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Abstract

Cognitive radio is one of the enabling technologies considered for the next generation

communication systems for many mission-critical applications. In modern cognitive ratio

systems, the spectrum is becoming increasingly crowded and expensive; thus spectrum

sensing becomes more important than ever before.

In this dissertation, the study is focused on data driven quickest detection applied to

energy detection based spectrum sensing. Firstly, a framework that integrates quickest

detection and belief propagation is applied to the cooperative spectrum sensing where the

primary user (PU) activities are heterogeneous in the space and dynamic in the time.

The performance of the proposed scheme is analyzed mathematically. Using numerical

simulations, detection performance measured by false alarm rate and average detection delay

is obtained for different setups. Numerical simulations have demonstrated the validity of the

proposed technique.

Secondly, we propose a universal quickest change detection scheme based on density

ratio estimation for spectrum sensing by detecting the sudden change of spectrum (e.g.,

the emergence of PU), where neither the pre-change nor post-change distribution (even

the distribution forms) is known to secondary users (SUs), thus achieving robustness to

complex spectrum environment, where SUs have no prior information about the measurement

distributions. The validity of the proposed schemes has been shown by numerical simulations.

Finally, we extend the detection of change in spectrum to millimeter-wave environment.

As millimeter-wave is becoming part of the physical layer standard in the next-generation

cellular network, it also brings about many questions and challenges. Not all the existing

theories and methods for traditional wireless communication can apply directly to millimeter-

wave communication because of the adoption of directional antenna and the high frequency

iv



band used. We propose a data-driven spectrum change sensing technique based on mean

recurrence time to efficiently detect the PU activities which is tolerant of small fluctuations.

The proposed spectrum sensing works well without a priori knowledge of the sensed signal,

and doesn’t take assumption of independent and identically distributed random variables. It

can also serve as a general framework for detection in other areas. The experimental results

validate the proposed detection framework.
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Chapter 1

Introduction

The problem of detecting abrupt changes in the behavior of an observed signal or time series

have been widely studied in various fields in recent decades [32]. The best solution to this

problem, also known as quickest detection, aims at achieving minimum delay with as few

false alarms as possible.

Cumulative sum (CUSUM) test is one of the most well known quickest detection methods,

widely adopted in solving quality control, anomaly detection and many other change

detection problems, among which, spectrum sensing is an important and intriguing one

where change in spectrum occupancy needs to be monitored by wireless nodes and change

be detected in a quickest manner.

Spectrum sensing is one of the key techniques, as well as design goals in cognitive

radio (CR) systems, which has substantial impact on the applicability of cognitive radio

in the future. As wireless communication technology advances, the spectrum is becoming

increasingly crowded and expensive. By spectrum sensing this valuable resource can be more

efficiently utilized. Generally speaking, spectrum sensing is to detect spectrum activities,

such that secondary users (SUs) without license to the frequency band (which is licensed to

primary users (PUs)) can then be able to communicate with each other in this band, when

PUs are not present. In other words, SUs should be agile and have robust awareness of the

presence or absence of PUs with acceptable detection delay and false alarm rate.
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Despite the optimal performance CUSUM algorithm can achieve, there are several

limitations when applying to actual scenarios like spectrum sensing in cognitive ratio

network:

• Detection is single-point, which does not incorporate information shared by neighbors

to improve accuracy.

• It usually requires prior knowledge of pre and/or post-change distribution.

• CUSUM test can only be applied to i.i.d. samples.

To the author’s best knowledge, most of the work done in quickest detection either

assumes known or partially known distributions, or have simple binary status change

detection. The proposed methods extend quickest detection to broader application, combined

and improved with other tools and algorithms, such as belief propagation (BP) and data-

driven non-parametric sequential detection.

In this multi-part dissertation, I focused on the data driven quickest detection, applied in

spectrum sensing. Firstly, in chapter ?? belief propagation combined with methodology

inspired by CUSUM allows cooperative spectrum sensing with quickest detection. In

chapter ??, a universal data-driven quickest detection approach is proposed to empower

the change detection without knowledge of pre and post change distribution. Finally, a

universal detection framework is proposed in chapter 4 for change detection on non i.i.d.

sequence, which can be applied to mmWave Spectrum sensing problem considering the

special characteristics of wireless signal in mmWave network.
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Part I

Coorperative Quickest Detection
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Chapter 2

Belief Propagation and Quickest

Detection Based Cooperative

Spectrum Sensing in Heterogeneous

and Dynamic Environments
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This chapter is revised based on a journal paper published by Yifan Wang, Dr. Husheng

Li and Dr. Lijun Qian:

Wang, Y., Li, H., & Qian, L. (2017). Belief propagation and quickest detection-

based cooperative spectrum sensing in heterogeneous and dynamic environments. IEEE

Transactions on Wireless Communications, 16(11), 7446-7459.

My primary contributions to this paper include formulation and modeling of the problem,

identification of the research areas and objectives, design and conducting of the simulation

experiments, theoretical analysis of the performance of proposed algorithm, and most of the

writing.

Abstract

Cognitive radio is one of the enabling technologies considered for the next generation

communication systems for many mission-critical applications. In cognitive radio systems,

cooperative spectrum sensing is one of the key techniques that can improve the reliability

and agility. In this chapter, a framework that integrates quickest detection and belief

propagation is applied to the cooperative spectrum sensing where the primary user activities

are heterogeneous in the space and dynamic in the time. The performance of the proposed

scheme is analyzed mathematically. Using numerical simulations, detection performance

measured by false alarm rate and average detection delay is obtained for different setups.

The results show that the proposed scheme achieves better receiver operational curves than

traditional detection method.

2.1 Introduction

Cognitive radio, based on software-defined radio, is considered as the next generation radio

for many mission-critical applications, such as in the Joint Tactical Radio System (JTRS)

program [26] and the DARPA xG program [7]. In cognitive radio systems, one of the key

techniques, as well as design goals, is spectrum sensing, which has substantial impact on

the applicability of cognitive radio in the future. As wireless communication technology

5



Figure 2.1: Moving primary users (soldier radios) and stationary secondary users (wireless
sensor nodes) coexist in the battlefield.

advances, the spectrum is becoming increasingly crowded and expensive. By spectrum

sensing this valuable resource can be more efficiently utilized. Generally speaking, spectrum

sensing is to detect spectrum activities, such that secondary users (SUs) without license to

the frequency band (which is licensed to primary users (PUs)) can then be able to use this

band to communicate with each other when PUs are not present. In other words, SU should

be agile and have robust awareness of the presence or absence of PUs with acceptable delay

and detection error rate.

However, a single SU may not achieve a satisfying performance by itself because of channel

fading and noise. When using cooperative spectrum sensing [4] [5] [6] [23] [39], SUs share

their knowledge of spectrum status (PUs’ presence) with neighbors, which has been proved

to achieve lower error rate.
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As a motivating example, consider the scenario shown in Fig. 2.1. The soldiers have

priority in their communications and they are considered as PUs. The SUs are the sensors

with cognitive radios that are deployed to monitor the battlefield. The PUs and SUs share

the same frequency bands. The sensors are stationary while the soldiers may be mobile

for carrying out a task. In this case, the sensors need to perform cooperative spectrum

sensing accurately to avoid interfering the communications among the soldiers, and thus use

the spectrum opportunistically and efficiently. Note that the spectrum situation could be

different at different locations (thus being heterogeneous in the space) and at different times

(thus being dynamic in the time).

In this chapter, we apply a powerful algorithm for statistical inference, namely belief

propagation (BP) [3] [12], to achieve cooperative sensing. BP is an iterative message passing

algorithm, which operates on a factor graph allowing marginal distributions to be computed

efficiently. Information that is based on observation at each SU is propagated within the

network; and each SU combines local observations with messages passed from its neighbors

and compatibility information to compute the belief. The compatibility information is used

because SUs are spatially close to each other and have certain correlation. However, the

computation and communication overhead will be tremendous if SUs pass all the observations

to all SUs within communication range and if all correlations among SUs are to be considered.

Thereby in the BP framework [46] [47] [16] [17] [19] we adopt the Markov random field model

to simplify the problem.

For cases of location fixed SUs and PUs, beliefs in SUs can usually converge. However, we

are considering dynamic spectrum environment in this chapter, which does not allow the SUs

to wait for the convergence of BP. Hence in order to quickly detect the change in spectrum

activities, we incorporate the technique of quickest detection [32] [18] [20] [27] to identify

the change. Essentially quickest detection exploits the history information by taking into

consideration the recent data instead of only using those from current time. By doing so, even

the slightest change can be accumulated, magnified and detected. We will apply a variant of

the well-known cumulative sum (CUSUM) test to the BP framework. To our best knowledge,

this is the first study integrating BP and quickest detection for the task of detecting changes

in spatially heterogeneous and time dynamic environments. Our numerical result shows

7



that, by integrating quickest detection, the cooperative spectrum sensing can achieve better

performance in terms of delay and false alarm rate than traditional approaches [16] without

quickest detection integrated. We will also provide theoretical performance analysis for the

quickest detection and BP in the context of cooperative spectrum sensing, with simplified

setups.

The remainder of the chapter is organized as follows. The system model is introduced

in Section 2.2. The BP framework in spectrum sensing is introduced in Section 2.3. In

Section 2.4, the CUSUM algorithm for quickest detection is briefly discussed and its variant

that fits in our application scenario is proposed. Section 2.5 gives the performance analysis for

collaborative quickest detection and the convergence of BP subject to message passing error.

Numerical results are provided in Section 2.6, and finally Section 2.7 draws the conclusion.

2.2 System Model

In this section, we introduce the physical model of the cognitive radio system and its abstract

model using graphical models.

2.2.1 Physical Models

In this chapter, we assume that SUs are randomly and statically distributed in an area, in

which PUs may emerge randomly (both in time and space). For simplicity, we consider a

single communication channel in the spectrum, which is shared by SUs and PUs. We define

the PU interruption range as a distance R within which the SUs should keep silent once any

PU is active (otherwise it will cause significant interference to the PU). Therefore for SU i,

its goal is to monitor the frequency band licensed to PUs and run the following hypothesis

test: H0 : Xi ≤ Xedge

H1 : Xi > Xedge

(2.1)

where Xi is the true received power at SU i from the PU, and Xedge is the expected power

received when SU i is on the edge of the PU interruption range. Intuitively, H0 is true

when the received power at SU i is smaller than Xedge, and H1 is true when it is larger than

8



that. The decision for an SU whether to quit or begin communication is made based on the

outcome of the hypothesis test.

We make the following assumptions: 1) Not all SUs can communicate with each other;

to do so one must be within a certain distance (denoted by D) of another, and each SU

knows the distance to its neighbors to which it can talk. 2) SUs exchange information via

a dedicated common control channel other than the data communication channel licensed

to PU. 3) The observation Yi (in dB scale) is Gaussian distributed N (Xi, σ
2
n), where σ2

n is

noise power in dB scale and Xi is also in dB scale. 4) The a priori distribution of Xi is

also Gaussian N (µ0, σ
2
0). The second and third assumptions are made to facilitate the BP

framework, which simplifies the problem to a great extent and proves to incur negligible

loss in performance [39]. As for the last one, the true value of prior probability may not be

Gaussian and could be time-varying in practical case. We choose Gaussian prior to facilitate

BP.

2.2.2 Abstract MRF Model

As one of the most well-known probabilistic graphical models, Markov random field (MRF)

[2] is widely used to model systems in machine learning or social networks. Similarly to any

other probabilistic models, the key to solving problems is to know the interdependencies

among different variables. In our case, SUs that are close to each other have certain

correlations on the power measurements and underlying statistics, which are actually

complicated. To facilitate the BP procedure, we model our BP framework over an MRF.

In the MRF, two non-adjacent random variables (corresponding to two non-adjacent SUs)

are independent of each other given their neighboring variables. These variables satisfy

pairwise Markov property. If we denote by Ni and Nj the two non-adjacent nodes in graph

G(V,E), (i, j) /∈ E, then Ni |= Nj|NV \{i,j}, where V,E are respectively vertices set and edges

set in graph G and (i, j) stands for an edge that connects vertex i and j, V \{i, j} represents

the vertices subset excluding i and j. Ni |= Nj means they are independent.

