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Abstract

The Message Passing Interface (MPI) has been the most popular programming paradigm in

the high-performance computing (HPC) landscape. The MPI standard provides an efficient

communication API with the capability to handle different types of data movements across

a variety of network hardware and platforms.

Since the inception of the MPI standard, the trend in hardware has evolved; a higher

number of CPU cores per node introduces more opportunity for thread-parallelism. Dealing

with changes in the hardware landscape, threading support has been added to the MPI

standard in a later version, with the goal of allowing the user to exploit thread parallelism in

MPI applications. Without the need of explicit communication between threads within the

same process, multi-threaded MPI is the approach that can relieve stress on the intra-node

communication, allowing MPI to focus on only inter-node communication. Nonetheless, this

approach comes with its own set of challenges and limitations, which are addressed in this

work.

Threading support for MPI has been defined in the MPI standard since 2008. While many

standard-compliance MPI implementations fully support multithreading, they still cannot

provide the same level of performance as their non-threading counterpart. This leads to a

low adoption rate from applications, and eventually, lesser interest in optimizing threading

support for MPI.

In this work, I propose, implement, and analyze threading optimization of MPI by

exploring different tools and approaches to leverage the power of thread parallelism. First, I

showed that my multi-threaded MPI benchmark enables MPI developers to stress test their

implementation and optimization designs. Second, this work addresses the interoperability

between MPI implementations and threading frameworks by introducing a design that gives

vi



the MPI implementation more control over user-level thread, creating more opportunity for

thread utilization in MPI. This design shows up to 7× performance gain in comparison to

the original implementation. In the final phase of this study, I propose, implement, and

analyze several strategies to address the discovered bottlenecks in the MPI implementation.

This novel threading optimization can achieve up to 22× the performance compared to the

legacy MPI design in two-sided communication and over 200× in one-sided communication.
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Chapter 1

Introduction

The Message Passing Interface (MPI) is nearly ubiquitous in high-performance computing

(HPC)—according to Bernholdt et al. more than 90% of Exascale Computing Project (ECP)

and Advanced Technology Development and Mitigation (ATDM) application proposals use

it either directly or indirectly. Therefore, the availability of high-quality, high-performance,

and highly scalable MPI implementations which address the needs of applications and the

challenges of novel hardware architectures is fundamental for the performance and scalability

of parallel applications.

The MPI standard provides an efficient and portable communication-centric API that

defines a variety of capabilities to handle different types of data movement across processes,

such as point-to-point messaging, collective communication, one-sided remote memory

access (RMA), and file support (MPI-IO) Forum (2015). This ensemble of communication

capabilities gives applications a toolbox for satisfying complex and irregular communication

needs in a setup that maintains portability and performance across different hardware

architectures and operating systems. Owing to these characteristics, many scientific

applications have adopted MPI as their communication infrastructure and, therefore, rely

on the efficiency of the MPI implementation to deliver the best communication performance

for their applications across different networking hardware on various platforms.

Recent hardware developments, with higher numbers of cores per chip, even with

higher frequency, have shifted the balance of computation vs. communication in favor

of computations, which have become faster and more energy efficient. Over the last

1



decade alone, theoretical node-level compute power has increased 19×, while bandwidth

available to applications has seen an increase by a factor of 3× only, resulting in a net

decrease in bytes per floating-point operation (FLOP) by 6× Rumley et al. (2017). An

increased rate of computation needs to be sustained by a matching increase in memory

bandwidth, but physical constraints—such as the conductivity and the thermal capacity of

the network cables’ materials—set hard limits on the latency and bandwidth of data transfers.

The current solution to overcome these limitations has increased the number of memory

hierarchies, with orders of magnitude variation in cost and performance between them.

Essentially, current architectures represent execution environments where data movement

is the most performance and energy critical component. This shift has greatly impacted the

traditional programming approach where each computational core corresponds to a unique

process and every data movement passes through a message-passing layer. As the intra-node

and inter-process communication costs started to rise, efforts began to move applications

toward a more dynamic and/or flexible programming paradigm.

Using the combination of processes and threads becomes one of the promising solutions,

as the approach is capable of relieving the pressure on the memory infrastructure. One of the

advantages of this approach comes from the benefit that no explicit communication between

threads in the same process is necessary. Although the use of multiple threads to alleviate

the pressure on intra-node data movement seems like an intuitive approach, it generates an

entire set of new challenges in both programmability and communication levels.

Firstly, the challenge is to guarantee for the thread safety of the applications. Multiple

threads are likely to create ‘race conditions’ if they try to access or update the same

memory, affecting the correctness or even corrupting the state of the application if

not handled appropriately. In order to provide thread safety and prevent potential

race conditions in applications, several thread synchronization mechanisms are available.

However, thread synchronization often involves the interlocked memory operations or a

kernel-level transaction, translated into an extra overhead for the multi-threaded application.

Moreover, other than in the application level, the MPI implementations, as the message

passing layer, is also susceptible to the race-conditions from threads and has to be designed

in a way that provides thread safety with minimal overhead in multi-threaded environments.
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Secondly, the communication level challenge stems from the nature of the non-

deterministic behavior of the threads. Generally, threads behave better when they are more

independent or loosely coupled, but more flexibility translates into reduced ordering between

actions in different threads—and unfortunately this also includes the communication. The

out-of-order communication from threads can become a significant problem for the MPI

implementations. It becomes a chronic symptom of the lack of send determinism in

applications Guermouche et al. (2011). That being said, in a communication paradigm

other than the MPI, this could have been a minor issue (as an example in an Active

Message Eicken et al. (1992) context). The MPI standard mandates a first-in, first-out

(FIFO) message ordering guarantee for simplicity of programming, relieving the user of the

burden of maintaining their own messages order. Unfortunately, the MPI standard does

not take thread non-deterministic behavior into consideration, as support for multi-threaded

environment has been added in the later version. This poses more challenges to optimize

the multi-threaded support of MPI. Furthermore, the lack of the interoperability between

the threading frameworks and the MPI contributes to more optimization limitations for the

MPI developers, as the MPI implementations do not have necessary thread information to

evaluate and make optimization decisions accordingly.

Current state-of-the-art MPI implementations are struggling to support a large number

of concurrent communications and are under-utilizing thread parallelism in multi-threaded

environments, resulting in suboptimal performance in the communication. With that in

mind, this study proposes several strategies to enhance MPI communication performance

in multi-threaded environments through an increased concurrency on different levels of the

MPI implementation for both one-sided and two-sided MPI communications.

1.1 Dissertation Statement

While most current state-of-the-art MPI implementations fully support threading environ-

ments in MPI, the performance of the existing threading environment is still far behind its

non-threading counterparts. This disparity, in turn, creates the ‘chicken-and-egg’ problem—

a low adoption rate for threading environments by the MPI users leads to a low interest in

3



threading optimization from the community of MPI developers. During the length of this

study, I also found that there were limited choices of performance evaluation tools for MPI.

While the existing tools adequately measure basic communication performance, they fail to

capture several aspects of the MPI communication in the multi-threaded environment and are

therefore unable to expose its shortcomings. This made the task of optimizing MPI threading

performance even more challenging. Furthermore, the lack of interoperability between

the threading frameworks and the MPI implementation adds to the existing challenges in

performance optimization for threading in MPI.

Therefore, in this study, I work to optimize the multi-threaded environment from an

MPI implementation standpoint. This is done by starting with a thorough investigation of

prior studies on MPI, finding areas where existing MPI implementation cannot perform up

to a satisfactory mark in a multi-threaded environment and thus require improvement, and,

finally, design and implementation of solutions that enhance the performance of MPI in a

multi-threaded environment.

1.2 Contributions

In this study, I contribute to the optimization of multi-threaded MPI in two broad ways:

(1) By introducing a new tool for evaluating performance of an MPI implementation, a

tool which addresses some of the shortcomings of the existing benchmarks and (2) by

proposing, implementing, and analyzing a set of threading performance optimizations in

a particular MPI implementation, Open MPI. The latter covers a number of novel and non-

trivial strategies that highlight portable ways to fully utilize thread parallelism in an MPI

implementation.

Enhancement of Performance Evaluation Tools for MPI

I address the lack of flexibility in performance evaluation tools for multi-threaded MPI

and increasing the number of powerful toolkits with various capabilities of performance

assessment. This is done by, first, investigating the currently available performance

measurement tools for multi-threaded MPI, to assess their strengths and weaknesses. A

4



major challenge of using the existing benchmarks is that they offer very limited capabilities—

for example, the lack of ability to adjust the workload or communication pattern. In order

to better evaluate the multi-threaded performance, these gaps need to be overcome. This

research proposes a solution–the Multirate benchmark Patinyasakdikul et al. (2019), which

allows users to evaluate benchmarks on various aspects. This highly flexible benchmark

exposes the shortcomings of a multi-threaded implementation of the MPI through multiple

communication patterns and flexible workload, allowing MPI developers to quickly compare

performance in a threading environment to a non-threading environment. The potential

of the proposed benchmark is demonstrated by evaluating the current state-of-the-art MPI

implementations such as Intel MPI, Open MPI and MPICH. I strongly believe that this

will enable the current and future MPI developers to more efficiently optimize their MPI

implementation.

Strategies to Optimize Threading Performance in MPI

I propose several strategies to optimize the threading performance by addressing the lack

of interoperability between the MPI implementation and the threading frameworks. I also

propose a novel design with different approaches to harness the power of thread parallelism

for the MPI implementation.

• Better Thread Synchronization: Current thread synchronization approaches

in modern MPI implementations are highly inefficient, resulting in threads being

inadequately organized. This creates unnecessary contention in the critical MPI

components, which results in time wasted causing degradation in overall performance.

To equip the MPI implementation with more control over user-level threads and

give the MPI implementations more opportunity to optimize for threading support,

I introduce the concept of the thread synchronization object. The benefits of my

design is demonstrated by employing the synchronization object to commandeer the

access to the MPI progress engine, thereby reducing the unnecessary lock contention

from the original approach. I also demonstrate other potential use cases of the thread

synchronization object in real-world applications.
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• Better Resource Management: I propose and implement a design of Communica-

tion Resource Instances (CRIs) Patinyasakdikul et al. (2019) for an efficient allocation

of resources. I studied the impact of resource contention in multi-threaded MPI in the

current design which led to the discovery of a number of shortcomings. This acted

as an inspiration to come up with solutions that can fill the voids that the legacy

resource allocation strategies have left. My implemented design provides MPI with a

simpler design to allocate more resources for threads and help alleviating the resource

contention in the MPI implementation. I also propose multiple strategies to incorporate

CRI into MPI core functionality to extract more performance from threads. I discuss

its impact on both one-sided and two-sided communication in multi-threaded MPI.

• Optimization Suggestions: I summarize my study and propose a compiled list

of suggestions to both the MPI developers and the MPI users to fully harness the

power of threading in MPI. The optimization presented in this dissertation has been

incorporated into the Open MPI development branch.1 It is to be noted that from a

software perspective, all my optimization work has been accepted by the Open MPI

community and released publicly with Open MPI 4.0.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows:

• Chapter 2 provides the high-level details from sections of the MPI standard which are

related to the focus of this study. I discuss the trends from the prior studies around

the topic of the use and the optimization of the threading environment in the HPC

community, and ultimately, in the MPI communication.

• Chapter 3 discusses the the motivation for my proposed multi-threaded MPI bench-

mark along with its design, and evaluate its capabilities by performing measurements

on the current state-of-the-art MPI implementations, assess their strengths and

weaknesses, in both threading and non-threading environments.

1https://github.com/open-mpi/ompi
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• Chapter 4 presents my design and implementation of the thread synchronization object,

and illustrates how the design can provide the MPI implementation with more control

and better utilization over the user-level threads, and the ability to redirect them. I

demonstrate the potential of the thread synchronization object design, evaluate its

performance and discuss ongoing research collaborations originated from this design.

• Chapter 5 presents my solution for better resource allocations in threading environ-

ments through the design of the CRIs, along with the assignment strategies for better

thread concurrency in different levels of the MPI implementations. I evaluate the

CRI implementation in both one-sided and two-sided communications. I discuss my

findings and provide additional suggestions for optimizing the MPI in multithreaded

environments.

• Chapter 6 concludes this dissertation with the summary of my findings, with

suggestions for the multi-threaded support in the MPI, and I discuss my future

directions.
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Chapter 2

Background and Literature Review of

Related Works

2.1 Overview

This chapter presents the high-level background knowledge related to the topics of this

study. It focuses mainly on the basic point-to-point communication, both one-sided and

two-sided. I discuss the MPI standard, especially the threading support of MPI, along with

the high-level design of Open MPI, an open-source MPI implementation used as the base

MPI implementation for this study, and finally, present the prior studies of several aspects,

challenges and proposed solutions for optimizing multithreaded performance in MPI.

2.2 The MPI Standard

The first MPI standard Forum (2015) was published by the MPI forum in 1994 as a

revolutionary programming paradigm for high-performance computing. The MPI forum

is continuously maintaining and releasing the new specifications and adds more functionality

to the MPI API to the present day. The current version of MPI standard as of this study is

MPI standard 3.1, published in June of 2015. The threading support in the MPI standard

was originally not well defined. The official threading support from the MPI standard begins

from the standard version 2.1 in September, 2008. In this section, I discuss the MPI standard
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API of interest for the scope of this study, from point-to-point communication to the newly

added one-sided communication, and the multithread environment supports from the MPI.

2.2.1 Point-to-Point Communication

The point-to-point communications are the communication between two MPI processes.

The operation involves sender and a receiver, always in matching pairs. It is the most

basic form of communication defined with the original MPI standard from 1994. Other

than the user-level API, point-to-point communication also serves as the bedrock to a more

sophisticated communication provided with the MPI standard, such as collective operations.

It is important to optimize the performance of point-to-point communication as it may

translate into better performance overall for the MPI implementation.

The MPI standard provides multiple flavors of the API for point-to-point communi-

cations, allowing the user to be more specific on the behavior of the communication and

optimize the application to their needs. However, in this study, I only discuss the most basic

point-to-point communication API.

Send and Receive API

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request)

The MPI standard provides message matching by tag and also guarantees that every

message will be received in a FIFO order. In short, the first send will always get matched
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with the first receive of the same tag, relieving the user of the burden of tracking message

sequences.

The API comes in two modes: synchronous and asynchronous (asynchronous API has a

prefix of ’I’). Some might refer to synchronous as blocking, and asynchronous as non-blocking,

due to its behavior. As the name suggests, the synchronous call waits until the operation

is completed, at least locally, before returning from the call, while asynchronous only issues

the intent for communication and return to the user immediately. The asynchronous API

gives the user a ”request,” an opaque handle associated with the operation for the user to

check for its completion later with MPI Wait or MPI Test variants. The asynchronous API

allows for more flexibility of the application as the user can ask for the message completion

only when it is needed, and avoid the implicit synchronization that usually comes with

the synchronous (blocking) communication while also provide the possibility of the overlap

between computation and communication.

Wait and Test API

int MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

int MPI_Waitany(int count, MPI_Request array_of_requests[],

int *index, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status *array_of_statuses)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

int MPI_Testsome(int incount, MPI_Request array_of_requests[],
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int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

int MPI_Testany(int count, MPI_Request array_of_requests[],

int *index, int *flag, MPI_Status *status)

int MPI_Testall(int count, MPI_Request array_of_requests[],

int *flag, MPI_Status array_of_statuses[])

For asynchronous operation, the MPI standard provides two major ways of checking for

completion through wait and test API. Similar to the point-to-point API, the wait API is a

synchronous routine and will only return when the condition is met (number of completed

requests) while test is an asynchronous routine, which will return immediately but provide

the means for the user to get the information of the requests. The MPI standard offers 4

flavors of the wait/test operation, a single request and multiple requests (some, any, all). As

the name suggests, for ’some’, the user can test for a subset of requests by providing the

desired number with the API. The user can check for the completion of one or more requests

through ’any’ API and completion of every request through ’all’ API.

2.2.2 One-Sided Communication

In addition to two-sided communication, the MPI-2.1 standard provides support for one-

sided RMA communication. This support allows an MPI implementation to directly expose

hardware Remote Direct Memory Access (RDMA), a feature which is present on some high-

performance networks, e.g., Infiniband, and Cray Aries. This allows the MPI implementation

to offload communication directly to the hardware. In addition, the one-sided model

separates communication (data movement) from the synchronization (completion). The

standard defined API for one-sided communication are the following.

Window Initialization/Finalization

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
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MPI_Info info, MPI_Comm comm, MPI_Win *win)

int MPI_Win_free(MPI_Win *win)

Data Movement

int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

Operation Completion (Examples)

int MPI_Win_flush (int rank, MPI_Win win)

int MPI_Win_flush_all (MPI_Win win)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_lock_all(int assert, MPI_Win win)

int MPI_Win_fence(int assert, MPI_Win win)

The API offers three ways of data movement. MPI Put and MPI Get offer remote write

and read operation while MPI Accumulate allows the user to perform atomic mathematical

operations such as addition or multiplication on the target buffer. The operations are carried

out by the source without involving the target. However, since anyone can read or write to

the same target buffer at any time, the user is responsible for keeping track of their data

accessing order through the synchronization.
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The MPI API provides the means of synchronizing through an abstraction of ’window’.

Every MPI process exchanges the necessary information beforehand at the window creation

through MPI Win create. The example of the window operations are listed above. The entire

window operation API is listed in the appendix C. Unlike the two-sided communication, the

information of peers and target buffer is already exchanged in this window creation process.

Hence, the message matching operation is no longer required after the actual communication.

There are multiple flavors of synchronization on the window, but in short, performing any

synchronization operation on the window will complete outstanding operations associated

with that window. For example, fence completes every outstanding operation on the window

for every peer, while lock completes the operation for between the calling process and the

target process only.

2.2.3 Threading Support

The MPI-3.1 standard Forum (2015) provides four levels of threading support. During MPI

initialization, more precisely during MPI INIT THREAD, users can marshal with the MPI

implementation the desired thread level for the application.

• MPI THREAD SINGLE: The most restrictive setting where a single thread must

exist in the application, independent if they make MPI calls or not;

• MPI THREAD FUNNELED: Multiple threads can coexist in the application—but

only one, the master thread (i.e., the one that initialized the MPI library), is allowed

to performing MPI operations;

• MPI THREAD SERIALIZED: Multiple threads can coexist in the application, and

the application is responsible for serializing their MPI calls, in order to guarantee that

only a single thread will perform MPI operations at any time;

• MPI THREAD MULTIPLE: Multiple threads exist in the application and every

thread can perform MPI operations at any time, without restriction on the ordering

or serialization.
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From a purely pragmatic point of view, most of these thread support levels have little

reason to exists nowadays, but it is acknowledged that it might be needed on some esoteric

hardware, with extremely restrictive thread support from the operating system. Anyhow,

with the current hardware architectures, there is no possibility of race conditions for the

SINGLE, FUNNELED, or SERIALIZED mode. Thus, current MPI implementations are

not providing any protection for these modes as there is no need to spend the unnecessary

cost. Thread safety is therefore only provided if the user initializes MPI with MULTIPLE.

