 2.4 and 2.5, we quantify the risks associated with such cost-minimizing optimal

policies. We can alternatively minimize the total expected discounted risk of trips. These

new results are obtained if instead of evaluating the metric R∗(·) under the cost-minimizing

policy π∗, value iteration is used to minimize risks. Let Q∗(s) denote the minimum total

expected discounted risk of a trip, starting from state s. The resulting risk-minimizing
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Table 2.6: Mean percentage difference, and the corresponding 95% CI, between the
minimum total expected discounted risk of accident and the total expected discounted risk
of accident under benchmark policies for the sample 25 trips, starting from state so, under
Pl, P , and Ph.

TPM QC(so)−Q∗(so)
Q∗(so)

QI(so)−Q∗(so)
Q∗(so)

Pl 47.7% ± 22.0% 146.6% ± 166.9%

P 45.4% ± 21.0% 115.5% ± 122.3%

Ph 32.9% ± 14.8% 43.7% ± 35.2%

driving entity switching policy treats all types of accidents the same, and essentially ignores

costs associated with different types of accidents. Table 2.6 presents the mean percentage

difference, and the corresponding 95% CI, between the minimum total expected discounted

risk of accident and the total expected discounted risk of accident under benchmark policies

for the sample 25 trips, starting from state so, under Pl, P , and Ph. Compare this table

with Table 2.4. As expected, the risk-minimizing driving entity switching policy in Table

2.6 results in a larger magnitude of change in total risk, compared with the cost-minimizing

driving entity switching policy presented in Table 2.4.

Next, we conduct sensitivity analysis on the probability of accident for driving entity

φ at location-environment µ, pφ(µ). Specifically, we decrease and increase the calibrated

values for pφ(µ) along the sample 25 trips by 20% and 50%, respectively, and examine its

impact on the total expected discounted cost. Note that because pφ(µ) values are generally

low, they do not exceed 1 after the increase. Table 2.7 illustrates the mean total expected

discounted cost, and mean percentage difference in total expected discounted cost, under the

optimal and benchmark policies for the sample 25 trip starting from state so, under three

sets of probabilities of accident for the two driving entities. The 95% CI for the means are

provided. Note that as in previous cases, the costs under the car-only policy, πC , are much

lower than those under the individual-only policy, πI , because the car is calibrated in the

model to be the safer driving entity. Consistent with intuition, in Table 2.7 the mean total

expected discounted cost increases in the probability of accident under all policies. However,

it is interesting to note that the change in probability of accident does not greatly impact the

degree to which the optimal policy outperforms the single entity driving benchmark policies.
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Table 2.7: Mean total expected discounted cost, and mean percentage difference in total
expected discounted cost, under the optimal and benchmark policies for the sample 25 trips
starting from state so, under the corresponding sets of probabilities of accident for the two
driving entities. The 95% CI for the means are provided.

Probability

of accident
V ∗(so) V C(so) V I(so)

V C(so)−V ∗(so)
V ∗(so)

V I(so)−V ∗(so)
V ∗(so)

0.5× pφ(µ) 262.7 ± 26.3 268.4 ± 25.8 449.5 ± 44.1 2.5% ± 2.3% 79.9% ± 26.9%

0.8× pφ(µ) 418.1 ± 41.8 428.9 ± 40.6 717.0 ± 70.1 3.0% ± 2.4% 80.2% ± 26.8%

pφ(µ) 521.2 ± 52.0 536.0 ± 50.4 894.4 ± 82.3 3.1% ± 2.4% 80.3% ± 26.7%

1.2× pφ(µ) 623.8 ± 64.2 640.6 ± 62.0 1071.1 ± 108.5 3.1% ± 2.4% 80.3% ± 26.6%

1.5× pφ(µ) 777.1 ± 76.9 798.2 ± 74.2 1334.8 ± 129.6 3.1% ± 2.4% 80.3% ± 26.5%

Table 2.8: Mean difference in total expected discounted cost between V χ(s), πχ ∈
{π∗, πI , πC}, and U(s) for the sample 25 trips starting from state s0, for the two extreme
TPMs Pl and Ph. The 95% CI for the means are provided.

Actual TPM Miss-specified TPM U(so)−V ∗(so)
V ∗(so)

V C(so)−U(so)
U(so)

V I(so)−U(so)
U(so)

Ph Pl 0.4% ± 0.7% 1.3% ± 1.5% 69.6% ± 19.2%

Pl Ph 0.2% ± 0.4% 3.7% ± 2.5% 90.9% ± 33.3%
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Finally, we conduct a robustness analysis to evaluate the extent to which possible

estimation errors in transition probabilities can affect the results. Specifically, we investigate

the effect of making sub-optimal switches in the driving entity as a result of using a miss-

specified TPM. Suppose a car is set to travel during rush hour, where based on historical

data, a TPM such as Ph, characterizing a high risk level, should be used to find the optimal

entity switching policy. However, suppose that on this particular day, a nearby school is

closed, which results in a less congested traffic, where based on historical data a TPM such

as Pl, characterizing a low risk profile, must indeed be used to optimize the trip. Accordingly,

in this analysis, we quantify the degree to which such miss-specification of TPM can impact

the results.

To facilitate the comparisons, we introduce a new piece of notation. Let U(s) denote the

total expected discounted cost-to-go starting from state s that is obtained when implementing

the switching policy that is optimal under a miss-specified TPM. Clearly, this policy can be

sub-optimal under the actual TPM, hence V ∗(s) ≤ U(s).

Table 2.8 illustrates the mean difference in total expected discounted cost between V χ(s),

πχ ∈ {π∗, πI , πC}, and U(s) for the sample 25 trips starting from state s0, for the two

extreme TPMs Pl and Ph. The 95% CI for the means are provided. First, note that despite

the difference between the actual and miss-specified TPMs, the mean difference between

total expected discounted cost under the optimal and miss-specified policies is relatively

small, i.e., up to 0.4% on average. Furthermore, as seen in the last two columns, using

the switching policy that is optimal under a miss-specified TPM still, on average, results in

better outcomes, compared with the single driving entity benchmark policies. Indeed, for

all of the sample 25 trips, the costs obtained under the benchmark policies starting from

the starting state, i.e., V I(s0) or V C(s0), are never lower than those obtained under the

miss-specified TPM, U(s0).

2.3.2 Computational Study Under Partial Information

In this section, we perform numerical experiments to investigate the case where the

environmental risk factor is partially observable to the system. As a result, we use the

POMDP model solved using the A3C algorithm. We first illustrate the capability of A3C
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to solve a fully observable case, i.e., the MDP case, for a specific trip setting. Specifically,

we compare the cost under the A3C policy compared to the benchmark policies where only

the car or individual can drive throughout a trip. We then investigate cases where the

environmental risk is observable to different degrees.

We let πA denote the (near-)optimal policy obtained from solving the POMDP model

using A3C. Recall that π∗ denotes the optimal policy, and πC and πI denote the policies

where only the car or the individual can drive, respectively. Analogous to the fully observable

case, to facilitate comparisons, we evaluate the total expected discounted costs starting from

zo = (0, [1, 0, 0], φ,−1), i.e., starting at location `O = 0, under the belief that we are in a low

risk road/environment state b = [1, 0, 0], with driving entity φ, when no switch in authority is

scheduled, d = −1. Lastly, we let W χ(z) denote the total expected discounted cost obtained

starting from state z under policy πχ ∈ {πA, πC , πI}. To obtain W χ(z), we conduct forward

simulation using the formulation in Section 2.2.2 to obtain the total expected discounted

cost starting from state z. Specifically, we simulate 50,000 random sample paths according

to the particular trip setting of interest, which we let the vehicle navigate while following

the policy πχ. We then report the average total expected discounted cost over the 50,000

sample paths as W χ(z).

To illustrate the capability of A3C solving a fully observable case, we generate an example

trip. The path and its junction points are as follows: [0, 26, 39, 50], with the following link

lengths from the origin to the destination: [26, 13, 11]. This path may be interpreted as

follows: Starting from the origin, i.e., location 0, the vehicle first needs to traverse a link of

length 26 units to reach location 26. From this location, the vehicle needs to travel through

a link of length 13 units to reach location 39. Finally, the vehicle reaches the destination at

location 50 after traversing the last link of length 11. In general, in this illustrative example,

the car is considered to be a safer driving entity than the individual, and the probabilities

pφ(µ) and ζφ(µ) are generated to reflect this assumption. On the second link, however, the

probability distributions are changed to create a situation in which the individual would

be the safer choice to possibly trigger a change in driving entity. As such, the probability

pC(µ) is increased by 500 folds for low, average and high risk conditions, respectively, on

this specific link. As discussed in Section 2.3.1, such increase in risk of accident for the
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automated driving entity may be related to a road section in which lane changes are poorly

implemented due to construction activities, among others.

