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ABSTRACT 

Biological invasions have put growing threats on ecosystems and human society, 

exacerbate effects of climate change, and cause economic loss globally. Modeling 

invasion risk and processes of pest species are essential for early prediction and warning 

and are increasingly used for detection and control of invasion outbreaks. Kudzu 

bug, Megacopta cribraria (F.), native to Asia, has become a pest in both agricultural and 

urban areas since its initial discovery in the United States (U.S.) in 2009. As the 

establishment of kudzu bug is relatively new in the U.S., its potential invasion risk in the 

Americas, spread dynamics, and factors that may impact its spread, are not well 

understood. Thus, this research was intended to address these gaps. This project also 

evaluated methods that can better estimate invasion risk and dynamics. Findings of this 

research can guide management of kudzu bug and also provide guidance on approaches 

to estimate invasion risk and dynamics.  

High invasion risk of kudzu bug was predicted by species distribution models 

(SDMs) in eastern U.S., Central America, and central South America. Kudzu bugs 

generally inhabit warm (annual mean temperature around 15℃) and humid (annual mean 

precipitation around 1300mm) regions. Due to non-adaptive niche shift, kudzu bugs 

occupied different environmental conditions between the native and invaded ranges. 

Using kudzu bug as a case study and seven SDMs, non-adaptive niche shift does not 

necessarily challenge transferability of SDMs. Additionally, the spatial range where PAs 

are extracted can significantly impact both interpolation and transferability of SDMs.  
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Geopolitical-unit invasion record is capable of estimating invasion dynamics. 

Boundary displacement methods have the best estimations for both overall rate and 

spread dynamics. However, for spread without a clear infestation outline, area-based 

regression methods can be good alternatives for estimating invasion dynamics. The 

spread rate of kudzu bug was 76 km/year during 2010-2016, however, the rate varied 

largely among different regions (45 - 144 km/year). The availability of host plants seemed 

to play an important role on the spread of kudzu bug in the southern region, while the low 

temperature in January was the most important factor in the northern region.  
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PREFACE 

 

 

“The measure of who we are is what we do with what we have.” 

-- Vince Lombardi 
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CHAPTER I: INTRODUCTION AND LITERATURE REVIEW  
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1.1 Biological Invasions  

As a major component of global change, biological invasions continue to threaten 

ecosystems and human societies, exacerbate effects of climate change, and cause 

economic loss globally (Paini et al., 2016; Pejchar & Mooney, 2009; Walsh et al., 2016). 

Invasive species cause public health issues, threaten endangered species, cause 

biodiversity loss in their invaded ranges, and cause loss to agriculture, forest, society, 

and other segments of economy (Pimentel et al., 2005). For example, the economic loss 

caused by invasive species annually has been estimated to be at least $120 billion in the 

United States (U.S.) (Pimentel et al., 2005) and £1.7 billion in Great Britain (Williams et 

al., 2010). Many endangered species are threatened by invasive species worldwide 

(Gurevitch & Padilla, 2004; Pimentel et al., 2005). Gurevitch and Padilla (2004) 

summarized that among the species listed in the International Union for Conservation of 

Natural Resources Red List, 882 terrestrial species, 59 freshwater species, and 87 marine 

species are endangered by invasive species. Management of invasive species, therefore, 

becomes essential to minimize their negative impacts. Management, including preventing 

introductions and early detection, becomes important to minimize the impacts of invasive 

species.  

This research focused on kudzu bug, Megacopta cribraria (F.) (Hemiptera: 

Heteroptera: Plataspidae), which is a relatively new invasive species in the U.S. However, 

it causes economic losses in soybean, and is also an urban pest. Research on kudzu 

bugs in this project can facilitate early detection, monitoring, and integrated pest 

management.  
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1.2 Establishment and Assessment of Kudzu Bug in the United States 

In 2009, a new invasive insect, kudzu bug, was first reported in the U.S. in Georgia 

(Suiter et al., 2010). Kudzu bug is named after its primary plant host, the Asian kudzu 

vine (Pueraria montana (Lour.) Merr.), which is in the pea family (Fabaceae).  As a 

species introduced into the U.S. in the 1870s, kudzu has a wide distribution in the U.S., 

especially in the southeastern region (Figure 1.1). However, kudzu bug was reported to 

occur on 33 plant species and to feed on at least 9 plant species in the U.S. (Gardner et 

al., 2013). Kudzu bug was first described by Fabricius (1798) and is native to Asia (Eger 

et al., 2010). Kudzu bug is the only known species in the family Plataspidae to occur in 

the Americas (Ruberson et al., 2013). Since its invasion, kudzu bug has spread quickly 

throughout the southeastern U.S. By the end of 2018, kudzu bug had been confirmed in 

13 states (EDDMapS 2019, Figure 1.2).  
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Figure 1.1 Known distribution of kudzu in the U.S. (EDDMapS, 2019). 

 
 

 

Figure 1.2 Known distribution of kudzu bug in the U.S. (County colors represent first year of detection in 
that County).  



 
 
 

5 

1.2.1 Invasion Risk Modeling  

Distribution Modeling of Invasive Species  

Modeling and predicting invasion processes of pest species are essential for early 

prediction and warning (Sutherst, 2003) and are increasingly used for detection and 

control of invasion outbreaks (Václavík & Meentemeyer, 2009). Invasive pest modeling is 

critical to manage, mitigate or prevent the infestation of invasive pest species (Gallien et 

al., 2010). The ecological niche-based methods have widely been used to model the 

potential geographic distribution of invasive species. Hutchinson (1957) described the 

ecological niche as a multi-dimensional environmental space where both abiotic and 

biotic factors permit positive growth of species. The ecological niche can be furthered 

described as the fundamental niche (FN) and the realized niche (RN). FN delineates the 

abiotic environmental conditions that allow an organism to survive, while RN describes 

the set of conditions actually occupied by a species after interacting with other species 

(Hutchinson, 1957). Compared to RN, FN only considers abiotic factors and is easily to 

measure, thus FN or a subset of FN has been increasingly used to model the potential 

geographic extent of targeted species (Guisan & Zimmermann, 2000; Soberón & 

Peterson, 2005). Niche-based distribution models construct relations between the 

occurrences of species with various environmental features (Randin et al., 2006). 

As kudzu bug is a relatively new invasive insect, adequate research has not been 

available to predict the invasion risk of kudzu bug in North and South Americas. Although 

the climatic preference of kudzu bug is also not fully understood (Gardner et al., 2013; 
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Zhang et al., 2012), the knowledge could contribute to its early warning and detection in 

new regions, as well as provide information on pest ecology. 

Transferability of Distribution Models for Invasive Species  

Estimating potential biological invasion is an important tool to manage non-native 

species. To predict the potential invasion pattern of a given species in a new range, native 

occurrence information is generally used in species distribution modeling (SDM). Thus, 

successfully predicting invasion patterns closely relies on the transferability of models 

from native ranges to invaded ranges. However, transferability of SDMs can be 

challenged by niche shift of an invasive species in its new spatial range (Broennimann et 

al., 2007; Early & Sax, 2014; Parravicini et al., 2015). Soberón and Peterson (2011) 

suggested that, in some cases, the “niche shift” is more likely a result of differences in 

environmental conditions, or environmental space anisotropy, between two spatial ranges 

rather than a true adaptive niche shift of species. The difficulty in distinguishing adaptive 

from non-adaptive niche shift continues to cause concerns when considering the 

transferability of SDMs.  

When estimating potential invasion patterns with presence-only data, the spatial 

range from which pseudo-absences (PAs, also called background data) are extracted 

certainly impacts the transferability of SDMs (Phillips, 2008; Barbet‐Massin et al., 2012). 

However, a quantitative assessment of the impact of PAs on both interpolations and 

transferability of commonly used models is lacking. This information is important to 

consider, especially when niche shift is observed between the two ranges. 
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1.2.2 Estimating Spread Dynamics of Invasive Species  

Modeling invasion dynamics is also important to the management of invasive 

species, as it facilitates prediction of spatial and temporal invasion risks of the species, 

enhances early detection, guides the construction of early warning systems, and 

determines important factors affecting the invasions (e.g., Liang et al., 2019; Paini et al., 

2016; Stohlgren & Schnase, 2006). In practice, estimating spread rates of invasive 

species has been conducted on various species on all spatial scales. For research at 

large scales, such as regional, continental, or even global scales, researchers usually 

have to collect all available records from online databases, published research, surveys, 

or field sampling (e.g., Masciocchi & Corley, 2013; Pyšek et al., 2008; Suarez et al., 2001). 

Consequently, data for large-scale research usually has coarse and non-unified 

resolution, whereas geopolitical-unit level data are usually the most abundant and 

available records of invasive species at such scale (Evans & Gregoire, 2007; Liebhold et 

al., 1992; Tobin et al., 2007; Tobin et al., 2015).  

Researchers worldwide have used geopolitical-unit records to estimate invasion 

rates of various species (e.g., Evans & Gregoire, 2007; Horvitz et al., 2017; Perrins et al., 

1993). Multiple methods, including regression, boundary displacement, and minimum 

spread distance methods, have been commonly used. Several researchers compared the 

accuracy of these common methods to estimate spread of invasive species (e.g., Gilbert 

& Liebhold, 2010; Tobin et al., 2015). However, existing research only compared the 

overall estimated rate (Gilbert & Liebhold, 2010; Tobin et al., 2015). Spread of invasive 

species, especially at large scales, is commonly complex due to spatial heterogeneity 
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and stochastic events, such as long distance jump dispersal (LDJD) (Hastings et al., 

2005; Pyšek et al., 2008). Estimating spreads with geopolitical-unit data, however, further 

increases the uncertainties, as there can be large variations in the sizes of geopolitical 

units (Hastings et al., 2005; Pyšek et al., 2008). Consequently, spread rates possibly vary 

in different spatial regions and temporal periods. Thus, compared to one single overall 

spread rate, estimating spread dynamics is more informative to understanding invasions 

(Hastings et al., 2005).  

Currently, research is lacking on a comprehensive evaluation of common methods 

to estimate both overall rate and spread dynamics with geopolitical-unit invasion record. 

Additionally, as the establishment of kudzu bug is relatively new in the U.S., the invasion 

dynamics and the factors that impact its spread are not well understood. Consequently, 

one of the objectives is to address these research gaps.  

1.3 Aims and Objectives 

Aims of this project include: 1) modeling the potential invasion risk of kudzu bug 

with niche-based SDMs, 2) assessing the transferability of SDMs with non-adaptive niche 

change and impact of PAs using kudzu bug as a case study, 3) evaluating performances 

of commonly used methods to estimate invasion dynamics with geopolitical-unit level 

record, and 4) estimating spread dynamics of kudzu bug with geopolitical-unit level data.  

Three objectives are associated with the first research aim: 1) examining if the 

invaded populations of kudzu bug in the U.S. occupy the same environmental space as 

the native populations in Asia, 2) predicting the potential invasion of kudzu bug in North 
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and South America with niche-based models, and 3) analyzing the climatic preference of 

kudzu bug. 

For the second aim, my research objectives include: 1) evaluating the accuracy 

and transferability of commonly used SDMs with kudzu bug under non-adaptive niche 

shift between native and invaded ranges, and 2) analyze how model performance is 

affected by use of PA samples from outside the native range of the species. 

To address the third aim, which was to evaluate performances of commonly used 

methods to estimate invasions, I conducted analysis and comparison incorporating the 

following aspects: 1) the accuracy of commonly used methods to estimate spread 

dynamics with irregularity and stochasticity in spread, 2) the impact of the size of 

geopolitical unit on each method, and 3) the similarities of all methods to estimate spread 

rate and dynamics. 

Regarding the fourth aim, which was to estimate the spread dynamics of kudzu 

bug in the U.S., I first estimated the spread rate of kudzu bug during years 2010-2016. I 

then determined important spatial factors that influenced the spread of kudzu bug to 

provide information for early detection and management of kudzu bug.  
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CHAPTER II: PREDICTING THE POTENTIAL INVASION OF KUDZU 

BUG, MEGACOPTA CRIBRARIA (HETEROPTERA: PLATASPIDAE), IN 

NORTH AND SOUTH AMERICA AND DETERMINING ITS CLIMATIC 

PREFERENCE 

 

 

 

  



 
 
 

11 

This chapter is a reformatted version of a paper by the same name published in Biological 

Invasions by Liang, W., Tran, L., Washington-Allen, R., Wiggins, G., Stewart, S., Vogt, J., 

& Grant, J. 

Liang, W., Tran, L., Washington-Allen, R., Wiggins, G., Stewart, S., Vogt, J., & Grant, J. 

(2018). Predicting the potential invasion of kudzu bug, Megacopta cribraria (Heteroptera: 

Plataspidae), in North and South America and determining its climatic 

preference. Biological Invasions, 20, 2899-2913.  

2.1 Abstract 

Modeling potential invasion of an introduced organism is a critical tool for early 

management of damaging species, such as kudzu bug, Megacopta cribraria (F.) 

(Hemiptera: Heteroptera: Plataspidae). To predict the potential invasion of kudzu bug in 

North and South America, the species distribution models Genetic Algorithm for Rule-set 

Production (GARP) and Maximum Entropy (Maxent) were used. The D metric was used 

to test the niche equivalency and similarity between native and invaded populations of 

kudzu bug. Results suggested that kudzu bugs currently occupied unequal environmental 

spaces between the two ranges. Therefore, distribution models using GARP and Maxent 

were constructed using occurrences in both native and invaded ranges. Area under the 

curve (AUC), true skill statistics (TSS), and omission rate (OR) were used to evaluate and 

compare the models. Results indicated both models had good performance, but Maxent 

(AUC=0.971, TSS=0.946, OR=0.019) performed better than GARP (AUC=0.922, TSS = 

0.860, OR=0.037). This research confirmed the effectiveness of using occurrence data in 

both ranges to predict potential invasions. Kudzu bugs prefer warm (annual mean 
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temperature around 15 ℃ ) and humid (annual mean precipitation around 1300mm) 

regions. Distribution models generated by both methods indicated similar regions with 

high invasion risk. Management programs that include quarantine and prevention 

measures are suggested for these regions to avoid outbreaks of kudzu bug.  
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2.2 Introduction 

Species distribution models (SDMs) or ecological niche models have been 

commonly used to predict the potential distribution of species for various purposes, 

including biological conservation, invasion prediction, paleobiology, spatial epidemiology, 

and impacts of climate change on biodiversity (Franklin, 2013; Guisan & Thuiller, 2005; 

Mainali et al., 2015; Svenning et al., 2011). SDMs identify relationships between observed 

occurrences and environmental variables by using statistical models or theoretically 

derived response curves (Guisan & Thuiller, 2005; Elith & Franklin, 2013). The ecological 

niche, more specifically the fundamental niche (FN), or a subset of it, has been 

increasingly used to estimate species’ geographic extent (Guisan & Zimmermann, 2000; 

Peterson & Soberón, 2012). The ecological niche is described as a multi-dimensional 

space, including both abiotic and biotic factors, that permits positive growth of a given 

species, whereas the FN delineates only the abiotic environmental conditions 

(Hutchinson, 1957; Pearson & Dawson, 2003).  

To model the potential invasion of a species in the invaded range, the classical 

approach uses the distribution data from the native range and then projects the model 

into the invaded range (Peterson, 2003). One underlying assumption of this approach is 

that the species will conserve its niche when it invades a new geospatial range (Wiens & 

Graham, 2005). Niche conservatism refers to the tendency of species to retain their 

ancestral ecological traits (Wiens & Graham, 2005). However, this assumption can 

sometimes be incorrect (Broennimann et al., 2007), and makes the classical approach 

insufficient to predict potential biological invasion. For some species, niche shift may 
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occur as with the invasions resulting in the change of habitat preference in the new range 

(Broennimann et al., 2007; Randin et al., 2006). This change is called evolutionary niche 

shift and had been evidenced in published research (Broennimann et al., 2007; Guisan 

et al., 2014; Randin et al., 2006). However, Soberón and Peterson (2011) suggested that 

in some cases the “niche shift” is more likely a result of environmental heterogeneity 

between two geospatial ranges, namely non-evolutionary niche shift, than a real niche 

shift of the given species. Here the term environmental space shift is used instead of 

niche shift to represent both types of niche shift. Once the environmental space shift 

exists, the distribution models trained with native occurrence data may have limited ability 

to predict the potential invasion in the new range as the native environmental conditions 

may fail to express the true habitat requirement in the new range. Broennimann and 

Guisan (2008) and Jiménez-Valverde et al. (2011) suggested that the potential 

distribution model for invasive species could be developed using occurrence data from 

both the native and the invaded ranges when the occupied environmental space differs 

between the two ranges. Thus, testing the conservatism of environmental niche is crucial 

for determining whether occurrence data in native range or in both native and invaded 

ranges should be used to predict the potential invasion. 

It is not known if kudzu bug conserves its environmental space in the U.S., leading 

to lack of adequate research to predict the invasion risk of kudzu bug in North and South 

Americas. Whereas the climatic preference of kudzu bug is also not fully understood 

(Gardner et al., 2013; Zhang et al., 2012), knowledge on the climatic preference of this 

pest species could contribute to its early warning and detection as well as provide 

information on pest ecology. To address these gaps, I examined if the invaded 
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populations of kudzu bug in the U.S. occupied the same environmental space as the 

native populations in Asia. The stability, expansion, and unfilling of occupied 

environmental space in the U.S. were calculated to better understand the niche dynamics 

of kudzu bug in the new range. Niche stability and expansion (1- niche stability) measure 

the proportion of occupied environmental space in the invaded range that is overlapping 

and non-overlapping, respectively, with that in the native range. The niche unfilling is the 

proportion of occupied environmental space in the native range, which is available but 

has not been occupied in the invaded range. Two commonly used niche-based methods 

to model the potential invasion of kudzu bug in North and South America. Finally, the 

variable importance and climatic preference of kudzu bug were analyzed for its value of 

providing information for management of kudzu bug, as well as its value to increase 

knowledge on kudzu bug ecology.  

2.3 Methodology  

2.3.1 Species Point Occurrence Data 

Occurrence data of kudzu bug were collected in both the native range in Asia and 

the invaded range in the U.S. In total, 319 points of occurrence data were included. All 

the occurrence data are available on request.  Readers are referred to Zhu et al. (2012) 

for detailed information on data acquisition in the native range. After deleting redundant 

records, 164 occurrences were retained in Asia. Occurrence data of kudzu bug in the 

invaded range in the U.S. were acquired from the Early Detection and Distribution 

Mapping System (EDDMapS, 2019). The EDDMapS dataset contained the date and 

location of confirmed occurrences of kudzu bug since 2009 (Gardner et al., 2013). 
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Excluding repeated records, 155 occurrences were retained in the invaded range. These 

occurrence data were distributed throughout the southeastern U.S.  

2.3.2 Environmental Variables  

The ‘bioclimatic’ variables from WorldClim (Hijmans et al., 2005) and elevation 

from the Hydro-1K digital elevation model dataset were used as the environmental 

features (USGS, 1996). The spatial range of variables includes Asia, North and South 

America. Among all the 19 bioclimatic variables, 12 bioclimatic variables were selected, 

6 temperature-related variables and 6 precipitation-related variables (Table 2.1).  

Table 2.1 Full name and brief name of 12 bioclimatic variables selected for use in the 
models; T = temperature, P= precipitation 

Abbreviate 

Name 

Full Name Abbreviate 

Name 

Full Name Abbreviate 

Name 

Full Name 

BIO1 annual mean T BIO8 mean T of the 

wettest quarter 

BIO16 P of the wettest 

quarter 

BIO2 mean diurnal T 

range 

BIO11 Mean T of the 

coldest quarter 

BIO17 P of the driest quarter 

BIO5 maximum T of the 

warmest month 

BIO12 annual mean P BIO18 P of the warmest 

quarter 

BIO7 mean annual T 

range 

BIO15 P seasonality BIO19 P of the coldest 

quarter 
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These variables were selected based on two principles: 1) only variables that are 

important to kudzu bug were selected based on its biology, as research suggested that 

temperature and humidity both impact kudzu bug (Shi et al., 2014; Wang et al., 1996), 

and 2) variables that have strong correlation (r>0.8) with the remaining variables were 

deleted. These 12 bioclimatic variables plus elevation provided 13 variables for the 

models, and all variables had the same resolution of 30 arc-second (approximately 1 km). 