This study is focused only on the MPI THREAD MULTIPLE mode, as it is the only

mode that allows for thread concurrency.

The benefit of multi-thread environments has been explored since its inception with the

MPI-2.1 standard. One of the proposed benefits is to decrease the memory footprint of

the MPI application. By taking advantage of thread memory space, every thread in the

same process can access the same space of memory, reducing the need for multiple copies

of the same data. Moreover, utilizing the multi-thread environment reduces the need for

intra-node explicit communication as the threads can simply access other threads’ memory.

Another benefit of threading is to increase the throughput for messages of smaller size. As

MPI implementations are highly optimized for sending large messages through sophisticated

pipeline algorithms, sending a high volume of smaller messages is still a challenging aspect

to optimize for. This study contributes to the efforts to improve small message throughput

by utilizing threads to send multiple messages in parallel.

2.3 The Open MPI library

While this study is generic and can be applied to any MPI implementation, all designs

and engineering aspects were implemented in Open MPI. In this section, I present multiple

aspects of interests of Open MPI for this study. The Open MPI Gabriel et al. (2004) is

one of the MPI implementations that is fully compliant with the MPI standard 3.1. It

is an open source MPI implementation that, like most open-source projects, is developed

and maintained by an active community of volunteers, the Open MPI community. This

community consists of a large number of volunteers, together with participants from a variety
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of organizations from both academia and industry. With its open-source nature, Open MPI

has been used as the base of multiple vendor’s MPI implementations such as Fujitsu, Bull,

and IBM Spectrum MPI, driving some of the most powerful supercomputers in the world at

the time of this study, Summit Vazhkudai et al. (2018).

2.3.1 Modular Component Design

Open MPI employs a modular design where multiple components can work independently

through a well designed, standardized API with frameworks (Figure 2.1). The components

can be plugged easily into a framework as long as they provide the necessary API for the

framework to operate. The framework-component design allows for multiple implementations

of the same functionality. For example, the coll framework provides the functionality

of collective operations. Any developer can create a component under coll to plug their

implementation of collective operations such as the broadcast or allreduce operation, and

have Open MPI invoke their component for the MPI Broadcast or MPI Allreduce call.

Operating in a multi-threaded environment presents a different level of challenges to

the Open MPI components, as the individual components serve in a different capacity, and

in some cases, are designed to interact with the different set of hardware with different

capabilities and limitations. This study mainly focuses on the multi-threaded operation of

2 major Open MPI frameworks which provide the basic communication support; the Point

Messaging Layer (PML) and the Byte Transporting Layer (BTL).

Open MPI

OPAL OMPI ORTE

BTL PML MTL coll

Figure 2.1: Example of Open MPI framework layers.
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Point Messaging Layer (PML)

PML is a framework for point-to-point data movement. The framework provides functions

such as send, receive, and message matching for the Open MPI. Currently, there are multiple

components in the PML framework such as UCX and OB1 (Obiwan). This study focuses

mainly on pml/ob1, as the OB1 component utilize the BTL framework for the actual data

movement while the OB1 itself provides high-level operation such as message matching,

message pipelining, and sequencing. By utilizing the BTL framework, OB1 becomes the

component that provides the high-level algorithm design and allowing other developers to

easily plug their network implementation with only basic data movement functionality.

Byte Transporting Layer (BTL)

The interaction between the BTL and pml/ob1 is illustrated in Figure 2.2. The Byte

Transporting Layer is a framework with only basic data movement capabilities such as

memory allocation, send, and read for message completion. It is designed to work with

a higher level framework such as pml/ob1. The BTL itself does not have the context of any

message that it is sending or receiving, and it will let the higher level handle the completion of

the message. The simplicity of the BTL framework allows multiple network hardware vendors

to create their basic component and easily integrate it into Open MPI without implementing

the entire process of MPI communication such as message matching and ordering guarantees.

The example of the components in the BTL frameworks are: btl/tcp (socket communication),

btl/ugni (Cray’s GNI), btl/openib (ibverbs), btl/vader (shared-memory communication).

2.3.2 Progress Engine

The MPI standard does not provide the explicit API for progressing operations, but most

underlying network protocol requires an explicit progress routine. The MPI implementation,

as a middleware between the network protocols and the user, has to provide a solution to

comply with the standard. Most MPI implementations address the progression by creating

a centralized routine—the progress engine for progressing the communication of network

protocols and also internal MPI events. The standard mentioned that the user can expect the
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Figure 2.2: Interaction between BTL framework and pml/ob1 in Open MPI.
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progression of their asynchronous operation with every call into the MPI library. However,

the decision to invoke the call to the progress engine is entirely up to the MPI implementation.

Usually, in the blocking operation such as MPI Recv or MPI Wait the MPI implementation

will keep invoking the progress engine until the associated operation is completed.

For Open MPI, every component registers their progress routine to the centralized

progress engine (OPAL progress). When invoked, the progress engine will execute every

registered routine. Figure 2.3 illustrates the example of components who register their

progress routine to the Open MPI progress engine. For example, the BTL has its network

polling or reading for message completion registered to the progress engine. Since the

progress engine is involving handling the message completion event, it plays a crucial role

in the message receiving path of MPI, as the matching process is mostly performed in this

part. The details of the message matching process is discussed in the next section.

In multi-threaded environments, Open MPI ensures thread safety by serializing the call

into the progress engine to eliminate the possibility of any race condition that might occur.

The serialization is implemented by a process-wide lock, progress lock with the pthread

condition variable to synchronize between threads.

2.3.3 Matching Process

For two-sided communication, MPI offers tag matching in the standard as a means to pair

a sent message with an expected reception, instead of working with a simple stream of data.

The tag matching provides the user with better control over their communication, as they

can use the tag to distinguish between different messages with the same size or use them as a

label for each message. The matching process can occur at two points; When the user posts

a receive (through MPI Recv, MPI Irecv and other variations), and when the MPI process

extracts a message from the network. Therefore, the matching process involves two queues,

expected and unexpected.

Figure 2.4 shows the matching process implementation. In the case of the user posting

receive, the MPI will search for the message in the unexpected queue, a buffer queue when

the message arrives before the receiver posts the receive. If there is a match, the receive

operation is complete immediately. If not, the request will be added to the expected queue
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Figure 2.3: Every component registers their progress routine to the progress engine.
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Figure 2.4: Matching Process implementation
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to match with incoming message later. On the other hand, in case of receiving an incoming

message from the network, the MPI implementation will try to match the message’s tag with

the request in the expected queue. If there is a match, then the matched request is marked

as completed. If not, the message will be added to the unexpected queue for matching with

the request later.

The MPI standard also guarantees that the message will be matched in the FIFO

ordering. In short, the MPI will match the message by the order of the posting of the

reception, as well as the order of the sending. For example, if the message has the same tag,

the first receive will always get matched with the first send, the second receive with the second

send, and so on. This guarantee provides the simplicity for the user to program. However,

there is no such guarantee from the network level as to whether implementing the ordering

from the hardware level will hinder the overall hardware performance capacity. Thus, the

MPI implementations have to provide the software solution for the ordering guarantee to

the user. The message ordering implementation is different for each MPI implementation,

but the general idea is to issue a sequence number for each message. The sender will include

the sequence number with the message header, and the receiver can check if the message’s

sequence number is expected. By imposing the monotonically increasing sequence number on

both sides, the MPI implementation can ensure that the message is matched in the described

FIFO order.

Figure 2.5 illustrates the matching process implementation with the FIFO ordering

guarantee by utilizing the message sequence number. When the receiver receives an

incoming message with non-FIFO ordering (incorrect sequence number) from the network,

the MPI buffers the message and adds it to the out-of-sequence queue without performing

any matching operation on it. Every time the MPI successfully matches a message to a

request, the anticipated sequence number changes. Before returning to the user, the MPI

implementation will try to search for the message with the anticipated sequence number in

the out-of-sequence queue. If the message with the anticipated sequence number is found,

the usual matching process is performed on the message. There can be two outcomes: if the

user posted receive for that message, the request associated with the receive is marked as

completed; if not, the message gets moved into the unexpected queue.
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Figure 2.5: Matching process implementation with ordering guarantees

Usually, buffering the message in the unexpected queue or out-of-sequence queue is a

costly operation, as the MPI implementation has to allocate proper memory to store the

message in the middle of the time-critical message extraction process, but the occurrence is

expected to be very minimal as the network devices rarely rearrange the send order under

normal circumstances. Another interesting metric for the matching process is the unexpected

queue length, as the matching operation is essentially a serial queue search, where the cost of

searching the queue grows with the length of the queue itself. Therefore, applications with a

high volume of unexpected messages (not pre-posting receives) will be susceptible to longer

matching time.

There are more complications in the multi-threaded scenario as the matching process has

to be serialized, at least per communicator, to ensure correctness. The critical parts, such

as adding or removing an object from a queue, cannot be performed concurrently. In the

context of MPI implementation, two threads can post a receive at the same time, or one

thread is inside the MPI progress engine receiving the incoming message while another thread

is posting the receive. The MPI implementation usually protects the matching process with

a process-wide lock or matching lock to serialize the access to all queues.
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2.4 Literature Reviews

Multiple studies have been conducted investigating ways to improve the efficiency of multi-

threaded MPI. There are several moving parts contributing to the abysmal performance of

multi-threaded MPI implementations. This section discusses several research topics related

to multi-threaded MPI communication and the efforts to improve its performance from

several perspectives.

Threading Frameworks and HPC

There are research interests in threading performance optimization in HPC other than the

use of the classic Portable Operating System Interface (POSIX) threading framework such

as pthread Lewis and Berg (1998). OpenMP Dagum and Menon (1998) is the threading

framework that provides the high-level abstraction that is user friendly but still based on

the fork-join programming model. However, the OpenMP specifications in recent years added

more support for current trends in HPC such as tasks and job-stealing design. From the

large-scale parallelism perspective, Wheeler et al. (2008) proposed Qthread, a lightweight,

portable threading framework, which is more suitable for the HPC environment with smaller

memory footprints per thread, with lightweight thread control and synchronization while

not relying on any specific hardware or the platform capability, allowing for more scalability

and portability of the multi-threaded HPC applications. In the same year, Intel released

its Thread Building Block (Intel TBB) Pheatt (2008) which presented the similar idea of

threading and its portability by providing its own user-level threading runtime that evaluates

the system it is currently running on, and performs the load balancing for threads accordingly.

In recent years, MassiveThreads Nakashima and Taura (2014) presented the threading

framework with the same API as pthread but offer more delicate thread management design

for better load balancing and workload prediction to avoid the high cost of unnecessary

context switching, resulting in lower overhead compared to the existing solution such as

Qthread. Argobots Seo et al. (2017) are refining the approach of the lightweight threading

framework, which directly focuses on the HPC usage while providing the high-level threading
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capability on its own, or it can be used as the low-level threading infrastructure under other

threading frameworks.

The works presented in this section show high interest in incorporating the multi-thread

environment into the HPC landscape with an increasing number of CPU cores per chip. This

naturally calls for the combination of MPI and threads (MPI+threads) to handle larger scale

applications where MPI is used for inter-node communication, while using threads to perform

the computation task locally on the node, and spurs interests in optimizing thread support

in the MPI.

Lack of Interoperability Between the MPI and the Threading Frameworks

The MPI standard does not provide an API for the MPI implementation to exchange the

information with the threading frameworks of the application. The MPI implementation

cannot differentiate between threads that make calls into the MPI library, thus limiting

the optimization strategies that it can employ. Si et al. (2014) proposed interoperability

between the de facto OpenMP threading runtime and the MPI implementation to share

the information of the threads between the application and the MPI layer in many-core

architectures. When equipped with threading information from the threading framework,

MPI can incorporate the idling application threads for internal communication without user

intervention, allowing for better computing resources utilization.

On the other hand, there is a movement to extend the MPI standard to address this

interoperability problem. The study of Sridharan et al. (2014) and Dinan et al. (2014) shows

interest in creating multiple endpoints per MPI process for multiple threads to communicate.

This is a step towards better interoperability by providing the user with a standardized way to

provide hints to the MPI implementation for better optimization. The MPI implementation

can be utilizing this information for better resource allocation internally. Unfortunately,

at the time of this study, the MPI forum has not yet accepted the proposal, but the MPI

implementation can still offer the non-standardized way for the user to provide hints such as

using environment variables, among other means. Nonetheless, I believe that interoperability

between the MPI implementation and the threading framework is desperately needed for

better performance optimization of multi-threaded MPI.
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Resources Contention in Multi-threaded MPI

First, the resource contention in multi-threaded environment: it has been identified as

a major roadblock that prevents the MPI implementation from harnessing true thread

parallelism. The MPI implementation has to create a critical section—a section that can

be executed by a single thread at a time, to prevent the race condition that might occur

when multiple threads are making updates to the same memory location. The race condition

from threads can affect the correctness of the communication, or even escalate to corrupt

the state of the MPI software and crash the whole application. Thus, the critical section

also becomes a funnel that mitigates the potential performance gain from thread parallelism.

Balaji et al. (2008) study multiple granularities of the critical section in MPI by simulations

with MPI PROC NULL (no actual data movements), and suggested that coarse-grain critical

sections such as global lock—even for a short duration per-thread, per-access—can create

bottlenecks that significantly affect the overall communication performance. The study also

suggested MPI implementations should shift towards per-object lock or even lockless data

structure to avoid the massive lock contention.

Amer et al. (2015) suggested another approach to minimize the lock contention by

creating a systematic mechanism to assign the resources to a thread. Their study imposes

priority to threads, and managing the load balancing between threads by several strategies.

The study suggested that multithreading can benefit from a well-designed load balancing

algorithm. However, it has been noticed that the MPI standard does not provide any

interoperability between the MPI and the threading framework, which might render the

load balancing more challenging for the MPI implementation. In another study, Goodell

et al. (2010) illustrate the impact of an often overlooked aspect: the reference counting

of the object. Reference counting is a common practice to track the usage of a shared

object by a simple counter addition and subtraction. Once the reference count of an object

becomes zero, the object is marked for garbage collecting purposes. However, the cost of

reference counting increases drastically in multi-threaded environments, as simple addition

becomes an atomic operation. Goodell’s study proposes a design to reduce the cost of the

reference counting and demonstrates its impact on overall MPI communication. Dózsa et al.
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(2010) proposed a design of multi-channel communication for MPI; the MPI implementation

creates multiple channels for communication with different peers, allowing multiple threads

to perform multiple communications in parallel. Their study paves the way for achieving true

thread concurrency in MPI implementation, and suggested that the MPI implementation has

to implement a way to extract the incoming message in parallel. The study uses a parallel

receive queue for multiple threads to drain at the same time; the performance evaluation in

their study claims good performance scaling with an increasing number of threads.

There has been a trend to completely avoid resource contention by delegating every

communication to a dedicated communication thread. By using a single thread to

communicate, the application does not have to initialize the MPI library in multi-threaded

mode, thus removing all the cost of thread safety that comes with it. There are several ways

to achieve this model. The user can manually program their application accordingly, or

there can be a middle layer between the user and MPI such as Vaidyanathan et al. (2015)’s

study. Vaidyanathan proposed software offloading, intercepting every MPI call from user

threads, and funneling them into a dedicated communication thread via lockless command

queue. While the study cannot fully utilize the thread parallelism for communication, it

shows significant improvement over the current coarse-grain critical section design in some

MPI implementations. Grant et al. (2015) proposed another approach to avoid the resource

contention by accumulating smaller messages from multiple threads into a large buffer, and

use a single thread to perform the communication, utilizing the highly sophisticated message

pipelining mechanism on the larger message to achieve better performance while avoiding

the unnecessary contention. The work shows an impressive performance boost; however, it

requires user-level involvement in the initialization stage.

Progress Threads

Another trend in utilizing threads in MPI is the progress thread. The main attraction of

the progress thread design is computation and communication overlap. There is a common

misconception related to asynchronous communication in MPI, as the users expect the MPI

to progress the communication in the background. In reality, the MPI has to explicitly

progress the network through different protocols to get completion and MPI itself cannot
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do that in the background. Currently, for MPI to progress the communication, the user

has to make a call into the MPI library to give the chance for the MPI implementation to

execute the progress engine. The progress thread approach is a design where there is a thread

executing the progress engine in the background for the MPI implementation to progress the

outstanding communication while the user thread is executing application code, providing

the overlap between the two.

That being said, the progress thread approach often comes with the design question of

where the MPI implementation should bind the progress thread. If the progress thread

shares the physical CPU core with the application, it takes crucial computation power

away from the application; but if the progress thread is bound to a dedicated physical

core, there will be no interference with the application, but every MPI process has to

take additional CPU cores and ultimately cut the computation power of the application in

half. Hoefler and Lumsdaine (2008) experimented with multiple strategies of progress thread

design and proposed a shared core design with low performance impact on the application

while providing a good percentage of overlap. Wittmann et al. (2013) uses the standardized

PMPI interface to implement the progress thread from outside of the MPI implementation,

allowing a portable progress thread implementation for communication and IO overlap. Lu

et al. (2015) proposed a design to utilize user-level threads as a temporary progress thread,

circumventing the need for MPI implementation to spawn the progress thread by itself

and avoid the resource management problem entirely. The work of Potluri et al. (2010)

demonstrates the application-level benefit from communication overlap in real-world seismic

modeling applications.

Matching Process

The matching process is another critical piece of the two-sided communications infrastructure

(send and receive), which is the bedrock of the MPI communication. While this study does

not contribute to the topic of matching process optimization, multiple challenges in this study

stem from the current design of the matching process. This section presents the efforts from

the HPC community in optimizing the matching process by improving its efficiency and

releasing synchronization constraints.
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Brightwell et al. (2005) and Ferreira et al. (2018) present the characteristic of real-world

applications regarding the usage of the MPI matching queues (expected and unexpected

queues) and its effect on the overall performance. Brightwell suggested that one of the

interesting metrics is the queue length, as the cost for the MPI implementation to search

through the queue increases linearly with it. Since the matching process is mandatory for

two-sided communication, speeding the process up will be beneficial to both single- and

multi-threaded modes of the MPI implementations.

There are multiple studies of matching process optimization in the past. Flajslik et al.

(2016) suggested a binned matching algorithm to alleviate the contention of the matching

process. The study presents a significant speedup over the traditional matching process and

suggested that the approach can be easily adapted for multi-threaded environments as they

are more fine-grained and suitable for per-object lock. Schonbein et al. (2018) proposed

the use of Intel vector instruction to implement a fuzzy matching algorithm for the global

matching queue of MPI. This, in turn, allows multiple messages matching at the same time

and shows vast performance improvements. Bayatpour et al. (2016) proposed an adaptive

algorithm for the tag matching to use different tag matching designs for different workloads.