First, we use this example trip to illustrate the ability of A3C in solving the POMDP

model. Note that if the road/environment risk factor is accurately evaluated by the driving

entities, i.e., 100% observable, the POMDP model reduces to the MDP model. Hence,

we set the accuracy of the road/environment risk level evaluation to 100%, and use A3C

to obtain the (near-)optimal policy, which we compare with benchmark policies as well as

the optimal policy obtained from solving the MDP model using backward induction. Note

that WC(zo) = V C(so), and W I(zo) = V I(so), hence we simply report the costs V C(so) and

V I(so), respectively, as obtained from the backward induction to avoid any estimation errors.

Table 2.9 illustrates the total expected discounted cost, under the A3C and benchmark

policies, starting from state zo. From the table it is seen that following the A3C policy

results in a total expected discounted cost that is significantly less than the benchmark

policies. Recall that we set the car to be overall a safer driving entity than the the individual.

However, due to the increased risk of accident in the second link for the car entity, a high

total expected discounted cost of 16,233.9 is obtained following the car-only policy. Compare

this with the individual-only policy with a total expected discounted cost of 1,028.6. Under

the A3C policy, a total expected cost of 833.2 is incurred, which is substantially lower than

those obtained under the benchmark policies. This is because the A3C policy recognizes the

dangers of the second road link and switches to the individual driving entity during this link.

It should be noted that when solving the same problem to optimality using backward

induction, an optimal cost of V ∗(so) = 759.8 is obtained. Hence, the difference between

the solution resulting from implementing the A3C policy and the optimal policy is relatively

small, i.e., 833.2−759.8 = 73.4 or approximately 9%. Note that in general, longer training of

the A3C algorithm is expected to result in improvements in the approximate solution (Mnih

et al., 2016).

Finally, we investigate the effect of partial observability on the solutions. To do so, we

generate two cases, in which we account for a lowered degree of observability, i.e., possibility

of error in road/environment risk level evaluation. Under ‘complete’ observability, as in the

previous example, it is assumed that road/environment risk level evaluation is 100% accurate.
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Table 2.9: Total expected discounted cost under the A3C policy and benchmark policies,
starting from state zo.

WA(zo) WC(zo) W I(zo)

833.2 16,233.9 1,028.6

Table 2.10: Total expected discounted cost, WA(zo), under various degrees of observability,
starting from state zo.

Total expected discounted cost, WA(zo)
Complete observability Average observability Limited observability

833.2 850.9 874.8

We next generate an ‘average’ case in which the road/environment risk level evaluation is

only 95% accurate, allowing for 2.5% miss-classification of a risk level as the other two risk

level, i.e., 
0.95 0.025 0.025

0.025 0.95 0.025

0.025 0.025 0.95

 .
Similarly, we generate a ‘limited’ observable case in which the road/environment risk level

evaluation is only 90% accurate, allowing for 5% miss-classification of a risk level as the other

two risk level.

Table 2.10 illustrates the total expected discounted cost under various degrees of

observability, starting form state zo. From the table, it is seen that the total expected

discounted cost increases as the observability of the road/environment risk factor decreases.

This is due to the uncertainty created regarding the actual condition of the road/environment

risk factor, sometimes resulting in sub-optimal switches in driving authority. However,

it is noted that these reported costs (under the A3C policy) in the partially observable

environment are still substantially less than the costs under the benchmark policies.

2.4 Conclusion and Future Work

This chapter presents a framework for determining the cost-minimizing control-authority

switching policy in semi-autonomous vehicles. Specifically, we develop an MDP model that
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determines the authority in charge at any point along a trip, as a function of the current

location and road-environment conditions. The model considers not only the risk of accident

due to location/environmental-related reasons, but also that due to switching driving entities.

To that end, it also accounts for the current entity in charge and the time to any previously

scheduled switch to prescribe actions. The goal is to determine the optimal driving entity

at each point in time to minimize the total expected discounted safety cost of a trip. The

framework is set up such that it accounts for a delay in authority transfer to the human

driver who may be affected by OOTL. Costs are considered for false switching alerts that do

not take effect to help prevent alarm fatigue in drivers. In addition, we develop a partially

observed Markov decision process (POMDP) model where it is assumed that the risk posed

by the immediate environment is only partially observed. We solve the POMDP using the

asynchronous advantage actor-critic (A3C) algorithm.

This framework facilitates understanding and quantifying the risks and benefits involved

in the control authority transitions in semi-autonomous vehicles where the driver is expected

to take over control of the vehicle under certain conditions. In addition, with the

necessary model calibration, the framework can be used by city planners and policy makers

to investigate the type of network (e.g., urban/suburban) in which one driving entity

would outperform the other. Such an investigation would allow for the identification of

characteristics/dynamics of regions that would be appropriate candidates for certain levels

of automation, or not suitable for autonomous driving at all. Different regions can be

modeled through the one-step transition probability matrix that quantifies the dynamics of

the environment and the probability of accident for a given driving entity. In addition, such

an investigation would allow policy makers to compare and contrast the controllable factors

that make a region suitable for autonomous driving.

Before this model can be directly used in practice, it needs to be calibrated for real-

world applications. To calibrate the models, some parameters may be readily obtained

from the literature, e.g., cost of accidents. Other parameters, however, may require

additional estimation efforts. For instance, an important part of our models is a set of

probability distributions that quantify the risks of manual driving, autonomous driving,

and authority switching under various driving scenarios. Although data to estimate these
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probability distributions with a high degree of accuracy is not readily available, it is

possible to approximate such distributions. Specifically, we use the existing literature to

obtain probability distributions for accident severity in the manual driving mode under

various driving scenarios. For autonomous driving, one could examine the failure records

of autonomous features currently on-board of vehicles (e.g., brake assist, blind spot assist,

active lane keeping assist, adaptive cruise control) to estimate the likelihood of elevated

risk due to such failures. Finally, the existing literature on driver perception-reaction times

may be used to quantify the level of driver distraction and its associated risks after being

disengaged from the driving environment for an extended period of time.

Various extensions can be considered to improve the practicality of the proposed method.

For instance, in this work, we present the optimal driving-entity switching policy given a fixed

route. Clearly, the route choice itself may impact the expected safety of a trip. Note that

conventional passenger vehicle route guidance systems aim to direct vehicles from their origin

to destination so as to minimize travel time, maximize fuel efficiency, etc., but not directly

to maximize safety as it pertains to autonomous and semi-autonomous driving. Hence, as

a future work, we aim to extend the current model to also account for dynamic routing to

maximize safety. That is, the extended model would determine the optimal path as well

as the optimal driving entity in charge, as a function of road and environmental factors, to

minimize the safety risk of a trip, or equivalently to minimize the total expected discounted

cost/harm of possible accidents. This will further increase the complexity of the model and

the number of decisions, possibly requiring the use of approximate solution strategies to

solve the problem.
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Chapter 3

A Dynamic Deep Reinforcement

Learning-Bayesian Framework for

Anomaly Detection
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Abstract

The successful operation of connected and automated vehicles depends on a large number of

information sources such as on-board sensors, roadside units, cloud data, and other vehicles.

As a result, these vehicles are susceptible to false/incorrect information, originating from

malicious or non-malicious sources, which could have fatal consequences if not processed

correctly. It is therefore critical to detect and isolate anomalous and/or faulty information

in a timely manner. To do so, anomaly detection techniques should be implemented in

real-time where if the probability of anomalous information exceeds a certain threshold, the

information is dealt with accordingly. Traditionally, in the literature, the threshold that

determines if information is anomalous or not, is fixed and determined a priori. However,

this approach not only does not account for the feedback obtained during a trip on the

performance of the algorithms, but also fails to respond to potential changes in rates of

anomalies. Hence, it is important to develop an approach that can dynamically alter this

threshold in response to exogenous factors to assure reliable and robust system operation.

In this study, we develop a mathematical framework to determine the optimal dynamic

threshold of an anomaly classification algorithm in order to maximize the safety of a trip.