2.3.3 Test of Environmental Space Difference  

Several methods had been used to test the niche conservatism (Guisan et al., 

2014), and researchers suggested that quantifying niche changes by directly comparing 

the environmental attributes while considering the available environmental space 

between two spatial ranges is a most appropriate method (Broennimann et al., 2012; 

Guisan et al., 2014). Therefore the method proposed by Broennimann et al. (2012) was 

used to test the equivalence and similarity of environmental spaces occupied by native 

and invaded kudzu bug populations. This method takes the available environmental 

space in different ranges into account by applying kernel smooth function to correct 

occurrence densities with available environmental densities. The niche equivalency and 

similarity was then tested on the niche overlap along using the D metric (Broennimann et 

al., 2012; Warren et al., 2008), which was first proposed by Schoener (1968). Using the 

method proposed by Broennimann et al. (2012), the D-metric can be expressed as: 

𝐷 = 1 −
1

2
(∑ |𝑍1𝑖𝑗 −  𝑍2𝑖𝑗|𝑖𝑗 ), 

where 𝑍1𝑖𝑗  and 𝑍2𝑖𝑗  represent the occupancy of entity 1 and entity 2 at given 

environmental conditions, respectively. The D value varies from 0 to 1, with 0 indicating 
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no niche overlap and 1 indicating niche identical. To test the niche equivalency, all 

occurrences in both spatial ranges are first pooled together, and then randomly split into 

two datasets, this procedure can be repeated n times (n=1000 in this research). The 

number of occurrences in the two new datasets stays the same as the number in the 

original datasets (Warren et al., 2008). For each repetition, the simulated niche overlap 

D is calculated. With enough repetition, the derived D values can be used to construct a 

robust null distribution of D value, based on which the niche equivalency can be accepted 

if the observed D value falls in the density of 95% of the simulated D values. Although the 

niche similarity test is different from the niche equivalency test, niche similarity test also 

used the randomization procedures to construct null distribution of D values. Interested 

readers are referred to Broennimann et al. (2012) for detailed description on the niche 

similarity test.  

To test the shift of environmental space of kudzu bug between native and invaded 

populations, only Asia and the U.S. were used as the study area. A principal component 

analysis (PCA) was conducted on the occurrences and the available environmental 

conditions to ensure the native and invaded ranges were represented equally. Five 

hundred pixels from both ranges (totally 1000 pixels) were extracted randomly to 

represent the available environmental conditions. The first two axes of PCA were then 

used to calculate the overlap of environmental spaces between the native and invaded 

populations. The available environmental spaces and the occupied environmental space 

by native and invaded populations were also visualized on the first two axes of PCA. The 

“ecospat” package in R (Di Cola et al., 2017) was used to test the equivalency and 
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similarity of occupied environmental space by native and invaded populations. Niche 

expansion, stability, and unfilling were also calculated using “ecospat” package.  

2.3.4 Model Development 

To predict the invasion risk of kudzu bug, both North and South America were 

included as study area. Two commonly used niche-based methods were considered for 

this purpose: Genetic Algorithm for Rule-Set Production (GARP) (Stockwell, 1999) and 

Maximum Entropy Model (Maxent) (Phillips et al., 2006). GARP and Maxent models were 

chosen because prior research demonstrated their better performances when compared 

with many other models (Hernandez et al., 2006; Tsoar et al., 2007). Both models only 

require occurrence data and use pseudo-absence data during the construction of models 

by extracting random points from the geospatial extent of input environmental variables. 

Occurrence data from both native and invaded ranges were used to train the model. 

Occurrence data in Asia and the U.S. were first compiled (totally 319 occurrence), and 

then 70% of occurrences were randomly extracted (n = 223) as training data and the 

remaining 30% (n = 96) were used as extrinsic testing data. This random splitting was 

repeated 10 times to generate 10 sets of training and testing data. Thus, GARP and 

Maxent models were run and evaluated ten times and with each time an individual set of 

training and testing data were used. The averaged model of 10 runs was used as the final 

model for GARP and Maxent. 

GARP 

The GARP modeling system is a genetic algorithm that produces sets of rules that 

delineate ecological niches of species (Stockwell, 1999). GARP models were developed 
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using the “best subsets” procedure in OpenModeller (De Souza Muñoz et al., 2011). In 

this procedure, the GARP model was run 100 times on an individual training dataset (out 

of 10 data splits; see previous section) and the training dataset was further split internally 

into 70% intrinsic training data and 30% intrinsic testing. This internal split of the data is 

necessary to select 10 best models (of the 100 obtained) and generate a GARP 

prediction. This procedure was conducted for the 10 random splits of training and testing 

datasets. The output GARP predictions were then evaluated by using the remaining 

extrinsic testing data.  

Maxent  

Maxent modeling system predicts species’ geographic distribution by fitting 

variable data with a probability distribution. This probability distribution is generated using 

training data and has the maximum entropy by subjecting to constraints representing the 

unknown information (Phillips et al., 2006). Maxent models were implemented using the 

Maxent program (Phillips et al., 2006) with the default parameters. All 10 models (based 

on the 10 random splits of occurrence datasets; see above) were then evaluated by using 

the remaining extrinsic testing data. Logistic output was used as the model output type. 

The Maxent logistic output is an estimate of suitability of one area to the target species 

(Phillips & Dudík, 2008). The logistic output of the Maxent model varies from 0 to 1, to 

better visualize the output model the final average model was multiplied by 100 to provide 

the same scale of values as GARP.  
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2.3.5 Model Evaluation Statistics  

Three methods were used to evaluate the models: the area under the receiver 

operating characteristic curve (AUC) (Fielding & Bell, 1997), omission rate (OR), and true 

skill statistic (TSS) (Allouche et al., 2006). The overall AUC, OR, and TSS were calculated 

to evaluate and compare the performance of two models, and the three measures for the 

native and invaded ranges were also calculated. To compare the performance of the 

GARP and Maxent models, the one-tailed Wilcoxon signed-rank test was used to 

compare the measures of two models.  

AUC is a generally accepted and threshold-independent measurement of model 

performance (Fielding & Bell, 1997). The value of AUC varies from 0 to 1, with AUC ≥ 

0.9 considered as good performance (Swets, 1988). TSS takes both omission and 

commission errors into account by adding sensitivity and specificity and subtracting 1. 

TSS varies from -1 and +1, where 1 indicates perfect model performance and values of 

zero or less indicate poor performance. “ROCR” package (Sing et al., 2005) in R software 

was used to calculate AUC and TSS. The AUC and TSS were calculated for all the 10 

models of each algorithm. OR is a threshold-dependent measurement. To convert the 

suitability model to binary presence/non-presence model, the threshold for GARP and 

Maxent model was carefully selected. As GARP usually predicts a large or even overly 

extensive area of potential distribution (Peterson et al., 2007), the threshold for GARP 

was set to 50% of the best subset models, which means only places predicted by at least 

half of the best models are considered as potential distribution area. To ensure that the 

OR of GARP and Maxent is comparable, the “equalized predicted area” method proposed 
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by Phillips et al. (2006) was used to set the threshold of Maxent. The threshold was set 

for each Maxent model to give the Maxent binary model the same number of pixels 

predicted as potential distribution area as the GARP binary model.  

2.3.6 Variable Importance and Climatic Preference  

To determine the climatic preference of kudzu bug, the most important variables 

for the construction of both GARP and Maxent models were first selected. Then the co-

occurrence of predicted invasion risk and the values of important variables were 

analyzed. To determine the most important variables, the jackknife test was used. The 

Maxent program (Phillips et al., 2006) internally conducted the jackknife test and 

evaluation on the variable contribution. The jackknife test on the GARP model was run 

externally by generating 13 models that used one variable in isolation and 13 models that 

excluded one variable in turn. Analysis of the response of the predicted invasion risk 

values to important variables was only conducted for the Maxent model.  

2.4 Results  

2.4.1 Environmental Space Shift 

Based on the PCA on both the available and occupied environment in two ranges, 

the first two PCs explained 64.69% of the total variance (Figure 2.1 A-B). According to 

the first two PCs, the total overlap of occupied environmental space between the native 

and invaded populations is 0.196 (Figure 2.1 A). The statistical test suggested that the 

two populations did not occupy an equivalent environmental space, as the observed D 

value fell outside of the 95% confidence interval of simulated values (Figure 2.1 C). The 
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test on the similarity of environmental space indicated that the occupied environmental 

space by native populations was similar with the invaded populations (P-value=0.069, 

Figure 2.1 D). However, the same test on invaded populations suggested a difference 

indicating the occupied environmental space by invaded populations was not similar with 

native populations (P-value=0.047, Figure 2.1 E). The niche expansion, stability, and 

unfilling were 0.044, 0.956, and 0.670, respectively, indicating the dissimilarities of 

occupied environmental spaces were mainly caused by niche unfilling of kudzu bug in the 

U.S. Thus, the low overlap of occupied environmental space (0.196) also mostly resulted 

from the niche unfilling of kudzu bug in the invaded range.  

2.4.2 Model Evaluation and Comparison 

Maxent had a continuous output with values varying from 0 to 100, and higher 

values represented a higher invasion risk. The output of GARP “best subset” procedure 

was categorical with values varying from 0 to 100. Ten runs of the Maxent model returned 

10 AUCs varying from 0.96 to 0.97, and the AUCs of 10 GARP models varied from 0.91 

to 0.93. GARP and Maxent both had mean AUCs higher than 0.9 indicating that both 

models had good performance. Maxent had significantly higher AUC than GARP based 

on the one-tailed Wilcoxon signed-rank test (P-value=0.001, Table 2.2). The TSS had the 

same pattern indicating that Maxent had better performance than GARP (P-value=0.001, 

Table 2.2). Because TSS showed the same pattern with AUC, only AUC and OR were 

used for model comparison hereafter.  
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Figure 2.1 Analysis on environmental space shift of kudzu bug. A Environmental occupancy of kudzu bugs 
in native and invaded ranges, the dashed orange and blue contour lines represent the 95% of the available 
environmental space in the U.S. and Asia, respectively, while the solid ones represent 100% of the available 
environmental space. The orange and blue gradients indicate occupied environmental spaces in the U.S. 
and Asia, respectively, while the grey to black gradients indicate overlap of occupied environmental spaces 
(the darker gradients indicating higher density of overlap). B Correlation circle of the first two principal 
components (PCs), which totally explain 64.69% of the variable variance. C-E Observed environmental 
space overlap (bars with red diamond) and simulated niche overlaps (grey bars) on test of environmental 
space equivalency (C), environmental space similarity of Asia to U.S. (D), and environmental space 
similarity of U.S. to Asia (E) of two populations. 

Table 2.2 Comparison of AUC and OR of GARP and Maxent Models 

Model Area Under the Curve (AUC) True Skill Statistic (TSS) Omission Rate (OR) 

Maxent 0.971+0.004 0.946+0.017 0.019+0.011 

GARP 0.922+0.007 0.860+0.020 0.037+0.010 

P-valuea 0.001 0.001 0.005 

a P-value of the one-tailed Wilcoxon sign-ranked test on AUC and OR between GARP and Maxent model 
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Using 50% of best subset models as the threshold rule, the percent area predicted 

by 10 GARP models varied from 18.47% to 21.90%. The threshold value of 10 Maxent 

models varied from 0.93 to 1.83 when predicting the same area as GARP. The P-value 

for the Wilcoxon signed-rank test on OR was 0.005 (Table 2.2), indicating that the Maxent 

models had a significantly lower OR than the GARP models (P-value=0.005, Table 2.2). 

This outcome was consistent with the AUC result, suggesting that the Maxent models 

performed better than the GARP models. The final binary GARP and Maxent models 

predicted 20.96% of the total study area as potential distribution area for the kudzu bug. 

2.4.3 Invasion Risk 

The GARP and Maxent model pixels with higher values suggest regions with more 

suitable environment for the species and, thus, at a higher risk of invasion. GARP and 

Maxent models both predicted high suitability values for most of the observed occurrence 

points (Figures 2.2, 2.3). The suitability value of occurrence points from the Maxent 

model varied between 1.71 and 79.61 (mean = 57.165), while the suitability value from 

the GARP model varied between 28 and 100 (mean = 97.490). Despite the distinct 

difference of suitability values predicted by two models, both models had high agreement 

in terms of relative invasion risk (Figure 2.3). In the Americas, high invasion risk was 

predicted in the eastern U.S., most regions in the Central America, and the central region 

in South America (Figure 2.3 A, B). High agreement was also observed in binary models 

(Figures 2.2, 2.3): both models indicated similar regions that will be or already were 

infested by kudzu bug; however, differences in the two binary models were also observed. 

Part of Greenland was predicted as potential distribution area by Maxent model but not 
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by GARP model (Figure 2.3 C, D). The situation was reversed in northern Brazil where 

the GARP model classified potential suitable area while the Maxent model classified the 

same type of area as unsuitable (Figure 2.3 C, D).  

 

 

Figure 2.2 Predicted suitability maps of kudzu bug in native range. A-B, Predicted suitability maps of 
kudzu bug in native range in Asia. The higher the value is, the more suitable the area is. C-D, Binary 
predictions of the suitability maps in Asia. Occurrences, which were used to develop and evaluate 
models, were shown as green dots.  
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Figure 2.3 Predicted invasion risk model of kudzu bug in America. A-B, Predicted invasion risk model of 
kudzu bug in North and South America. The higher the value is, the more risky that the region would be 
infested by kudzu bug. C-D, Binary predictions of suitability maps in North and South America. Occurrence 
of kudzu bug in U.S., which were used to develop and evaluate models, were shown as green dots. Regions 
that were covered by green dots in C-D were all predicted as suitable places. 
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2.4.4 Variable Importance and Climatic Preference 

GARP and Maxent yielded similar rankings of variable importance (Figure 2.4). 

Both models ranked annual mean precipitation (Annual P, BIO12), mean temperature of 

the coldest quarter (BIO11), precipitation of the warmest quarter (BIO18), annual mean 

temperature (BIO1) and mean annual temperature range (BIO7) as five of the six most 

important variables. The models also ranked elevation, mean diurnal temperature range 

(BIO2), and precipitation seasonality (BIO15) as the three least important variables. 

However, differences also were observed for specific rankings of these five variables. The 

GARP model ranked precipitation of the wettest quarter (BIO16) as the fourth important 

variable, while Maxent ranked it as the seventh most important variable. Analysis of 

variable contribution to the Maxent models generated similar results with the jackknife 

tests: BIO12, BIO11, BIO1, BIO8 and BIO7 are five of the most important variables, 

contributing 28.4%, 19.8%, 16.2%, 12.7% and 11.7% to the model, respectively. 

Cumulatively, the five most important variables contributed 88.8% to the Maxent models. 

Response curves for the five most important variables in Maxent were generated 

to examine the climatic preference of kudzu bug. For annual mean precipitation (Figure 

2.5 A), high suitability (>0.5) were limited between 1000 and 1700mm and the highest 

suitability was predicted at 1300mm. For mean temperature of the coldest quarter (Figure 

2.5 B), annual mean temperature (Figure 2.5 D), and mean annual temperature range 

(Figure 2.5 E), the high probabilities of occurrence were predicted from 0 to 12℃, 12 to 

20℃, and 28 to 35℃, respectively, and the highest probabilities occurred at 6℃, 15℃, 

and 32℃ , respectively. The response curve of the suitability to precipitation of the 
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warmest quarter is different from the former four variables (Figure 2.5 C). The high 

suitability occurred at the range of 330 to 375 mm and values greater than 440mm, and 

the highest suitability occurred at 750mm.   

 

Figure 2.4 Jackknife test of AUC for the Maxent and GARP models (P, T and Max are abbreviations for 
Precipitation, Temperature, and Maximum, respectively).  
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Figure 2.5 Response curve of the predicted suitability value by Maxent model to five most important 
variables (A – Annual Mean Precipitation, B – Mean Temperature of Coldest Quarter, C – Precipitation of  
Warmest Quarter, D – Annual Mean Temperature, and E – Temperature Annual Range) (red curves 
indicate mean response and the blue margins reflect + 1 Standard Deviation over 10 runs) 
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2.5 Discussion 

2.5.1 Environmental Space Shift 

The niche equivalency test indicated that the native and invaded populations of 

kudzu bug do not inhabit in identical environmental conditions. However, this finding does 

not indicate a niche shift. Niche change had been proved rare among multiple groups of 

species (Petitpierre et al., 2012; Strubbe et al., 2013). Based on two independent studies 

with different groups of species, Petitpierre et al. (2012) and Strubbe et al. (2013) 

concluded that niche difference is more likely caused by niche unfilling than real niche 

change due to niche expansion. In this research, a small proportion of niche expansion 

(4.44%) and high niche stability (95.56%) were observed. However, the niche unfilling in 

the U.S. is as high as 67%, indicating that kudzu bugs have not been reported in 67% of 

the environmental space, which is occupied by native populations and available in the 

U.S.  

Table 2.3 Comparison of AUC and OR of GARP and Maxent models obtained for native 
and invaded training ranges 

Model Area Under the Curve (AUC) Omission Rate (OR) 

Asia U.S. P-valuea Asia U.S. P-valueb 

Maxent 0.953+0.006 0.990+0.002 0.001 0.038+0.022 0 0.0002 

GARP 0.936+0.006 0.912+0.009 0.001 0.072+0.019 0 <0.0001 

P-valuec 0.001 0.001 NA 0.009 NA NA 

aP-value of difference of AUC between native range and invaded range of GARP or Maxent model; bP-
value of difference of OR between native range and invaded range of GARP or Maxent model; cP-value of 
difference between GARP and Maxent model in the same range of AUC or OR.  
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This niche unfilling suggests that the invasion of kudzu bug is far from equilibrium 

and more places could be further infested in the U.S. Based on the available 

environmental space in native and invaded ranges, environmental heterogeneity also 

exists. The study area in Asia has more available environmental conditions than the U.S. 

Although the niche expansion in the U.S. is only 4.44%, the inequivalent environmental 

spaces occupied by native and invaded species and environmental heterogeneity 

between two ranges both prove the effectiveness of using occurrence information from 

the native and invaded ranges for predicting the potential invasion.  

2.5.2 Significant Difference of Model Performance between Native and Invaded 

Ranges 

Attention should be given to the significant difference on performance of GARP 

and Maxent models between the invaded and native ranges. Both AUC and OR indicated 

that the Maxent and GARP models performed significantly different between native and 

invaded ranges (Table 2.3). The difference of model performance in native and invaded 

regions may result from the intrinsic characteristics of models and the features of 

occurrence data. It is noticed that occurrence data in the invaded range had a dense 

distribution in the southeastern U.S. (Figure 2.3 C), while occurrence data in the native 

range was scattered around a much larger region in Asia (Figure 2.2 C). As the Maxent 

model is based on a fitted probability distribution (Phillips et al., 2006), environmental 

conditions that were more frequent in the dataset are taken as the better potential 

environment by Maxent. Whereas the GARP model delineates the potential distribution 

area of species by setting a series of rules, it is less impacted by the sampling density. 
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As a result, GARP did not constantly show better performance in the U.S. where the 

sampling density is higher confirming that GARP is less sensitive to the sampling bias 

(Costa et al., 2010). The significant difference of model performance or sample density 

between the native and invaded ranges was also observed in similar research conducted 

by Broennimann and Guisan (2008), and Sobek-Swant et al. (2012). Therefore attention 

should be given to the difference in sample density between the native and invaded 

ranges, as the difference may introduce a sampling bias in the models.  

2.5.3 Selection of Threshold for GARP and Maxent 

The choice of threshold for the GARP and Maxent models is crucial for converting 

models into binary prediction. The GARP model tends to predict overly extensive areas 

of potential distribution, whereas the Maxent model tends to be too conservative. 

Choosing 50% of the best subset models as the threshold for GARP coincides with the 

observation by Phillips et al. (2006) that for GARP models, areas predicted by 5 to 10 out 

of the 10 best-subset models were appropriate to be classified as the species’ potential 

distribution area. The value of Maxent threshold was selected to match the percent area 

predicted as potential distribution to that of binary GARP models. By using this method, 

the potential distribution model generated by GARP was in high agreement with that 

generated by Maxent. This result further confirmed that the Maxent model resembles the 

GARP model when lower levels of predictions were used as threshold (Peterson et al., 

2007). The fixed value 50 is not the optimal method to convert suitability maps into binary 

prediction maps. Both Liu et al. (2005) and Jiménez-Valverde and Lobo (2007) concluded 

that the fixed threshold was the worst criteria to use to convert suitability maps into binary 
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prediction maps, while the sensitivity-specificity based thresholds were most accurate. 

