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Abstract

Network topology identification is known as the process of revealing the interconnections of a

network where each node is representative of an atomic entity in a complex system. This procedure

is an important topic in the study of dynamic networks since it has broad applications spanning

different scientific fields. Furthermore, the study of tree structured networks is deemed significant

since a large amount of scientific work is devoted to them and the techniques targeting trees can

often be further extended to study more general structures. This dissertation considers the problem

of learning the unknown structure of a network when the underlying topology is a directed tree,

namely, it does not contain any cycles.

The first result of this dissertation is an algorithm that consistently learns a tree structure when

only a subset of the nodes is observed, given that the unobserved nodes satisfy certain degree

conditions. This method makes use of an additive metric and statistics of the observed data only

up to the second order. As it is shown, an additive metric can always be defined for networks

with special dynamics, for example when the dynamics is linear. However, in the case of generic

networks, additive metrics cannot always be defined. Thus, we derive a second result that solves

the same problem, but requires the statistics of the observed data up to the third order, as well

as stronger degree conditions for the unobserved nodes. Moreover, for both cases, it is shown

that the same degree conditions are also necessary for a consistent reconstruction, achieving the

fundamental limitations. The third result of this dissertation provides a technique to approximate

a complex network via a simpler one when the assumption of linearity is exploited. The goal of

this approximation is to highlight the most significant connections which could potentially reveal

more information about the network. In order to show the reliability of this method, we consider

high frequency financial data and show how well the businesses are clustered together according

to their sector.
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Chapter 1

Introduction

Networks of dynamic systems have become a widespread modeling tool with applications spanning

fields as diverse as physics [5, 6], biology [7], chemistry [8], medicine [9], neuropsychology [10],

ecology [11, 12], economics [13, 14], engineering [15] and social networks [16]. For example, in

[10] a learning methodology is developed that establishes the interconnections between different

brain regions. This is an important procedure since cognitive tasks recruit multiple regions of the

brain and therefore understanding how these regions are affecting each other will help characterize

neural basis of cognitive processes. As another example, the authors of [16] apply an algorithm to

create the causal diagram of the trending topics discussed by popular Twitter handles. This causal

diagram is then used to identify the trend setters, namely, the users that have influenced other users

the most by starting a topic.

The first step of studying a network of dynamic systems is typically to identify how its

internal processes (or nodes) are connected to each other. This problem might be tackled under

different scenarios. A first scenario considers the situations when excitations are used to probe

the network and receive its response in order to identify the network structure; these methods

are commonly known as active reconstruction in the literature [17]. A second scenario considers

the situations when the inputs of the network are measurable but not adjustable; these scenarios

are often known as non-invasive reconstruction [17, 18]. A third and more challenging scenario

is when the inputs of the network are not measurable at all and the only observable part of the

system is its outputs; these techniques are known as blind reconstruction [19, 20]. In the latter

scenario, the measurements of the outputs are not the system response to known inputs and data

1



are acquired while the system is operating and forced by potentially unknown excitations. Since

blind reconstruction methods identify a network only from observations of the outputs, they have

practical applications even in large scale networks fulfilling critical or uninterruptible functions,

such as power grids [21] or logistic systems [22], and also in situations where it is impractical or

too expensive to inject known probing signals into the system, such as gene or financial networks

[23, 24]. Furthermore, the applications of these techniques span the field of medicine such as

repeated drug testing [25], automatically assisted anesthesia [26], and deep brain stimulation for

Parkinson’s disease [3, 27].

The ultimate objective of this dissertation is to propose novel algorithms to learn the structure

of a network using only the observations of the network outputs (blind reconstruction technique).

To achieve this goal, we develop three main algorithms under different assumptions. Parts of these

results are already published in [28], [2] and [3] while [1] and [4] are currently under review for

publication. In the following sections, we review some of the relevant work in the literature and

then present an overview of the contributions of this dissertation.

1.1 Techniques to Learn Network Structures

Several algorithms have been developed with the goal of learning the structure of a network

from observational data. These algorithms are mostly derived in the area of graphical models to

describe conditional independence relations among random variables [29, 30]. Only more recently

techniques have been developed in the domain of stochastic processes to describe input/output

relations among dynamic systems [17, 19, 20, 31, 32, 33]. Graphical models of random variables

and networks of dynamic systems have inherently different underlying semantics. However, it

is shown that many of the techniques developed for learning the structure of a network can be

consistently applied to both fields [34]. This is also the objective of this dissertation: develop

algorithms to learn the network structure of random variables of a graphical model and also the

network structure of stochastic processes of a dynamic system [3].

In the area of graphical models, different approaches have been proposed to learn the structure

of a network [35, 36, 37]. In [36], these methods are categorized in three different approaches:

(i) constraint-based structure learning, where the network is viewed as a representation of
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dependencies; (ii) score-based structure learning, where the network is viewed as a statistical

model and the structure is learned via a model selection approach; (iii) model averaging, where an

ensemble of possible structures are generated. Here, we are interested in studying approaches that

fall into the first category. Among the constraint-based structure learning tools, one of the most

versatile approaches is the SGS (Spirtes, Glymour, and Scheines) algorithm developed to infer

a Bayesian network of random variables from data [37]. This algorithm provides a consistent

reconstruction of the topology of a Bayesian network described by a Directed Acyclic Graph

(DAG). However, it cannot, in the general case, determine the orientation of all the links in the

graph. Moreover, one fundamental drawback of the SGS algorithm is that it relies on several

searches of subsets of the graph nodes resulting in exponential time complexity with respect

to the number of nodes. Variations of this algorithm such as the PC (Peter, Clark) algorithm

are developed to exploit the conditional independence relations to reduce the computational

complexity. However, its worse case scenario still runs in exponential time with respect to the

highest degree of the nodes, again, making it not suitable to deal with large networks.

In contrast, a different set of approaches make use of a priori information about the structure

by deriving reconstruction algorithms with better scaling and sample complexity properties. A

widely used algorithm to approximate a discrete probability distribution with tree factorization

was developed by Chow and Liu in [38]. If a distribution has a tree factorization, it means that

each factor is the conditional probability distribution given at most one other variable (namely,

a product of first or second order distributions). This strategy has been successfully employed

in biology for the study of gene regulatory networks to approximate a complex structure with a

tree topology [23]. Also, in economics, this method has been applied to identify a tree network

for the analysis of a stock portfolio [14]. Other techniques such as phylogenetic reconstruction

approach have been developed that utilize a metric defined over pairs of nodes of a binary tree with

applications in biology [39].

Similarly, in the area of dynamic systems, there are algorithms capable of reconstructing

quite large classes of networks [20, 33, 34, 40, 41, 42, 43, 44, 45]. For example, the authors

of [20], propose an approach to consistently reconstruct the structure of an unknown dynamic

network using spectral factorization methods for stable, minimum-phase Linear Time Invariant

(LTI) systems. The reconstructed network, in this case, is unique given that the system is strictly
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causal. Furthermore, the authors also propose a method to deal with non-minimum phase systems

with strictly causal dynamics, though, in this case the solution is not necessarily unique. Aside

from the strong assumption of strict causality, these approaches rely on the spectral factorizations

which do not scale very well with the number of nodes.

In [34], the authors show that a modification of the PC algorithm can be applied to reconstruct

linear networks of dynamic systems given that the structure is a DAG. Similar to the PC algorithm,

this modified version is guaranteed to be consistent but it also suffers from the same limitations

in orienting the edges in the network. Other approaches are developed using Granger causality

to learn the structure of a network of time series data [19, 46]. The result in [46] achieves this

goal, with applications in econometrics, when the noise processes are assumed to be white while

the method in [19] further utilizes Wiener filtering with no assumption on the color of the noise

processes.

The authors of [42] develop a framework for reconstruction of networks of stochastic processes

using the Compressed Sensing Theory (CST) with applications to propagation of diseases or

rumors. Computational cost is often a limiting factor for the practical implementation of techniques

aiming at reconstructing generic networks such as the one in [42]. Thus, in order to keep the

computational cost of the reconstruction algorithm at tractable levels, the authors limit themselves

to strictly causal binary stochastic processes [42]. Other results formulate the reconstruction

problem looking specifically for a sparse solution via compressed sensing tools such as [43] and

[44]. However, the main drawback of these techniques lies in the fact that it is often difficult to

find guarantees for the correct reconstruction when applying CST.

In [40], the authors introduce a metric that is a function of the coherence of the pairs of signals

and use this metric to develop a technique that reconstructs the skeleton of a dynamic network with

a rooted tree structure similar to the approach developed in [38] for graphical models of random

variables. They also provide guarantees that this method learns the correct interconnections

between the graph nodes, resulting in a correct reconstruction of the structure. Moreover, it is

shown that this algorithm could be utilized to provide an approximation of a complex network

with a single rooted tree. Such an approximation is shown to be optimal, since it minimizes the

mutual information between pairs of nodes in the original network, and also consistent, since it is
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shown that if the original network is a rooted tree, then the output of the algorithm converges to

the actual network structure in the limit of infinite data.

The algorithms discussed so far have been developed under the assumption that all of the

variables in the network are observed. However, as it is often the case, there might be some

variables that are not measurable, though the dynamics of the network is affected by their presence.

In the next section, we provide a review of the existing methods dealing with these hidden processes

and discuss their strengths and weaknesses.

1.2 Learning Techniques for Networks with Unmeasurable

(Hidden) Nodes

A fundamental and interesting challenge for learning the structure of networks both in the area

of graphical models of random variables and the dynamic systems of stochastic processes occurs

when only part of the nodes of the network are observable. This is a relevant issue in many different

fields when dealing with practical applications of learning a network structure. For example, in

biological networks some of the nodes might not be measurable while they could potentially play

a relevant role in the network dynamics [47]. As an additional example, attacks in cyber-security

applications are often described by modeling the intruders as hidden (or latent) nodes injecting

malicious information into other nodes or stealing information from them [48].

In the study of dynamic systems or control theory, hidden nodes are typically associated only

with unmeasured state components [49, 50]. There are numerous techniques to reconstruct a

network considering the hidden states as the unmeasured variables with a pronounced attention

towards computational efficiency. A common tool to handle hidden states in networks of stochastic

processes is the Dynamic Structure Function (DSF) framework developed in [33, 51, 52]. This

approach treats all state components that are not measured as hidden nodes. Thus, DSF is merely

an input/output network representation of the observable state components connected by transfer

functions where the unobserved variables are marginalized and therefore do not appear in the final

output of this method.
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However, in the graphical models area hidden nodes have a different meaning since they

represent unmeasurable parts of the network where new information is being introduced and are

not just unmeasured states [53]. In the scope of this dissertation, even when dealing with dynamic

systems, we consider hidden nodes as points where new information is added to the network. Thus,

in this respect, our approaches bear more similarities with graphical model tools than with control

theoretic tools. Considering this definition of hidden nodes, despite the differences in semantics

of dynamic systems and graphical models as mentioned in previous section, in some cases similar

learning methodologies can be applied to both domains, such as the results of this dissertation [3]

or the results in [54].

The first algorithms which could detect the presence of hidden nodes took advantage of specific

statistical tests called spectral quartet tests. Spectral quartet tests are effective only when learning

tree structures [35, 55, 56] or bipartite Bayesian networks of binary variables [57]. A departure

from spectral quartet tests was an algorithm developed in [58] which could learn a binary tree just

by the observation of the leaves. The authors of [58] propose a different approach making use

of a metric that is additive along the paths of a rooted tree. A generalization of the technique in

[58] was later achieved with the Recursive Grouping Algorithm (RGA). RGA also leverages an

additive metric defined over pairs of nodes to reconstruct the structure of a generic rooted tree

network from observational data [53]. RGA learns the exact structure of the tree so long as the

degree of each hidden node is greater than or equal to three and therefore is not limited to the

assumption that all visible nodes are the leaves of the tree. Similar methods that take advantage

of an additive metric are developed in the case of discrete distributions such as Bernoulli which

can be extended to Gaussian models as well [59]. It is noteworthy to mention that the methods

developed for learning the tree structured networks have polynomial computational complexity.

Another algorithm called Learning Pairwise Cluster Comparison (LPCC) proposes a solution for

learning the networks of discrete variables with no prior assumption on the distribution [60, 61].

However, this method makes the strong assumption that no observable node can be an ancestor of

any hidden node, limiting the number of networks that can be recovered by LPCC.

In the case of generic distributions, though, finding an additive metric is extremely hard or

such a metric might not even exist in general. Many algorithms have been developed to solve this

problem for generic networks including cycles in the presence of unmeasured variables [62, 63,
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64]. One prevalent method is the use of ancestral graphs to describe the independence relations

among the observed variables given that the true network is a DAG [64]. The main advantage

of ancestral graphs is that they utilize only the measured variables and successfully encode all of

their conditional independence relations via m-separation statements, which generalize the well-

known criterion for d-separation [35, 63]. Furthermore, complete algorithms have been devised to

obtain ancestral graphs from observational data [63]. However, recovering the actual structure of

the original DAG considering the presence of the hidden variables is a task that ancestral graphs

somehow circumvent. This means that the exact location and number of the hidden nodes would

still be unknown after the recovery technique has been applied. A similar method, known as

ancestral polytree, while providing efficiency in the inference process, is developed for cases when

the ancestral graph has a polytree (directed tree with potentially multiple roots) structure [65].

Yet, there exist polytree networks such that their ancestral polytree graphs do not have a polytree

structure. Therefore, these cases cannot be handled by the ancestral polytree method, limiting the

number of different classes of networks that the algorithm can learn.

A different and recent methodology to learn the location and connectivity of hidden nodes in a

network of dynamic systems with a polytree structure is described in [66]. This method is based on

a discrepancy measure which is a function of the mutual information between pairs of nodes and it

relies on the estimation of high order statistics requiring, in general, large quantities of data. The

algorithm is applicable, again, only when each link of the network is strictly causal. Considering

strictly causal dynamics is a very limiting assumption due to several reasons: (i) transfer functions

with direct feedthroughs such as proportional gains are very common; (ii) many discretization

methods for continuous systems lead to necessarily non-strictly causal operators; (iii) when delays

are smaller than the sampling rate, correlations might appear as instantaneous in the collected data:

in these cases strictly causal relations would not be appropriate to describe the relations among the

node processes [2, 3].

Observe that many of the different techniques discussed in this section study tree structured

networks. In the next section, we discuss why these structures are important and why we are also

interested in studying this type of networks.
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1.3 The Importance of Tree Structured Networks

The significance of studying acyclic structures, such as trees, is supported in the literature by the

large amount of scientific articles devoted to these models [21, 38, 40, 56, 66, 67, 68, 69, 70]. Even

though acyclic structures are a relatively limited class of networks, there exist well established

tools to extend techniques developed for acyclic structures to cyclic networks such as junction tree

approaches [70, 71]. Thus, these results constitute, potentially, a first step towards the development

of techniques applicable to more general networks. As an additional example, belief propagation

was developed only for trees at first [67], but it was further generalized for loopy networks

afterwards [72]. Furthermore, acyclic structures are extensively studied because they can be used

to approximate more complex networks. While there could be methods to consistently reconstruct

more general classes of networks, these approaches tend to have higher computational and sample

complexity. Thus, given a complex system, it might be sometimes preferable to approximate it with

a simpler structure. Some examples of these procedures are shown in [14, 23, 40] where a whole

gene network and the underlying connectivity of hundreds of financial time series are successfully

approximated with a rooted tree. These examples signify the importance of developing fast and

efficient algorithms for learning networks with tree structures [1, 2, 3, 4].

Although rooted tree topologies can be satisfactory models in applications where propagations

arise from a single source [21], they do not necessarily perform well in applications where

information is fused from multiple sources. Examples of these scenarios are in complex power

systems where it is possible to generate power in different points inside the distribution grid [73],

or social networks where multiple nodes can be the source of misinformation [74, 75]. Polyforest

structures (collections of directed trees with potentially multiple roots) have the capacity to model

processes that are not necessarily correlated and in fact represent a wider range of network classes

modeling arbitrarily high order statistics [68]. For these reasons, in this dissertation we propose

novel methodologies to learn the structure of polyforest networks [1, 2, 3, 4].

In the next section, we consider a problem where all the nodes are observable and instead the

interest lies in finding an approximation of the network using polytrees in order to capture the

strongest connections.
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1.4 Approximation using Simpler Structures

As mentioned in previous sections, there are several techniques allowing the exact reconstruction

of networks from blind observations considering specific assumptions. While these methods can

learn potentially complicated networks and provide guarantees of a consistent learning, they rely on

a large quantity of observations for an accurate estimation of conditional independence relations,

power spectral factors or evaluation of many coefficients in several multivariate linear regressions

[1]. On the other hand, rooted trees have proven to be good topology approximators in several

application domains where the actual underlying network is definitely more complex [14, 23].

Since these approximators have tree structures, the computational cost of the approximation

method is drastically lower compared to the exact methods.

Another important advantage of using simpler structures as approximators is that when

multiple models satisfactorily explain the data, the simpler network is often optimal with respect

to some measure, for example a distance defined over pairs of nodes in the network. Thus,

this approximation usually tends to have fewer number of edges following a form of Occam’s

razor principle. This simpler structure is in some cases preferred over recovering the actual

structure because a network with fewer connections can potentially highlight the most significant

connections between the nodes of the system. Indeed, in these cases a network with fewer edges

and supposedly less explanatory power could be paradoxically more informative in terms of how

a system operates compared to a network that achieves a marginally better explanatory power by

introducing a large number of weak connections.

In the next section we discuss the contributions of this dissertation and also explain how tree

structured networks are leveraged for this study.

1.5 Contributions of this Dissertation

As a first contribution, this dissertation considers the problem of learning the unknown structure of

a linear dynamic network when the underlying topology is given by a polyforest and some nodes

are not observable. No assumption is made about the strict causality of the dynamic operators and

only statistics up to the second order are used. It is shown that the proposed methodology is robust
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with respect to the presence of unmeasured nodes. In other words, the derived algorithm detects the

exact number and location of the latent nodes if they satisfy specific degree conditions in the actual

network graph. It is also shown that the required degree conditions are necessary for a consistent

reconstruction. Thus, the proposed learning algorithm achieves the fundamental limitations in

learning the structure of a polyforest network of linear dynamic systems in the presence of latent

nodes [2, 3]. This technique tackles the problem in an efficient way since the computational

complexity of the derived algorithm is proven to be polynomial in the number of observed nodes.

This method splits a polytree into its rooted trees and then leverages RGA to recover all the hidden

nodes that have degree greater than or equal to three in each rooted tree. Furthermore, this method

is capable of detecting some additional hidden nodes with degree equal to two which RGA cannot

detect. We introduce an algorithm similar to the one introduced in [68] to find the orientation of

some of the links either by extracting available features from the data or exploiting some a priori

knowledge. Furthermore, it is shown that the proposed method developed for learning polyforest

structures in the case of linear networks of dynamic systems can be applied to the case of Gaussian

random variables for which we can define a distance metric with the property of being additive

along the paths of the rooted trees of the polyforest.

The second contribution of this work is to propose a novel methodology towards the recovery of

networks with signals generated by general distributions. Indeed, we provide an algorithm to learn

causal diagrams with polyforest structures making no assumption on the underlying probability

distribution or linearity of the dynamics of the network processes. These polyforest structures can

represent factorizations involving conditional distributions of arbitrarily high order. The proposed

technique, remarkably, uses only the statistics of the observable nodes up to the third order. It is

shown that a causal diagram with polyforest structure can be exactly recovered if and only if each

hidden node in the original diagram satisfies specific degree conditions. These degree conditions

are stronger compared to the degree conditions for learning the structure of a network with linear

dynamics since the assumption of linearity is relaxed. Moreover, if the degree conditions are not

satisfied, it is shown that there exists another polyforest with fewer number of hidden nodes which

entails the same independence relations among the observed variables. Therefore, this algorithm,

similar to the first proposed algorithm, achieves the fundamental limitations of solving the problem
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of learning the structure of a polyforest network with the presence of hidden nodes, given the

aforementioned a priori assumptions [4].

The third contribution of this work is to leverage simpler networks with polytree structures as an

approximating class of potentially complex networks assuming that all the nodes are observable.

This technique is focused on obtaining theoretical guarantees only for cases where the original

structure is also a polytree. A basic requirement for any approximation technique is to satisfy a

congruity property, which implies that if the actual structure is in the class of the approximators,

then the approximating network needs to match the actual one, at least in the limit of infinite data.

We show that we can utilize the same distance among the nodes that is developed for recovering

the structure of networks of linear dynamic systems and is estimated from blind measurements.

It is shown that the computed Minimum Spanning Tree (MST) using such a distance as weights

consistently recovers the undirected topology of the network when it has a polytree structure.

Remarkably, this approximation algorithm is the same as the one defined in [40], which, though,

was proven congruous only for rooted trees. We also provide an algorithm to congruously orient

some of the links in the approximated network by extracting available features from the data. We

study one interesting application of this approximation method to analyze high frequency financial

market data [1].

11



Chapter 2

Preliminaries, Background, Assumptions

and Problem Formulation

In this chapter, we provide necessary theoretical background for the problem formulation. The

reader can refer to [36, 76] for most of the standard definitions in graph theory. We also mention

the assumptions that are made in order to formulate the problems for which we propose a solution.

More specifically, we provide definitions related to graphs with only visible nodes in Section 2.1,

and definitions related to graphs containing hidden nodes in Section 2.2. Then, we introduce a

class of models for linear dynamic systems in Section 2.3. Finally, in Section 2.4, we provide the

formal statement of the problems that we tackle in this dissertation.

2.1 Graphs with All Visible Nodes

We recall the standard definition of directed and undirected graphs and also introduce the definition

of a partially directed graph [1, 3].

Definition 2.1 (Directed and undirected graphs). A directed graph ~G is a pair (N, ~E) where N is a

set of nodes (or vertices) and ~E is a set of edges (or arcs) which are ordered pairs of elements of

the set N. An undirected graph G is a pair (N, E) where N is a set of nodes (or vertices) and E is

a set of edges (or arcs) which are unordered pairs of elements of the set N. �
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Definition 2.2 (Partially directed graph). A partially directed graph Ḡ is a triplet (N, E, ~E) where N

is a set of nodes, E and ~E are sets of undirected and directed edges, respectively, where (yi, y j) ∈ ~E

implies {yi, y j} < E. �

Observe that in a partially directed graph, E and ~E do not share any edges. We denote the

unordered pair of two elements yi, y j ∈ N as yi − y j or {yi, y j}, and the ordered pair of yi, y j ∈ N

(when yi precedes y j) as yi → y j or (yi, y j). An example of a directed graph, an undirected graph

and a partially directed graph are shown in Figures 2.1 (a) - 2.1 (c), respectively.

Furthermore, a restriction of a graph can be defined with respect to a subset of its nodes [3].

Definition 2.3 (Restriction of a graph). A directed graph ~A = (NA, ~EA) is the restriction of a

directed graph ~G = (N, ~E) to the nodes NA if NA ⊆ N and ~EA = {(yi, y j) ∈ ~E | yi, y j ∈ NA}. �

More informally, restriction of a graph with respect to a set of nodes A is the graph obtained by

considering only the nodes in A and the edges linking pairs of nodes which are both in A.

The skeleton of a directed or partially directed graph is defined as follows [1, 2].

Definition 2.4 (Skeleton of a graph). Given a directed graph or a partially directed graph, its

skeleton is the undirected graph obtained by removing the orientation from all the directed edges.�

An example of a directed graph and its skeleton are depicted in Figure 2.1 (a) and Figure 2.1 (d),

respectively. We recall the definition of degree, outdegree and indegree of a node [2].

Definition 2.5 (Degree, outdegree and indegree of a node). In a directed graph ~G = (N, ~E) or

undirected graph G = (N, E), degree of a vertex y ∈ N is defined as the number of edges directly
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Figure 2.1: A directed graph (a), an undirected graph (b), a partially directed graph (c), and
skeleton of the graph in a (d) [2, 3].
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connected (or linked) to y and is denoted by deg~G (y) or degG (y), respectively. In a directed graph

~G = (N, ~E), outdegree of a vertex y ∈ N is defined as the number of edges connected to y such that

(y, yi) ∈ ~E with yi ∈ N and is denoted by deg+
~G

(y). In a directed graph ~G = (N, ~E), indegree of a

vertex y ∈ N is defined as the number of edges connected to y such that (yi, y) ∈ ~E with yi ∈ N and

is denoted by deg−~G (y). �

A root node is defined using the definition of indegree [2].

Definition 2.6 (Root node). In a directed graph ~G = (N, ~E), a node y ∈ N is a root if deg−~G (y) = 0.�

For example, node y3 in Figure 2.1 (a) is a root node which has deg (y3) = deg+ (y3) = 1 and

deg− (y3) = 0. Also, for node y2 in the same figure, we have that deg (y2) = 2 and deg+ (y2) =

deg− (y2) = 1.

The definition of chain and path in a directed graph is widely used in the rest of this dissertation.

In the literature of graph theory this concept is defined in a variety of different ways that are not

always equivalent. Thus, we explicitly provide the definition that we use here [2].

Definition 2.7 (Path, chain and directed cycle). Consider a directed graph ~G = (N, ~E) where

N = {y1, ..., yn}. A chain or path starting from yi and ending in y j is an ordered sequence of distinct

edges

( (yπ0 , yπ1), (yπ1 , yπ2), ... , (yπ`−1 , yπ`) )

with ` ≥ 1 where yi = yπ0 , y j = yπ` , and for all k = 0, 1, ..., ` − 1 we have (yπk , yπk+1) ∈ ~E for

a chain, and either (yπk , yπk+1) ∈ ~E or (yπk+1 , yπk) ∈ ~E for a path. A path in an undirected graph

G = (N, E) is the same ordered sequence where {yπk , yπk+1} ∈ E. When there exists at most one edge

connecting each pair of nodes in ~G, a path can be unambiguously determined by the sequence of

nodes yπ0 , yπ1 , yπ2 , ... yπ`−1 , yπ` . Also, ` is called the length of the chain or the path. Furthermore, a

directed cycle is a chain where yi = y j. �

As it follows from the definition, chain is a special case of path. All paths (and consequently all

chains) can be suggestively denoted by separating the nodes in the sequence {yπk}
`
k=0 with the arrow

symbol → if (yπk , yπk+1) ∈ ~E or the symbol ← if (yπk+1 , yπk) ∈ ~E. For example, in Figure 2.1 (a),

the path y1 → y2 → y4 → y6 is also a chain, while y1 → y5 ← y4 ← y3 is a path, but not a

chain. Furthermore, we use the symbol − when we do not want to specify the orientation of the
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link connecting two nodes. Consequently, it follows that the edge {yi, y j} can be denoted as yi − y j

(as mentioned before) [1, 2, 3, 4]. Also, from the notion of chain, we can derive the notions of

ancestors and descendants [2].