Specifically, we develop and pair an anomaly classification algorithm based on convolutional

neural networks (CNN), with a partially observable Markov decision process (POMDP)

model. We solve the resulting POMDP model using the asynchronous advantage actor critic
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(A3C) deep reinforcement learning algorithm. The prescribed policy determines the optimal

level of anomaly classification threshold in real-time that maximizes the performance. Our

numerical experiments suggest that the addition of the A3C model improves the anomaly

detection performance of the CNN, resulting in high accuracy, sensitivity, and positive

predictive value.
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3.1 Introduction

In recent times, the transportation community has directed considerable research efforts into

the development of various aspects of an intelligent transportation system (ITS). An ITS

includes numerous concepts such as traffic management, traveler information systems, and

intelligent vehicle capabilities (Ni, 2015). These measures aim to relieve traffic congestion,

improve transportation mobility, reduce emissions, enhance user experience, and improve

safety. Connected and automated vehicles (CAVs) are expected to be an integral part of

achieving the aforementioned ITS objectives (Rios-Torres and Malikopoulos, 2016).

CAVs make use of an array of sensors and communication technologies to control vehicle

operation in a safe and efficient manner. CAVs use sensors such as cameras, ultrasonic

sensors, radar, and LiDAR to capture the driving environment in order to operate the

vehicle autonomously (with varying degrees of autonomy) (NHTSA, 2013). In addition,

connected vehicles communication (V2X) is facilitated through wireless technologies such as

dedicated short range communications (DSRC) and long-term evolution-advanced (LTE-A)

which allow CAVs to transmit relevant information to other vehicles, roadside infrastructure,

and devices. The implementation of these technologies are expected to drastically reduce the

approximately 94% of serious crashes in which human error plays a decisive role (Singh, 2015).

While there are many advantages associated with the implementation of CAV technolo-

gies, the potential dangers associated with them should not be neglected. The safe operation

of CAVs is highly dependent on the information they obtain from their sensors and wireless

communication sources. As a result, there exist a great number of sources in which false

information may be present, which poses great risk to the safe operation of CAVs. The false

information may be from a malicious source, i.e., a cyber attack, or from a non-malicious

source such as faulty sensors. It should be noted that both origins of false information

represent significant threats to the safe operation of CAVs.

There is a rapidly growing body of literature illustrating the potential dangers of CAV

technologies resulting in anomalous/false information (Petit and Shladover, 2015; Koscher

et al., 2010; Weimerskirch and Gaynier, 2015; Parkinson et al., 2017). For instance,

illustrating the injection of anomalous/false information with a malicious intent, researchers
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showed that it is possible to interfere with LiDAR systems of CAVs by artificially creating

obstacles in the perceived environment using a laser and a pulse generator (Curtis, 2015).

Illustrating the injection of false information from a source with a non-malicious intent,

researchers found that under certain environmental conditions such as bright light, heavy

snow, and poor quality of road and traffic signs, CAVs can malfunction and perceive the

driving environment incorrectly (Moavenzadeh and Lang, 2018; Field, 2017). As a result,

anomalous/false sensor values, originating from sources with malicious or non-malicious

intent, can result in dangerous circumstances for CAVs. It is therefore critical that anomaly

detection techniques are implemented to detect anomalous/faulty information in CAVs.

There exists a large body of research in anomaly detection (e.g., see surveys by (Chandola

et al., 2009; Ahmed et al., 2016)). A significant number of these anomaly detection algorithms

apply classification algorithms, where labeled data instances are used to train a model

(classifier). In the testing phase, each test instance is assigned a probability of belonging to

a certain class by the trained model. For instance, in binary classification, this probability is

translated into two classes (normal/anomalous) using an ‘a priori’ cut-off, e.g., 0.5. Generally,

the classification threshold is determined to balance sensitivity (the proportion of anomalous

instances correctly classified) and specificity (the proportion of non-anomalous instances

correctly classified). Two types of errors may occur when classifying instances: (1) classifying

an anomalous instance as normal (non-anomalous), i.e., false negatives; (2) classifying a

normal instance as anomalous, i.e., false positives. False negatives are a clear concern in

most applications. However, false positives can also have major consequences. For instance,

in the classification of anomalous sensor values, false positives may eventually lead to the

false exclusion of non-anomalous sensor data from the data fusion process. This can have a

detrimental impact on the quality of fused data and potentially compromise the autonomous

operation of the vehicle.

In the literature, classification models used to detect anomalous information are mostly

used in isolation and in a myopic manner. That is, after being built, a classification model

remains unchanged regardless of the past success rate experienced within the system of

interest (Kruegel et al., 2003). Indeed, most models, even when they are designed to be used

in an online fashion, such as throughout a CAV trip, they are simply trained to present the
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best performance (e.g., high accuracy, sensitivity, or F-1 score) under an expected trajectory,

e.g., 5% anomaly rate. Although such a strategy on average works well, it falls short of

reacting to the real-time information experienced/gained throughout a specific sample path

or sequence of events. Online machine learning tries to somewhat combat this issue by

(re-)learning the model parameters over time, in response to the new experiences gained.

However, such learning can be relatively slow and fail to respond in a timely manner to

the temporary changes in the environment as it relates to cyber threats faced from other

moving vehicles or stationary roadside units (RSUs) with limited ranges. In addition, by the

time the model ‘learns’ to respond to such threats, the environments may have completely

changed and the newly learned parameters may cause worse performance.

To address these issues, a decision-making system is needed to quickly respond to

changes in the environment, without a long time lag or too much dependency on long-

term memory. This can be achieved by dynamically adjusting the classification threshold, as

opposed to a constant threshold, based on the complexity of the environment and previously

learned information (e.g., performance metrics in the last n time epochs) to respond to the

temporal changes in a timely manner. Dynamic thresholds have been proposed in various

applications (Kalmuk et al., 2016; Arad et al., 2013; Idé and Kashima, 2004). However, to

the best of our knowledge, the framework presented in this study is the first application of

dynamic classification thresholds in the transportation domain with the objective of anomaly

detection.

In this work, we develop a partially observable Markov decision process (POMDP)

model to prescribe the level of the threshold used in an anomaly detection algorithm, in

real-time, to minimize the total expected ‘cost’ of false positives/negatives during a CAV

trip. Specifically, the POMDP model makes decisions about the classification threshold as

a function of the belief about the core state of the system, the perceived past anomaly

detection performance during a CAV trip, the classification threshold used during the past

epoch, and an imperfect ‘observation’ received about the current state of the system. The

inclusion of these parameters assures that both long-term and short-term past performance

and beliefs about the state of the system are considered when making decisions.
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Solving POMDP models using exact approaches are often intractable due to the curse

of dimensionality (Roy et al., 2005). Reinforcement learning based approaches can hence

be used to solve such problems. In reinforcement learning (RL), for a system in state s,

an agent chooses an action a to maximize its total discounted future rewards in a given

environment (Sutton and Barto, 2018). This process is typically repeated until the most

likely sample paths are all explored and the ‘best’ actions and rewards starting from any

state are estimated. If the size of the policy space is too large, RL is typically not tractable as

it requires too many iterations to explore the most likely sample paths to accurately estimate

‘best’ actions and rewards. Deep reinforcement learning (DRL) attempts to alleviate this

problem by using the information collected from limited exploration of the policy space to

estimate the actions and rewards starting from the states that are not often, if ever, explored.

Advances in computation capabilities in the past decade have led to substantial growth in

using DRL algorithms in many domains. DRL combines the traditional strengths of neural

networks with reinforcement learning algorithms. Neural networks are known for their time

series prediction, machine vision, and classification capabilities while reinforcement learning

focuses on the correlation of immediate actions with the future rewards they produce.

Popular applications of DRL algorithms include teaching machines to play video games using

the screen display as input (Mnih et al., 2016) or solving problems such as robotic control

(Levine et al., 2016) and control of ramp metering (Belletti et al., 2017). The emergence of

policy gradient-based methods such as the asynchronous advantage actor critic (A3C) (Mnih

et al., 2015) algorithm have enabled the use of continuous action space and state space. This

development addressed the curse of dimensionality problem faced by Q-learning approaches

(Lillicrap et al., 2015) for large problems. Despite the potential of DRL techniques in anomaly

detection, a review of the literature indicates that its application is very limited in this

domain. Anomaly detection using DRL have been proposed by de La Bourdonnaye et al.