However, in this research, as the OR, which is derived from confusion matrix, was used 

to compare the performance of GARP and Maxent, using a threshold derived from 

confusion matrix would make the comparison bias towards GARP model. It is 

recommended that readers select the most appropriate threshold method based on 

research objectives.  

2.5.4 Invasion Risk and Climate Preference of Kudzu Bug 

Regions with high invasion risk include most states in the eastern U.S., most 

countries in Central America, and countries in central South America. Currently kudzu 

bug is only present in the southeastern U.S. in Americas. However, climate conditions 

(including temperature and precipitation) of Central America and a large proportion of 

South America are similar with the conditions of south Asia, where most of the 

occurrences in native range were distributed (Hijmans et al., 2005). This similarity 

explains why high invasion risk was predicted in those regions and suggests that kudzu 

bug can successfully establish there once it has been accidently introduced. Although 

kudzu bug is the only member found in America in the family of Plataspidae, a close 

relative of kudzu bug, Coptosoma xanthogramma (White), had been found in Hawaii in 

1965, and established as a pest of legumes (Beardsley & Fluker, 1967), suggesting kudzu 

bug can establish in tropical climate regions, where part of Central and South America 

are located. However, soybean is an important crop in Central and South American 

countries including Mexico, Brazil, and Argentina, thus to avoid potential economic losses 

of soybean by kudzu bug, serious quarantine is recommended in these regions to prevent 
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the entry of kudzu bug. In the U.S., the high proportion of niche unfilling suggests that 

more places could be further infested. Meanwhile, a majority of the soybean production 

is distributed in upper Midwest, where most of the regions have not been infested by 

kudzu bug. Therefore, early detection is also highly recommended in the upper Midwest 

of the U.S.  

Kudzu bugs generally inhabit warm (annual mean temperature around 15℃) and 

humid (annual mean precipitation around 1300mm) regions. This finding coincides with 

the description of the climatic preference of kudzu bug in native range in Asia (Wang et 

al., 1996). It had been conjectured that low winter temperature (below -14oC) might kill 

some bugs in Georgia (Gardner & Olson, 2016). This finding confirmed this conjecture: 

kudzu bug had low possibility (< 30%) of occurrence in regions with mean temperature of 

the coldest quarter around 0 oC, whereas the possibility decreases to almost 0 (around 

3%) when the mean winter temperature reached -10 oC. In addition to the variables 

considered in this research, occurrence of the main host plant (i.e. soybean and kudzu) 

also have played an important role in determining the invasion of kudzu bug (Liang et al., 

2019).  

2.6 Conclusions 

Based on the current distribution of kudzu bug in the U.S., this study suggests that 

the environmental conditions where kudzu bugs inhabit are not the same between native 

and invaded ranges. The effectiveness of using occurrence data from both native and 

invaded ranges to predict potential biological invasion was therefore confirmed. In 

addition, careful examination of the difference of sample density between native range 
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and invaded range is suggested to avoid sample bias for similar research. Kudzu bug 

generally inhabits warm and humid places. Management, including monitoring, detection 

and preventive measures, are suggested for these regions to avoid invasion and outbreak 

of kudzu bug. Regions with suitable climatic conditions for kudzu bug could be managed 

to change the microenvironment to avoid severe damage from kudzu bug.  
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CHAPTER III: THE EFFECT OF PSEUDO-ABSENCE SELECTION 

METHOD ON TRANSFERABILITY OF SPECIES DISTRIBUTION 

MODELS IN THE CONTEXT OF NON-ADAPTIVE NICHE SHIFT 
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This chapter is a reformatted version of a paper by the same name published in Ecological 

Modelling by Liang, W., Papeş, M., Tran, L., Grant, J., Washington-Allen, R., Stewart, S., 

& Wiggins, G. 

Liang, W., Papeş, M., Tran, L., Grant, J., Washington-Allen, R., Stewart, S., & Wiggins, 

G. (2018). The effect of pseudo-absence selection method on transferability of species 

distribution models in the context of non-adaptive niche shift. Ecological Modelling, 388, 

1-9. 

3.1 Abstract 

Transferability of species distribution models (SDMs) is key to predicting invasion 

patterns and can be challenged if niche shift occurs in the invaded range. Recently, a 

non-adaptive niche shift caused by environmental anisotropy was observed on kudzu bug 

in the invaded range in the U.S. Thus, the first research question of this research is 

whether transferability of SDMs would be challenged by non-adaptive niche shift using 

kudzu bug as a case study. When using native occurrences to estimate potential 

invasions with presence-only modeling methods, it is important to constrain the pseudo-

absence (PA) sampling to the species’ native range. However, some studies including 

highly cited ones, do not follow this approach to selecting PA samples. Consequently, the 

second research question is how model performance would be affected by use of PA 

samples from outside the native range of the species. To answer the first question, I 

further quantified the environmental space anisotropy and non-adaptive niche change, 

and then evaluated the performances of seven SDMs. To answer the second question, I 

compared the interpolation and transferability of seven SDMs trained with PAs from the 
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native range and from both native and invaded ranges. Results confirmed that the 

environmental space anisotropy (P=0.01) and non-adaptive niche change (P=0.01) are 

both statistically significant. Of the seven SDMs used, four models had transferability 

indices higher than 0.9. Boosted regression tree and random forests both had good 

interpolation and transferability (AUC>0.80 and kappa>0.60), whereas three other 

models showed good interpolation and fair transferability (AUC>0.70 and kappa>0.40). 

Inclusion of pseudo-absences from the invaded range significantly increased the 

interpolation (P<0.001) but decreased the transferability (P<0.01) of almost all models. 

Findings in this research suggest that SDMs can still show good transferability with non-

adaptive niche shift, thus native occurrence information should be used in similar 

situations. This research confirmed that it is crucial to constrain the PAs to the same 

spatial range as presences to accurately model potential invasions.  
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3.2 Introduction 

Estimating the potential distribution of a species across different spatial and 

temporal scales has become an increasing practical use of SDMs (Elith & Leathwick, 

2009; Mainali et al., 2015). In this practice, SDMs are usually trained with occurrence 

information and environmental predictors from one spatial-temporal range, and then 

projected to a different range to identify potential distributional areas of a given species 

(Peterson, 2003; Verbruggen et al., 2013). One underlying assumption of this practice is 

that the given species conserves its niche across different spatial and temporal scales 

(Wiens & Graham, 2005). Another assumption is that the given species is in equilibrium 

with the environment in the spatial range from where the occurrence information is 

extracted for model training (Elith & Leathwick, 2009; Gallien et al., 2012).  

To predict the potential invasion pattern of a given species in a new range, native 

occurrence information is generally used in SDMs. Thus, successfully predicting invasion 

patterns closely relies on the transferability of models, which is defined as the ability of 

SDMs to predict occurrence in a largely unsampled spatial range or time period 

(Heikkinen et al., 2012; Randin et al., 2006). However, several researchers have 

suggested that species could shift their niche in new spatial ranges (Broennimann et al., 

2007; Early & Sax, 2014; Gallagher et al., 2010; Medley, 2010; Parravicini et al., 2015), 

which challenges the transferability of SDMs as the same species may survive under 

different environmental conditions in the invaded ranges (Broennimann et al., 2007; Early 

and Sax, 2014; Parravicini et al., 2015). As a result, the use of only native occurrence 

information to model potential invasion is debatable. Broennimann and Guisan (2008) 
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and Jiménez-Valverde et al. (2011) suggested that SDMs for estimating potential 

invasions could be developed using occurrence information from both native and invaded 

ranges. However, the drawback of using occurrence information from both ranges is that 

the equilibrium assumption is likely violated if the invasion is still ongoing (Early & Sax, 

2014; Elith & Leathwick, 2009; Jiménez-Valverde et al., 2011).  

A study of 50 terrestrial plant invaders, however, suggested that substantial niche 

shifts are rare (Petitpierre et al., 2012), while the same conclusion was also made for 

birds and other taxa (Peterson, 2011; Strubbe et al., 2013). Soberón and Peterson (2011) 

suggested that, in some cases, the “niche shift” is more likely a result of differences in 

environmental conditions, or environmental space anisotropy, between two spatial ranges 

than a true, adaptive niche shift of species. The concern that the non-adaptive niche shift 

would affect the transferability of SDMs has not been fully addressed. Specifically, it is 

unclear whether both native and invaded range occurrence datasets are needed to 

estimate invasion patterns when a non-adaptive niche shift exists, given the drawback of 

invaded range data violating the equilibrium assumption underlying SDMs. When 

estimating potential invasion patterns with presence-only data, the spatial range from 

which pseudo-absences (PAs, also called background data) are extracted certainly 

impacts the transferability of SDMs (Phillips, 2008; Barbet‐Massin et al., 2012). 

For studies that use only occurrences from the native range of a species to train 

models, the PAs also should be restricted to the native range (Peterson, 2003; Phillips, 

2008). However, in several highly cited studies, the PAs were extracted from both the 

native and invaded ranges when only native occurrences were used to construct the 
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SDMs (Broennimann & Guisan, 2008; De Meyer et al., 2010; Gallardo et al., 2013; 

Verbruggen et al., 2013). Additionally, in some studies, the methods used to extract the 

PAs were not mentioned (Fitzpatrick et al., 2007; Loo et al., 2007; Mau-Crimmins et al., 

2006). Evaluation of the impact of PA data on model performance is not rare (Anderson 

& Raza, 2010; Barbet-Massin et al., 2012; Zhu et al., 2014). However, what is missing is 

a systematic and quantitative assessment of the impact of selecting PAs from both native 

and invaded ranges, while only native occurrences are used, on both interpolations and 

transferability of multiple commonly used models. This information is important to 

consider, especially when niche shift is observed between the two ranges. 

This study had two objectives: 1) evaluate the interpolative accuracy and, more 

importantly, transferability (also called extrapolative accuracy) of SDMs obtained with 

seven commonly used techniques, under non-adaptive niche shift between native and 

invaded ranges, and 2) examine how inclusion of PAs from the invaded range, when only 

native occurrences are used for model training, impacts model interpolation and 

transferability. This research was conducted with kudzu bug (Megacopta cribraria; 

Hemiptera: Plataspidae) for several reasons. First, kudzu bug is a newly invasive species 

in the United States (U.S.), where it was first found in 2009 (Suiter et al., 2010); however, 

it is a well-studied species in Asia, its native range. Kudzu bug spread fast, such that it 

had been reported in more than 650 counties in the U.S. by the end of 2017, ensuring 

enough occurrence data in the invaded range for SDMs. Additionally, a non-adaptive 

niche shift was observed between native and invaded populations of kudzu bug in the 

U.S. (Liang et al., 2018a). Modeling the potential distribution of kudzu bug is also 

important for practical applications. Results of this research can provide valuable 
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information for management of kudzu bug, as it has become a pest in both agricultural 

and urban areas (Eger et al., 2010). To fulfill the first objective, the differences of both 

available and occupied environmental spaces between native and invaded ranges of 

kudzu bug was quantified. As empirical research, these findings can be used to guide 

selection of SDMs when a non-adaptive niche shift is observed and to select PAs for 

accurate modeling of species’ distribution.  

3.3 Methodology 

3.3.1 Presence and Pseudo-absence Data 

Presence To compare the interpolation and transferability of different models, 

point presence data of kudzu bug were collected in both native and invaded ranges. 

Readers are referred to Liang et al. (2018a) and Zhu et al. (2012) for detailed information 

on data acquisition. Redundant observations were deleted to ensure only one observation 

per 1000-m grid. In total, three datasets were generated: Dataset I included 164 presence 

records in the native range (Asia), Dataset II contained 152 presence records in invaded 

range of kudzu bug (U.S.), and Dataset III combined occurrences from both the native 

and invaded ranges and therefore had 316 presence records (Figure 3.1). All occurrence 

data are available to readers upon request.  

Pseudo-absence (PA) To address the lack of absence data, 10,000 PAs were 

extracted for model training and intrinsic evaluation. To quantify and compare the 

accuracy of model interpolation and transferability, PAs were extracted in the same 

spatial range as the presences used for model training. However, to fulfill the second 
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objective, the Dataset IV was generated, which included the presences from Asia but 

10,000 PAs extracted from both Asian and U.S. ranges.  

 

 

Figure 3.1 Flow chart of species distribution modellings (SDMs) for comparing performance of seven 
models and assessing impact of pseudo-absences (PAs) on model interpolation and transferability. OCs is 
short for occurrences. 
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3.3.2 Environmental Variables  

To characterize the environmental space in both ranges (native and invaded), an 

elevation variable from the Hydro-1k digital elevation model dataset (USGS, 1996) and 

nine climatic variables from the “WorldClim” dataset (Hijmans et al., 2005) were used. 

Instead of using all 19 climatic variables available in WorldClim, only nine variables that 

were not highly correlated (r<0.8) were selected based on the climatic conditions of 

10,000 randomly selected points. The nine climatic variables are mean diurnal 

temperature range (BIO2), maximum temperature of the warmest month (BIO5), mean 

temperature of the wettest quarter (BIO8), mean temperature of the coldest quarter 

(BIO11), annual mean precipitation (BIO12), precipitation seasonality (BIO15), 

precipitation of the driest quarter (BIO17), precipitation of the warmest quarter (BIO18), 

and precipitation of the coldest quarter (BIO19). All 10 variables (elevation and climate) 

used had a resolution of 30 arc-seconds (approximately 1 km). 

3.3.3 Quantifying Available and Occupied Environmental Space Change  

To represent the available environmental space in both native and invaded ranges, 

the values of the 10 environmental variables at 1,000 randomly selected points from each 

range (2,000 points total) were extracted. The 10 environmental features of the presence 

datasets in the two ranges were considered to represent the occupied environmental 

space. Principal component analysis (PCA) was run separately on the available and 

occupied environmental spaces of the two ranges. To quantify the change in both 

occupied and available environmental space between two ranges, a between-class 

analysis was conducted on the PCA results of occurrences and background data 
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(Broennimann et al., 2007; Soberón & Peterson, 2011). Monte Carlo simulation was then 

used to test the significance of the between-class inertia. Between-class analysis 

(Dolédec & Chessel, 1994) measures the difference between groups of individuals, while 

the inertia quantifies how much variance of the data is caused by group difference. 

However, to visualize the occupied and available environmental space on the principal 

components (PCs), PCA on the environmental variables of all background and 

occurrence data was conducted in the two ranges.  

3.3.4 Model Development 

Training and Testing Dataset 

The flow chart of distribution modeling is shown in Figure 3.1. To generate the 

models, the data were randomly split into 70% for training and 30% for extrinsic testing 

of the models. This step was replicated 20 times. For each model run, the 70% training 

data was further split into 70% for model construction and 30% for intrinsic model 

evaluation.  

Modeling Techniques 

Seven widely used algorithms for species distribution modeling were included: 

artificial neural network (hereafter ANN; Hecht-Nielsen, 1988), boosted regression tree 

(hereafter BRT; Friedman, 2001), genetic algorithm for rule-set production (hereafter 

GARP; Stockwell, 1999), generalized additive model (hereafter GAM; Hastie & Tibshirani, 

1990), multiple adaptive regression splines (hereafter MARS; Friedman, 1991), maximum 

entropy (hereafter MAXENT; Phillips et al., 2006), and random forest (hereafter RF; 

http://www.jlimnol.it/index.php/jlimnol/article/view/jlimnol.2013.e15/1069#ref26
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Breiman, 2001). Although only GARP and MAXENT were developed for presence-only 

species data, other studies have successfully used the other five presence-absence 

models on presence-only data (Broennimann & Guisan, 2008; Elith et al., 2006) and thus 

were included here. Among the seven algorithms, ANN, BRT, MAXENT, and RF are four 

machine-learning methods. GAM and MARS are two additive models, and BRT and RF 

are decision tree based methods. MAXENT is based on maximum entropy principle, while 

GARP is a genetic algorithm. Details of these seven models were well documented by 

Elith et al. (2006), Lek and Guégan (1999), Phillips et al. (2006), and Stockwell (1999), 

thus they are not described here. To run the models, MAXENT (Version 3.3.3) and GARP 

programs were used, and the “biomod2” package in R for the remaining five modeling 

methods (Thuiller et al., 2016).  

3.3.5 Model Evaluation and Comparison 

Two metrics, area under the curve (AUC) of the receiver operating characteristic 

and maximum kappa, were used to evaluate the models. AUC is a threshold-independent 

measurement of model performance (Fielding & Bell, 1997). The value of AUC varies 

from 0 to 1, representing the possibility that a randomly selected prediction from the 

presence group has a higher probability of presence than a randomly selected prediction 

from the absence group (Fielding & Bell, 1997). A value of 0.5 implies the model prediction 

is no better than a random guess, while a value in the range of 0.5-0.6, 0.6-0.7, 0.7-0.8, 

0.8-0.9, and 0.9-1.0 suggests fail, poor, fair, good, and excellent performance of models, 

respectively (Swets, 1988). The kappa statistic (Cohen, 1960) is a threshold-dependent 

measure of model performance, and the maximum kappa was used as the model 
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measure in this research. The value of kappa statistic varies from -1 to 1. The kappa (K) 

values were interpreted as representing: poor models K< 0.4; good 0.4<K<0.75; and 

excellent models 0.75<K<1 (Landis & Koch, 1977). AUC and kappa were calculated using 

“ROCR” package (Sing et al., 2005) and “ecospat” package (Broennimann et al., 2016), 

respectively, in the R program. For the ensemble model, which will be described in 

Section 2.6, omission rate was used to assess their performance in both Asia and the 

U.S. 

To evaluate model interpolation, the same number of PAs were randomly extracted 

as the corresponding extrinsic testing presences. For the first three datasets, the extrinsic 

PAs were extracted in the same spatial range as the presences, while for Dataset IV the 

extrinsic PAs were extracted from both ranges (native and invaded). To assess the 

transferability of algorithms, only models trained with Dataset I and Dataset IV were used 

(presences from the native range; PAs from native and native plus invaded range, 

respectively) and evaluated with all invaded range presences and the extrinsic PAs 

extracted from invaded range. To decrease the uncertainty, 100 sets of extrinsic PA data 

were randomly extracted for each model evaluation. Each model output was evaluated 

100 times with the corresponding testing data and 100 sets of extrinsic PAs, and the mean 

value was calculated as the final measurement of each model. When extracting extrinsic 

PAs, the pixels that had been chosen for model construction were avoided. For each 

algorithm and dataset, the evaluation was conducted on all 20 replicate runs. To compare 

the transferability of each algorithm, a transferability index (TI) for both AUC and kappa 

was calculated as follow: 
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𝑇𝐼𝐴𝑈𝐶 =
𝐴𝑈𝐶𝑒𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝐴𝑈𝐶𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛
 and 𝑇𝐼𝐾𝑎𝑝𝑝𝑎 =

𝐾𝑎𝑝𝑝𝑎𝑒𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝐾𝑎𝑝𝑝𝑎𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛
  

Tukey’s HSD (honest significant difference) test was used to conduct multiple 

comparisons on AUC and kappa of the seven algorithms. The paired one-tail Wilcoxon 

signed-rank test was used to conduct pairwise comparisons.  

3.3.6 Model Visualization 

To visualize the potential distributions estimated by the models constructed with 

the first three datasets (Datasets I, II, and III), an ensemble model was derived by 

averaging the best four models selected from 20 replicate runs. The ensemble model was 

further evaluated with all occurrences from the same range as the occurrences used for 

model construction. Although this evaluation approach was based on data that had been 

used during model construction, this analysis was applied only to find a possible 

threshold, which maximizes the kappa, to better visualize the potential distribution as 

estimated by the ensemble model.  

3.4 Results  

3.4.1 Quantifying Changes in Occupied and Available Environmental Spaces 

The PCA on the environmental features of occurrence data indicated that the first 

two PCs explained 64.3% of the total variance. The between-class inertia ratio was 0.335, 

indicating that 33.5% of the variable inertia can be explained by the differences in spatial 

location of occurrence points. The Monte Carlo simulation on between-class inertia ratio 

(P=0.01) suggested a substantial difference of occupied environmental conditions 
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between native and invaded ranges. The results of between-class inertia analysis on the 

available environmental space are consistent with the observations by Liang et al. 