Definition 2.8 (Parent, child, ancestor and descendant). Consider a directed graph ~G = (N, ~E). A

vertex yi is a parent of a vertex y j in ~G if there is a directed edge from yi to y j. In such a case y j is

a child of yi in ~G. Also yi is an ancestor of y j in ~G if either yi = y j or there is a chain from yi to y j.

In such a case y j is a descendant of yi in ~G. Given a set X ⊆ N, we define the following notation:

pa~G (X) :=
{
yi ∈ N | ∃ y j ∈ X : yi is a parent of y j in ~G

}
ch~G (X) :=

{
y j ∈ N | ∃ yi ∈ X : y j is a child of yi in ~G

}
an~G (X) := X ∪

{
yi ∈ N | ∃ y j ∈ X : yi is an ancestor of y j in ~G

}
de~G (X) := X ∪

{
y j ∈ N | ∃ yi ∈ X : y j is a descendant of yi in ~G

}
. �

For example, node y6 in Figure 2.1 (a) is a child of node y4 and also a descendant of node y3

while node y3 is a parent of y4 and also an ancestor of node y6.

Given a specific path, with the exception of the first and the last nodes, we distinguish its nodes

into forks, inverted forks (or colliders) and chain links [2].

Definition 2.9 (Fork, inverted fork and chain link). Given a path yπ0 , ..., yπ` in a directed graph

~G = (N, ~E), we say that yπk , for k = 1, ..., ` − 1, is

• a fork if (yπk , yπk−1) ∈ ~E and (yπk , yπk+1) ∈ ~E

• an inverted fork (or collider) if (yπk−1 , yπk) ∈ ~E and (yπk+1 , yπk) ∈ ~E

• a chain link in all other cases. �

For example, in Figure 2.1 (a), the path y7 → y1 → y5 ← y4 → y6 has a chain link in node y1,

an inverted fork in node y5 and a fork in node y4 [2]. Now, we can define related nodes. Informally,

two nodes are related if one is a descendant of the other or if they have a common ancestor [3].

Definition 2.10 (Related nodes). Given a directed graph ~G = (N, ~E), two nodes yi and y j are

related if there is a path connecting them that contains no inverted forks. �
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Moreover, here we provide a formal definition of polyforests, polytrees and rooted trees for

completeness [1, 2, 3].

Definition 2.11 (Polyforest, polytree and rooted tree). Given a directed graph ~G = (N, ~E), ~G is a

• polyforest ~F, if for every two nodes yi, y j ∈ N there is at most one path connecting them.

• polytree ~P, if for every two nodes yi, y j ∈ N there is exactly one path connecting them.

• rooted tree ~T, if it is a polytree with a single root. �

Note that a rooted tree is a polytree with exactly one root. We define polytrees contained in a

polyforest and also the rooted tree associated with each root of a polyforest [2, 3].

Definition 2.12 (Polytree and rooted tree of a polyforest). Each connected subgraph of a polyforest

is referred to as a polytree of the polyforest. The restriction of a polyforest (polytree) to all the

descendants of a root is referred to as a rooted tree of the polyforest (polytree). �

For example, the graph in Figure 2.2 (a) is a rooted tree since it has only one root, the graph

in Figure 2.2 (b) is a polytree since it has more than one root and the graph in Figure 2.2 (c) is a

polyforest since it contains multiple polytrees. Note that in all of these graphs, there exists at most

one path connecting any pairs of nodes. Also, observe that the polytree of Figure 2.2 (b) contains

three rooted trees and the polyforest of Figure 2.2 (c) contains two polytrees.

The following proposition guarantees that in a rooted tree there are no paths with inverted forks

[2]. In other words, all the nodes in a rooted tree are related.

Proposition 2.13. In a rooted tree, there are no paths containing inverted forks.

Proof. The proof is left to the reader. �
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Figure 2.2: A rooted tree graph (a), a polytree graph (b), and a polyforest graph (c).
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2.2 Graphs with Hidden Nodes

In this section we provide the necessary background for dealing with graphs with latent (or hidden)

nodes. Latent graphs are an extension of standard graphs which were discussed in previous section

(also see [53] for an equivalent definition) [2, 3].

Definition 2.14 (Latent graph). We define a directed latent graph ~G` as a triplet (V, L, ~E) such that

V (the set of visible nodes) and L (the set of hidden or latent nodes) are disjoint, and ~G = (N, ~E) is

a directed graph where N := V ∪ L. Also, we say that ~G` is a latent rooted tree, a latent polytree

or a latent polyforest if ~G is respectively a rooted tree, a polytree, or a polyforest. �

Observe that the notation used for latent graphs should not be confused with the notation used

for partially directed graphs since they have different element sets as their triplets. As an example

of latent graphs, the graph shown in Figure 2.3 (a) is a latent graph where its latent nodes, node y2

and node y5, are shown by dotted circles.

We can extend the definition of a partially directed graph to latent partially directed graph

considering a partition of the set of nodes into visible and hidden nodes [4].

Definition 2.15 (Latent partially directed graph). A latent (or hidden) partially directed graph Ḡ`

is a 4-ple (V, L, E, ~E) where

• the disjoint sets V and L are named the set of visible nodes and the set of hidden nodes,

• the set E is the set of undirected edges containing unordered pairs of (V ∪ L) × (V ∪ L),

• the set ~E is the set of directed edges containing ordered pairs of (V ∪ L) × (V ∪ L).
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Figure 2.3: A latent graph (a), a latent partially directed graph (b), and a latent partially directed
tree (c).
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In a latent partially directed graph the sets E and ~E do not share any edges. Namely, yi − y j ∈ E

implies that both yi → y j and y j → yi are not in ~E. �

Figure 2.3 (b) is an example of a latent partially directed graph. A latent partially directed

graph is a fully undirected latent graph when ~E = ∅, and we simplify the notation by writing

G` = (V, L, E). Similarly, when E = ∅, we have a fully directed latent graph, and we denote it

by ~G` = (V, L, ~E). Observe that, if we drop the distinction between visible and hidden nodes and

consider V ∪ L as the set of nodes, we recover the standard notions of undirected and directed

graphs. Thus, latent partially directed graphs inherit, in a natural way, all notions associated with

standard graphs as discussed in the previous section (e.g., paths, degree, parents, children, etc.).

Consequently, we can define restriction of a latent partially directed graph similar to Definition 2.3.

In a similar way, when every two nodes in a latent partially directed graph can be connected through

exactly one path we have a latent partially directed tree [4].

Definition 2.16 (Latent partially directed tree). A latent partially directed graph Ḡ` = (V, L, E, ~E)

is a latent partially directed tree when every pair of nodes yi, y j ∈ V ∪ L is connected by exactly

one path. �

Figure 2.3 (c) is an example of a latent partially directed tree. Trivially, latent partially directed

trees generalize the notions of undirected trees and polytrees (directed trees) [68]. In a latent

partially directed tree, we define a hidden cluster as a group of hidden nodes connected to each

other via a path constituted exclusively of hidden nodes [4].

Definition 2.17 (Hidden cluster). A hidden cluster in a latent partially directed tree ~P` =

(V, L, E, ~E) is a set C ⊆ L such that for each distinct pair of nodes yi, y j ∈ C the unique path

connecting them contains only nodes in C and no node in C is linked to a node which is in L \C. �

Figure 2.4 (a) depicts a latent partially directed tree (actually a latent polytree). In this figure,

the hidden clusters C1 and C2 are highlighted by the red dotted lines. Observe that each node

in a hidden cluster has neighbors which are either visible or hidden nodes of the same cluster.

Therefore, we introduce the set of (visible) neighbors of a hidden cluster [4].

Definition 2.18 (Neighbors, closure and degree of a hidden cluster). In a latent partially directed

tree, the set of all visible nodes linked to any of the nodes of a hidden cluster C is the set of
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Figure 2.4: A generic hidden polytree (a) and its collapsed hidden polytree (b), a minimal hidden
polytree (c) [4].

neighbors of C and is denoted by N(C). We define the degree of the cluster as |N(C)|, namely

the number of neighbors of the cluster. We refer to the restriction of a latent polytree to a hidden

cluster and its neighbors as the closure of the hidden cluster. �

Consider again the latent polytree of Figure 2.4 (a). The neighbors of the hidden cluster C1 are

y1, y2, y3, y5, y7 and y8 (also highlighted with orange color). We also define the notion of root of a

hidden cluster [4].

Definition 2.19 (Root of a hidden cluster in a latent polytree). Let ~P` = (V, L, ~E) be a latent

polytree. Any root of the restriction of ~P` to one of the hidden clusters of ~P` is called a root of the

hidden cluster. �

In the latent polytree of Figure 2.4 (a), the node yh3 is the hidden root of C1 and the nodes yh1

and yh2 are the hidden roots of C2. Observe that a hidden cluster might have multiple hidden roots.

Given a latent partially directed tree, we can define its collapsed representation by replacing

each hidden cluster with a single hidden node. The formal definition is as follows [4].

Definition 2.20 (Collapsed representation). We define the collapsed representation of ~P` =

(V, L, E, ~E) as the latent partially directed tree ~Pc = (V, Lc, Ec, ~Ec). Let nc be the number of hidden

clusters C1, ...,Cnc and let Lc = {C1, ...,Cnc}, and

Ec := {yi − y j ∈ E | yi, y j ∈ V} ∪ {yi −Ck | ∃y j ∈ Ck, yi − y j ∈ E} ∪ {Ck − y j | ∃yi ∈ Ck, yi − y j ∈ E}

~Ec := {yi → y j ∈ ~E | yi, y j ∈ V} ∪ {yi → Ck | ∃y j ∈ Ck, yi → y j ∈ ~E} ∪ {Ck → y j | ∃yi ∈ Ck, yi → y j ∈ ~E}.�
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As an example, the collapsed representation of the latent polytree in Figure 2.4 (a) is depicted

in Figure 2.4 (b).

In the next chapters, we will show in what cases graphical models with polytree structures

can be recovered from the independence relations involving only visible nodes. Specifically,

we assume that a polytree is a perfect map (see [36, 77]) for a probabilistic model defined over

the variables V ∪ L where V and L are disjoint sets. We will find conditions under which it is

possible to recover information about the perfect map of the probabilistic model considering only

independence relations of the form I(yi, ∅, y j) (read yi and y j are conditionally independent) and

of the form I(yi, yk, y j) (read yi and y j are conditionally independent given yk) for all visible nodes

yi, y j, yk ∈ V [4].

One of the fundamental requirements is that all hidden nodes need to satisfy certain degree

conditions summarized in the following definition [4].

Definition 2.21 (Minimal latent polytree). A latent polytree ~P` = (V, L, ~E) is minimal if every

hidden node node yh ∈ L satisfies one of the following conditions:

• deg+
~P`

(yh) ≥ 2 and deg~P` (yh) ≥ 3 and if |pa~P` (yh) | = 1, then pa~P` (yh) ⊆ V;

• deg+
~P`

(yh) = 2 and deg−~P` (yh) = 0 and deg−~P`
(
yc1

)
, deg−~P`

(
yc2

)
≥ 2 where ch~P` (yh) = {yc1 , yc2}. �

Note that the nodes yh2 , yh4 , yh5 , yh7 in Figure 2.4 (a) do not satisfy the minimality conditions

and therefore the hidden polytree is not minimal. Instead, Figure 2.4 (c) shows a minimal latent

polytree. We also define two special types of hidden nodes in a latent polytree and in the next

chapters we explain why we need to make this distinction [4].

Definition 2.22 (Type-I and Type-II hidden nodes). In a minimal polytree, we call a hidden node

yh where deg~G (yh) = 2 with at least one visible child, a Type-II hidden node. All other hidden

nodes are Type-I hidden nodes. �

In the minimal latent polytree of Figure 2.5 (a), the nodes yh2 and yh3 are Type-II hidden nodes,

while all the other hidden nodes are Type-I. In order to deal with Type-II hidden nodes separately,

as explained in the next chapters, we define the quasi-skeleton of a minimal polytree [4].

Definition 2.23 (Quasi-skeleton of a minimal latent polytree). Let ~P` = (V, L, ~E) be a minimal

latent polytree. The quasi-skeleton of ~P` is the undirected graph obtained by removing all the
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Figure 2.5: A minimal latent polytree ~P` containing Type-I and Type-II hidden nodes (a), quasi-
skeleton of ~P` (b), and collapsed quasi-skeleton of ~P` (c) [4].

orientation of edges in ~P` and also removing all the Type-II hidden nodes and then linking their

two children together. �

For example, the quasi-skeleton of the polytree of Figure 2.5 (a) is depicted in Figure 2.5 (b).

Observe that in the quasi-skeleton of ~P`, Type-II hidden nodes have been eliminated and their

children are linked together. Furthermore, observe that we can obtain the collapsed quasi-skeleton

of a polytree by replacing the hidden clusters with individual hidden nodes in the quasi-skeleton

of a polytree as depicted in Figure 2.5 (c).

As it is well known in the theory of graphical models, in the general case, from a set of

conditional independence statements (formally, a semi-graphoid) faithful to a DAG, it is not

possible to recover the full DAG [37, 62]. What can be recovered for sure is the pattern of the

DAG, namely the skeleton and the v-structures (i.e., yi → yk ← y j or the inverted forks) of the

DAG [37, 62]. In the next chapters, we will show that, similarly, in the case of a minimal latent

polytree, we are able to recover the pattern of the polytree from the independence statements

involving only the visible variables [4]. The following is a formal definition of the pattern of a

polytree (also see [62]).

Definition 2.24 (Pattern of a polytree). Let ~P = (N, ~E) be a polytree. The pattern of ~P is a partially

directed graph where the orientation of all the v-structures (i.e., yi → yk ← y j) are known and

as many as the remaining undirected edges are oriented in such a way that the other alternative

orientation would result in a v-structure. �
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2.3 Linear Dynamic Influence Models

In this section we introduce a Linear Dynamic Influence Model (LDIM) and some related

properties. An LDIM (see the equivalent definition of Linear Dynamic Graph in [2, 19]) is a class

of models describing a network of dynamic systems. We assume that the dynamics of the nodes

in the network are represented by scalar random processes {yi}
n
i=1. Each process is given by the

superposition of an independent component (or input) ui and the influences coming from its parent

nodes through dynamic links. The unknown input acting on each node is modeled as noise and

is assumed to be uncorrelated with other inputs. Namely, we have that the power spectral density

Φuiu j(z) = 0 which we also denote as ui y u j. If a certain process directly influences another one,

then a directed edge is drawn between them and as a result a directed graph is obtained. In a more

informal way, an LDIM is a network of stochastic processes y1, ..., yn interconnected with each

other via input/output relations defined by the transfer functions populating the transfer matrix

H(z). The formal definition of an LDIM and its associated graph are as follows [1, 3].

Definition 2.25 (Linear Dynamic Influence Model and its associated graph). A Linear Dynamic

Influence Model (LDIM) is defined as a pair G = (H(z), u) where

• u = (u1, ..., un)T is a vector of n wide-sense stationary stochastic processes with finite

variance such that Φu(z), the power spectral density of u, is rational and diagonal; and

• H(z) is an n× n matrix of rational, causal and stable transfer functions with Hi j(z) being the

entry (i, j) of H(z) such that Hii(z) = 0 for i = 1, ..., n.

The output processes {yi}
n
i=1 of the LDIM are defined as

yi = ui +

n∑
j=1

Hi j(z)y j (2.1)

or in a more compact way as y = u + H(z)y. We define the associated graph of the LDIM as

~G = (N, ~E) where N = {y1, ..., yn} and ~E = {(yi, y j) | H ji(z) , 0}. When the associated graph

of an LDIM is a rooted tree, or a polytree, or a polyforest, we call it a Linear Dynamic Rooted

Tree (LDRT), or a Linear Dynamic Polytree (LDPT), or a Linear Dynamic Polyforest (LDPF),

respectively. �
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As mentioned before, we are interested in studying networks when not all of the nodes are

measurable. Thus, when only a subset of the nodes of an LDIM is observable, we define the

associated latent graph of an LDIM with respect to the observed nodes [3].

Definition 2.26 (Associated latent graph of an LDIM). Given that only a subset V of N of the

associated graph of an LDIM is known, the LDIM is a latent LDIM and its associated graph is a

latent graph denoted by ~G` = (V, L, ~E) where V is the set of visible nodes and L is the set of hidden

nodes and V and L are disjoint. �

Lemma 2.27 guarantees the well-posedness of LDIMs with tree structure [3].

Lemma 2.27. Let G = (H(z), u) be an LDIM with associated graph ~G = (N, ~E) and yi, y j ∈ N.

Assume that there are no directed cycles and that ` < +∞ is the length of the longest chain in ~G.

Then, we have that

y = T (z)u :=

I +
∑̀
k=1

Hk(z)

 u (2.2)

with Tii(z) = 1 for all i. Also, if there is no chain from yi to y j where y j , yi, we have T ji(z) = 0 and

Φy jui(z) = 0.

Proof. The proof is in Appendix A.1. �

Now that we have defined LDIMs, we define the following distance on their nodes. In the next

chapters we show how we can leverage this distance for the learning of polyforest networks [2, 3].

Definition 2.28 (Log-coherence distance). Given an LDIM with nodes {y1, ..., yn}, we define the

log-coherence distance

dL

(
yi, y j

)
=

∫ π

−π

− log|Ci j(eiω)|dω (2.3)

with Ci j(eiω) =
|Φyiy j (e

iω)|2

Φyi (e
iω)Φy j (e

iω) , which is commonly known as the coherence between the signals yi and

y j, where Φyi(e
iω) and Φy j(e

iω) are the spectral densities of yi and y j, respectively and Φyiy j(e
iω) is

the cross-spectral density of yi and y j. �

23



Furthermore, we will show that the property of topological identifiability enables the recon-

struction of an LDPF from data. This property means that the distance between any two linked

nodes in the associated graph of an LDIM has a finite and non-zero value. Here, we formally

introduce a topologically identifiable LDIM [3].

Definition 2.29 (Topological identifiability). Let ~G = (N, ~E) be the associated graph of the LDIM

G with a tree skeleton. G is topologically identifiable if for every edge (yi, y j) ∈ ~E, we have that

0 < dL

(
yi, y j

)
< ∞. �

The following lemma shows that mild conditions are required to guarantee the topological

identifiability property [3].

Lemma 2.30. Let G = (H(z), u) be an LDIM where z = eiω. G is topologically identifiable if

Φui(e
iω) > η > 0 for some η, every ω and all i, and each entry of H(z) that is not identically null

has no zeros on the unit circle.

Proof. The proof is in Appendix A.2. �

Note that the mild conditions of Lemma 2.30 can be further relaxed. Given that the contiguous

nodes have finite non-zero distance, the property of additivity along the paths of a graph, as defined

in the following definition, allows us to extend Lemma 2.30 to all the nodes in the same LDRT [3].

Definition 2.31 (Additivity of a distance along the paths). Let ~G = (N, ~E) be a directed graph. The

distance d(yi, y j) is additive along the paths in ~G if yk on the path from node yi to node y j implies

d(yi, y j) = d(yi, yk) + d(yk, y j). �

The notion of d-separation (see [35]) will play an important role to prove that the distance in

Equation (2.3) is additive along the paths of an LDRT.

Definition 2.32 (d-separation). Let ~G = (N, ~E) be a directed graph. We say that the nodes yi, y j ∈ N

are d-separated by the set K in ~G where K ⊆ N if at least one of the following conditions is true:

• if ∃yk ∈ K on all of the paths from yi to y j such that yk is a chain or a fork.

• if ∃yk < K on all of the paths from yi to y j such that yk is an inverted fork and de~G (yk)∩K = ∅.

We use dsep ≺ yi,K, y j �~G to denote d-separation of yi from y j by the set K in graph ~G. �
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Note that d-separation is a notion defined in general for DAGs, however, in graphs with

polyforest structures it is easier to check the conditions since there exists at most one path between

any pair of nodes. For example, it is immediate to check that in the polyforest of Figure 2.1 (a) we

have that dsep ≺ y2, {y1, y4}, y7 �~F but not dsep ≺ y2, {y4}, y3 �~F .

The following result states that the log-coherence distance of Equation (2.3) is additive along

the paths of an LDRT [3].

Proposition 2.33. Let T = (H(z), u) be an LDRT with the associated tree graph ~T = (N, ~E). The

log-coherence distance dL

(
yi, y j

)
for all yi, y j ∈ N is additive along the paths of ~T.

Proof. The proof is in Appendix A.3. �

Finally, we provide the following important characterization which states that in an LDPF the

log-coherence distance of two related nodes is finite and non-zero [3].

Proposition 2.34. Let F = (H(z), u) be a topologically identifiable LDPF with associated graph

~F = (N, ~E). Let yi, y j be distinct nodes in N. There exists a path from yi to y j with no inverted fork

(i.e., yi and y j are related) if and only if 0 < dL

(
yi, y j

)
< ∞.

Proof. The proof is in Appendix A.4. �

2.4 Problem Statement

After reviewing the necessary background and stating the assumptions, here we propose the formal

statement of the problems that we tackle in this dissertation.

The first contribution of this dissertation considers an LDPF with output processes {yi}
n
i=1,

assuming that only (cross-)spectral densities Φyiy j(e
iω) of a subset V of the processes (signals)

are known. We want to determine if there exists an edge linking any two processes yi and y j, and

also find the orientation of the recovered links by extracting available features from the data or

exploiting some a priori knowledge [3]. It is noteworthy that one of the important features of the

method developed for solving this problem is that it can be applied to networks of random variables

with virtually no modifications.
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As another contribution of this dissertation, we would like to propose a solution to the following

problem. Assume a semi-graphoid defined over the visible and hidden variables V ∪ L. Let the

latent polytree ~P` = (V, L, ~E) be faithful to this semi-graphoid. The goal is to recover the pattern

of ~P` only from the information obtained by observing the visible nodes. Our proposed approach

makes use only of the conditional independence relations of the form I(yi, ∅, y j) or ¬I(yi, ∅, y j),

and I(yi, yk, y j) or ¬I(yi, yk, y j) for all the visible nodes yi, y j, yk ∈ V . In other words, this method

only makes use of the third order statistics of the observed nodes to recover the pattern of the latent

polytree [4].

Another contribution of this dissertation is proposing an algorithm for approximating a general

network with a simpler structure such as a polytree network when only observations of the node

processes are given. This approximation is motivated by following a form of Occam’s razor

principle since the approximating polytree is optimum in the sense that it has fewer number of

edges compared to the original graph. It is noteworthy to mention that this approximation method

exploits the assumption of linearity and assumes that all the nodes in the system are observable [1].
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Chapter 3

Learning Linear Networks with Tree

Structures

In this chapter, we first recall an algorithm from the literature that learns the skeleton of a rooted

tree when some nodes in the network are not measurable. We then show its limitations on learning

the skeleton of polyforests. In the following sections, we present a new algorithm that is capable

of learning the skeleton of polyforest networks. We also present an algorithm that recovers the

orientation of some of the links in the skeleton of the recovered polyforest. Finally, we provide the

fundamental limitations for solving the problem of learning polyforest networks with the presence

of hidden nodes.

3.1 Reconstruction of Rooted Trees with Hidden Nodes via An

Additive Metric

Recursive Grouping Algorithm (RGA) is an enabling and computationally efficient result for

identification of an undirected tree structure in the presence of unobservable nodes [53]. RGA

achieves this task so long as every hidden node in the graph has degree greater than or equal to 3

and a distance is defined among the nodes such that it is additive along every path of the tree graph.

The only information required by RGA is the distance between each pair of visible nodes [2, 3].

Also, note that RGA can only be applied to networks of random variables.

27



The following Algorithm 1 is an equivalent but simplified version of RGA that is reported here

for completeness and illustrative purposes, only.

Algorithm 1 Simplified Recursive Grouping Algorithm
Input V and the distances d(yi, y j) for yi, y j ∈ V
Output T = (V ∪ L, E) and the distances d(yi, y j) for yi, y j ∈ V ∪ L

1: Define di j := d(yi, y j) for yi, y j ∈ V
2: Initialize Y := V , L := ∅, E := ∅ and c := 0
3: Define Φi jk := dik − d jk for distinct yi, y j, yk ∈ Y
4: for each pair of distinct nodes yi, y j ∈ Y do
5: if Φi jk = di j for all yk ∈ Y \ {yi, y j} then
6: yi is a leaf and y j is its parent
7: set E := E ∪ {{yi, y j}} and Y := Y \ {yi}

8: end if
9: if Φi jk = −di j for all yk ∈ Y \ {yi, y j} then

10: y j is a leaf and yi is its parent
11: set E := E ∪ {{yi, y j}} and Y := Y \ {y j}

12: end if
13: if −di j < Φi jk = Φi jk′ < di j for all yk, yk′ ∈ Y \ {yi, y j} then
14: yi and y j are leaves and they are siblings
15: compute qk =

d jk+dik−di j

2
16: if qk , 0 for all yk ∈ Y \ {yi, y j} then
17: consider yhc as a new hidden node
18: set Y := Y \ {yi, y j}, L := L ∪ {yhc} and E := E ∪ {{yi, yhc}, {y j, yhc}}

19: add the distances dhck := qk for yk ∈ Y and dhci = dhc j := 1
2 (di j + Φi jk)

20: set c := c + 1
21: end if
22: if qk = 0 for some yk ∈ Y \ {yi, y j} then
23: yk is the parent of the leaves yi and y j

24: set Y := Y \ {yi, y j} and E := E ∪ {{yi, yk}, {y j, yk}}

25: end if
26: end if
27: end for
28: Define d(yi, y j) := di j for yi, y j ∈ V ∪ L

In order to show the limitations of RGA when multiple roots are present, we differentiate

between two types of identifiable hidden nodes [2, 3].

Definition 3.1 (RGA-detectable and FD-detectable hidden nodes). Let ~F` = (V, L, ~E) be a latent

polyforest. A hidden node yh ∈ L is

• RGA-detectable if deg+
~F`

(yh) ≥ 2 and deg~F`
(yh) ≥ 3,
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• Finite-Distance detectable (FD-detectable) if deg+
~F`

(yh) = 2, deg−~F`
(yh) = 0, deg−~F`

(
yc1

)
≥ 2

and deg−~F`

(
yc2

)
≥ 2 where ch~F`

(yh) = {yc1 , yc2}. �

Observe that these two types of hidden nodes are not exhaustive and in Section 3.4 we show

that it is not possible to detect any other type of hidden nodes under the specified assumptions

[2, 3].

In the case of an LDPF ~F, we have shown that the log-coherence distance dL

(
yi, y j

)
has the

property of being additive only along the paths of each rooted tree of ~F (see Proposition 2.33).

Thus, if ~F has a unique root, namely ~F is a rooted tree, RGA can be applied to reconstruct its

skeleton. The following theorem formalizes this idea [2, 3].

Theorem 3.2. Let ~T = (V, L, ~E) be the associated graph of a topologically identifiable latent

LDRT. Let all hidden nodes yh ∈ L be RGA-detectable and let the visible nodes set V and the

distances dL

(
yi, y j

)
for yi, y j ∈ V be the input of RGA. Then, the output of RGA is the skeleton of ~T.