(2017) to learn binocular fixations and by Huang et al. (2018) for a threshold-free detector

in network time series problems. However, these studies do not focus on anomaly detection

in transportation and the models do not incorporate observations in a hierarchical manner,

as proposed in our framework.
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In this study, we solve the POMDP model using the A3C algorithm and compare the

results with a benchmark convolutional neural network (CNN) model, as developed in van

Wyk et al. (2019). To the best of our knowledge, this is the first application of the A3C

algorithm in a partially observable environment for the purpose of anomaly detection in the

transportation domain.

Consistent with the CNN model and definitions for anomalies used by van Wyk et al.

(2019), we train, validate, and test the benchmark model accordingly. We provide numerical

experiments in which we compare the performance of the POMDP model with benchmark

policies, i.e., CNN-only models with a fixed threshold throughout a trip. We provide

numerical experiments for trips with various parameter settings to obtain further insights.

The main contributions of this work are as follows: (i) We embed CNN into a Bayesian

framework, where instead of relying on the raw predictions of CNN on whether sensors are

faulty/attacked, we use the CNN predictions as ‘imperfect observations,’ fed into a Bayesian

framework for further processing; (ii) we further incorporate the recent trip trajectory (or

history) into the Bayesian framework to more actively react to environmental changes and

anomaly rates during a trip. The developed framework is extremely flexible and allows

for a large degree of control over penalizing false positives/negatives to various degrees in

different applications; (iii) we use A3C to solve a mathematical POMDP model, as opposed

to existing studies using A3C where the underlying model is a structured emulator (e.g., a

video game).

The rest of the chapter is organized as follows. In Section 3.2, we describe our framework.

Specifically, we provide details for the POMDP model and the A3C training process and how

the CNN is incorporated in the classification process. In Section 3.3, we describe the data

set we use for training, validating, and testing the various approaches. In Section 3.4, we

perform various numerical experiments to investigate the anomaly detection performance of

the approaches under various parameter settings. Lastly, we conclude in Section 3.5.
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3.2 Methods

In this section, we develop a framework to adaptively prescribe the anomaly classification

threshold to improve the anomaly detection performance. In this study, we assume the true

state of the system, i.e., normal or anomalous, is unknown. Hence, we use a Bayesian model

to update the beliefs about the underlying state of the system. In this Bayesian model,

specifically the POMDP model, we associate ‘costs’ to incurring false positives/negatives,

and develop a solution strategy that aims to minimize the trip-specific total expected cost.

Specifically, we solve this model with the A3C algorithm since POMDPs suffer from the

curse of dimensionality and the problem investigated in this study has a large state space

and continuous action space. As a result, exact methods are intractable for the problem

investigated here.

In the following, we first provide an overview of the framework. Next, we discuss the two

main components used in developing and solving the models, namely, POMDP and A3C

algorithm.

Figure 3.1 illustrates an overview of the anomaly detection framework proposed in this

study. At each time epoch, the sensor readings collected within the past several time epochs

(using a fixed width sliding window) are used as an input to the CNN model. It should be

noted that the CNN model can be replaced by any other classification model producing a

probability of belonging to a certain class. The CNN model outputs a probability of the

sensor data being anomalous at each time epoch. Next, the CNN output probabilities, plus

a few additional problem-specific features, are fed into the POMDP model. The POMDP

model is solved to (approximate) optimality using A3C algorithm to obtain the policy that

prescribes anomaly classification threshold for any given system belief state. This policy can

be used to discriminate normal and anomalous readings by the control system of the CAV

in real-time.

The CNN model used in this study is based on that developed in van Wyk et al. (2019).

This CNN model uses a traditional image recognition architecture, and the Adam optimizer

from Tensorflow in Python is implemented to minimize binary cross-entropy Kingma and Ba
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Figure 3.1: Overview of the anomaly detection framework. At each time epoch, the sensor
readings collected within the past several time epochs are used as an input to the CNN model.
The CNN model outputs the probability of the sensor data being anomalous at each time
epoch. Next, the CNN output probabilities, plus a few additional problem-specific features,
are fed into the POMDP model as ‘imperfect observations.’ The POMDP model is solved
to (approximate) optimality using the A3C algorithm to obtain the policy that prescribes
the anomaly classification threshold for any given system belief state, discriminating normal
and anomalous sensor readings.

(2014). In addition, to reduce the risk of overfitting, random dropout and an early stopping

algorithm monitoring the validation set accuracy, are used.

3.2.1 POMDP

Partially observable Markov decision processes (POMDPs) are described as a six-tuple (S,

A, O, P , Ψ, R) with a set of states S, a set of actions A, a set of observations O, a transition

probability matrix P , an information matrix Ψ, and a reward function R, which is dependent

upon the state and the action taken. At each decision epoch t = 0, 1, 2..., T : T < ∞

the system is at a core state st ∈ S, which represents the true state of the system. We

let S = {0, 1}, where the states ‘0’ and ‘1’ correspond to normal and anomalous states,

respectively.

Let πt = [π0, π1] denote the belief about the core state at time t, where π0 and π1

denote the probabilities that system is in non-anomalous and anomalous states, respectively.

Note that π0 + π1 = 1. To more explicitly account for the immediate history, i.e., last n

time epochs, we augment the belief vector πt, with the perceived past anomaly detection

performance during a CAV trip, and the classification threshold used during the past epoch.

Specifically, we let bt = [πt, α, β, at−1] ∈ B denote the belief state of the process at time t,

where α and β denote the expected weighted false negative (FN) and false positive (FP)

77



rates over the past m decision epochs, respectively, and at−1 denotes the action, i.e. the

classification threshold, used in the previous time epoch t− 1.

Recall that the system core state is only partially observable to the model. Hence,

at each time epoch t, an observation ot ∈ O = [0, 1] is made, which provides imperfect

information about the system core state. In our context, this observation is the CNN-

estimated probability that the system is in the anomalous state. Once an observation is

made, an action at ∈ A = [0, 1] is taken, as a function of belief state bt and the observation

ot to adjust the the classification threshold.

At every decision epoch, the system incurs an immediate reward as function of the action

at taken in belief state bt. This immediate reward accounts for whether the threshold chosen

is expected to correctly detect anomalous and normal readings. That is, the system is

rewarded by a unit of one for true positives (TP) and true negatives (TN), and is penalized

by a unit of one for false positives (FP) and false negatives (FN), i.e., RTP = RTN = 1

and RFP = RFN = −1. In addition, it is further rewarded/penalized based on the weighted

expected rates of FN and FP in the past m time epochs in addition to the current expected

value. The rewards function R(·) is as follows:

Rt(b, o, a) =π0 ·RTN + π1 ·RFN + α ·RFN , if ot < at,

π0 ·RFP + π1 ·RTP + β ·RFP , if ot ≥ at.

In the beginning of time epoch t + 1, the belief state bt is updated to obtain bt+1.

Specifically, the belief about the new core state s′ ∈ S at time t+ 1 is updated as follows:

πs′ =

Ψ
(
1{o>a}|s′

) ∑
s∈S

P (s′|s) · πs∑
o∈O

Ψ
(
1{o>a}|s′

) ∑
s∈S

P (s′|s) · πs
(3.1)

where P (s′|s) denotes the probability that system core state transitions from state s

to state s′, and Ψ
(
1{o>a}|s′

)
denotes the probability that the observed system state is

anomalous/non-anomalous given the core state s′.
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α′ =
α ·m+ 1{a>o} · π1

m+ 1
, (3.2)

β′ =
β ·m+ 1{a≤o} · π0

m+ 1
. (3.3)

Finally, we let γ denote the discount factor and Vt(b) give the maximum total expected

discounted reward starting from belief state bt, i.e.,

Vt(b) = max
a∈A
{Rt(b, a, o) + γ

∑
o∈O

∑
s′∈S

Ψ
(
1{o>a}|s′

)
∑
s∈S

πs · P (s′|s) · Vt+1(b)}. (3.4)

For the terminal case t = T , the expected discounted reward is given by VT (b) = RT (b, o, a).

3.2.2 A3C

We use the A3C algorithm to solve the developed POMDP model. In the A3C algorithm,

being an actor-critic method, a critic learns the value function while the actor interacts

with the environment attempting to learn a policy to maximize/minimize a given objective

function. Among the common DRL algorithms such as deep Q-network (DQN), double

DQN, etc. (Mnih et al. (2016); Van Hasselt et al. (2016)), A3C generally achieves the best

performance and it is suitable for both discrete and continuous spaces (Mnih et al., 2016). In

addition, the training time for A3C is substantially less and, in general, obtains more robust

policies compared to other DRL techniques. The A3C algorithm achieves this by exploring

the environment with multiple agents in parallel on multiple threads.