We denote by Zi ∈ {0, 1} the spectrum occupancy detected by SU i, along with the two

random variables defined in the previous section, Xi and Yi, which are the true received

power and the observation of received power, respectively. Note that here Yi is a version

9
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Figure 2.2: A Markov random field with five nodes each with three random variables: X,
Y and Z.

of Xi, corrupted by noise and fading. As we discussed above, Yi and Yj are independent of

each other if SU i and j are not adjacent in the cognitive radio network. As illustrated in

Fig. 2.2, for example, Y1 and Y4 are independent.

2.3 BP For Cooperative Sensing

In this section, we will derive the BP framework for cooperative spectrum sensing. There

have been some studies using BP in cooperative spectrum sensing. Fusion center is used in

[47] to collect data from SUs, and imperfect communication channel for BP is considered.

[16] proposed the BP framework for a system where SUs may have different decisions on

whether to transmit or not based on observed signal over the target spectrum and thus the

spectrum sensing can be done only in a distributed manner. In [17], the SUs conduct the BP

based spectrum sensing by completing the entries of channel state matrix which represents

channel states at different locations. And in [35], cooperative spectrum sensing subject to

dynamic primary users’ activities are discussed but limited to ON-OFF state changes. To

10



our best knowledge, there have been no previous studies on cooperative spectrum sensing

where the primary user state is represented by some multi-value variables like power level,

rather than just binary states of ON and OFF.

We adopt the MRF model which is also used in [16], as it can be represented as a factor

graph over which BP is carried out. Based on the MRF model and the assumption that all

the SUs satisfy the pairwise Markov property, the joint probability of X given observations

Y , where X = (X1, X2, ..., XN),Y = (Y1, Y2, ..., YN) can be represented in a factorization

form:

P (X|Y ) =
N∏
i=1

ψi(Xi|Yi)
∏
i 6=j

ψij(Xi, Xj|Yi, Yj), (2.2)

where ψi is called the local function, and ψij is called the compatibility function representing

the correlation of two neighboring SUs, as defined in section III of [16],

ψij(Xi, Xj) = C exp

(
ρij(Xi − µ0)(Xj − µ0)

σ2
0

)
(2.3)

where C is a constant and ρij is a function of dij, distance between i and j. Our goal is to

compute the marginal probability P (Xi|Y1, Y2, ..., YN) for SU i such that SU i can have a

correct result from hypothesis test 4.1.

2.3.1 Belief Propagation

We first assume that the spectrum is stationary; i.e., the PU does not move and keeps

its transmission status. Then, BP is carried out with a fixed number of iterations before

decisions are made. To estimate the spectrum occupancy Zi on each SU, we need to estimate

Xi given Y. Here Y is the observations corresponding to all X. The local function can be

initially computed as in (2.4) using a priori information and local observation Y, where the

density of a priori distribution fX = N (µ0, σ
2
0), and the conditional density fY |X = N (X, σ2

n)

fX|Y (x|y) =
fY |X(y|X=x)fX(x)∫
fY |X(y|X=x)fX(x)dx

= K · exp
[
− (x− b

2a
)2

2· 1
2a

]
. (2.4)

11



This is subject to a new Gaussian distribution N(µ, σ2), where

µ =
b

2a
, σ2 =

1

2a
, a =

1

2σ2
0

+
1

2σ2
n

, b =
µ0

σ2
0

+
y

σ2
n

. (2.5)

Algorithm 1: BP with fixed number of iterations

Input: Observation of received power level on each SU: Y = {Y1, Y2, . . . , YN}
Output: Spectrum occupancy detected by each SU: Z = {Z1, Z2, . . . , ZN}

1 for i← 1 to N do

2 ai ← 1
2σ2

0
+ 1

2σ2
n

bi ← µ0
σ2
0

+ Yi
σ2
n

3 µi ← bi
2ai

σ2i ← 1
2ai

4 for l← 1 to IterNum do
5 for i← 1 to N do
6 for j ← 1 to N do
7 if j 6= i and d(i, j) < D then
8 ali→j ← 1

2σ2
i

9 bli→j ←
µi
σ2
i

10 for k ← 1 to N do
11 if k 6= i, j and d(i, k) < D then

12 ali→j ← ali→j + 1

2σ2l−1
k→i

(
σ2

0
k→i initialized as +∞

)
13 bli→j ← bli→j +

µl−1
k→i

σ2l−1
k→i

(
µ0k→i initialized as µ0

)
14 (µli→j , σ

2l
i→j)← C(ali→j , bli→j)

15 for i← 1 to N do
16 ai ← 1

2σ2
i

+
∑

j
1

2σ2
j→i

bi ← µi
σ2
i

+
∑

j
µj→i

σ2
j→i

17 µi ← bi
2ai

σ2i ← 1
2ai

18 if
µi −Xedge√

σ2i

< Threshold then

19 Zi ← 0 H i
0 ← true

20 else
21 Zi ← 1 H i

1 ← true

22 return Z

Then we can consider the conditional density of Xi given neighbors’ information. Here we

assume that the neighbors of user i are not connected to each other, namely there is no loop

in the factor graph G(V,E). We will discuss the convergence of loopy BP in the performance

analysis part. By the pairwise Markov property, Yj ({i, j} ∈ E) are independent of each

12



other given Xi; therefore using the same manipulation as that in (2.4) we have the following

equation:

fXi|Y(xi|y) =
fY|Xi

(y|Xi = xi)fXi
(xi)∫

fY|Xi
(y|Xi = xi)fXi

(xi)dxi

=
fXi

(xi)
∏

j fYj |Xi
(yj|Xi = xi)∫

fXi
(xi)

∏
j fYj |Xi

(yj|Xi = xi)dxi

=K ′ · exp

[
−

(xi − bi
2ai

)2

2 · 1
2ai

]
,

(2.6)

where

y ={yk|d(i, k) < D, 1 ≤ k ≤ N, k 6= i}

ai =
1

2σ2
0

+
1

2σ2
n

+
∑
j

1

2σ2
j→i

,

bi =
µ0

σ2
0

+
yi
σ2
n

+
∑
j

µj→i
σ2
j→i

.

(2.7)

Here, σ2
j→i and µj→i are the two-number message sent from SU j to i, and in the beginning

of the BP iteration, they are initialized as +∞ and µ0 respectively.

In order for SUs to send only useful messages, the belief passed from i to j should not

include the one passed from j to i in the last round (as shown in line 11 to 13 Algorithm 1),

thus yielding the intermediate messages from i to j as follows:

ai→j =
1

2σ2
0

+
1

2σ2
n

+
∑
k 6=i,j

1

2σ2
k→i

,

bi→j =
µ0

σ2
0

+
yi
σ2
n

+
∑
k 6=i,j

µk→i
σ2
k→i

.
(2.8)

However, in order to satisfy the MRF assumption, we have to take into account the

compatibility function ψij which represents the correlation of received powers at any two

SUs, Xi and Xj. Thus after each iteration, we need to add in the compatibility function ψij

to compute a new pair of messages: (µi→j, σ
2
i→j)← C(ai→j, bi→j). The detailed expression of

13



this function C is given in equation (14) and (15) in [16].

µi→j =
(e− f)µ0 +

2f((e−f)µ0)+bi→j

2(e+ai→j)

e− f2

e+ai→j

σ2
i→j =

1

2(e− f2

e+ai→j
)

(2.9)

Hence after a fixed number of iterations, each SU will compute its own belief by ai and

bi obtained in (2.7): µi = bi
2ai

σ2
i = 1

2ai
. Then decisions are made based on the normalized

difference given in the line 18 of Algorithm 1, where Xedge is the average received power of

an SU at the edge of primary user interruption range. If this difference is larger than the

preset threshold, we believe that the hypothesis H1 is true; otherwise H0 is true.

It is shown in [16] that the fixed iterative BP achieves a better performance in terms of

missed detection rate and false alarm rate when the iteration number increases, which is also

more costly in the time. Yet, in practice, more and more applications require mobility for

PU and SU. In the next subsection, we are going to discuss the situation in which a PU is

moving among a group of fixed SUs and message passing suffers from communication loss.

2.3.2 Modified BP Algorithm for Dynamical Environment and

Noisy Communications

The more realistic scenario in many mission-critical applications is that one or more PUs

are moving in the area where SUs are deployed, for example, see Fig.2.1. In this situation, if

the SU makes a decision every T iterations but using only the observations obtained before

the BP begins, the information gathered for making decision will be obsolete (as shown in

Algorithm 1), especially when the PU moves at a rather fast speed.

Based on this observation, it is required that each SU continuously update its local

observation at every iteration (see Algorithm 2). However, the local function keeps changing

with new information (observation at current time) continually introduced to the belief

message that is to be passed out; this BP algorithm may never literally “converge” since

each iteration runs with a new input. However, it is known that, in the case of Gaussian

distribution, even loopy BP convergence is correct. [44].
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In reality, BP in a wireless network is subject to communication error caused by channel

loss and fading. When this happens, SU may choose to use belief information calculated

in the previous iteration or to use a priori information to replace the otherwise successfully

received message. The numerical result in section 2.6 shows that the performance of BP

does not deteriorate sharply. And the convergence of loopy BP subject to communication

error will be analyzed in the section 2.5.

Algorithm 2: BP with up-to-date local information

Input: Observation of received power level on each SU: Yl = {Y l
1 , Y

l
2 , . . . , Y

l
N}

Output: Spectrum occupancy detected by each SU: Zl = {Z l1, Z l2, . . . , Z lN}
1 for l← 1 to RunningT ime do
2 for i← 1 to N do

3 ai ← 1
2σ2

0
+ 1

2σ2
n

bi ← µ0
σ2
0

+
Y l
i
σ2
n

4 µi ← bi
2ai

σ2i ← 1
2ai

5 for i← 1 to N do
6 for j ← 1 to N do
7 if j 6= i and d(i, j) < D then
8 ai→j ← 1

2σ2
i

9 bi→j ← µi
σ2
i

10 for k ← 1 to N do
11 if k 6= i, j and d(i, k) < D then
12 ai→j ← ai→j + 1

2σ2
k→i

13 bi→j ← bi→j + µk→i

σ2
k→i

14 (µi→j , σ
2
i→j)← C(ai→j , bi→j)

15 for i← 1 to N do
16 ai ← 1

2σ2
i

+
∑

j
1

2σ2
j→i

bi ← µi
σ2
i

+
∑

j
µj→i

σ2
j→i

17 µi ← bi
2ai

σ2i ← 1
2ai

18 if
µi −Xedge√

σ2i

< Threshold then

19 Z li ← 0 H i
0 ← true

20 else
21 Z li ← 1 H i

1 ← true

22 return Zl

Note that in BP the belief passed from node i to j does not include the one passed from

j to i in the last iteration. As a result, at time l+1 the ith SU will forget its own observation
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Y l
i sampled at time l, because the message (µli→j, σ

2
i→j

l
) sent to its neighbor j will not be

included in the message (µl+1
j→i, σ

2
j→i

l+1
) sent back to i at time l + 1. In addition, the local

observation Y l
i and Y l+1

i are correlated, which indicates that the history information is lost

during the BP procedure in this modified algorithm 2. In the next section, an algorithm of

quickest detection that can well fit to our BP framework is introduced to tackle this issue.

2.4 Quickest Detection Within BP Framework

In this section, we embed the technique of quickest detection into the framework of BP,

which enables both distributed and online sensing in the cognitive radio network.