Proof. The proof is in Appendix B.1. �

However, Proposition 2.33 does not hold for LDPTs or LDPFs which are more general classes

of networks [68]. As an example, consider the associated graph of an LDPT with only 3 nodes

as depicted in Figure 3.1. From Proposition 2.34, we have dL (y1, y2) = ∞. On the other hand, if

the additive property held, we would have dL (y1, y2) = dL (y1, y3) + dL (y3, y2) which implies that

dL (y1, y2) < ∞ because dL (y1, y3) and dL (y3, y2) are positive finite values. Thus, this example

illustrates that it is not possible to extend the additive property of the distance dL

(
yi, y j

)
to trees

with multiple roots [3].

A possible idea would be, given the visible nodes of a polyforest, to find a way to determine all

visible nodes that belong to the same rooted tree ~T `. The additivity property of the distance would

be satisfied on the nodes in each rooted tree ~T `, allowing to apply RGA. However, even in this

1

3

2

Figure 3.1: The graph associated with a sample LDPT
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case RGA would fail to correctly reconstruct the skeleton of ~T ` in the presence of FD-detectable

hidden nodes. More formally, the following proposition proves that when there exists at least one

FD-detectable hidden node in a polyforest, RGA would fail to correctly reconstruct the skeleton of

its rooted trees [3].

Proposition 3.3. Let ~T ` = (VT , LT , ~ET ) be the associated graph of a rooted tree of a topologically

identifiable LDPF with the associated graph ~F` where ∃yh ∈ LT that is FD-detectable and all the

other hidden nodes are RGA-detectable. The output of RGA applied to the distances dL

(
yi, y j

)
for

all yi, y j ∈ VT is the tree TX = (VX ∪ LX, EX) with VX = VT , LX = LT \ {yh}, and EX = {{{yi, y j} |

(yi, y j) ∈ ~ET } ∪ {yc1 , yc2}} \ {{yh, yc1}, {yh, yc2}} where ch~F`
(yh) = {yc1 , yc2}.

Proof. The proof is in Appendix B.2. �

We will show this result by an example. Consider the associated graph of an LDPT system

containing both FD-detectable and RGA-detectable hidden nodes as shown in Figure 3.2 (a). Fig-

ure 3.2 (b) shows the visible descendants of the FD-detectable hidden node yh2 and Figure 3.2 (c)

illustrates the output of RGA when applied to the visible descendants of the FD-detectable hidden

node, yh2 . Note that yh1 is RGA-detectable and RGA has correctly identified this hidden node,

however, the FD-detectable hidden node yh2 is not detected by RGA [3].

In the next section, we propose an algorithm capable of identifying both RGA-detectable and

FD-detectable hidden nodes.
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Figure 3.2: A polyforest with one FD-detectable hidden node, yh2 , and one RGA-detectable hidden
node, yh1 (a), set of visible descendants of yh2 (b), and output of the application of RGA (c). RGA
detects the RGA-detectable hidden node, yh1 , but incorrectly connects the children of the FD-
detectable hidden node, yh2 , as shown in Proposition 3.3 [3].
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3.2 An Algorithm to Learn Latent Polyforest Networks

The methods presented here, as opposed to RGA, will be shown capable of identifying the structure

of a polyforest network of dynamic systems when each hidden node is either RGA-detectable or

FD-detectable. This motivates the following definition [3].

Definition 3.4 (Structural identifiability). A latent polyforest ~F` = (V, L, ~E) is structurally

identifiable if every hidden node yh ∈ L is either RGA-detectable or FD-detectable. By extension,

a latent LDPF is structurally identifiable if its associated graph is structurally identifiable. �

Given the power spectral and cross-spectral densities of the visible nodes V of a latent LDPF

with the associated graph of ~F` = (V, L, ~E), in order to learn the structure of ~F`, we follow four

main steps [3]:

A. Obtain the lists of visible nodes corresponding to each rooted tree in ~F`;

B. For each list obtained at Step A, identify the skeleton of the rooted tree;

C. Merge the subgraphs obtained at Step B, considering the potential presence of overlap

between rooted trees in the original polyforest;

D. Identify the link orientations of the skeleton.

Figure 3.3 (True) illustrates an example of a polytree graph associated with an LDPT and the

aforementioned four steps are shown in Figures 3.3 (Step A)-(Step D). We discuss these steps in

details in the following subsections [3].

3.2.1 Step A. Obtain the Visible Descendants of Each Root

In this section we introduce Pairwise-Finite Distance Algorithm (PFDA), presented in Algorithm 2,

which outputs the sets of visible descendants of each root in a polyforest. Hypothetically, if the

structure of the polyforest to reconstruct were known a priori (including its hidden nodes), it would

be trivial to identify all the roots and their visible descendants. However, since the goal is to

precisely infer the structure of the polyforest only from the knowledge of observable processes, we

need to have an algorithm that requires neither the knowledge of the structure nor any information
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Figure 3.3: The polytree graph associated with an LDPT (True), output of Step A is the set of lists
of the visible nodes in each rooted tree (Step A), output of Step B is the skeleton of each rooted
tree (Step B), output of Step C is the skeleton of the polytree (Step C), and output of Step D is the
partially oriented polytree (Step D) [3].

about the hidden nodes (some of which could even be roots). PFDA takes an ordered list of visible

nodes V and their distances as input. Then for each pair of distinct nodes yi, y j ∈ V such that

d(yi, y j) < ∞, it initializes an unordered list S i, j with {yi, y j} and proceeds by adding elements

to the list so long as the added element has a finite distance to all the elements already in S i, j.

The output of PFDA is given by all the distinct lists S i, j, for i , j, where each list represents the

observable nodes in a rooted tree of the polyforest [3].

Algorithm 2 Pairwise-Finite Distance Algorithm
Input the ordered set of nodes V = {y1, ..., yn} and the distances d(yi, y j) for yi, y j ∈ V
Output the set of all non-eliminated lists S i, j

1: for every node yi ∈ V such that ∀y j ∈ V \ {yi} we have that d(yi, y j) = ∞ do
2: define S i,0 := {yi}

3: end for
4: for each pair yi, y j ∈ V with i < j, and d(yi, y j) < ∞ do
5: define S i, j := {yi, y j}

6: for each yk ∈ V \ S i, j do
7: if ∀y ∈ S i, j : d(yk, y) < ∞ , then add yk to S i, j

8: end for
9: end for

10: for each pair yi, y j ∈ V with i < j do
11: if S i, j = S k,` for some k and `, then eliminate S k,`

12: end for

It is straightforward to conclude that the time complexity of PFDA is upper-bounded by a

quartic polynomial in the number of visible nodes in the worst case scenario. Observe that PFDA

requires an ordering of V and thus its output, in general, might depend on such an ordering. A first
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enabling result is that, irrespective of the ordering on V , every list returned by PFDA corresponds

to the visible descendants of a root in the polyforest [3].

Theorem 3.5. Let ~F` = (V, L, ~E) be the associated graph of a latent LDPF and define an arbitrary

ordering on V = {y1, ..., yn}. Let d
(
yi, y j

)
be a distance defined on V such that d

(
yi, y j

)
< ∞ if and

only if yi and y j are related. Then, for every list S in the output of PFDA applied to V with the

distance d (·, ·), there exists a root node yr ∈ V ∪ L such that S = de~F`
(yr) ∩ V.

Proof. The proof is in Appendix B.3. �

The inverse implication of Theorem 3.5 is not true in general unless we have the assumption of

structural identifiability, again irrespective of the ordering on V [3].

Theorem 3.6. Let ~F` = (V, L, ~E) be the associated graph of a latent LDPF and define an arbitrary

ordering on V = {y1, ..., yn}. Let d
(
yi, y j

)
be a distance defined on V such that d

(
yi, y j

)
< ∞ if and

only if yi and y j are related. If ~F` is structurally identifiable, then PFDA applied to V with the

distance d (·, ·) outputs the sets de~F`
(yr) ∩ V for all distinct root nodes yr ∈ V ∪ L.

Proof. The proof is in Appendix B.4. �

Observe that from Proposition 2.34, we know that the log-coherence distance dL

(
yi, y j

)
< ∞ if

and only if yi and y j are related, giving the following corollary [3].

Corollary 3.7. Let ~F` = (V, L, ~E) be the associated graph of a latent LDPF. If ~F` is structurally

identifiable, then PFDA applied to V and the distances dL (·, ·) outputs the sets de~F`

(
yri

)
∩V for all

distinct root nodes yri ∈ V ∪ L.

3.2.2 Step B. Learn the Structure of Each Rooted Tree

In the previous section we showed that, PFDA finds lists of nodes corresponding to the visible

descendants of each root in a structurally identifiable LDPF. Since the distance in Equation (2.3)

is additive along the paths of a rooted tree, next step is to apply RGA to each of these lists. RGA

reconstructs each individual rooted tree correctly if it is guaranteed that every hidden node has

degree greater than or equal to 3 in each rooted tree (i.e., every hidden node is RGA-detectable).

However, RGA fails to identify the presence of FD-detectable hidden nodes as shown in Figure 3.2.
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Nonetheless, we propose an improvement on RGA, Hidden Node Detection Algorithm (HNDA),

presented in Algorithm 3, to also identify FD-detectable nodes [3].

Algorithm 3 Hidden Node Detection Algorithm
Input the distances d(yi, y j) for yi, y j ∈ V and a list of nodes VT ⊆ V
Output (NT , ET ) and the distances d(yi, y j) for yi, y j ∈ NT

1: Apply RGA to VT and d(yi, y j) for yi, y j ∈ VT

2: Let (NT , ET ) and d(yi, y j) for yi, y j ∈ NT be the output of Step 1
3: for each edge {yi, y j} ∈ ET do
4: if ∃y`, yk ∈ V \ NT such that d(yi, yk) = ∞, d(y j, y`) = ∞, d(yi, y`) < ∞, d(y j, yk) < ∞ then
5: set NT := NT ∪ {yh}

6: set ET :=
(
ET \ {{yi, y j}}

)
∪ {{yi, yh}, {y j, yh}}

7: set d(yh, ym) := c for ym ∈ NT where c < ∞ and yh , ym and set d(yh, yh) = 0
8: end if
9: end for

It is straightforward to observe that the time complexity of HNDA is cubic in the number of

visible nodes in the worst case scenario. The following theorem proves that HNDA is capable of

correctly identifying all the hidden nodes in a structurally identifiable polyforest network [3].

Theorem 3.8. Let ~F` = (V, L, ~E) be the associated graph of a topologically and structurally

identifiable LDPF. Let VT be the set of visible nodes in a rooted tree ~T in ~F`. Then, HNDA applied

to VT and the distances dL (·, ·) outputs the skeleton of ~T.

Proof. The proof is in Appendix B.5. �

3.2.3 Step C. Merge the Rooted Trees into the Polyforest Skeleton

After all rooted trees have been reconstructed, the next step is to merge them into a single polyforest

structure. The main challenge is that a hidden node identified by HNDA in one rooted tree might

be the same hidden node in another rooted tree. For example, in Figure 3.3 (Step B), nodes yh2 ,

yh4 and yh6 are the same hidden node. The following proposition provides a full characterization to

identify if a hidden node yhi in rooted tree ~T i is the same hidden node yh j in rooted tree ~T j [3].

Proposition 3.9. Let F = (H(z), u) be a structurally identifiable latent LDPF with associated

graph ~F` = (V, L, ~E) and let yhi , yh j ∈ L be in the rooted trees ~T i and ~T j, respectively. We have
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yhi = yh j if and only if there exist two observable nodes yu, yw ∈ V, both present in ~T i and ~T j, such

that the unique path from yu to yw in ~T i is

yu − y(i)
π1
− ... − y(i)

πk−1
− yhi − y(i)

πk+1
− ... − y(i)

π`
− yw

and the unique path from yu to yw in ~T j is

yu − y( j)
π1
− ... − y( j)

πk−1
− yh j − y( j)

πk+1
− ... − y( j)

π`
− yw.

Proof. The proof is in Appendix B.6. �

Observe that the two paths from yu to yw exist and are unique since ~T i and ~T j are trees [3].

The Polyforest Skeleton Learning Algorithm (PSLA), presented in Algorithm 4, uses the

characterization of Proposition 3.9 to learn the skeleton of a structurally identifiable LDPF [3].

Algorithm 4 Polyforest Skeleton Learning Algorithm
Input the ordered set of nodes V = {y1, ..., yn} and the distances d(yi, y j) for yi, y j ∈ V
Output F = (N, E) and the distances d(yi, y j) for yi, y j ∈ N

1: Apply PFDA to V and d(yi, y j), and obtain the lists of nodes S k

2: for every list S k do
3: apply HNDA to S k and d(yi, y j) for yi, y j ∈ V , and obtain the tree Tk = (Nk, Ek)
4: end for
5: for every pair of distinct trees Ti and T j do
6: for every pair of distinct u,w ∈ Ni ∩ N j ∩ V do
7: compute the path from u to w in Ti and define it as pi := (u, q1, q2, ..., qm,w) where

qa ∈ Ni for a = 1, ...,m
8: compute the path from u to w in T j and define it as p j := (u, q1, q2, ..., qn,w) where

qa ∈ N j for a = 1, ..., n
9: if qa = yhk and qa = yh` for some a and yhk ∈ Ni \ S i and yh` ∈ N j \ S j then

10: label yhk and yh` identically in Ni and N j

11: modify the edges in Ei and E j so that they match the new labeling of yhk and yh`
12: end if
13: end for
14: end for
15: Define E := ∪iEi and N := ∪iNi

16: for every pair of nodes {yi, y j} ∈ N do
17: if @Nk such that yi, y j ∈ Nk, then set d(yi, y j) = ∞

18: end for
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Observe that in the worst case scenario, PSLA will have a quartic time complexity in the

number of visible nodes in the network. Output of PSLA will be a polyforest F = (N, E) where all

the hidden nodes, RGA-detectable and FD-detectable, have been identified and the set of obtained

edges is undirected (i.e., the output of PSLA is the skeleton of the polyforest where all the hidden

nodes have been identified). This result is proven in the following theorem. Furthermore, we can

prove that the distances computed by PSLA distinguish between the pair of nodes with finite and

infinite distances [3].

Theorem 3.10. Let F = (H(z), u) be a topologically and structurally identifiable latent LDPF with

associated graph ~F` = (V, L, ~E). PSLA applied to V and distances dL

(
yi, y j

)
for yi, y j ∈ V, outputs

the skeleton of ~F` and identifies pairs of nodes in the skeleton of ~F` that have infinite distance to

each other.

Proof. The proof is in Appendix B.7. �

3.2.4 Step D. Identify the Link Orientations

As explained in previous steps, PSLA outputs the skeleton of the polyforest from the knowledge

of the log-coherence distance. In general, some a priori knowledge about the orientations might

be available (e.g., certain edges could physically admit orientations only in one direction). We

propose a result that can be used to determine the direction of links in an LDPF by extracting

available features from the data or exploiting some a priori knowledge. The following lemma

infers the direction of two edges {yi, yk} and {yk, y j} in the identified skeleton if dL

(
yi, y j

)
= ∞.

Lemma 3.11. Let ~F = (N, ~E) be a polyforest and let yi, y j, yk ∈ N. If yk is the only node on the

path from yi to y j, and dL

(
yi, y j

)
= ∞, then the link orientation on this path can be fully identified

as yi → yk ← y j.

Proof. The proof is in Appendix B.8 �

If, instead, the orientation of the edge (yi, yk) is known a priori, the following lemma infers the

orientation of all edges of the form {yk, y j} in the identified skeleton.

Lemma 3.12. Let ~F = (N, ~E) be a polyforest and let yi, y j, yk ∈ N. If yk is the only node on the

path between yi and y j and also (yi, yk) ∈ ~E, we have that dL

(
yi, y j

)
< ∞ if and only if (yk, y j) ∈ ~E.
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Proof. The proof is in Appendix B.9 �

Using these two lemmas, we introduce the Link Orientation Identification Algorithm (LOIA),

presented in Algorithm 5, to orient the links in the skeleton of a polyforest.

Algorithm 5 Link Orientation Identification Algorithm

Input a partially directed polyforest F̄ = (N, E, ~E) and the distances d(yi, y j) for yi, y j ∈ N
Output the partially directed polyforest F̄ = (N, E, ~E)

1: Set ~Et := ~E
2: for each (yi, y j) ∈ ~Et do
3: for each {y j, yk} ∈ E do
4: set E := E \ {{y j, yk}}

5: if d(yi, yk) = ∞ then
6: set ~E := ~E ∪ {(yk, y j)}
7: end if
8: if d(yi, yk) < ∞ then
9: set (No, Eo, ~Eo) as the output of LOIA applied to (N, E, {(y j, yk)}) and d(·, ·)

10: set ~E := ~E ∪ {(y j, yk)} ∪ ~Eo and E := Eo

11: end if
12: end for
13: end for

Every time LOIA is called recursively, it either orients one additional edge or it exits. Since

the maximum number of edges that can be oriented is linear in the number of nodes for a tree, we

conclude that the time complexity of LOIA is linear in the worst case scenario.

Now we introduce the following theorem to show which edges are oriented after applying

LOIA.

Theorem 3.13. Let ~F = (N, ~E) be the associated graph of an LDPF and let F̄ = (N, E′, ~E
′

) be a

partially directed polyforest with the same skeleton as ~F and ~E
′

⊆ ~E. Let dL

(
yi, y j

)
be the distances

for yi, y j ∈ N. If (yi, y j) ∈ ~E
′

, then all edges {yk, y`} ∈ E′ for yk, y` ∈ de~F
(
y j

)
∪ pa~F

(
de~F

(
y j

))
will be

oriented by LOIA applied to F̄ and dL

(
yi, y j

)
.

Proof. The proof is in Appendix B.10. �

Using Theorem 3.13, if the orientation of some links is known a priori or if Lemma 3.11

can be applied, then we can initialize ~E with these edges and we can propagate the direction of

links involving the nodes in de~F
(
y j

)
∪ pa~F

(
de~F

(
y j

))
. Note that LOIA is a generalization of the
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Generating Polytree (GPT) recovery algorithm presented in [68] because if there is some a priori

information about the link orientations such as knowledge about the strict causality of the transfer

functions, LOIA is able to find the direction of all edges mentioned in Theorem 3.13.

3.2.5 Putting It All Together

In this section, we present all the results developed in previous sections and present the Polyforest

Learning Algorithm (PLA) in Algorithm 6.

Algorithm 6 Polyforest Learning Algorithm
Input a set of nodes V and the distances d(yi, y j) for yi, y j ∈ V
Output the partially directed polyforest F̄ = (N, E, ~E)

1: Set F = (N, E) to the output of PSLA applied to V and d(·, ·)
2: Initialize ~E with any a priori knowledge about the link orientations and remove the

corresponding edges from E
3: Set F̄ = (N, E, ~E) to the output of LOIA applied to F̄ = (N, E, ~E) and d(·, ·)

Note that we can apply PLA to any type of network so long as we can find an additive metric

along the paths of each rooted tree. For example, in [53] two metrics are provided that have the

property of being additive along the paths of rooted trees. The following metric is used in the case

of Guassian random variables

d(yi, y j) = − log
∣∣∣ρi j

∣∣∣ (3.1)

where ρi j is the correlation coefficient between two random variables yi and y j, and the following

metric is used in the case of discrete random variables

d(yi, y j) = − log

∣∣∣det Ji j
∣∣∣

√
det Mi det M j

(3.2)

where Ji j is the joint probability matrix between yi and y j, and Mi is the diagonal marginal

probability matrix of yi.
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3.3 Numerical Example

In this section we provide an example to demonstrate how our proposed PSLA algorithm performs

when applied to data in order to learn the skeleton of a network. We consider an LDPF with

associated graph of Figure 3.4. Observe that the hidden nodes constitute a significant fraction of

the total number of nodes making the learning process relatively challenging. These unobservable

nodes (i.e., yh1 := y11, yh2 := y12, yh3 := y13 and yh4 := y14) are illustrated with dotted lines.

In our simulations, we randomly select transfer functions for the links with the following form

Hi j(z) = c0 + c1z−1 + c2z−2 + c3z−3 (3.3)

where c0 = 1, ci = aici−1 for i = 1, 2, 3 and ai are independent random variables uniformly

distributed in
[
−1

2 ,
1
2

]
. For this network, we generate time series of different lengths using

independent identically distributed Gaussian random processes for the inputs ui where i = 1, ..., 14.

The variance of ui is set to 10% of the variance of yi. For each time series length, we run

5000 Monte Carlo simulations and compute the log-coherence distance using the off-the-shelf

mscohere function of MATLAB which implements the Fast Fourier Transform (FFT) via Welch’s

overlapping window method. The window size is chosen as the closest power of 2 to 10% of the

time series length [3].

We apply PSLA to the simulated data and as discussed in previous sections, PSLA makes use of

RGA. One step in RGA is the Sibling Grouping test (see Lemma 4 in [53]) which tests, for a pair of

nodes yi and y j, if |dik−d jk| is equal to di j or less than di j, where dab := dL (ya, yb). Since the distances

are estimated from data, the equality in this test is unlikely to be exactly verified. Therefore, we
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Figure 3.4: Associated graph of a LDPF [3]
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implement a more robust test checking if |dik −d jk| ≥ (1− ε) di j or if |dik −d jk| < (1− ε) di j, where ε

is a relative tolerance. By applying this robust test for ε = 20% and providing PSLA with only the

observations of the visible nodes, we obtain the solid curved line of Figure 3.5 in which the error

bars represent a 99.99% confidence interval computed using the Wilson score [78]. This figure

shows that the success rate for detecting edges approaches to 1 when the length of the time series

goes to infinity confirming the theoretical results of this dissertation. Also, Figure 3.6 shows the

probability of detecting a wrong link in logarithmic scale [3].

As an additional comparison, we provide our implementation of PSLA with the measurements

of all the nodes, including the hidden ones, to test if it realizes that there are no actual hidden

nodes in the network. The results of this experiment are plotted by the dashed curves in

Figures 3.5 and 3.6. Again, when the number of samples approaches infinity, PSLA asymptotically

learns the exact skeleton in accordance with our theoretical results [3].

In general, we expect to achieve better performance in the case where the information about

all the network nodes is provided to PSLA as opposed to the case where only the information of

a subset of nodes is provided. This is due to the fact that in the latter case, PSLA would have to

detect the presence of unobserved nodes. However, in Figure 3.5, this happens only for longer time

series. The explanation of this phenomenon is related to the tolerance ε in our implementation. In

the case of longer time series, the distances are computed more accurately. Therefore, ε plays

a minor role since it can be made arbitrarily small, still obtaining correct results. In the case of
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Figure 3.5: Number of samples vs. success rate in reconstruction of the graph of Figure 3.4 via
PSLA [3].
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Figure 3.6: Number of samples vs. probability of detecting a wrong link in logarithmic scale for
the graph of Figure 3.4 via PSLA [3].

shorter time series, the distances are less accurate, requiring a larger tolerance to obtain the correct

results. In general, smaller values of ε lead to detecting a larger number of hidden nodes (either

correctly or incorrectly). This results in an artifact in the accuracy of the reconstruction for short

time series as in Figure 3.5, where the dashed curve has counterintuitively a worse performance

than the solid curve. Indeed, such an artifact can be explained in the following way. Since we use

the same value of ε for all lengths of the time series, for short time series the tolerance is smaller

than its optimal value, pushing PSLA to detect more hidden nodes. Thus, in the case where the

information about all the nodes is provided to PSLA, the algorithm is still pushed to detect hidden

nodes (even though there are none), severely deteriorating its performance [3].

3.4 Fundamental Limitations

In this section, we show that PSLA achieves fundamental limitations for learning an LDPF. A latent

LDPF ~F` is minimal if there is no other latent LDPF with the same processes as observable nodes

and fewer hidden nodes. Thus, if ~F` is not minimal, then there is another latent LDPF ~F
(1)
` with the

same observable nodes and fewer hidden nodes. If ~F
(1)
` is, again, not minimal, then there must exist

~F
(2)
` with the same observable nodes and even fewer hidden nodes. By iterating this statement, it

is straightforward to conclude that for every latent LDPF ~F`, there is always a minimal one, ~F
(min)
` ,

with the same observable nodes [3].
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Theorem 3.14 proves that if a latent LDPF is not structurally identifiable, then the LDPF is not

minimal. In other words, if a latent LDPF is minimal, it is necessarily structurally identifiable.

Thus, previous sections have already shown that every minimal latent LDPF can be consistently

reconstructed by PSLA. Instead, if ~F` is not minimal, then there exists a minimal latent LDPF ~F
(min)
`

with the same observable nodes. Since only the outputs of the observable nodes are accessible,

there is no procedure capable of distinguishing between ~F` and ~F
(min)
` . Then, PSLA applied to

the observable outputs of ~F` necessarily reconstructs the skeleton of ~F
(min)
` . This also shows that

the skeleton of all minimal latent LDPFs with the same observable nodes of ~F` are identical.

Theorem 3.14, which enables all of these conclusions, can now be formally proven [3].

Theorem 3.14. If a topologically identifiable latent LDPF F = (H(z), u) with the associated graph

~F` = (V, L, ~E) is not structurally identifiable, then there is another topologically identifiable latent

LDPF F ′ = (H′(z), ε) with the associated graph ~F
′

` = (V ′, L′, ~E
′

) such that V ′ = V and L′ ⊂ L.

Proof. If ~F` = (V, L, ~E) is not structurally identifiable, then there is a latent node yh that does not

satisfy the degree conditions of structural identifiability. Thus, we necessarily have deg+
~F`

(yh) < 3.

Therefore, we distinguish the following three cases.

1. Case I - deg+
F (yh) = 0: Let N = V∪L = {y1, y2, ..., yn} be the set of all vertices in ~F` as illustrated

in Figure 3.7 (a). Dynamics of F has the form

yi =
∑

ypi∈pa~F`
(yi)

Hipi(z) ypi + ui, yh =
∑

yph∈pa~F`
(yh)

Hhph(z) yph + uh, (3.4)

h
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h

... h
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c
...

...

c
...

c1 c2

h ...

......

c1 c2

h ...

......

(a) (b) (c) (d) (e) (f)

Figure 3.7: Case I - deg+
~F`

(yh) = 0: associated graph of latent LDPFs F (a) and F ′ (b), Case II -
deg+

~F`
(yh) = 1: associated graph of latent LDPFs F (c) and F ′ (d), and Case III - deg+

~F`
(yh) = 2

and deg−~F`

(
yc1

)
= 1: associated graph of latent LDPFs F (e) and F ′ (f) [3].
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for yi ∈ Nh− := N \ {yh}. Now define a new latent LDPF F ′ = (H′(z), ε) system where

xi := yi, εi := ui, H′i j(z) := Hi j(z), (3.5)

for all yi, y j ∈ Nh− and yi , y j as illustrated in Figure 3.7 (b). Since deg+
~F`

(yh) = 0 implies that

yh is not a parent of any yi such that yi ∈ Nh− , the processes xi satisfy

xi =
∑

xpi∈pa~F′`
(xi)

H′ipi
(z) xpi + εi. (3.6)

Observe that εi y ε j for all yi, y j ∈ Nh− with yi , y j. Therefore, the associated graph of the latent

LDPF F ′, namely ~F
′

` = (V, L \ {yh}, ~E \ {(yi, yh)}) with yi ∈ pa~F`
(yh), is a latent polyforest which

has the same observable nodes as ~F` but one fewer hidden node.