Another interest in optimizing the matching process is the possibility to offload it to

the hardware, relieving the MPI of the matching duty entirely, and supposedly speeding

up the entire communication process. The work of Underwood et al. (2005) pioneered the

concept of specialized hardware accelerated queue in MPI. Moreover, Hemmert et al. (2007)

and Gupta and Abels (2006) demonstrate the benefit of moving the matching process entirely

into the network hardware itself. Currently, we can see several high-performance network

hardware vendors such as Mellanox, Cray, and Intel incorporate the tag matching capability

into their hardware design. While offloading the tag matching process to the hardware can

be beneficial for the MPI implementations, it still poses some set of limitations such as the

lack of the possibility to cancel the messages correctly, or the ability to split the matching

process for different MPI communicators.
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One-Sided Communication

This dissertation focuses mainly on two-sided communication, but also touches the topic

of multi-threaded one-sided communication in Chapter 5. The past studies on one-sided

communication emerged as soon as the MPI-2.1 standard was published. Barrett et al.

(2007) studied several approaches to implementing the one-sided communication support

in Open MPI. Barrett’s study suggested that if the network hardware is equipped with

remote memory access capability, one-sided communication can achieve higher bandwidth

and lower latency than the two-sided communication in some cases. In the same year, Gropp

and Thakur (2007) studied one-sided communication performance on various platforms

with various MPI implementations, and their study also gives the conclusion in the same

direction as Barrett’s. However, the MPI-2.1 standard poses some limitations for one-sided

communication as it is written vaguely. In 2009, Tipparaju et al. (2009)’s study proposed the

improvements in one-sided communication to the MPI standard which resulted in MPI-3.0

standard. Kumar and Blocksome (2014) implemented the MPI-3.0 one-sided communication

on Blue Gene/Q computer and evaluated the performance. Their study concluded that

MPI-3.0 one-sided communication has lower latency than the older MPI-2.2 standard while

performing at the same level as two-sided communication. In their remarks, they also

show interest in extending the support for multi-threaded one-sided communication and

utilizing the internal progress thread to increase communication overlap. In 2016, where

several MPI implementations are fully standard compliance, Dinan et al. (2016) presents

the implementation and performance evaluation of the MPI-3 one-sided communication and

suggested that the new MPI-3.1 standard allow MPI implementation to be fully equipped,

and fully utilize the hardware capabilities in remote memory access.

Recently, there is increasing interest in multi-threaded one-sided communication. First,

the effort to create a multi-threaded one-sided MPI communication benchmark by Dosanjh

et al. (2016) signals the interest of MPI developers in pushing for multi-threaded RDMA

support. The follow-up work includes Hjelm et al. (2018) where the authors investigate

several techniques to improve one-sided communication in multi-threaded scenarios. Hjelm

is also one of the collaborators of this work.
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Chapter 3

Measuring MPI Performance

3.1 Overview

This chapter presents my effort to expand the number of powerful tools for the MPI

developers to evaluate their MPI implementation. I introduce my novel Multirate

benchmark: a highly flexible benchmark, capable of stressing multiple performance points

of an MPI implementation. The Multirate benchmark is designed to provide fast assessment

and comparison between MPI in a normal process-to-process communication and thread-to-

thread communication. This chapter discusses the motivation and design of the Multirate

benchmark, and shows that my tool is capable of exposing the optimal and sub-optimal

point in the MPI implementations. I demonstrate Multirate capability by evaluating three

current state-of-the-art MPI implementations and discuss my findings.

3.2 Introduction

Several MPI implementations are available today, with varying capabilities and support

for lesser-used MPI features. While it is tempting to make a distinction between vendor

implementations and open-source implementations, the software evolution in HPC has led

to only two major flavors, MPICH and Open MPI—both of which are open source—

surrounded by a series of derivative implementations with small differences compared with

their underlying open-source versions.
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Current state-of-the-art MPI implementations are categorized into two groups, vendor-

specific MPI with platform optimization and aftermarket support such as Intel MPI,

Cray MPICH, or IBM Spectrum MPI, and open-source implementations such as MPICH,

MVAPICH, and Open MPI where the community voluntarily maintains and contributes.

Each MPI implementation differs in design, as MPI developers are free to optimize their

implementations. A particular MPI implementation might perform well in one aspect but

not in others. Moreover, with different communication patterns required for each type of

application, it is essential for the application developers to know which MPI implementation

gives the best performance for their application.

Benchmarking is one of several approaches that application developers can leverage to

quickly evaluate the performance of their MPI implementation and tailor it to suit their

needs. It has the added benefit of enabling MPI developers to validate and assess the

performance impact of changes made to their implementation and gives them the ability to

compare performance between released versions.

There are several approaches to benchmarking the performance of MPI implementations.

One is a simple communication test where the benchmark uses basic patterns like one-to-one.

By doing so, the benchmark can show the general behavior of the MPI implementation, but

the communication patterns in the benchmark may not be similar to the application, which

can be misleading in some cases.

Another approach is to imitate a real-world workload by creating a small subroutine that

includes real computation and an actual communication pattern from the application itself.

This approach can provide a good performance assessment of the interaction between the

application and the MPI implementation as the network engine. This approach, however,

puts a burden on the application developer to create a benchmark that reflects their workload

and communication patterns, which would change for each application and is a non-trivial

task.

The MPI standard offers many communication functionalities, and benchmarking every

aspect of MPI would be difficult. This work only focuses on point-to-point communication,

as this is the most commonly used feature in MPI applications and also serves as a building

block for more complicated schemes, like collective operations Luo et al. (2018). The goal is
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to offer performance measurements at the point between a simple communication test and

an application-specific benchmark. I build a tool that is flexible in communication patterns,

workload, and mode of operations, which can be beneficial to both application and MPI

developers in evaluating MPI implementations.

I propose Multirate, a flexible benchmark that offers multiple communication patterns

that can be mapped to real-world application needs using an adjustable workload to enable

developers to perform early assessments of their MPI implementations. Multirate offers

three modes of operation—processes, threads, and hybrid—and enables a quick comparison

of performance between the three modes. The results can be used to identify possible

bottlenecks in MPI implementations, which can be highly beneficial to MPI developers

looking to improve multi-threaded support for MPI.

3.3 Background

3.3.1 Metrics

For MPI performance metrics, we are usually interested in bandwidth, latency, and message

rate, which most MPI benchmarks—including Multirate—will be measuring. While the

instrumentation for every metric mentioned is very similar, each metric can be more or less

critical depending on a given application.

Many scientific applications, such as fast Fourier transform (FFT) or a general distributed

machine learning framework, usually perform matrix transpose operations with data transfer

to their peers after each iteration. The communication workload in this type of application

is usually substantial, making it reliant on the network bandwidth, as it reflects the capacity

of the network stack. However, for large messages, the long transfer time often overshadows

the overhead from MPI. Most MPI implementations should be able to provide comparable

performance.

On the other hand, some applications rely heavily on the small to medium sized messages.

However, it is very challenging for MPI to reach peak network bandwidth with small sized

messages, as the actual transfer time is short and effectively makes MPI overhead the
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bottleneck in the overall communication time. Since additional MPI overhead is added with

each message, sending multiple small messages will incur more overhead than sending one

large message. The ability to transfer multiple smaller messages simultaneously to hide the

overhead and increase the communication throughput has been one of the main attractions

of multi-threaded MPI (Figure 3.1). Message rate is the metric that involves the size of the

message and might be more suitable for measuring performance in some cases. It can also

be used to evaluate the MPI overhead directly.

Latency is another important metric for most applications, as the faster the message is

received, the faster the application can move into the next stage of computation, thereby

reducing overall run time. Latency differences between MPI implementations can often be

used to compare the quality of the optimization or the algorithm used in each of case.

3.3.2 Workloads

Communication performance can vary drastically under different workloads. Usually, we

can describe the communication workload in two ways: (1) the message size and (2) the

number of messages. The message size is an extremely important parameter, used by most

MPI implementations as a trigger for different low-level communication protocols (eager vs.

rendezvous). To be able to accurately quantify the protocol switching points, most MPI

benchmarks offer presets for message sizes or make them freely adjustable in some cases.

The number of concurrent messages is another factor that can affect MPI communication

performance. Having a high number of messages posted at the same time might stress

MPI’s internal message handling (matching costs, the fairness of receives, the fairness of

progress) and load balancing capabilities. Some MPI benchmarks offer an adjustable number

of concurrent messages in the form of “window size” or the number of posted messages per

iteration. Using both message size and window size to adjust the workload can offer a more

comprehensive assessment of MPI performance.
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Figure 3.1: The use of multiple threads to increase communication throughput.

3.3.3 Communication Patterns

Most MPI point-to-point benchmarks usually perform communication between two MPI

ranks. While this approach certainly gives some insightful performance data on trivial

communication patterns, it rarely represents a realistic communication pattern that is used

by complex parallel applications.

Communication between two MPI ranks with smaller messages might not be enough to

achieve peak hardware bandwidth. However, MPI users can mitigate this problem by using

multiple ranks or threads to send messages simultaneously, thereby hiding the MPI overhead

by having multiple messages ready to be sent as soon as the network finishes the transfer of

the previous message. However, existing MPI benchmarks often do not offer multiple ranks

and one-to-one communication patterns in their testing.

Additionally, non-deterministic, thread-based task-based applications, such as MAD-

NESS Thornton et al. or rootSIM Pellegrini et al. (2011), and task-based runtimes, such

as StarPU Augonnet et al. (2011) or PaRSEC Bosilca et al. (2013), rely on coordination
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messages between peers, which can exhibit dynamic communication patterns between stages

of the application and between different executions. A single MPI rank might be the target

of messages from multiple peers at the same time, or be one of the sources of messages to

a particular target. Similarly, most collective operations also make use of similar point-to-

point communication behavior. This behavior can be generalized into simple communication

patterns like one-to-many or many-to-one.

One-to-many and many-to-one (Figure 3.2) are interesting communication patterns,

as they can be used to test MPI implementations under the asymmetric workload often

presented in the real-world application. For example, the stencil, or the halo neighbor

exchange, is commonly used in scientific applications. These communications can be mapped

into one-to-many and followed by many-to-one. An imbalance between the message injection

and extraction can become a major bottleneck for the overall communication: the sender

might inject the message with a higher rate than the receiver can effectively extract from

the network layers, introducing significant delays in message delivery to the user level.

Performing tests on these patterns can help in exposing the strengths and the weaknesses of

the MPI implementations.

3.3.4 Threading in MPI

Ideally, running on the same hardware, MPI with and without threading support should

have comparable performance. However, in practice, the cost of serialization from MPI

One-to-many Many-to-one

Figure 3.2: One-to-many and many-to-one communication pattern
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often overshadows the gained benefits from the implicit intra-node communication. As a

result, not many applications are adopting a full MPI threading model, despite significant

interest.

The early adoption of the multi-threaded MPI in scientific applications comes after the

MPI standard officially defined the multi-threaded environment support in 2008. Shan et

al. studied the performance of the MPI threading environment for a large-scale molecular

simulation, NWChem Valiev et al. (2010), and concluded that a hybrid combination of

processes and threads provides the best performance in this particular application Shan

et al. (2015). This evaluation process can be done on a much smaller scale by utilizing a

flexible benchmark to represent similar communication patterns without computation.

Currently, there are several multi-threaded MPI benchmarks available in the market.

Most of the benchmarks only offer a one-to-one communication pattern and perform the

communication in the same way as they do between ranks. The significant difference between

process and thread mode in the resources allocated for the operations also needs to be

considered. In process mode, each process allocates the resource instance, while thread

mode usually spawns multiple threads from a single process, and threads are likely to race

against each other for access to limited resources, causing a slowdown.

3.4 Existing Benchmarks

There are several MPI benchmarks already available. NetPIPE Snell et al. (1996) is a set

of tools used to measure communication performance. NetPIPE-MPI offers one of the most

efficient MPI performance tests for point-to-point communication between two MPI ranks.

It also offers bare-bones performance analysis for latency and bandwidth. However, the

limitation of NetPIPE is that it only tests communication between two MPI ranks. Sandia

microbenchmark Lawry et al. (2002) offers MPI message rate measurement with variable

message size, window size, and number of peers, but only offers one communication pattern.

Aside from straightforward tests, several benchmarks (e.g., GRID Boyle et al. (2015)

or Parallel Research Kernels der Wijngaart (2016)) offer more specific communication
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patterns that are commonly used by scientific applications, including neighbor commu-

nication (stencil), parallel matrix transpose, and a distributed linear algebra subroutine.

These specialized benchmarks could help application developers make early assessments

of their communication patterns by showing them the expected performance from MPI

implementations using a practical workload. Several applications from the US Department

of Energy’s Exascale Computing Project provide proxy applications Proxy, which act as

miniature versions of a project to represent the workload, thereby enabling a more accurate

performance assessment.

With increasing interest in improving MPI performance in a many-thread environment,

several well-known threading benchmarks have emerged. Thread tests Thakur and Gropp

is one of the popular MPI multi-threaded benchmarks and offers a fundamental, point-to-

point send with the ability to increase the number of threads. OSU microbenchmark OSU

offers multiple measurements of point-to-point communications, including bandwidth, bi-

directional bandwidth, latency, and message rate with variable window size and multiple

communication pairs. However, in threading mode, it only offers latency testing.

3.5 Multirate Benchmark

The goal is to offer performance measurement at the point between a simple communication

test and an application-specific benchmark. Multirate is flexible and can adjust the mode

of operation (process, thread, and hybrid) and the size of the workload with various

communication patterns; this enables application developers to perform an early assessment

of their communication needs and provides a quick comparison between different settings for

the MPI developer to help him or her identify problems or bottlenecks in the implementation.

3.5.1 Communication Patterns

Multirate provides multiple communication patterns that can be used to map the application

behavior or used directly to test capability and identify bottlenecks of MPI implementations.

The patterns currently offered are Pairwise, one-to-many, many-to-one, and many-to-many.
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Pairwise (Figure 3.3) is one-to-one mapping from sender to receiver. The goal of this

pattern is to extract the best possible communication performance from MPI with the

balanced workload between message injection and extraction. However, for the small-

sized messages, using only a single one-to-one communication pair might not be able to

achieve the peak network bandwidth. Deploying multiple one-to-one communication pairs

concurrently to keep the network hardware occupied might be beneficial to the overall

bandwidth utilization.

many-to-one and one-to-many (Figures 3.4b and 3.4c) can be useful for detecting

bottlenecks in MPI implementations. For example, a single sender to multiple receivers

will test the capability of message injection from the sender while mitigating the bottleneck

from message extraction, as multiple receivers can split the receiving workload among them.

On the other hand, many-to-one overwhelms a single receiver with incoming messages from

different peers at the same time, solely testing the capability of message extraction. In

many-to-many (Figure 3.4a), the user can choose any arbitrary number of sender and receiver

entities. It is useful for identifying the optimal workload for particular MPI implementations.

3.5.2 Communication Entities

MPI process mapping can be different in multi-threaded mode, as the users are usually

advised to map one MPI process onto the entire node or socket (Figure 3.3) and let
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Node 0 Node 1

Figure 3.3: CPU core mapping to MPI ranks for pairwise pattern.
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a.  b.        c.

Figure 3.4: All-to-all communication can be used to make sub-patterns, such as many-to-
many (a), many-to-one (b), and one-to-many (c).

the operating system schedule threads automatically. The communication entity is an

abstraction level that the Multirate benchmark uses to describe a communication body.

An entity can be mapped to a single MPI process or to a single thread.

Communication entity abstraction enables Multirate to perform the test in multiple

modes of operation, such as thread to thread communication (thread mode), process to

process communication (process mode), or combinations of thread to process communication

(hybrid mode).

Performance results from process mode and thread mode can be compared to demonstrate

the overhead from initializing MPI with full threading support, while hybrid mode can be

used to further pinpoint the performance degradation from threading support by fixing one

side to process entities and alternating between thread and process entities on the other side,

for comparison.

3.5.3 Communicator’s Effect

From the user’s perspective, the communicator is an MPI-defined abstraction to refer to a

group of MPI processes. In each communicator, the participating processes are assigned an

individual ‘rank’ number related to that particular communicator. The communicator is

used in every MPI communication API, including the collective operations, as the reference
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to an MPI process group, with the rank number to identify the individual process in the

communicator. The basic communicator MPI COMM WORLD is provided by MPI by

default with every MPI process inside. The user can also freely create and manipulate

the communicator to create any arbitrary MPI process group for better communication

management, such as creating separate communicators for ‘odd’ and ‘even’ MPI process

number to only communicate among themselves.

In MPI implementations, such as MPICH, and its descendants such as Intel MPI, the

matching process for any communication is handled in a global matching queue, regardless

of the communicator, while Open MPI handles the matching with a local per-communicator

matching queue. The two approaches can inflict different performance impacts when it comes

to multi-threaded environments in MPI, as the threads race for access to the communicator

and the matching process. In the latter design, increasing the number of the communicator

might alleviate the stress on each communicator and provide a more level playing field

for a multi-threaded environment. Multirate provides the option for the user to switch

between utilizing a single communicator, or using an exclusive communicator for each of the

communication pairs, to provide a way to detect the communicator congestion problems of

the MPI implementations.

3.6 Experimental Evaluation

While Multirate offers bandwidth, message rate, and latency measurement, only the message

rate measurement is presented in this section, as it is the most representative metric for

the quality of multi-threaded communication. Nonetheless, the goal of the experiments is

to demonstrate the potential of Multirate in evaluating MPI performance and pinpointing

possible bottlenecks in current MPI implementations.

The experiment’s results are from the University of Tennessee, Knoxville’s Alembert

cluster. Each Alembert node consists of two sockets of Intel Xeon E5-2650v3 (Haswell) 10-

core CPUs, running at 2.3 GHz and configured with hyper-threading, with 64 GB of DDR4

2, and 133 MHz main memory. The interconnect is an InfiniBand (IB) EDR running at

100 Gbps. The MPI implementations in the experiments are: MPICH 3.3 Gropp (2002),
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Intel MPI 2018.1 IMPI, and Open MPI 4.0 Gabriel et al. (2004). MPICH and Open MPI are

configured with Unified Communication X (UCX) Shamis et al. (2015) library version 1.5.0

in multi-threaded support mode with all optimization turned on. The entire software stack,

including the MPI libraries, was compiled with GNU Compiler Collection (GCC) version

7.3.0 with maximum level of optimization flags from the provided package configure script,

while Intel MPI is only available in a pre-compiled binary from the vendor and assumed to

be operating with high efficiency on the platform.