2.4.1 CUSUM Test for Quickest Detection

In statistical analysis, quickest detection aims at identifying changes in the probability

distribution of a stochastic process. Generally speaking, one needs to decide whether a

change has occurred at a certain time. Cumulative sum (CUSUM) test is one of the widely

used quickest detection methods, which is proved to achieve the optimal performance even

in the non-asymptotic case1 [24][20] . In CUSUM test, two hypotheses H0 and H1 are tested

based on the observation sequence {Bi, i = 1, 2, 3, . . . }. We assume that the sensed signal

power at SU is a sequence of independent and identically distributed (i.i.d.) random variables

{Bi, i = 1, 2, 3, . . . }, that follows a certain distribution f0 for i < TC and another distribution

f1 after that i ≥ TC , where TC is the unknown change point to be detected.

Basically, CUSUM test tries to identify the change that occurs in a random process in

the quickest manner. The CUSUM stopping time is defined as:

T ∗ = inf{t ≥ 0|S(t) ≥ h}, h ≥ 1 (2.10)

1The CUSUM stopping time is the stopping time that achieves the smallest possible detection delay for
any given level of the expected time between false alarms.
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where

S(t) = max
1≤j≤t

{
t∏

r=j

L(Br)

}

= max

{
t∏

r=1

L(Br),
t∏

r=2

L(Br), . . . , L(Bt)

}
= max {S(t− 1), 1} × L(Bt)

(2.11)

where Br is the observation at time r, and L(Br) is its likelihood ratio defined as

L(Br) =
df1
df0

(Br) (2.12)

We can obtain a more convenient form for the CUSUM detection. Let

s(t) = log S(t), l(t) = logL(Bt), γ = log h. (2.13)

Then we can rewrite equations (2.10) and (2.11) as:

T ∗ = inf{t ≥ 0|s(t) ≥ γ}, γ ≥ 0 (2.14)

s(t) = max
1≤j≤t

{
t∑

r=j

l(r)

}
= max{s(t− 1), 0}+ l(t) (2.15)

Intuitively, the log-likelihood ratio (LLR) l(t) has a negative mean under H0 and then

CUSUM remains around 0, whereas the LLR mean is positive under H1, then making

CUSUM drifting upwards until it crosses the threshold γ.

2.4.2 Quickest Detection Applied to BP Framework

In our BP framework, the hypotheses are not tested directly based on the local observations.

Instead, an SU i acquires belief messages from its neighbors (µj→i, σ
2
j→i), and then makes

decision according to the newly computed belief (µi, σ
2
i ) , which correspond to the moments

of the conditional distribution of Xi given Yj from neighbors. However, as is mentioned in

the previous section, the SU cannot remember its past observation or past belief messages;
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therefore we apply a quickest detection that utilizes history information to improve the

system performance.

Note that in Eq. (2.15), s(t) is the maximum of t summations; i.e,

s(t) = max
1≤j≤t

{
t∑

r=j

l(r)

}
. (2.16)

Assume that the change is detected at time T ∗ by the CUSUM test. We can then confirm that

at least one of these T ∗ products is greater than or equal to the threshold h, or intuitively,

at least one of these products ‘hits’ the threshold. Equivalently, if we examine these T ∗

products and find any of them hitting the threshold, we can claim that a change has been

detected.

Knowing that each product of likelihood ratios indicates the belief level of the alternative

hypothesis H1 (the larger it is, the more likely H0 will be rejected), we can use the belief

of SUi, or equivalently P (X t
i |Y

j
i , Y

j+1
i , . . . , Y t

i , Yi
t
) to approximate

∑t
r=j l(r), where Yi

t
are

observations of all but SU i at time t. Then by (2.6) we have the following joint distribution

for SUs i given the current and past t− j observations at time t along with belief messages

acquired from neighboring SUs:

fXt
i |Y

j(xti|y
j
i , y

t
i) =K ′′ · exp

[
−(x− µji )2

2σ2
i
j

]

=K ′′ · exp

−(x− bji
2aji

)2

2 · 1

2aji

 (2.17)
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where

yji =
{
yji , y

j+1
i , . . . , yti

}
yti =

{
ytm|d(i,m) < D, 1 ≤ m ≤ N,m 6= i

}
aji =

1

2σ2
0

+
t− j + 1

2σ2
n

+
∑
m

1

2σ2
m→i

bji =
µ0

σ2
0

+
t∑
j

yi
σ2
n

+
∑
m

µm→i
σ2
m→i

µji =
bji

2aji
, σ2

i
j

=
1

2aji

(2.18)

and K ′′ is a constant, similar to K ′ in equation (2.6).

The two numbers, µji and σ2
i
j
, are the computed belief of SU i after the tth iteration,

which can be used to estimate
∑t

r=j l(r) in the CUSUM test (2.15). To fit this into BP

framework, each SU has to store t− j past samples and maintain t− j + 1 belief messages

that are to be sent to each of its neighbor. Considering the cost and the fact that correlation

between observations sampled long time ago and the current ones is weak, we make a tradeoff

between communication overhead and quickest detection performance by adopting only the

recent L measurements. Specifically, we define

T ∗i = inf{t ≥ 0|si(t) ≥ h}, h ≥ 0,

si(t) = max
t−L+1≤j≤t

µji −Xedge√
σ2
i
j

 (2.19)

Note that there are two values for the threshold h: one is for detecting changes from H0 to

H1, which is positive, while the other is negative, with the inequality sign reversed and min

instead of max, for the detection of change from H1 to H0.

Thus the CUSUM algorithm can be well adapted to the BP framework. The algorithm

procedure is almost the same as Algorithm 2 except for the following aspects:

• All SUs maintain a memory window of length L, where they store the most recent L

local observations. Each SU keeps the previous hypothesis test result such that they

know which change to detect (from H0 to H1 or from H1 to H0).
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• Messages propagated between SUs include L different pairs of (µjm→i, σ
2j
m→i) according

to Eq. (2.18).

• When making a decision, SUs take all the L computed beliefs into consideration. If

the standardized difference of any of these believes hits the threshold h as in (2.19),

the SU claims a change and takes the corresponding action.

2.5 Performance Analysis

In this section we will analyze the performance and convergence of BP in Gaussian Markov

Random Field (GMRF), and cooperative quickest detection separately, since it is too

complicated to analyze both jointly.

2.5.1 Convergence of BP Subject to Communication Errors

The convergence of BP has long been a difficult problem to tackle, especially in arbitrary

graphs where various cycles exist. It is known to all that Pearl BP [29] is guaranteed

to converge to the correct posterior probabilities for singly connected graph or a tree.

A proof has been given in [44] that, in GMRF, BP converges with correct means, even

when the graphical model is arbitrarily connected. When the BP procedure is subject to

communication error or loss, it may have some impact on the result of BP. An SU may

fail to send the message to some of its neighbors; therefore those that fail to receive the

belief message cannot calculate and update the new message intended for their neighbors.

However, as we proposed in Section 2.3, the node who does not correctly receive the belief

message could instead use the previous incoming message for current calculation. We thereby

give the analysis on convergence of BP that’s subject to communication failure.

BP based cooperative spectrum sensing, as described in Section 2.3 of this chapter, can

be modeled as message passed over Gaussian MRF. Each SU i is modeled to have two virtual

nodes: the true received power level xi and its observed version yi corrupted by noise and

fading. xi is connected to xj if user i and j can communicate with each other. yi is only

connected to the corresponding xi.
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In the GMRF, the joint distribution of z =

 x

y

 can be written as:

P (z) = ae−
1
2
zTV z, V =

 Vxx Vxy

Vyx Vyy

 , (2.20)

where Vxy and Vyx are diagonal matrices and Vxx(i, j) = 0 if user i and user j are not adjacent

because of the property of GMRF, and a is a constant. The goal of our BP is to estimate

the marginal probability of each xi, or in the context of GMRF, to estimate the marginal

posterior mean and variance of xi , given observations yi and belief messages passed from

neighbors xj, j ∈ N(i), where N(i) represents the collection of SUs that are graphically

connected to SU i.

From Eq. (2.20), by marginalizing x and completing the square in the exponent we have

zTV z =xTVxxx+ 2xTVxyy + yTVyyy

=(x− µ)TVxx(x− µ) + C
(2.21)

µ = −V −1xx Vxyy Vxxµ = −Vxyy (2.22)

where µ = E[x]. And the covariance matrix Cx|y = V −1xx . We denote by Cxi|y the ith row of

Cx|y, which represents the covariances between xi and all other x. And it is easy to see that

the marginal posterior variance of xi, given observation y, is Cxi|y(i).

We all know that BP converges correctly in a tree which has no loops. Hence, to analyze

the convergence of loopy BP, one can find a way to relate the loopy BP’s structure to some

structure that we are familiar with, namely a tree. To facilitate the following proof, all the

deductions are illustrated by a simple graph given in Fig. 2.3a, where 5 SUs are passing

belief message to each other. Note that the white nodes represent {xi}i while the black

ones represent corresponding observations {yi}i. For clarity, since yi is only connected to xi

which has no influence of the whole BP procedure, it will not be shown in other figures of

the chapter.
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(b) An unwrapped tree Ĝ from node A.

Figure 2.3: In (a) nodes represented by white circles are xi, nodes represented by black
circles are yi. In (b), only 4 iterations are shown

In order to compare the correct posterior and the loopy beliefs, we construct an

unwrapped tree from the original graph with loops, as shown in Fig. 2.3b. We denote

the original graph by G and unwrapped tree by Ĝ. Basically we can expand the unwrapped

tree from any node in G, to any depth in the following manner: 1) choose any node to be

the root of Ĝ. 2) find all its neighbors in the original graph as its children nodes. 3) for each

of the nodes in Step 2 find the corresponding neighbors except for its parent node, as the

children. 4) repeat Steps 2 and 3 till Ĝ has the required depth T .

In Ĝ, information sent from the root node A goes down towards the leaves and arrives

at any nodes of depth T after T iterations in G. Hence, Ĝ expanded from node A can be

intuitively viewed as the information flow from A for T iterations. Or viewed from bottom

the messages received by node A after T iterations in G are equivalent to the messages that

will be received by root node A in Ĝ.

The key relationship between G and Ĝ is that some statistics of replica nodes

Ai, Bi, Ci, · · · (i = 1, 2, ...) in Ĝ are copies of those of A,B,C, · · · in G. Most importantly, we

try to relate the inverse covariance matrix of G to Ĝ. First we scan the unwrapped tree in
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an order from root to leaves and from left to right, such that the leaf nodes are at the end of

the scanned sequence. We index the sequence with natural number. Denote by x̂ the vector

of values scanned in this way, and ŷ the observed version of x̂. With the above mentioned

notation x̂ to represent vectors Ĝ, all elements V̂xy(i, j) and ŷi are copies of Vxy(I, J) and yI ,

where x̂i and x̂j in Ĝ are replicas of xI and xJ in G, and V̂xx(i, j) for non-leaf nodes i and

j is the copy of Vxx(I, J). As for leaf nodes, it is not the case because leaf node x̂i does not

have the same complete neighbor set as non-leaf nodes do. Thus the statistics of leaf node

x̂i are different from those of non-leaf node x̂j where x̂i and x̂j refer to the same node xI in

G.

When communication error or failure occurs during the belief message passing, a node

should use the previous incoming message instead to update the belief. Then we construct

a buffer node x̂i′ in the unwrapped tree Ĝ such that the failed message from x̂i to x̂j can

be stored in this virtual node and sent to x̂j at the next update. Thus we can modify Ĝ as

shown in Fig. 2.4. For simplicity here we only show one error occurrence in this figure.

Then we use an m×n matrix Q as in Eq. (2.23) to map G to Ĝ′, where m is the number

of nodes in unwrapped tree Ĝ′ and n in original cyclic graph G. Each row in Q stands for a

node in Ĝ′, and the rows are sorted in the breadth first order as in the unwrapped tree.

Q =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 1 0 0

· · · · · · · · · · · · · · ·



(2.23)

Then it is obvious that we relate Vxy and y to V̂xy and ŷ by

ŷ = Qy, V̂xyQ = QVxy. (2.24)
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Figure 2.4: Modified unwrapped tree Ĝ′ from node A. Nodes with shade are buffered node
added to emulate when error occurs, which have the same statistics as the one it is derived
from.