2. Case II - deg+
~F`

(yh) = 1: Let N = V ∪ L = {y1, y2, ..., yn} be the set of all vertices in ~F` as

illustrated in Figure 3.7 (c). Dynamics of F has the form

yi =
∑

ypi∈pa~F`
(yi)

Hipi(z) ypi + ui, yh =
∑

yph∈pa~F`
(yh)

Hhph(z) yph + uh, (3.7)

for yi ∈ Nh− := N \ {yh}. Since deg+
~F`

(yh) = 1, let yc be the unique child of yh. The process yc

satisfies the following equation

yc = Hch(z) yh + uc, (3.8)

and using Equation (3.7) we have

yc =
∑

yph∈pa~F`
(yh)

Hch(z)Hhph(z) yph + Hch(z)uh + uc. (3.9)

Now define a new latent LDPF F ′ = (H′(z), ε) system, as in Figure 3.7 (d), where

xi := yi, εi := ui, εc := Hch(z)uh + uc,

xc :=
∑

xp∈pa~F`
(yh)} H′cp(z)xp + εc, H′cp(z) := Hch(z)Hhp(z), H′i j(z) := Hi j(z),

(3.10)
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for all yi ∈ Nh− \ {yc} and ∀y j ∈ Nh− where yi , y j. Observe that εi y ε j for all yi, y j ∈ Nh− \ {yc}

and yi , y j. Also εc y εi for all yi ∈ Nh− \ {yc}. Therefore, associated graph of the latent LDPF

F ′, namely ~F
′

` = (V, L \ {yh}, ~E ∪ A) with yi ∈ pa~F`
(yh) and A = {(yi, yc)} \ {(yi, yh)}, is a latent

polyforest which has the same observable nodes as ~F` but one fewer hidden node.

3. Case III - deg+
~F`

(yh) = 2: Since yh does not satisfy structural identifiability conditions, we have

that deg−~F`
(yh) = 0. Also, if {yc1 , yc2} = ch~F`

(yh), then we have deg−~F`

(
yc1

)
= 1 or deg−~F`

(
yc2

)
= 1.

With no loss of generality, consider deg−~F`

(
yc1

)
= 1 as in Figure 3.7 (e). Let N = V ∪ L =

{y1, y2, ..., yn} be the set of all vertices in ~F`. Dynamics of F has the form

yh = uh, yi =
∑

ypi∈pa~F`
(yi) Hipi(z) ypi + ui,

yc1 = Hc1h(z)yh + uc1 , yc2 =
∑

ypi∈pa~F`(yc2)\{yh}
Hc2 pi(z) ypi + Hc2h(z)yh + uc2 ,

(3.11)

for all yi ∈ N− := N \ {yh, yc1 , yc2}. Now define a new latent LDPF F ′ = (H(z)′, ε) system, as in

Figure 3.7 (f), where

xi := yi, εi := ui, H′jk(z) := H jk(z), H′hc1
(z) := Whc1 ,

xh := H′hc1
(z)xc1 + εh, εh := uh −Whc1 xc1 , xc1 := εc1 ,

εc1 := Hc1h(z)uh + uc1 , xc2 := yc2 , εc2 := uc2 ,

(3.12)

for all yi ∈ N−, y j ∈ N \ {yh}, yk ∈ N, and Whc1 is the Wiener filter estimating yh using yc1 .

Observe that εi y ε j for all yi, y j ∈ N− and yi , y j. Also εc1 y εc2 , εc1 y εi and εc2 y εi for

all yi ∈ N−. Using the property of the Wiener filter, we know that εh y xc1 which implies that

εh y εc1 . Since uh y uc2 and uc1 y uc2 , we have that εh y εc2 . Additionally, we know that uh y ui

and uc1 y ui where yi ∈ N− which implies that εh y εi. Notice that the output processes of ~F
′

`

are the same as the output processes of ~F` and so is its skeleton. However, the node yh in ~F
′

` has

outdegree 1. Thus, we follow the approach in Case II and from ~F
′

` we can find a latent LDPF

F ′′, namely ~F
′′

` = (V, L \ {yh}, ~E ∪ {(yc1 , yc2)} \ {(yh, yc1), (yh, yc2)}) which is a latent polyforest

that has the same observable nodes as ~F` but one fewer hidden node.

�
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Theorems 3.10 and 3.14 together provide the necessary and sufficient conditions for recon-

structing an LDPF. Indeed, Theorem 3.10 shows that if a polyforest is structurally identifiable,

then it is possible to learn its skeleton from the knowledge of the distances of the visible

nodes (sufficiency). Theorem 3.14 shows that if a polyforest is not structurally identifiable, then it

is not possible to reconstruct its skeleton from the knowledge of the distances of the visible nodes

since there exists at least one other latent polyforest with the same visible nodes but fewer number

of hidden nodes (necessity) [3].
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Chapter 4

Learning Non-linear Networks with Tree

Structures

In this chapter, we develop an algorithm for learning polytree networks for generic distributions

considering the presence of hidden nodes. Furthermore, as opposed to the results of previous

chapter, the assumption of linearity of the network is not exploited in this method but the statistics

of the observed data up to the third order are required. We also provide the fundamental limitations

of solving the problem of learning polytree networks under these assumptions.

It is worth to mention that the methods in this chapter are developed for polytree networks,

however, we can apply the same algorithms to learn the structure of a polyforest. This extension is

simply possible since the proposed procedure inherently splits the rooted subtrees in the network

and then tries to learn the structure of the original polytree (or polyforest) at the same time as

recovering the structure of each rooted subtree.

4.1 An Algorithm to Learn Latent Polytree Networks

As mentioned before, we assume that we only have access to the measurements of the observed

variables and the goal is to recover the network structure (including the hidden variables).

By observing the visible nodes (or variables), we can extract independence statements of the

form I(yi, ∅, y j) or ¬I(yi, ∅, y j) (namely, the second order statistics) and statements of the form
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I(yi, yk, y j) or ¬I(yi, yk, y j) (namely, the third order statistics) where yi, y j and yk are the observed

variables.

Here, we propose an algorithm that takes the second and third order statistics of the observed

nodes in a minimal polytree network and learns its pattern. This algorithm consists of 5 tasks [4]:

1. From the independence statements involving the visible nodes, determine the number of rooted

subtrees in the latent polytree and their respective sets of visible nodes;

2. Given all the visible nodes belonging to each rooted subtree, determine the collapsed quasi-

skeleton of each rooted subtree;

3. Merge the hidden clusters in the collapsed quasi-skeleton of each rooted subtree given that

they partially overlap to obtain the collapsed quasi-skeleton of the latent polytree;

4. Determine the quasi-skeleton of the latent polytree from the collapsed quasi-skeleton of the

latent polytree (recover Type-I hidden nodes);

5. Obtain the pattern of the latent polytree from the quasi-skeleton of the latent polytree (recover

some edge orientations and all Type-II hidden nodes).

Consider a minimal latent polytree as depicted in Figure 4.1 (True). A step by step output

of the proposed algorithm is depicted in Figures 4.1 (Task 1) - (Task 5). Observe that the full

polytree is not recovered at the end of Task 5 since one edge is left undirected but the pattern of the

polytree is learned. The following subsections provide the details of each step and the technical

results developed to support this algorithm. We stress that the first task is basically leveraging the

PFDA algorithm developed in Subsection 3.2.1 and [3], and the second task leverages the results

developed in [79] for recovering the structure of rooted trees. The main novel results in this chapter

lie in Tasks 3-5 of the algorithm [4].

4.1.1 Task 1. Determine the Visible Nodes of Each Rooted Subtree

This first task can be performed by the PFDA, presented in Subsection 3.2.1 and [3]. The main

purpose of the PFDA is to recover the lists of all visible nodes in each rooted tree of a minimal

latent polytree denoted by ~P` = (V, L, ~E) [4]. As explained in Subsection 3.2.1, PFDA takes
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Figure 4.1: The actual minimal latent polytree (True), the lists of visible nodes for each rooted
subtree (Task 1), collapsed quasi-skeletons of each rooted subtree (Task 2), merging of the
overlapping hidden clusters (Task 3), detection of Type-I hidden nodes (Task 4), and detection
of Type-II hidden nodes along with orientation of the edges to obtain the pattern (Task 5). Observe
that the full polytree is not recovered at the end of Task 5 since the edge y9 − y18 is left undirected
but the pattern of the polytree is learned [4].
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as input the set of visible nodes of ~P` and a metric d with the property that d(yi, y j) < ∞ if

and only if yi, y j are in the same rooted subtree. In this case, PFDA is proven to output sets of

visible nodes with the property that each set corresponds to the visible descendants of a root of

~P`. However, here we would like to achieve the same output with a slightly different type of

input which is the independence relations of the form I(yi, ∅, y j) or ¬I(yi, ∅, y j). Since we have

¬I(yi, ∅, y j) if and only if yi, y j are in the same rooted subtree, it is immediate to verify that the

relations I(yi, ∅, y j) or ¬I(yi, ∅, y j) can replace the role of the additive metric in the algorithm. This

is precisely what we need for implementing Task 1. We report an equivalent version of PFDA,

presented in Algorithm 7 for completeness, which takes as input the independence relations of the

form I(yi, ∅, y j) or ¬I(yi, ∅, y j) instead of an additive metric [4].

Algorithm 7 Pairwise-Finite Distance Algorithm
Input the ordered set of nodes V = {y1, ..., yn} and the statements of the form I(yi, ∅, y j) or

¬I(yi, ∅, y j) for yi, y j ∈ V
Output the set of all non-eliminated lists S i, j

1: for every node yi ∈ V such that ∀y j ∈ V \ {yi} we have that I(yi, ∅, y j) do
2: define S i,0 := {yi}

3: end for
4: for each pair yi, y j ∈ V with i < j, and ¬I(yi, ∅, y j) do
5: define S i, j := {yi, y j}

6: for each yk ∈ V \ S i, j do
7: if ∀y ∈ S i, j : ¬I(yk, ∅, y) , then add yk to S i, j

8: end for
9: end for

10: for each pair yi, y j ∈ V with i < j do
11: if S i, j = S k,` for some k and `, then eliminate S k,`

12: end for

The following theorem shows that the output of PFDA applied to the independence statements

is the lists of visible nodes belonging to the same rooted subtree of ~P` [4].

Theorem 4.1. Consider a minimal latent polytree ~P` = (V, L, ~E) faithful to a probabilistic model.

Then PFDA applied to the independence statements I(yi, ∅, y j) or ¬I(yi, ∅, y j) of the probabilistic

model for yi, y j ∈ V, outputs a collection of sets such that each of them is given by all the visible

descendants of a root of ~P`.

Proof. The proof is in Appendix C.1. �
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4.1.2 Task 2. Determine the Collapsed Representation of the Quasi-skeleton

of Each Rooted Subtree

The second task can be performed by the Reconstruction Algorithm for Latent Rooted Trees

proposed in [79]. We report it as Algorithm 8 here for completeness and to match the notation

of this dissertation. The input of this algorithm is the set Vr of visible nodes belonging to a rooted

subtree Tr of the minimal latent polytree and also the independence relations of the formI(yi, yk, y j)

or ¬I(yi, yk, y j) for distinct yi, y j, yk ∈ Vr. Its output, then, is the collapsed quasi-skeleton of the

rooted subtree Tr. For completeness, we have included the intuition and a detailed explanation of

the Reconstruction Algorithm for Latent Rooted Trees in Appendix C.2 [4].

Algorithm 8 Reconstruction Algorithm for Latent Rooted Trees
Input the set of visible nodes in a rooted subtree Vr and the independence statements of the

form I(yi, yk, y j) or ¬I(yi, yk, y j) for yi, y j, yk ∈ Vr

Output (Vr, Lr, Er) the collapsed quasi-skeleton of Tr

1: Initialize Vtemp := Vr, Lr := {}, and Er := {}
2: If |Vtemp| = 2, i.e., Vtemp = {yi, y j}, then add the edge yi − y j to Er and if n ≤ 2, stop and output

the results
3: Determine a visible terminal node yk in the rooted tree by verifying the condition ¬I(yi, yk, y j)

for all yi, y j ∈ Vtemp \ {yk}

4: Search for a visible node y` ∈ Vtemp \ {yk} linked to yk by verifying the condition I(yk, y`, y j)
for all ∀y j ∈ Vtemp \ {yk, y`}

5: if y` exists then
6: add the link y` − yk to Er, remove yk from Vtemp, and go to Step 2.
7: else
8: create a new hidden node yh in Lr and add the link yk − yh to Er

9: compute the set K ⊆ Vtemp such that y j ∈ K implies that ¬I(y j, yi, yk) for all yi , y j, yk

where yi ∈ Vtemp \ K
10: add yh − y j to Er for y j ∈ K
11: set (V ( j), L( j), E( j)) as the output of this algorithm applied to each V ( j) defined as the union

of {y j} and the set of nodes in Vtemp separated from yk by y j ∈ K
12: set Er :=

⋃
y j∈K E( j) ∪ Er and Lr :=

⋃
y j∈K L( j) ∪ Lr

13: end if

Thus, we can call this algorithm on all of the sets of visible nodes V1, ...,Vnr , where nr is the

number of roots, obtained from Task 1 and find the collapsed quasi-skeletons of all the rooted

subtrees of the latent polytree. This result is formalized in the following theorem [4].
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Theorem 4.2. Let ~P` = (V, L, ~E) be a minimal latent polytree. Consider a root yr of ~P` and let

Vr = V ∩ de~P` (yr). The output of Reconstruction Algorithm for Latent Rooted Trees applied to

Vr and the independence relations between the nodes in Vr is the collapsed quasi-skeleton of the

rooted subtree with the root yr.

Proof. The proof is in Appendix C.3. �

4.1.3 Task 3. Merge the Hidden Clusters of the Collapsed Rooted Subtrees

By applying the Reconstruction Algorithm for Latent Rooted Trees on each set of visible nodes

in the same rooted tree, we have, as an output, the collapsed quasi-skeletons of all rooted subtrees

in the original hidden polytree. In the general case, some hidden clusters in the collapsed quasi-

skeleton of the rooted subtrees might overlap, namely they might share some nodes. The following

theorem provides a test on the sets of visible nodes of the rooted subtrees in a minimal latent

polytree to determine if two hidden clusters in two distinct collapsed quasi-skeletons of two rooted

subtrees belong to the same cluster in the collapsed quasi-skeleton of the polytree [4].

Theorem 4.3. Consider a minimal latent polytree ~P`. Let C1 and C2 be two distinct hidden clusters

in the collapsed quasi-skeletons of two rooted subtrees of ~P`. If the set of neighbors of C1 and the

set of neighbors of C2 share at least a pair of visible nodes, i.e., |N(C1) ∩ N(C2)| ≥ 2, then the

nodes in C1 and C2 belong to the same hidden cluster in the collapsed quasi-skeleton of ~P`.

Proof. The proof is in Appendix C.4. �

This theorem is the enabling result for the Hidden Cluster Merging Algorithm (HCMA),

presented in Algorithm 9, which merges all the collapsed quasi-skeletons associated with the

individual rooted subtrees, obtained from Task 2, into the collapsed quasi-skeleton of the polytree.

This algorithm starts with the collapsed quasi-skeleton of the rooted subtrees, then finds pairs of

clusters that overlap by testing if they share at least one pair of visible neighbors (see Theorem 4.3),

and then merges the overlapping pairs. This procedure is repeated until no clusters are merged

anymore [4].
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Algorithm 9 Hidden Cluster Merging Algorithm
Input the collapsed quasi-skeleton of the rooted subtrees Ti = (Vi, Li, Ei) for i = 1, ..., nr

Output the collapsed quasi-skeleton P of the latent polytree

1: Initialize the set of clusters P with the hidden clusters of all Ti, i.e., P := {{C1}, {C2}, ..., {Ck}}

2: while there are two elements Ci,C j ∈ P such that |N(Ci) ∩ N(C j)| ≥ 2 do

3: remove Ci,C j from P and add Ci ∪C j to P

4: define N(Ci ∪C j) := N(Ci) ∪ N(C j)

5: end while

6: Define the polytree P = (∪iVi,P, E) where E := {{ya, yb} | ∃ i : ya, yb ∈ Vi, ya − yb ∈ Ei} ∪

{{ya,Cb} | ∃ i, h : ya ∈ Vi, yh ∈ Li, Li ⊆ Cb,Cb ∈ P, ya − yh ∈ Ei}

The following theorem guarantees that, for a minimal latent polytree, the output of HCMA is

the collapsed quasi-skeleton of the polytree [4].

Theorem 4.4. Let ~P` = (V, L, ~E) be a minimal latent polytree and let Ti = (Vi, Li, Ei) for i = 1, ..., nr

be the collapsed quasi-skeletons of the rooted subtrees of ~P`. Then HCMA outputs the collapsed

quasi-skeleton of ~P`.

Proof. The proof is in Appendix C.5. �

4.1.4 Task 4. Determine the Quasi-skeleton of the Latent Polytree from the

Collapsed Quasi-skeleton of the Latent Polytree

After performing the HCMA, the output is the collapsed quasi-skeleton of the latent polytree,

thus, the structure of the hidden nodes within each hidden cluster is not known yet. Note that the

restriction of the original polytree to the closure of a hidden cluster is a smaller polytree. The goal

of this task is to recover the structure of the hidden clusters by focusing on each individual closure

(i.e., recover Type-I hidden nodes and their connectivities). Given the closure of a hidden cluster,

the basic strategy is to detect one root of the hidden cluster along with the visible nodes (if any)

linked to this root. Then, we label such a root as a visible node, add edges between this node and

its visible neighbors, and subsequently apply the same strategy recursively to the descendants of

such a detected root [4].
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Since we focus on the closure of a specific hidden cluster, say C, we define the following sets

Ṽr = Vr ∩ N(C) for r = 1, ..., nr where nr is the number of rooted subtrees in the latent polytree

and Vr are the sets of visible nodes in each rooted subtree (obtained from Task 1). A fundamental

result for detection of a root of a hidden cluster is the following theorem [4].

Theorem 4.5. Let ~P` be a minimal latent polytree and let ~T r = (Vr, Lr, ~Er) with r = 1, ..., nr be all

the rooted subtrees of ~P`. Let C be a hidden cluster in the collapsed quasi-skeleton of ~P`. Define

Ṽr := Vr ∩ N(C) for r = 1, ..., nr where nr is the number of roots in ~P`. Then, Tr contains a hidden

root of C if and only if Ṽr , ∅ and for all Ṽr′ with r′ , r we have |Ṽr \ Ṽr′ | > 1 or |Ṽr′ \ Ṽr| ≤ 1.

Proof. The proof is in Appendix C.6. �

To make the application of this theorem more clear, consider the latent polytree introduced in

Figure 4.1 (True). After applying the first three tasks, we obtain the collapsed quasi-skeleton of the

latent polytree as depicted in Figure 4.1 (Task 3). Observe that the rooted subtrees ~T 1 (with root

y1) and ~T 2 (with root y2) satisfy the conditions of Theorem 4.5 indicating that they contain a root

of the hidden cluster. The following lemma allows one to find the visible nodes linked to a hidden

root in the closure of a hidden cluster [4].

Lemma 4.6. Let ~P` be a minimal latent polytree. Consider a hidden root yh of a hidden cluster C

in the collapsed quasi-skeleton of ~P` where yh belongs to the rooted subtree Tr = (Vr, Lr, ~Er).

Define Ṽr′ := Vr′ ∩ N(C) for r′ = 1, ..., nr where nr is the number of roots in ~P`. The visible nodes

linked to yh are given by the set W \W where

I := {r} ∪ {r′such that |Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr | = 1}, W :=
⋃
i∈I

Ṽi, W :=
⋃
i<I

Ṽi.

Proof. The proof is in Appendix C.7. �

Again, we follow the example of Figure 4.1 to show the steps of Task 4 in more details. Without

loss of generality, choose ~T r = ~T 1. Consider the closure of CA′ obtained at the end of Task 3

and then apply Lemma 4.6 to obtain I = {1, 2}, W = {y1, y2, y10, y12, y13, y14, y15, y16, y17}, and

W = {y5, y6, y9, y11, y12, y13, y14, y15, y16, y17}. Thus, we have W \ W = {y1, y2, y10}. Therefore, the

visible nodes linked to the hidden root in ~T 1 are y1, y2 and y10.
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Now we introduce the Hidden Cluster Learning Algorithm (HCLA), presented in Algorithm 10,

to learn the structure of a hidden cluster [4].

Algorithm 10 Hidden Cluster Learning Algorithm

Input the collapsed quasi-skeleton of a minimal polytree ~P`, collapsed quasi-skeletons of the
rooted subtrees Ti = (Vi, Li, Ei) for i = 1, ..., nr, and the set of the hidden clusters P = {C1, ...,CnC }

Output P and the independence relations of the form I(ya, ∅, yb) or ¬I(ya, ∅, yb) for all nodes
ya, yb ∈

⋃
i Vi

1: while P , ∅ do
2: Call Hidden Node Detection Procedure(C1) where C1 is the first element of P
3: end while
4: procedure Hidden Node Detection(C)
5: Compute Ṽi = Vi ∩ N(C)
6: Find Ṽr which satisfies |Ṽr \ Ṽr′ | > 1 or |Ṽr′ \ Ṽr| ≤ 1 for all r′ , r (as in Theorem 4.5)
7: Initialize W := Ṽr, W := ∅, and I := {r}
8: for all i = 1, ..., nr with i , r do
9: if |Ṽr \ Ṽi| = 1 and |Ṽi \ Ṽr| = 1 (as in Lemma 4.6) then

10: W := W ∪ Ṽi and I := I ∪ {i}
11: else
12: W := W ∪ Ṽi

13: end if
14: end for
15: A new hidden node yh is revealed
16: Add yh to all the rooted trees Ti with i ∈ I, namely Vi := Vi ∪ {yh}

17: Add the independence relation ¬I(yh, ∅, y) for all y ∈ Vi with i ∈ I, and add the
independence relation I(yh, ∅, y) for all other nodes y

18: Link all nodes in W \W to yh in all Ti with i ∈ I, namely Ei := Ei ∪
{
{yh, y} | y ∈ W \W

}
19: for all i ∈ I do
20: create nk = |W ∩W | new clusters: C(i)

1 , ...,C
(i)
nk

21: link yh to C(i)
1 , ...,C

(i)
nk

22: link each cluster C(i)
1 , ...,C

(i)
nk to a distinct element in W ∩W

23: end for
24: while ∃ya, yb ∈ N(C(i)

j ) ∪ N(C(i)
k ) such that ya, yb ∈ Ṽm where m < I do

25: merge the two hidden clusters C(i)
j and C(i)

k
26: update the structure of Ti with the new hidden clusters
27: end while
28: Let P = (V,P, E) be the output of HCMA applied to Ti = (Vi, Li, Ei), for i = 1, ..., nr

29: end procedure

Again, consider the closure of the hidden cluster CA′ as depicted in Figure 4.2 (Task 4a) which

we obtained at the end of Task 3. Then, apply Hidden Node Detection procedure to CA′ and observe

that the output at the end of Step 23 of Algorithm 10 is in Figure 4.2 (Task 4b). The output of the
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Figure 4.2: The closure of the hidden cluster CA′ of the latent polytree in Figure 4.1(True) obtained
after Task 3 (Task 4a), the hidden clusters obtained after Step 23 of HCLA (Task 4b), merging of
the hidden clusters as in Steps 24-27 of HCLA (Task 4c), merging of the overlapping hidden
clusters as in Step 28 of HCLA (Task 4d), orienting the edges in the quasi-skeleton of the latent
polytree as in Steps 1-4 of HRRA (Task 5a), and discovering Type-II hidden nodes (Task 5b) [4].
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merging in Steps 24-27 is depicted in Figure 4.2 (Task 4c) and the output of the merging in Step 28

is depicted in Figure 4.2 (Task 4d). Now, we can apply the same procedure recursively to the

remaining hidden clusters to obtain the final output of Task 4, the quasi-skeleton of the polytree,

as depicted in Figure 4.1 (Task 4) [4].

In the following theorem, we show that the output of HCLA is the quasi-skeleton of the latent

polytree [4].

Theorem 4.7. Let ~P` = (V, L, ~E) be a minimal latent polytree. When HCLA is applied to all

hidden clusters of the collapsed quasi-skeleton of ~P`, the output P = (V, E) is the quasi-skeleton

of ~P`. Furthermore, HCLA also outputs, for each pair yi, y j ∈ V, the relation I(yi, ∅, y j) if and only

if the path connecting yi and y j in ~P` contains an inverted fork.

Proof. The proof is in Appendix C.8. �

4.1.5 Task 5. Obtain the Pattern of the Latent Polytree from the Quasi-

skeleton of the Latent Polytree

Once the quasi-skeleton of the latent polytree has been obtained, the only missing nodes to recover

the full skeleton are the Type-II hidden nodes of the original polytree. Interestingly, the detection

of such hidden nodes can be performed concurrently with the recovery of the edge orientations. In

particular, we can apply the GPT algorithm in [68] to orient the edges of the quasi-skeleton of the

polytree. In this case, if any edge receives two different orientations, we show that it implies that

there exists one Type-II hidden node between the two linked nodes [4].

Thus, we introduce the Hidden Root Recovery Algorithm (HRRA), presented in Algorithm 11,

which is simply an implementation of the GPT algorithm (Steps 1-4), as depicted in Fig-

ure 4.2 (Task 5a), with the additional detection of Type-II hidden nodes (Steps 6-11), as depicted

in Figure 4.2 (Task 5b). Observe that Steps 1-4 of HRRA implement the GPT algorithm to find

as many v-structures as possible considering all the independence statements (including the ones

obtained from Task 4). These steps also orient other edges so long as no new v-structure is created.