To reduce the correlation between training episodes, other DRL algorithms often utilize

a technique called experience replay. A3C reduces correlation by creating a copy of the

environment for each agent during the training process and updating the global/master

network asynchronously. Therefore, after every gradient update, each of the individual

agents synchronize their weights with the global network.
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The A3C algorithm (Mnih et al., 2016) maintains a policy π(at|st;φ), where at denotes

the action at time t, st denotes the state, and φ denotes the parameters of the global

actor network. The algorithm also estimates a value function V (st;φv), for state st using

parameters φv for the global critic network. The value function is updated with n-step

returns. The policy and the value networks are updated after every episode of length tmax

or when a terminal state is reached.

The A3C algorithm uses advantage, as opposed to Q-values in many other DRL

algorithms, to estimate how advantageous certain actions are for a particular state. The

advantage function A(·) is estimated as follows:

A(st, at;φ, φv) =
k−1∑
i=0

γirt+i + γkV (st+k;φv)− V (st;φv), (3.5)

where k is bounded above by tmax.

The gradient update to minimize total loss can be seen as

∇φ′ logπ(at|st;φ′)A(st, at;φ, φv), (3.6)

where φ′ is the thread-specific network parameters. Also, Mnih et al. (2016) found that if the

entropy of policy π is added to the objective function, exploration is encouraged which limits

the premature convergence to sub-optimal deterministic policies. As a result, the gradient

of the objective function which includes an entropy regularization term with respect to the

policy parameters is given as

∇φ′ logπ(at|st;φ′)A(st, at;φ, φv) + η∇φ′H(π(st;φ
′)), (3.7)

where H is the policy entropy and the parameter η controls the strength of the entropy

regularization term.

To solve the POMDP model with the A3C algorithm, we use TensorFlow (Abadi et al.,

2016) in Python where we utilize the RMSProp optimizer (Tieleman and Hinton, 2012) for

training the neural networks of the actor and critic. Table 3.1 illustrates a summary of the

hyperparameters used in the model during the training process.
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Table 3.1: Hyperparameters utilized in the training of the A3C model.

Hyperparameter Value Description
Maximum Global Episodes 25000 Total number of training sample paths generated
Discount Factor (γ) 1 Parameter used to discount future rewards
Global Update Iterations 10 Number of epochs between global parameter updates
Entropy Regularization (η) 0.001 Encourages exploration of various policies
Window Size 10 The number of past epochs used to weight FN and FP incurred
Neural Network Nodes 100 Number of nodes in each hidden layer
Actor Learning Rate 0.001 Rate used by RMSProp optimizer for actor network
Critic Learning Rate 0.001 Rate used by RMSProp optimizer for critic network

3.3 Data

The data used in the numerical experiments for this study are obtained from the research

data exchange (RDE) database for the Safety Pilot Model Deployment (SPMD) program

(Bezzina and Sayer, 2014). The SPMD program was conducted to demonstrate the feasibility

of CAVs, investigating V2X technologies in real-world conditions. Data were collected from

on-board vehicle devices as well as roadside units (RSUs) including basic safety messages

(BSM), signal phase and timing (SPaT) messages, vehicle trajectories, and data for driver-

vehicle interactions. Data were collected for approximately 3,000 vehicles over a period of

two years with a collection frequency of 100 ms for selected variables.

Consistent with van Wyk et al. (2019), in-vehicle speed, GPS speed, and in-vehicle

acceleration are extracted from the data set to use in the numerical study. Also, we use

the anomaly simulation process found in van Wyk et al. (2019) to generate the ‘bias’ and

‘gradual drift’ anomaly types where anomalies are added at specified rates ξ (dependent on

the experiment). Specifically, for the bias anomaly type, the anomaly magnitude is sampled

from a uniform distribution U(0, 5), where the sampled magnitude is added to all true sensor

readings for a time period of 10 epochs. Similarly, for the gradual drift anomaly type, a vector

of linearly increasing values from 0 to 2, for a duration of 10 epochs are added to all true

sensor readings.

Figure 3.2 illustrates how the data set (consisting of in-vehicle speed, GPS speed, and

in-vehicle acceleration) that is augmented with anomalous readings is used to train and test

the various components of the framework. First, a portion of the data is set aside to train

and validate the CNN model. The trained CNN model is then used to generate probabilities

81



CAV Sensor 
Data Augmented
with Anomalies

Train Validate External	Test	Set
for	CNN	and	A3CTest

Train	A3C

CNN

Figure 3.2: Illustration of data breakdown and flow of information. The CNN model
is trained and validated using CAV sensor data. The CNN model is then used to generate
probability streams of the system being anomalous on an internal test set. These probabilities
are used as observations in the POMDP model trained by the A3C algorithm. Finally, an
external test set is used to compare the performance of the CNN-only and A3C models.

of the system being anomalous on an internal test set. These probability streams are used in

the POMDP model as observations when training the A3C algorithm. Finally, to compare

performance and investigate the value of adding the A3C model, an external/unseen test set

is used and the results are presented in the numerical study.

3.4 Results

In this section, we perform various analyses to investigate the anomaly detection performance

of the models discussed in Section 3.2. We first investigate the performance of the CNN and

A3C models where the anomaly rate is fixed and the trip length is varied for both anomaly

types. This experiment presents the value that A3C can provide over time. Next, we

investigate the performance of the CNN and A3C models where we fix the trip length and

vary the anomaly rate for both anomaly types. This experiment can help showcase the

potential of using A3C in a dynamic road environment where the rate of anomaly changes

as the CAV drives through the network. Lastly, we illustrate the performance of the two

models for an anomaly encountered in a sample path.
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Throughout our analyses, we evaluate the performance of the models in terms of accuracy,

sensitivity, specificity, positive predictive value (PPV), and F1 score. We consider F1 score, a

balance between sensitivity and PPV, as the main metric of comparison between the models.

To highlight the percentage improvement in error rate between the F1 scores of the CNN

and A3C models, we also introduce the metric ∆Improve, i.e.,

∆Improve =
F1A3C − F1CNN

100− F1CNN
· 100%.

For all experiments, we test the models using 10 distinct sample paths and present the mean

and 95% confidence interval (CI) for the performance metrics.

3.4.1 Performance Under Fixed Anomaly Rate

In this section, we compare the performance of the CNN and A3C models for a fixed anomaly

rate of ξ = 5% (in the test sets), and vary the trip length T for both the bias and gradual

drift anomaly types. All models are trained using an anomaly rate of 5%. The experimental

design is illustrated in Fig. 3.3. This setup represents the effects of different time exposures

to anomalous events from a single roadside unit, assuming the roadside unit is responsible

for the injection of anomalies, and evaluates the ability of A3C and CNN to determine the

presence of anomalies in a trip. Specifically, for an anomaly rate of ξ = 5%, we vary the

trip length to be T ∈ {5000, 15000, 25000}. These trip lengths represent the total number of

decision epochs at which a decision/classification is made as to whether the system is normal

or anomalous, with each epoch equivalent to a travel time of 0.1s.

Table 3.2 illustrates the mean and 95% CI for the performance metrics for various trip

lengths for the bias anomaly type. First, note that as the trip length increases, the anomaly

detection performance slightly decreases for both CNN and A3C. This is expected as anoma-

lies occur randomly over time and during relatively short trips, e.g., T = 5000, few anomalies

may be present. Also, in general, it is seen that the A3C model outperforms the CNN model

across the considered trip lengths. This is particularly reflected by the ∆Improve metric.

Specifically, we conduct paired t-tests to investigate the difference in F1 score between the

CNN and A3C models. The obtained p-values indicate statistical significance at a 5% level
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Figure 3.3: Illustration of a sample path with a fixed anomaly rate and different trip
lengths. A fixed anomaly rate of ξ = 5% is used for trips with lengths of 5000, 15000, and
25000 epochs.

(p-value < 0.05) for all trip lengths considered. It is important to note that in our preliminary

experiments with very short trip lengths, e.g., T = 200, the improvement in F1 score was not

always statistically significant. This is mainly because not many anomalies are encountered

in very short trip lengths due to the low anomaly rate. As a result, there are very few

opportunities (anomalies) for A3C to improve upon the performance of CNN.