It can be seen that ŷ and V̂xy are copies of rows in y and Vxy. However, V̂xxQ 6= QVxx,

because for leaf node x̂j, V̂xx(i, j) is not simply copied from Vxx(I, J). This is because that,

a k− degree node in G has k neighbors, while the corresponding nodes located in the leaves

of the unwrapped tree do not have children. This leads to the difference between V̂xx(i, j)

and Vxx(I, J).

Thus we need to consider this error when relating both quantities:

V̂xxQ+ ∆ = QVxx (2.25)

where ∆ is an error matrix whose first m− l rows are zero, referring to m− l non-leaf nodes

where l is the number of leaf nodes in the unwrapped graph.

Now we have known some basic relations between the original cyclic graph and the

unwrapped tree. We thereby give two lemmas, which show how G and Ĝ are related with
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proof provided in the appendix. Without the loss of generality, we set the root of unwrapped

tree to be x1 and its connected observed version y1.

Lemma 2.1. Let µ(1) be the correct mean of node 1, and µ̂(1) be the conditional mean of

root node 1 after T iterations, where T is the depth of the unwrapped tree, then

µ̂(1) = µ(1) + Ĉx1|y∆µ (2.26)

where Ĉx1|y is the first row of Ĉx|y or V̂ −1xx , and ∆ is an error matrix whose first M − l rows

are all zero. None zero part of ∆ corresponds to the leaf nodes in Ĝ.

Proof. See Appendix A

Lemma 2.1 gives the difference between µ(1) and µ̂(1).

Lemma 2.2. Let σ2(1) be the correct variance of node 1 and σ̂2(1) be the conditional variance

of node 1 after T iterations, where T is the depth of the unwrapped tree, then

σ̂2(1) = σ2(1) + Ĉx1|y∆C
T
x1|y − Ĉx1|yr (2.27)

where ∆ is the error matrix as described in Lemma 2.1 and the vector r has value 1 for

element that corresponds to node 1 in the original cyclic graph G and value 0 elsewhere.

Proof. See Appendix B

Lemma 2.2 provides the difference between σ2(1) and σ̂2(1).

To prove that BP converges to the correct fixed point, we must show that the residue

term and the error term in Lemmas 2.1 and 2.2 are bounded and vanish with the iteration.

From Lemmas 2.1 and 2.2, we can easily see that both ∆µ and ∆CT
x1|y are bounded, since

only the last l rows in E are non-zero while µ and CT
x1|y have fixed values independent of the

iterations. Therefore we can give the following theorem with easy proof described as above:

Theorem 2.3. Assume that the conditional correlation between the root node and leaf nodes

in the unwrapped tree decreases sufficiently fast, i.e. ∀ ε > 0, ∃ Tε = f(ε) such that ∀t > Tε

|Ĉx1|y∆µ| < εmaxi∈[1,m] |∆µ|. Then we have (1) BP converges (2) the expectation µ is
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exact while the variances are equal to the true variances minus the summation of conditional

correlations between root node x̂1 and all other nodes x̂j that are copies of x1.

However, in reality it is difficult to tell whether the conditional correlation between the

root node and leaf nodes decrease sufficiently fast. We can only tell whether BP converges to

a fixed point of BP assignment. In the GMRF case, due to the special property of exponential

functions, we can get better results. We first propose Lemma 2.4, from which we will reach

the final conclusion in Theorem 2.5

Lemma 2.4. If φ is a fixed point of the BP in G, then we can expand G to construct an

unwrapped tree Ĝ such that (a) all non-leaf nodes in Ĝ have the same statistical relationship

with neighbors as the corresponding nodes in G, with the exception of the virtual buffer nodes;

(b) all nodes in Ĝ have the same beliefs as the those obtained at the fixed point φ in G.

Proof. See Appendix C.

With Lemma 2.4, we can prove Theorem 2.5:

Theorem 2.5. For an arbitrary Gaussian graphic model, if φ is a fixed point resulted by BP

subjected to possible message passing failure, the resulted expectations from this fixed point

are exact.

Proof. See Appendix D.

So far, we have shown that, given sufficient iterations, if BP converges to some fixed

point, then the loopy expectations based on this point are correct. In fact, there are cases

[25] where some fixed points exist but the expectation does not converge to the exact value.

Therefore in our cooperative spectrum sensing scenario with static primary user, if BP

converges to a fixed point, then this point will yield correct expectations and the same

decisions as those without communication errors. In the scenario where PU is dynamic, due

to the limited number of iterations and up-to-date local observations, we cannot guarantee

the convergence; however, the numerical results show that the proposed algorithm does work

in practice, which can be justified by our theoretical analysis to some extent.
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2.5.2 Performance Analysis of Cooperative Quickest Detection

Quickest detection, as an efficient technique to detect the change in sample distribution,

has been widely used in many fields such as process control, financial decision and statistical

signal processing, especially CUSUM test, one of the most widely used algorithms for quickest

change detection. For centralized detection, the central node which is the only decision

maker, claims a change by giving the stopping time T ∗, as defined in equation (2.14) and

(2.15),

T ∗ = inf{t ≥ 0|sk(t) ≥ γ}, γ ≥ 0

sk(t) = max
k≤j≤t

{
t∑

r=j

l(r)

}

by Page’s Procedure [28], the above equations are equivalent to equation (2.28) and (2.29)

T ∗ = inf{T (k), k = 0, 1, 2, · · · } (2.28)

T (k) = inf

{
t|

t∑
r=k

l(r) ≥ γ

}
, γ ≥ 0 (2.29)

Here, we assume the pre-change and post-change distributions f0 and f1 are known.

The CUSUM stopping time T ∗ has been proved to achieve the optimal solution in terms

of minimum delay [24][32]. However, in the case of bounded threshold, it is difficult

to give explicit performance measures and analysis. But we can analyze the case of

sufficiently large threshold or equivalently with sufficiently large samples with Brownian

motion approximation, which is commonly used to help analyze continous system [34][37],

since

ˆb(t) ,

∑Nt
r=0(l(r)− E[l(r)])√

N
(2.30)

converges to a Brownian motion with drifting rate µ̂ = 0, and variance σ̂2 = V [l(r)], when

N → ∞. And the threshold will accordingly be γ̂ = γ/
√
N . Then

∑Nt
r=0 l(r)/

√
N can be

approximated by b(t) with µ =
√
NE[l(r)] and σ2 = σ̂2 = V [l(r)], γ̂ = γ/

√
N .
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Then, t∗ that corresponds to T ∗ defined in equation (2.14) can be expressed as below:

t∗ = inf{t|b(t)− min
0≤k≤t

b(k) ≥ γ̂} (2.31)

In this chapter we look into two average run lengths (ARLs) as the performance criteria

for quickest detection, as used in many other theoretical materials [24][10]. These two ARLs

are given by

Di = esssup(Et|T ∗i − t|Ft−1), Fi = E∞[T ∗i ] (2.32)

where Et means the expectation under the condition that the change occurs at time t,

while E∞ gives the expectation under the assumption that the change never happens. T ∗i

is the stopping time of node i and Ft−1 is the filtration or history before t − 1 (including

t − 1). Thus we define Di as the indicator of detection delay on node i and Fi the means

average time elapsed between two false alarms. Since small detection delay and small false

alarm rate mean a good performance, small D and large F are expected for a good detection

algorithm.

It is shown by Brownian motion approximation based asymptotic analysis [15] that in

CUSUM test, with sufficiently large threshold γ̂, D and F can be approximated by

E[t∗] ≈


γ̂

µ
µ > 0

σ2

2µ2
exp

(
−2µγ̂

σ2

)
µ < 0

(2.33)

D ≈ N · E[t∗] µ > 0

F ≈ N · E[t∗] µ < 0
(2.34)

which agrees with the intuition that a larger threshold results in larger delay but smaller

false alarm rate.

In our cooperative spectrum sensing scenario, however, there is no central node. Therefore

we need to see how each node conducts the CUSUM test with likelihood ratios passed from

its neighbors. First let us consider a two-node (denoted by A and B) scenario where each

node make decision based on ifself and the other one, and assume nonzero communication
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delay but no communication errors, and both nodes are perfect synchronized. By adopting

the Page’s procedure in equations (2.28) and (2.29) , we modify the sum
∑t

r=k l(r) at node

A as below in equation (2.36) as well as the stopping time at node A:

T ∗A = inf{TA(k), k = 0, 1, 2, · · · }, (2.35)

TA(k) =inf{t|skA(t) ≥ γA},

skA(t) =
t∑

r=k

lA(r) +
t−D∑
r=k

lB(r)
(2.36)

where D is communication delay between the two nodes, while lA and lB are the log-likelihood

ratios of H1 versus H0 at node A and B, respectively. Intuitively, the second summation

does not include summation from lB(t−D + 1) to lB(t) because at time t node A can only

receive some past information that node B had, due to the communication delay D. If we

consider the LLR as two parts, the first part α consists of those obtained before time slot

t−D, the other part β consists of those from time slot t−D + 1 to t, where

α =
t−D∑
r=k

lA(r) + lB(r) β =
t∑

r=t−D+1

lA(r) (2.37)

Then we have stopping times for two stages given by

TαA =inf{TA(k), k = 0, 1, 2, · · · , t−D},

T βA =inf{TA(k), k = t−D + 1, · · · , t}
(2.38)

It is obvious that the stopping time T ∗A can be represented by TαA and T βA:

T ∗A = min(TαA , T
β
A) (2.39)

Then we define the following terms to facilitate the performance analysis:

Ii , Er[li(r)], Ji , E∞[li(r)], i = A,B

Ui , Vr[li(r)], Wi , V∞[li(r)], i = A,B
(2.40)
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RA(t) =
t∑

k=1

lA(k) +
t−D∑
k=1

lB(k), (2.41)

where Ii is the K-L divergence D(f
(1)
i ||f

(0)
i ), and Ji = −D(f

(0)
i ||f

(1)
i ). Then by Wald’s

Identity [41], we have

E[RA(T )] = E

[
T∑
k=1

lA(k)

]
+ E

[
T−D∑
k=1

lB(k)

]
= E[T ]E[lA(k)] + E[max(T −D, 0)]E[IB(k)]

= IAE([T ] + IB[E[max(T −D, 0)]

(2.42)

We assume that time slot D in the discrete system is equivalent to time t = 1 in the Brownian

motion and thus t∗A satisfies

T ∗A ≈ D · t∗A (2.43)

Applying equation (2.42) at stopping time T ∗A and ignoring the overshoot, we have RA(T ∗A) ≈

γA thus we can obtain an extended Wald’s approximation of γ

γA ≈ IAE[T ∗A] + IBE[max(T ∗A −D, 0)] (2.44)

It can be difficult to decouple T ∗A from the expectation E[max(T ∗A − D, 0)] in Eq. (2.44).

However, using Brownian motion approximation, it can be proved [15] that for sufficiently

large D, it is highly possible that, if IAD > γA, γA can be hit between time slot 0 to time

slot D, or time interval t = [0, 1] in terms of the Brownian motion approximation; and with

a high probability, if IAD < γA, the threshold cannot be reached. From this result we have

P (T ∗A < D)
γA→∞===

 1, if IAD > γA

0, if IAD < γA

(2.45)

max(T ∗A −D, 0)

D

P−→


0, if IAD > γA

T ∗A −D
D

, if IAD < γA

(2.46)
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Therefore, for sufficiently large D, we have the following estimation of ARL D at node

A by combining equation (2.34) (2.43) (2.44) (2.46) :

DA =


γA
IA
, if IAD > γA

γA + IBD

IA + IB
, if IAD < γA

(2.47)

from which we could see when the threshold at a node is not large enough, information passed

from its neighbor node does not contribute much to the quickest detection performance D.

However, we can adjust the threshold such that the trade-off between D and F can be

achieved.