The MPI process binding policy is bind to core (one core per MPI rank) for process mode

experiments, and every necessary precaution has been taken to ensure all experiments were

using identical bindings and thread placements. The thread mode experiments spawn only

one MPI process on each node with a “floating” (no binding/bind to all available cores) policy

and manually bind the threads to their corresponding cores. The default communication

module of every MPI implementation is used, unless stated otherwise. The message sizes used

in these experiments were selected based on ongoing optimization efforts for MADNESS and

PaRSEC, by taking the sizes of the most representative communications. The performance

data points presented are the average of 30,000 runs, and, where meaningful, the standard

deviation is reported in the graph as error bars. Experiments that did not complete, either

due to a segfault in the MPI library or to a deadlock, identified by an expiring allocation

limit, were not reported and can be seen by the lack of data in the graphs.

To give a better understanding of the order of magnitude of the results, some graphs

report the theoretical upper limit of the message rate calculated by dividing the peak

hardware bandwidth of 100 Gbps by the corresponding message size. The computation

of the theoretical upper limit ignores all local overheads, and is, therefore, an unattainable

upper bound, toward which the message rate should asymptotically converge. The theoretical

upper bound on the message rate is 12.5 Mmsg/s for 1,024 bytes messages and 3.125 Mmsg/s

for 4,096 bytes messages (M stands for Millions).

3.6.1 Communication Patterns

This section investigates how different state-of-the-art MPI implementations handle different

communication patterns available in Multirate. Most figures in this section will illustrate
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the performance of both process and thread mode for the same communication pattern in

the same figure. However, the discussion is organized as follows: First, the performance

of the process mode in each communication pattern, which is a general use-case for most

applications. It also serves as the practical upper bound for the thread mode since the

threading performance with additional overhead is unlikely to achieve the better performance

than the process mode in the same settings. The discussion is then followed by the thread

mode performance and comparisons at the end of this section.

Pairwise

Pairwise communication performance is illustrated in Figures 3.5 and 3.6. For the

experiment, the message size and the window size (number of messages per iteration) is

fixed, while the number of communication pairs varies. Since the communication pattern is

pairwise, the number of sender and receiver entities is the same. Every communication pair

has the same amount of workload.

The solid lines (Figures 3.5 and 3.6) show the performance in process mode for three

MPI implementations. The message rate increases with the number of process pairs, as

anticipated. Since each individual process pair communicates independently without any

contention, the more pair added gives higher aggregated message rate, until the performance

comes close to the theoretical limit of the hardware device and the message rate flattens out.

This indicates that in this mode, the MPI implementations can operate very efficiently and

push the hardware to its limit. Each MPI implementation reacts slightly differently, but all

of them asymptotically reach the peak message rate at a number of communication pairs. In

this experiment, for 1,024-byte messages, Open MPI reaches the peak with 7 communication

pairs, while Intel MPI needs 11 pairs, and MPICH needs 16 at around 11M msg/s, with the

calculated bandwidth of 90.12 Gbps or 90% of the theoretical network bandwidth. Although

the MPI implementations reach the peak performance at different point, the result firmly

suggested that the MPI requires more than one communication pair to satisfy the peak

hardware bandwidth for small size messages.

At 4,096 bytes, the MPI implementations reach the peak message rate earlier (Figure 3.6),

as by increasing the message size, the actual transfer time increases and the software
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Figure 3.5: Pairwise message rate for a message size of 1,024 bytes, w = 128.
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Figure 3.6: Pairwise message rate for a message size of 4,096 bytes, w = 128.
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overheads have lesser impact on the overall performance. With larger message sizes, it

requires smaller numbers of concurrent messages to reach the peak hardware bandwidth

(Around 3M msg/s, the calculated bandwidth is 98.3 Gbps, 98.3% of the theoretical

bandwidth), and the differences between MPI implementations are mostly negligible.

The performance results of the process mode in pairwise pattern shows that with truly

concurrent communication, the MPI implementation can attain the peak performance of

the network device. We can use this process mode performance as the reference point,

as an attainable performance or ‘practical peak’ for multi-threaded communication on the

same hardware. It should be noted that threading communications perform extremely

suboptimally for every MPI implementation in this experiment, with a global message

rate decreasing as the number of peers increased—opposite to what we observe from non-

threading communication—despite running on the same set of hardware. The message

rate for thread mode never goes above 1/12th of the practical peak and suggests massive

optimization opportunities for every MPI implementation.

Many to One

In this experiment, the number of receiver entities is fixed to one, while varying the number

of the sender entities to measure the limit of the message extraction capability of a single

receiver entity. Generally, the message rate should keep increasing with the number of

senders until it reaches the capacity of the receiver to handle the incoming messages, then

the message rate should stay flat from that point.

The solid lines on Figure 3.7 show the performance in process mode for 1,024-byte

messages. Intel MPI performs the best and shows a performance improvement with an

increasing number of senders. This result suggests that one receiver process is capable of

extracting more incoming messages than a single sender can inject. From the result, the

Multirate benchmark can expose the optimal point of operation for Intel MPI at 2.8M

msg/s with 8–12 senders. Open MPI shows steady performance at 1.5M msg/s despite the

increasing number of senders, indicating the limit of message extraction from the receiver.

The result indicates that there is more room for improvement in the message extraction

path of Open MPI. On the other hand, MPICH demonstrates a performance decrease with
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Figure 3.7: Many-to-one message rate with a message size of 1,028 bytes, w = 128.

higher number of senders, which indicates the internal bottleneck that introduces the delays

proportionate to the volume of incoming messages, decreasing the rate of extraction, leading

to sub-optimal performance—the behavior that is not anticipated.

For 4,096-byte messages (Figure 3.8, solid lines), Open MPI demonstrates better

performance early on but drops off with an increasing number of senders—entirely different

behavior from the smaller 1,024-byte messages. The behavior shows that the same MPI

implementation reacts differently depending on the message sizes. The change of behavior

can originate from the protocol change at the MPI implementation level or even from the

underlying network library (in this case, Open UCX). On the other hand, for both message

sizes, MPICH and Intel MPI show similar behaviors. Specifically, Intel MPI shows the same

pattern of a sharp rise in message rate when increasing the number of senders from 7 to 8.

This information can become valuable for the application developer in deciding their MPI

process layouts to get the most performance out of their MPI implementation. From an

MPI developer’s perspective with inside knowledge of the code base, this information can be

useful for further optimization.
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Figure 3.8: Many-to-one message rate with a message size of 4,096 bytes, w = 128.

The many-to-one experiments show that the Multirate benchmark can successfully

identify the problem in the message extraction path, and expose the optimal performance

point for a specific workload from the receiver’s perspective.

One to Many

This experiment utilizes one sender to send messages to the increasing number of receivers.

In reverse of many-to-one, by having multiple receivers to extract the messages at the same

time, this communication pattern reduces the possibility of congestion on the receiver and

focuses on the capability of a single sender to inject the messages into the network. Generally,

with many receivers to absorb the communication, the message rate should keep increasing

until the sender reaches its peak injection rate and then flattens out beyond that point.

Figures 3.9 and 3.10 show the message rate of 1,024 and 4,096 byte messages when

increasing the number of receivers. This section focuses only on the performance of the

process mode (solid lines). For 1,024-byte messages, all three MPI implementations show

better performance with the increasing number of receivers until they reach a peak—an

anticipated behavior. The result suggests that a single receiver cannot efficiently extract the
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Figure 3.9: The one-to-many message rate with a message size of 1,024 bytes, w = 128.
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Figure 3.10: The one-to-many message rate with a message size of 4,096 bytes, w = 128.
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messages injected from a single sender, indicating that every MPI implementation in this

experiment exhibits some level of imbalance between the message injection and extraction.

Compared to other implementations, Open MPI gives the best performance in this

communication pattern. The best performance point of Open MPI for this setting is around

4–7 receivers at 3M msg/s, and the calculated bandwidth is 24.57 Gbps, only 1/4th of

the theoretical network bandwidth. Comparing this result to the pairwise communication

pattern, which can achieve up to 90% of the theoretical bandwidth, this experiment also

shows that a single sender cannot achieve the optimal injection rate to satisfy the peak

network bandwidth for 1,024 byte messages. The result showed an unexpected small

performance drop-off for all three MPI implementations after increasing the number of

receivers, a behavior that is not presented when increasing the message size to 4,096 bytes,

which has to be investigated further.

At the message size of 4,096 bytes, every MPI implementation can reach the plateau

around 5 receivers. The Intel MPI gives better performance early on with a lower number

of receivers. With larger messages, the message rate required to achieve the peak network

bandwidth becomes lower. For example, in this experiment, Open MPI’s message rate

plateaued out around 2.5M msg/s. The calculated bandwidth for the message size of 4,096

bytes is 81.92 Gbps, or 81.92% of the theoretical network bandwidth of the hardware used.

Together, the experiment results of the one-to-many and many-to-one demonstrated that

(1) In most MPI implementations, the single receiver cannot extract the incoming messages

fast enough. The experiment shows that a single sender can satisfy at least 2 receivers in

some workloads. (2) Increasing number of concurrent messages from the senders’ side might

not translate into higher message rate, as the capacity of the extraction process is limited

by the receivers.
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Many to Many

Moving towards a more dynamic relationship between the number of senders and receivers,

this experiment illustrates the message rate of the many-to-many communication pattern

(every sender to every receiver) from a different perspective. Figure 3.11 shows the

performance when increasing the number of senders against fixed sets of receivers, while

Figure 3.12 shows the opposite. This section only focuses on the process mode result (top

half of the figure), as further discussion on the threading performance is listed separately in

Section 3.6.3.

The experiment results illustrated the different behavior of each MPI implementation.

Figure 3.11 shows that Intel MPI can perform better with more than one receiver, but

increasing the receivers will not give much benefit, as it seems to already reach top

performance at around 5 receivers; while Open MPI and MPICH reach top performance

at some specific point, the message rate drops off with an increasing number of senders.

Unlike Intel MPI, increasing the number of receivers provides some performance impact

for both Open MPI and MPICH. From a different perspective, Figure 3.12 also shows that

Intel MPI is performing well regardless of the number of senders or receivers, while Open MPI

and Open MPI provide a similar result. The two figures show the most efficient performance

point of each MPI implementation. For example, Open MPI seems to run optimally around

20 receivers with 4–5 receivers for this particular workload. The result also illustrated the

similarity between Open MPI and MPICH, where both implementations utilize Open UCX

as their underlying network library.

This experiment presented the versatility of the Multirate benchmark and its ability to

expose the optimal performance point of each MPI implementation, which can be beneficial

to application developers to design their communication workload. The MPI developer can

also use this information to get the better understanding of their MPI implementation under

a specific workload for better optimization.
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Figure 3.11: The many-to-many communication performance with a fixed number of
receivers.
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Figure 3.12: The many-to-many communication performance with a fixed number of senders.
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3.6.2 Variable workload

While the earlier experiments demonstrated the different behaviors of MPI implementations

with respect to different message sizes, this section performs the experiments on the different

communication patterns with different window sizes (number of messages per iteration) and

observes how MPI implementations react to different workloads.

For one-to-many communication (middle row), Intel MPI still shows similar scaling to

the many-to-one experiment with a small drop-off at the end. Open MPI performs well in

this communication pattern with a higher message rate overall for every window size, while

MPICH demonstrates good performance, but also with a small drop-off later on.

It has been learned from the earlier experiment that a pairwise communication pattern

gives the best performance and scaling with increasing number of pairs. For this

experiment, Figure 3.13 (bottom row) indicates that the window size also affected the overall

communication performance. Generally speaking, for this particular message size, a larger

window size allows more messages to be injected per iteration and increases the message rate

until it reaches the limit of the network device and plateaus out. The performance of each

MPI implementation is slightly different but still follows a general trend.

In this experiment, the Multirate benchmark shows that it can expose the behaviors of

the different MPI optimization. For example, it can be concluded that Intel MPI is very

sensitive to the window size and will perform well with a larger one. Open MPI is not as

sensitive, as the results show similar performance across all window sizes but in many-to-one,

the window size does not affect the performance at all. This behavior indicates that there

is some limitation in its message extraction capability. MPICH is struggling in many-to-one

communication, especially with higher numbers of messages, consistent with the findings

from the earlier experiment. MPICH developers can use this information to pinpoint the

origin of the performance bottleneck in their implementation.

While the result of this experiment is measured from a single message size in process

mode, it demonstrates that Multirate is capable of exposing the optimal points of each MPI

implementation. Users can simply tweak the parameters to perform measurement on their

desired workload and mode operation.
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Figure 3.13: Message rate (1,024 bytes) on different communication patterns on multiple
window sizes.
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Case study

Other than using Multirate to compare the performance between MPI implementations, it

can also be used to expose the performance issues in a single implementation. The case

study is the comparison between the two stable releases of Open MPI, 4.0 and 3.0.

This experiment only uses one pair of communication entities and increases the window

size. Since the window size per communication pair in the early experiment is 128, the

window size is increased in multiples of 128 in 20 steps. Internally, Open MPI 4.0 uses a

pml/ucx network module as default, while Open MPI 3.0 uses btl/openib. Though the two

modules have significant differences, both of them are designed to efficiently operate with

Mellanox’s Infiniband hardware.

The result is demonstrated in Figure 3.14. For the default UCX module, the message

rate does not increase with the window size, thereby confirming the finding that a single

entity cannot satisfy the network bandwidth. For the btl/openib module, this experiment

exposes a sub-optimal implementation of the network module, as the result shows the

performance drop when increasing the message size with a high variation between runs.

After some investigation, I find that btl/openib has a poor credit management system,

which leads to starvation of network send credits under a heavy workload. The behavior

is non-deterministic, as the starvation and the recovery occur at different points for every

run. I indirectly adjust the number of send credits in btl/openib module the via Modular

Component Architecture (MCA) Squyres parameters offered by Open MPI and can mitigate

the credit problem from the module (marked with * in the figure).

3.6.3 Multithread MPI

Overhead of threading

This experiment uses the pairwise process mode when initializing MPI with MPI Init and

MPI Init thread with MPI THREAD MULTIPLE, without spawning any other thread, to

show the minimum overhead from each MPI thread safety implementation. Figure 3.15

compares the performance between MPI implementations. We can see only a 3–5%

performance decrease from MPI implementations for this communication pattern. However,
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It has been shown in the earlier experiments that the performance will drop drastically

with the increasing number of threads (Figure 3.5), indicating that most of the performance

degradation originated from the thread contention.

Different communication patterns

The dashed lines in Figures 3.5 and 3.6 show the message rate of the increasing number

of communication pairs with a pairwise pattern in thread mode. For both message sizes,

Intel MPI and MPICH have similar performance, but the message rate of Open MPI drops

at first and then bounces back with more communication pairs. However, all of them suffer

significant performance loss compared to the results in process mode. The dashed lines in

Figures 3.7–3.10 show the performance of many-to-one and one-to-many patterns in thread

mode.

For many-to-one, every MPI implementation seems to suffer a performance loss when

introducing more sender threads. Open MPI shows a performance drop early on, but

performance recovers after increasing the number of senders, while Intel MPI and MPICH

performance gradually decreases.

In one-to-many communication, the performance drops with more communication pairs

for all three implementations. Open MPI is the best among the tested MPI implementations,

but none of them shows comparable performance with process mode.

many-to-many communication shows the significant difference between process mode

and thread mode. While process mode can handle this type of communication easily, thread

mode—in some cases—cannot run to completion before the 30 second timeout.

Ideally, in thread mode, running on the same hardware with the same communication

pattern should provide comparable performance to process mode. However, the result

shows that MPI in thread mode is significantly slower than its process mode counterpart—

indicating that the designs of current state-of-the-art MPI implementations are not well

optimized for threading.

To further analyze the threading performance, we have to look deeply into the design

of each MPI implementation to identify the bottleneck. Some of the MPI implementations

evaluated in this experiment make use of a global message matching queue. Using multiple
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threads in communication can increase the contention on the matching queue which has to

be accessed sequentially. Usually, MPI implementations make use of a mutual execution

(mutex) lock to serialize the access to critical parts of the communication. The cost of

securing a mutex lock increases with the number of threads. The threading result from

Figure 3.5 is isolated and shown in Figure 3.16, displaying performance degradation with

the increasing number of communication pairs and suggests the serialization bottlenecks.

Communicator’s effect

For Open MPI, btl/uct is a non-default communication module that does not use global

matching but separates the message matching by the communicator. In Figure 3.16,

the btl/uct is manually selected to perform the experiments with single and multiple

communicators. The result demonstrated that using multiple communicators to allow

multiple threads to perform matching concurrently yields a better message rate. It also

suggests that matching can be one of the bottlenecks for MPI in thread mode, and an MPI

developer should try to reduce the serialization in the process.

While Multirate offers a communicator’s effect test for every communication pattern,

only the experiment for pairwise communication is selected for this study, as the default

network module for every MPI implementation makes use of global matching and shows

similar performance.
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3.7 Conclusion

This chapter presented the Multirate benchmark, a novel multi-threaded MPI performance

measurement tool. The main contributions of this chapter concerning Multirate are: (1)

the benchmark offers multiple communication patterns that can be used in conjunction with

different modes of operations, allowing quick comparison in various settings between MPI in

threading and non-threading environment; and (2) Utilizing the benchmark for performance

assessments of current state-of-the-art MPI implementations.

The experiments show the potential of the Multirate benchmark for evaluating, quantify-

ing and understanding the performance of MPI implementations under realistic, application-

provided workloads. The Multirate benchmark can benefit PI developers as one of the

evaluation tools used to identify bottlenecks in their implementations, or as a regression

testing tool—and also to users when making the decision on what MPI implementation

has the potential of maximizing the performance of their application. Moreover, Multirate

can be used as an optimization tool allowing quick testing of different sets of configuration

parameters for the different implementation protocols, and assessing which set provide the

best overall performance on a specific architecture and/or platform.

In this study, the Multirate benchmark significantly contributes to the discovery of multi-

threaded environment bottleneck for Open MPI. The bottlenecks, along with the proposed

solutions, are discussed and presented in Chapter 5. The Multirate benchmarks is hosted on

Github under a BSD 3-Clause ‘New’ or ‘Revised’ License, and will be soon make available 1.

The user guide for the benchmark is presented with this dissertation in Appendix A.

1https://github.com/ICLDisco/multirate
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Chapter 4

Advance Thread Synchronization

4.1 Overview

This chapter describes the current state and limitations of MPI Wait and MPI Test and

all of its variances (such as MPI Waitall, MPI Waitsome, and MPI Waitany) in the multi-

threaded environment from the standpoint of an MPI implementation. I introduce the

thread synchronization object design, along with its API to equip the MPI implementation

with the means to control and redirect threads for better optimization. I demonstrate the

potential of my design by implementing MPI Wait* with the thread synchronization object

to reduce the lock contention of the MPI progress engine and show that my implementation

can achieve up to 7× performance in shared memory communication and up to 3× inter-node

communication.