Table 3.3 illustrates the mean and 95% CI for the performance metrics for various trip

lengths for the gradual drift anomaly type. Similar to Table 3.2, overall the anomaly

detection performance slightly decreases for both CNN and A3C as trip length increases.

In addition, from the results, it is seen that A3C improves upon the F1 score of CNN for

all trip lengths. The obtained p-values from a paired t-test for F1 score indicate statistical

significance at a 5% level (p-value < 0.05) for all trip lengths.

3.4.2 Performance Under Variable Anomaly Rate

In this section, we investigate the effect of having different anomaly rates in a trip. First,

we train and test the CNN model under various anomaly rates for the bias anomaly type to

gain insights into the importance of knowing the test environment’s anomaly rate. We then

use the best performing CNN based on this experiment, and compare its performance for

a variable anomaly rate and fixed trip length for both the bias and gradual drift anomaly
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Table 3.2: The mean and 95% CI anomaly detection performance of the bias anomaly type
for a fixed anomaly rate, ξ = 5%, and various trip lengths. P-values indicate statistical
significance at 5% level using paired t-tests, between the F1 scores for the CNN and A3C
models for all trip lengths.

T = 5000 T = 15000 T = 25000
A3C CNN A3C CNN A3C CNN

Accuracy
97.48
±0.40

97.30
±0.40

96.91
±0.13

96.79
±0.12

96.38
±0.09

96.27
±0.18

Sensitivity
91.76
±1.37

91.10
±1.36

90.99
±0.51

90.48
±0.49

90.56
±0.41

89.92
±0.37

Specificity
99.89
±0.06

99.90
±0.05

99.30
±0.10

99.35
±0.11

98.75
±0.07

98.86
±0.11

PPV
99.73
±0.16

99.76
±0.13

98.13
±0.30

98.25
±0.33

96.72
±0.27

96.98
±0.37

F1 score
95.57
±0.76

95.22
±0.74

94.43
±0.30

94.20
±0.29

93.54
±0.27

93.32
±0.30

∆ Improve 7.58 ± 0.03% 3.94± 0.01% 3.32 ± 0.01%

Table 3.3: The mean and 95% CI anomaly detection performance of the gradual drift
anomaly type for a fixed anomaly rate, ξ = 5%, and various trip lengths. P-values indicate
statistical significance at 5% level using paired t-tests, between the F1 scores for the CNN
and A3C models for all trip lengths.

T = 5000 T = 15000 T = 25000
A3C CNN A3C CNN A3C CNN

Accuracy
96.75
±0.20

96.52
±0.20

95.53
±0.15

95.17
±0.15

94.81
±0.35

94.64
±0.41

Sensitivity
89.94
±0.53

89.99
±0.46

90.00
±0.36

90.38
±0.32

88.88
±0.64

86.24
±0.62

Specificity
99.63
±0.27

99.29
±0.24

97.78
±0.24

97.12
±0.26

97.23
±0.26

96.99
±0.34

PPV
99.00
±0.76

98.14
±0.68

94.21
±0.71

92.66
±0.81

92.89
±0.74

92.32
±0.92

F1 score
94.25
±0.43

93.89
±0.37

92.05
±0.36

91.50
±0.41

90.84
±0.65

90.58
±0.73

∆ Improve 5.77 ± 0.07% 6.35± 0.02% 2.65±0.01%

85



!=1% != 5%!= 10%

Figure 3.4: Illustration of a sample path with different rates of anomaly for road segments
with a fixed length. In this sample path, the CAV goes through three road segments where
it communicates with RSUs that can inject anomalies at different rates, i.e., starting from ξ
= 1%, anomaly rate first increases to ξ = 10% and then decreases to ξ = 5%.

types. The experimental design is illustrated in Fig. 3.4. This setup represents the effects

of exposure to different anomaly rates and the ability of A3C and CNN to determine the

presence of anomalies in a trip. Specifically, for a trip length of T = 15000, we vary the

anomaly rate to be ξ ∈ {1%, 5%, 10%}. This experiment is motivated by the scenario in

which the CAV does not know the anomaly rate of the road segment it is in, hence it may

be unclear which trained model with regard to anomaly rate to use in these circumstances.

Table 3.4 illustrates the mean and 95% CI for the F1 score obtained from the CNN model

when using various anomaly rates for training and testing for the bias anomaly type. First,

note that a model that is trained using a given anomaly rate, presents different performances

when tested under different anomaly rates. For instance, when testing a model that is trained

on ξ = 1% (first row in Table 3.4) on anomaly rates ξ ∈ {1%, 5%, 10%}, the resulting F1

score on average ranges between 86.82%–89.47%. Indeed in this case, the model that is

trained and tested in the same type of environment, i.e., ξ = 1% for both training and test

sets, presents the highest performance. As seen in the table, such trend generally holds;

better performance is achieved when using the same anomaly rate in training and testing.

The only exception observed in the table is in the case of ξ = 5% in training. In this case,

testing the model when ξ = 10%, compared with ξ = 5%, results in approximately 1%

higher performance. These results overall suggest that, in general, given the often unknown
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Table 3.4: The mean and 95% CI for F1 score of the CNN model, obtained for various
training and testing combinations of anomaly rate under bias anomaly type.

Anomaly rate in testing
ξ = 1% ξ = 5% ξ = 10%

Anomaly
rate in
training

ξ = 1% 89.47 ± 1.54 87.94 ± 0.74 86.82 ± 0.55
ξ = 5% 92.01 ± 0.88 94.20 ± 0.29 95.53 ± 0.25
ξ = 10% 67.08 ± 1.71 89.93 ± 0.50 94.54 ± 0.55

Table 3.5: The mean and 95% CI for F1 score of the CNN model, obtained for various
training and testing combinations of anomaly rate under gradual drift anomaly type.

Anomaly rate in testing
ξ = 1% ξ = 5% ξ = 10%

Anomaly
rate in
training

ξ = 1% 87.20 ± 0.96 88.14 ± 0.61 89.00 ± 0.33
ξ = 5% 77.59 ± 0.81 91.50 ± 0.41 94.21 ± 0.17
ξ = 10% 86.35 ± 0.59 93.83 ± 0.19 95.31 ± 0.16

circumstances in which a previously trained model may be used, measures (such as dynamic

thresholding) may need to be taken to achieve the pre-trained algorithm’s full potential.

Similar results are seen under the gradual drift anomaly type, presented in Table 3.5.

In the remainder of this section, we use the average anomaly rate of ξ = 5% to train the

CNN model. This is consistent with real-world conditions where a single trained model is

often implemented, without the knowledge on the true anomaly rate to be experienced by

the CAVs.

Table 3.6 illustrates the anomaly detection performance of the models for the bias

anomaly type for trip length T = 15000, and anomaly rate ξ ∈ {1%, 5%, 10%}. From

the results, it is seen that the addition of the A3C model improves the performance of the

CNN model across all anomaly rates, particularly for F1 score. Specifically, paired t-tests

indicate a statistically significant difference at a 5% level in F1 score between the A3C and

CNN models for an anomaly rate of 5% and 10%. For the 1% anomaly rate, a statistical

difference is not obtained which is, in part, due to the few anomalies encountered by the

models. However, a better sensitivity and F1 score is still apparent from the results for the

A3C model.

Similarly, Table 3.7 illustrates the anomaly detection performance of the models for the

gradual drift anamaly type for trip length T = 15000, and anomaly rate ξ ∈ {1%, 5%, 10%}.

From the results, considering F1 score, it is seen that the addition of the A3C model improves
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Table 3.6: The mean and 95% CI Anomaly detection performance of the bias anomaly
type for trip length T = 15000, and anomaly rate ξ ∈ {1%, 5%, 10%}. P-values indicate
statistical significance at 5% level using paired t-tests, between the F1 scores for the CNN
and A3C models for anomaly rates ξ ∈ {5%, 10%}.