After this stage, we can simply remove the edges that have been oriented from the list of unoriented

edges as in Step 5. Then, in the cases where an edge has two different orientations, a new Type-II

hidden node is revealed as in Steps 6-11.
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Algorithm 11 Hidden Root Recovery Algorithm
Input P = (V, E), the quasi-skeleton of a latent polytree, and the independence relations of the

form I(yi, ∅, y j) or ¬I(yi, ∅, y j) for all nodes yi, y j ∈ V
Output the partially directed polytree P̄ = (V, E, ~E)

1: while additional edges are oriented do
2: if yi − yk, y j − yk ∈ E and I(yi, ∅, y j), then add yi → yk and y j → yk to ~E
3: if yi → yk ∈ ~E, yk − y j ∈ E and ¬I(yi, ∅, y j), then add yk → y j to ~E
4: end while
5: Remove the edges that are oriented in ~E from E
6: for all yi, y j such that yi → y j, y j → yi ∈ ~E do
7: a new hidden node of Type-II is detected which is a parent of yi and y j

8: remove yi → y j, y j → yi from ~E
9: add a new node yh to V

10: add yh → y j, yh → yi to ~E
11: end for

Moreover, we provide the result stated in Theorem 4.8 to prove that HRRA outputs the pattern

of the latent polytree [4].

Theorem 4.8. Let ~P` be a minimal latent polytree. When the input is the quasi-skeleton of ~P` with

the independence statements of the form I(yi, ∅, y j) or ¬I(yi, ∅, y j) for all the pairs of nodes yi and

y j, the output of HRRA is the pattern of ~P`.

Proof. The proof is in Appendix C.9. �

4.1.6 Putting It All Together

In this section, we present all the results developed in previous sections and present the Polyforest

Learning Algorithm (PLA) in Algorithm 12. Note that this algorithm is called the same as the

Algorithm 6 since they both learn the polyforest structure. However, they should not be confused

since they exploit different assumptions and therefore their inputs are different.

Note that we can apply PLA to any type of network so long as we can find the independence

statements of the form I(yi, ∅, y j) or ¬I(yi, ∅, y j), and I(yi, yk, y j) or ¬I(yi, yk, y j) for all the

observable variables.
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Algorithm 12 Polyforest Learning Algorithm
Input the ordered set of nodes V = {y1, ..., yn} and the statements of the form I(yi, ∅, y j) or

¬I(yi, ∅, y j), and I(yi, yk, y j) or ¬I(yi, yk, y j) for yi, y j, yk ∈ V
Output the pattern P̄ = (N, E, ~E)

1: Set S to the output of PFDA applied to V and I(yi, ∅, y j) or ¬I(yi, ∅, y j) for yi, y j ∈ V
2: for each list S i in S do
3: set Ti = (Vi, Li, Ei) to the output of Reconstruction Algorithm for Latent Rooted Trees

applied to S i, and I(ya, yc, yb) or ¬I(ya, yc, yb) for ya, yb, yc ∈ S i

4: end for
5: Set P = (V,P, E) to the output of HCMA applied to all the Ti

6: Set P to the output of HCLA applied to P, all the Ti, and P
7: Set P̄ = (N, E, ~E) to the output of HRRA applied to P and the independence relations of the

form I(yi, ∅, y j) or ¬I(yi, ∅, y j)

4.2 Additional Examples

In this section we provide more examples to show how we can leverage PLA to learn the

structure of different networks given that all the independence statements of the form I(yi, ∅, y j)

or ¬I(yi, ∅, y j), and I(yi, y j, yk) or ¬I(yi, y j, yk) for all the observable nodes yi, y j and yk in the

network are provided.

4.2.1 A Star Network

Consider the star network depicted in Figure 4.3 (True). This network contains four rooted subtrees

and one Type-I hidden node.

The output of Task 1 is the set of lists of nodes that belong to the same rooted tree as depicted

in Figure 4.3 (Task 1). After applying Task 2, we get the collapsed quasi-skeletons of each rooted

subtree as in Figure 4.3 (Task 2). Since all of the identified hidden clusters are connected to the

pair y5 and y6, HCMA merges them together as in Figure 4.3 (Task 3). When we implement the

tests in Theorem 4.5 and Lemma 4.6, we have I = {1, 2, 3, 4}, W = {y1, y2, y3, y4, y5, y6} and W = ∅.

Thus, all the nodes are connected to the newly recovered hidden node yh1 . Since there are no

hidden clusters in the network anymore, namely, P is empty, HCLA stops and the output of Task 4

is shown in Figure 4.3 (Task 4). Note that we also recover the independence statements at the end

of Task 4 which are used in HRRA in Task 5 to recover edge orientations as in Figure 4.3 (Task 5).

58



2

6

1 h1 4

5

3

4

1

53

5

2 5

54

6

6

6

6

CB

1

CA

5 6 5 6

2

CD

3

CC

5 6 5 6

4

1 2

5

CA′

3

46

2

6

1 h1 4

5

3

4

2

6

1 h1 4

5

3

4

(True) (Task 1) (Task 2) (Task 3) (Task 4) (Task 5)

Figure 4.3: The actual minimal latent polytree (True), the lists of visible nodes for each rooted
subtree (Task 1), collapsed quasi-skeletons of each rooted subtree (Task 2), merging of the
overlapping hidden clusters (Task 3), detection of Type-I hidden nodes (Task 4), and detection
of Type-II hidden nodes along with orientation of the edges to obtain the pattern of the minimal
latent polytree (Task 5). Observe that the full polytree is recovered at the end of Task 5 since no
edge is left undirected.

Note that since there are no contradictions in the orientation of any edge, no Type-II hidden node

is discovered.

4.2.2 A Polytree Network with Only Type-I Hidden Nodes

Consider the 6-node polytree network in Figure 4.4 (True). This network has three rooted subtrees

where one root is hidden.

As expected, after applying Task 1, we obtain the lists of nodes belonging to each rooted

subtree as in Figure 4.4 (Task 1). Task 2 recovers the collapsed quasi-skeleton of each rooted

subtree as in Figure 4.4 (Task 2). The pair of nodes y3 and y4 are in common in the neighbors

of CA and CC, while the pair of nodes y5 and y6 are in common in the neighbors of CB and CC.

Thus, HCMA merges the three hidden clusters together as in Figure 4.4 (Task 3). Observe that at

this stage we have P = {CA′} and the neighbors of CA′ are considered at the beginning of Task 4

as in Figure 4.4 (Task 4a). When we implement the tests in Theorem 4.5 and Lemma 4.6, we

have I = {3} (where 3 represents the rooted subtree with root yh1), W = {y3, y4, y5, y6} and W =

{y1, y2, y3, y4, y5, y6}. Then we can create fictitious hidden clusters as explained in Steps 19-23 of

HCLA and depicted in Figure 4.4 (Task 4b). Hidden clusters C(1)
1 and C(1)

2 are then merged together
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Figure 4.4: The actual minimal latent polytree (True), the lists of visible nodes for each rooted
subtree (Task 1), collapsed quasi-skeletons of each rooted subtree (Task 2), merging of the
overlapping hidden clusters (Task 3), considering the neighbors of the hidden cluster C′A (Task 4a),
detection of one Type-I hidden node and creation of fictitious hidden clusters (Task 4b), merging
of the fictitious hidden clusters (Task 4c), merging of the overlapping hidden clusters (Task 4d),
detection of one Type-I hidden node (Task 4e), detection of one Type-I hidden node (Task 4f),
detection of Type-II hidden nodes along with orientation of the edges to obtain the pattern of the
latent polytree (Task 5a), and no edge has conflicting orientation and therefore no Type-II hidden
node is detected (Task 5b). Observe that the full polytree is recovered at the end of Task 5 since no
edge is left undirected.
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because of the pair y3 and y4 and hidden clusters C(1)
3 and C(1)

4 are then merged together because of

the pair y5 and y6 as explained in Steps 24-27 of HCLA and depicted in Figure 4.4 (Task 4c).

After this step, we have that P = {CA′ ,CB′} and HCLA keeps finding the hidden nodes in a

similar manner. Note that the result of Task 5 exactly matches the original network structure since

no edges are left unoriented.

4.2.3 A Polyforest Network

Consider the 19-node polyforest network in Figure 4.5 (True). This network has seven rooted

subtrees that are contained in two different polytrees. Observe that this polyforest contains both

Type-I and Type-II hidden nodes. In this example, we show that the PLA is also capable of

recovering the pattern of polyforest networks.

A similar step by step process is shown in Figure 4.5 as PLA progresses through the learning

process. After applying Task 1, we obtain the lists of nodes belonging to each rooted subtree

as in Figure 4.5 (Task 1). Task 2 recovers the collapsed quasi-skeleton of each rooted tree as in

Figure 4.5 (Task 2). Observe that the pair y10 and y11 is common in the neighbors of CA and CD,

while the pair y17 and y18 is common in the neighbors of CB, CC, CE and CF . Thus, HCMA merges

the overlapping hidden clusters together as in Figure 4.5 (Task 3). Observe that at this stage we

have P = {CA′ ,CB′}. Without loss of generality, HCLA considers CA′ and selects the neighbors of

CA′ at the beginning of Task 4 as in Figure 4.5 (Task 4a).

When we implement the tests in Theorem 4.5 and Lemma 4.6, we have I = {2} (where 2

represents the rooted subtree with root yh2), W = {y7, y8, y10, y11, y12} and W = {y3, y10, y11, y12}.

Then we can create fictitious hidden clusters as explained in Steps 19-23 of HCLA and depicted in

Figure 4.5 (Task 4b). Hidden clusters C(1)
1 , C(1)

2 and C(1)
3 are then merged together because of the

nodes y10, y11 and y12 as explained in Steps 24-27 of HCLA and depicted in Figure 4.5 (Task 4c).

The two hidden clusters C(1)
1 and CD are clustered together after applying the HCMA as in

Figure 4.5 (Task 4d) since they share a pair of visible neighbors, y11 and y12.

After this step, we have that P = {CA′ ,CB′} and HCLA chooses, without loss of generality, the

hidden cluster CA′ and its negihbors as in Figure 4.5 (Task 4e). HCLA keeps finding the hidden
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Figure 4.5: The actual minimal latent polyforest (True), the lists of visible nodes for each
rooted subtree (Task 1), collapsed quasi-skeletons of each rooted subtree (Task 2), merging of the
overlapping hidden clusters (Task 3), considering the neighbors of the hidden cluster CA′ (Task 4a),
detection of a Type-I hidden node and creating fictitious hidden clusters (Task 4b), merging of the
fictitious hidden clusters (Task 4c), merging of the hidden clusters (Task 4d), and considering the
neighbors of the hidden cluster CA′ (Task 4e).
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nodes in a similar manner until the polyforest structure is fully learned. Observe that PLA can also

recover the structure of polyforest networks due to its nature of working with rooted trees.

4.3 Fundamental Limitations

In this section we show that if a latent polytree P` is not minimal, then there exists another latent

polytree with a smaller number of hidden nodes which has the same independence relations among

the visible nodes. In other words, if a latent polytree is not minimal, then there exists at least

one hidden node yh that does not satisfy the minimality conditions (see the degree conditions of

Definition 2.21). The proof of such a statement is done by considering various scenarios for such

a node [4].

1. Case I: If deg~P` (yh) = 1, then this hidden node can be immediately marginalized from the

factorization of the joint probability distribution to obtain an equivalent factorization where yh

is not present. Indeed, if deg−P` (yh) = 1, then let yp be the only parent of the node yh, as depicted

in Figure 4.6 (a). Then the factor P(yh | yp) disappears from the factorization of the joint

probability distributions by integrating over yh. Instead, if deg+
P` (yh) = 1, then let yc be the only

child of the node yh, as depicted in Figure 4.6 (b). Then the factor P(yc | yh) P(yh) disappears

from the factorization of the joint probability distributions, again, by integrating over yh.

2. Case II: If yh has a single hidden parent yp and multiple children yc1 , yc2 , ..., ycnc
, as depicted in

Figure 4.7 (a), then there exists a factor in the factorization of the joint probability distribution

h ...p h ...c

(a) (b)

Figure 4.6: A hidden node yh where deg (yh) = deg− (yh) = 1 (a), and a hidden node yh where
deg (yh) = deg+ (yh) = 1 (b) [4].
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Figure 4.7: A hidden node yh which has a single hidden parent yp and multiple children
yc1 , yc2 , ..., ycnc

(a), and the case where the hidden node yh is marginalized (b) [4].

where yh can be marginalized as follows

nc∏
i=1

P(yci | yh, p(ci)) P(yh | yp)
np∏
j=1

P(yc j | yp) P(yp | g) =

nc∏
i=1

P(yci | yp, p(ci))
np∏
j=1

P(yc j | yp) P(yp | g)

(4.1)

where p(ci) are the parents of yci other than yh for i = 1, ..., nc, c j are the children of yp other than

yh for j = 1, ..., np and g are the parents of yp, as depicted in Figure 4.7 (b).

3. Case III: If yh is a hidden root with exactly two children yc1 and yc2 and at least one of its children

has no other parent (without loss of generality say yc1), as depicted in Figure 4.8 (a), then in the

factorization of the joint probability distribution we find a factor of the following form

∏
i=1

P(yh) P(yc1 | yh) P(yc2 | yh, p) (4.2)

where p are the parents of yc2 other than yh, as depicted in Figure 4.8 (b). By applying Bayes’

theorem, we have

P(yh) P(yc1 | yh) P(yc2 | yh, p) = P(yh | yc1) P(yc1) P(yc2 | yh, p) (4.3)
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Figure 4.8: A hidden node yh which is a root with exactly two children yc1 and yc2 and at least one
of its children has no other parent (without loss of generality, say yc1) (a), and the case where the
hidden node yh is marginalized (b) [4].

and then by marginalizing over yh we obtain the following factor of the joint probability

distribution

P(yc1) P(yc2 | yc1 , p). (4.4)

In all of these scenarios, one hidden node has been marginalized from the factorization of the

joint probability distribution of the random variables leading to a factorization equivalent to the

original one, but with fewer number of hidden nodes. In all other scenarios, the factorization is

instead associated with a polytree which meets the definition of minimality of a latent polytree [4].

Therefore, similar to the case where we assume linear dynamics in the network (see Section 3.4),

we have shown that the minimality conditions are necessary and sufficient for learning the structure

of a latent polytree network.
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Chapter 5

Using Polytrees to Approximate Networks

In this chapter we consider using some of the tools developed in the previous chapters to propose

simple and efficient approximators for general networks. As mentioned before, using simpler

networks signifies the importance of the chosen links to describe the relationships between the

nodes of the network to be approximated which is potentially a more complex network. The

approach proposed in this chapter has a polynomial time complexity which makes it favorable

for many different applications due to its low computational cost. Although some weak edges are

going to be missed during the process of approximation, we show that in the case of high frequency

financial data, an example of a real data application, this approximation is meaningful.

5.1 Approximation Algorithm

In this section we describe an algorithm to approximate an LDIM G using a simpler polytree

structure given the observations of the node processes {yi}
n
i=1 of G. The main idea is to split the

process into two steps [1]:

A. Determine the skeleton of the polytree approximating the LDIM structure,

B. Assign orientations to the links of the obtained polytree skeleton.

A schematic representation of the basic steps of this algorithm is given in Figure 5.1. In the

following subsections, we explain each step in more detail.
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Figure 5.1: Only the observations of the nodes of the actual LDIM are available and the structure
is unknown (a), the output of the first step of the approximating algorithm is an undirected tree
(b), and in the second step of the algorithm the edges are oriented providing the approximating
polytree structure (c) [1].

5.1.1 Step A. Determine the Skeleton of the Approximating Polytree

The main technical tool to determine the skeleton of a polytree approximating the LDIM is the

definition of a distance among the processes, as described in Section 3.2.1 and [3]. The log-

coherence distance of Equation (2.3) is a function of the power spectral densities of the observed

processes {yi}
n
i=1, thus, under the assumption of ergodicity, it can be estimated directly from their

measurements. Furthermore, in the limit of infinite data, the power spectral density estimates are

guaranteed to converge to their actual values. Therefore, in the limit of infinite data, the distance

of Equation (2.3) can be approximated with arbitrary precision [1].

After estimating the log-coherence distance for every pair of processes yi and y j, the skeleton

of the approximating polytree is found by computing the Minimum Spanning Tree (MST) over the

complete graph (see [76, 80] for definition of MST and complete graph) where the weight of each

link is equal to the distance between the corresponding pair of nodes. The Skeleton Approximating

Algorithm (SAA), presented in Algorithm 13, provides an algorithmic implementation of this

approach for the computation of the skeleton of the approximating polytree. SAA outputs an

undirected tree from the knowledge of the log-coherence distances [1].

Algorithm 13 Skeleton Approximating Algorithm
Input a set of nodes N = {y1, ..., yn} and the distances d(yi, y j) for all yi, y j ∈ N
Output the undirected tree graph (N, E)

1: Define the complete graph Q over the nodes in N with corresponding weights equal to the
distance d(yi, y j) for all yi, y j ∈ N

2: Apply an MST algorithm to Q and obtain the set of undirected edges E
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Observe that the time complexity of SAA depends on the time complexity of the specific MST

algorithm. Standard MST algorithms (i.e., Prim or Kruskal) have computational complexity of

n2 log(n) where n is the number of nodes, but there exist other implementations which are even

more efficient [1, 80].

In order to show a fundamental property of SAA, we first introduce the definition of congruity

in the skeleton and congruity in the orientations [1].

Definition 5.1 (Congruity in the skeleton and in the orientations). Consider an algorithm that maps

every LDIM G into a partially directed graph Ḡ. We say that the algorithm is congruous in the

skeleton with respect to a set of LDIMs if, for each LDIM in the set, the skeleton of Ḡ matches the

skeleton of the associated graph of G. We say that the algorithm is congruous in the orientations

with respect to a set of LDIMs if, for each LDIM in the set, each oriented edge of Ḡ is in the

associated graph of G.

Now we show an interesting property of S AA in the following theorem [1].

Theorem 5.2. SAA is congruous in the skeleton with respect to the class of LDPTs.

Proof. The proof is in Appendix D.1. �

5.1.2 Step B. Assign Orientations to the Edges in the Skeleton

Finding a way to assign orientations to the edges of the approximating polytree skeleton, so that

the algorithm satisfies congruity in the orientations is a more challenging task. One of the main

complicating factors is that when the LDIM to be approximated has a polytree structure, multiple

orientations of its edges might still be compatible with the observed data as explained in the

following example [1].

Example 1. Consider an LDIM with two nodes, with the dynamics and power spectral density Φu

as follows


y1

y2

y3

 =


0 0 0
1
2 0 0

0 1
2 0




y1

y2

y3

 +


u1

u2

u3

 , Φu =


1 0 0

0 1
2 0

0 0 1
2

 . (5.1)
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The graph associated with this LDIM is depicted in Figure 5.2 (a).

However, the very same three processes y1, y2, y3, could have been generated by the LDIM with

the input signals u′ and the power spectral density Φu′ equal to


y1

y2

y3

 =


0 1

2 0

0 0 0

0 1
2 0




y1

y2

y3

 +


u′1

u′2

u′3

 , u′ =


3
4 −1

2 0
1
2 1 0

0 0 1

 u, Φu′ =


1
2 0 0

0 1 0

0 0 1
2

 (5.2)

with its associated graph depicted in Figure 5.2 (b). Since the input signals are not accessible, there

is no way to distinguish between the dynamics of Equation (5.1) and Equation (5.2). Furthermore,

the processes y1, y2, y3, could have also been generated by the LDIM with the input signals u′′ and

power spectral density Φu′′ equal to


y1

y2

y3

 =


0 1

2 0

0 0 1
2

0 0 0




y1

y2

y3

 +


u′′1

u′′2

u′′3

 , u′′ =


3
4 −1

2 0
3
8

3
4 −1

2

1
4

1
2 1

 u, Φu′′ =


1
2 0 0

0 1
2 0

0 0 1

 (5.3)

with its associated graph depicted in Figure 5.2 (c).

Example 1 shows that there exist three different LDIMs with one identical skeleton, but

different edge orientations which can generate the same output processes {yi}
n
i=1. Thus, by only

observing the outputs, while we can have an algorithm satisfying congruity in the skeleton, in

general we cannot have an algorithm capable of directing all edges which at the same time can

satisfy congruity in the orientations. Therefore, as it follows from Example 1, the most we can

expect from an algorithm assigning orientations to the edges which satisfies congruity in the

orientations is that only some of the edges would get an orientation, while the orientation of others

1 2 3 1 2 3 1 2 3

(a) (b) (c)

Figure 5.2: Graph associated with the LDIM in Equation (5.1) (a), graph associated with the
LDIM in Equation (5.2) (b), and graph associated with the LDIM in Equation (5.2) (c) [1].
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would remain undecided. For this reason, an algorithm congruous in the edge orientations, can

only output, in the general case, a partially directed graph [1].

Another interesting observation that we can draw is that there cannot be any LDIM generating

the same output processes of Example 1 with structure as the inverted fork of Figure 5.3. Indeed,

there is a special property which involves inverted fork configurations in LDPTs. As a special case,

Proposition 2.34 states that, in a LDPT, we have that dL

(
yi, y j

)
= ∞ when there exists yk such that

yi → yk ← y j, while, for all other possible combinations of orientations for the edges (namely,

yi ← yk → y j, yi ← yk ← y j, or yi → yk → y j), we have that dL

(
yi, y j

)
, ∞. This property that

helps us identify the orientation of the links is formalized in the following corollary [1].

Corollary 5.3. Let ~P = (N, ~E) be a polytree and let yi, y j, yk ∈ N. If yk is the only node on the path

from yi to y j, and dL

(
yi, y j

)
= ∞, then the link orientation on this path can be fully identified as

yi → yk ← y j.

Proof. The proof is a direct consequence of Proposition 2.34. �

Thus, when the network to be approximated is known to be a polytree, after obtaining the

skeleton, for any three-node path yi − yk − y j, in principle, we could test whether dL

(
yi, y j

)
= ∞

to determine if yk is an inverted fork implying that the directions of the edges are necessarily

yi → yk ← y j. We illustrate this idea via an example [1].

Example 2. Consider an LDIM with structure as in Figure 5.4 (a). From Proposition 2.34 it is

immediate to verify that the only three-node paths yi − yk − y j such that dL

(
yi, y j

)
= ∞ are

y1 − y3 − y2, y5 − y6 − y7, y5 − y6 − y8, y7 − y6 − y8, (5.4)

while all the other three-node paths satisfy dL

(
yi, y j

)
< ∞. Given the skeleton of the network, if the

distance between each pair of nodes is exactly known, we can obtain the orientation of the edges

1 2 3

Figure 5.3: LDIM with an inverted fork in node y2 [1].
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Figure 5.4: Graph associated with an LDIM with 4 inverted forks (a), and the same graph after
inferring the link orientations using exact information about the distances (b) [1].

belonging to each of the paths in Equation (5.4). This strategy provides the partially oriented

graph of Figure 5.4 (b), where only the edges y3 − y4 and y4 − y5 are left undirected.

Hence, Proposition 2.34 can be exploited to detect inverted forks in a polytree. However,

Proposition 2.34 can be further used to orient edges that are not involved in inverted forks. Indeed,

for any three node path yi − yk − y j in the skeleton, if the direction of the edge yi − yk is known to

be yi → yk and dL

(
yi, y j

)
, ∞, Proposition 2.34 implies that the direction of the edge yk − y j is

yk → y j. This is formalized in the following corollary [1].

Corollary 5.4. Let ~P = (N, ~E) be a polytree and let yi, y j, yk ∈ N. If yk is the only node on the path

between yi and y j and also (yi, yk) ∈ ~E, we have that dL

(
yi, y j

)
< ∞ if and only if (yk, y j) ∈ ~E.

Proof. The proof is a direct consequence of Proposition 2.34. �

In the following example, we show how we can leverage these two corollaries to infer the

orientation of more edges in the approximated polytree [1].

Example 3. Consider again an LDIM with structure as in Figure 5.4 (a). It was shown in

Example 2 how to obtain the partially directed graph of Figure 5.4 (b) where the edges y3 − y4 and

y4 − y5 were left undirected. Since the orientation of the edge y1 → y3 is known and dL (y1, y4) < ∞

we conclude that y3 − y4 is oriented as y3 → y4. Now that the orientation of the edge y3 → y4 is

known, we can use this information to infer the orientation of y4 − y5. Indeed, since dL (y3, y5) < ∞

we necessarily have y4 → y5.

Corollary 5.3 and Corollary 5.4 provide a strategy to orient edges of the skeleton of a polytree

approximating an LDIM:
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1. find the inverted forks using Corollary 5.3 and obtain a partially oriented polytree P̄ =

(N, E, ~E);

2. propagate the orientations of P̄ using Corollary 5.4.

As mentioned in Section 3.2, this approach was proposed by Rebane and Pearl in the context

of graphical models in [68]. The Link Orientation Propagation Algorithm (LOPA), presented in

Algorithm 14, is an implementation of the technique in [68] that takes as input a partially oriented

polytree, with the direction of the v-structures known from Corollary 5.3, and then proceeds to

direct the remaining unoriented edges using Corollary 5.4 [1].

Algorithm 14 Link Orientation Propagation Algorithm

Input a partially directed polytree P̄ = (N, E, ~E) and the distances d(yi, y j) for all yi, y j ∈ N
Output the partially directed polytree P̄ = (N, E, ~E)

1: while ∃ yk such that (yi, y j) ∈ ~E, (y j, yk) < ~E, {y j, yk} ∈ E, and d(yi, yk) < ∞ do
2: set ~E := ~E ∪ {(y j, yk)}
3: end while
4: for all {yi, y j} ∈ E such that (yi, y j) ∈ ~E or (y j, yi) ∈ ~E do
5: set E := E \ {{yi, y j}}

6: end for

One limitation of this approach is that, when dealing with measured data, the test dL

(
yi, y j

)
= ∞

cannot be numerically implemented. We would need to replace it with a numerical implementation

testing for dL

(
yi, y j

)
' ∞. This test might be realized, for example, by choosing an appropriate

(i.e., sufficiently large) threshold θ and testing if dL

(
yi, y j

)
> θ. Furthermore, irrespective of

the numerical implementation of the test dL

(
yi, y j

)
' ∞, its applications on finite time series

(also potentially affected by measurement noise), can give rise to contradictory orientations on

some edges because of the presence of Type I and Type II errors (namely, false positives and

false negatives). Thus, a fundamental problem with this approach is that a naive application

of Corollary 5.3 might feed LOPA an input network which has contradictory orientations. The

following example demonstrates this issue [1].

Example 4. Consider again an LDIM with structure as in Figure 5.4 (a). Assume that, because of

numerical issues, the only three-node paths yi − yk − y j testing positive for dL

(
yi, y j

)
' ∞ are

y4 − y5 − y6, y5 − y6 − y7, y5 − y6 − y8, y7 − y6 − y8,
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while all the others have tested negative. The test result of the path y4 − y5 − y6 is a false positive

and the test result of the path y1 − y3 − y2 is a false negative. In this scenario, the detected inverted

forks create a contradictory orientation on the edge y5 − y6 as depicted in Figure 5.5.