I further discuss the efforts, ongoing collaboration, and preliminary results regarding

the utilization of my thread synchronization object design to achieve more from thread

parallelism when initializing MPI with MPI THREAD MULTIPLE, including my proposal

of the MPI extension to bring the thread synchronization object up to the user level.

4.2 Introduction

One of the major roadblocks for MPI implementations to optimize for threading performance

is the lack of threading information from the user level. Currently, there is no standardized
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way for the user to notify MPI with information such as how many threads they are

expecting to be performing communication, or even a piece of simple information such

as the thread identification to let the MPI implementation know which thread is calling

the MPI routine. There are several studies focused on establishing the infrastructure for

sharing thread information (or ‘interoperability’) between threading frameworks such as

POSIX thread (pthread) Lewis and Berg (1998) or OpenMP Dagum and Menon (1998)

and MPI implementations, but the idea has not been carried out by the MPI forum. Such

information, if obtained, would a positive impact on the MPI implementation as they can

design better algorithms to navigate through threads and utilize them properly, along with

allocating proper resources for their uses.

Rather than relying on the threading framework to provide the information, several

studies suggested a new API for the MPI standard to let the user manually manage the

threads through MPI. One of the suggestions is to allow the user to create endpoints under

the MPI rank. With multiple endpoints within an MPI rank, the user can map the endpoints

with threads, allowing them to address a specific thread at the target rank to perform

thread-to-thread communication while also providing the crucial threading information to

the MPI implementation for better threading optimization Dinan et al. (2014). However,

the suggestion comes with difficulties, such as the problem with collective operations and

more. The MPI forum has not yet approved the endpoint proposal but the work is still in

discussion Mpi-Forum (2016).

To address the lack of interoperability problem without relying on the support from

the MPI forum, I propose the design of thread synchronization object, an abstraction layer

to provide the MPI implementation more control over the user-level threads and redirect

them for better utilization without requiring any change from the application level. In this

chapter, I demonstrate the great benefit of my design for multi-threaded MPI Wait operation

and further discuss additional possibilities in utilizing the thread synchronization object to

harness the full power of thread parallelism.
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4.3 Progress Engine Serialization

From a high-level perspective, the MPI progress engine is the component that ensures

communication progress, either by moving bytes across the hardware, ensuring the expected

message matching, or guaranteeing MPI’s FIFO message order requirement. From

an implementation perspective, the progress engine is the central place where every

component in an MPI implementation registers its progressing routine such as polling for

incoming messages, processing pending outgoing messages, including messages for collective

operations, or reporting completion to the user level. The design is illustrated in Figure 2.3

from chapter 2.

As the MPI standard does not provide an API for explicitly progressing messaging, calls

into the MPI progress engine occur under the hood during calls to other MPI routines.

The decision to enter the progress engine or not on a given MPI function call is up

to the MPI implementation, with the exception of blocking routines such as MPI Send,

MPI Recv or MPI Wait where message progression, at least related to the operation itself,

is mandatory. That being said, the main purpose of the progress engine is to give the MPI

implementation the opportunity to check for message completion events from the network

and to ensure timely progress on non-blocking communications. MPI usually reads entries

from the completion queues (CQs) for completion events on a particular network endpoint.

Completion events can be from both incoming and outgoing messages. In the case of outgoing

message completion, MPI marks the corresponding send request as completed and doing so

might release the user from a blocking call such as MPI Send.

In a multi-threaded scenario, the MPI implementation has to ensure thread safety. Since

the progress engine is a centralized part where many other components register the progress

of their operations, and it is not guaranteed that every registered component will be thread

safe, the MPI implementation often casts a wide blanket by creating a large critical section for

the entire progress engine. While the coarse-grain approach is proven sufficient in providing

thread safety to the user, the contention on lock often hinders the overall performance of

the progress engine, especially with an increasing number of concurrent threads trying to

gain access to that critical section. The major cost from the lock semantic usually increases
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with the contention on the lock itself. I perform an experiment to demonstrate the cost of

securing a lock when increasing the number of threads and presents the result in Figure 4.1.

The result suggested that the cost of a lock operation increases in polynomial order with the

number of threads, consistent with earlier studies on lock-less data structures such as Amer

et al. (2016) and Amer et al. (2015).

4.4 Synchronization Object

In this study, I propose a novel approach for managing multiple threads from inside the MPI

implementation with the synchronization object (sync object). Traditionally, when multiple

threads are waiting for the completion of MPI requests, they race against one another to

execute the progress engine, which is protected by a lock, as described earlier in this chapter.

The race creates lock contention and degrades overall performance from the progress engine,

while under-utilizing thread parallelism as the lock acts as a funnel for only a single thread

to pass through. The sync object provides the MPI implementation with a mechanism to

redirect threads for other tasks and a work-tracking capability to release them back to the
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Figure 4.1: Cost of lock acquiring on Intel Xeon E5-2650 v3 (Haswell)

61



user as soon as their waited requests are completed, providing a better opportunity for thread

utilization.

A sync object is an object with a simple reference counter that allows MPI requests to

attach to it. For every request attached, the sync counter increases its reference counter;

once a request completes, the MPI implementation can notify the associated sync object and

decrease its reference counter. This process allows MPI to notify only the thread involved

in the operation without involving other threads.

Synchronization Object API

For Open MPI’s internal use, I create the sync object API and utilize it to redesign the

Open MPI progress engine. The API provides 4 methods to interact with the sync object

(INIT, WAIT, SIGNAL, and UPDATE). The accurate C API is located in the appendix of

this dissertation.

• SYNC INIT: Initialize the synchronization object.

• SYNC WAIT: Blocking call, wait until signaled or the counter becomes zero.

• SYNC SIGNAL: Release the synchronization object from waiting.

• SYNC UPDATE: Add/subtract the number from the object’s counter

Implementing Wait Operation

In asynchronous (non-blocking) communication, MPI returns an MPI request as a handle for

the user to track the status of the operation later with MPI Wait or MPI Test. Generally,

we can categorize the request into two groups: send requests and receive requests. As their

name suggests, the send request is the request that is associated with a send operation and

the receive request is associated with a receive operation. Usually, an MPI request is marked

as completed when the MPI implementation receives the completion event from the network

by reading its completion queue (generally, through the progress engine). However, for the

receive requests, they can also be completed at posting; the message can arrive from the
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network before the user posts a corresponding receive for it, and the MPI implementation

matches the message with the request as soon as it is posted.

Traditional MPI Wait* (waitall, waitsome, waitany) implementation involves a loop over

every request given at the user level, constantly checking for their completion, and simply

counting the number of completed requests in the loop. Once the number of completed

requests satisfies the wait condition (variants such as all, some, or any), the wait operation

is successful and returns to the user from the blocking call. If the condition is not satisfied, the

wait routine usually executes the progress engine to look for completion. In a multi-threaded

scenario, access to the progress engine is protected by a coarse-grain lock (Figure 4.2a and

Algorithm 1). As discussed earlier in this chapter, this creates a bottleneck and increases

the overall operation cost with the number of threads.

With the synchronization object API as a management layer, the MPI implementation

can become more efficient in redirecting threads for other purposes, and return it to the

user as soon as it needs to be returned (Figure 4.2b). I present the algorithm of the new

MPI Wait* in Algorithm 2. In this implementation, MPI Wait* relinquishes the authority

of waiting to the synchronization object API, which can redirect the threads for other tasks.

The MPI Wait* will get notified from the synchronization object API (by returning from

SYNC WAIT) when the waited requests are complete.

SYNC WAIT can redirect the threads to different tasks. First, my implementation aims

to reduce the stress on the progress engine lock. I built a queue system which allows only a

single thread to execute the progress engine while the other threads wait peacefully, yielding

the usage of CPU core back to the user. Since all but one thread is yielding and not actively

trying to secure the lock, the contention on the progress engine lock is minimal, allowing

a single thread full access to the progress engine. The executing thread is referred to as a

‘progress owner’.

When executing the progress engine, the progress owner can complete any pending

request from any thread. Once a request completes, the sync object associated with it gets

updated directly via SYNC UPDATE. If a sync object’s counter reaches zero, the progress

owner issues a signal via SYNC SIGNAL to the corresponding sync. Since a sync object is

directly associated with a thread performing wait, when signaled, the thread stops yielding
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Figure 4.2: MPI Wait* operation implementation in multi-threaded scenario.

Algorithm 1 Original MPI Waitall implementation

1: function MPI Waitall(n,requests)
2: while true do
3: c = 0
4: for each requests do
5: if request is complete then
6: c← c + 1

7: if c is equal n then
8: break;

9: lock Progress Engine Lock
10: call Progress Engine
11: unlock Progress Engine Lock

12: return
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Algorithm 2 New MPI Waitall implementation with synchronization object API.

1: function MPI Waitall(n,requests)
2: call SYNC INIT (sync)
3: c = 0
4: for each requests do
5: if request is complete then
6: c← c + 1
7: else
8: attach request to sync

9: call SYNC UPDATE (sync,c)
10: call SYNC WAIT (sync)
11: return
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and reschedules itself for execution, removing itself from the queue. In the case where the

progress owner’s sync object counter becomes zero, it passes on the progress ownership to

the next sync object in the queue to take its place. This design guarantees that if there are

multiple threads calling MPI Wait, there will always be one thread executing the progress

engine.

4.5 Experimental Evaluation

For evaluation of my design, I measure the message rate by using the Ohio State University

(OSU) microbenchmark OSU and the Multirate benchmark on the University of Tennessee’s

Alembert cluster in both shared-memory and inter-node communication via a high-speed

InfiniBand network. The performance result is illustrated in Figure 4.3a and the speedup in

Figure 4.3b.

For shared-memory intra-node communication where the communication is expected to

be very fast through a simple memory copy operation, we can see a significant speedup

from the original design, especially with a higher number of threads. The synchronization

object design greatly reduces the lock contention on the progress engine and we can see

up to 8× performance improvement. On the other hand, when the communication is

inter node via InfiniBand, high-performance network hardware, the performance gain is

up to 2.5× and slightly drops off after increasing the number of threads. Although the

overall performance is increasing, we can still see that using a single thread to perform

communication yields a better result than multiple threads. From my design, using a single

thread to execute the progress engine, the performance should at least flatten out around a

single thread performance. This result suggests other bottlenecks in the multi-threaded MPI

implementation. Further in this study, I identified and addressed the discovered bottlenecks.

The details are discussed thoroughly in chapter 5.

In the case of thread over-subscription (binding multiple threads to the same physical

CPU core), the original design suffers from multiple unnecessary context switches as the

threads blindly race to take the control of the progress engine, then perform the check on

each MPI request associated with it. The synchronization object design, with a proper
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Figure 4.3: Performance gain from utilizing thread synchronization object in MPI Wait
implementation.

notification system, only performs context switching when it is necessary. Figure 4.4 shows

that with the thread synchronization object, the design can minimize the context switching

and achieve up to 250× performance for shared-memory communication and 60× for inter-

node communication. While the performance gain is massive, it is unlikely that the modern

HPC application is designed to operate in an over-subscription environment.

4.6 Ongoing Research

So far, the current usage of the synchronization object is only for serializing the progress

engine execution and reducing the lock contention to the progress engine. Despite

contributing to better threading performance in most cases, only the thread with progress

ownership gets to work while the others are yielding and get de-scheduled. There is potential

for more thread parallelism with the synchronization object design. This section explores

some of the potential use cases for thread parallelism from synchronization object with small

prototypes and proofs of concept.

4.6.1 User-Level Extension

The drawback of the synchronization object design is the cost of attaching and detaching

the request to the sync object. Since the scenario is multi-threaded, the attach and detach
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cannot be a simple assignment operation as it is prone to the race conditions (in the case

where the request becomes complete while attaching). The solution is an atomic compare

and swap operation, which is significantly more costly than a simple assignment operation.

The performance impact from the atomic operations is not severe for MPI Waitall, as every

request has to be completed before returning, limiting the chance of unnecessary detaching.

However, for MPI Waitany and MPI Waitsome, when the user usually calls with the same

set of requests over and over, the performance might not be optimal, as the requests have

to be attached and detached before returning them to the user for every call. The impact

prevents this design from becoming feasible for MPI Test operations where the completion

is not required.

This section presents the extension to the MPI API to allow user-level usage of the

synchronization object. With the user-level API, the synchronization object can further

provide more flexibility and functionality for a multi-threaded MPI environment, including

avoiding unnecessary detach operations. I propose an extension of the synchronization object

to the user level through the MPIX notation to demonstrate the potential of my design.

The MPIX Sync API

I propose a new MPI object, MPIX Sync, with 5 user-level APIs to interact with the

synchronization object: INIT, ATTACH, DETACH, QUERY and QUERY BULK.

• MPIX Sync init: Initialize the sync object.

• MPIX Sync attach: Attach a request to the synchronization object with associated

callback data. The callback data will be returned as the reference to the user when the

request is complete in the query API. The request is detached from the sync object

automatically after its completion.

• MPIX Sync detach: Detach a request from the sync object.

• MPIX Sync query: Query the sync object for a request completion. Return the

callback data of a completed request. Similar to MPI Testany API.
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• MPIX Sync query bulk: Query the sync object for multiple request completions.

Return the callback data of completed requests. Similar to MPI Testsome API.

For the implementation of the proposed API, I take the current design of the

synchronization object and expand its functionality to be appropriate to use from user level.

Each sync object consists of a completion counter and a completion queue to store the

callback data. Once the user attaches the request to the sync object with user-specified

callback data, the user relinquishes the request to the MPI implementation, and should now

only rely on the callback data they associated with the request. Figure 4.5 depicts the general

design of the API. The accurate C API, along with the user guide for the MPI extension,

can be found in the Appendix B.

When an operation completes, the callback data associated with the operation is added

to the completion queue, and the counter gets updated accordingly. The synchronization

object keeps track of the number of outstanding completions and the callback data for each

completion of the operations. The user can query the completion through QUERY, which

will return the callback data from the completion queue in first-come, first-serve manner.

This queue is protected for thread safety.

The MPI standard prohibits concurrent wait or test operations on the same MPI request.

For example, the user cannot perform MPI Test on the same MPI request simultaneously

from multiple threads. However, it is a common practice for some categories of application

such as the runtime scheduler or the work-stealing programming model, which relies on

Query

Attach
MPIX_Sync

request

cbdata

cbdata

NULL

 - refcounts
 - completion queue
 - mutex
 - ...

Figure 4.5: The MPIX Sync API design.
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posting persistent wildcard receive requests in anticipation of a message or ”task” from other

peers, and constantly performs MPI Test on the requests to detect the incoming message.

The applications that make communication decisions at the runtime such as PaRSEC Bosilca

et al. (2013), rootsim Pellegrini et al. (2011) and Graph500 Ang et al. (2010) only use a

single thread for communication due to this limitation. The MPIX Sync API, with proper

thread protection, allows for multiple threads to check for completion on the same set of

requests simultaneously through QUERY and QUERY BULK, providing the opportunity for

more flexible message completion routines with thread parallelism, increasing the usability

of MPI THREAD MULTIPLE.

As the synchronization object’s counter always keep tracks of the number of outstanding

completions, it eliminates the need for the loop over every request to check for completion

status. The user can check the number of completions just by reading the value of the

counter, complexity: O(1) instead of O(n). Additionally, with user-level control, the user

can query the same synchronization object again for more completion of attached requests

without having to reattach them, circumventing the cost of atomic operation associated with

attaching/detaching procedure.

With the user-defined callback data, my proposed API relieves the burden of bookkeeping

from the applications, as they no longer need to keep track of MPI requests. The user can

define their own completion scheme, or use the callback data in the same manner as the

”Active Message” approach to direct the flow of their application. The current API is still

evolving. I plan to explore the possibility of a user-level callback function where the MPI

will execute the user-provided function as soon as the request is completed.

For the evaluation, first I demonstrate the improvement from the proposed API by

timing each call of MPIX Sync query comparing to MPI Testsome by varying the number

of requests given to the API. The result is illustrated in Figure 4.6. The MPIX Sync API

has the advantage of using the counter to check for completion instead of looping over every

request. In the case of no completion, the MPIX Sync query gives optimal performance.

However, with a higher number of completed requests, the benefit starts to drop off and

becomes comparable to the original MPI Testsome.
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For real-world application evaluation, as a collaboration with Reazul Hoque, a graduate

student from the University of Tennessee, we take PaRSEC Bosilca et al. (2013), a task-

based runtime, and modified its communication engine to use MPIX Sync API instead of the

original MPI Testsome for request completion. PaRSEC relies heavily on persistent requests

and only uses a single dedicated communication thread in MPI non-threading mode. We

perform the experiment on two different PaRSEC subroutines and demonstrate the result in

Table 4.1. First, ping-pong, which involves only the communication workload. We can see

the performance improvement of 13% for the small message, and the performance benefit

diminished as the message size increases. This is expected behavior as the larger the message,

the more execution time that will be spent in the actual communication—thus, less impact

from MPI overhead. Second, we tested with PaRSEC DPLASMA, linear algebra operation.

We cannot observe a significant difference between the two APIs. However, it should be noted

that the PaRSEC communication engine is already highly optimized by utilizing techniques

such as re-packing the MPI requests to match the completion order. Thus, the performance

benefit from this design is expected to be minimal. At this stage, we have not yet altered

the PaRSEC communication engine to allow multiple threads for communication.
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Table 4.1: PaRSEC performance speedup from MPIX Sync API.

Pingpong Message Size (Bytes) Speedup (%)
400 13.73
4000 7.15
40000 3.1
400000 2.55

Kernel Speedup (%)
dpotrf ∼0*
dgeqrf ∼0*
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4.6.2 Thread Pool

Yielding the CPU core back to the user might be great in the case of thread over-subscription,

as it reduces the chance of context switching between threads. However, with the current

hardware trend being more cores per chip, it is very likely that each thread will have a

one-to-one mapping to the physical CPU core. With this in mind, it is better to utilize the

CPU core while waiting instead of having them in the idling state.

The thread pool design enables the utilization of waiting threads. Instead of de-scheduling

the threads, the threads are constantly looking for tasks to execute. I implemented a task-

stealing model for the waiting threads. The task can be generated from any component of

the MPI implementation, including the progress engine. For example, the matching process

for a message can be passed off as a task. Generating tasks for other threads to execute

might shave off execution time of the critical path and gives a better overall performance

(Figure 4.7).

For demonstration, in an ongoing collaboration with Yicheng Li, at the University of

Tennessee, Knoxville, on his research of Open MPI datatype engine optimization, we utilize

the thread pool, task-stealing design to parallelize the packing operation of MPI vector

datatype messages. In this experiment, the packing operation (via MPI Pack) is split into

several tasks while several threads are actively waiting to execute tasks in SYNC WAIT.