(2018a) that environmental space anisotropy exists between native and invaded ranges. 

The first and second PCs explained 41.4% and 21.5% of the total variance of variables, 

respectively (Figure 3.2 A). The between-class inertia on the available environmental 

space was 6.07%, and the difference of environmental space between the two ranges 

was significant (P=0.01). 

 

Figure 3.2 Plots of available and occupied environmental spaces in the area, where kudzu bug is found 
(native Asia and invaded U.S.). A and B show available and occupied environmental space along the first 
two PCs (principal components) and the first and third PCs, respectively. Cumulatively, the first three PCs 
explained 77% of the total variance. The orange and blue lines indicate 95% of the available environmental 
space in the U.S. and Asia, respectively. The blue stars and orange circles indicate occupied environmental 
space by kudzu bug in Asia and U.S., respectively. The black dot and square represent the centroid of the 
available environmental space in U.S. and Asia, respectively, while the red dot and square represent the 
centroid of the occupied environmental space in U.S. and Asia, respectively. The brown arrows indicate the 
shift of the centroid of available and occupied environmental spaces between native and invaded ranges. 
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Based on the first two PCs (Figure 3.2 A), the majority of presences in both native 

and invaded ranges were distributed in the environmental space that was available in 

both ranges. However, based on PC1 and PC3, presences in Asia and the U.S. were 

mostly distributed in environmental spaces which are not available in the other ranges 

(Figure 3.2 B). The environmental space anisotropy mainly occurred along the PC2 and 

PC3 (explaining 35% of the variance). The shift of centroids of available and occupied 

environmental spaces between two ranges mainly occurred in the same dimension 

(brown arrows in Figure 3.2), whereas along PC1, which explained the most variance of 

variables (42%), no discrepancy was observed between two ranges. However, it is clear 

that along PC1 both the available and occupied environmental spaces in Asia included 

wider ranges than those in the U.S. (Figure 3.2).  

3.4.2 Model Interpolation and Transferability 

Model Interpolation 

The mean AUC and kappa of all models were higher than 0.8 and 0.45, 

respectively, except for the GARP model trained with the native presences (AUC=0.78, 

kappa=0.57, Figure 3.3). This result suggested nearly all models had good interpolations. 

Models trained with Dataset II had constantly higher AUC and kappa than the ones trained 

with Dataset I and Dataset III, while models trained with Dataset I constantly showed the 

lowest performances among the three datasets. Both measurements indicated that 

MAXENT, BRT, MARS, and RF were the highest performing four models for all datasets 

(AUC > 0.89, kappa>0.65), whereas the first three models were ranked in the highest 

level of interpolation five out of six times (Figure 3.3).  
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Figure 3.3 Mean AUC and kappa for all models trained with three datasets. Dataset I, II, and III include 
presences and pseudo-absences in native Asia, invaded U.S., and both native and invaded ranges, 
respectively. Models followed by same letters within a dataset are not significantly different (Tukey’s HSD 
test at α=0.05). MX, GB, MS, AN, GA, GP are short for MAXENT, BRT, MARS, ANN, GAM, and GARP, 
respectively. Dots in the plot indicate potential outliers. MAXENT, BRT, MARS, and RF were constantly 
ranked as the best four models.  
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Model Transferability  

The ranking based on model transferability suggested RF, BRT, MAXENT, and 

ANN were the highest performing models (Figure 3.4). RF and BRT both had good 

transferability (AUC>0.8), while MAXENT, ANN, and GARP all had fair transferability 

(AUC>0.7). Based on kappa, the first five models had good transferability (kappa>0.4). 

However, from the highest to lowest, the two evaluation measurements had the same 

rank of transferability index: RF, BRT, ANN, GARP, MAXENT, MARS, and GAM. The two 

models with highest transferability (BRT and RF) were both tree-based algorithms, while 

the two models with lowest transferability (MARS and GAM) were both regression-based 

algorithm. Although the AUC and kappa on model transferability were significantly lower 

than the ones on model interpolation, four models had transferability indices higher than 

0.9 based on AUC. 

Visual Interpretation  

The ensemble model used to estimate the potential distribution of the kudzu bug 

was derived from BRT, MARS, MAXENT and RF (Figure 3.5 A-F). For Dataset I, the 

ensemble model derived from the best four models (Dataset I-derived ensemble model) 

successfully predicted high probability of presence (>50) in southern Asia where 

occurrence data were distributed (Figure 3.5 A). However, in the U.S. the high values 

were only predicted narrowly in the south (Figure 3.5 B) rather than the southeastern 

region, where most of the occurrences were observed and reported. Similarly, the Dataset 

II-derived ensemble model successfully predicted high values for the southeastern U.S. 

(Figure 3.5 D), but low values for the vast range of Asia (Figure 3.5 C). Compared with 
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Datasets I and II, Dataset III-derived ensemble model predicted high values for both south 

Asia and southeastern U.S (Figure 3.5 E, F, Table 3.1). 

 

Figure 3.4 Evaluation, with AUC (A) and kappa metrics (B), of interpolation and transferability abilities of 
seven algorithms trained with Dataset I (presences and pseudo-absences from native range, Asia). The 
values of transferability indices are shown in blue in the two plots. Both AUC and kappa indicate that RF, 
BRT, and ANN have the highest transferability.  
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Figure 3.5 Ensemble models of presence probability of kudzu bug derived from three datasets. Dataset I, 
II, and III include presences and pseudo-absences in native Asia, invaded U.S., and both native and 
invaded ranges, respectively. The transferability model was trained with Dataset I. The thresholds for the 
corresponding ensemble models at which the maximum kappa of models was reached were 21.7, 25.0, 
22.1, and 14.0. 
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Table 3.1 Mean predicted value, omission rate, and percent area of potential distribution 
obtained with the three ensemble models for interpolation and the ensemble model for 
transferability 

Performance Dataset Mean predicted value Omission rate (%) Percent area (%) 

Asia U.S. Asia U.S. Asia U.S. 

Interpolation I 64.55 21.27 0.61 68.42 18.07 9.51 

II 12.94 68.05 86.59 0 6.55 15.05 

III 58.90 79.19 4.27 0 16.78 26.16 

Transferability I 66.53 25.95 0 2.63 30.29 38.79 

The ensemble model of the four models with highest transferability was derived 

from RF, BRT, MAXENT and ANN (Figure 3.5 G, H). The ensemble models obtained 

using the maximum kappa as the cut-off threshold selection predicted the largest areas 

of potential distribution for both native and invaded ranges (Table 3.1, Figure 3.5 G, H), 

while the Dataset III-derived ensemble model predicted moderate potential distribution 

areas for both ranges (Table 3.1, Figure 3.5 E, F). 

3.4.3 Impact of Spatial Range of Pseudo-absences on Model Performances 

As AUC and kappa indicated similar results, only AUC was presented in this 

section (Figure 3.6). All models, which were trained with native occurrences but with PAs 

from both native and invaded ranges (hereafter Asia/All), had significantly higher AUCs 

on interpolation than models (P <0.001 for all), which were trained with native occurrences 

and PAs from native range (hereafter Asia/Asia) (Figure 3.6). However, except for GARP 

(P= 0.999), the AUCs on transferability of all models trained with Asia/All were much lower 

than models trained with Asia/Asia (P<0.01 for all, Figure 3.6). Meanwhile, all 
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transferability indices (TIs) of models trained with Asia/Asia were significantly higher than 

those trained with Asia/All except GARP (Table 3.2). 

 

 

Figure 3.6 Mean AUC of interpolation and transferability for all seven models trained with pseudo-absences 
(PAs) from native range (Asia) only and all ranges (Asia + U.S.) of kudzu bug. MX, GB, MS, AN, GA, and 
GP are short for MAXENT, BRT, MARS, ANN, GAM, and GARP, respectively. Models followed by same 
letters within a group are not significantly different (Tukey’s HSD test at α=0.05). Letters in the upper and 
lower spaces indicate differences among models trained with background data from all the ranges and only 
from the native range, respectively. P-values of the pairwise comparisons on interpolation AUC of models 
using native PAs and all-range PAs are smaller than 0.001 for models. P-values of the pairwise 
comparisons on transferability AUC are smaller than 0.01 for all models, except GARP model (P=0.999). 
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Table 3.2 Transferability index values of seven algorithms trained with background data 
from both native (Asia) and invaded (U.S.) ranges and only native range of kudzu bug 

Background 

Range 

RF BRT ANN GARP MAXENT MARS GAM 

Asia 0.949A 0.931A 0.906AB 0.904AB 0.837B 0.696C 0.643C 

Asia + U.S. 0.662CD 0.754B 0.653CD 0.869A 0.708BC 0.553E 0.577DE 

P 0.0000 0.0000 0.0001 0.0768 0.0000 0.0077 0.0007 

P represents the P-value of the Wilcoxon Signed-Rank test on the difference of transferability index of the 
models trained with all background data and the Asian background data. Values followed by the same 
letters within a row are not significantly different (Tukey’s HSD test at α=0.05) 

3.5 Discussion  

3.5.1 Model Interpolation and Transferability  

Predictive SDMs are important to provide information on management of invasive 

species and conservation of endangered species. This case study identified that BRT, 

MARS, MAXENT, and RF were the highest ranked models of interpolation for all datasets 

used. Although the performance of a given SDM varies according to the species studied 

(Elith & Graham, 2009), MAXENT, BRT, and MARS frequently perform better than most 

methods as shown from research on multiple species (Elith & Graham, 2009; Elith et al., 

2006; Guisan et al., 2007; Heikkinen et al., 2012; Wisz et al., 2008). This good 

performance indicates that these three models generally have better capability of 

modeling the relationships between species and selected environmental features. The 

low performance of GARP is also frequently observed (Guisan et al., 2007; Elith & 
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Graham, 2009; Heikkinen et al., 2012; Wisz et al., 2008). Elith and Graham (2009) found 

that the GARP model failed to model the relations of a simulated species to all 

environmental features considered, while other four models all correctly modeled the 

relationships to some extent. This failure of recognizing the relationship of species to 

environment may lead to the low performance of GARP models.  

Interpolation and transferability are equally important when the SMDs are aimed 

to predict the potential distribution of species in largely unsampled regions or time 

periods. Thus, models that have both high interpolation and transferability are desirable. 

This case study identified that BRT and RF were among the highest ranked models of 

both interpolation and transferability. Although in most cases there is a trade-off between 

model precision (here as interpolation) and generality (here as transferability) (Guisan 

and Zimmermann, 2000), this case study confirmed that the achievement of both 

precision and generality of SDMs is possible. Mi et al. (2017) also found that RF showed 

the best performance in terms of interpolation and transferability with a research on three 

crane species. The result that tree-based algorithms (BRT and RF) showed good 

transferability is consistent with the research by Prasad et al. (2006) and Mi et al. (2017). 

The low transferability of regression-based algorithms (MARS and GAM) is consistent 

with the result of Prasad et al. (2006) on both models and Heikkinen et al. (2012) on 

MARS, but contrary to the observation on GAM by Heikkinen et al. (2012). However, the 

high transferability of RF in this research is contrary to the result from Breiner et al. (2018) 

where they observed low transferability of RF comparing to models like MARS, MAXENT, 

GAM, and GBM. The inconsistency of model rankings on transferability in different 



 
 
 

60 

research suggest that there is not a single best transferable model for all cases (Breiner 

et al., 2018; Mainali et al., 2015).  

Although a significant shift was observed between both the available and occupied 

environmental spaces in the native (Asia) and invaded (U.S.) ranges of kudzu bug, five 

of the seven models showed fair transferability, while at least two of the models showed 

good transferability. Findings of this research are comparable with the study by Heikkinen 

et al. (2012) in which ANN, GARP, BRT, RF and MAXENT were classified as complex 

models and the transferability index (mean=0.900, based on AUC) was similar to results 

in this study (mean=0.905). However, with the non-adaptive niche shift, high 

transferability of models was not expected. The good and fair transferability of the SDMs 

in this research could result from the fact that the shift of occupied environmental space 

is caused by a non-adaptive niche shift rather than an adaptive niche shift. Although 

researchers found that the environmental difference between two ranges decreased 

transferability of SDMs (Qiao et al., 2018; Yates et al., 2018), this study suggests that 

even with significant changes of environment between two ranges, SDMs trained with 

native-only occurrences can still show good transferability. Thus, unlike suggestions by 

Broennimann and Guisan (2008) and Jiménez-Valverde et al. (2011), when niche shift is 

observed, using occurrence information from both native and invaded ranges would not 

always be preferred, especially when the equilibrium in the invaded range is not reached. 

Before deciding what occurrence information should be used for predicting potential 

invasion patterns, one could first determine the type of niche shift (adaptive or non-

adaptive) as well as the environmental space anisotropy between native and invaded 

ranges. In some cases, non-adaptive niche shift does not challenge the transferability of 
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SDMs, thus, the use of native-only occurrence information is suggested. For the niche 

shift caused by niche expansion or environmental space anisotropy, which would 

seriously challenge the transferability of SDMs, one could run the SDMs including 

occurrence data in new ranges where the invasive species have already established 

(Gallagher et al., 2010).  

3.5.2 Impact of Spatial Range of Pseudo-absences on Model Interpolation and 

Transferability 

Research on the impact of the spatial range of PAs on model performances is not 

rare (Barbet-Massin et al., 2012; Stokland et al., 2011; VanDerWal et al., 2009), however, 

such research only considered model interpolation. This systematic evaluation of the 

impact of the spatial range of PAs on model transferability has general implications on 

the selection of PAs for estimating potential distributions of non-native species. Model 

transferability can also be significantly impacted by the spatial range of PAs, thus 

confirming the importance of constraining PAs to the same spatial range as occurrences. 

The inclusion of PAs from the invaded range when only native occurrences are used can 

significantly increase model interpolation but decrease model transferability, if 

environmental space anisotropy exists between native and invaded ranges. As the 

available environmental features in the invaded range are significantly different from 

those in the native range, the PAs from the invaded range increased the ability of models 

to discriminate the presence from the pseudo-absence. Thus, including PAs from the 

invaded range significantly improved model interpolation for all seven algorithms used 

here. However, as some PAs from the invaded range were actually extracted from the 
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suitable range of the invasive species, this inclusion decreased the ability of models to 

recognize the potential distribution area in the new range, resulting in underestimation of 

model transferability. Anderson and Raza (2010) and Zhu et al. (2014) also found that 

constraining the PAs into a properly small region improved model transferability, and can 

be explained as the overfitting of models with PAs from larger spatial extent. Factors other 

than PAs, such as environmental features used for model construction, also can impact 

model transferability (Verbruggen et al., 2013; Yates et al., 2018). 

Using only native occurrences but PAs from both ranges increases model 

accuracy at the expense of decreasing model generality. Broennimann and Guisan 

(2008) concluded that occurrence information from both native and invaded ranges 

should be used by comparing the interpolation and transferability of SDMs trained with 

occurrence information in the native range only and in both native and invaded ranges. 

However, in their research, Broennimann and Guisan (2008) used the same PAs 

extracted from the study area for all models, including models trained only with native 

occurrences (the original description of their method of extracting PAs is “a corresponding 

number of pseudo-absences were sampled randomly across both native and invaded 

ranges”; Broennimann and Guisan, 2008). Several other researchers also used PAs from 

spatial ranges where presence data were not used to develop distribution models (De 

Meyer et al., 2010; Gallardo et al., 2013; Verbruggen et al., 2013). As suggested by this 

study, PAs from the spatial range where presences were not used for model training can 

significantly decrease model transferability, especially when the environmental space 

anisotropy exists between two ranges. Therefore it is important to constrain the PAs to 
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the same spatial range as the presence data to determine the best dataset used for 

development of SDMs.  

3.6 Conclusions 

This study addressed two questions on distribution modeling of invasive species 

with non-adaptive niche shifts between native and invaded ranges. I first evaluated the 

interpolation and transferability of seven commonly used models, and then systematically 

assessed the impact of spatial range where the PAs are extracted on models’ 

interpolation and transferability. I found that five models (RF, BRT, MAXENT, ANN, and 

GARP) showed good or fair transferability (AUC > 0.7, transferability index >0.8, Figure 

3.4), indicating the non-adaptive niche shift does necessarily challenge the transferability 

of SDMs. Although Broennimann and Guisan (2008) suggested that both native and 

invaded occurrences should be used for invasion modeling when a niche shift is 

observed, one should first determine the type of niche shift (adaptive or non-adaptive). 

Non-adaptive niche shift, in some cases, does not challenge model transferability, thus 

occurrence data in native range should be used, especially when the equilibrium in the 

invaded range is not reached. I also found that the spatial range where PAs are extracted 

can significantly impact both interpolation and transferability of SDMs, when 

environmental space anisotropy exists between two ranges. Using kudzu bug as a case, 

extracting PAs from both the native and invaded ranges, while only native presences were 

used for model construction, significantly overestimates interpolations of all models 

(P<0.001 for all, Figure 3.5), but underestimates transferability of all models (Table 3.2). 

The challenge of the environmental space anisotropy on model transferability can be 
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largely avoided or reduced by constraining the PAs to the same spatial range as the 

presences. Therefore, constraining the PAs to the same spatial range as presences used 

for model construction to retain interpolation and transferability. For the classical 

approach of modeling potential invasions with native occurrences, the PAs should only 

be extracted from the native range to avoid misestimates of model performances. Based 

on potential distribution maps, kudzu bug may further spread north and west of the U.S. 

into major soybean growing areas, including Kentucky, Indiana, Ohio, Illinois, Missouri, 

Iowa, Kansas, Oklahoma, and Texas (Figure 3.5 H). Given the serious economic damage 

of kudzu bug on soybean (Seiter et al., 2012), more stringent detection programs are 

suggested for these states to reduce the infestation risk and potentially economic loss.  
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CHAPTER IV: MODELING INVASIONS WITH GEOPOLITICAL-UNIT 

LEVEL RECORDS: COMPARING PERFORMANCES OF COMMON 

METHODS TO ESTIMATE OVERALL SPREAD RATE AND DYNAMICS 
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4.1 Abstract 

To determine best method to estimate invasion dynamics, I evaluated the abilities 

of common methods to estimate expansion pattern, overall rate, and spread dynamic of 

invasive species, assessed impacts of variations in geopolitical-units on each method, 

and finally analyzed similarity patterns of all methods. A new boundary displacement 

method (i.e., CtdBD) and an alternative method (i.e., NctyArea) of using the cumulative 

number of infested geopolitical units (Ncty) to estimate spread with geopolitical-unit data 

was proposed. Simulated spread using counties in the U.S. was used, and eight methods 

to estimate the spread rates were applied. Three regions with different mean sizes of 

counties were selected to conduct simulations independently, and three spread scenarios 

were simulated. R2 and root mean square error were used to evaluate the performance 

of all methods. Pearson correlation coefficient was used to assess the similarity of 

estimated spread by all methods. Finally, kudzu bug, Megacopta cribraria, was used as 

a case study to test the generality of results concluded from the simulated research. 

CtdBD, Ncty and NctyArea methods correctly estimated the expansion patterns for all 

scenarios and regions. Two boundary displacement and two area-based regression 

methods estimated highly correlated spread rates and were the best four methods, 

among which CtdBD had the best estimation. Distance-based regression methods are 

sensitive to the irregularity and stochasticity in spread, and the minimum spread distance 

method had a low ability to estimate spread. NctyArea had better performances than Ncty 

when geopolitical units vary largely in size. The case study showed consistent results with 

the simulated research. Both regression and boundary displacement methods can 
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estimate expansion pattern, overall rate, and spread dynamics of invasive species. 