For F , again due to the difficulty in the analysis of finite systems, using the same

Brownian motion approximation as used for the analysis of D, we have the following

asymptotic approximation for F when γ is large, as γ →∞,

logFA ≥ 2|JA+JB |γA
WA+WB

− 2|JA+JB |JA
WA+WB

− 2(JA+JB)2WA

(WA+WB)2
(2.48)

where JA, JB,WA,WB are defined in Eq. (2.40). Due to the page limit, we do not provide

the proof of (2.48) here. In the case of Gaussian distribution, for example, for node i,

H0 ∼ N(µi0, 1) and H1 ∼ N(µi1, 1), it is straightforward to examine [32]

IA = −JA = (µA1 − µA0 )2, IB = −JB = (µB1 − µB0 )2,

UA = 2IA, UB = 2IB.
(2.49)

Substituting (2.49) into (2.48), we have

As γA →∞, log(FA) ≥ γA (2.50)

Furthermore we can show that the equality holds asymptotically in Eq. (2.50).

Theorem 2.6. If the distributions are Gaussian and Brownian motion approximation holds,

we have

log(FA) = γA = IADA + IB max(DA −D, 0) as γA →∞, (2.51)
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Proof. See Appendix E.

Theorem 2.6 shows the relationship between FA and DA, which also characterizes the

tradeoff between them.

After the analysis of the two-node network, we can now move to the more general case

where multiple nodes exist. For a network topology of N nodes, denote by φ
(n)
A the set of

nodes that are n hops away from node A, and N(A) the neighbor nodes of A, which is

equivalent to φ
(1)
A .

Similar to the two-thread CUSUM test and the stopping times as in (2.35) to (2.39), we

have

T ∗A = min(T 0
A, · · · , T n−1A ) (2.52)

where n = W/D, and W is the window size out of which observations received from other

nodes will not be used. ∀i = 1, · · · , n− 1,

T iA = min

t
∣∣∣∣∣∣∣siA(t− iD) +

i−1∑
j=0

∑
θ∈φ(j)A

t−jD∑
r=t−iD+1

lθ(r) ≥ γA

 (2.53)

where

siA(t) = max

siA(t− 1) +
n∑
j=0

∑
θ∈φ(j)A

lθ(t), 0

 (2.54)

For i = 0,

T 0
A = min

(
t

∣∣∣∣∣ max
t−D+1≤k≤t

t∑
r=k

lθ(r) ≥ γA

)
(2.55)

We could easily check that the two node system is a special case of the multiple nodes.

Similarly to (2.51) we can obtain the asymptotic equation for node A in multi-node network

as (2.56) in the following theorem:

Theorem 2.7. For the generic case of multiple-node networks, we have

IADA +
n∑
i=1

∑
θ∈φ(i)A

Iθ

max(DA − iD, 0) = logFA (2.56)
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as γA →∞, where Iθ is the K-L divergence of node θ as defined in (2.40).

2.6 Numerical Results

In this section, we use numerical simulation results to demonstrate the performance of

the proposed BP based quickest cooperative spectrum sensing and compare it with that

of traditional detection with BP. We set the total SU number N = 400. The SUs are

randomly distributed in a 4000m × 4000m square area. A PU follows a sine curve path

starting from (−2000, 0), with the constant horizontal velocity Vx = 36km/h. Assume that

each iteration in the BP procedure takes 100ms, which we define as one time slot. The

primary user impact range R is set to 1000m, and the maximum communication distance

between SUs is set to D = 200m. The power of PU is P = 20W , which is 43.01 dBm. The

received power observation Yi, affected by path loss and shadow fading, is calculated by the

following model with path loss exponent γ = 3.5:

Yi = P − 28.6− 35log10di + Pn , (2.57)

where di is the distance between the ith SU and the PU, Pn is Gaussian random noise (caused

by log normal shadow fading) with variance σ2
n, and Xedge is computed by having di = R;

i.e.,

Xedge = P − 28.6− 35log10R (2.58)

And all the simulation results are based on 100 realizations of the configurations mentioned

above, and during each realization, the PU moves through the above-mentioned square area

at the designated speed. We tested over various message transmission error rate e, window

length L (which is defined in the last part of Section 2.4) and noise variance σ2
n. For clarity

we define a false alarm as claiming a change either from H0 to H1 or H1 to H0 while actually

the change has not happened. Then we can use the receiver operating characteristic (ROC)

curve in terms of false alarm rate2 and average detection delay to measure the performance,

2The false alarm rate in the simulation result is defined as
(
Number of false alarm among all SUs during

the simulation
)/(

Length of simulation × number of SUs
)
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Figure 2.5: ROC curves at different window sizes L

which corresponds to the two ARLs mentioned in (2.32). Here we use false alarm rate instead

of ARL because H0 can mean many different scenarios depending how far the SU is from

the PU, so statistically the simulated false alarm rate is inversely proportional to the ARL

Fi. Besides the assumptions made in Section 2.2, we also make the following reasonable

assumptions:

• We only consider packet losses incurred by communication failure and do not consider

quantization error in communications.

• We ignore the missed detection, where a change occurs without being detected. This is

because for quickest detection, ideally a change can always be detected given sufficient

long time. It is very unlikely that the PU enters a SU’s alert range and leaves

immediately, in which case the SU cannot detect the presence of PU for the lack

of observations.

• All SUs receive incoming messages and update the belief messages simultaneously, such

that we do not specify sensing and processing intervals.

To determine the window length L, we tested different Ls under various noise levels, as

shown in Fig. 2.5. Here L = 1 means the traditional detection method. It can be seen that

the performance gap becomes unnoticeable when L ≥ 10. Considering the computation and

communication cost of maintaining the size L window, we choose L = 10 in our algorithm.
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Figure 2.6: ROC curves at different noise levels with window length L = 10

Fig. 2.6 shows a comparison between BP based traditional detection which is equivalent

to quickest detection with window length L = 1, and the BP based quickest detection of

window length L = 10 in terms of the ROC curves under different noise levels. The dash

lines represent the ROCs with quickest detection, and solid lines represent the traditional

method. It can be seen that the proposed quickest detection outperforms the traditional BP

based detection without the quickest detection.

We also test our proposed spectrum sensing algorithm with setups of different message

passing error rates. Fig. 2.7 gives performance under error rate 100%, 20% and 0% for two

different fading levels. In our simulation, since the PU is moving, when an error occurs, the

same belief message will not be sent again. Therefore the SU will approximately replace

the otherwise received correct message with its own priors when computing the next belief

messages and updating its own belief.
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Figure 2.7: ROC curves with different communication error rates

We can also see from Fig. 2.7 that, when the communication failure rate is low, the

ROC can be very close to that of no error case. This agrees with the conclusion in Section

2.5, which states that BP can empirically “converge” even when message loss happens. We

say the convergence is empirical because with finite iterations, the loopy BP in the GMRF

cannot converge and to the correct expectation. However, under our assumption that “if

the conditional correlation between the root node and leaf nodes in the unwrapped tree

decreases sufficiently fast”, we claim that it “converges” empirically. Fig. 2.8 illustrates the

convergence process on an SU when PU is static.

2.7 Conclusion

In this chapter, we have discussed the BP framework used for cooperative spectrum sensing,

into which the CUSUM quickest detection is integrated. The impact of possible message

passing failure on BP convergence has been analyzed. The finite length approximations

of CUSUM quickest detection and distributed quickest detection have been theoretically
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Figure 2.8: BP convergence illustration

analyzed. Numerical results have shown that our proposed BP based quickest detection

algorithm can achieve a better detection performance in terms of delay and false alarm rate

when compared with traditional spectrum sensing approach.
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Part II

Universal Quickest Detection
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Chapter 3

Universal Quickest Spectrum Sensing
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This chapter is revised based on a conference paper by Yifan Wang and Dr. Husheng Li:

Wang, Y., & Li, H. (2016). Universal Quickest Spectrum Sensing. In 2016 IEEE Global

Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

Abstract

In modern cognitive ratio systems, the spectrum is becoming increasingly crowded and

expensive; thus spectrum sensing becomes more important than ever before. Traditional

spectrum sensing assumes Gaussian noise (or of other given distributions) in general.

However, when secondary users (SUs) have no prior information about the measurement

distributions, the spectrum sensing schemes assuming given distribution forms (even if the

parameters are assumed to be unknown) no longer apply. In this chapter we propose a

universal quickest change detection scheme based on density ratio estimation for spectrum

sensing by detecting the sudden change of spectrum (e.g., the emergence of primary user),

where neither the pre- change nor post-change distribution (even the distribution forms) is

known to SUs, thus achieving robustness to complex spectrum environment.

3.1 Introduction

In cognitive radio systems, one of the key techniques, as well as design goals, is the spectrum

sensing, which has substantial impact on the applicability of cognitive radio in the future. As

wireless communication technology advances, the spectrum is becoming increasingly crowded

and expensive. By spectrum sensing this valuable resource can be more efficiently utilized.

Generally speaking, spectrum sensing is to detect spectrum activities, such that secondary

users (SUs) without license to the frequency band (which is licensed to primary users (PUs))

can then be able to use this band to communicate with each other, when PUs are not present.

In other words, SUs should be agile and have robust awareness of the presenfce or absence

of PUs with acceptable detection delay and false alarm rate.

One efficient approach for the spectrum sensing is to apply the abrupt change point

detection [32, 20], which is coined quickest spectrum sensing [18, 13]. Such an approach
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considers the sensed signal at SU as a random process and tries to detect the time when the

PU’s status is changed, either from absence to presence or vice versa. The abrupt change

detection problem has been substantially studied for many years, among which the likelihood

ratio (LR) based Cumulative Sum (CUSUM) test or the Page’s procedure [28] is shown

to be optimal (in terms of detection delay and false alarm rate) under Lorden’s criterion.

Most of the related studies in the area of change detection fall into the settings where the

distributions before and after the change are known or partially known [8, 18, 13]. When

the distributions are unknown, [13, 40] provide guidance for non-parametric robust quickest

detection, where neither the pre-change nor post-change distribution is exactly known, while

both are assumed to be of some known family of distributions, i.e. with known form but

unknown parameters (e.g., Gaussian distributions with unknown expectations). However,

to the authors’ best knowledge, there is no existing research on the quickest detection in the

context where both the pre-change and post-change distributions are completely unknown

(including both distribution families and parameters). In the circumstance where we only

have data samples (the sensing observations in spectrum sensing), we need to fully exploit

the data for detecting the change.

In this chapter, we’ll first compare two non-parametric approaches, the nearest neighbor

divergence estimation [42] and Kullback-Leibler Importance Estimation Procedure (KLIEP)

[36] for change detection with no prior information of the post-change and pre-change

distributions. Since they don’t rely on any prior information of the distribution, we call

them universal spectrum sensing. Then we will combine the importance estimation with the

CUSUM quickest detection. Both approaches are essentially observations driven density ratio

estimation. This is to avoid non-parametric density estimation that is notoriously difficult

for its heavy computational complexity [9]. With the estimated density ratio, we can then

compare the incoming observations with existing ones serving as reference or training data,

such that a SU can detect the change of the PU status.

The remainder of this chapter is organized as follows. In Section 3.2, the detection

problem is formulated and modeled. In Section 3.3 the two density ratio estimation schemes

are introduced followed by our proposed detection procedure. Section 3.4 provides an
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asymptotic performance analysis. Numerical results are provided in Section 3.5, and the

conclusion is given in Section 3.6

3.2 Problem Statement and Modeling

For analysis simplicity, we assume energy detection for spectrum sensing. However, the

principle can be extended to other statistical detection schemes for spectrum sensing. In the

model of this chapter, a SU detects the existence of active PU only when the power level of

sensed signal is larger than some threshold. Hence, we can model this problem as a change

point detection problem. We assume that the sensed signal power at SU is a sequence of

independent and identically distributed (i.i.d.) random variables {Xi, i = 1, 2, 3, . . . }, and

that there are two possible distributions F0 and F1 for Xi. This is formulated in (3.1), where

TC is the change point such that {Xi, i < TC} ∼ F0, and {Xi, i ≥ TC} ∼ F1.