Once the tasks are created and added to the queue, the waiting threads pick them up and

execute them in parallel. Figure 4.8 illustrates the achieved bandwidth with parallel packing

via thread pool design. We observe the speedup when the buffer size is beyond 100KB and

see the most benefit when the buffer size is around 10 MB. This is proof of concept that the

thread pool design is one of the approaches that can extract more thread parallelism from

threads performing the wait operation. Currently, we are experimenting with different task

types from inside the MPI implementation.

From the early evaluation, MPIX Sync API is the worst case, performing on the same

level as MPI Test API but provides more benefits in some cases. We have not yet evaluated

the performance impact in a multi-threaded environment.
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Figure 4.8: MPI Pack performance when utilizing threads in the threadpool design.
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4.6.3 Multi-Threaded Progress Engine

The progress engine is a crucial part of MPI communication that still remains serial. Another

approach in utilizing thread parallelism is to execute the progress engine in parallel. The

synchronization object design as a thread management layer can be modified to allow

concurrent access to the progress engine, while still maintaining the capability of the thread

pool design and user-level design, increasing the opportunity for more thread optimization.

That being said, in order to attain the parallel progress engine, each component registering

itself to the progress engine has to become thread-safe, which imposes a burden onto the

component owner. Nonetheless, in this study, I focus mainly on this approach—to investigate

the potential of concurrent execution of the progress engine for true thread parallelism. I

discuss my design and implementation in detail in chapter 5.

4.7 Conclusion

This chapter introduces the thread synchronization object, a novel approach which provides

more nuance in thread management for MPI implementation. I utilize the synchronization

object to mitigate the known bottleneck at the MPI progress engine, allowing for better

performance for both normal and thread over-subscribed cases in MPI Wait variants. I

showed the performance gain of 7× for shared memory and 3× for inter-node threading

communication.

I explore other potentials of the thread synchronization object to further harness the

power of thread parallelism in MPI. I presented several prototypes and proofs of concept

for my designs, including the extension of the concept to the user level, which will provide

more flexibility for MPI programming paradigm with better threading support. While the

research of these possibilities is ongoing, I showed significant benefits of the synchronization

object. Moving forward, I focus mainly on utilizing multiple threads inside the MPI progress

engine to speed up overall communication. The topic is discussed in detail in chapter 5.
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Chapter 5

Design of True Thread Concurrency

in MPI

5.1 Overview

In this chapter, I propose a design that enables true thread concurrency for the MPI

implementation. My design addresses two problems: (1) the resource contention when

multiple threads are accessing the same network resources to perform communication;

and (2) that only a single thread is allowed to execute the progress engine at a time,

ultimately eliminating the opportunity to utilize thread parallelism in communication. The

two intertwining problems are the remnants from the original bulk synchronization design

where only a single resource is available while multiple threads race to access it, creating

massive lock contentions.

I introduce the concept of Communication Resource Instances (CRIs), objects that

encompass every required resource to perform the communication, which can be allocated

multiple times. Next, I expand on the thread synchronization object from my work in

chapter 4 to propose a design that allows multiple threads to access the resource instances

in parallel, enabling them to perform multiple communication operations simultaneously.

I discuss the design in detail along with its benefits and shortcomings. I evaluate my

design with Multirate benchmark (chapter 3, Patinyasakdikul et al. (2019)) while obtaining

the internal information from Open MPI via the built-in software counters Eberius et al.
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(2017) for two-sided communication, and multi-threaded one-sided communication, RMA-

MT Dosanjh et al. (2016) benchmark.

The evaluation results show that my approach can achieve up to 2× performance gain

from the CRI design alone. Furthermore, I show that the parallel matching process is the key

to achieve better performance (up to 10×) for multi-threaded MPI. Lastly, the results of my

design in one-sided multi-threaded communication illustrated that, without the matching

process, it can achieve up to 200× the performance of the original design.

5.2 Background

There are multiple challenges that need to be addressed in order to improve the performance

of the multi-threaded environment in MPI. This section presents a high-level background of

the communication process and the challenges in multi-threaded optimization from the MPI

implementation’s perspective.

Communication Resources

In order to perform communication, the MPI implementations utilize the low-level network-

ing library such as socket, or verbs to interact with the network hardware. Recently, there

are efforts to unify the network library under a single standard such as the Open Fabric

Interface (OFI) Grun et al. (2015) or Open UCX Shamis et al. (2015) which provide the

high-level abstraction for the high-performance network devices with HPC capabilities such

as RMA and hardware tag-matching.

Generally, the MPI implementation interacts with the network hardware through the

allocated network resources with the associated network library. The resources such as

‘network endpoint’ are the handle to the network hardware. In order to perform the

communication, the MPI implementation has to issue the send or receive command to the

underlying network library with an endpoint. The other critical resource is the completion

queue (CQ) which is usually attached to an endpoint. When an operation completes, the

network library generates a completion event and put it in the completion queue. The MPI
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implementation has to read the completion queue and report the completion back to the

user-level appropriately.

Since the MPI implementation has to associate the completion event with the issued

operation from the user level, it has to store the information to look up later. However,

it is not optimal to allocate and free the memory for every operation. Most of the MPI

implementations usually utilize a buffer pool, a common technique which allocates a chunk

of memory in advance, and provide a mechanism to request and return the memory to the

pool to enable the reuse of the memory, and avoid the costly memory allocation in time-

critical operations.

Resource Allocation

One major difference between using multiple MPI processes versus a single MPI process

with multiple threads is the resources allocated for MPI operations. Resources such as

buffer pools, network contexts and endpoints, or CQs are generally created per MPI process.

In the process-to-process communication model, with this single producer–single consumer

relationship, resource contention is limited. In the case of multiple threads in the same

MPI process, these resources have to be protected, as concurrent access to a resource may

not be supported, or might create race conditions that could compromise the correctness of

the communication or even corrupt the state of the MPI library. At the same time, this

protection adds an extra cost to the operation, and the cost often increases with the number

of concurrent threads. Moreover, the protection effectively eliminates any opportunity for

performing network operation in parallel.

Matching Process

The matching engine is another important piece of an MPI implementation for handling

incoming messages, as it is responsible for the correct matching of sends and receives.

For single-threaded applications, the MPI standard offers the guarantee that all messages

between a source and destination pair on the same MPI communicator are matched in FIFO

order, ensuring that the send order is the same as the matching order. This simplifies the
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semantics for the MPI users, as it ensures that, in single-threaded applications, with the

same peer, messages are always delivered in each communicator in a deterministic order.

However, at the network level, the story is different. For performance and routing

optimization reasons, networks do not provide any ordering guarantee by default and the

messages might be delivered in an arbitrary order. This requires the MPI library to

implement a software solution to provide users with the required message ordering guarantee.

For multi-threaded usage, the MPI standard only guarantees message ordering within a single

thread. Messages sent from different threads are only guaranteed to happen in some serialized

order, as MPI communications, even blocking, are not synchronizing.

The algorithms to provide message ordering may be different for each MPI implementa-

tion, but they share a common approach: generate a sequence number for each message and

pack it within the message header. For simplicity, this sequence number is generally per peer

per communicator. The receiver extracts the sequence number from the incoming header

and uses it to ensure messages are processed in the same order they were sent. Any message

arriving out of sequence needs to be saved for matching at a later time when that message

sequence number is called for. The implementation has to allocate the necessary memory

to store the out-of-sequence messages, adding an extra overhead to the operation. The out-

of-sequence messages can occur in a single-threaded scenario, where sometimes the network

device determines to switch the sending order of messages for optimization reasons—but

the occurrence is usually very rare, and therefore the overhead is negligible. However, this

is not the case for multi-threaded MPI. In the scenario with multiple threads concurrently

sending messages on the same communicator to the same destination MPI process, given

the nature of their non-deterministic behavior, threads can easily compete and send the

messages out of order. With more likelihood of out-of-sequence messages, multi-threaded

MPI could suffer significant performance degradation with an increasing number of threads

from the out-of-sequence message handling overhead.

After the MPI implementation successfully validates the sequence number of an incoming

message, the message is matched against a queue of the user’s posted receives. This code

region is a critical section and must be protected with a lock in a multi-thread scenario to

prevent concurrent access to the queue. For example, races can occur when threads are
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simultaneously posting receives; or when a thread adds a request to the posted receive queue

while another thread is in the progress engine trying to match an incoming message with

a request on the same queue. The matching lock is mandatory for the correctness of MPI

operation in a multi-threaded environment, but it also serves as a huge critical section that

prevents the MPI implementation from achieving more thread parallelism.

The matching process plays a significant role in determining the latency of the two-sided

communication, especially in a multi-threaded environments. Currently, there are many

efforts to improve the matching process. Network hardware vendors such as Mellanox, Intel,

and Cray incorporate the matching process into the hardware itself. The recent network

hardware with tag-matching capabilities relieves stress from the software stack, such as

MPI, from implementing their own solution. However, this approach moves the burden onto

the hardware, which might not have enough software-level information to make the right

optimization decision. On the other hand, researchers are studying multiple techniques to

speed up the entire matching process, ranging from utilizing the vector instruction for fuzzy

matching Schonbein et al. (2018) to the algorithmic approaches such as Flajslik et al. (2016).

Nonetheless, there is still no working implementation to utilize multiple threads to perform

message matching simultaneously.

Remote Memory Access

In addition to two-sided communication, the MPI-3.1 standard provides support for one-

sided (RMA) communication. This support allows an MPI implementation to directly

expose hardware RDMA, a feature which is present on most high-performance networks (e.g.,

Infiniband and Cray Aries). This allows the MPI implementation to offload communication

directly to the hardware. In addition, the one-sided model separates communication (data

movement) from the synchronization (completion). There is no need for any explicit

matching for one-sided communication, removing a potential multi-threaded bottleneck.

This makes RMA well suited for multi-threaded applications, but at the same time, it moves

the burden of the synchronization to the user, and potentially increases the complexity and

readability of the application’s code.
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With the current MPI standard there is support for three different types of communi-

cation operations: put (remote write), get (remote read), and accumulate (remote atomic);

and for two classes of synchronization: active-target (fence, post-start-complete-wait), and

passive-target (lock, flush). Active-target requires the target MPI process of an RMA

operation to participate in the synchronization of the window. It is not well suited for multi-

threaded applications, as all synchronization needs to be funneled through a single thread.

Passive-target flush, on the other hand, does not require the target of an RMA operation

to participate in either the communication or synchronization and allows for concurrent

synchronization.

5.3 Design and Implementation

This section presents the designs to allow true thread concurrency in the MPI implemen-

tation. The goal is to optimize for maximum thread parallelism by giving them proper

resources, removing any unnecessary critical sections to create more opportunity for threads

to collaborate instead of racing against one another.

5.3.1 Communication Resources Instance

There are a variety of critical internal MPI resources that must be protected in a multi-

threaded environment, such as the network endpoints, network contexts, and CQs. In

existing MPI implementations, a single network context is typically created per MPI process

and a single network endpoint per source/destination pair. The CQ is usually attached to the

network context to store completion events. For multi-threaded MPI, access to both network

contexts and their CQs may have to be protected, thus creating a potential bottleneck.

To give multi-threaded MPI a fair chance, more resources have to be allocated for the

entire MPI process. I introduce the concept of a Communication Resources Instance (CRI)

to encompass resources such as network contexts, network endpoints, and CQs with a per-

instance level of protection to perform communication operations. The MPI implementation

can allocate multiple CRIs internally for multi-threaded needs.
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Currently, there is no interoperability between threading frameworks such as POSIX

threads and MPI; therefore, the MPI implementation does not have a standardized way to

get the number of threads that will be used for MPI communication from the application.

Thus, it is challenging for the implementation to assess the proper number of CRIs to

allocate. That being said, an implementation can provide the user with a way to give a hint

via environment variable(s), MPI info key(s), or other means (MCA parameters Squyres

for Open MPI Gabriel et al. (2004) or the new MPI control variables MPI T cvar) to

let the implementation know how many threads the application will use for concurrent

MPI operations. The implementation can then allocate the CRIs accordingly. In my

implementation, MPI allocates a set of CRIs into a resource pool and creates a centralized

body to assign the allocated instances to threads.

Ideally, there should be a one-to-one thread to CRI mapping to completely eliminate

the potential for lock contention. However, in some cases, there might be a limit to the

resources available for creating CRIs. Some network devices, such as Cray Aries, might have

a hardware limitation on the number of network contexts the user can create, so the design

must also accommodate cases where the number of CRIs is less than the number of threads.

Giving more resources to the threads might not be sufficient to increase communication

performance for two-sided communication, as the MPI implementation still serializes the calls

to both the send operation and progress engine to prevent any potential race conditions. In

order to benefit from more allocated resources, both the send and receive paths have to be

redesigned to allow for more parallelism while maintaining thread safety and continuing to

ensure the expected matching semantic.

5.3.2 Try-lock Semantics

Using locks to protect critical resources is one of the popular approaches to ensure thread

safety. These locks also act as a funnel when multiple threads are going through the same

code path as lock contention will cause threads to block. We can mitigate the funneling

effect by using try-lock semantics, which is a non-blocking version of lock, where it will

return immediately after it fails to acquire the lock.
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Try-lock semantics provide more opportunities for parallelism. When the lock is already

taken, we can be certain that a thread is progressing that particular code path, and, therefore,

the current thread can move on and try to pick up another code path to execute or become

a helper thread and complete other menial work.

The following subsections describe how to leverage the try-lock semantics with the

communication resources instances (I will further refer to them as CRIs or ”instance” in the

following sections), to alleviate resource contention from MPI’s internal message extraction

process.

5.3.3 Concurrent Sends

For the MPI implementation to perform a send operation, it needs access to a network

endpoint. In the multi-threaded case, the implementation usually protects the network

context with a lock. In this new design, the network context is associated with a CRI along

with other resources. The protection is changed from per-endpoint level to per-instance level,

allowing the threads to perform send operations simultaneously on different instances. To

assign a CRI to a thread, I propose two strategies: round-robin and dedicated (Algorithm

3).

Round-Robin Assignment

In this strategy, every time a thread needs to communicate it first acquires a CRI. The MPI

implementation assigns an instance for single use on a first-come, first-served manner. Once

the last available instance is assigned, the implementation will recycle the instances and then

give out the first instance again. This approach reduces the possibility of lock contention by

assigning a different instance for every call. It also improves load balancing by giving a fair

share of work among the allocated instances.

Dedicated Assignment

To permanently assign a CRI to a thread, Message Passing Interface (MPI) can utilize

Thread-Local Storage (TLS), provided either by the threading library (e.g., POSIX threads)
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Algorithm 3 Utilizing multiple CRIs to allow concurrent sends.

1: function Init
2: for i← 1, NumInstances do
3: instance[i]←create-instance()

4: function Send(msg)
5: k ← get-instance-id()
6: lock(instance[k]→ lock)
7: networksend(instance[k],msg)
8: unlock(instance[k]→ lock)

9: function get-instance-id–round-robin
10: static current id← 0
11: ret = current id
12: current id← current id + 1
13: return (ret mod numInstances )

14: function get-instance-id–Dedicated
15: static thread local my id← undefined
16: if my id is defined then
17: return my id
18: else
19: my id← get-instance-id()–round-robin
20: return my id

or the programming language (e.g., C11, C++11). This approach can only be implemented

when the system or the compiler supports TLS, a pretty standard feature nowadays. My

implementation uses the native compiler support either from C11 or GCC. When checking for

a CRI to use, the implementation can check if instance information is stored in TLS. If not,

it can assign an instance with a round-robin assignment and save the instance information

in the TLS. With a dedicated assignment strategy, there is no possibility of lock contention

on the instance as long as the number of threads is lower or equal to the number of instances

allocated. If not, some communicating threads might share the same instance and might

even introduce some lock contention if they simultaneously communicate.
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5.3.4 Concurrent Progress

Traditionally, Open MPI serializes calls into the progress engine, allowing only a single thread

to progress communications. Such coarse-grained protection under-utilizes the available

thread parallelism and limits the speed of message extraction to the power of a single thread.

To allow threads to extract messages concurrently, the serialization is removed from the

progress engine. The design exploits the instance-level protection to provide the required

thread safety instead.

The progress engine also suffers from the lack of threading information in MPI. When a

thread makes a call into the progress engine, it requires an instance to progress. This design

utilizes the same centralized body as concurrent sends to assign an instance to a thread. The

strategies to choose which instance to progress are similar to how the instance is chosen for

the send path, namely, Round-robin and Dedicated (Section 5.3.3).

For the Dedicated strategy, with a permanent instance assigned to each thread, a few

issues need to be addressed. First, the MPI implementation has to make sure that it

progresses every allocated CRI to prevent a deadlock scenario where message completion

is generated in an instance that is not progressed by the associated thread. Second, the

user might destroy the thread and create orphaned CRI that cannot be reused by other

threads. To overcome this limitation, each thread is mandated to try progressing their

dedicated instance first, and if there is no completion event, move on to try progressing

other instances. This design provides the guarantee that every instance will eventually get

progressed while still maintaining the optimization benefit from TLS.

Furthermore, the try-lock semantics on the instances become a valuable weapon to the

efficiency of concurrent progress design (Algorithm 4). If a thread fails to acquire the lock

for an instance, it assumes that another thread is progressing that particular instance, and

the current thread can try to pick up another instance to progress or return.

5.3.5 Concurrent Matching

The matching process is still, largely, a serial operation. By changing from serial progress

to a concurrent progress engine, the design effectively moves the bottleneck to the matching
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Algorithm 4 Dedicated instance assignment to give priority to the thread assigned instance
before trying to progress others, ensuring eventual progress for every instance.

1: function communication progress
2: count← 0
3: k ←get-instance-id()–Dedicated

4: if trylock → instance[k].lock = success then
5: progress instance[k]
6: count← number of completions
7: unlock → instance[k].lock

8: if count = 0 then
9: for i← 1, NumInstances do
10: k ← get-instance-id()–round-robin
11: if trylock → instance[k].lock = success then
12: progress instance[k]
13: count← number of completions
14: unlock → instance[k].lock

15: if count > 0 then
16: return

process. As long as this process still cannot be performed in parallel, it will be challenging

to get the optimal performance from multi-threaded MPI (Figure 5.1).

The current message matching design from state-of-the-art open-source MPI implemen-

tations such as MPICH and Open MPI drastically differ. Even in the context of the

same MPI implementation, the matching infrastructure can be different depending on the

network used (Portals provides hardware matching), the hardware capabilities (AVX provides

opportunities for vector matching), and the configured software stack. As an example,

Open MPI supports multiple methods for matching, going from hardware matching when

the Portals library is used, to a single global queue when using the UCX PML, to a

vector fuzzy-matching single global queue Schonbein et al. (2018) and finally to the default,

more decentralized matching in the OB1 PML (with a matching queue per process per

communicator with special arrangements for MPI ANY SOURCE).