Generally, the abilities of all methods to estimate spread decrease with the increase of 

irregularity and stochasticity in spread. Boundary displacement methods best estimate 

overall rate and spread dynamics, however, for spread without clear infestation outlines, 

area-based regression methods can be good alternatives.  
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4.2 Introduction 

Modeling invasion dynamics is important to the management of invasive species, 

as it can facilitate prediction of spatial and temporal invasion risks of the species, enhance 

early detection, guide the construction of early warning system, and determine important 

factors affecting the invasions (e.g., Liang et al., 2019; Paini et al., 2016; Stohlgren & 

Schnase, 2006). In practice, estimating spread rates of invasive species had been 

conducted on various species, such as aquatic animal, disease, insect, and plant, on all 

spatial scales including landscape (e.g., Haregeweyn et al., 2013), local (e.g., Sharov et 

al., 1999), regional (e.g., Evans & Gregoire, 2007), continental (e.g.,  Pyšek et al., 2008), 

and global scales (e.g., Suarez et al., 2001). Selection of invasion records for estimating 

spread is closely related to the spatial scales of research. For research conducted at local 

or smaller scales, spread data collected through field sampling or censuses are usually 

used (e.g., Pratt et al., 2003; Sharov et al., 1999). For plant species, time-series satellite 

or aerial images are also constantly used (e.g., Haregeweyn et al., 2013; Pyšek et al., 

2008). However, for research with large scale, such as regional, continental, or even 

global scales, researchers usually have to collect all available records from online 

database, published research, survey, or field sampling (e.g., Evans & Gregoire, 2007; 

Masciocchi & Corley, 2013; Pyšek et al., 2008; Suarez et al., 2001). Consequently, data 

for large-scale research usually has coarse and non-unified resolution.  

The collected data are often converted to geopolitical-unit level data recording 

presence/absence of invasive species for each geopolitical unit (e.g., Evans & Gregoire, 

2007; Horvitz et al., 2017; Lantschner et al., 2014). Additionally, quarantines initiated by 
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governments or institutions are usually conducted at geopolitical-unit levels, such as 

county or township (e.g., Perrins et al., 1993; Tobin et al., 2007 & 2015). Therefore, 

geopolitical-unit level data are usually the most abundant and available records of 

invasive species (Evans & Gregoire, 2007; Liebhold et al., 1992; Tobin et al., 2007; Tobin 

et al., 2015). During the past decades, researchers worldwide had used geopolitical-unit 

record to estimate invasion rates of various species (e.g., Evans & Gregoire, 2007; 

Horvitz et al., 2017; Perrins et al., 1993). Such research was mostly conducted at regional 

scale (e.g., Horvitz et al., 2017; Morin et al., 2007; Perrins et al., 1993), but could also be 

conducted at continental (e.g., Lantschner et al., 2014; Pyšek et al., 2008), or global scale 

(e.g., Liu et al., 2014; Suarez et al., 2001).  

Researchers have developed multiple mathematical models, such as partial 

differential equation (Fisher, 1937) and simple reaction-diffusion model (Skellam, 1951), 

to estimate spread rates of invading organisms in relation to their population density and 

other life characteristic-related parameters (reviewed in Hastings et al., 2005). These 

mathematical models may be capable to estimate spread at small scale for some species 

(Hastings et al., 2005; Suarez et al., 2001). However, for spread at large spatial scales, 

external factors, such as spatial heterogeneity, human transport processes, and air 

current, are more important to the spread of invading species than species-intrinsic 

characteristics (Hastings et al., 2005; Liang et al., 2019; Nathan, 2006). Additionally, 

researchers found that long distance jump dispersal (LDJD) caused by random events 

are much more influential than local dispersal for many species (Kot et al., 1996; Mineur 

et al., 2010; Nathan, 2006). Consequently, invasive species at large spatial scale often 
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show highly asymmetric spread pattern with large stochasticity, resulting in inabilities of 

mathematical models on estimating spread rates. 

Estimating spread of invasive species over large spatial scale, therefore, uses 

alternative approaches. Multiple methods, including regression, boundary displacement, 

and minimum spread distance methods, had been commonly used. Several researchers 

had compared the accuracy of these common methods on estimating spread of invasive 

species (e.g., Gilbert & Liebhold, 2010; Tobin et al., 2015). However, existing research 

only compared the overall estimated rate (Gilbert & Liebhold, 2010; Tobin et al., 2015). 

Spread of invasive species, especially at large scales, is commonly complex due to 

spatial heterogeneity and stochastic events, such as LDJD (Hastings et al., 2005; Pyšek 

et al., 2008). Estimating spreads of invasive species with geopolitical-unit data, however, 

further increases the uncertainties, as there can be large variations on the sizes of 

geopolitical units (Hastings et al., 2005; Pyšek et al., 2008). Consequently, the spread 

rates possibly vary at different spatial regions and temporal periods. Thus, compared to 

one single overall spread rate, estimating spread dynamics is more informative to 

understand the invasion dynamics (Hastings et al., 2005). In addition to the lack of a 

comprehensive evaluation of common methods on estimating both overall rate and 

spread dynamics, a systematic evaluation of these methods with consideration of 

variation of geopolitical unit and anisotropy of spread due to spatial heterogeneity and 

LDJD is also lacking.  

Therefore, in this research, I aimed to evaluate the performances of common 

methods to estimate spread dynamics and overall rate using geopolitical-unit record with 

consideration of real world irregularity and stochasticity. Specifically, the evaluations were 
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conducted from following aspects: 1) the accuracy of commonly used methods on 

estimating spread dynamics and overall rate with irregularity and stochasticity in spread, 

2) the impact of size of geopolitical-unit on each method, and 3) the intrinsic similarities 

of all methods on estimating spread rate and dynamics. Simulated spread data were used 

as spread rate and dynamics can be accurately derived from the simulations. A new 

boundary displacement method and a regression method were proposed for estimating 

spread of invasive species with geopolitical-unit data.  

The commonly used methods were first reviewed with a particular focus on using 

geopolitical-unit invasion data in Section 4.3. Section 4.4 included details of eight 

methods used in this research, methods of simulating spread data, and evaluation criteria. 

Section 4.5 and 4.6 described the results and discussions of this research, respectively.  

4.3 Overview of Commonly Used Methods to Estimate Spread 

The most commonly used methods to estimate spread are regression and 

boundary displacement methods, which can be used with all types of invasion record 

(summarized in Gilbert & Liebhold, 2010; Tobin et al., 2015). The general idea of the 

regression method is to regress the spread measurement against the time when the 

infestation is first observed. Boundary displacement methods estimate spread rates as 

the distance between consecutive infestation outlines of different periods. The minimum 

spread distance method also had been used (Aikio et al., 2010; Horvitz et al., 2017; 

Suarez et al., 2001). Here the details and use of these methods were summarized for 

estimating spreads with geopolitical-unit data.   



 
 
 

72 

4.3.1 Regression Method 

Spread Distance With geopolitical-unit records, the methods of calculating 

spread distance are multiple. One way is to derive the minimum distance between the 

spread origin and the polygon of each geopolitical unit (Tobin et al., 2007 & 2015), and 

then regress the mean distance between spread origin and all geopolitical units infested 

in a same period against the invasion time. Another method is to use the distance 

between the spread origin and the centroid of each infested geopolitical unit (Evans & 

Gregoire, 2007; Tobin et al., 2007).  

Square Root Area Square root area method is often used with population 

information of invasive species (Gilbert & Liebhold, 2010), but can also be used with 

geopolitical-unit records. The square root of cumulative area of all infested geopolitical 

units for each period is used as measurement (Tobin et al., 2015). This method, first 

suggested by Skellam (1951), assumes an invasive species is spreading by 

approximately concentric circles, for which the total spread distance (𝐷) can be estimated 

as = √𝐴/√𝜋 , where A represents the cumulative area of spread regions (Shigesada & 

Kawasaki, 1997).  

Number of Infested Geopolitical-Unit Directly regressing the cumulative 

number of infested geopolitical units on invasion times had been commonly used (e.g., 

Perrins et al., 1993; Pyšek et al., 2008; Suarez et al., 2001). However, I argue that the 

square root of the cumulative number of infested units should be used instead (Williamson 

et al., 2005). If it is assumed that the total number of infested geopolitical units is 𝑛 and 

the mean county size is A̅, then the total infested area is 𝐴 = 𝑛A̅. As presented above, the 



 
 
 

73 

spread distance would be 𝐷 = √𝐴/√𝜋, by replacing 𝐴 with 𝑛A̅, the spread distance can 

be estimated as 𝐷 = √𝑛A̅/√𝜋. Thus, the total spread distance is linearly associated with 

√𝑛, and the spread rate estimated from √𝑛 would be linearly correlated with the ones by 

spread distance regression and square root area regression. Additionally, I proposed that 

√𝑛A̅ can be an alternative to both the square root area regression method and square 

root number of infested geopolitical unit method.  

4.3.2 Boundary Displacement Method 

For geopolitical-unit data, the outer boundary of geopolitical units infested within 

the same period is commonly used as the infestation outline (e.g., Liebhold et al., 1992; 

Tobin et al., 2015). Slight changes on the infestation boundaries are common to avoid 

folds, islands, and gaps on the boundary (Sharov et al., 1999). I proposed a new method 

of deriving the infestation boundary by using polylines connecting all the outer centroids 

of newly infested geopolitical units as the infested boundary. This new method avoids the 

needs of changing infestation boundaries, and the infestation boundaries can be 

delineated automatically using programs like R. 

4.3.3 Minimum Spread Distance Method 

This method takes the minimum distance between a newly infested geopolitical 

unit and all units infested in earlier periods as the distance that a species has to spread 

to invade the new unit (Aikio et al., 2010; Horvitz et al., 2017). The mean of all minimum 

distances of geopolitical units infested in the same period is taken as the spread rate in 
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that period. Similar with boundary displacement methods, MinD also directly estimates 

temporal spread dynamics. 

4.4 Methodology 

4.4.1 Spatial Area of Simulated Spread 

To represent the real-world variety of geopolitical units for the generality of the 

simulated research, the counties in the U.S. were used for the simulated study (Figure 

4.1 A). The county distribution in the U.S. is representative of many countries where size 

of geopolitical unit varies largely among different regions. To evaluate the performance 

of common methods to estimate spread with different geopolitical-unit sizes, the 

simulation research was conducted individually in three regions, Region 1 (R1), Region 

2 (R2), and Region 3 (R3) (Figure 4.1 A). R1, R2, and R3 represent three different types 

of regions: 1) region with counties defined by small areas, 2) region with counties defined 

by small and large areas, and 3) region with counties defined by large areas. The county 

size and its variance in these three regions were listed in Table 4.1. In each region, an 

origin was selected, from which the spread was simulated in all directions, to make sure 

each spread direction has available ground area to conduct the simulations.   

4.4.2 Simulation of Three Expansion Types and Three Spread Scenarios 

To evaluate the ability of common methods to estimate expansion pattern of 

invasive species, three expansion types summarized by Shigesada et al. (1995) were 

simulated: 1) linear expansion, 2) biphasic expansion resulting from two linear-expansion 

phases, and 3) logistic growth function expansion. These three expansion types were 
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commonly seen patterns of invading organism in research (e.g. Lantschner et al., 2014; 

Mineur et al., 2010; Perrins et al., 1993). Additionally, three spread scenarios were 

simulated to compare performances of all methods under different scenarios. A 

symmetric spread (S1) was first simulated to evaluate accuracies of all methods under 

this ideal scenario (Figure 4.1 A-B). To evaluate capability of all methods on dealing with 

anisotropy and stochasticity in spread, an asymmetric spread (S2) caused by spatial 

heterogeneity (Figure 4.1 C-D) and a LDJD (S3) caused by stochasticity (Figure 4.1 E-

F) were simulated. The three expansion types were simulated for all spread scenarios in 

three regions.  

Table 4.1 Statistics of county size in each region for different types of expansion 

Spread 

scenario

s 

Expansio

n 

type 

No. of infested 

county 

Mean area (km2) Coefficient of 

variation 

R1 R2 R3 R1 R2 R3 R1 R2 R3 

S1 Type 1 637 240 103 1188.21 3173.15 7564.29 0.12 0.07 0.29 

Type 2 919 371 172 1235.23 3133.17 7243.13 0.15 0.07 0.31 

Type 3 930 377 172 1236.82 3175.75 7229.18 0.16 0.10 0.32 

S2 Type 1 516 198 82 1125.04 3133.54 8472.74 0.02 0.09 0.29 

Type 2 760 209 95 1176.03 3231.86 8062.71 0.06 0.07 0.33 

Type 3 758 209 95 1175.65 3231.86 8062.71 0.07 0.13 0.26 

S3 Type 1 914 381 146 1271.61 3273.84 8858.33 0.12 0.04 0.35 

Type 2 1147 471 200 1290.96 3275.94 8169.05 0.13 0.04 0.35 

Type 3 1158 479 200 1288.32 3274.22 7881.00 0.14 0.08 0.34 

S1, S2, S3, and No. are short for symmetric spread, asymmetric spread, long distance jump dispersal, and 
number, respectively. R1, R2, and R3 represent small, small and large, and large sized counties. 
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Figure 4.1 Examples of simulated invasion dynamics and conversion to county-level data using Type 2 
expansion pattern (biphasic expansion). A, C, and E Simulated biphasic expansion during year 3-24 for 
scenario 1, 2, and 3, respectively; B, D, and F county-level spread record converted from A, C, and E, 
respectively. The distances between the spread origin and first and second jump points in E and F are set 
the same in all three regions.  
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Simulation of Symmetric Spread  For the simulation of S1, the Type 1 

expansion has a constant spread rate for all periods. The spread rate for Type 1 

expansion was set to 20 km/year, as this is about the mean spread rate of invasive 

species based on multiple research (e.g., Horvitz et al., 2017; Suarez et al., 2001; Tobin 

et al., 2009). For Type 2 expansion the simulated rate was set to 20km/year for the first 

12 invasion years and 30km/year for the following 12 years, thus the mean spread rate is 

25km/year for the whole period. The Type 3 expansion follows a logistic growth function: 

𝑦 = 826/(1 + 𝑒−0.43∗(𝑥−10)). 

 

Simulation of Asymmetric Spread Simulation of the three expansion types 

for S2 is similar with that for S1, except that the spread rates varied among different 

directions (Figure 4.1 C-D). The mean simulated rate at all directions varied between 10-

24 km/year for Type 1 expansion, and 12-31 km/year for Type 2 and Type 3 expansions.  

Simulation of Long-Distance Jump Dispersal To simulate the S3, two 

jump dispersal events were added for the symmetric spread (S1) with one occurring in 

year 9 and another occurring in year 18 (Figure 4.1 E-F). To make the S3 in three regions 

comparable, the distances among the two jump points and the spread origin are set the 

same for all regions (Figure 4.1 E-F). The jump point would become a new spread origin, 

from which further spreads will occur in all directions at some rates, and this rate was set 

to 20km/year for all jump points and expansion types for clarity and simplicity.  

Estimation of Simulated Rates Unlike S1, the spread rates for S2 and S3 can 

not be directly derived from an expansion algorithm. Two methods, square root area and 
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spread distance (Dis) methods, were used to calculate the simulated overall rate and 

spread dynamics. Calculation of spreads by Dis method is similar with boundary 

displacement method, except that instead of using mean distances between two 

consecutive boundaries, the Dis method calculates the rate dynamics by subtracting the 

mean distances between two consecutive boundaries and the spread origin. These two 

methods were chosen as they can directly be used with simulated data without converting 

to county-level data, and also both methods use objective measures without the need of 

any manual changes.  

Converting Simulated Spread to Geopolitical-Unit Data For all simulations, the 

spread was measured once every three years. To convert the simulated spread (shown 

in Figure 4.1 A, C, E) to geopolitical-unit spread record (shown in Figure 4.1 B, D, F), 

counties that were infested in the same periods (i.e., every three years) were first 

selected. To eliminate margin effect, a county is only defined as first infested when more 

than 10% area of that county get infested. To reflect stochasticity occurred often in real 

situations, 5% of the counties first infested in each period were randomly set as non-

infested counties.  

4.4.3 Methods to Estimate Overall Rate and Spread Dynamics  

The technique flow of the simulation research is summarized in Figure 4.2. Four 

regression methods, two boundary displacement methods and a minimum spread 

distance method (MinD) were used. Details of all methods were listed in Table 4.2. For 

CtyBD and CtdBD methods, distances between two consecutive boundaries were 

measured as the mean length of all transects radiating from the spread origin at 2o 
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(Liebhold et al., 1992; Liang et al., 2019). For the MinD method, we first calculates the 

minimum distance between the centroid of a newly infested county and centroids of all 

counties infested in earlier periods, and then take the mean of the minimum distances of 

all newly infested counties as the spread rate in the new period.  

 

Figure 4.2 Technique flow of the simulation study. CV is short for coefficient of variation of county size. S1, 
S2, and S3 represent symmetric spread, asymmetric spread, and long distance jump dispersal, 
respectively.  
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Table 4.2 Full and abbreviation names of all methods and the measurements used by 
all methods to estimate spread dynamics 

Method 

Name of method 

Measurement 

Full name Abbreviation 

Regression 

method 

Centroid distance between 

spread origin 
CtdDis 

Mean distance between county centroids 

and spread origin 

Minimum distance 

between county and origin 
MinD Reg 

Mean of the minimum distance between 

counties and spread origin 

Square root of infested 

area 
Area √𝐴/𝜋 

Number of infested county Ncty √𝑛 

Square root area 

estimated from number of 

infested county 

NctyArea Ncty*√𝐴̅/𝜋 

Boundary 

displacement 

Centroid boundary CtdBD Mean distance between two consecutive 

boundaries County boundary CtyBD 

Minimum spread distance MinD 

Mean of the minimum distance between 

centroids of newly and earlier infested 

counties 

𝐴, 𝑛, 𝑎𝑛𝑑 𝐴̅  represent the cumulative infested area, all number and mean area of infested counties, 
respectively.  
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CtdBD, CtyBD, and MinD methods directly estimate spread dynamics in different 

periods, and the overall rate was calculated as the mean rate overall all periods. For 

regression method, spread dynamics were estimated as the difference of measurements 

between two consecutive periods.  For Type 1 expansion, the overall rate was estimated 

as the slope of a linear regression for regression methods, whereas for Type 2 expansion, 

the overall rate was estimated as the mean of two slopes of a segmented linear regression 

with break point at year 12. Finally, for Type 3 expansion pattern, instead of estimating 

spread rate using derivative of logistic growth function, the below function was used to 

make the derived overall rate more representative of the practice.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 = 
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑝𝑟𝑒𝑎𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑟𝑒𝑎𝑑 𝑡𝑖𝑚𝑒
 

4.4.4 Evaluation Statistics 

Ability of All Methods to Estimate Expansion Patterns 

For CtdBD, CtyBD, and MinD methods, the cumulative values of spread 

measurement for each period were derived. To test whether all methods can accurately 

estimate the right expansion patterns, three regression models were fitted, i.e., linear, 

biphasic linear, and non-linear with logistic function, to the estimated spread measure or 

cumulative measure for non-regression methods for each expansion type, region, and 

spread scenario. The AICs of three regression models were derived and the model with 

lowest AIC was assigned as the estimated expansion pattern by the method.  
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Accuracy and Similarity of All Methods 

To evaluate the accuracy on overall rate and spread dynamics estimated by each 

method, the R2 and the root mean square error (RMSE) between the estimated and 

simulated spread were derived by each region and spread scenario. R2, which varies from 

0 to 1, is a scale-independent criteria and can measure ability of all method on estimating 

the real spread patterns, with 1 indicating perfect estimation. The RMSE measures the 

absolute deviation of estimated spread from the simulated spread, but can not be used 

on Ncty method due to its scale-sensitivity.  

To assess the similarity of overall rate and spread dynamics estimated by all 

methods, the Pearson correlation coefficient (r) was calculated. Hierarchical clustering 

(HC) with complete linkage was used to group all methods based on their similarity of 

estimating overall rate and spread dynamics by different regions and spread scenarios.  

Impact of County Size on Estimation Accuracy 

To determine whether the county size and its variation affect the values of 

estimated overall rate and spread dynamics by each method, the significance of 

correlations between the estimated spread with the mean and coefficient of variation (CV) 

of county size was tested. To assess the impact of county size and its variation on 

accuracies of estimated overall rate and spread dynamics, the significance of correlations 

between the mean and CV of county size and R2 of the estimation was tested for each 

region and spread scenario.  
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4.5 Results 

4.5.1 Ability of All Methods on Estimating Expansion Patterns 

Not only regression methods but also boundary displacement methods can 

estimate the expansion patterns (Figure 4.3, for clarity only Type 1 and 3 patterns in R1 

and R3 were shown). CtdBD, Ncty and NctyArea methods correctly estimated the 

expansion patterns for all scenarios and regions. For S1, except MinD, all other methods 

correctly estimated the right expansion patterns in all regions. For S2 and S3, Area and 

CtyBD correctly estimated all expansion patterns for R1 and R2. MinD Reg, and MinD 

methods often misclassified the expansion patterns for S2 and S3, and CtdDis often 

misclassified the expansion patterns for S3. 