A straightforward strategy to avoid feeding LOPA an input P̄ = (N, E, ~E) containing conflicting

edge orientations is to assign a significance score to the three-node paths yi−yk−y j testing positive

for dL

(
yi, y j

)
' ∞. For example, the significance score for the three-node path yi − yk − y j might be

given by the estimated log-coherence distance dL

(
yi, y j

)
, since a higher value for such an estimate

might indicate a higher likelihood that actually dL

(
yi, y j

)
= ∞. Once a significance score is chosen,

the orientations yi → yk ← y j can be introduced for each triplet yi − yk − y j starting from the ones

with higher significance scores so long as they create no conflicting edge orientations, as proposed

by the Initial Link Orientation Assignment Algorithm (ILOAA), presented in Algorithm 15 [1].

Algorithm 15 Initial Link Orientation Assignment Algorithm
Input an undirected polytree P = (N, E) and the significance scores d(yi, y j) for all yi, y j ∈ N
Output partially directed polytree P̄ = (N, E, ~E)

1: A := {(yi, yk, y j) | {yi, yk}, {y j, yk} ∈ E, d(yi, y j) ' ∞}
2: Sort the triplets (yi, yk, y j) in A in decreasing order according to the significance score
3: while A , ∅ do
4: let a = (yi, yk, y j) be the first element of A
5: remove a from A
6: if (yk, yi) and (yk, y j) are not in ~E then
7: add (yi, yk) and (y j, yk) to ~E
8: remove {yi, yk} and {y j, yk} from E
9: end if

10: end while

1

2

3 4 5 6

7

8

Figure 5.5: The result of inferring edge orientations of the LDIM depicted in Figure 5.4 (a) using
information containing Type I and Type II errors [1].
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On the other hand, guaranteeing that the input of LOPA has no conflicting orientations is not

enough to guarantee that the output of LOPA will not have conflicting orientations. This is shown

in the following example [1].

Example 5. Consider again an LDIM with structure as in Figure 5.4 (a). Assume that, because of

numerical issues, the only three-node paths yi − yk − y j testing positive for dL

(
yi, y j

)
' ∞ are

y1 − y3 − y2; y7 − y6 − y8,

while all the others have tested negative. Thus, only two inverted forks are detected as shown in

Figure 5.6 (a). If we apply LOPA to this scenario, some edges get oriented in both directions, as

shown in Figure 5.6 (b).

As demonstrated in Example 5, when approximating an LDIM using a polytree structure, we

cannot naively propagate edge orientations as in LOPA, since it might still result in orientation

conflicts. This motivates the development of an algorithm analogous to LOPA, but capable of

resolving these conflicts. Again, such conflicts can be potentially resolved using several strategies.

In the context of this dissertation, we simply propose a modification of LOPA, called Conflict

Resolving LOPA (CRLOPA), presented in Algorithm 16, which takes advantage of a significance

score to resolve the conflicts in the orientation of the edges. Here, we propose to use the log-

coherence distance of Equation (2.3) to calculate the significance score, i.e., the significance score

of the triplet yi − yk − y j is equal to dL

(
yi, y j

)
[1].

Note that if the set A is empty, then the output of CRLOPA is trivially the same as the output

of LOPA. So, the set A would be empty in cases where there are no contradictions in the edge

1

2

3 4 5 6

7

8
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3 4 5 6

7

8

(a) (b)

Figure 5.6: The result of inferring edge orientations of the LDIM depicted in Figure 5.4 (a) using
information containing errors (a), and the output of LOPA to the graph in Figure 5.6 (a) which
results in contradictory link orientations (b) [1].
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Algorithm 16 Conflict Resolving LOPA

Input a partially directed polytree P̄ = (N, E, ~E) and the significance scores d(yi, y j) for all
yi, y j ∈ N

Output the partially directed polytree P̄
1: Set ~Eperm := ~E
2: Set P̄ = (N, E, ~E) := LOPA(P̄, d(·, ·))
3: Define A := {(yi, yk, y j) | (yi, yk) ∈ ~E \ ~Etemp, (y j, yk) ∈ ~E}
4: if A = ∅ then
5: output the partially directed P̄
6: end if
7: Find the triplet (yi, yk, y j) in A that has the highest significance score
8: Set ~E := ~Eperm ∪ {(yi, yk), (y j, yk)}
9: Go to step 1.

orientations. This would happen, for example, when the actual LDIM has a polytree structure and

the distances (i.e., the significance scores) among the nodes are exactly known. In the following

proposition we show that if A is empty, then there are no orientation conflicts [1].

Proposition 5.5. Let P̄ = (N, E, ~E) be the output of LOPA applied to (P̄, d(·, ·)). Define A as in

Step 3 of CRLOPA. If A = ∅, then we have that ∀(yi, y j) ∈ ~E : @(y j, yi) ∈ ~E.

Proof. The proof is in Appendix D.2. �

5.1.3 Putting It All Together

Now that we have explained the main idea behind the process of orienting edges in the previous

sections, we introduce the Polytree Approximation Algorithm (PAA), presented in Algorithm 17,

an algorithm that approximates an LDIM using a polytree [1].

Algorithm 17 Polytree Approximation Algorithm
Input a set of nodes N and the distances d(yi, y j) for yi, y j ∈ N
Output partially directed polytree P̄ = (N, E, ~E)

1: Set P = (N, E) to the output of SAA applied to the inputs (N, d(·, ·))
2: Set P̄in = (N, E, ~E) to the output of ILOAA applied to (P, d(·, ·))
3: Set P̄ = (N, E, ~E) to the output of CRLOPA applied to (P̄in, d(·, ·))

In the following theorem, we show that PAA is congruous in orienting the links if the original

LDIM is a LDPT and the distances are computed exactly [1].
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Theorem 5.6. PAA is congruous in the orientations with respect to the class of LDPTs when the

distances between the nodes are computed exactly.

Proof. The proof is in Appendix D.3. �

5.2 Real Data Application: Stock Market Analysis

In this section, as a benchmark application, we apply our approximation technique to the analysis

of a stock portfolio. The dynamics among different stock prices are arguably non-stationary and

involve coupling relations with a topology structure which is most likely more complex than a tree.

Precisely for these reasons, this application scenario is a challenging benchmark to experiment

whether tree structures can be used as adequate approximators for complex networks [1, 23, 40].

We considered the stock prices of the companies listed in the Standard & Poor’s 100 (S&P 100)

index during normal trading hours in the New York Stock Exchange (NYSE) which happen

Monday through Friday, 9:30am till 4:00pm. Data have been sampled every 60 seconds, and

for each day we have obtained the time series of the associated logarithmic returns. For each day,

we have also computed the log-coherence distance as in Equation (2.3). Following [40], we have

averaged these distances over a period of two weeks: 2019/02/25 − 2019/03/08 (Period 1) and

determined the skeleton of the tree structure using an MST approach (as explained in SAA). In

[40], the average was computed over four weeks, but data were sampled every 120 seconds, so

the skeleton approximation method in this article uses the same quantity of data as in [40] with a

higher sampling rate [1].

As a fundamental addition to [40], the results presented in this chapter allow one to determine

the orientation of the links using ILOAA and CRLOPA. Since we are dealing with finite time

series, in order to use these algorithms, we have defined a threshold to determine if the distance

between two nodes is close to infinity or not. More specifically, for a three-node path yi − y j − yk,

we have considered the distance dL (yi, yk) to be infinity when the following equation is satisfied

dL (yi, yk) > max
(
dL

(
yi, y j

)
, dL

(
y j, yk

))
(1 + α). (5.5)
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Here, we have arbitrarily chosen α = 5%. The results are shown in Figure 5.7 (a), where the

color of the nodes represent the business sector of the companies as given by the Global Industry

Classification Standard (GICS). Observe that a tree structure provides a good clustering of the

portfolio according to the different business sectors, reproducing the results of [40]. However,

we want to go beyond the analysis of [40] and investigate if a tree structure is indeed a good

approximator for the unknown network of the portfolio [1].

Since the underlying network is unknown, such a claim is challenging to validate because of

the lack of the knowledge of a ground truth to perform the comparison. However, if we assume

the existence of a network underlying the portfolio, and if such a network is quasi-stationary or

at least slowly varying, we should observe similar patterns/features in the approximating trees

when we repeat the same analysis over different time periods. For this reason, we have repeated

the same analysis for the additional two-week periods of 2019/03/11 − 2019/03/22 (Period 2),

2019/03/25 − 2019/04/05 (Period 3), and 2019/04/08 − 2019/04/18 (Period 4) (the last period

is actually missing one day because NYSE was closed on 2019/04/19, which was Good Friday).

The results are shown in Figures 5.7 (b) and 5.8 (a)-(b), respectively [1].

Again, in all of these cases, the identified tree structure provides a good clustering of the

different business sectors. To quantify the performance of this technique, we have computed

the percentage of inter-cluster links (edges connecting two nodes belonging to the same sector

according to GICS) and reported them in Table 5.1 [1]. Observe that such a percentage is overall

constant in all the four periods.

A more interesting feature is the percentage of edges which are in common between two

consecutive periods and the percentage of edges in common among all the periods, as reported

in Table 5.2 [1]. Observe that the two trees associated with two consecutive periods share on

average 67% of the edges, and, remarkably, the four trees have 50% of the edges in common. In

other words, most of the edges in common between two consecutive periods tend to be shared by

all the trees, showing a very solid form of consistency in the recovered structure [1].

It is noteworthy that the edge orientations obtained by application of PAA over the four periods

of time also have some similarities in common, especially in terms of nodes with high indegree.

By inspecting the orientations obtained after applying this approximation algorithm, we notice

that a high indegree indicates a node that is highly correlated with its parents while the parents
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Figure 5.7: Network structure for Period 1 (a), and network structure for Period 2 (b) [1].
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(a)

(b)

Figure 5.8: Network structure for Period 3 (a), and network structure for Period 4 (b) [1].
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Table 5.1: Percentage of inter-cluster links in the approximated skeleton [1]

Period 1 Period 2 Period 3 Period 4

78% 83% 78% 80%

Table 5.2: Percentage of common edges in the approximated skeleton [1]

Period 1 & 2 Period 2 & 3 Period 3 & 4 All 4 Periods

73% 63% 62% 50%

are not as correlated with each other. This property would then indicate companies that are

contributing in their business areas in a variety of ways, meaning that their stock price behavior

tends to correlate with a large number of competitors which focus their activities and attention to

a more specific market. While this feature is not perfectly replicated in every period, observe that

the nodes MSFT (Microsoft), AMZN (Amazon), IBM (IBM) and JPM (JPMorgan Chase) tend to

have consistently high indegrees. Thus, not only the skeleton is capable of displaying meaningful

information from the price data in terms of correlated activities between contiguous stocks, but

also the edge orientation algorithm can help identify central businesses in the portfolio network by

looking for nodes with high degree and, in particular, high indegree [1].
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Chapter 6

Conclusions

In this dissertation, we proposed two novel algorithms to learn the structure of a network with

a polyforest topology and to infer partial information about the link orientations in the network.

These methods have been developed considering the case where some of the nodes might not be

observable. It has been shown that if the hidden nodes satisfy some specific degree conditions,

then the correct structure, including the location and the number of hidden nodes, is learned. We

have also proven that such degree conditions are necessary for the learning process, achieving the

fundamental limitations in learning polyforest networks. Moreover, the algorithms developed in

this dissertation have polynomial time complexity similar to the methods developed for learning

rooted tree structures in the literature. However, the proposed methods here deal with a larger class

of networks, namely, polyforests, which can model potential fusion of sources of information in

a network. One of the objectives of this dissertation is to develop algorithms that can be applied

to both domains of graphical models of random variables and dynamic networks of stochastic

processes and it is shown that these two algorithms are applicable to both domains.

We also proposed a novel algorithm to approximate the interconnections of generic networks

with simpler polytree networks when the assumption of linear dynamics is exploited. The ultimate

goal of this approximation technique is to capture the strongest connections in the network

using an algorithm that runs in polynomial time. This scheme is shown to be congruous in the

skeleton and orientation of the edges when the network to be approximated has also a polytree

structure. Furthermore, we have shown applications of this approximation method to financial

market data. The results confirmed that this approach clusters the financial organizations according
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to their business sectors showing good agreement with the GICS (Global Industry Classification

Standard) classification and it is also confirmed that the inferred orientations represent a sensible

interpretation of cause and effect relationships between these organizations.

Moreover, the results of this work could be applied to studies in social sciences. For example,

we can model the questions in a survey as a network and then leverage the approaches developed

in this dissertation to find the hidden nodes in this network. Thus, we can obtain an analysis of the

effectiveness of each question and we can then use this information to design more compelling

questions for future studies. Furthermore, another future step would be extending the results

developed for tree structured networks to cyclic networks. One viable method would be leveraging

junction trees to develop extensions of these learning algorithms to networks containing loops.
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A Proofs Related to Chapter 2

A.1 Proof of Lemma 2.27

Proof. If H ji(z) , 0, then there is a path of length 1, namely the edge (yi, y j) ∈ ~E. The entry ( j, i)

of H2(z) is given by

(H2(z)) ji =

n∑
k=1

H jk(z)Hki(z) (1)

and is trivially equal to zero if there is no chain of length 2 from yi to y j. Iterating this argument

we find that, if there is no chain of length q from yi to y j, then (Hq(z)) ji = 0. Thus, we have

(Hq(z)) ji = 0, for all q > ` and all yi, y j. Now consider the relation (I − H(z)) y = u from

Equation (2.1). Since H(z) is nilpotent of order ` + 1, the matrix (I − H(z)) is invertible and

(I − H(z))−1 = I +
∑`

k=1 Hk(z) = T (z) which implies that y = T (z) u. In addition, since there

are no directed cycles, it implies that Tii(z) = 1. Also, if there is no chain from yi to y j where

y j , yi, we immediately have T ji(z) = 0. Also from Wiener-Khinchin Theorem (see [81]) we have

Φyu(z) = T (z)Φu(z) which implies Φy jui(z) = T ji(z)Φui(z) = 0. �

A.2 Proof of Lemma 2.30

Proof. Consider two directly connected nodes yi and y j and their dynamic relation in a block

diagram as in Figure A.1. From Wiener-Khinchin Theorem [81], the power spectral and cross-

i

j

4

1 2 3

5 6

+Hji
yi yj

uj

(a) (b)

Figure A.1: Nodes yi and y j in an LDRT (a), and the block diagram of the dynamic relation
between the nodes yi and y j (b) [3].
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spectral densities are

Φy j(z) = Φyi(z)|H ji(z)|2 + Φu j(z) + 2 Re(Φyiu j(z)H ji(z)),

Φyiy j(z) = Φyi(z)H ji(z)∗ + Φyiu j(z).
(2)

From Lemma 2.27 we have that Φu jyi(z) = 0, which leads to

Ci j(z) =
|Φyi(z)|2|H ji(z)|2

Φyi(z)
[
Φyi(z)|H ji(z)|2 + Φu j(z)

] =
1

1 +
Φu j (z)

|H ji(z)|2Φyi (z)

. (3)

Again, from Lemma 2.27 and for |z| = 1, we have that

Φyi(z) = Φui(z) +
∑
k,i

|Tik(z)|2Φuk ≥ Φui(z) > η. (4)

Consequently, from the monotonicity of the logarithm, we can bound the logarithm of the

coherence, for |z| = 1, as follows

log

∣∣∣∣∣∣∣∣∣
1

1 +
Φu j (z)

|H ji(z)|2η

∣∣∣∣∣∣∣∣∣ < log
∣∣∣Ci j(z)

∣∣∣ < log

∣∣∣∣∣∣∣ 1
1 +

η

|H ji(z)|2Φyi (z)

∣∣∣∣∣∣∣ . (5)

Since Φu j(z), Φyi(z) and H ji(z) are rational functions of z with no zeros on the unit circle, the integral

of both lower bound and the upper bound are finite and different from zero. Therefore, we have

that 0 < dL

(
yi, y j

)
< ∞. �

A.3 Proof of Proposition 2.33

Proof. Since ~T is a rooted tree, two nodes yi and y j are d-separated by yk (i.e., dsep ≺ yi, {yk}, y j �~T )

if and only if yk is on the unique path connecting yi and y j. According to Theorem 8 in [82],

dsep ≺ yi, {yk}, y j �~T , implies that the nodes yi and y j are Wiener separated by the node yk. Wiener

separation is defined in Definition 21 of [82] where it is stated that two processes yi and y j are

Wiener separated given yk if the Wiener filter (W ji(z),W jk(z)) used to estimate y j from yi and yk is

such that W ji(z) = 0. Lemma 26 in [19] states that yi and y j are Wiener separated given yk if and

only if the entry (i, j) of the matrix Φ−1(z) is equal to zero where Φ(z) is the joint power spectral
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density matrix of yi, y j and yk. By inspection, the entry (i, j) of Φ−1(z) is

(
Φ−1(z)

)
i j

=
Φik(z)Φk j(z) − Φi j(z)Φkk(z)

A(z)
(6)

where A(z) = Φii(z)Φ j j(z)Φkk(z) + Φi j(z)Φki(z)Φ jk(z) + Φ ji(z)Φik(z)Φk j(z) − Φii(z)Φ jk(z)Φk j(z) −

Φik(z)Φ j j(z)Φki(z) − Φi j(z)Φ ji(z)Φkk(z). Therefore, setting the numerator of Equation (6) to zero,

we get ∀ω ∈ [−π, π] : Ci j(eiω) = Cik(eiω)Ck j(eiω), and consequently log |Ci j(eiω)| = log |Cik(eiω)| +

log |Ck j(eiω)|, which implies dL

(
yi, y j

)
= dL (yi, yk) + dL

(
yk, y j

)
(see Equation (2.3)). �

A.4 Proof of Proposition 2.34

We first introduce a lemma and a proposition. The lemma states that the cross-spectral density of

nodes that are not related in the associated graph of a topologically identifiable LDPF is zero.

Lemma .1. Let ~F = (N, ~E) be the associated graph of a topologically identifiable LDPF. If

yi, y j ∈ N are not related, then Φyiy j(z) = 0.

Proof. Let T (z) be as defined in Lemma 2.27 and let yk ∈ N. First assume that yk , yi, y j. Since

yi and y j are not related, it is not possible that there is at the same time a chain from yk to yi and

a chain from yk to y j. Then, we have that Tik(z)T ∗jk(z) = 0. If k = i (or k = j), then we have

Tii(z)T ∗ji(z) = 0 (or Ti j(z)T ∗j j(z) = 0) since one is not a descendant of the other. This implies that

Φyiy j(z) =

n∑
p=1

n∑
q=1

Tip(z)Φu(z)T ∗q j(z) = 0, (7)

where the last equality follows from the fact that Φu(z) is diagonal. �

The following proposition shows how to define an LDRT in an LDPF.

Proposition .2. Let F = (H(z), u) be an LDPF with the associated graph ~F = (N, ~E) and let

yr ∈ N be one of its roots. The LDIM T = (H(T )(z), u(T )) which has de~F (yr) as its output processes

and the restriction of ~F to de~F (yr) as its associated graph, is in fact an LDRT.

Proof. Let N = {y1, y2, ..., yn} and with no loss of generality, let y1 = yr and de~F (yr) =

{y1, y2, ..., ym}. We want to show that T = (H(T )(z), u(T )) is an LDRT with nodes {y1, y2, ..., ym}.
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For any i, j = 1, ...,m define u(T )
i := ui +

∑n
k=m+1 Hikyk and H(T )

ji (z) := H ji(z). We first prove that

Φu(T )
i u(T )

j
= 0 for distinct i, j < m which implies that T = (H(T )(z), u(T )) is an LDIM.

Consider p, q > m such that Hip(z) , 0 and H jq(z) , 0, for distinct i, j ≤ m. First, we

show that yp and yq are not related. By contradiction assume they are related. Let yπ0 , ..., yπ` be

the unique path from yi to y j. Observe that there is a chain from y1 to yi with all nodes that are

descendants of y1. Analogously, there is a chain from y1 to y j with all nodes that are descendants of

y1. Consequently all nodes in the unique path from yi to y j are descendants of y1. Since Hip(z) , 0

and H jq(z) , 0, we have that yp , yq otherwise we would have the path yi ← yp = yq → y j

which is a contradiction. Also, since Hip(z) , 0 and H jq(z) , 0, the unique path connecting yp to

yq has the form yp → yπ0 ... yπ` ← yq which implies that the two nodes are not related which is a

contradiction. Therefore, according to Lemma .1, we have that Φypyq(z) = 0. Also, there is no chain

from y j to yp and no chain from yi to yq. Thus, from Lemma 2.27 we have Φypu j(z) = Φyqui(z) = 0.

Therefore, for i , j, we have that Φu(T )
i u(T )

j
(z) = 0 proving that T = (H(T )(z), u(T )) is an LDIM.

Define y(T ) = u(T ) + H(T )(z) y(T ) and observe by inspection that y(T )
i = yi for i ≤ m. Also, observe

that the way the nodes have been chosen proves that the associated graph of T is a rooted tree. �

Now we can incorporate Lemma .1 and Proposition .2 to prove Proposition 2.34.

Proof. ⇐: We want to show that if there exists at least one inverted fork on the path from yi to y j

or there is no path from yi to y j, we have dL

(
yi, y j

)
= ∞. Let Φy(z) be the power spectral density

matrix of the output y. Equation (2.2) and the Wiener-Khinchin Theorem result in

Φyiy j(z) = (T (z)Φu(z)T ∗(z))i j =
∑

k

Tik(z) (Φu(z))kk T ∗k j(z)

=
∑

k

Tik(z) (Φu(z))kk

(
T jk(z)

)∗ (8)

where (·)i j denotes the entry (i, j) of a matrix. Because of the inverted fork on the path from yi to

y j, there cannot be any node yk such that there is a chain from yk to yi and at the same time a chain

from yk to y j. Therefore, Lemma 2.27 states (T (z))ik = 0 and (T ∗(z))k j = 0 for all k which implies

Φyiy j(z) = 0. Therefore, we have ∀ω ∈ [−π, π] : Ci j(ω) = 0 and using Equation (2.3), we conclude

that dL

(
yi, y j

)
= ∞.
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⇒: We want to show that if there exists a path from yi to y j with no inverted fork, then

dL

(
yi, y j

)
< ∞. Since yi and y j are related, they have a common root ancestor, namely yr. Using

Proposition .2, define the LDRT given by the restriction of ~F to de~F (yr). Note that yi and y j

are in this restriction and the distance is additive along the paths of this rooted tree according

to Proposition 2.33. Therefore, using the result of previous step (i.e., if (yp, yq) ∈ ~E, then

dL

(
yp, yq

)
< ∞) and the fact that there exists exactly one path between any pair of nodes in a

rooted tree, we have that 0 < dL

(
yi, y j

)
< ∞ because dL

(
yi, y j

)
is the sum of positive finite distances

between pairs of nodes on the path from yi to y j. �
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B Proofs Related to Chapter 3

B.1 Proof of Theorem 3.2

Proof. If a hidden node in ~T is RGA-detectable, then it has necessarily degree greater than or equal

to 3 in the skeleton of ~T . Then the assertion follows from Theorem 5 in [53]. �

B.2 Proof of Proposition 3.3

Proof. There exists exactly one root in a rooted tree [76] and by definition, an FD-detectable node

is a root. Thus, the only FD-detectable hidden node, namely yh, is the root of ~T ` while all the

other hidden nodes are necessarily RGA-detectable. Using Lemma 16 in [40], define an LDRT

T ′ = (H(z), u) which has the associated graph ~T
′

` = (VT , LT , ~E
′

) with the same skeleton as ~T ` and

all distances among the nodes in NT = VT ∪ LT are the same but the root is yc1 instead of yh, as in

Figures B.1 (a)-(b). For T ′ we have

yi =
∑

ypi∈pa~T ′`
(yi) Hipi(z) ypi + ui, yc1 = uc1 ,

yc2 = Hc2h(z)yh + uc2 , yh = Hhc1(z)yc1 + uh,
(9)

for yi ∈ NT \ {yh, yc1 , yc2}, appropriate transfer functions H jk(z) with y j, yk ∈ NT and mutually

independent signals u j with y j ∈ NT .

Now define a new system X such that xi := yi, εi := ui and H′jk(z) := H jk(z) for all yi ∈

NT \ {yh, yc2}, distinct y j, yk ∈ NT \ {yh} where {y j, yk} < {yc1 , yc2}, and also

xc2 := H′c2c1
(z)yc1 + εc2 , H′c2c1

(z) := Hc2h(z)Hhc1(z), εc2 := uc2 + Hc2h(z)uh. (10)

c1 c2

h

c1 c2

h

c1 c2

(a) (b) (c)

Figure B.1: Rooted trees ~T ` (a), ~T
′

` (b), and ~T X (c) [3].
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Since Φuc2 ui(z) = 0 and Φuhui(z) = 0, we have that Φεc2 εi(z) = 0 for yi ∈ NT . Therefore, the

associated graph of the system X denoted by (H′, ε), is

TX =
(
VT , LT \ {yh}, {ET ∪ {yc1 , yc2}} \ {{yh, yc1}, {yh, yc2}}

)
(11)

as in Figure B.1 (c). Also, all the nodes in LT \ {yh} are RGA-detectable, therefore, according to

Theorem 3.2, RGA will output the tree TX. �

B.3 Proof of Theorem 3.5

We first introduce one definition and two lemmas.

Definition .3 (Lowest common ancestor of a set of nodes [83]). Let ~F = (N, ~E) be a polyforest and

let Q be a subset of N. Let ~FQ be the subgraph of ~F restricted to the set of all common ancestors

of elements of Q. Define QLCA, the Lowest Common Ancestors (LCA) of Q, as the set of nodes with

outdegree 0 in ~FQ. �

Lemma .4. In a rooted tree ~T = (N, ~E), for every non-empty set Q ⊆ N, there is a unique LCA ys.

It also satisfies

(i) Q ⊆ de~T (ys),

(ii) ∀yt ∈ de~T (ys) \{ys} : Q * de~T (yt).

Proof. For uniqueness of the LCA see section 3 in [83]. First property is an immediate result of

Definition .3. Second property holds because otherwise yt would be the LCA of Q according to

Definition .3. �

Lemma .5. Let ~F = (N, ~E) be a polyforest and let A ⊆ N. If ∀yu, yv ∈ A we have that yu and yv

are related, then ∃yr : A ⊆ de~F (yr).

Proof. By contradiction assume that for every root yri , ∃yvi ∈ A\de~F
(
yri

)
. Let yr be the root (or

one of the roots) for which maxi|A ∩ de~F
(
yri

)
| is obtained. Consider the rooted tree with root yr.

Let Q = A ∩ de~F (yr) from Lemma .4, then ∃ys ∈ de~F (yr) such that ys is the closest ancestor of

the set Q. Therefore, according to the contradiction assumption, ∃yv ∈ A\de~F (yr). If there is
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no path between ys and yv, then there is no path from yu ∈ Q to yv giving the contradiction that

yu and yv are not related. Thus, there is a path from ys to yv in the polyforest ~F. Such a path

needs to have an inverted fork otherwise yr would not be in arg maxyri
|A ∩ de~F

(
yri

)
|. Let ys1 be the

node located immediately after ys on the path. The path can have the form ys ← ys1 ...→ y f ← ...yv

or ys → ys1 ...→ y f ← ...yv if ys1 , y f . If ys1 = y f , then the path has the form ys → y f ← ...yv.