Xi ∼ F0 for i < TC

Xi ∼ F1 for i ≥ TC

. (3.1)

Note that we don’t specify the detailed expression of F0 and F1, since we assume that we

don’t have the prior information except for F0 6= F1. In practice, F0 is the distribution of

noise while F1 is that of signal plus noise.

We denote by τ the time that a change is detected (which could turn out to be a false

alarm). Our goal is to detect TC with the minimum worst-case detection delay DW given a

constraint on the false alarm probability PFA:

minDW (τ)

subject to PFA ≤ α, (3.2)

where α is the constraint on the false alarm rate and

DW (τ) = sup
TC≥1

ess supETC [(τ − TC + 1+)|FTC−1], (3.3)
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where Ft is the σ-field generated by X1, X2, · · · , Xt.

If both F0 and F1 are known distributions with known parameters, it is easy to detect

the change point with the LR approach. Under the Lorden criterion [20], the CUSUM test is

proved to be the optimal solution (even for nonasymptotic case!) to the minimax detection

problem (3.3), the stopping time of which minimizes the DW given an upper bound of PFA.

The time to claim the change in the CUSUM test is given by

τ ∗ = inf

{
t ≥ 1 : max

1≤k≤t

t∑
i=k

l(Xi) ≥ γ

}
(3.4)

where γ is selectet such that E0(τ
∗) = 1/α.

However, in our setup both F1 and F0 are unknown due to lack of knowledge about noise

type, wireless channels and PU signal. We can’t calculate the log-LR l(Xi) thus have to seek

other methods that don’t require direct calculation of LR.

We assume that the first M observations in the sequence {Xi}i are known to be subject

to F0. Then, we can use them as the training data, denoted by Xtr. This assumption is

reasonable; otherwise, it is possible that there is no (or very little) data generated from F0,

which makes the change detection impossible. We denote by Xte the testing data, which is

a subsequence in Xi from i = tte to i = t. Our hypotheses are as follows:

H0 : P (Xte) = P0(Xte)

H1 : P (Xte) = P1(Xte)
(3.5)

The LR of H1 over H0 can be written as

Λ(t) =
P1(Xte)

P0(Xte)
=

t∏
i=tte

P1(Xi)

P0(Xi)
, (3.6)

or in terms of logarithm LR,

λ(t) = log
P1(Xte)

P0(Xte)
=

t∑
i=tte

log
P1(Xi)

P0(Xi)
=

t∑
i=tte

l(Xi). (3.7)
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Our problem is to estimate λ(t) without knowing P1 and P0. In the next section, we will

compare two non-parametric approaches to estimate the LR that are mentioned above.

3.3 Non-parametric Quickest Detection

In this section, two non-parametric approaches will be discussed when they are used for the

estimation of the log-LR between two sets of data, as λ(t). This log-LR between testing

data and training data is essentially related to the Kullback-Leibler (K-L) divergence, which

can be defined as in (3.8). If we assume that the testing data Xte is subject to F1, and the

training data is of F0, then the K-L divergence from F1 to F0 is given by

D(F1‖F0) =

∫
R

dF1 log
dF1

dF0

. (3.8)

We denote by f1 the density of F1 and f0 the density of F0, based on which the divergence

from F1 to F0 can be written as

D(f1‖f0) =

∫
R
f1(x) log

f1(x)

f0(x)
dx. (3.9)

In the discrete value case, Eq. (3.9) can be rewritten as

D(P1‖P0) =
∑
x∈Xte

P1(x) log
P1(x)

P0(x)
. (3.10)

By the law of large numbers, it can be further simplified to

D(P1‖P0) =
1

N

∑
x∈Xte

log
P1(x)

P0(x)
=
λ

N
, (3.11)

as N → ∞, where N is the number of samples in Xte. Hence we can see the relationship

between λ and the K-L divergence.
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3.3.1 Nearest Neighbor Approach

Since we need to compute the metric λ for the hypothesis test in (3.5), we can either estimate

P0(Xte) and P1(Xte) separately and compute the density ratio Λ and λ, or directly estimate

the ratio itself. There are many ways to estimate probability density from data, such as the

k-NN approach; however, it is well known that the computational complexity is very high.

Therefore, we have to explore the latter option, namely directly estimating the density ratio.

In [42], a nearest-neighbor based estimator is given to estimate the K-L divergence

between two random vectors. The idea behind this is based on k-NN density estimate,

given by

P̂k(x) =
k

(N − 1) · Vx,k
, (3.12)

where N is the number of samples used to estimate the density P (x), and Vx,k is the volume

of the ball with radius equal to the distance between its center x and its k-nearest neighbor.

Then from (3.11) we define P̂1k(x) and P̂0k(x) as follows:

P̂1k(Xi) =
k

(N − 1) · VXi,k

, P̂0k(Xi) =
k

M · V ′Xi,k

(3.13)

where VXi,k is the volume of the ball B(Xi, ρN(i)), V ′Xi,k
is the volume of the ball B(Xi, vM(i)),

and when k = 1, ρN and vM are defined as

ρN(i) = min
j=tte,...,t,j 6=i

‖Xi −Xj‖, for i = tte, . . . , t

vM(i) = min
j=1,...,ttr

‖Xi −Xj‖, for i = tte, . . . , t
(3.14)

P̂1(Xi) =
1

(N − 1) · ρN(i)
, P̂0(Xi) =

1

M · vM(i)
(3.15)

Here k is set to be 1 because it has been shown that the divergence estimator is still

consistent when sample size goes to infinity with k = 1, even though the density estimates
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are not. Therefore, from (3.11) (3.14) and (3.15), we have

D(P1‖P0) =
1

N

t∑
i=tte

log

1
(N−1)·ρN (i)

1
M ·vM (i)

=
1

N

t∑
i=tte

log
vM(i)

ρN(i)
+ log

M

N − 1

(3.16)

λ(t) =
t∑

i=tte

log
vM(i)

ρN(i)
+N · log

M

N − 1
(3.17)

This estimator proves to be asymptotically unbiased and mean-square consistent.

However, it may not be very suitable for change detection, as we will figure out in Section

3.5.

3.3.2 Optimization Approach: KLIEP

Another way to estimate the probability density ratio λ is the KLIEP originally proposed

in [36]. It approximates the density ratio w(x) by minimizing the K-L divergence from the

true density f1(x) to its estimate f̂1(x) in (3.18), which should be 0 if the estimate is the

same as the true one:

f̂1(x) = ŵ(x)f0(x). (3.18)

The K-L importance w(x) is defined as the density ratio between f1(x) and f0(x) at x. The

core of this algorithm is to approximate the importance w(x) with coefficients α and kernels

φ as in (3.19), and minimize the divergence between Xte and X̂te over different ~α and ~φ.

According to the expression of K-L divergence given in (3.10) and (3.11), we have

ŵ(X) =
L∑
l=1

αl · φl(X), (3.19)

D(P1‖P̂1) =
1

N

∑
x∈Xte

log
P1(x)

P0(x) · ŵ(x)

=
1

N

∑
x∈Xte

log
P1(x)

P0(x)
− 1

N

∑
x∈Xte

log ŵ(x).

(3.20)
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The optimization problem can be written as (3.21) because the first term in (3.20) has

nothing to do with ŵ(x):

minD(P1‖P̂1)⇐⇒ max
∑
x∈Xte

log ŵ(x). (3.21)

The optimization constraint can be given by (3.22) because of the normalization requirement

of P̂1:

1 =

∫
ŵ(x)P0(x)dx =

1

M

∑
x∈Xtr

L∑
l=1

αl · φl(x). (3.22)

The optimization above is concave; thus the global optimum can be reached with methods

such as gradient ascent. After we attain the solution ŵ(x), we can compute the λ by using

λ =
∑
x∈Xte

log ŵ(x). (3.23)

The choice of kernel or basis functions in this optimization is important. In [11], a

non-parametric KLIEP paired with Gaussian kernel centered at testing data is adopted for

sequential detection, and the model selection is carried out by likelihood cross validation

(CV):

ŵ(x) =
N∑
l=1

αl ·Kσ(x,Xte(l))

=
N∑
l=1

αl · exp(−
‖x−Xte(l)‖2

2σ2
).

(3.24)

It has been shown that [36] when a non-parametric model (e.g., kernel basis functions

centered at test samples) is adopted for the importance estimation, KLIEP converges to the

optimal value with a rate slightly slower than O(n−1/2) under n = N = M , where N (M)

is the size of Xte (Xtr). Thus we keep the testing data size the same as that of the training

data in this algorithm for the rest of this chapter.
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Figure 3.1: Change detection scenario

3.3.3 Change Detection

The aforementioned two approaches both work well in estimating the importance or density

ratio between two distributions. It’s been shown that both are asymptotically unbiased and

consistent. However, the nearest neighbor approach has a larger variance than KLIEP at

small sample size[42]. So we mainly focus on change detection based on KLIEP.

We directly apply KLIEP to the detection problem by moving the testing data window

forward when new data come in, while keeping the training data window fixed, as in Fig.

3.1.

When t > TC , data samples subject to F1 fall in the testing window, and the value of

λ(t) will increase. H1 in (3.5) is claimed true when λ(t) hits some threshold Γ at time τ ,

which means that the change point is detected.

In fact, this straightforward non-parametric detection has been used in [36]. We hereby

give KLIEP based change detection in Algorithm 3.

Algorithm 3 works in detecting the change. However, it can be further improved using

the concept of CUSUM, by exploiting the historical data, we have

τ ∗ = inf {t ≥ 1 : max
1≤tte≤t

t∑
i=tte

l(Xi) ≥ γ}

= inf {t ≥ 1 : max
1≤tte≤t

λtte(t) ≥ γ}.
(3.25)
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Algorithm 3: Change detection based on KLIEP

Input: Data samples Xi, i = 1, 2, · · · , t. t is the current time; N as the
training/testing window size; T as the threshold

Output: τ : time when a change is claimed
1 Initialization:

tte ← N + 1 t← 2N

λ← 0 Xtr ←Xi, i ∈ [1, N ]

while λ ≤ T do
2 Xte ← Xi, i ∈ [tte, t]
3 λ = fKLIEP (Xtr,Xte)
4 if λ ≥ T then
5 τ ← t and break
6 else
7 t← t+ 1, tte ← tte + 1

8 return τ

However, since we don’t have the prior information to compute the LR at each time, we

propose a truncated version of (3.25), which is given by

τ̂ ∗ = inf {t ≥ t0 : max
wlo≤tte≤wup

λtte(t) ≥ γ}, (3.26)

and

wlo = max{t−N −W + 2, N +W + 1}

wup = t−N + 1, t0 = 2N +W
, (3.27)

whereN is the minimum length of training/testing dataXte andXtr, andW is the truncated

window size in window truncated CUSUM quickest detection in Algorithm 4.

This proposed algorithm maintains W testing data windows corresponding to λtte in

(3.26), where wlo ≤ tte ≤ wup. Then we compare the maximum of these λ with the threshold

γ. If at time t, the maximum hits γ, we claim the change time or stopping time τ ∗ = t. The

window size W should be selected properly, which is closely related to the computational

complexity. The choice of threshold and window size will be discussed in the next section.
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Algorithm 4: Window truncated change detection based on KLIEP

Input: Data samples Xi, i = 1, 2, · · · , t. t is the current time; N as the minimum
training/testing data size; W as the truncated window size; γ as the threshold

Output: τ : time when a change is claimed
1 Initialization:

tte ← t0 −N + 1 t← t0

λ← 0 Xtr ←Xi, i ∈ [1, N ]

while λ ≤ γ do
2 for k = 1 : W do
3 Xte ←Xi, i ∈ [tte − (k − 1), t]
4 Xtr ←Xi, i ∈ [1, N + (k − 1)]
5 λk = fKLIEP (Xtr,Xte)

6 λmax = max {λ1, λ2, · · · , λk}
7 if λmax ≥ γ then
8 τ ← t and break
9 else

10 t← t+ 1, tte ← tte + 1

11 return τ

3.4 Performance Analysis

Our proposed window-truncated K-L importance based change detection is modified based

on the traditional CUSUM test. Compared with the CUSUM stopping time τ ∗ defined in

(3.4), our stopping time τ̂ ∗ defined in (3.25) has a truncated window with upper limit wup

and lower limit wlo instead of from t = 1 to the current time. Furthermore, the sum
∑
l(Xi)

is estimated with KLIEP algorithm, which is purely data driven, thus not being error-free.