 

Figure 4.3 A-G Estimated spread patterns for asymmetric spread scenario in Region 1 (R1) and Region 3 
(R3) by four regression methods (A-D), two boundary displacement methods (E-F), and minimum spread 
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distance method (G). For clarity, only type 1 and type 3 expansion patterns are shown in the plots. NctyArea 
method estimated exactly the same pattern with Ncty method, thus is not shown. 

4.5.2 Accuracy of All Methods  

For both scenario 2 and 3, the spread becomes asymmetric (Figure 4.1). 

Consequently, the simulated spread rates measured by spread distance and square root 

area differ with each other. This difference of simulated rate suggests that the spread rate 

of invasive species can be multiple based on the estimation methods, whereas different 

methods capturing different aspect of the spreads. Therefore, estimating spread 

dynamics is more informative and meaningful than estimating an overall spread rate.  The 

spread rate estimated from spread distance method was used hereafter.  

Accuracy on Estimating Overall Spread Rate 

For all scenarios, the MinD method consistently estimated higher spread rate in 

regions with larger county size leading to underestimation of rate in R1 but overestimation 

in R3. For S1, all other methods estimated similar spread rates with simulated rates 

(Table 4.3). However, the MinD Reg method estimated a significantly lower spread rate 

(P=0.003), whereas the CtyBD estimated a higher spread rate than the simulations 

(P=0.002). For S2 and S3, all regression methods tended to estimate significantly higher 

spread rates than the simulations (Table 4.3), whereas the boundary displacement 

methods estimated significantly higher spread rate when LDJD occurred.   

  



 
 

85 

Table 4.3 Simulated and estimated overall spread rates and the paired T-test between simulated and estimated rates for 
each spread scenario 

Spread 

scenario 

Type Simulated 

rate (km/y) 

Region CtdDis Area MinD 

Reg 

Ncty NctyArea CtdBD CtyBD MinD 

S1 I 20.00 R1 19.81 19.45 19.53 1.02 20.23 20.13 20.11 15.91 

R2 19.86 19.91 19.61 0.61 19.26 19.93 20.55 20.54 

R3 20.20 19.80 19.82 0.38 18.25 20.12 21.57 27.99 

 II 25.00 R1 24.90 24.34 24.38 1.16 22.56 25.21 25.87 18.46 

R2 24.90 24.71 24.48 0.78 24.79 24.97 25.43 22.55 

R3 24.95 24.25 24.60 0.52 25.52 25.16 26.28 29.07 

III 25.20 R1 25.15 25.17 24.01 1.27 25.20 25.06 25.23 19.07 

R2 25.24 25.70 23.70 0.81 25.75 25.12 25.73 23.15 

R3 25.60 26.42 23.48 0.55 26.38 25.38 26.56 28.78 

P 0.987 0.661 0.003 NA 0.468 0.260 0.002 0.742 

S2 I 16.68 R1 18.00 16.89 17.84 0.88 16.70 16.42 16.13 15.15 

16.59 R2 19.03 17.41 18.82 0.54 17.01 16.85 17.18 20.19 

16.59 R3 19.72 17.75 19.09 0.34 17.73 17.16 17.42 29.09 

II 21.44 R1 23.54 21.14 23.09 1.06 20.49 21.08 20.81 17.56 

21.33 R2 24.47 22.61 24.41 0.70 22.50 21.90 22.23 22.21 

21.32 R3 23.95 21.37 23.57 0.45 22.64 20.36 21.14 29.34 
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Table 4.3 Continued 
Spread 

scenario 

Type Simulated 

rate (km/y) 

Region CtdDis Area MinD 

Reg 

Ncty NctyArea CtdBD CtyBD MinD 

 III 21.42 R1 24.04 21.86 23.08 1.13 21.83 21.04 20.65 17.88 

21.31 R2 24.63 22.92 23.11 0.73 23.50 22.05 21.87 22.82 

21.30 R3 25.97 23.30 24.09 0.48 24.54 21.67 21.17 28.22 

P 0.000 0.005 0.000 NA 0.016 0.748 0.744 0.175 

S3 I 24.66 R1 26.31 25.99 25.94 1.28 25.72 25.66 25.45 20.79 

R2 26.13 26.71 25.90 0.81 26.16 26.57 26.84 26.03 

R3 25.13 26.53 24.70 0.48 25.44 25.40 25.79 33.51 

II 28.07 R1 31.32 28.32 30.73 1.33 26.88 29.37 30.05 22.32 

R2 32.76 29.06 32.46 0.89 28.77 29.71 30.32 26.96 

R3 29.12 29.80 28.32 0.58 29.42 28.70 30.18 33.61 

III 28.21 R1 29.70 28.71 28.53 1.42 28.71 27.88 28.51 21.76 

R2 30.04 29.44 28.48 0.91 29.44 28.77 30.19 25.76 

R3 28.36 29.51 25.98 0.59 29.51 28.87 30.54 31.56 

P 0.003 0.000 0.087 NA 0.009 0.002 0.000 0.976 

S1, S2, and S3 represent symmetric spread, asymmetric spread, and long distance jump dispersal, respectively. P: P value of paired T-test between 
estimated and simulated rates by each scenario (one-tale test for P<0.10, two-tale test for P>=0.10) 
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Based on R2, all methods had best estimates for symmetric spread and least 

estimates for LDJD (Table 4.4). The MinD and Ncty methods had low ability to estimate 

spread when spread in all three regions was considered. For S1 and S2, the CtdBD, 

CtdDis and MinD Reg were the best three methods. However, the distance-based 

regression methods had low ability to estimate spread rate for S3, whereas CtyBD, 

CtdBD, and Area were the best three methods for this scenario. Except Ncty and 

NctyArea, all other methods had best estimates for R1 (Table 4.4). Despite the large size 

and variations of county in R3, all methods had higher R2 than that for S3, suggesting the 

LDJD challenges the estimation of spreads more than irregularities caused by county 

sizes. CtdBD method had the best estimate, followed by CtyBD, Area, and NctyArea.  

Accuracy on Estimating Spread Dynamics  

Compared to the overall rate, the ability to estimate spread dynamics decreased 

for all methods (Table 4.5). Except Ncty, NctyArea, and MinD methods, all other methods 

had highest performances for S1 and R1 and lowest performances for S3 and for R3, 

suggesting the increasing challenge of estimating spread dynamics with the increase of 

stochasticity and irregularity in spread and county size. The MinD method had low 

performances for all scenarios and regions. CtdDis and MinD Reg methods only had good 

estimation for S1 (Table 4.5). CtdBD, NctyArea, Area, and CtyBD were the best four 

methods for all scenarios and regions based on both R2 and RMSE (Table 4.5), whereas 

only CtdBD showed consistent satisfying estimates for all regions and scenarios (R2> 

0.75).  

 



 
 
 

88 

Table 4.4 R2 of estimated overall spread rate by each scenario and region, and R2 and 
root mean square error (RMSE) of estimated spread rates in all regions for all scenarios  

Spread CtdDis Area 
MinD 

Reg 
Ncty NctyArea CtdBD CtyBD MinD P 

R2 by 

scenario 

S1 0.99 0.95 0.96 0.09 0.87 1.00 0.95 0.04 NA 

S2 0.93 0.92 0.96 0.09 0.86 0.94 0.93 0.03 0.007 

S3 0.72 0.89 0.47 0.02 0.79 0.85 0.89 0.00 0.021 

R2 by 

region 

R1 0.91 0.98 0.89 0.93 0.92 0.98 0.98 0.89 NA 

R2 0.84 0.96 0.80 0.96 0.95 0.97 0.98 0.76 0.033 

R3 0.82 0.95 0.81 0.92 0.91 0.98 0.97 0.41 0.035 

All overall 

rates 

R2 0.85 0.95 0.81 0.14 0.91 0.98 0.97 0.13 

NA RMSE 2.13 1.06 1.78 NA 1.25 0.71 1.22 5.19 

Tukey's range test a a ab bc a a a c 

S1, S2, and S3 represent symmetric spread, asymmetric spread, and long distance jump dispersal, 
respectively. P: P value of one-tale paired T-test of R2 between S1/R1 and other scenarios/ regions.  

4.5.3 Impact of County Size and its Variation on Estimation of Spread 

In regions with larger county size, the MinD method always estimated higher 

spread rates whereas the Ncty method always had lower values (Table 4.3). 

Consequently, strong correlations existed between the county size and the estimated 

spread for these two methods (Table 4.6). Additionally, the larger county size also lead 

to higher estimated spread dynamics for Area, CtdBD, and CtyBD methods. For the 

accuracy of estimated overall rate, significant correlation of R2 with mean and CV was 

only observed on the Area method (Table 4.6). However, for the estimated spread 

dynamics, significantly negative correlations were observed on Area, CtdBD, and CtyBD 

methods (Table 4.6), indicating the accuracy of these methods are negatively impacted 
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by the county size and its variations. Whereas for Ncty and NctyArea methods, variations 

in mean county size is more influential than the size of county on the estimation accuracy.  

Table 4.5 R2 of estimated spread dynamics by each scenario and region, and R2 and root 
mean square error (RMSE) of estimated spread dynamics for all regions and scenarios  

Spread 

Regression Method Boundary Displacement 

P 

CtdDis Area 
MinD 

Reg 
Ncty NctyArea CtdBD CtyBD MinD 

R2 by 

scenario 

S1 0.83 0.84 0.81 0.36 0.84 0.90 0.83 0.24 NA 

S2 0.60 0.79 0.45 0.35 0.89 0.80 0.77 0.22 0.036 

S3 0.05 0.57 0.06 0.24 0.63 0.77 0.58 0.07 0.004 

R2 by 

region 

R1 0.37 0.96 0.39 0.46 0.89 0.97 0.96 0.27 NA 

R2 0.31 0.87 0.32 0.48 0.92 0.90 0.88 0.24 0.013 

R3 0.31 0.57 0.31 0.38 0.65 0.77 0.55 0.30 0.009 

All 

spread 

dynamics 

R2 0.33 0.76 0.34 0.24 0.80 0.86 0.76 0.19 

NA 
RMS

E 
7.44 3.86 7.25 NA 3.50 3.30 4.13 8.75 

Tukey's range test b a b b a a a b 

S1, S2, and S3 represent symmetric spread, asymmetric spread, and long distance jump dispersal, 
respectively. P: P value of one-tale paired T-test of R2 between S1/R1 and other scenarios/ regions.  
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Table 4.6 Correlation coefficient between mean of county size and estimated overall rate 
and spread dynamics, and between mean/coefficient of variation of county size and R2 
for each region, expansion type, and spread scenario 

Correlation of A and 

B 
Regression Method 

Boundary 

Displacement MinD 

A B CtdDis Area MinD Ncty NctyArea CtdBD CtyBD 

Mean  
Overall rate 0.00 0.01 -0.04 -0.85*** 0.13 0.00 0.07 0.91*** 

Dynamics 0.08 0.15* -0.02 -0.55*** -0.04 0.15* 0.15* 0.67*** 

Mean  R2 of overall 

rate 

-0.06 -0.68* -0.23 0.51 

0.18 

0.51 0.18 0.42 -0.58 

CV 0.07 -0.62 -0.19 0.18 0.13 0.14 -0.38 

Mean  R2 of 

dynamics 

-0.08 -0.85*** -0.22 -0.32 -0.32 -0.69** -0.86*** -0.38 

CV -0.05 -0.81*** -0.16 -0.53* -0.53* -0.62** -0.77*** -0.34 

*, **, and ***Significant at level 𝛼=0.05, 0.01, and 0.001, respectively. Bold: Significant at level 𝛼=0.10. 

4.5.4 Similarity of All Methods  

Similarity of Overall Rate  For the overall rate, all methods estimated 

highly correlated overall rate in R1 (r>0.90, Figure 4.4 A) and R2 (r>=0.85, Figure 4.4 

B), whereas the large county size in R3 only dramatically decrease the similarities of MinD 

with the remaining methods (r<= 0.80, Figure 4.4 C). For both S1 and S2, except Ncty 

and MinD methods, all other methods estimated highly correlated overall rate among 

each other and with the simulation (r>=0.90, Figure 4.4 E, F), confirming comparably 

good performance of these methods. For S3 similarities of CtdDis and MinD Reg with 

other methods also decreased, however high positive correlations were still observed 

among Area, NctyArea, CtdBD, and CtyBD methods (Figure 4.5 G).  
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Figure 4.4 Correlation matrix (CM) and similarity pattern (SP) of estimated overall spread rate by all 
methods. A-D CM and SP in region 1 (R1), region 2 (R2), region 3 (R3), and all regions for three spread 
scenarios, respectively; E-G CM and SP of symmetric spread (S1), asymmetric spread (S2), and long 
distance jump dispersal (S3) for all regions, respectively. Methods that are enclosed in the same triangle 
are classified in the same group by hierarchical clustering based on similarity of estimated rate.  
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Figure 4.5 Correlation matrix (CM) and similarity pattern (SP) for estimated spread dynamics by all 
methods. A CM in region 1 (R1) for symmetric spread (S1); B-E CM and SP in R1, region 2 (R2), region 3 
(R3), and all regions for three spread scenarios, respectively; F-G CM and SP of S1, asymmetric spread 
(S2), and long distance jump dispersal (S3) for all regions, respectively. Methods that are enclosed in the 
same triangle are classified in the same group by hierarchical clustering based on similarity of estimated 
rate.  
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Similarity of Spread Dynamics Compared to the overall rate, the spread 

dynamics are more sensitive to the irregularities and stochastic events. Consequently, 

high correlations among all methods was only observed for S1 in R1 (Figure 4.5 A, 

r>0.70). With the increase of anisotropy and stochasticity in spread in R1, the similarities 

of the CtdDis, MinD Reg, MinD, and Ncty methods decreased with other methods (Figure 

4.5 B). Nevertheless, estimated dynamics by NctyArea, Area, CtyBD, and CtdBD 

methods still had high correlations among each other and with the simulated dynamics 

(r>0.90, Figure 4.5 B-C). The correlation of all methods in R2 showed the same pattern 

with that in R1 (Figure 4.5 C). Similar with the overall rate, the similarity of all methods 

was further weakened in R3, and high correlations was only observed among Area, 

CtyBD, and CtdBD methods (r>0.80, Figure 4.5 H).  

Overall Similarity The CtdDis and MinD Reg methods always estimated highly 

correlated overall rate and spread dynamics (r>0.95, Figures 4.4 & 4.5), whereas MinD 

and Ncty methods always estimated low similarity with other methods when spreads in 

all regions were analyzed together. For the similarity patterns on all estimations, except 

Ncty and MinD, all other methods estimated highly correlated overall rate among each 

other and with the simulations (Figure 4.4 D), whereas Area, NctyArea, CtDBD, and 

CtyBD methods estimated highly correlated spread dynamics among each other and with 

the simulations (Figure 4.5 E). These strong correlations indicated that the estimated 

spread patterns were essentially similar. Based on similarities of estimated overall rate 

and spread dynamics, Area, CtDBD, CtyBD and NctyArea methods were constantly 

classified into one group (Figures 4.4 & 4.5).  
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4.6 Discussion 

Estimating spread is critical for prediction and early management of invasive 

species and understanding important factors affecting the spread (Liang et al., 2019; Paini 

et al., 2016; Stohlgren & Schnase, 2006). For non-native species, invasion histories 

recorded at geopolitical unit are often more available than fine resolution records. 

Researchers worldwide had used geopolitical-unit level data to estimate spread of 

invasive species without a full evaluation on ability of common methods on estimating 

spread with geopolitical-unit level data (e.g., Evans & Gregoire, 2007; Liang et al., 2019; 

Tobin et al., 2009).  This research evaluated the ability and similarity of commonly used 

methods to estimate spread while considering the variation of geopolitical-unit size and 

heterogeneity and stochasticity in spread of invasive species across large spatial area. A 

new boundary displacement method (i.e., CtdBD) and regression method (i.e., NctyArea) 

was proposed to estimate invasions with geopolitical-unit level data. Findings of this 

research can guide selection of optimal methods for estimating invasions with both 

geopolitical-unit level data and other types of invasion record, based on irregularities in 

data and anisotropy and stochasticity in spread. 

4.6.1 Ability of All Methods to Estimate Spread of Invasive Species  

Regression methods had long been used to determine expansion patterns of 

invasive species (e.g., Liang et al., 2019; Liebhold et al., 1992; Mineur et al., 2010; Perrins 

et al., 1993). The cumulative value of boundary displacement methods can also be used 

to estimate the expansion patterns. The CtdBD always estimated the right expansion 

patterns as well Ncty and NctyArea method regardless of variations in county size and 
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anisotropy and stochasticity in spread. Additionally, CtyBD and Area methods can also 

be used to estimate expansion patterns.  

Compared to the overall spread rate, spread dynamics over different invasion 

periods can provide more complete knowledge on the spread of invasive species and 

better facilitate further analysis or management of invasive species (Hastings et al., 2010; 

Liang et al., 2019). However, the estimation of spread dynamics is much more challenging 

than the estimation of overall rate.  Boundary displacement and minimum spread distance 

methods had been commonly used to estimate spread dynamics of invasive species (e.g. 

Horvitz et al., 2017; Sharov et al., 1999; Wang & Wang, 2006). Tobin et al. (2007) 

concluded that the boundary displacement method is better than regression method as 

the former method can describe dynamics of spread rate. However, this research 

suggests that regression methods can also accurately estimate spread dynamics by using 

the difference of measurements between two consecutive periods. CtdBD, CtyBD, Area, 

and NctyArea methods were the top four methods to estimate both overall rate and spread 

dynamics. Thus, for spread without clear infestation outline, Area and NctyArea methods 

can be used to estimate the spread dynamics. For spread with clear infestation outlines, 

CtdBD can be a top choice as it constantly had the best estimation. 

Generally, the abilities of all methods to estimate spread rate decrease with the 

increase of anisotropy and stochasticity in spread. However, the distance-based 

regression methods (i.e., CtdDis and MinD Reg) are more sensitive to these irregularities 

and stochasticity than the area-based regression methods (i.e., Area and NctyArea) and 

boundary displacement methods, as they can be more easily skewed by unrepresentative 

long distances caused by stochasticity or heterogeneity. Consequently, CtdDis and MinD 
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Reg methods had low ability to estimate overall rate for LDJD, and can only estimate 

spread dynamics well without high asymmetry or LDJD in spread.  

Researchers had used MinD method to estimate spread dynamics (e.g., Aikio et 

al., 2010; Horvitz et al., 2017), and Ncty method to estimate the overall rate and expansion 

patterns of non-native species (Perrins et al., 1993; Pyšek et al., 2008). However, when 

evaluating the accuracy of estimated overall rate across different regions, Ncty and MinD 

methods constantly showed low ability to estimate both overall rate and spread dynamics 

for all spread scenarios due to their sensitiveness to size of geopolitical unit. Additionally, 

MinD constantly showed lowest ability to estimate both overall rate and spread dynamics, 

and Ncty had low ability to estimate spread dynamics. Thus, MinD method is not 

recommended to estimate spread of invasive species, whereas Ncty is only suggested to 

estimate overall spread rate when the mean sizes of geopolitical unit across different 

periods or regions are relatively uniform. NctyArea can be a good alternative to the Ncty 

method as it rectifies the Ncty method by the mean area of geopolitical unit.  