A study of optimized or parallel matching is not within the scope of this study. However,

the potential of concurrent matching can still be shown by utilizing OB1, a point-to-

point matching layer (PML) component designed to perform the matching process per MPI
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Figure 5.1: Matching process with serial and concurrent progress engine.

communicator instead of globally. We can then simulate the concurrent matching process

by creating multiple communicators and allowing threads to perform matching in parallel,

unhindered. While this approach might not be practical for some real-world applications, it

is sufficient to demonstrate the potential of multi-threaded MPI.

5.4 Experimental Evaluation

I implemented the strategies presented in this chapter by taking advantage of the modular

design in Open MPI, utilizing the OB1 point-to-point messaging component (pml/OB1) in

conjunction with the uct and ugni Byte Transfer Layer (BTL) components (btl/uct) which

were updated to use multiple CRIs. I modified the Open MPI progress engine (opal progress)

to allow multiple threads in the progress engine.

To gain low-level insights into the different statistics related to the communication

engine, I took advantage of Open MPI’s built-in Software-based Performance Counters

(SPCs) Eberius et al. (2017) expose internal MPI information with low overhead. SPCs offer

a variety of measurements from the MPI level such as the number of messages sent/received

as well as MPI internal information such as the number of unexpected or out-of-sequence

messages, the cost of matching, or the length of the matching queues. This study only focuses
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on two of these counters: the number of out-of-sequence messages and the total matching

time.

To evaluate the impact of each strategy presented in this study, the message rate is

measured by the Multirate benchmark Patinyasakdikul et al. (2019) in pairwise pattern for

two-sided communication, and RMA-MT benchmark RMAMT for one-sided communication.

Several hundred experiments are performed; the mean and the standard deviation are

reported within the figures, which should be noted is consistently very small.

Multirate–pairwise spawns pairs of communication entities which can be mapped to either

an MPI process or a single thread to perform communication simultaneously (Figure 3.3).

The two-sided communication experiments use the message size of zero byte, as it allows us

to capture only the cost of message movement as MPI sends necessary matching information

to be matched on the receiver side without the user-level message (the size of this matching

header is small in Open MPI, around 28 bytes).

RMA-MT is a benchmark developed at Sandia National Lab (SNL) and Los Alamos

National Lab (LANL) to stress-test an MPI implementation under a heavy multi-threaded

MPI RMA workload. The experiment’s results are from the University of Tennessee’s

Alembert and LANL’s Trinitite cluster. The specifications of the systems used are presented

in Table 5.1.

Table 5.1: Configuration of the testing systems, Alembert and Trinitite.

Property Alembert Configuration Trinitite Configuration

Processor Dual 10-core Intel Xeon E5-2650 v3 @2.3 Ghz Dual 16-core Intel Xeon E5-2698 v3 @2.3 Ghz
Microarchitecture Haswell Haswell
Main Memory 64GB DDR4 2,133 MHz 128GB DDR4 2,133 MHz
Interconnect InfiniBand EDR (100 Gbps) Cray Aries (100 Gbps)
Operating System Scientific Linux 7.3 Cray Suse Linux
Compiler GCC 8.3.0 GCC 8.3.0
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5.4.1 Concurrent Sends

Figure 5.2a demonstrates the effect of allocating additional internal resources, CRI. The

original design of serial progress (only allowing a single thread to perform the network

extraction at a time) is used for the experiment. By only introducing changes on the

sender side, these experiments demonstrate the impact of increasing resources availability,

thus decreasing contention on the send path. This allows multiple threads to reach the

lowest network level simultaneously, each in different contexts, and technically performing

send operations concurrently. I employ the two strategies described in Section 5.3.3 to

assign an instance to a thread: round-robin and dedicated presented by solid and dashed

lines, respectively. Each color represents a different number of instances allocated for the

experiment.

The red lines represent the base performance, the original multi-threading support in

Open MPI, with a single instance shared between all threads. The contention impact is

visible very early, basically starting from 2 threads. This scenario is very demanding, as all

threads sharing the same instance will fight for the same protection lock, and the lock will

therefore always be contested.

Ideally, a one-to-one mapping from a thread to an instance should give the best

performance, as there is no contention on the instances. The scenario is achieved by

employing the Dedicated strategy for this experiment, represented in blue-dashed lines

(with 20 threads, 20 instances). Just by increasing the number of instances, we can see a

performance gain up to 100% compared to the original case. When the number of instances

is reduced to 10, the performance drop-off begins to appear after going over 10 threads, as

the threads start sharing the instances and thus introducing some congestion (green-dashed

line).

Although the round-robin strategy (solid lines) does not give the best performance, it

softens the effect of the congestion significantly by spreading the instance evenly among

threads, thus reducing the lock congestion. It is still a viable strategy when Dedicated

cannot be implemented due to the lack of compiler support on the platform.
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Figure 5.2: Zero byte message rate on different strategies.

Table 5.2: Software Performance Counters information from last data point of the experiment

Serial Progress Concurrent Progress Concurrent Progress + Matching

Number of instances 1 10 20 1 10 20 1 10 20
Out-of-sequence messages 2,154,493 2,323,003 2,225,190 2,375,922 2,425,818 2,420,660 15,188 45 0
Out-of-sequence (%) 83.32% 89.98% 86.08% 91.89% 93.82% 93.62% 0.59% ≈ 0% 0%
Match time (ms) 2,732 2,622 2,738 8,553 7,944 8,069 476 430 389

The performance metrics obtained from the SPC is presented along with Figure 5.2 in

Table 5.2. For clarity and conciseness, I only present the information from the last data

point from the best result of each figure, at 20 thread pairs, 20 instances with the Dedicated

assignment strategy. In general, for serial progress, the SPCs show similar numbers of out-

of-sequence messages (up to 90%) with similar time spent in matching.

5.4.2 Concurrent Progress

Figure 5.2b presents the performance impact from concurrent progress. The difference with

the above experiment is the concurrent progress which basically allows multiple threads to

execute the progress engine simultaneously.

Concurrent progress hinders the performance instead of boosting it, even with increased

parallelism (Figure 5.2b). The results show a funneling effect as the number of threads

increases, regardless of the number of instances or the assignment strategy, just as

expected. The potential parallelism from concurrent progress is restricted and cannot

give a performance boost as long as the matching process remains a serial operation; the

approach effectively moves the bottleneck from the progress engine to the matching process

(Figure 5.1).
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The SPC information from Table 5.2 reveals that the MPI implementation is spending

up to 300% more time in matching comparing to the earlier experiment, which is consistent

with my expectation.

5.4.3 Concurrent Matching

This experiment relaxes the constraints of the matching, in hopes of improving upon

the previous experiments. To simulate a concurrent matching process, this experiment

creates multiple communicators, taking advantage of the matching logic in the OB1 PML,

with matching queues private to communicators. Since the pml/OB1 component in

Open MPI performs matching per-communicator, this effectively provides us with support

for concurrent matching.

Multirate–pairwise provides an option to assign a communicator per each pair of

communicating threads. With a unique communicator per thread pair along with concurrent

sends and concurrent progress, this part of the experiment represents the multi-threaded

performance when the contention in the matching process is minimal.

The results are demonstrated in Figure 5.2c. Even Round-robin assignment (solid lines)

shows performance improvement with the number of threads, a completely different outcome

from the earlier experiments. The instance assignment strategy seems to perform well even

after the number of threads is greater than the number of instances. For this strategy,

messages from the same communicator can be sent out from different instances. There are

chances that the receiver, as their threads extract the messages simultaneously from multiple

instances, will perform matching on the messages from the same communicator and introduce

some congestion (Figure 5.1).

Dedicated assignment gives the best performance as each thread always uses the same

network instance in addition to using the same communicator (dashed-lines). The blue

dashed line represents an ideal scenario with one-to-one mapping from thread to CRI to a

communicator. The performance is scaling with the number of threads but drops back down

with a large number of threads, suggesting other possible bottlenecks. The green-dashed line

shows the same performance scaling until the threads have to share instances (at 11 threads

and over) before dropping off similarly to the blue-dashed line.
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The information from the SPCs also shows drastic improvement over earlier experiments

as the number of out-of-sequence messages drops significantly after introducing more

instances. The match time is minimal as there is a guarantee for no contention on both

the instance and the matching process. However, using dedicated communicators for each

communication thread pair might not be practical for every application. Nonetheless, the

experiment successfully shows that the major bottleneck for multi-threaded MPI is the

matching process contention.

5.4.4 Message Overtaking

We can break the matching process into two parts: sequence number validation, and the

queue search to match messages with MPI requests. As described in Figure 2.5, out-of-

sequence messages force the MPI implementation to allocate memory to buffer the message

for processing later which is a costly operation in the critical path. This experiment

allows MPI to ignore the sequence number validation by providing the MPI info key:

mpi assert allow overtaking to the communicator, allowing MPI to ignore the sequence

number and therefore to immediately match every incoming message. This info key is not

novel: it has been intensely discussed in the MPI Forum and has been approved for inclusion

in the next version of the MPI standard. This study can serve as validation for the usefulness

of this info key in threaded scenarios.

Allowing the MPI implementation to match every incoming message immediately will

lead to high stress for the queue search. When using multiple tags, the queue search is

a linear operation where the cost increases with the queue length. When a message is

matched out of sequence, the average time to search the queue is increased as the request

associated with the message might be at the end of the queue. To fully reap the benefits of

message overtaking, the Multirate–pairwise is modified to post the receive with a wildcard

tag (MPI ANY TAG) to force the implementation to always match the incoming message

with the first posted receive request, skipping the queue search entirely.

This experiment represents the multi-threaded MPI performance when the cost of the

matching process is minimal. The same set of experiments from earlier are performed with

the tweak. The result is demonstrated in Figure 5.3.
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Figure 5.3: Zero byte message rate when the message ordering is not enforced

If we take a look at the serial progress performance (Figure 5.3a), for a single instance

(red lines), we can still see that increasing the number of instances helps in giving some

performance boost from the sender side. the message rate flattens out around 500K msg/s

and it does not drop with the increasing number of threads as the earlier experiment (Figure

5.2a). This suggests that the source of performance degradation in multi-thread MPI is

mostly from the matching process.

Although concurrent progress still shows the same performance drop from matching

congestion where multiple threads try to acquire the matching lock, the message rate still

flattens out around the same point as serial progress (Figure 5.3b). While in the last case

with both concurrent progress and concurrent matching (Figure 5.3c), removing the ordering

does not affect the performance because the matching process for this strategy is already

optimal.

5.4.5 Current State of MPI Threading

In this section, I take the improved performance from my proposed strategies and compare

with the different state-of-the-art MPI implementations on the same configuration of

Multirate–pairwise. To get a better understanding on where the threaded performance

is overall, I also compare with the process-based mode, where communications instead of

happening between threads now happen between processes placed on the same nodes as the

original threads.
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Ideally, running on the same hardware with the same communication pattern should

yield similar performance, regardless of whether processes or threads are used. Unfortu-

nately, as demonstrated in Figure 5.4, at the current stage of threading support in MPI

implementations, we are far from this ideal scenario.

The MPI implementations presented in this experiment are Intel MPI 2018.1 IMPI,

MPICH 3.3 Gropp (2002) and Open MPI 4.0.0 Gabriel et al. (2004) with and without

my modification. Each MPI implementation was compiled with GCC 8.3.0 with proper

optimization flags (except for Intel MPI which is only available as a pre-compiled binary

from the vendor).

Figure 5.4 highlights using a log-scale Y axis that from multi-thread standpoint, there

is little difference between MPI implementations (dashed lines), they all perform similarly

poorly. We can see a roughly 100% performance boost from the base implementation by

employing try-lock semantics with multiple CRIs (dark red), but these results should be put

in a larger context and compared with the process-to-process performance. The black dotted

line represents the CRI injunction with concurrent progress and concurrent matching, the

most optimistic scenario for communicating threads. While the design does give a significant

boost in performance, up to 10x compared with the base implementation, it still cannot

reach the same level of performance as the non-threading mode, potentially suggesting not

yet understood bottlenecks for multi-thread MPI.

5.4.6 RMA Performance

To test the performance of my implementation with one-sided MPI, the RMA-MT benchmark

is used for the measuring the performance. The experiments were run on the Trinitite system

at LANL using both Intel Knights Landing (KNL) and Haswell compute nodes. Open MPI

was configured to use the ugni Byte Transport Layer (BTL) and the rdma osc components.

The ugni btl provides support for multiple CRIs for one-sided communication only. By

default, the ugni btl will try to detect the number of cores available to the MPI process

and will attempt to create one instance per available core. In the case of the RMA-MT

benchmark, this creates 32 instances on Haswell nodes and 72 instances on KNL nodes.
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Figure 5.4: Zero byte message rate from different state-of-the-art MPI implementations.
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All tests were configured to bind each benchmark thread to a dedicated CPU core (-

x option), running from 1 to 32 threads on Haswell nodes, and to 64 threads on KNL

nodes, using the MPI Put operation (-o put) and MPI Win flush synchronization (-s flush)

with both round-robin and dedicated assignment strategy. This benchmark spawns a user-

specified number of threads that, for each message size, performs 1000 put operations. The

first thread then calls MPI Win sync to synchronize the window. The results for both

Haswell and KNL architectures appear in Figures 5.5a and 5.5b where the black horizontal

line in each sub-figure represents the theoretical peak message rate for that particular message

size.

The results show that the performance when using dedicated instances for threads

(triangles) significantly outperforms round-robin (square). The performance difference is

similar on both KNL and Haswell nodes. When using a dedicated thread instance the

performance of the RMA-MT benchmark scales almost perfectly with the number of threads.

The single instance performance (red) represents the performance before support was added

for multiple network instances where the performance drops with the increasing number of

threads due to the lock contention on a single instance.

There appears to be little benefit from concurrent progress in this configuration (dashed

lines). It is likely due to the absence of the matching process in one-sided communication.

5.5 Optimization Suggestions

In general, the MPI implementations could benefit from allocating more resources to threads

to allow them to operate simultaneously. There are several strategies to assign resources to

threads. The experiments confirm that the ideal approach is to have a one-to-one mapping

from thread to the resource (dedicated assignment), similar to a non-threading environment

where each process has exclusive access to the network resources.

For two-sided communication, the likelihood of out-of-sequence messages increases with

the number of threads, putting tremendous stress on the receiver side’s matching process.

Using an MPI info key to allow message overtaking from the application level might help
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Figure 5.5: Multi-threaded One-sided communication performance.
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in boosting the performance. However, it might only be suitable for some categories of

application that do not rely on message ordering, such as a task-based runtime.

The matching process remains one of the major bottlenecks for two-sided communication

as it is a critical section that has to be protected. This study further demonstrates the

potential of multi-threaded MPI if the matching process is parallelized. Although it is

possible to argue that all the protection mechanisms can be optimized, it remains true that

the matching, as imposed by the MPI standard, is inherently sequential, and remains a

burden and a performance bottleneck. Dropping the matching requirements for messages

will either move the programmability of the MPI two-sided communications toward one-sided

communications, which come with their own set of constraints, or push in the direction of

Active Message, a field that has received little interest from the MPI community.

One-sided communication reaps the greatest benefit from more allocated resources. Since

there is no matching process for one-sided communication, the performance does not suffer

from the funneling effect on the matching process serialization. The experiment shows good

performance scaling with the number of threads. However, one-sided communication imposes

the burden of synchronization and programming complexity on the users.

5.6 Conclusion

With the hope to make MPI a more suitable communication infrastructure for mixed

programming paradigms (MPI+X), this chapter assessed the performance of two-sided

communications on several MPI implementations in a multi-threaded scenario. Confronted

with the abysmal performance gap between threads and processes based communications, I

proposed several strategies to address this performance gap, and implemented and evaluated

them in the Open MPI library, looking at their impact on both one and two-sided

communications. In summary, my contributions from this chapter are the following.

• Communication Resource Instance (CRI): Allowing MPI implementation to

allocate multiple instances of resources and assign them to threads, enabling them

to perform communication operation simultaneously. I proposed two assigning

strategies: round-robin and dedicated and demonstrated that the designs are capable of
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achieving reasonable performance scaling for the multi-threaded scenario. In two-sided

communication, the CRI alone achieved 2× performance of the base implementation.

• Concurrent Progress Engine: I expanded on my thread synchronization object

work from chapter 4 to allow multiple threads to execute the progress engine

concurrently. However, with the concurrent progress engine, I encounter the massive

lock contention from the matching process. From the experiment, I showed that with

the parallel matching process in a multi-threaded scenario, I can achieve up to 10×

performance of the base implementation.

• Matching Process Impact: I showed that the proposed CRI design, when used in

multi-threaded one-sided communication, can achieve up to 200× the performance,

when comparing to the original design on both Haswell and KNL systems. From the

experiment results, I suggested that one-sided communication is more suitable to get

the benefit from thread parallelism. However, without implicit synchronization, it

might be more challenging for the user to switch from the two-sided communication

model.

I showed that it is possible to obtain better message exchange rates, but the imposed

requirements might weaken the MPI programming model and not be suitable for general

purpose programming. I have also proposed a few potential additions to the MPI standard

that would allow for better threading support, topics I plan to continue to investigate in the

future.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The multi-threaded MPI paradigm is still not widely adopted despite being well de-

fined in MPI standard version 2.1 from 2008. It has been a common understanding

that the MPI implementation suffers from performance degradation when operating in

MPI THREAD MULTIPLE mode, and the evaluations presented in this study reinforced

this conclusion. Despite high interest in multi-threaded MPI, the performance issue leads to

a hindrance in adopting this paradigm. This study contributes to the efforts in threading

performance optimization in multiple steps, from reducing the cost of serialization to fully

harnessing the power of thread parallelism. In summary, this study provides the following

solutions to the problems in multi-threaded MPI optimization.

• A Flexible Evaluation Tool: Currently, there are several trusted multi-threaded

MPI benchmarks available. Based on the surveys, most of the studies on multi-

threaded MPI utilize these trusted benchmarks as their evaluation tools. However,

the existing benchmarks do not capture multiple aspects of the multi-threaded

communication. This study observed the shortcomings of the existing benchmarks

and proposed a novel flexible benchmark. The Multirate benchmark provides multiple

communication patterns such as one-to-one, one-to-many, many-to-one and many-to-

many. Each communication pattern stresses the MPI implementation at different
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points of execution, allowing the benchmark to expose the bottleneck of the MPI

implementation effectively. The benchmark also provides a quick comparison between

the process and the thread abstraction on the same hardware resources, to potentially

expose the bottlenecks of multi-threaded MPI implementations. I demonstrate the

potential of the Multirate benchmark by utilizing it to evaluate the current state-of-

the-art MPI implementations in chapter 3 and further use Multirate as one of the

evaluation tools for multi-threaded MPI optimization in this study.