It is very difficult to analyze the detection performance with estimation error. Though

it has been proved asymptotically optimal under certain conditions, in our case, with only

limited testing and training data, the convergence is definitely not guaranteed. However,

from numerical results, we can assume that it is almost correct. Hence, in this section we

will analyze the window-truncated quickest detection assuming that the estimation is correct.

In standard CUSUM quickest detection, the CUSUM stopping time as in (3.25) is shown

to achieve the minimum detection delay given a false alarm constraint. To analyze the

performance of the quickest detection, we first define two average run lengths (ARLs) [28]

as the metrics, which are also widely used as the performance criteria in many other studies
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[24, 10]. These two ARLs are given by E0τ
∗ and E1τ

∗, where E0 and E1 are the expectations

under P0 and P1 respectively. Then, we define the worse case delay Ē1τ
∗ as

Ē1τ
∗ = sup

t≥1
ess supE(t)[(τ ∗ − t+ 1)+|Ft−1]. (3.28)

Therefore by the definition, we can observe that E0τ
∗ represents the average time before we

make a false alarm (namely claiming that there is a change while nothing happens), and

that E1τ
∗ stands for the detection delay with stopping time τ ∗.

Now let us come back to our problem formulated in Section 3.2. We hope that our

detection algorithm can minimize the worst-case delay DW (τ ∗) = Ē1τ
∗ given the false alarm

constraint PFA ≤ α. We define η = 1
α

which corresponds to the ARL E0τ
∗. Then the

constraint PFA ≤ α is equivalent to the ARL constraint E0τ
∗ ≥ η

Due to Theorem 1 in [14], the baseline ARL constraint can be replaced with

sup
TC≥1

P0(TC ≤ τ ∗ < TC +W (α)) ≤ α, (3.29)

where W (α) is a positive integer only related to α satisfying

lim inf W (α)/| logα| > I−1, (3.30)

logW (α) = o(logα), (3.31)

where I is the K-L divergence defined in (3.8) given i.i.d. Xi.

P0(t ≤ τ ∗ < t+W (α))

≤
t+W (α)−1∑

n=t

P0

(
n∏

i=n−k

f1(Xi)

f0(Xi)
≥ eγ for some k ≤ n− 1

)
(3.32)

Because under P0, Xn, Xn−1, · · · , Xn has the same distribution as X1, X2, · · · , Xn, we

can further have

≤ W (α)P0

(
n∏

i=n−k

f1(Xi)

f0(Xi)
≥ eγ for some t ≥ 1

)
≤ W (α)e−γ.

(3.33)
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The last step in (3.33) uses the Doob’s submartingale inequality. Comparing this with

(3.29), we have

W (α)e−γ ≤ α. (3.34)

Then by Theorem 4 in [14], it is shown that the window-limited stopping rule, given by

τ̄ ∗ = inf{t : max
t−W+1≤tte≤t

t∑
i=tte

l(Xi) ≥ γ}, (3.35)

can achieve the same uniform asymptotic lower bound of detection delay as in (3.37) with

properly chosen threshold γ and window length W , satisfying

2W (α)e−γ = α, (3.36)

E(TC)(τ̄ ∗ − TC)+ ∼ P0(τ̄
∗ ≥ TC)| logα|

I
as α→ 0. (3.37)

The worst-case delay E1(τ̄ ∗) is upper bounded by γ
I
, as γ ∼ | logα| → ∞, i.e. α → 0.

However, due to the limitation on K-L importance estimation procedure, we can’t estimate

it based on too few observations. Thus we set a minimum training/testing data size N , and

modify the τ̄ ∗ to τ̂ ∗ by changing the lower bound from t −W + 1 to t −W − N + 2 and

the upper bound from t to t − N + 1, as defined in (3.26). This is a tradeoff between the

estimation and detection precision. When N is small, the stopping time τ̂ ∗ is more like τ̄ ∗

which is shown to be asymptotically optimal given properly selected threshold and window

size W , whereas the estimation variance and error may be larger than that when N is large;

and vice versa. Since we have no prior information on F0 and F1, we don’t know the true

divergence I either; hence we could not decide the proper W based on (3.30). However,

given certain conventional false alarm rate lower bound α, we can set parameters for the

worst case, where the divergence I is a very small value. The resulting threshold γ can be

very large to guarantee the false alarm rate.
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Figure 3.2: Estimation of divergence between the same distribution

3.5 Numerical Results

In this section, we use numerical simulation results to demonstrate the performance of our

proposed importance estimation based quickest sensing. Firstly, as mentioned in Section

3.3, we don’t adopt the nearest neighbor approach in our proposed non-parametric quickest

detection for spectrum sensing. Though the estimator is shown to be unbiased and mean-

square consistent, its not very reliable with finite samples. When the divergence to estimate

is 0, i.e. P0 = P1, the nearest neighbor estimator has large variance as can be seen in Fig. 3.2.

Thus before the change (PU’s presence) actually occurs, the estimated divergence D(P0‖P1)

or the sum of log-LR λ can be largely deviated from 0, compared to KLIEP approach.

We tested our proposed KLIEP-based approach, the universal quickest spectrum sensing

algorithm, with some random chosen F0 and F1, as is modeled in (3.1). We choose window

size W = 5 and testing data size N = 25 for all tests. In Fig. 3.3, we show two scenarios

when the pre-change and post-change distributions are Gaussian, most commonly.
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Figure 3.3: Change detection: Gaussian to Gaussian case

In Fig. 3.4, we show two non-Gaussian scenarios where pre and post change distribution

can be Gaussian, Laplacian or Uniform, etc. The vertical line marks the change point

TC . We can see that the proposed quickest detection method reacts to the change quicker

than the traditional KLIEP detection, regardless what type of distribution and parameters

that F0, F1 are subject to. By setting different thresholds γ, we can obtain the Receiver

Operating Characteristic (ROC) curve for any setting, which gives average detection delay

E1τ̂
∗ to different false alarm rate 1/E0τ̂ ∗. We show two ROC curves at the setting of

F0 ∼ N(0, 0.22) and F1 ∼ N(0.4, 0.32), where the divergence between the pre-change and

post-change distributions is 2.22, and F0 ∼ N(0, 0.22) and F1 ∼ N(0.2, 0.32), where the

divergence is 0.72, as given in Fig. 3.5. It can be seen that our proposed quickest sensing

outperforms the traditional KLIEP sequential detection, at the cost of extra computational

cost.
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3.6 Conclusion

In this chapter we’ve proposed a spectrum sensing technique, which is essentially a non-

parametric quickest change detection, based on K-L importance estimation and CUSUM

test. With the proposed algorithm, quickest spectrum sensing can be carried out without any

prior knowledge of F0 and F1, thus being universal. The sensing performance measured by

detection delay vs. false alarm rate is shown to be better than traditional KLIEP based non-

parametric sequential detection. However, a tradeoff has to be made between the increased

computational cost and better sensing performance.

In our future work we’ll improve the threshold selection, which can adaptively adjust the

threshold to the sensing process. We’ll also try to lower the computational cost for SUs by

exploiting the historical optimization coefficients to update the current estimation instead

of going through the whole optimization process at each time.
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Chapter 4

Universal Quickest Sensing of

Spectrum Change in Millimeter Wave

Communications: A Data Driven

Approach
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This chapter is revised based on a conference paper by Yifan Wang, Zhiyang Zhang and

Dr. Husheng Li:

Wang, Y., Zhang, Z., & Li, H. (2017). Universal Quickest Sensing of Spectrum Change

in Millimeter Wave Communications: A Data Driven Approach. In 2017 IEEE Global

Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

Abstract

As millimeter wave is becoming the fundamental signaling technology of the physical layer

standard in the next generation cellular network, it also brings about many questions and

challenges. Not all the existing theories and methods for traditional wireless communications

can apply directly to millimeter wave network because of the adoption of directional antenna,

blockage effect, and the unprecedentedly large bandwidth. Among them, spectrum sensing

is one of the open challenges, for the purpose of dynamic spectrum access in the millimeter

wave band. In this chapter, we propose a data driven sensing technique based on the mean

recurrence time of random process to efficiently detect the change in the primary user (PU)

activities, which can tolerate small fluctuations in the distribution. The proposed spectrum

sensing works well without a priori knowledge of the PUs, and does not take the assumption

of independent and identically distributed observations on the PUs. It can also serve as a

general framework for change detection in other areas.

4.1 Introduction

Compared with traditional wireless communications such as 2.4 GHz Wi-Fi networks and

4G cellular networks, millimeter wave (mmWave) communications, as its name suggests,

works in a much shorter wavelength in millimeter scale. Since a shorter wavelength means

higher frequency, mmWave corresponds to the frequency band between 30 GHz to 300 GHz.

During the past decades, thorough researches on traditional cellular wireless communication

have been conducted. Though physics and the characteristics of mmWave have been

theoretically studied extensively, only until recent few years, were mmWave bands considered
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and implemented in practical communication systems [31], such as IEEE 802.15. 3c [1] and

IEEE 802.11 ad [30].

The motivation of adopting mmWave is obvious: crowded frequency spectrum and huge

demand in transmission rate. By moving wireless signals to a higher frequency band, it

alleviates the congestion of data traffic in lower frequency bands. In addition, whereas the

current cellular networks support the data rate of hundreds Megabits-per-second (Mbps),

the next generation (5G) cellular networks that adopt mmWave as the physical (PHY) layer

standard can increase the peak data rates to gigabits-per-second (Gbps).

However, along with the advantages of mmWave, there are many limitations for the

high speed data transmissions such as limited non-line-of-sight (NLOS) signal range [22].

Despite the potential usage of this limitation like object tracking [48][49], in terms of wireless

communication, challenges are that some traditional theories and techniques could not apply

directly to the mmWave scenario. One most important factor that causes this challenge is

the employment of steerable directional antennas at communication nodes and base stations,

which makes communication links isolated directionally, with interference playing a less

important part than in current cellular networks.

In mmWave networks, we do have abundant spectrum resource and directional antennas.

However, as the Internet of Things (IoT) rapidly grows [45], scenarios in which multiple nodes

co-existing in small cells need to communicate with each other in the same frequency will

become more and more common. Therefore dynamic spectrum access with spectrum sensing

may be needed to avoid interference and schedule the resource in a more efficient manner

in the future mmWave networks. Meanwhile, in military communications, spectrum sensing

is always useful, not only for saving the spectrum resource but also for swiftly detecting

primary user (PU)’s activities and finding available spectrum bands.

Spectrum sensing is known as a key to higher spectrum efficiency, where secondary users

(SU) without license to the frequency band (which is licensed to PUs) can use this band

to communicate with each other, when PUs are silent. Essentially, SUs can only use the

spectrum when their communications do not interfere with PUs. Therefore in the scenario

of mmWave cognitive radio networks, the presence of PUs does not necessarily mean a short

distance between the PU and SUs due to the directionality of mmWave antennas; instead
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Figure 4.1: mmWave cognitive network with a PU and SUs

it means that an SU can determine that PU’s transmission energy is above some limit.

Due to the advantage of directional antennas, an SU near a PU can still communicate with

other SUs with beam adaptation in the licensed band as long as it is not transmitting in

the direction of the PU. Another difference is that mmWave signal suffers from a more

severe non-line-of-sight loss than traditional networks. Therefore the sensed signals are more

vulnerable to the environmental changes. Compared with traditional communications, where

the spectrum sensing can usually be modeled as a ON-OFF change detection problem, and

can be solved using the likelihood ratio approach such as the cumulative sum (CUSUM)

test, in mmWave communications, there can be some small distribution changes that are

caused by the environmental fluctuation and antenna leakage, which can be tolerable for

SUs. Hence, the SUs only need to detect more significant changes indicating the presence

of PUs. Fig. 4.1 shows a cognitive network where a PU and several SUs with directional

antennas are within the same area.