ξ =1% ξ = 5% ξ =10%
A3C CNN A3C CNN A3C CNN

Accuracy
98.91
±0.11

98.91
±0.12

96.91
±0.13

96.79
±0.12

95.99
±0.25

95.78
±0.24

Sensitivity
91.48
±1.14

91.03
±1.22

90.99
±0.51

90.48
±0.49

92.46
±0.48

91.92
±0.48

Specificity
99.46
±1.14

99.49
±0.07

99.30
±0.10

99.35
±0.11

99.48
±0.12

99.50
±0.11

PPV
92.64
±1.04

93.04
±1.04

98.13
±0.30

98.25
±0.33

99.43
±0.15

99.45
±0.13

F1 score
92.04
±0.82

92.01
±0.88

94.43
±0.30

94.20
±0.29

95.82
±0.25

95.53
±0.25

∆ Improve 0.21 ± 0.02% 3.94± 0.01% 6.54 ± 0.02%

the performance of the CNN model across all anomaly rates. Paired t-tests indicate a

statistically significant difference at a 5% level in F1 score between the A3C and CNN

models for all anomaly rates considered.

3.4.3 An Illustrative Example

In this section, we illustrate the performance of the CNN and A3C models for a bias anomaly

encountered in a sample path. The example shows how the A3C model can improve upon

the performance of the CNN model by changing its threshold to detect anomalous instances

missed by the CNN. Fig. 3.5 illustrates a bias anomaly encountered in a sample path.

More specifically, the top panel of the figure presents the baseline GPS speed (without

anomalous instances), GPS baseline speed augmented with the anomaly, in-vehicle speed,

and the acceleration. The bottom panel of the figure, shows the real-time CNN output

probability, the fixed CNN threshold of 0.5, as well as the adaptive threshold specified by

A3C. For the CNN model, while its output probability is less than 0.5, the system is classified

as normal, and when it is greater than or equal to 0.5, the system is classified as anomalous.

Similarly, for the A3C model, while the CNN-estimated probability is less than the A3C

threshold, the system is classified as normal and vice versa.
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Table 3.7: The mean and 95% CI Anomaly detection performance of the gradual drift
anomaly type for trip length T = 15000, and anomaly rate ξ ∈ {1%, 5%, 10%}. P-values
indicate statistical significance at 5% level using paired t-tests, between the F1 scores for the
CNN and A3C models for all anomaly rates, ξ ∈ {1%, 5%, 10%}.

ξ =1% ξ = 5% ξ =10%
A3C CNN A3C CNN A3C CNN

Accuracy
96.79
±0.11

96.42
±0.09

95.53
±0.15

95.17
±0.15

94.55
±0.21

94.41
±0.17

Sensitivity
89.51
±0.68

89.89
±0.64

90.00
±0.36

90.38
±0.32

91.43
±0.30

91.46
±0.24

Specificity
97.33
±0.08

96.91
±0.07

97.78
±0.24

97.12
±0.26

97.63
±0.25

97.35
±0.22

PPV
71.23
±1.38

68.27
±1.28

94.21
±0.71

92.66
±0.81

97.45
±0.30

97.15
±0.28

F1 score
79.34
±0.97

77.59
±0.81

92.05
±0.36

91.50
±0.41

94.34
±0.23

94.21
±0.17

∆ Improve 7.83 ± 0.02% 6.35± 0.02% 2.24 ± 0.02%

From the figure, it is seen that the bias anomaly starts at time epoch 1864 during the trip.

As a result, the CNN output probability is consistently low (approximately 0.03) before this

time. It is also seen that the threshold specified by the A3C is approximately 0.6 before the

anomaly onset. It is seen that both the CNN and A3C models fail to correctly classify the

first instance of the anomaly. However, from time epoch 1865, both models start to detect

the anomaly, i.e., the CNN output probability is greater than or equal to both 0.5 and the

A3C threshold. Over the next few epochs, the A3C threshold starts to lower (from 0.6 to

0.14) as the CNN-estimated probability increases, hence illustrating the changing threshold

of A3C as anomalous instances are recognized and the A3C model grows more confident

of its belief that the system is anomalous. At time epoch 1870, the CNN model outputs

a probability of 0.27 meaning that the CNN classifies the system as normal, i.e., a FN is

incurred. However, for A3C, its lowered threshold ensures that the CNN output probability

is greater than its current threshold resulting in the A3C model correctly classifying the

system as anomalous. Both models correctly detect the remainder of the anomaly. After

the last instance of the anomaly occurs at time epoch 1873, the CNN probability lowers

to approximately 0.03 again, and the A3C thresthreshouldhold is raised to approximately

0.6 again with both models correctly classifying the system as normal in the following time

epochs.
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Figure 3.5: Illustration of a bias anomaly encountered in a sample path. The baseline
speed, baseline speed augmented with the anomaly, the CNN output probability, and the
threshold specified by A3C are illustrated.
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3.5 Conclusion

The goal of this study is to develop a framework to detect anomalous behaviors in CAVs.

Specifically, we develop an approach that embeds a CNN classification model into a Bayesian

framework with the main objective of improving the performance of the primary classification

model. It should be noted that any classification model can be used as part of the framework.

The Bayesian framework consists of a POMDP model which is solved using the A3C

algorithm. In addition, we incorporate recent trip information to more actively react to

environmental changes and anomaly rates during a trip. The framework is also flexible to

use in other applications where the cost of false negatives/positives can be adjusted as needed

for specific purposes.

Our results show that the addition of the POMDP model leads to an improved

performance, especially with respect to F1 score. Specifically, we conduct experiments where

we fix the anomaly rate and vary the trip length and vice versa. In general, paired t-tests

illustrate a statistical significant improvement for the A3C model compared to the CNN

model’s performance. This research contributes to the field of ITS safety. Specifically, the

proposed framework addresses the issue of using a single trained classification model to detect

anomalies. In real-world conditions, the anomaly rate of road segments are not known in

advance. Hence, as illustrated in this study, using a hierarchical decision model may improve

the anomaly detection capabilities of the primary classification model.

The study is subject to certain limitations. In our experiments, similar to previous studies

in the literature, the anomalous instances in the speed sensor data are simulated. In our

experiments, to illustrate the capabilities of the framework, anomaly types are limited to

bias and gradual drift. Additional testing is required for other anomaly types and sensor

types. It is envisioned that data collected from recently completed and ongoing pilot studies

may contribute to the availability of real-world data including anomalous instances.

In future work, it may be useful to test additional models as the primary classification

model in the framework. Also, other deep reinforcement learning techniques can be used to

solve the POMDP model to compare to the performance of the A3C algorithm. In addition,

it may be interesting to use the stream of belief probabilities generated by the POMDP in
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real-time as an input to an additional decision making model to more accurately approximate

the true state of the system.
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Conclusion

In this research, we investigate the several aspect of CAVs under cyber-security and safety

uncertainties. Specifically, in Chaper 1, we investigate real-time sensor anomaly detection

and identification in CAVs. We develop a robust anomaly detection approach through

combining a deep learning method, namely convolutional neural network (CNN), with a well-

established anomaly detection method, Kalman filtering, to detect and identify anomalous

behavior in CAVs in real-time. Our numerical experiments demonstrate that the developed

approach can detect anomalies and identify their sources with high accuracy, sensitivity, and

F1 score.

In Chapter 2, we focus on the limitations of semi-autonomous vehicles under certain

circumstances where it is safer for the human driver to be in control compared to the

automated driving system. We investigate the transfer of control authority in semi-

autonomous vehicles to improve overall road safety. We develop a Markov decision process

(MDP) model to prescribe the entity in charge to minimize the expected safety risk of a

trip. We also develop a partially observable Markov decision process (POMDP) model to

account for cases when only partial information of the environmental risk is available. We

gain insights into the associated risks and advantages of authority control transitions for

semi-autonomous vehicles in certain conditions.

In Chapter 3 we investigate real-time dynamic thresholding in classification algorithms to

adapt to complex road and environmental conditions. Traditional classification algorithms

use fixed and a priori determined thresholds which determine if information is anomalous or

not. However, this approach does not allow for incorporating feedback obtained during

a trip on the performance of the classification algorithm which may result in excessive

false positive/negatives. To address this problem, we develop a mathematical framework in
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which we pair an anomaly classification algorithm, based on CNN, with a POMDP model to

determine the optimal dynamic threshold of an anomaly classification algorithm to maximize

the safety of a trip. The numerical experiments suggest that the addition of the POMDP

model improves the anomaly detection performance of the CNN model, resulting in high

accuracy, sensitivity, and positive predictive value. As a result, we gain insights into the

associated benefits and disadvantages of implementing a dynamic classification threshold in

response to complex exogenous factors.
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Table A.1: Summary of key literature related to anomaly detection in CAVs.