Consider the following cases:

• if ys is a child of ys1 , namely yu ← ...← ys ← ys1 − ...→ y f ← ...← yv, then choose the node

yu ∈ A ∩ de~F (yr). Therefore, yu and yv are not related which is a contradiction;

• if ys1 is a child of ys, namely yu ← ...← ys → ys1 − ...→ y f ← ...← yv or yu ← ... ← ys →

ys1 = y f ← ... ← yv, then yu ∈ {A ∩ de~F (yr)}\de~F
(
ys1

)
. Therefore, yu and yv are not related

which is a contradiction.

�

Now we can incorporate previous lemmas and prove Theorem 3.5.

Proof. Let ~F` = (V, L, ~E) be the associated graph of the latent LDPF F = (H(z), u). Consider an

arbitrary ordering of the visible nodes to be y1, y2, ..., yn. Let S be one of the output lists of PFDA.

If |S | = 1, let S = {y j}. We know from Step 1 of PFDA that |S | = 1 implies that ∀y ∈ V\{y j} :

d
(
y j, y

)
= ∞. Let y j be such that y j ∈ de~F`

(
yr j

)
. Therefore, obviously S ⊆ de~F`

(
yr j

)
∩ V . Now

we show that S = de~F`

(
yr j

)
∩ V . By contradiction, assume ∃yi , y j : yi ∈ de~F`

(
yr j

)
∩ V\S . Since

there are no paths with inverted forks in a rooted tree, we know that yi and y j are related, which is

a contradiction to ∀y ∈ V \ {y j} : d
(
y j, y

)
= ∞. Thus, we have that S = de~F`

(
yr j

)
∩ V .

If |S | ≥ 2, then let S be the list obtained by PFDA when starting with the pair {yi, y j} where

dL

(
yi, y j

)
< ∞. Thus, the output of PFDA is the list S = S (n) where S (k) is defined by the iterations

S (0) := {yi, y j}

S (k) :=


S (k−1) if ∃y ∈ S (k−1) : dL (y, yk) = ∞

S (k−1) ∪ {yk} otherwise

(12)

for k = 1, ..., n as specified in Step 4 of PFDA. We want to show that ∃yr : S = de~F`
(yr) ∩ V .

101



• S ⊆ de~F`
(yr) ∩ V: We know that ∀yu, yw ∈ S where yu , yw, we have dL (yu, yw) < ∞, and

according to Lemma .5 there exists one root yr such that S ⊆ de~F`
(yr). All elements in S are in

V , therefore, S ⊆ de~F`
(yr) ∩ V .

• de~F`
(yr)∩V ⊆ S : Consider the root yr in previous step. By contradiction, ∃yk ∈ de~F`

(yr)∩V and

yk < S . Therefore, there exists one vertex y ∈ S (k−1) such that dL (y, yk) = ∞. From the previous

step S (k−1) ⊆ S ⊆ de~F`
(yr) ∩ V , therefore, y ∈ de~F`

(yr). Since yk ∈ de~F`
(yr) and there are no

paths with inverted forks in a rooted tree, we have that d (y, yk) < ∞, which is a contradiction.

�

B.4 Proof of Theorem 3.6

We introduce five lemmas before providing the proof of Theorem 3.6.

Lemma .6. In a structurally identifiable latent LDPF with the associated graph ~F` = (V, L, ~E), for

every non-root node y ∈ V ∪ L if y ∈ de~F`
(yr) for a root node yr, then de~F`

(yr) \ de~F`
(y) * L.

Proof. By contradiction there exists y ∈ V ∪ L such that y ∈ de~F`
(yr) where yr is a root and

de~F`
(yr) \ de~F`

(y) ⊆ L. Clearly yr , y because y is not a root. The restriction of ~F` to the nodes in

de~F`
(yr) \ de~F`

(y) ⊆ L is a rooted tree, ~T . The tree ~T either is just the root yr and yr ∈ L or has at

least two nodes with degree equal to 1 (see [76], Section 1.5). Both cases are in contradiction with

~F` being structurally identifiable because all hidden nodes should have outdegree greater than or

equal to 2. �

The following lemma shows that if two root nodes have a common descendant, then the path

connecting them contains a unique inverted fork.

Lemma .7. Let ~F` = (V, L, ~E) be the associated graph of a structurally identifiable latent LDPF.

If there is a common descendant y for the roots yri and yr j where yri , yr j ∈ V ∪ L, then there exists a

path from yri to yr j with a unique inverted fork y f ∈ V ∪ L, and y ∈ de~F`

(
y f

)
.

Proof. Let y = de~F`

(
yri

)
∩ de~F`

(
yr j

)
. Therefore, there is a chain from yri to y. Consider y f to be the

closest node to yri on this chain such that y f ∈ de~F`

(
yr j

)
. Node y f exists because there is at least one

descendant of yr j on the chain yri → ...→ y, namely y. Therefore, we have yri → ...→ y f → ...→ y
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and yr j → ...→ y f . Any node on the chain from yri to y f cannot be on the chain from yr j to y f

because it would contradict the fact that y f is a descendant of yr j that is closest to yri on the chain

yri → ...→ y. Consider the path yri → ...→ y f ← ...← yr j . This is a valid path in ~F` because all

of its nodes are distinct. Therefore, the path from yri to yr j exists and the node y f is the unique

inverted fork on the path from yri to yr j . Also, y is trivially a descendant of y f in ~F`. �

The following lemma guarantees that if a polyforest is structurally identifiable, then the lists

obtained by visible descendants of the distinct root nodes are not contained into each other.

Lemma .8. Let ~F` = (V, L, ~E) be the associated graph of a structurally identifiable latent LDPF.

The lists obtained by de~F`

(
yri

)
∩ V for all distinct root nodes yri ∈ V ∪ L are not contained into

each other.

Proof. By contradiction, assume that ∃S i := {de~F`

(
yri

)
∩ V} ⊆ S j := {de~F`

(
yr j

)
∩ V}. Consider the

rooted tree T obtained by restricting ~F to de~F
(
yri

)
. The tree T either has at least two nodes with

degree equal to one or it is only the node yri in T . If de~F`

(
yri

)
∩V = ∅, then we would have that there

are at least two hidden nodes with degree equal to one in T or yri would be a hidden node itself

without any descendants. Both of these situations contradict structural identifiability conditions.

Therefore, de~F`

(
yri

)
∩ V , ∅. Since S i ⊆ S j, the roots yri and yr j have at least one common

descendant. According to Lemma .7 there exists a unique inverted fork y f on the path from yri to

yr j . Define Yi := de~F`

(
yri

)
\ de~F`

(
y f

)
and Y j := de~F`

(
yr j

)
\ de~F`

(
y f

)
. Obviously, Yi ∩ de~F`

(
y f

)
= ∅

and Y j ∩ de~F`

(
y f

)
= ∅. We also have that Yi ∩ Y j = ∅, otherwise y ∈ Yi ∩ Y j would imply, by

Lemma .7, that y ∈ de~F`

(
y f

)
giving a contradiction with y < de~F`

(
y f

)
.

Therefore, we can write S i = {de~F`

(
y f

)
∪ Yi} ∩ V = {de~F`

(
y f

)
∩ V} ∪ {Yi ∩ V} and S j =

{de~F`

(
y f

)
∪ Y j} ∩ V = {de~F`

(
y f

)
∩ V} ∪ {Y j ∩ V}. Using contradiction assumption that S i ⊆ S j

and the fact that Yi ∩ Y j = ∅, we can write {Yi ∩ V} ⊆ {Y j ∪ V} which implies that Yi ∩ V = ∅.

Therefore, we should have that Yi = de~F`

(
yri

)
\ de~F`

(
y f

)
⊆ L which is a contradiction because of

Lemma .6. �

The following lemma shows that each set of nodes in a rooted tree contains at least one pair of

nodes that have their LCA on the path connecting them.

Lemma .9. Let ~T = (N, ~E) be a rooted tree and let Q ⊆ N such that |Q| ≥ 2. There exists at least

one pair of vertices (yu, yw) ∈ Q for which ys, LCA of Q, is on the unique path from yu to yw.
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Proof. By contradiction, assume that for every pair (yu, yw) ∈ Q, ys is not on their unique path.

If ys ∈ Q, we can choose the pair to be (yu, ys). Since ys is on the path from yu to ys, this is a

contradiction. If ys < Q, let {yci}
nc
i=1 = ch~T (ys) and consider the following cases.

• If nc = 0, then de~T (ys) = {ys} which implies that |Q| = 1 which is a contradiction to |Q| ≥ 2.

• If nc = 1, then Q ⊆ de~T
(
yc1

)
which is a contradiction to the property of vertex ys which states

that ∀yt ∈ de~T (ys) \ {ys}, Q * de~T (yt).

• If nc ≥ 2, then ∃yci such that Q∩de~T
(
yci

)
, ∅. Indeed, if Q∩de~T

(
yci

)
= ∅ for all i = 1, ..., nc, then

Q would be empty. Thus, ∃yu ∈ de~T
(
yci

)
∩ Q. Since yci ∈ de~T (ys), according to the properties

of ys, Q * de~T
(
yci

)
and therefore ∃yw ∈ Q \ de~T

(
yci

)
. Since yw ∈ de~T (ys), there is one chain

from ys to yw. Since yw < de~T
(
yci

)
, there exists yc j , yci such that yw ∈ de~T

(
yc j

)
. Thus, we have

yw ← ...← yc j ← ys → yci → ...→ yu which implies that the chain from ys to yu and the chain

from ys to yw have only the node ys in common. Since there is only one path between any two

nodes in each rooted tree, ys is necessarily on the path from yu to yw, which is a contradiction to

the assumption.

�

The following lemma guarantees that each list containing the visible descendants of a root,

which is not contained in any other list, contains a unique pair of visible nodes.

Lemma .10. Let ~F` = (V, L, ~E) be a latent polyforest. Let S i = de~F`

(
yri

)
∩ V for the root yri with

i ∈ {1, ..., nr} where nr is the number of roots of ~F`. Let |S i| ≥ 2 and S i * S j for every j ∈ {1, ..., nr}

where i , j. Then there exist u,w ∈ S i such that {u,w} * S j.

Proof. By contradiction, assume that ∀{yu, yw} ⊆ S i there exists j , i such that {yu, yw} ⊆ S j.

Consider the rooted tree obtained by restricting ~F` to de~F`

(
yri

)
and choose (yu, yw) as in Lemma .9

applied to such a rooted tree with the set Q = V ∩ de~F`

(
yri

)
. Thus, there exists one node ys on

the path from yu to yw such that V ∩ de~F`

(
yri

)
⊆ de~F`

(ys). Observe that yu, yw ∈ de~F`

(
yr j

)
as well.

Consider the restriction of ~F` to de~F`

(
yr j

)
which is a rooted tree, thus there is a unique path from

yu to yw. Thus, ys is on that path implying that ys ∈ de~F`

(
yr j

)
. Then, we have that ys ∈ de~F`

(
yr j

)
implying that de~F`

(ys) ⊆ de~F`

(
yr j

)
. As a consequence, de~F`

(ys)∩V ⊆ de~F`

(
yr j

)
∩V . We know that
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de~F`

(
yri

)
∩ V ⊆ de~F`

(ys) ∩ V , and therefore, de~F`

(
yri

)
∩ V ⊆ de~F`

(
yr j

)
∩ V leads to a contradiction

because S i * S j. �

Now we can provide the proof of Theorem 3.6 as follows.

Proof. ⇒: Let S (PFDA) be a list generated by PFDA. According to Theorem 3.5, we know that

there exists a root node yr such that S (PFDA) = de~F`
(yr) ∩ V .

⇐: Since ~F` is structurally identifiable, according to Lemma .8 the lists obtained by visible

descendants of the distinct root nodes are not contained into each other. Let S (yr) = de~F`
(yr) ∩ V

for some root yr.

First we show that if |S (yr)| = 1, then yr ∈ V and deg+
~F`

(yr) = 0. By contradiction, assume that

yr < V , or yr ∈ V and deg+
~F`

(yr) > 0.

• If yr < V , let y1, y2 ∈ ch~F`
(yr). Nodes y1 and y2 exist because ~F` is structurally identifiable. Since

|de~F`
(yr) ∩ V | = 1, we know that y1 ∈ L or y2 ∈ L. Let y1 ∈ L. This implies that deg+

~F`
(y1) ≥ 2

(because ~F` is structurally identifiable). Thus, in the rooted tree restricted to de~F`
(y1) there are

at least two nodes with outdegree equal to zero. These nodes have outdegree equal to zero in

the polyforest as well. Since |S (yr)| = 1, at least one of these nodes is hidden which leads to a

contradiction with structural identifiability conditions.

• If yr ∈ V and deg+
~F`

(yr) > 0, in the rooted tree ~T restricted to de~F`
(yr) there is at least one node yw

where yw , yr with deg+
~T

(yw) = 0 which implies that deg+
~F`

(yw) = 0. Since |de~F`
(yr)∩V | = 1, we

should have yw ∈ L which is a contradiction with the polyforest being structurally identifiable.

Therefore, if |S (yr)| = 1 then yr is not related to any other node implying that ∀yi : d (yr, yi) = ∞

where yi , yr. This scenario is considered in Step 1 of PFDA.

Now if |S (yr)| ≥ 2, according to Lemma .10, ∃yu, yw ∈ S (yr) and {yu, yw} is not contained in

any other list obtained by de~F`

(
yri

)
∩ V where yri are root nodes such that yri , yr. Let S (PFDA)

be the list generated by PFDA starting from (yu, yw) under an arbitrary ordering of the vertices in

the polyforest. Therefore, {yu, yw} ⊆ S (PFDA) and according to Theorem 3.5 there exists one root

yr̂ such that S (PFDA) = de~F`
(yr̂) ∩ V . Since {yu, yw} ⊆ de~F`

(yr) ∩ V and ∀yr′ , yr we have that

{yu, yw} * de~F`
(yr′) ∩ V , we necessarily have that yr̂ = yr. This implies that S (PFDA) = S (yr). �
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B.5 Proof of Theorem 3.8

We first prove the following lemma.

Lemma .11. Consider a topologically and structurally identifiable LDPF F with associated graph

~F` = (V, L, ~E). Let yr be a root of ~F` and VT := V ∩ de~F`
(yr). Let (VT ∪ LT , ET ) and dL

(
yi, y j

)
for yi, y j ∈ VT ∪ LT be the output of RGA applied to VT and the distance dL

(
yi, y j

)
for yi, y j ∈ VT .

There exists y`, yk ∈ V \VT for {yi, y j} ∈ ET such that dL (yi, yk) = ∞, dL

(
y j, y`

)
= ∞, dL (yi, y`) < ∞

and dL

(
y j, yk

)
< ∞ if and only if there exists an FD-detectable hidden node yh such that ch~F`

(yh) =

{yi, y j}.

Proof. ⇒: By contradiction, there is no FD-detectable node yh between yi and y j in the restriction

of ~F` to de~F`
(yr). Since F is structurally identifiable and also {yi, y j} is in the output of RGA

applied to VT and the distance dL (ya, yb) for ya, yb ∈ VT , Proposition 3.3 implies that {yi, y j} ∈ E in

the restriction of ~F` to de~F`
(yr).

Without loss of generality, assume that the link is oriented as (yi, y j) ∈ ~E. Since dL (yi, y`) < ∞,

Proposition 2.34 implies that there exists a path with no inverted fork from yi to y`. On the other

hand, we have dL

(
y j, y`

)
= ∞ and Proposition 2.34 implies that there exists an inverted fork on

the path from y j to y`. Thus, y j cannot be on the path from yi to y`. Also, the path from y` to

y j is the path from y` to yi with the addition of link yi → y j. Thus, there exists no inverted fork

on this path which is a contradiction. Therefore, there exists an FD-detectable node yh such that

ch~F`
(yh) = {yi, y j}.

⇐: There exist y` , yh such that y` ∈ pa~F`
(yi), and yk , yh such that yk ∈ pa~F`

(
y j

)
. We

know that there is no inverted fork on the path from yi to y`. Therefore, using Proposition 2.34

we have that dL (yi, y`) < ∞. Same is true for y j and yk, therefore dL

(
y j, yk

)
< ∞. Also, we have

the path y` → yi ← yh → y j ← yk. Since there exists an inverted fork on the path from y` to

y j and an inverted fork on the path from yi to yk, Proposition 2.34 implies dL

(
y j, y`

)
= ∞ and

dL (yi, yk) = ∞. �

Now we provide the proof of Theorem 3.8.

Proof. We know that all hidden nodes in ~F` are either RGA-detectable or FD-detectable.

Theorem 3.2 shows that all the RGA-detectable hidden nodes are identified in Step 1 of HNDA
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along with their connected nodes. Lemma .11 shows that all the FD-detectable hidden nodes are

identified in Step 3 of HNDA along with their connected nodes. �

B.6 Proof of Proposition 3.9

Proof. If yh is FD-detectable, then it is a root and therefore appears in exactly one rooted tree.

Thus, we only consider the case where yh is RGA-detectable.

⇒: LDPF F is structurally identifiable, therefore, ∀yh ∈ L : deg+
~F`

(yh) ≥ 2 and deg~F`
(yh) ≥ 3

and let yc1 , yc2 ∈ ch~F`
(yh). This implies that there are at least two nodes with outdegree zero in the

restriction ~T i of ~F` to visible descendants of yhi ∈ L (see [76], Section 1.5). Let these nodes be

yui ∈ de~F`

(
yc1

)
∩ V and ywi ∈ de~F`

(
yc2

)
∩ V . Therefore, we have the chain yhi → yc1 → ... → yui

and the chain yhi → yc2 → ... → ywi . The nodes on the chain from yc1 to yui cannot be on the chain

from yc2 to ywi because if there exists such a node, then there would be two distinct paths from that

node to yhi (one containing yc1 and the other containing yc2) which is a contradiction to the fact that

~T i is a rooted tree. Similarly, the nodes on the chain from yc2 to ywi cannot be on the chain from yc1

to yui . Therefore, there exists exactly one path connecting yui to ywi and this path contains yhi .

Since yhi = yh j , define yu = yu j = yui and yw = yw j = ywi where yu j and yw j are the counterparts

to yui and ywi in the rooted tree ~T j, respectively. Also, we showed that the only path from yu to yw

contains yhi . Since yhi = yh j , we conclude that yhi exists in the same position on the path from yu to

yw in tree ~T i as yh j exists on the path from yu to yw in tree ~T j.

⇐: Since yhi and yh j are in the same position on the path from yu to yw in ~T i as on the path from

yu to yw in ~T j and there exists at most one path between any pair of nodes in a rooted tree, therefore

yhi = yh j . �

B.7 Proof of Theorem 3.10

Proof. Since F is structurally identifiable, Theorem 3.6 guarantees that the lists S i found at Step 1

of PSLA are the visible nodes of each rooted tree in ~F`. Theorem 3.8 guarantees that Step 2 of

PSLA will identify all hidden nodes in each rooted tree. Also, Proposition 3.9 guarantees that

Step 5 of PSLA labels the overlapping hidden nodes in different rooted trees as the same hidden

node. Therefore, the combined results of these steps will reconstruct the skeleton of ~F`.
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Since there are no inverted forks in a rooted tree (see Proposition 2.13) and the distance

dL

(
yi, y j

)
is additive along the paths of a rooted tree (see Proposition 2.33), we know that the

distance between pairs of nodes in the same rooted tree takes a finite value. These values are

computed in Steps 1 and 2 of PSLA. Furthermore, if a pair of nodes is not present in a common

rooted tree, then either the nodes are not connected or there exists at least one inverted fork on the

path connecting them. Thus, using Proposition 2.34 we know that their distance is infinity. These

values are identified in Step 16 of PSLA. Therefore, the output distances of PSLA distinguish

between pairs of nodes that have finite or infinite distance between them. �

B.8 Proof of Lemma 3.11

Proof. According to Proposition 2.34, since dL

(
yi, y j

)
= ∞, there should be at least one inverted

fork on the path from yi to y j. This implies that yk is the inverted fork on this path. �

B.9 Proof of Lemma 3.12

Proof. ⇒: According to Proposition 2.34, if dL

(
yi, y j

)
< ∞, then there cannot be an inverted fork

on the path from yi to y j. Therefore, we should have (yk, y j) ∈ ~E.

⇐: According to Proposition 2.34, if there is no inverted fork on the path from yi to y j, then we

have that dL

(
yi, y j

)
< ∞. �

B.10 Proof of Theorem 3.13

Proof. The proof is by induction on the number of descendants of y j.

• Base step: If the number of descendants of y j equals to 1, then we have that de~F
(
y j

)
= {y j} and

pa~F
(
de~F

(
y j

))
= pa~F

(
y j

)
. In this case, we know that we have dL

(
yi, yp

)
= ∞ where yp ∈ pa~F

(
y j

)
and yp , yi. Therefore, according to Proposition 2.34, the link {y j, yp} would be oriented by

Step 5 of LOIA.

• Inductive step: Assume that when the number of descendants of y j is less than or equal to n,

the statement holds. When the number of descendants of y j equals to n + 1, we know that

dL

(
yi, yp

)
= ∞ where yp ∈ pa~F

(
y j

)
and yp , yi. Therefore, according to Proposition 2.34, the
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link {y j, yp} would be oriented by Step 5 of LOIA. Also, from Proposition 2.34 we know that

dL (yi, yc) < ∞ (because there is no inverted fork on the path from yi to yc) where yc ∈ ch~F
(
y j

)
.

Therefore, according to Proposition 3.12 the link {y j, yc} would be oriented by Step 8 of LOIA

and then LOIA will be recursively applied to a partially directed polyforest where the only

oriented link is (y j, yc) and yc is a child of y j. The number of descendants of yc is less than or

equal to n. Therefore, by applying the induction hypothesis, we have that LOIA will orient all

the edges {yk, y`} ∈ E for yk, y` ∈ de~F (yc) ∪ pa~F
(
de~F (yc)

)
. Since Step 5 of LOIA loops over

all children of y j, it will orient all the edges {yk, y`} ∈ E such that yk, y` ∈ ∪yc∈ch~F(y j)de~F (yc) ∪

pa~F
(
de~F (yc)

)
. Also, we showed that Step 5 will orient all the edges {yk, y`} ∈ E for yk, y` ∈

y j∪pa~F
(
y j

)
∪ch~F

(
y j

)
. Thus, we necessarily have that LOIA will orient all the edges {yk, y`} ∈ E

for yk, y` ∈ de~F
(
y j

)
∪ pa~F

(
de~F

(
y j

))
.

�

109



C Proofs Related to Chapter 4

C.1 Proof of Theorem 4.1

Proof. In Subsection 3.2.1 and [3], it is shown that PFDA outputs the lists of visible nodes

belonging to each rooted subtree of the latent polytree ~P` = (V, L, ~E) when the distances between

pairs of nodes, namely d(yi, y j) for yi, y j ∈ V , are given by a metric d satisfying the property that

d(yi, y j) < ∞ if and only if yi and y j are in the same rooted subtree (see Proposition 2.34). Define

d(yi, y j) := 0 if and only if ¬I(yi, ∅, y j), and define d(yi, y j) := ∞ if and only if I(yi, ∅, y j). Using

this new metric, the original PFDA in Algorithm 2 becomes the PFDA in Algorithm 7 with all the

related guarantees. �

C.2 Explanation of the Reconstruction Algorithm for Latent Rooted Trees

The main goal of the Reconstruction Algorithm for Latent Rooted Trees developed in [79] is to

reconstruct the collapsed quasi-skeleton of a latent rooted tree from independence relation of the

form I(yi, yk, y j) or ¬I(yi, yk, y j) for yi, y j, yk ∈ Vr where Vr is the set of visible nodes of the rooted

tree. The algorithm and its properties are described in detail in [79]. Here we just provide a brief

description of the intuition behind it.

In particular, one fundamental result in [79] is that the Reconstruction Algorithm for Latent

Rooted Trees can reconstruct the collapsed skeleton of every rooted tree so long as each hidden

cluster has degree greater than or equal to 3. All other hidden clusters are undetected: for each

hidden cluster with degree equal to 2, the two nodes linked to such a cluster are linked together

by the algorithm; for each cluster with degree equal to 1, the algorithm ignores the cluster. In the

context of this dissertation, all hidden clusters in each rooted subtree of a minimal latent polytree

have degree greater than or equal to 3 with the exception of the special case where we have a

hidden root with two visible children. This is basically the main reason why we have introduced

quasi-skeletons: in a quasi-skeleton this special case is removed. The following lemma makes

sure that hidden clusters in quasi-skeletons of rooted subtrees have degree at least equal to 3 when

considering minimal latent polytrees.
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Lemma .12. Let ~P` = (V, L, ~E) be a latent polytree and let Tr = (Vr, Lr, ~Er) be a rooted subtree of

~P` with the root yr. If ~P` is minimal, then each hidden cluster in the quasi-skeleton of Tr has degree

at least 3.

Proof. Since ~P` is minimal, we distinguish the following two cases:

1. if the hidden node yh has deg+
~P`

(yh) ≥ 2 and deg~P` (yh) ≥ 3 then it is trivially true that the hidden

cluster that yh belongs to has degree at least 3 in the quasi-skeleton of the rooted subtree Tr.

2. if the hidden node yh has deg+
~P`

(yh) = 2 and deg−~P` (yh) = 0, then we have two subscenarios:

a. if the two children of yh are visible, then the hidden cluster containing yh is made of only

yh. However, yh is a Type-II hidden node and therefore such a cluster does not appear in

the quasi-skeleton of Tr.

b. if at least one child of yh is hidden, say yc, then the hidden cluster containing yh is the same

hidden cluster that contains yc. Since yc is a Type-I hidden node, we fall back to case 1,

proving that the hidden cluster containing yh has degree at least 3.

�

Thus, Lemma .12 allows us to apply Reconstruction Algorithm for Latent Rooted Trees to

recover the quasi-skeletons of the rooted subtrees.

Now we provide a brief description of the intuition behind the Reconstruction Algorithm for

Latent Rooted Trees. Step 1 is just the initialization and Step 2 is a basic induction step solving

the problem when the minimal rooted tree has 1 or 2 visible nodes. Observe that, in the collapsed

skeleton of a latent rooted tree where all hidden clusters have degree at least 3, all nodes with degree

equal to 1 (namely, terminal nodes) are visible and they are either linked to another visible node or

linked to a hidden cluster which is connected to at least 2 other visible nodes. Step 3 searches for

a terminal visible node yk: as proven in [79], a node yk is terminal in a rooted tree where hidden

clusters have degree at least 3 if and only if there is no pair of visible nodes yi, y j ∈ V \{yk} such that

¬I(yi, yk, y j). This is precisely what is tested in this step. For example, considering the polytree in

Figure 4.1 (True), one of the lists of visible nodes is the set Vr = {y9, y16, y17, y18} associated with

the rooted tree with the root y9. The quasi-skeleton of this rooted tree is depicted in Figure C.1 (a)
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Figure C.1: Quasi-skeleton of the actual rooted tree with root in node y9 (a), the list of visible
nodes belonging to the rooted tree with root in node y9 (b), node y18 satisfies the conditions of
being a terminal node and node y9 satisfies the conditions of being the visible node linked to it (c),
and node y17 is found to be terminal but not linked to a visible node, thus, a hidden node linked to
y17 is detected (d) [4].

and the list containing its visible nodes obtained at the end of Task 1 is depicted in Figure C.1 (b).