• Efficient Thread Synchronization: This study proposed and implemented a design

to provide the MPI implementations with more control over user-level threads, and

allow them to redirect threads to execute useful tasks while waiting for their requests

to complete instead of racing against one another in Chapter 4. This portable design

can increase threads utilization for any MPI implementation. For demonstration, in

this study, the design is utilized to reduce lock contention into the MPI progress engine,

and shows up to 7× increased performance in shared memory, and up to 3× increased

performance in inter-node communication when comparing to the legacy design. The

thread synchronization object design also reduces the unnecessary context switching

in thread over-subscription scenarios. Finally, I explore several potential usages of the

synchronization object, discussed ongoing collaborations with other researchers, and

presented several prototypes and preliminary results.

• Resources Management for Threads: I proposed another portable design of

Communication Resources Instances (CRIs) to pack the necessary resources for

communication into a single object in Chapter 5. The MPI implementation can allocate

multiple instances to satisfy the demand from multiple threads. The CRI design

allows MPI implementations to mitigate the resource contention that usually comes

from the original single resource design. In this study, I demonstrate that increasing

resources through CRI can boost multi-threaded communication performance. For

two-sided communication, the CRI design improves the performance significantly (40-

100% improvement from the original design).
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• Resource Assignment: This study proposed a centralized design inside the MPI

implementation to oversee the resource assignment to threads. I present two strategies,

round-robin and dedicated. The evaluation shows that dedicated assignment yields

better performance than the round-robin strategy. However, without the standardized

interoperability between MPI and threading frameworks, the implementation has to

rely on thread-local storage support from the compiler or the threading framework

itself, which might not be always available on the system.

• Concurrent Matching Process: There are ongoing efforts in improving the

efficiency of the MPI message matching process, but the process still remains a serial

operation. In a multi-threaded scenario, the matching process becomes a major

bottleneck. This study showed the significant impact of the matching process by

simulating a parallel matching process by utilizing multiple MPI communicators in

Open MPI. In Chapter 5, the evaluation shows that when the matching process

is parallelized, multi-threaded MPI can benefit more from the thread parallelism.

The experiment, with my proposed multi-threaded optimization, showed up to 10×

improvement over the original design in two-sided communication. Furthermore, in

one-sided communication where the matching process is not required, the results

showed that my optimization can achieve up to 200× speedup from the original design.

Practically, it is still a major challenge to design a parallel matching process for general

cases. Nonetheless, this study presented the flaw in the two-sided communication

design of MPI when operating in the multi-threaded environment.

This study emphasizes the importance of thread parallelism in MPI by demonstrating

that multi-threaded MPI, with my improved design, can perform at up to 10× better than the

legacy implementation in inter-node communication. My study strongly suggested that the

matching process is one of the remaining roadblocks that still creates performance disparities

between MPI in process mode and in thread mode.

The current remedy from the MPI standard is to relax the constraints of the matching

process. The standard-provided communicator info key can be used to direct the MPI

implementation to ignore the FIFO ordering for the messages—greatly reducing the
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complication of the matching process—but the approach might not be suitable for every

application. The user can choose to avoid the matching process entirely by switching into

the one-sided communication API. However, the one-sided communication comes with its

own set of challenges such as platform portability, the burden of synchronization for the

user, which can increase the complexity of the application code base, and increasing the

complication for large-scale applications.

The contributions from Chapter 3 and 5 have been submitted to ExaMPI 2019 and

published at IEEE Cluster 2019 respectively. The optimization proposed in this study

has been partially incorporated into Open MPI version 4.0.0, and fully incorporated into

Open MPI master branch, expected to be released with Open MPI 5.0.0 in the near future.

6.2 Future Work

The interest in utilizing multi-threaded MPI is likely to increase, due to the rising number

of CPU cores per node, and the availability of high-performance threading frameworks such

as OpenMP and Argobots. The challenges are likely to be on the MPI developers to deliver

the best threading communication performance and maintain the user’s interests. The

work in this study has established that in order to gain better communication performance

for multi-threaded MPI, the MPI implementation has to adopt a design that allows more

thread concurrency, and move away from the bulk-synchronization design. While this work

implements the solutions for Open MPI, the ideas can be easily extended to other MPI

implementations such as Intel MPI, MPICH, and MVAPICH.

This study showed that despite the fact that the MPI message matching design is

performing well in non-threading environments, it is seriously flawed when operating in

a multi-thread environment. The MPI threading support is defined as an extension to the

original MPI standard, forcing the multi-threaded environment, with a different nature, to

follow the same set of constraints which can limit its capability. I strongly believe that

the efforts to define a better threading interface—such as the endpoint proposal Mpi-Forum

(2016), or a standardized method for passing thread information between the MPI and
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the threading frameworks—can significantly increase the optimization opportunity for both

sides, allowing better overall performance for multi-threaded HPC applications.

Despite the significant performance improvements from the work of this study, the

evaluation showed that the multi-threaded MPI is still far from being able to attain

the same level of performance as its non-threading counterpart. This indicates more

undiscovered bottlenecks in the multi-threaded MPI implementations and leaves room for

more optimization in the future. Moving forward, I plan to study several matching designs

and incorporate an atomic, lock-free data structure to mitigate the need for unnecessary bulk

synchronization, reducing the cost of the matching process in the multi-thread environment.

I also plan to continue the efforts in utilizing the thread synchronization object design such

as the user-level extension, and to pursue ongoing collaborations to incorporate the design

into HPC applications such as PaRSEC.
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A Multirate Benchmark User Guide

In this section, I present the user guide of the Multirate benchmark and provide the basic

information and specification of the benchmark. The benchmark is publicly available through

Github.com.

Installation

The Multirate benchmark is available as a git repository on Github.com. 1 To install,

simply clone the directory and compile with the provided makefile. Multirate is a standalone

application which does not require any additional library, other than the MPI library to

compile.

Measuring MPI Performance

The benchmark offers 3 modes of operations; (1) process mode – a process to process

communication, (2) thread mode – a thread to thread communication, and (3) hybrid mode

– a combination of process and thread. To select the mode of operation, the user simply

provide 4 variables through the command-line arguments:

• Number of sender process

• Number of sender thread

• Number of receiver process

• Number of receiver thread

The provided number will be used to create the proper communication entity for

communication. The benchmark provides two major communication pattern; pairwise

and all-to-all. The user can select the communication pattern through the command line

arguments. If not, the default communication pattern is pairwise. For example, if the user

desired to measure the MPI performance in thread mode, with 4 thread pairs, in pairwise

1https://github.com/ICLDisco/multirate.
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communication pattern. The number of send process and receive process should be 1, and

the number of send thread and receive thread should be 4.

The benchmark is expecting to be mapped by core. In example, if each node has 4 CPU

cores, rank 0-3 should be mapped to the first node, rank 4-7 should be on the second. The

evaluation will be invalid if the mapping is incorrect. In case of thread mode, the MPI should

spawn each rank on each node and bind all the threads to all available cores. Failure to bind

the thread correctly might result in incorrect evaluation. Listing 1 presented all available

command-line options. Listing 2 demonstrates the example of a run in thread mode (20

threads) with pairwise communication pattern, using window size of 128 and run for 1000

iterations. The result presented the number of sender and receiver entities in process and

threads, window size, bandwidth, latency and message rate.

1 Communication Pattern ( p ick one ) :
2 −p : Operate in Pa i rwi se mode . ( d e f au l t )
3 −a : Operate in A l l t o a l l mode .
4
5 A l l t o a l l mode opt ions :
6 −n (k ) : number o f sender p r o c e s s e s
7 −m (k) : number o f r e c e i v e r p r o c e s s e s
8 −x (k ) : number o f sender threads
9 −y (k ) : number o f r e c e i v e r p r o c e s s e s
10
11 Workload Adjustment :
12 −t : num thread pair ( pa i rw i s e only )
13 −s : message s i z e
14 −w : window s i z e .
15 − i : number o f i t e r a t i o n
16
17 Addi t iona l t e s t :
18 −c : use separated communicator f o r each pa i r .
19 −o : i gno re MPI message o rde r ing ( a l l ow ove r t ak ing )

Listing 1: Available Command-line Options for Multirate Benchmark
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1 $> (MPIRUN) . / mu l t i r a t e −s 0 −w 128 − i 1000 −t 20 −p
2 $> 1 20 1 20 0 128 0 .00 Gbps 7 .13 usec 140199.26 msg/ s

Listing 2: Example of command-line arguments.

B Thread Synchronization Object MPI Extension

The proposed MPI extension for the user-level to access the thread synchronization object is

presented in this section. The extension allows the user to manipulate the synchronization

object directly, giving them more control over the object and enabling them to utilize it to

their benefits.

User-level API

1 typede f s t r u c t ompi mpix sync s ∗MPIX Sync ;
2
3 OMPI DECLSPEC in t MPIX Sync init (MPIX Sync ∗ sync ) ;
4 OMPI DECLSPEC void MPIX Sync free (MPIX Sync ∗ sync ) ;
5
6 OMPI DECLSPEC in t MPIX Sync attach (MPIX Sync sync ,
7 MPI Request ∗ request ,
8 void ∗ complet ion data ) ;
9
10 OMPI DECLSPEC in t MPIX Sync waital l (MPIX Sync sync ) ;
11 OMPI DECLSPEC in t MPIX Sync size (MPIX Sync sync ) ;
12 OMPI DECLSPEC in t MPIX Sync probe (MPIX Sync sync ) ;
13
14 OMPI DECLSPEC void ∗ MPIX Sync query (MPIX Sync sync ,
15 MPI Status ∗ s t a tu s ) ;
16
17 OMPI DECLSPEC in t MPIX Sync query bulk ( i n t incount ,
18 MPIX Sync sync ,
19 i n t ∗outcount ,
20 void ∗∗ cbdata ,
21 MPI Status ∗ s t a tu s ) ;
22
23 OMPI DECLSPEC void MPIX Progress ( void ) ;
24 OMPI DECLSPEC extern void ∗MPIX SYNC EMPTY;
25 OMPI DECLSPEC extern void ∗MPIX SYNC NO COMPLETION DATA;

Listing 3: Proposed MPI extension.
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Usage

The synchronization object has to be initialized with MPIX Sync init before using and free

through MPIX Sync free before MPI Finalized is called. Once initialized, the synchroniza-

tion object can be reused forever until freed. There are multiple ways to interact with the

synchronization object.

• MPIX Sync attach: The attach API takes 3 arguments; (1) the initialized syn-

chronization object, (2) an MPI request, and (3) the completion data from the user

or MPIX SYNC NO COMPLETION DATA if the user does not want the API to

return anything. Once the user attached the MPI request to the synchronization

object, the user should only check for the completion of the operation of the

request through the query API. Once the request becomes completed, it is detached

automatically from the synchronization object. The request can still be cancelled

through MPI Request cancel. If the request is cancelled before its completion, no

completion event will be generated and the request is detached from the associating

synchronization object.

• MPIX Sync query: Query the synchronization object for single completion event.

Once an attached request becomes completed, a completion event is generated on the

associating synchronization object. The user can query for completion event with this

API. If there is completion events, the completion data from the first completed event is

returned to the user. In case of no completion, the API returns MPIX SYNC EMPTY

instead. The MPI status is also provided through the argument. The functionality is

similar to MPI Testany.

• MPIX Sync query bulk: Query the synchronization object for multiple completion

events. Constantly querying single completion event at a time can become expensive.

This API provides the similar functionality to MPI Testsome where the users can

provide a number of completion they need and the API will return at most that number

of completion events.
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• MPIX Sync waitall: Similar to MPI Waitall, this API is a blocking call, wait for

every attached request to be completed. The completed operations still generate

completion events unless the user provide MPIX SYNC NO COMPLETION DATA

as their completion data.

• MPIX Sync size: The API returns the number of incomplete requests attached to

the synchronization object. The API is useful in the case of quick checking the overall

status of the operations. The operation cost is O(1) as it reads the reference count on

the synchronization object.

• MPIX Sync probe: The API returns the current number of completion events

associated with the synchronization object. The API is useful in the case of performing

a quick check on the overall status of the operations. The operation cost is O(1) as it

reads the length of the completion queue associating with the synchronization object.

Example

I present 2 hello world examples for the MPI extension. Listing 4 illustrates MPIX Sync query

usage between 2 MPI process, the query has the similar usage as MPI Testany while Listing

5 shows the usage of MPIX Sync query bulk extension in the similar manner to the standard

MPI Testsome, with the printout of the user-provided completion data.
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1 #inc lude <s t d i o . h>
2 #inc lude <uni s td . h>
3 #inc lude ”mpi . h”
4 #inc lude ”mpi−ext . h”
5
6 i n t main ( i n t argc , char ∗∗ argv ) {
7
8 i n t me ;
9 char buf [ 1 0 0 0 0 ] ;
10
11 MPI Request r eque s t ;
12 MPI Status s t a tu s ;
13
14 MPIX Sync sync ;
15
16 MPI Init(&argc , &argv ) ;
17 MPI Comm rank(MPICOMMWORLD, &me) ;
18
19 MPIX Sync init(&sync ) ;
20
21 i f (me == 1) {
22 MPI Isend ( buf , 10000 , MPI BYTE, 0 , 42 , MPICOMMWORLD, &reques t ) ;
23 } e l s e {
24 MPI Irecv ( buf , 10000 , MPI BYTE, 1 , 42 , MPICOMMWORLD, &reques t ) ;
25 }
26
27 MPIX Sync attach ( sync , &request , ( void ∗) 1) ;
28 void ∗ r e t = MPIX SYNC EMPTY;
29 whi l e ( r e t == MPIX SYNC EMPTY) {
30 r e t = MPIX Sync query ( sync , &s ta tu s ) ;
31
32 }
33
34 MPIX Sync free(&sync ) ;
35 MPI Final ize ( ) ;
36 re turn 0 ;
37 }

Listing 4: MPIX Sync query example
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1 #inc lude <s t d i o . h>
2 #inc lude <uni s td . h>
3 #inc lude ”mpi . h”
4 #inc lude ”mpi−ext . h”
5
6 i n t main ( i n t argc , char ∗∗ argv ) {
7
8 i n t me ;
9 char buf [ 1 0 0 0 0 ] ;
10
11 MPI Request r eque s t s [ 1 0 0 0 ] ;
12 MPI Status s t a tu s [ 1 0 0 0 ] ;
13
14 MPIX Sync sync ;
15
16 i n t provided ;
17 MPI In i t thread(&argc , &argv , MPI THREAD MULTIPLE, &provided ) ;
18 MPI Comm rank(MPICOMMWORLD, &me) ;
19
20 MPIX Sync init(&sync ) ;
21
22 i f (me == 1) {
23 f o r ( i n t i =0; i <1000; i++) {
24 MPI Isend ( buf , 10000 , MPI BYTE, 0 , 42 , MPICOMMWORLD, &reque s t s [ i

] ) ;
25 MPIX Sync attach ( sync , &r eque s t s [ i ] , ( void ∗) i ) ;
26 }
27 } e l s e {
28 f o r ( i n t i =0; i <1000; i++) {
29 MPI Irecv ( buf , 10000 , MPI BYTE, 1 , 42 , MPICOMMWORLD, &reque s t s [ i

] ) ;
30 MPIX Sync attach ( sync , &r eque s t s [ i ] , ( void ∗) i ) ;
31 }
32 }
33
34 i n t n=100 , ncomplete , c=0;
35 void ∗ cbdata [ 1 0 0 ] ;
36 whi l e ( c != 1000) {
37 MPIX Sync query bulk (n , sync , &ncomplete , cbdata , s t a tu s ) ;
38 i f ( ncomplete !=0) {
39 f o r ( i n t i =0; i<ncomplete ; i++)
40 p r i n t f ( ”%p ” , cbdata [ i ] ) ;
41 p r i n t f ( ”\n” ) ;
42 }
43 c+=ncomplete ;
44 }
45
46 MPIX Sync free(&sync ) ;
47 MPI Final ize ( ) ;
48 re turn 0 ;
49 }

Listing 5: ”MPIX Sync query bulk example”
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C MPI One-sided Window Operations

1 i n t MPI Win allocate (MPI Aint s i z e , i n t d i sp un i t , MPI Info in fo ,

2 MPI Comm comm, void ∗baseptr , MPI Win ∗win )

3

4 i n t MPI Win al locate shared (MPI Aint s i z e , i n t d i sp un i t , MPI Info in fo ,

5 MPI Comm comm, void ∗baseptr , MPI Win ∗win )

6

7 i n t MPI Win attach (MPI Win win , void ∗base , MPI Aint s i z e )

8

9 i n t MPI Win complete (MPI Win win )

10 i n t MPI Win create ( void ∗base , MPI Aint s i z e , i n t d i sp un i t , MPI Info in fo ,

11 MPI Comm comm, MPI Win ∗win )

12

13 i n t MPI Win create dynamic (MPI Info in fo , MPI Comm comm, MPI Win ∗win )

14 i n t MPI Win detach (MPI Win win , const void ∗base )

15 i n t MPI Win fence ( i n t a s s e r t , MPI Win win )

16

17 i n t MPI Win flush ( i n t rank , MPI Win win )

18 i n t MPI Win f lush a l l (MPI Win win )

19 i n t MPI Win f lush loca l ( i n t rank , MPI Win win )

20 i n t MPI Win f l u sh l o c a l a l l (MPI Win win )

21

22 i n t MPI Win free (MPI Win ∗win )

23

24 i n t MPI Win get group (MPI Win win , MPI Group ∗group )

25 i n t MPI Win get info (MPI Win win , MPI Info ∗ i n f o u s ed )

26

27 i n t MPI Win lock ( i n t lock type , i n t rank , i n t a s s e r t , MPI Win win )

28 i n t MPI Win lock al l ( i n t a s s e r t , MPI Win win )

29

30 i n t MPI Win post (MPI Group group , i n t a s s e r t , MPI Win win )

31

32 i n t MPI Win set info (MPI Win win , MPI Info i n f o )

33

34 i n t MPI Win shared query (MPI Win win , i n t rank , MPI Aint ∗ s i z e ,
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35 i n t ∗ d i sp un i t , void ∗ baseptr )

36

37 i n t MPI Win start (MPI Group group , i n t a s s e r t , MPI Win win )

38 i n t MPI Win sync (MPI Win win )

39 i n t MPI Win test (MPI Win win , i n t ∗ f l a g )

40

41 i n t MPI Win unlock ( i n t rank , MPI Win win )

42 i n t MPI Win unlock al l (MPI Win win )

43

44 i n t MPI Win wait (MPI Win win )

Listing 6: Window operations from the MPI standard 3.1
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