Author(s)
Cyber-security/anomaly
aspects investigated

Key relevant findings
Study approach
(method)

Type of data
used

Yang et al. (2016)

Anomaly detection for internet
of vehicles, specifically, detecting
abnormal vehicles operating
in a platoon

Low detection failure rate below 1%,
demonstrating its ability to detect and
filter the abnormal vehicles

Affinity
propagation
framework

Simulation
in TransModeler

Jo et al. (2016)
An adaptive transient fault model
for sensor attack detection for
multiple operating mode systems

Improvement on existing non-transient
fault models. Uses a dynamic look-up
table for the applicable system
parameters

Transient fault
model (TFM) using
graph theory

Data obtained from an
unmanned ground
vehicle.
Simulated attacks

Checkoway et al. (2011)
Analysis of external
attack surfaces of a modern
automobile

Remote exploitation is feasible via a
broad range of attack vectors

Experimental
analyses on vehicles
in the sedan segment

Real experiments
on vehicles

Christiansen et al. (2016)
Obstacle/anomaly detection
algorithm using deep learning

High accuracy, low computation time
and low memory footprint

Combine background
subtraction and CNN

Field experiments

Yan et al. (2016)

Examines the security of the
sensors of autonomous vehicles,
and investigate the trustworthiness
of the sensors

Off-the-shelf hardware were able to
perform jamming and spoofing attacks
which can compromise the safety
of self-driving cars

Laboratory and
outdoor experiments

Collected data
through experiments

Lin et al. (2010)
A model-free approach for detecting
anomalies in unmanned autonomous
vehicles, based on sensor readings

Works well for a limited number
of attributes

Anomaly
detection using
Mahalanobis distance

Data from unmanned
aerial vehicle

Bezemskij et al. (2017)
Detecting cyber-physical threats
in real time in an autonomous
robotic vehicle

Can determine whether an AV
is under attack and also
whether the attack originated from
the cyber or the physical domain

Heuristic binary
classifier and Bayesian
network

Simulated attacks
using an unmanned
ground vehicle

Müter and Asaj (2011)
Marchetti et al. (2016)

Detecting anomalies (attacks) for
in-vehicle networks

Certain attacks on the CAN-bus of
a vehicle were detected using the
proposed methodology. Difficult
to detect low-volume attacks

Signal entropy
Field experiments
using a vehicle,
CAN data

Koscher et al. (2010)
Experimental security analysis
of a modern automobile

It is possible to bypass rudimentary
network security protections such as
the malicious bridging between a cars
internal subnets

Experiments in
laboratory and road
tests

Various
experiments

Khalastchi et al. (2011)
Online anomaly detection
in unmanned vehicles

Method is able to take into account
a large number of monitored sensors
and internal measurements

Anomaly detection using
Mahalanobis distance

Data from robot,
and a high-fidelity
flight simulator

Petit and Shladover (2015)
State of the art in identifying
potential cyber attacks on
automated vehicles

Identifies risks of various importance.
Identifies GNSS spoofing and
injection of fake messages as most
dangerous attacks on AVs

Exploratory
study

Review
of literature

Kang and Kang (2016)
A deep learning model to enhance
in-vehicular safety by detecting
malicious CAN packets

Real-time response to the
attack with a significantly improved
detection ratio in controller area
network (CAN) bus

Multilayer perceptron
(MLP) model

Simulated data using
software package
(OCTANE)

Park et al. (2015)
Addresses the problem of detection
and identification of sensor attacks
in the presence of transient faults

Able to detect and identify attacks
using sensor fusion

Pairwise inconsistencies
between sensors to detect
and identify attacks

Unmanned ground
vehicle

Taylor et al. (2016)
Deep learning to
detect attacks on CAN bus

Detect anomalies with low
false alarm rates

Long Short-Term Memory
(LSTM) recurrent neural
network (RNN)

Synthesize anomalies
with modified
CAN bus data

Levi et al. (2018)
Machine learning approach is
proposed to protect connected
vehicles

Detect anomalies with a large
number of features

Combine Hidden Markov
Model and regression model

Simulation using software
(SUMO)
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Table A.2: Summary of notation for Chapter 1.

Variable Description
n Number of sensors
α Anomaly rate
x State variable of Kalman filter
z Sensor measurement
w Process noise of state-transition model
v Sensor measurement noise
ν Innovation between measurement and predicted value of the measurement
A State-transition matrix
H Sensor measurement matrix
R Process noise covariance matrix
Q Measurement noise covariance matrix

R̂ Process noise covariance matrix estimate

Q̂ Measurement noise covariance matrix estimate
S Covariance matrix of innovation
P Error covariance matrix, where the error is the difference between true and predicted state values
M Window size of adaptive Kalman filter
γ χ2 detector parameter
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B Model Calibration

In this study, due to lack of access to data, trips and their characteristics are simulated. That

is, given the length of a trip and the number of links connecting the trip origin to destination,

the link lengths and accident probabilities are randomly generated on the path from the origin

to the destination where probabilities of an accident occurring remain unchanged throughout

a given link. All trips in the computational study, except when stated otherwise, use a fixed

trip length of 1000 consisting of 10 links.

For simplicity, in our computational study, the road/environment vector, ξ, is summa-

rized into three risk levels, namely, ξ = 0, 1, 2 corresponding to low, average, and high

risk, respectively. We let the stochastic matrix P denote the one-step transition probability

matrix (TPM) for the road/environment condition where the element (i, j) represents the

probability of transitioning from condition i to j, p(j|i). We use the following matrix as the

base matrix in our computational study representing an average risk profile:

P =


0.95 0.04 0.01

0.6 0.35 0.05

0.25 0.7 0.05

 . (8)

For instance, according to the probabilities provided in the matrix, if the road/environment

is in the low risk condition, then in the next time epoch, e.g., one second later, the state of the

road/environment will remain in the low risk condition with probability 0.95, or transitions

to an average or a high risk condition with probabilities 0.04 and 0.01, respectively.

Due to lack of access to real-world data, all probability values are generated based on

the existing literature and the know-how of the authors and other experts in the field.

Specifically, to obtain probability distributions for accident severity in the manual driving

mode under various driving scenarios, we use the existing literature, as will be elaborated

in the following. Similarly, we use expert knowledge to approximate the probability

distributions for accident severity in the autonomous driving mode under various driving

scenarios. Table B.1 summarizes the parameter values for the conditional probabilities

of accident severity at location-environment µ, used in the computational study, where a
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random error ε ∼ U(0, 0.01) is incorporated for each link and then the vectors are normalized.

Note that an accident may occur due to local road/environment conditions or due to a switch

in control authority. For the probability of accident for the driving entity φ under [`, ξ], pφ(µ),

random numbers are generated from U(0, 0.001) for each link and driving entity such that

the probability of accident increases in ξ. Similarly, for the probability of accident as a

result of a switch of the vehicle control to entity φ under [`, ξ], ζφ(µ), random numbers are

generated for each link from U(0, 0.01) and U(0, 0.0001) for switching to the individual and

the car, respectively, such that the probability of accident increases in ξ.

Table B.1: Parameter value generation for q(φ,µ) and ρ(µ)

Road/environment

condition, ξ
Driving entity, φ q0(φ,µ), q1(φ,µ), q2(φ,µ) ρ0(µ), ρ1(µ), ρ2(µ)

Low risk
Individual 0.95 + ε, 0.04 + ε, 0.01 + ε

0.55 + ε, 0.4 + ε, 0.05 + ε
Car 0.99 + ε, 0.01 + ε, 0 + ε

Average risk
Individual 0.1 + ε, 0.7 + ε, 0.2 + ε

0.2 + ε, 0.7 + ε, 0.1 + ε
Car 0.2 + ε, 0.7 + ε, 0.1 + ε

High risk
Individual 0.05 + ε, 0.45 + ε, 0.5 + ε

0.05 + ε, 0.65 + ε, 0.3 + ε
Car 0.05 + ε, 0.65 + ε, 0.3 + ε

We set k = 5 seconds, an average RT value based on tests conducted by Audi as described

in Section 1.1. A 2015 report from the national safety council reports the average economic

cost of fatalities, injuries, and property damage to be $1.5 million, $80,700, and $9,300 per

accident, respectively (National Safety Council, 2015). Hence, the accident cost vector is

calibrated accordingly, i.e., c = [9300, 80700, 1500000]. The costs of alerting and foregoing

the alert are set to 5000, i.e., cA = cp = 5000, to make their combined value comparable to

the cost of property damage following an accident. Finally, the discount factor is set to 0.97,

i.e., α = 0.97.
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