4.6.2 Estimation of Spread with Asymmetric Spread and Long-Distance Jump 

Dispersal 

Compared to LDJD, asymmetric spread caused by spatial heterogeneity does not 

seriously challenge the ability of all methods to estimate overall spread rate, meanwhile 

all boundary displacement methods and area-based regression methods can also show 

good estimation of spread dynamics under this scenario. However, when the spread is 

highly asymmetry and study area is large, such as regional or bigger scales, estimating 

spread of invasive species by taking the whole infested region as one area can not reveal 
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the spatial dynamics of spread caused by heterogeneities (Andow et al., 1990; Liang et 

al., 2019). To better reveal localized spread dynamics for asymmetric spread, Andow et 

al. (1990) first proposed to divide the large infested area into multiple neighborhoods to 

increase homogeneity within each neighborhood. Fraser et al. (2015) divided the whole 

infested region into three segments based on the introduction origins and spatial 

heterogeneity, whereas Morin et al. (2009) divided the whole infested area into uniform 

size of sectors to reflect the spatial anisotropy in the spread of hemlock wooly adelgid. 

However, these methods do not classify neighborhoods from a quantitative perspective. 

Liang et al. (2019) proposed a quantitative method, spatial constrained clustering, to 

classify large heterogeneous region into environmentally homogeneous sub-regions. The 

use of neighborhood measurement is suggested for highly asymmetric spread, especially 

when assessing impact of spatial factors contributing to the asymmetrical expansions is 

of interest. Additionally, dividing a highly asymmetric spread into several relatively 

symmetric spread within each sub-region, the estimation accuracy can also be improved 

as suggested by this research.  

Asymmetric spread caused by LDJD challenges the ability of all methods to 

estimate both overall rate and spread dynamics. LDJD of invasive species is often caused 

by random event (Nathan, 2006; Suarez et al., 2001). However, despite its rarity and 

stochasticity, LDJD events greatly facilitate the expansion of invasive species and can be 

more influential than local dispersal for some species (Kot et al., 1996; Mineur et al., 2010; 

Nathan, 2006; Shigesada et al., 1995; Suarez et al., 2001). For LDJD, estimation of 

spread rate could not tell the real dispersal ability of the species, but a rate impacted by 

stochastic events. LDJD events cause new spread origins and obscure the spread 
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patterns (Mineur et al., 2010; Nathan, 2006). Thus, to better estimate local spread rates 

of invasive species, researchers could set multiple spread origins including the ones 

caused by LDJD, if the expansions originated from the LDJD point are easily recognized 

(Muirhead et al., 2006; Suarez et al., 2001). However, for the LDJD-point originated 

spread that are not easily recognized, the boundary displacement method, CtdBD and 

CtyBD, and area-based regression methods, Area and NctyArea, could be preferred as 

they are less sensitive to the LDJD than distance-based regression methods.  

4.6.3 Similarity of All Methods to Estimate Spread of Invasive Species 

Comparison of common methods to estimate spread of invasive species had been 

conducted by researchers (Gilbert & Liebhold, 2010; Tobin et al., 2007; Tobin et al., 

2015), whereas assessment of the similarity of these methods is rare. A variety of 

measurements, such as spread distance or area and number of infested geopolitical unit, 

are used by different methods, thus the estimated spread rates may vary upon the 

measurements. However, regardless of the differences in estimated rates, the spread 

patterns, i.e. the spatial or temporal spread dynamics, revealed by different methods 

could be essentially similar (Liang et al., 2019; Weber, 1998). In some practice, such as 

determining important factors affecting spread of invasive species (Lantschner et al., 

2014; Liang et al., 2019; Sharov et al., 1999), the accuracy of estimated spread patterns 

matter more than the values of spread rates.  

When the spread is symmetric and the county size is relatively uniform, all eight 

methods estimate similar spread dynamics among each other and with real spread 

dynamics. However, with all the irregularities and stoachasticity, Area, CtdBD, CtyBD, 
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and NctyArea methods estimated similar spread dynamics and can be classified into one 

group, whereas the Area, CtdBD, and CtyBD have higher similarities among each other 

than with NctyArea method. When the overall spread rate is the question of interest and 

no LDJD occurred, except Ncty and MinD methods, all other six methods estimated 

similar spread patterns among each other and with real spread dynamics, suggesting all 

these methods could have robust estimation of overall rate regardless of the variations in 

geopolitical unit. However, for LDJD only Area, CtdBD, CtdDis, and NctyArea methods 

estimated similar overall rates with the simulation. Unsurprisingly, the two distance-based 

regression methods, CtdDis and MinD Reg, always estimate highly correlated overall 

rates and spread dynamics. No significant difference of accuracy on estimated overall 

rate (P=0.49) and spread dynamics (P=0.48) was observed between the two methods. 

The two boundary displacement method always estimated highly correlated overall rate 

and spread dynamics (r>0.85), whereas CtdBD had higher accuracy to estimate spread 

dynamics than the CtyBD method (P=0.014). 

4.7 Conclusions 

Using simulated spread data, I found geopolitical-unit invasion record is capable 

of accurately estimating spread of invasive species. Both regression methods and 

boundary displacement methods can be used to estimate the overall invasion rate, 

expansion pattern, and spread dynamics of non-native species.  Selection of an optimal 

method depends on the question of interest, anisotropy and stochasticity in spread, and 

variations and sizes of geopolitical unit. Among the eight methods considered, except 

MinD method, all other methods can be used for spread without LDJD when the question 
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of interest is the overall rate and sizes of geopolitical unit are relatively uniform. However, 

if the question of interest includes estimating overall rate in several sub-regions, among 

which mean sizes of geopolitical units vary largely, both MinD and Ncty method could be 

avoided, whereas NctyArea method is a good alternative for Ncty method under this 

scenario. The spread distance-based regression methods (i.e., CtdDis and MinD Reg) 

are more sensitive to the irregularities and stochasticity in spread than the area-based 

regression methods and boundary displacement methods. For LDJD, boundary 

displacement methods and area-based regression method, i.e., Area and NctyArea, can 

be used to estimate overall spread rates. Estimating spread dynamics is more informative 

but more challenging than overall spread rates. Boundary displacement methods and 

area-based regression methods estimate the most reliable spread dynamics for all 

scenarios. For both overall spread rate and spread dynamics, boundary displacement 

methods have the best estimations. However, for spread rate without clear infestation 

outline, area-based regression methods can be good alternatives to estimate spread of 

invasive species. Additionally, because research using geopolitical-unit level records to 

estimate spread usually has a large spatial scale, the use of neighborhood measurement 

is suggested for highly asymmetric spread to better estimate invasion dynamics.  
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CHAPTER V: DETERMINING SPREAD RATE OF KUDZU BUG 

(HEMIPTERA: PLATASPIDAE) AND ITS ASSOCIATIONS WITH 

ENVIRONMENTAL FACTORS IN A HETEROGENEOUS LANDSCAPE  
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This chapter is a reformatted version of a paper by the same name published in 

Environmental Entomology by Liang, W., Tran, L., Wiggins, G., Grant, J., Stewart, S., & 

Washington-Allen, R. 

Liang, W., Tran, L., Wiggins, G.J., Grant, J.F., Stewart, S.D., & Washington-Allen, R. 

(2019). Determining Spread Rate of Kudzu Bug (Hemiptera: Plataspidae) and Its 

Associations with Environmental Factors in a Heterogeneous Landscape. Environmental 

Entomology, 48, 309-317. 

5.1 Abstract 

Modeling invasion dynamics is valuable to guide management through early 

detection and prevention of further invasion. Herein, I first estimated the spread rate of 

kudzu bug with county-level invasion records and then determined important spatial 

factors impacting its spread during years 2010-2016. As kudzu bug infests a large 

heterogeneous area and shows asymmetric spread, I first utilized spatially constrained 

clustering (SCC), an unsupervised machine learning method, to divide the infested area 

into eight spatially-contiguous and environmentally homogenous neighborhoods. 

Distance regression and boundary displacement methods were then used to estimate the 

spread rates in all neighborhoods. Finally, multiple regression was applied to determine 

spatial factors influencing the spread of kudzu bug. The average spread rate reached 76 

km/year by boundary displacement method, however, the rate varied largely among eight 

neighborhoods (45 - 144 km/year). In the southern region of the infested area, host plant 

density and wind speed were positively associated with the spread rate, whereas mean 

annual temperature, precipitation in the fall, and elevation had inverse relationships. In 
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the northern region, January minimum temperature, wind speed, and human population 

density showed positive relationships. This study increases the knowledge on the spread 

dynamics of kudzu bug. This research highlights the utility of SCC to determine natural 

clustering in a large heterogeneous region for better modeling local spread patterns and 

determining important factors impacting the invasions.  
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5.2 Introduction 

Modeling invasion dynamics is a valuable tool to guide management, enhance 

early detection, and facilitate control of kudzu bug in its invaded range, and possibly 

prevent further invasion (Epanchin-Niell & Hastings, 2010). Various types of data have 

been used and compared to assess their usefulness in predicting spread dynamics of 

invasive species. Although the most desirable and accurate invasion records come from 

time-series field mapping (Hastings et al., 2005), increasingly, invasion histories that are 

recorded at geopolitical unit levels, such as county, vice-county, or township, have been 

used to estimate invasion dynamics (Evans & Gregoire, 2007; Hudgins et al., 2017; 

Liebhold et al., 1992; Perrins et al., 1993; Tobin et al., 2007). Although county-level 

quarantine records have coarse resolution, Tobin et al. (2007 & 2015) demonstrated that 

spread dynamics derived from these spatially crude records do not differ substantially 

from estimates derived from more extensive and costly trapping records.  

The spread of invasive species in real-world situations is rarely uniform. In 

contrast, it tends to be faster in some regions/directions but slower in the others. The 

asymmetry of spread is usually attributed to a combined effect from various factors, such 

as geographic barriers, human-assisted movement, and environment heterogeneity 

(Andow et al., 1990; O’Reilly-Nugent et al., 2016; Fraser et al., 2015). For the asymmetric 

spread, the boundary displacement method is able to estimate regional spread dynamics 

by deriving the change of boundary displacement at specific temporal and local spatial 

scales (Morin et al., 2009). On the other hand, Andow et al. (1990) proposed to divide the 

infested areas into multiple neighborhoods within which the environmental conditions are 
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similar. Estimating spread of invasive species for different homogeneous neighborhoods 

in a large heterogeneous area would provide better information on the spread dynamics 

and environmental factors contributing to the asymmetrical expansions. For example, 

Fraser et al. (2015) calculated the spread rate of American mink (Neovison vison) in three 

different regions in north-east Scotland and were able to get better estimates of its spread 

patterns. Lantschner et al. (2014) divided the infested region of woodwasp (Sirex noctilio) 

in the southern hemisphere into eight regions to analyze impact of environmental factors 

on its spread rate. However, currently a method, which quantitatively classifies the large 

heterogeneous area into several homogeneous neighborhoods, is lacking. In this study, 

the spatial constrained clustering (SCC) was used to quantitatively classify our large 

heterogeneous infested area into multiple homogeneous neighborhoods. SCC is an 

unsupervised machine learning method to determine natural clustering regarding 

environmental conditions within a large heterogeneous region, while assuring spatial 

adjacency of each cluster. 

As the establishment of kudzu bug is relatively new in the U.S., the invasion 

dynamics and the factors that impact its spread are not well understood. Consequently, 

this research aims to address this research gap. The incidence of kudzu bug in the U.S. 

has been recorded at the county level as presence/absence since 2009. Therefore, this 

county-level invasion record was used to estimate the spread rate of kudzu bug. Two 

methods were used to estimate spread rates. The first method estimates the spread rate 

of kudzu bug across the whole infested area to get the overall spread rate in the U.S., 

whereas the second method estimates the spread rate in different neighborhoods to 

better determine its spread dynamics across heterogeneous environment. The SCC 
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method was used to divide the large infested area into relatively-homogeneous 

neighborhoods. Finally, important environmental factors that influenced the spread of 

kudzu bug, during 2010-2016, were determined to provide information for early detection 

and management of kudzu bug.  

5.3 Methodology 

5.3.1 Environmental Factors and Neighborhood Classification  

To classify the study area into environmentally homogenous neighborhoods, the 

potentially important factors related to the spread of kudzu bug were identified based 

upon studies on its biology. The spread of kudzu bug is thought to be facilitated by human-

assisted movement of life stages, host plants and prevailing wind currents (Gardner et 

al., 2013). Research also indicates that both high (33 ̊C) (Shi et al., 2014) and low 

temperatures (<5.1 ̊C) (Grant & Lamp, 2017) inversely affected the establishment of 

kudzu bug populations. Furthermore, Liang et al. (2018a) suggested precipitation was an 

important factor for habitat suitability of kudzu bug. Therefore, environmental factors 

including natural, sociological, and host plant availability were included to determine their 

relationship with the spread rate of kudzu bug. Detailed information on environmental 

factors and data sources is listed in Table 5.1. Except for kudzu density and road density 

(Table 5.1), all other variables were obtained as spatial grid files. The kudzu density 

variable was obtained as spatial points where kudzu was observed, while the road density 

variable was obtained as spatial lines delineating the road networks in the U.S. For 

consistency with other variables, kudzu and road density variables were converted to 
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spatial grid files indicating the mean number of reported kudzu and road length in each 

grid, respectively. The resolution of all variables was scaled to 1km.  

Based upon reports compiled in EDDMapS, a repository of invasive species 

tracking records (EDDMapS, 2019), only two additional counties had documented 

occurrences of kudzu bug after 2017. Therefore all the counties that were infested by 

kudzu bug during 2010-2016 were included in the study area (i.e., 650 counties were 

finally used as our study area) (Figure 5.1 A, EDDMapS, 2019). To generate 

neighborhoods for analysis, the infested area was first uniformly divided into 180 sectors 

using lines radiating from the invasion origin in R with the “rgdal” package (Figure 5.1 A) 

(Bivand et al., 2014, R Core Team, 2013). SCC provided in the Spatial Statistics Toolbox 

in ArcGIS 10.5 (ESRI, 2011) was then used to classify all the 180 sectors into several 

homogeneous areas or clusters. This method classifies the spatial regions into given 

number of clusters based on input environmental factors by maximizing the environmental 

similarity within each cluster and minimizing the similarity among different clusters. 

Meanwhile, the SCC method also ensures the spatial connectivity of each cluster. To 

classify the 180 sectors into environmentally homogenous clusters, the mean values of 

the factors listed in Table 5.1 in all sectors were extracted. The SCC was then conducted 

on the 180 sectors with the extracted factor values and classified all sectors into eight 

spatially contiguous clusters (Figure 5.1 A). Eight clusters were used (i.e., 

neighborhoods, Figure 5.1 A) as the neighborhoods for subsequent analysis, as this 

classification ensures the homogeneity within each neighborhood and also roughly 

corresponds to topographic variation in the landscape.   
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Table 5.1 Environmental factors used to classify neighborhoods and determine their 
importance related to spread rate of kudzu bug, and their original resolution and data 
sources.  

Category Environmental factors Resolutio

n 

Data source 

Climate January minimum temperature 

(T) 

4-km PRISM Climate Data (Daly et al. 2008) 

Mean annual T 

Maximum T of hottest quarter (Q) 

Minimum T of coldest Q 

Mean annual precipitation (P)  

Mean P of fall season 

Mean P of warmest Q 

Annual horizontal wind speed 5-km Kalnay et al. (1996) 

Annual vertical wind speed 

Host plant Soybean density 30-m CropScape (Han et al., 2012) 

Kudzu density  NA EDDMaps (EDDMaps, 2019) 

Sociology Human population density 1-km SILVIS Lab (http://silvis.forest.wisc.edu) 

Road density  NA (U.S. Census Bureau TIGER/Line, 

https://www2.census.gov/geo/tiger/TGR

GDB13/) 

Geography Elevation 1-km Hydro-1K digital elevation model 

(USGS, 1996) 
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Figure 5.1 A Origin and spread history of kudzu bug in the southeastern U.S. and classification of eight 
neighborhoods (NB = neighborhood). Sectors are represented by the radial lines, and lines of the same 
color and type have similar environment.  B Example of calculation for annual spread distance: mean length 
of blue vectors is used to indicate the spread distance of kudzu bug from 2010 to 2011 in NB 1. 
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5.3.2 Spread Rate of Kudzu Bug 

To estimate the overall expansion pattern of kudzu bug in the southeastern U.S., 

the entire infested area was first taken as one region to derive the spread rate. Spread 

rates within each of the eight neighborhoods were also determined to better understand 

the localized spread dynamics of kudzu bug. The county-level records of first incidence 

of kudzu bug from 2010 to 2016 were used to calculate the spread distances for 

estimating invasion rates (Figure 5.1 A). The centroid of the first nine infested counties 

in Georgia in 2009 was used as the invasion origin of kudzu bug in the U.S. (Figure 5.1 

A). Two commonly-used methods, boundary displacement and regression method 

(Gilbert & Liebhold, 2010; Tobin et al., 2015), were used to estimate the spread rates of 

kudzu bug.  

For the boundary displacement method, the outer line of newly infested counties 

in each year was used as the annual infestation outline. The annual spread rate was 

calculated as the distance between two consecutive boundaries, which was measured as 

the mean length of all transects radiating from the invasion origin (Figure 5.1 B). For the 

regression method, the distances between the invasion origin and centroids of infested 

counties were regressed on the invasion time (i.e., when the counties were first infested) 

to determine the spread rates (Evans & Gregoire, 2007; Tobin et al., 2007). Two functions 

were used for the regression method to estimate the spread rate, a linear function and a 

logistic growth function as follows:  

Linear function:   y= a∗t+b 

Logistic growth function:  𝑦 =
𝐿

(1+𝑒−𝑘(𝑡−𝑡0)
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Where y is the total spread distance from invasion origin measured in each invasion 

period; a and b are the slope (spread rate in our case) and intercept of the linear function, 

respectively; t is the invasion time; L is a calculated asymptote (i.e. the furthest spread 

distance of kudzu bug in our case); e is the natural logarithm; and k is an instantaneous 

spread rate constant at 𝑡0, the inflection point where y = L/2. The time unit in this research 

is 1 year.  The Akaike information criterion (AIC) was used to compare the two models 

(Akaike, 1973). For the non-linear regression method with the logistic growth function, the 

annual spread rate was estimated as the derivative of the logistic function at each year, 

and the mean value of all annual rates was taken as the spread rate in a given region. To 

determine the similarities of spread rates estimated from the boundary displacement and 

regression methods, Pearson correlation coefficient, r, was calculated in R (R Core Team, 

2013).  

5.3.3 Impact of Environmental Factors on Spread Rate of Kudzu Bug 

The annual spread rates calculated from the boundary displacement method in 

eight neighborhoods were used to determine their relationships with environmental 

factors. The mean values of all environmental factors were extracted for the newly 

infested areas in a given neighborhood and invasion year. In total, there were 47 

observations with each observation representing the spread rate of kudzu bug in a given 

neighborhood in a particular year. As the study area is large, the impact of the same factor 

may vary across different neighborhoods. Therefore the eight neighborhoods were 

classified into two categories: those in the northern region (Figure 5.1 A) (NB1, NB6, 

NB7, and NB8) and those in the southern region (Figure 5.1 A) (NB2, NB3, NB4, and 
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NB5). Relationships between annual spread rates and environmental factors were 

analyzed for both regions. Various regression methods (e.g., Mortensen et al., 2009; 

Muirhead et al., 2006; Evans & Gregoire, 2007; Lantschner et al., 2014) have been 

commonly used to model relationships between spread rates and environmental 

variables. For regular regression methods an underlying assumption is that the residuals 

from regression model are random and independent. This assumption can be violated 

due to spatial autocorrelation (SA) within dependent and independent variables, in which 

case a spatial regression model should be used. Moran’s I statistic is a widely used 

method to test the significance of SA within residuals of a regression model (Moran, 

1950). Therefore the Moran’s I statistic test was conducted on the residuals of the multiple 

regression of spread rates (i.e., dependent variable) on environmental variables (i.e., 

independent variables). The P-value of Moran’s I statistic (0.525) indicated that the SA 

was not significant. Therefore, the regular regression model was used to determine 

environmental factors impacting spread rates of kudzu bug in the northern and southern 

regions. The Bonferroni outlier test provided in “car” package in R was used to detect 

outliers of the multiple regression model (Fox et al., 2012) and extremely significant 

outliers (e.g., 1 and 2 outliers in the southern and northern regions, respectively) were 

removed for further analyses (P<0.01). Outliers in this study were mainly caused by 

extraordinarily high spread rates of kudzu bug before year 2014 (rate > 240km/year). The 

best-subset selection method in R was used to select variables that resulted in a final 

model with highest adjusted R-square. Linear regression of individual variables was also 

performed to illustrate the significance of the relationship between variables and spread 

rate. All the data analysis in this study was conducted in R (R Core Team, 2013). 
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5.4 Results 

5.4.1 Spread Rate of Kudzu Bug  

When estimating the spread rate of kudzu bug for the entire infested area, the AIC 

of the non-linear regression (AIC = 8144) is lower than the linear model (AIC = 8185) 

indicating the former model is better. These values indicated that the spread rates of 

kudzu bug varied largely among invasion years and had an exponential spread during the 

early years. The average spread rates derived from the linear and non-linear regression 

are 101 km/year and 75 km/year, respectively (Figure 5.2 A). The annual spread distance 

derived from boundary displacement method differed greatly between 8-132 km/year 

among different invasion years (Figure 5.2 B), and the mean spread rate is 76 km/year, 

which is similar to the one derived from non-linear regression (75 km/year). The spread 

rate of kudzu bug decreased dramatically from 2013 (109 km/year) to 2014 (20 km/year) 

(Figure 5.2 A-B).  