Observe that node y18 satisfies the conditions of Step 3 since it cannot d-separate any pair of other

nodes in Vr (in other words, the node y18 cannot make any pair of visible nodes independent).

Thus, node y18 is terminal in this rooted subtree.

Once a visible node yk with deg (yk) = 1 is found, Step 4 looks for a single visible node y`

linked to yk. We have that y` exists if and only if ∀y j ∈ Vr \ {yk, y`} : I(yk, y`, y j). This is the case

for node y18, since we have that y9 makes y18 independent of all the other nodes in Vr. If y` ∈ V

exists, then the test at Step 4 finds it and then at Step 6 the edge {yk, y`} is added to Er, and the

algorithm is run again on Vr \ {yk}. In our example, the nodes y9 and y18 are linked together and the

algorithm is applied to Vr \ {y18}, as depicted in Figure C.1 (c).

When the algorithm runs again on Vr \ {y18}, it is found that, for example, node y17 is terminal.

However, Step 4 cannot find any visible node linked to y17. Thus, y17 must be connected to a hidden

cluster: Step 8 is where a new hidden cluster is created. Step 9 finds the set K which contains all

other visible neighbors of this hidden cluster. In our example, we have that K = {y9, y16}, as

depicted in Figure C.1 (d). At Step 10, node yh is linked to all y j ∈ K, as depicted in Figure C.1 (d),

and the algorithm is applied recursively to V ( j)
r := {yi | I(yk, y j, yi)} for all y j ∈ K at Step 11.

Step 12 sets the output to the union of all the outputs obtained at Step 11.
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C.3 Proof of Theorem 4.2

In order to formally prove Theorem 4.2, first we need to introduce two additional results:

Theorems .13 and .14. In Theorem .13 a criterion is provided to determine if the unique node linked

to a visible terminal node is also visible. This criterion uses only the independence statements

involving the visible nodes.

Theorem .13. Let T be the quasi-skeleton of a rooted subtree of a minimal latent polytree. Let

the visible nodes in T be V. Let y j be a terminal node and let yk be the unique node linked to

y j. The node yk is visible if and only if there exists a visible node yk′ such that I(y j, yk′ , yi) for all

yi ∈ V \ {y j, yk′}. Furthermore we have that yk = yk′ .

Proof. ⇒: If yk is visible, then set yk′ = yk and we have that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′}.

⇐: Let yk′ be a visible node such that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′}. By contradiction,

assume that yk is not visible. Thus, yk belongs to a hidden cluster and the node y j is directly linked

to such a cluster. Therefore, there are at least two other visible nodes directly linked to this cluster.

Let yi , yk′ be one of these visible nodes. The path from yi to y j involves only hidden nodes, thus

it is not true that I(y j, yk′ , yi) which is a contradiction. So far, we have shown that the existence of

a visible yk′ such that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′} implies that yk is visible. We also need

to show that yk′ = yk. Again, by contradiction, assume that yk′ , yk. Then, it does not hold that

I(y j, yk′ , yk) which is a contradiction. �

The following theorem complements Theorem .13 by stating that if there exists a set K of

visible nodes that can not be separated from y j by any other visible nodes and K has at least two

elements, then all the nodes in K and y j are linked to the same hidden cluster.

Theorem .14. Let T be the quasi-skeleton of a rooted subtree of a minimal latent polytree. Let the

visible nodes in T be V. Also, let y j be a terminal node linked to a hidden cluster C and let K be

the set of visible nodes connected to C excluding y j. Then, it holds that

K = {yk ∈ V \ {y j} | ∀yi ∈ V \ {yk, y j} : ¬I(y j, yi, yk)} (13)

such that for all yi ∈ V \ {yk, y j} there exists yk ∈ K such that I(y j, yk, yi).
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Proof. We first show that if yk , y j is a visible node connected to the hidden cluster C, then

¬I(y j, yi, yk) for all yi ∈ V \ {yk, y j}. By contradiction assume that there is yi ∈ V such that

I(y j, yi, yk). Now, there is yk′ ∈ C and y j′ ∈ C such that yk − yk′ and y j − y j′ belong to the set of

edges E. Since both y j′ and yk′ belong to cluster C, there is a path from y j′ to yk′ that does not

involve any visible nodes. Thus, there is no yi ∈ V such that I(y j, yi, yk).

Now we show that if ¬I(y j, yi, yk) for all yi ∈ V \ {y j, yk}, then yk is connected to cluster C. By

contradiction, assume that it is not. Consider the path from y j to yk. Since y j is a terminal node and

it is connected to C, there exists y j′ ∈ C such that y j − y j′ is an edge of E and this is the only edge

in the graph involving y j. Thus, the path from y j to yk contains y j′ . Consider the path from y j′ to yk

and let yk′ be the first visible node on this path. The node yk′ is directly linked to cluster C and if

yk , yk′ , then we have that I(y j, yk′ , yk). Thus, we necessarily have that yk = yk′ . �

Now, we can provide the proof of Theorem 4.2.

Proof. The proof goes by induction on the number of nodes denoted by n. For n ≤ 2 the algorithm

trivially outputs the correct result. For n > 2, we combine Proposition 2.1 and Theorem 4.1 in

[79], to guarantee that a visible terminal node yk is always found at Step 3. Theorem .13 provides

a sufficient and necessary condition to find a visible y` directly linked to yk. If such a visible node

y` exists, then the edge y` − yk belongs to the skeleton of the original graph. Then the theorem is

applied recursively to a network with (n − 1) nodes which is obtained by removing the terminal

node yk from the original one. If such a y` does not exist, then yk is necessarily connected to a

hidden cluster. Theorem .14 provides a necessary and sufficient condition to find the set K of all

visible nodes, other than yk, linked to such a hidden cluster. A new hidden node yh is introduced

to the set L in order to represent the hidden cluster in the collapsed rooted subtree and the link

yk − yh is added to the set of edges E. Also the edges yh − y j for all y j ∈ K are added to E.

The algorithm is then applied recursively to each set V ( j) given by all visible nodes yi such that

I(yi, y j, yk). Observe that each V ( j) contains fewer number of nodes than n, guaranteeing that the

algorithm always terminates. �
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C.4 Proof of Theorem 4.3

First we prove a lemma stating that, in a minimal latent polytree, two hidden clusters in two

different rooted subtrees share at least one node if and only if they have at least two common

neighbors.

Lemma .15. Let C1 and C2 be two distinct hidden clusters in two different rooted subtrees in a

minimal latent polytree ~P`. The two clusters overlap, i.e., |C1 ∩ C2| ≥ 1, if and only if there exist

two distinct nodes y1, y2 ∈ N(C1) ∩ N(C2).

Proof. ⇒: This implication is trivially verified because of the minimality conditions of the latent

polytree. If the hidden node in common has two visible descendants y1 and y2, then the implication

is immediate. If it has, instead, at least one hidden child which belongs to C1 ∩ C2, then such a

hidden child either has two visible descendants giving the implication or, again, a hidden child

which belongs to C1 ∩C2. Repeating the argument, we eventually find the common nodes y1, y2.

⇐: By contradiction, assume that C1 and C2 do not overlap. Since C1 and C2 share no common

node but have two common neighbors, there must be a loop in the latent polytree ~P`, contradicting

the fact that it is a polytree. �

Now we can provide the proof of Theorem 4.3.

Proof. From Lemma .15, the proof of Theorem 4.3 is straightforward. If there are two common

neighbors, then the two hidden clusters in the two rooted subtrees overlap, thus they belong to the

same hidden cluster in the latent polytree. �

C.5 Proof of Theorem 4.4

Proof. The algorithm HCMA proceeds by sequentially merging clusters of the collapsed quasi-

skeletons of the rooted subtrees of ~P` if they share at least 2 neighbors (Steps 2-5). According to

Lemma .15, this is equivalent to merging these clusters when they overlap (i.e., they have at least

one hidden node in common). Thus, the initial set P contains all the hidden clusters in all the

quasi-skeletons of the rooted subtrees of ~P`. If two hidden clusters in the quasi-skeletons of two

rooted subtrees overlap, then they are necessarily in the same cluster of the quasi-skeleton of the

original polytree ~P`. Thus, we just need to show that HCMA groups together all the hidden clusters
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in quasi-skeletons of the rooted subtrees which are in the same hidden cluster in the quasi-skeleton

of ~P`.

By contradiction, assume that this is not true. Then the output of HCMA contains a union of

clusters that does not exist in the collapsed quasi-skeleton of ~P`. Let this union of clusters be U.

Thus, there exists at least one hidden node yh in one hidden cluster C of the quasi-skeleton of ~P`

that does not belong to U. Consider the path from yh to any node in U. By definition such a path

consists of all hidden nodes. Let ya be the last node on such a path that does not belong to U and

yb be the node following ya on this path. We necessarily have that ya → yb, otherwise ya would be

a descendant of yb and hence in U. Consider a rooted tree containing ya. Such a rooted tree has

a hidden cluster C′ which contains yb as well and consequently overlaps with U, but C′ has not

been included in U by HCMA. This is a contradiction, because if two clusters overlap, then they

are grouped together by HCMA. Therefore, this proves the assertion. �

C.6 Proof of Theorem 4.5

We first provide the following straightforward lemma.

Lemma .16. Every hidden node in a minimal latent polytree ~P` = (V, L, ~E) has at least two visible

descendants.

Proof. Since the latent polytree is minimal, for every hidden node yh ∈ L we have that

|ch~P` (yh) | ≥ 2. Now, we distinguish the following two cases.

1. If |ch~P` (yh) ∩ V | ≥ 2, then the statement is trivially true.

2. If |ch~P` (yh) ∩ V | < 2, then the statement is trivially true by iterating the same argument on one

element of the set ch~P` (yh) ∩ L.

�

Now we leverage the result of Lemma .16 to prove Theorem 4.5.

Proof. ⇒: Let yhr ∈ Lr be a hidden root of C. Now, we distinguish the following two cases.
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• If the root of ~T r, namely yr, is visible, then yr is necessarily a parent of yhr . If the root of

~T r′ , namely yr′ , is also a parent of yhr , then we have |Ṽr \ Ṽr′ | = 1 and |Ṽr′ \ Ṽr| = 1 because

deC (yr) \ {yr} = deC (yr′) \ {yr′}. If, instead, the root of ~T r′ , namely yr′ , is not a parent of yhr ,

then there exists a path connecting one of the children of yhr , namely yc1 , to yr′ and this path

necessarily contains an inverted fork. Now, consider another child of yhr , namely yc2 . Observe

that this child exists since all the hidden nodes in the collapsed quasi-skeleton of the rooted

subtrees of ~P` have at least outdegree two (see Definitions 2.21 and 2.23). The child node yc2

is either visible itself or has at least two visible descendants according to Lemma .16. If yc2 is

visible, then let A := {yc2 , yr}. If yc2 is not visible, then let A := {deC
(
yc2

)
∩ Ṽr}. In either case,

we have that |Ṽr \ Ṽr′ | ≥ 2 since A ∩ deC (yr′) = ∅ because there exists an inverted fork on the

path from yhr to yr′ .

• If the root of ~T r, namely yr, is hidden, then |chC (yr) | ≥ 2. If |chC (yr) | ≥ 3, let yc1 be the child of

yr such that it is on the path from yr to yr′ . Observe that this path contains at least one inverted

fork. Thus, if yc2 and yc3 are visible, then we have that |Vr \ Vr′ | ≥ 2. If, instead any of yc2 or

yc3 are hidden, then they should have at least two visible descendants according to Lemma .16

which also results in having |Ṽr \ Ṽr′ | ≥ 2. On the other hand, if |chC (yr) | = 2, then both of these

children are hidden since we are working with the collapsed quasi-skeleton of ~P`. In this case,

each of these hidden children have at least two visible descendants according to Lemma .16.

Therefore, we have |Ṽr \ Ṽr′ | ≥ 2.

⇐: We prove, instead, that if ~T r does not contain a hidden root of C, then ∃Ṽr′ : |Ṽr \ Ṽr′ | ≤ 1

and |Ṽr′ \ Ṽr| > 1. We distinguish the following two cases.

• If the root of ~T r, namely yr, is visible, then we know that yr has exactly one hidden child,

namely yhc , because ~T r belongs to N(C). Since this node is not a hidden root of C, then it has

at least one hidden parent, namely yhp . Let ~T r′ be the rooted tree such that yhp ∈ Lr′ . In this

case, we know that Ṽr = {yr ∪ deC
(
yhc

)
}, deC

(
yhc

)
⊂ Ṽr′ , and yr < Ṽr′ . Thus, we have that

|Ṽr \ Ṽr′ | = |{yr}| = 1.

Furthermore, if yhp is the root of ~T r′ , then this case is similar to the second case of the first part

of this proof where there exists a path from yr to yhp which contains at least one inverted fork. In

this case, we have that |Ṽr′ \ Ṽr| > 1. If, instead, yhp is not the root of ~T r′ , then yhp has at least two
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children because of minimality conditions and at least one parent. The other child of yhp (i.e.,

not the node yhc) and one of the parents of yhp are either visible or hidden that satisfy minimality

conditions. In either case, we have that |Ṽr′ \ Ṽr| > 1.

• If the root of ~T r is hidden, then this would be a contradiction to the hypothesis since ~T r does not

contain a hidden root of C.

�

C.7 Proof of Lemma 4.6

First, we introduce a lemma which provides the conditions for finding the parents of a hidden root

of a hidden cluster in a minimal latent polytree.

Lemma .17. Let ~P` be a minimal latent polytree and define the rooted subtrees ~T i, the sets Ṽi for

i = 1, ..., nr, the hidden root yh and the hidden cluster C as in Lemma 4.6. Let Ṽr contain yh which

is a hidden root of the hidden cluster C. We have that Ṽr \ Ṽr′ = {yv} and Ṽr′ \ Ṽr = {yv′} if and only

if yv and yv′ are parents of yh.

Proof. ⇒: We show that yv and yv′ are the parents of the root of the hidden cluster C. Let yr and

yr′ be the roots of the restriction of ~T r and ~T r′ to the closure of C, respectively. Consider the path

from yr to yr′ . This path needs to have a length of at least 2, otherwise either yr or yr′ would be

a child of the other contradicting the fact that they are roots in the restriction of ~P` to the closure

of C. If the length of this path is greater than 2, then it needs to have the form yr → yh1 · · · yh2 ← yr′

where yh1 and yh2 are two distinct hidden nodes. As a result, either yh1 or yh2 is not a descendant of

the other. Furthermore, because of the minimality conditions, in the closure of C, either there exist

two visible descendants of yh1 that are not descendants of yr′ or there exist two visible descendants

of yh2 that are not descendants of yr. This contradicts the fact that |Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr| = 1. Thus,

the path between yr and yr′ necessarily has length 2 and has the form yr → yh1 ← yr′ for some

hidden node yh1 . As a consequence, yr = yv, yr′ = yv′ and also yh1 = yh is the root of the hidden

cluster C.

⇐: This implication is trivial. �

Now we can provide the proof of Lemma 4.6.
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Proof. For a fixed Ṽr, the set of indices I ⊆ {1, 2, ..., nr} with nr equal to the number of rooted

subtrees is defined as the set {r} ∪ {r′ such that |Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr| = 1}. It is trivial to show that if

|Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr|, then the two sets Ṽr and Ṽr′ can be written as

Ṽr = {yv} ∪ Ṽ , Ṽr′ = {yv′} ∪ Ṽ . (14)

In other words, there is exactly one element yv in Ṽr which is not in Ṽr′ . Similarly there exists

exactly one yv′ in Ṽr′ which is not in Ṽr.

Now, we show that W \ W is the set of all nodes linked to yh which is a root of the hidden

cluster C. If a visible node yw is linked to yh, it is either its parent or its child. If yw is a parent of yh,

then it is contained in W and cannot be in W because of Lemma .17. If yw is a child of yh, then it

cannot be in W because I contains no index associated with subtrees containing any of the parents

of yh (see Lemma .17).

Now, we show, instead, that if yw ∈ W \W, then yw is linked to yh. Equivalently, we show that

if yw is not linked to yh, then yw < W \W. Consider the following two cases.

• Node yw is a root of the closure of C. Since yw is not linked to yh, it is not a parent of yh and from

Lemma .17 we have that yw ∈ W.

• Node yw is not a root of the closure of C. Consider the path from yh to yw which has the form

yh → · · · yh1 → yw. Since the node yh1 is hidden, the minimality conditions imply that yh1 has at

least another parent, namely yp (hidden or visible). Since yp is not a parent of yh, every rooted

subtree ~T i containing yp is such that i < I (see Lemma .17). Thus, all the visible descendants of

yp (including yw) are necessarily in W.

�

C.8 Proof of Theorem 4.7

We first provide the following lemma to ensure that the Steps 24-27 of HCLA correctly merge the

fictitious hidden clusters.

Lemma .18. There exists two distinct nodes ya, yb in W ∩W such that ya, yb ∈ Ṽm where m < I, if

and only if ya and yb are connected to the same hidden cluster.
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Proof. Observe that N(C(i)
j ) ∪ N(C(i)

k ) ⊆ W ∩W. Consider two distinct elements ya, yb in W ∩W.

⇒: If we have that ya, yb ∈ Ṽm where m < I, then we know that ya and yb belong to a commom

rooted subtree that does not contain the newly recovered hidden node yh. Now, by contradiction,

assume that the nodes ya and yb are not connected to the same hidden cluster. This implies that

there exists a path connecting ya to yb through yh. On the other hand, since ya and yb belong to

a common rooted subtree that does not contain yh, there exists another path connecting ya and yb

which does not include yh. This is a contradiction with the fact that any two nodes in a polytree

are connected to each other via at most one path. Therefore, ya and yb are connected to the same

hidden cluster.

⇐: Let C be the hidden cluster to which both ya and yb are connected. Thus, we know that C

has yh as its parent, more specifically, yh is a parent of one hidden node in C. Let this hidden node

be yh1 . Since yh1 has the hidden node yh as its parent, it is required, by the minimality conditions,

that yh1 has at least one other parent. This implies that ya and yb are contained in at least one rooted

subtree ~T m which does not contain yh, namely, m < I and also ya and yb are contained in W∩W. �

Now we can provide the proof of Theorem 4.7.

Proof. HCLA calls the subroutine Hidden Node Detection on all hidden clusters until no more

hidden nodes are discovered (Steps 1-3). The goal of Hidden Node Detection is to locate a hidden

root yh in the collapsed quasi-skeleton (V, L, E) of a polytree, determine the visible nodes linked to

it and compute the new collapsed quasi-skeleton associated with the visible nodes V ∪ {yh}. Thus,

we just need to show that such subroutine can successfully complete this procedure for a given

hidden cluster.

Step 5 simply defines the sets Ṽi as the visible nodes in the closure of the selected hidden

cluster C and Step 6 applies Theorem 4.5 to these sets in order to detect a rooted subtree containing

a hidden root of C. Steps 7-14 apply Lemma 4.6 to find all the visible nodes connected to the hidden

root of C. If the index set I contains only r, we know that Tr is the only rooted subtree containing

yh and thus ¬I(yh, ∅, y) for all y ∈ Vr, and I(yh, ∅, y) for all other visible nodes y. If I contains

multiple indices, then Lemma .17 guarantees that ¬I(yh, ∅, y) for all y ∈ W, and I(yh, ∅, y) for all

other visible nodes y. These last observations are at the core of Steps 15-18.
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Observe that the descendants of yh in the closure of C which are not directly linked to yh are

the nodes in W ∩W. Steps 19-23 link yh to these nodes introducing some fictitious hidden clusters.

These clusters are just instrumental for the application of the merging algorithm at Step 25.

Steps 25-26 merge these fictitious hidden clusters when appropriate as shown in Lemma .18 and

they also update the structure of the rooted subtrees containing yh accordingly. Step 28 merges

these hidden clusters using the HCMA considering all the rooted subtrees now that the node yh can

be treated as visible. �

C.9 Proof of Theorem 4.8

Proof. Steps 1-4 are an implementation of the GPT algorithm for the orientation of edges in a

polytree. GPT algorithm tests two nodes yi and y j on a path of the form yi − yk − y j. Thus, all these

tests are local in the sense that they are always performed on paths of length 2 in the skeleton of the

polytree. However, HRRA performs these tests on paths of length 2 on the quasi-skeleton of the

polytree. If the path of length 2 on the quasi-skeleton is the same path of length 2 on the skeleton,

HRRA orients the edge the same way the GPT algorithm does. The only difference arises on paths

of length 2 in the quasi-skeleton which are not actual paths in the skeleton. This only occurs in

situations where a Type-II hidden node is involved on the path.

There are only two possible scenarios when testing the independence statements I(yi, ∅, y j) or

¬I(yi, ∅, y j) on a path of the form yi − yk − y j in the quasi-skeleton of a minimal latent polytree, as

depicted in Figures C.2 and C.3.

The first scenario occurs when we have the path yi − yk − y j − y` on the quasi-skeleton, as in

Figure C.2 (a). In this case, there is a yet undetected Type-II hidden node between the nodes yk and

jk

`i

jk

`i

jk

h1 `i

(a) (b) (c)

Figure C.2: Quasi-skeleton of a rooted tree with one undiscovered Type-II hidden node (a), the
detection of a conflict on the orientation of the edge yk − y j (b), and discovery of a Type-II hidden
node (c) [4].
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Figure C.3: Quasi-skeleton of a rooted tree with two undiscovered Type-II hidden nodes (a), the
detection of a conflict on the orientation of the edges yi − yk and yk − y j (b), and discovery of two
Type-II hidden nodes (c) [4].

y j, and the node y` is a parent of the node y j. In this scenario, we have that I(yi, ∅, y j) holds giving

the orientations yi → yk ← y j. However, because of the Type-II hidden node between the nodes yk

and y j we also have I(yk, ∅, y`) implying the orientation yk → y j ← y`, as in Figure C.2 (b). Thus

in this scenario, the presence of the undetected Type-II hidden node is discovered from the double

orientation of the edge yk − y j, as depicted in Figure C.2 (c).

The second scenario occurs when we have the path yg − yi − yk − y j − y` in the quasi-skeleton,

as in Figure C.3 (a). In this case, there are two yet undetected Type-II hidden nodes: one between

the nodes yi and yk, and one between the nodes yk and y j. Following the same reasoning as in the

previous scenario, the double orientation of the edges yi− yk and yk− y j reveals the presence of two

Type-II hidden nodes, as depicted in Figures C.3 (b)-(c). �
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D Proofs Related to Chapter 5

D.1 Proof of Theorem 5.2

We first provide, for completeness, the proof that the lightest edge in a cut is in every MST of the

graph. For definitions of spanning tree, MST, cut and cut edge, please see [76].

Lemma .19 (Cut property). Let G = (N, E) be a connected undirected graph with a weight function

defined on the edges such that w : E → R . If ∃{yi, y j} ∈ E where yi ∈ Ni and y j ∈ N j such that

∀yk ∈ Ni and ∀y` ∈ N j where {yk, y`} , {yi, y j} we have that w({yi, y j}) < w({yk, y`}) for some cut

CG = (Ni,N j), then the edge {yi, y j} is present in every MST of G.

Proof. By contradiction, assume that there is a tree T which is an MST of G and does not contain

the edge {yi, y j}. Since T is a tree, there exists exactly one path connecting yi and y j and therefore

adding the edge {yi, y j} to T creates a cycle. In this cycle, there must be at least one other edge, as

well as {yi, y j}, crossing the cut CG. If we remove this edge, we have a tree which has a total weight

lower than the weight of T . This is a contradiction with the assumption that T is an MST. �

Now, we can provide the proof of Theorem 5.2.

Proof. In order to show that SAA is congruous in the skeleton, we need to show that if the LDIM is

an LDPT with associated graph ~P, then the skeleton is the MST of the fully connected graph with

weights of the edges {yi, y j} equal to dL

(
yi, y j

)
. Let Q be the fully connected graph with weights

equal to the log-coherence distance values for every pair of nodes. For every edge {yi, y j} ∈ E,

consider the cut CQ = (Ni,N j) where Ni is the set of nodes that contains yi and all the nodes that

do not contain y j on their path to yi in ~P, the associated graph of the LDPT, and N j = N \ Ni.

According to Proposition 2.33, the log-coherence distance is additive along the paths of a

rooted tree. Also, because of the topological identifiability assumption, we know that the distance

of a pair of nodes directly connected with an edge is finite and has a strictly positive value.

Therefore, the distance between any node in Ni \ {yi} and any node in N j \ {y j} is either infinity or a

finite value greater than dL

(
yi, y j

)
. Thus, {yi, y j} will be the edge with the unique minimum weight

crossing CQ and according to Lemma .19, it has to be present in every MST of Q.
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Since all the edges in the skeleton of ~P have to be present in every MST of Q and the skeleton of

~P itself is a tree, we conclude that the MST of Q is unique. Therefore, the skeleton of ~P coincides

with the unique MST of Q. �

D.2 Proof of Proposition 5.5

Proof. We equivalently show that if we have ∃(yi, yk) ∈ ~E \ ~Etemp : (yk, yi) ∈ ~E \ ~Etemp, then

A , ∅. Since (yk, yi) ∈ ~E \ ~Etemp, according to Step 1 of LOPA, we have that ∃y j : (y j, yk) ∈ ~E

and d(y j, yi) < ∞. Therefore, we have that (yi, yk) ∈ ~E \ ~Etemp and (y j, yk) ∈ ~E which imply that

(yi, yk, y j) ∈ A, or in other words A , ∅. �

D.3 Proof of Theorem 5.6

Proof. Consider the original LDPT P and its associated graph ~P = (N, ~E) when the distances

between the nodes are computed exactly. Let P̄ = (N, Eo, ~Eo) be the output of PAA. In this case, P̄

will be exactly the same as the output of the GPT algorithm in [68]. Now, we show that these two

outputs are exactly the same. Consider Step 3 of ILOAA. In this step, all the inverted forks that

are recovered using Corollary 5.3 will be added to ~E since there will not be any conflicts in the

orientations of these inverted forks because the original LDIM is an LDPT and the distances are

computed exactly. Also, the output of CRLOPA is the same as the output of the propagation step

of the GPT algorithm since the original LDIM is an LDPT and the distances are computed exactly.

Since GPT is shown to be congruous in [68] with respect to orientations, then PAA is also

congruous in orientations. �
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