As the non-linear regression is better than the linear regression to estimate the 

spread rate of kudzu bug, therefore the non-linear regression and boundary displacement 

methods were included to estimate spread rates in all neighborhoods (Figure 5.2 C). Both 

methods indicated that the spread rates of kudzu bug varied largely among eight 

neighborhoods (Figure 5.2 C, Table 5.2). Spread rates varied from 44.6 to 143.9 for 

boundary displacement and 58.1 to 113.3 for non-linear regression. These varying spread 

rates across the study area suggests that the use of neighborhood measurements can 

better explain invasion dynamics of kudzu bug across heterogeneous environments than 

estimating one spread rate for the entire infested region. Directionally, kudzu bug had 
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high spread rates in the northeastern (NB1) and southwestern (NB5) regions but low 

spread rates in the northern regions (NB7 and NB8) of the study area. Note that the 

estimated spread rates of kudzu bug in eight neighborhoods from non-linear regression 

and boundary displacement methods were similar (correlation coefficient r= 0.95) (Table 

5.2). 

 

 

Figure 5.2 Spread rate estimated by two methods. A Linear (orange dashed line: Rate 1) regression and 
non-linear regression with logistic growth function (blue solid line: Rate 2) fit of spread distance against 
invasion time from 2010 to 2016 for the entire infested area. B Spread rate of kudzu bug using county 
boundary displacement methods for the entire infested area. C Spread rates of kudzu bug in eight 
neighborhoods derived from boundary displacement and non-linear regression and the correlations 
coefficient (r) of spread rates between two methods.  
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Table 5.2 Estimates of spread rate of kudzu bug in eight neighborhoods fitted by 
boundary displacement method and non-linear regression with logistic growth function 
(R2 = 0.95)1. 

Neighborhood NB1 NB2 NB3 NB4 NB5 NB6 NB7 NB8 

Boundary displacement 143.9 105.9 89.4 81.8 114.5 98.7 44.6 79.2 

Non-linear regression 113.3 90.3 69.9 82.9 94.4 88.3 58.1 70.5 

1Correlation coefficient of estimated spread rates between boundary displacement and non-linear 
regression with logistic growth function.  

5.4.2 Environmental Factors Impacting Spread Rate of Kudzu Bug  

In the southern region of the infested area, all variables in total explained 99.6% 

of the variance. Based on the best subset selection, four variables were selected: 

soybean density, mean annual temperature, precipitation in fall season, and elevation 

(Table 5.3, Figure 3 A-D). The multiple regression model containing these four variables 

was highly significant (P < 0.001), and the four variables explained 81.4% of the variance 

(Table 5.3). Additionally, the individual fittings of these four variables with the spread rate 

were all significant (P < 0.05, Figure 5.3 A-D), and the fitted linear models were listed in 

Figure 5.3. Among the four variables, soybean density showed a significantly positive 

association with spread rate of kudzu bug (Figure 5.3 A), whereas the other three had 

significantly inverse relationships (Figure 5.3 B-D). Horizontal wind speed and kudzu 

density also had significantly positive associations with the spread rates but were not 

selected as part of the best subset (Figure 5.3 E-F).   



 
 
 

116 

Table 5.3 Parameters of the multiple regression model constructed with four best-subset 
variables for the southern regions of the infested area of kudzu bug (R2 = 0.814)  

Factors Estimate Standard error Probability 

Intercept 407.37 88.08 0.000 

Soybean density 3883.27 922.96 0.001 

Mean annual temperature -13.44 4.70 0.012 

Precipitation in Fall -0.58 0.27 0.052 

Elevation -0.08 0.03 0.022 

 

 

 

Figure 5.3 Important variables in southern regions. A-D Individual fitting of four best-subset variables with 
annual spread rates of kudzu bug from 2010 to 2016 in southern regions. E-F Variables that are significantly 
associated with spread rate but not selected by multiple regression. The P-values of model in A-F are 0.002, 
0.008, 0.021, 0.021, 0.003 and 0.004, respectively. F Positive and negative values indicate west and east 
wind, respectively.  



 
 
 

117 

In the northern region, all the variables explained 87.6% of the variance. Using the 

same methods for best subset selection, three variables were selected: January minimum 

temperature, horizontal wind speed, and human population density. These three variables 

explained 59.2% of the variance (Table 5.4, Figure 5.4 A-C), and the multiple regression 

model containing these three variables was highly significant (P = 0.002, Table 5.4). For 

the individual fitting of each factor with spread rate, the impact of January minimum 

temperature and horizontal wind speed were both significant at the 0.05 level (Figure 5.4 

A-B), whereas the impact of human population density was significant at 0.1 level (Figure 

5.4 C). Although no significant association was observed between vertical wind and 

spread rates for all regions, extremely significant association was observed in the 

northeastern region (NB1, Figure 5.4 D). The vertical wind strength almost explained all 

the spread variance in NB1 using a quadratic function (Figure 5.4 D, R2= 1), suggesting 

wind might be the determinant factor in this region. 

Table 5.4 Parameters of the multiple regression model constructed with three best-subset 
variables for the northern regions of the infested area of kudzu bug (R2 = 0.592) 

Factors Estimate Standard error Probability 

Intercept 51.38 19.77 0.019 

January minimum temperature 9.96 3.57 0.013 

Horizontal wind speed 10.84 4.84 0.040 

Human population density 0.48 0.20 0.029 
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Figure 5.4 Important variables in northern regions. A-C Individual fitting of the three best-subset variables 
with annual spread rates of kudzu bug from 2010 to 2016 in northern region. P-values of model in A-C are 
0.013, 0.021, and 0.089, respectively. B Positive and negative values indicate west and east wind, 
respectively. D Quadratic fitting between spread rate in neighborhood 1 (NB1) and vertical wind speed.  
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5.5 Discussion 

The regression and boundary displacement methods estimated similar spread 

patterns across different invasion regions. With county-level invasion records, both 

methods captured similar spread distances at an equally coarse spatial level, thus 

delineating similar spread patterns. In our study, the non-linear regression with logistic 

growth function performed better than the linear regression on estimating the spread 

patterns, suggesting that kudzu bug showed an exponential expansion in the early years 

of invasion. Shigesada et al. (1995) classified expansion patterns of invasive species into 

three general types: linear, biphasic, and continually increasing patterns, and summarized 

the stratified diffusion that explains the non-linear expansions. Empirical research also 

has indicated that the non-linear relationship between expansion and invasion time is 

common (Weber, 1998; Williamson et al., 2005). I therefore suggest that, with county-

level invasion records, multiple algorithms, including linear and non-linear should be 

explored and compared to determine the best model of describing the spread dynamics 

and expansion patterns of invasive species. Given the phenomenal spread rate of kudzu 

bug in northeastern and southwestern regions (more than 100 km/year), long-distance 

dispersal possibly occurred in the early invasion years of kudzu bug, which can greatly 

increase the overall invasion rate (Suarez et al., 2001).  

Once introduced to a new spatial range, if an invasive species is able to establish, 

it starts to spread to adjacent areas. Given that most invasions are started by a few 

individuals and that kudzu bug was first found in nine counties in 2009 in Georgia, where 

it has two generations annually (Shigesada & Kawasaki, 1997; Zhang et al., 2012), it is 



 
 
 

120 

likely that kudzu bug came into the U.S. and had already started to spread before 2009. 

Although the range expansion of kudzu bug has slowed dramatically, it may continue to 

invade the northern and western ranges of the U.S. (Liang et al., 2018a; Liang et al., 

2018b). Liang et al. (2018a) used GARP and Maxent models to predict the potential 

invasion of kudzu bug in the Americas, and the Maxent model was more conservative 

than the GARP model. The slower spread rate of kudzu bug north and northwest of its 

invasion origin (Figure 5.1A) more-closely fits the prediction of the Maxent model (Liang 

et al., 2018a).  

Ecological processes are closely affected by environmental patterns, which vary 

across spatial regions (Addicott et al., 1987). Consequently, the limiting factors of an 

invasive species might vary significantly across different regions (Morin et al., 2007). Due 

to the environmental heterogeneity over the large study area, different sets of 

environmental factors were found to significantly impact the spread of kudzu bug in the 

northern and southern regions of infested area. The availability of host plants played a 

more important role in the southern region, while the low temperature in January was the 

most important factor in the northern region. Horizontal winds towards the east were 

positively associated with spread rate of kudzu bugs in both regions.  Precipitation in the 

fall of the year and elevation both showed inverse association with spread rate of kudzu 

bug only in the southern region, whereas the human population density showed a positive 

association with the spread rate only in the northern region. Temperature, wind current, 

and host plant had been found playing important roles on spread of invasive species (e.g., 

Evans & Gregoire, 2007; Lantschner et al., 2014; Sakai et al., 2001). The decreasing 

availability of host plants, increasing temperature, and high humidity in the fall may 



 
 
 

121 

contribute to the slower spread of kudzu bug in the southern region after 2014. In the 

northern region, low temperature is the limiting factor of further spread of the kudzu bug. 

In the upper Midwestern U.S. where kudzu bug is not yet found, but high acreages of 

soybean are grown, the spread is influenced more by temperature than host plant. The 

dominant role of vertical wind strength in NB1 (northeastern region) highlights the 

possibility that the significant expansion of kudzu bug in northeast of its invasion origin 

might be attributed to dominant air currents (Gardner et al., 2013).  

In addition to the environmental factors included in this research, the dramatic 

decrease of spread rate since year 2014 may also result from the presence of natural 

predators. The decreased spread rate of kudzu bug coincided with the discovery of egg 

parasitoids, such as Paratelenomus saccharalis, which has been found in Georgia, 

Florida, Alabama, Mississippi, and Tennessee since 2013 (Gardner & Olson, 2016; Medal 

et al., 2015). The entomopathogenic fungus Beauveria bassiana has been observed to 

devastate populations of kudzu bug since 2013 in Georgia, South Carolina, and 

Tennessee (Britt et al., 2016; Gardner & Olson, 2016; Seiter et al., 2014). Investigations 

on associations between kudzu bug and other natural predators deserves more attention 

in future studies. 

Studies on estimating invasion dynamics with county-level invasion records (e.g., 

Evans & Gregoire, 2007; Hudgins et al., 2017; Liebhold et al., 1992; Tobin et al., 2015) 

often cover large areas (e.g., multiple states covering several million squared kilometers). 

Consequently, environmental homogeneity is less likely to exist across the whole infested 

area. Environmental heterogeneity can invoke complicated invasion dynamics over a 

large spatial area (Fraser et al., 2015) and cause significant variations of spread rates in 



 
 
 

122 

different regions. Therefore, asymmetric spread of invasive species is more likely the 

case than symmetric spread (Evans & Gregoire, 2007; Suarez et al., 2001; Tobin et al., 

2007). Thus, with county-level records, using the neighborhood measurement to divide a 

large study area into sub-areas is suggested to reflect environmental homogeneity in 

each sub-region for a better understanding of the spread dynamics. Additionally, as seen 

in this research, environmental factors may influence the invasion of the same species in 

different ways and magnitudes across a large heterogenous region (Hastings et al., 

2005). The neighborhood measurement, therefore, can also facilitate better analysis of 

determinant environmental factors over heterogeneous environments (Dewhirst & 

Lutscher, 2009).  

To divide the entire infested area into smaller neighborhoods to better estimate 

spread dynamics, multiple methods have been implemented. Andow et al. (1990) used 

boundaries reflecting major irregularities of infested regions (e.g., rivers, mountain 

ranges, etc.), while Fraser et al. (2015) divided the whole infested region based on the 

introduction origins and geographical boundaries. Morin et al. (2009) divided the infested 

area of hemlock woolly adelgid (HWA) into uniform size of sectors based on the vectors 

radiating from invasion origin to reflect the spatial anisotropy in the spread rate of HWA. 

Additionally, in several studies, infested regions were divided into sub-regions based on 

the geopolitical area (Evans & Gregoire, 2007; Lantschner et al., 2014). These methods 

are valuable in practice, however, they do not ensure the environmental homogeneity 

within each neighborhood from a quantitative perspective. The SCC method, on the other 

hand, can quantitatively classify large heterogenous region into spatially-contiguous and 

environmentally homogeneous sub-regions. This advantage of SCC should be 
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considered in future studies focusing on estimating localized spread dynamics of invasive 

species and potentially important factors impacting the invasions. 

5.6 Conclusions 

This research increases the knowledge of spread dynamics of kudzu bug in the 

southeastern U.S. The influence of determinant factors (e.g., temperature, precipitation, 

host plant, etc.) on kudzu bug’s spread rate varied across different invasion regions due 

to heterogeneity of the landscape. Methodologically, the study also shows the suitability 

of the neighborhood measurement method to estimate invasion dynamics and to 

determine important factors impacting biological invasions over a large heterogeneous 

environment. Furthermore, the SCC method was able to quantitatively classify a large 

and heterogeneous infested region into spatially-connected and environmentally-

homogeneous neighborhoods. Thus, the use of SCC method is highlighted to classify 

neighborhoods for large heterogeneous region to better estimate localized spread 

dynamics of invasive species. In terms of invasive species-related policies, strict 

regulatory measures, including quarantines and international commodity and transport 

inspections, are recommended to reduce the potential invasion of kudzu bug, especially 

for regions with warm temperatures and moderate to high populations of host plants in 

South America. Focusing on the U.S., for the purpose of early detection and management 

of kudzu bug, monitoring soybean fields and kudzu sentinel plots should be conducted 

regularly in regions where no kudzu bugs are reported but are potential distribution areas 

(Liang et al., 2018a & 2018b). Furthermore, decreasing the availability of host plants, 



 
 
 

124 

especially kudzu, would be a valid method, but impractical, to control the population of 

kudzu bug and slow its spread in the U.S. 
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CHAPTER VI: CONCLUSIONS 
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Based on the current distribution of kudzu bug in the U.S., the environmental 

conditions in the areas inhabited by kudzu bugs are not the same between native and 

invaded ranges. In the U.S., kudzu bugs have not been reported in 67% of the available 

environmental space, compared to space occupied by populations in their native ranges. 

These data suggest that the invasion of kudzu bug is far from equilibrium and more places 

could be further infested in the U.S. Kudzu bugs generally inhabit warm (annual mean 

temperature around 15 ℃ ) and humid (annual mean precipitation around 1300mm) 

regions. Based on the invasion risk model, most states in eastern U.S., most countries in 

Central America, and countries in central South America have high invasion risk of kudzu 

bug. Soybean is an important crop in Central and South American countries, including 

Mexico, Brazil, and Argentina. Thus, to avoid potential economic losses of soybean by 

kudzu bug, quarantines, as well as monitoring and detection programs, in these regions 

are recommended to prevent the entry and establishment of kudzu bug. Meanwhile, a 

majority of the soybean production in the U.S. is distributed in the upper Midwest, where 

most of the regions have not been infested by kudzu bug. Therefore, monitoring and early 

detection is also highly recommended in the upper Midwest of the U.S. to avoid invasion 

and outbreak of kudzu bug.  

A significant shift of both available environmental spaces and occupied 

environmental space by kudzu bug was observed between the native (Asia) and invaded 

(U.S.) ranges of kudzu bug. However, five of the seven species distribution models 

(SDMs) included (i.e., RF, BRT, MAXENT, ANN, and GARP) still showed fair 

transferability while at least two of the models (i.e., BRT and RF) showed good 
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transferability, indicating the non-adaptive niche shift does not necessarily challenge the 

transferability of SDMs. Thus, different from the suggestion from Broennimann and 

Guisan (2008) that both native and invaded occurrences should be used for invasion 

modeling when niche shift is observed, one should first determine the type of niche shift 

(adaptive or non-adaptive). Non-adaptive niche shift, in some cases, does not challenge 

model transferability, thus occurrence data in native range should be used, especially 

when the equilibrium in the invaded range is not reached. The spatial range where 

pseudo-absences (Pas) are extracted can also significantly impact both interpolation and 

transferability of SDMs. In the case of kudzu bug, extracting PAs from both the native and 

invaded ranges, while only native presences were used for model construction, 

significantly overestimates interpolations of all models, but underestimates transferability 

of all models. Thus, the challenge of the environmental space anisotropy on model 

transferability can be largely avoided or reduced by constraining the PAs to the same 

spatial range as the presences. For the classical approach of modeling potential invasions 

with native occurrences, the PAs should only be extracted from the native range to avoid 

misestimates of model performances.  

Geopolitical-unit invasion records are capable of accurately estimating spread of 

invasive species. Both regression methods and boundary displacement methods can be 

used to estimate the overall invasion rate, expansion pattern, and spread dynamics of 

non-native species. However, one should carefully select the optimal method to estimate 

spread based on the question of interest, anisotropy and stochasticity in spread, and 

variations and sizes of geopolitical unit. When the question of interest is the overall spread 

rate and sizes of geopolitical units are relatively uniform, among the eight methods 
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considered, except MinD method, all other methods can be used for spread without LDJD. 

If the question of interest includes estimating overall spread rate in several sub-regions, 

among which mean sizes of geopolitical units vary largely, both MinD and Ncty method 

should be avoided, whereas NctyArea method is a good alternative for Ncty method under 

this scenario. The spread distance-based regression methods (i.e., CtdDis and MinD 

Reg) are more sensitive to the irregularities and stochasticity in spread than the area-

based regression methods and boundary displacement methods. For LDJD, boundary 

displacement methods and area-based regression method, i.e., Area and NctyArea, can 

be used to estimate overall rates. Estimating spread dynamics is more informative but 

more challenging than overall rates. Boundary displacement methods and area-based 

regression methods estimate the most reliable spread dynamics for all scenarios. For 

both overall spread rate and spread dynamics, boundary displacement methods have the 

best estimations. However, for spread without a clear infestation outline, area-based 

regression methods can be good alternatives for estimating spread of invasive species.  

The average spread rate of kudzu bug reached 76 km/year during 2010-2016, 

however, the rate varied largely among different invasion years (8-132 km/year) and eight 

neighborhoods (45 - 144 km/year). The spread rate of kudzu bug decreased dramatically 

from 2013 (109 km/year) to 2014 (20 km/year); meanwhile kudzu bug had high spread 

rates in the northeastern and southwestern regions but low spread rates in the northern 

regions of the study area. The influence of determinant factors (e.g., temperature, 

precipitation, host plant, etc.) on kudzu bug’s spread rate varied across different invasion 

regions due to heterogeneity of the landscape. The availability of host plants seemed to 

play a more important role in the southern region, while the low temperature in January 
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was the most important factor in the northern region. Horizontal winds towards the east 

were positively associated with spread rate of kudzu bugs in both regions.  Precipitation 

in the fall of the year and elevation both showed inverse association with spread rate of 

kudzu bug only in the southern region, whereas the human population density showed a 

positive association with the spread rate only in the northern region. In the northern 

region, low temperature is the limiting factor of further spread of the kudzu bug. 

Methodologically, the study also shows the suitability of the neighborhood measurement 

method to estimate invasion dynamics and to determine important factors impacting 

biological invasions over a large heterogeneous environment. Furthermore, the spatially 

constrained clustering (SCC) method is able to quantitatively classify a large and 

heterogeneous infested region into spatially-connected and environmentally-

homogeneous neighborhoods. Thus, the use of SCC method to classify neighborhoods 

for large heterogeneous regions is recommended to better estimate localized spread 

dynamics of invasive species. 
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