Hence, we cannot directly apply existing spectrum sensing techniques to detect the

spectrum change of PUs in mmWave Cognitive networks. To our best knowledge, there
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are few studies on mmWave spectrum sensing where no assumption of independent and

identically distributed (i.i.d.) observations on the PUs is made. In this chapter we propose

a universal mmWave spectrum sensing technique based on the mean recurrence time (MRT)

of random process [33], which does not assume the distributions before and after the change

points and not assume independence of the underlying random variables of the sensed signal.

Though the proposed method is based on the signal strength or energy detection, it can also

serve as a framework for change detection in any other metrics, such as phase, frequency,

etc.

The remainder of this chapter is organized as follows. In Section 4.2 the system model

is provided. In Section 4.3, which is the main technical part of this chapter, we propose a

universal mmWave spectrum sensing approach for change detection in the mmWave band.

Then numerical results based on real mmWave measurements are shown in Section 4.4, while

some theoretical performance analysis is given in Sction 4.5. Finally Section 4.6 concludes

the chapter.

4.2 System Model

In this chapter, all the transceivers (PUs and SUs) are mmWave zero-intermediate-frequency

(IF) ones [38] equipped with directional antennas. An SU in the network directly down-

converts to the base band whatever it received, and regards it as the sensed signal. Such a

baseband sensing avoids the necessity of direct sampling in the mmWave band. When the

PU’s transmission direction points to an SU at some time, the sensed energy at this SU will

significantly increase due to the focused power. Then the SU will claim that the PU turns

ON if a threshold is hit, thus stopping its data transmission to avoid interfering the PU.

Similarly, when the sensed energy experiences an abrupt decrease, which is usually caused

either by the change of the PU’s transmission direction or the decreasing distance between

SU and PU or a temporary blockage, the impacted SU will claim that the PU status goes

OFF, and start transmitting.

We model the spectrum sensing at an SU as a change detection problem. Without the

loss of generality, we denote by Xt the sensed signal power at an SU that is in the absence
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Figure 4.2: Sample autocorrelation of the sensed signal

of PU and by Yt in the presence of PU. The random process of sensing observation is given

Z = {X1, X2, . . . , XT−1, YT , YT+1, . . . , }, which stands for the sensed signal energy at an SU,

when the PU’s status changes from OFF to ON at time T . At the change time T , the

PU starts transmitting in the direction of the SU’s antenna, which results in the significant

change in the random process Z (from X to Y ). We have the following hypothesis testing:

H0 : Z ∼ X

H1 : Z ∼ Y
(4.1)

The same modeling can also be applied to detect the change from Y (active PU) to X

(inactive PU). In the subsequently proposed algorithm, the detection is carried out regardless

of X to Y or Y to X. Notice that Xt may not necessarily be an i.i.d. process; neither is Yt.

Therefore the likelihood ratio based change detection such as CUSUM test may not work

well. The reason we do not make the i.i.d. assumption is based on the real measurement of

sensed signals in the mmWave band (the measurement setup will be elaborated in Section

4.4), which can be illustrated by the sample autocorrelation of the signal shown in Fig. 4.2.
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Figure 4.3: Example of sensed signal and quantization

We then model the random process {Xt, t = 1, 2, 3, . . . , K} as a discrete finite state

Markov chain by uniformly quantizing the variables Xt into P states based on their values.

The full scale range (FSR) depends on the minimum and maximum of the first K variables

as shown in figure 4.3, and K is the length of the reference samples:

Qmin = min (X1, X2, . . . , XK)

Qmax = max (X1, X2, . . . , XK)
(4.2)

Any sample that falls outside the interval [Qmin, Qmax] will be assigned to the boundary

state 1 and P accordingly. We assume the ergodicity and stationarity of the random process

Z before the change time T such that at all the states have bounded MRT (the definitions

of recurrence and MRT are given in the Appendix F ). It is intuitive to believe that if the

“structure” of the random process Z significantly changes at time T due to the change of

PU’s activities, a portion of the states will not be revisited or at least not as that frequently

as before time T , namely no longer recurrent.
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Inspired by this idea, we hereby adopt MRT as the criterion for decision making. If the

MRT of a certain number of states becomes too large or in the extreme case, infinite which

means the states are not recurrent after T , the SU can claim a change as the sensing result.

4.3 Universal Spectrum Change Sensing

For each SU, the purpose of spectrum change sensing is to avoid interfering with the PU

and capture the spectrum opportunity. Normally, we consider these following scenarios of

possible interference:

• An SU’s antenna points to the PU and the PU transmits in the direction of this SU.

• Similarly to the first scenario, but the SU is transmitting in the direction of PU after

reflections.

• PU and SU are not exactly pointing to each other, but with some small angle deviation.

• The PU is on the transmission path of an SU, but the PU’s antennas are not pointing

to the SU.

Except for the first scenario, where the SU’s transmission could directly impact the PU,

the interference level varies depending on the attenuations resulting from reflections and

angle of incidence. In the second scenario the interference level depends on the channel loss

and fading due to the reflection; in the third and fourth cases, it depends on the antenna

radiation pattern such as the main lobe width and side lobe level.

In the previous section, we point out in the system model that no assumption of the

pre-change or post-change distributions is made. Without the loss of generality, we take H0

as the “PU is absent” and H1 as “PU is present”. Hence, in the hypothesis testing (4.1), we

have

X = w, Y = w + S, (4.3)

where w is the random noise process, and S is the random process of the sensed signal energy,

which depends on the SU antenna pattern, PU transmission power, PU antenna gain, the

angle of incidence, etc. Since w and S are not subject to certain known distributions, we
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cannot take advantage of the likelihood ratio based detection algorithm, such as CUSUM

quickest detection [28]. Even the data-driven quickest detection with i.i.d. assumption in our

previous work [43] cannot apply, since the estimated divergence is always high and undesired

spikes will result in a high false alarm rate.

Therefore by exploiting the concept of MRT, an SU could tell if there is a drastic change

in the statistics of sensing signals, as mentioned in Section 4.2. First, the SU quantizes

the reference sensed signal, which is assumed to be subject to H0, into P states. Then it

calculates the MRT for each of the P state. Instead of calculating the MRT by using the

following definition:

TMRT
i = E[Ti] =

+∞∑
t=1

tfii(t) (4.4)

where fii(t) stands for the probability that it revisits state i from state i after t steps, an SU

can estimate E[Ti] and V ar[Ti] numerically based on the reference data, since SUs do not

know the exact transition probabilities of the Markov chain. Then, the SU claims a change

when a certain fraction of states have not been revisited long enough, which is controlled

by two parameters, the fraction ε and the threshold coefficient β. Denoting by τi the time

elapsed since the last visit to the state i, we have the following decision rule:

τi ≥ E[Ti] + β
√
V ar[Ti] (4.5)

1

P

P∑
i=1

1
τi≥E[Ti]+β

√
V ar[Ti]

> ε (4.6)

Remember that we only consider significant changes; hence, the observation S +w must

have several states that do not frequently appear in w, and w must also have several states

that are not frequently revisited any longer in S + w. We can adjust the sensitivity of the

sensing by controlling the value of β and ε.
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Algorithm 5: Mean-recurrence-time detection

Input: Reference samples Xr = {X1, X2, · · · , XK}, sensed input

Xt, {t = t0, t0 + 1, · · · }, quantization step P , threshold coefficient β, fraction ε

Output: T
1 Initialization: ∀i ∈ [1, P ] τi = 0, t = t0

2 Quantize Xr : Q(Xr) = {Q(X1), Q(X2), · · · , Q(XK)}
3 Estimate E[Ti] and V ar[Ti] ∀i ∈ [1, P ] based on Q(Xr)

4 while 1
P

∑P
i=1 1

τi≥E[Ti]+β
√
V ar[Ti]

< ε do

5 Quantize Xt : Q(Xt) = j, j ∈ [1, P ]

6 τi ← τi + 1,∀i ∈ [1, P ] \ j
7 τj ← 0

8 t← t+ 1

9 T ← t

10 return T

4.4 Experiment and Numerical Results

In this section, we show the experiment and numerical results based on real mmWave

measurement.

4.4.1 Experiment Setup

All our experiments are based on the measured data of our mmWave testbed, whose

components are listed in Table 4.1.

Table 4.1: Experimental hardware and software

Input Tektronix AFG3102C

External Clock Tektronix TSG4102A

TX Motherboard with the TX module HMC6300

RX Motherboard with the RX module HMC6301

Software HMC6300/HMC6301 Graphical User Interface

Oscilloscope Tektronix DPO 70404C
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The system board used in our experiment is Analog Devices EK1HMC6350 evaluation

kit as is shown in Fig. 4.4a, which allows us to set up a half-duplex, 60 GHz millimeter wave

link using standard baseband analog interfaces. And the daughter board HMC6301 as the

receiver is pictured in Fig. 4.4b while the transmitter HMC6300 in Fig. 4.4c.

In our experiment, the zero IF transmitter (PU) directly up-converts the base band signal

to the carrier frequency which is set to be 56.5 GHz on the EK1HMC6350 board. We use 1

MHz sinusoid as the base band signal for simplicity because energy detection does not have

much to do with the data content. On the SU side, it directly down-converts the received

mmWave signal to zero IF with the synchronized oscillators (LO). We also fix the receiver’s

gain such that the SU needs no further calculations to compare the sensed signal strength

with and without PU’s presence.

The antennas in the picture are pyramidal horn antennas which has the pattern given in

Fig. 4.5.

Due to the hardware limit, we only carry out experiment using one pair of transceivers

with different parameters. To focus on the problem of change detection, we adopt the same

LO to eliminate the frequency deviation between the transmitter and receiver. We simulate

the scenarios of “PU is present” and “PU is absent” by changing the distance between PU

and SU or the angle of incidence on SU’s antennas. Longer distance or larger angle deviation

of incidence means more signal attenuation.
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(a) 60 GHz evaluation board

(b) Motherboard with RX Module (c) Motherboard with TX Module

Figure 4.4: Experiment hardware : motherboard, RX module HMC6301 and TX module
HMC6300 with USB, DC power, Horn Antenna, external clock and I/Q cables installed
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Figure 4.5: The adopted antenna pattern
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Figure 4.6: Sensing signals for different angles of incidence

Fig. 4.6 illustrates the sensed signal power over different angles of incidence, where after

t = 6 the angle of incidence on the SU’s antenna is 0◦ indicating that PU is transmitting

directly towards SU’s antenna.

4.4.2 Numerical Results

We tested the sensing performance in terms of average delay and false alarm rate, which is

the number of false alarms out of all tests, based on 1000 runs. In each test, we randomly

choose two segments of samples respectively from sensing data of two pre-selected settings

(certain PU to SU distances and angles of incidence). For example, group A includes sensing

signal sampled when transmitter’s antenna points to the receiver’s with an angle of 20◦,

and the distance between them is fixed at 2m. Group B includes those sampled when

transmitter’s antenna points to the receiver’s with an angle of 0◦, at the same distance. If

we run the MRT based detection algorithm on the data consisting of both groups A and

B, we could measure the average delay and false alarm for hypothesis testing H0 and H1.

Then we adjust the decision rule by trying different values for the two parameters β and ε

as mentioned in Procedure 5, and repeat the experiment above, until we obtain the receiver

operating characteristic (ROC) curve.
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Figure 4.7: Impact of different parameters β and ε on detection delay

Each pre-selected setting, namely the distance and angle of incidence before and after

the change, corresponds to one ROC curve, because essentially it is related to the difference

between the pre-change and post-change statistics. If we assume that X and Y are each

subject to a certain distribution, and the random variables are i.i.d., this difference can be

measured by the Kullback-Leibler distance. Intuitively, the larger the difference is, the better

the detection performance will be, thus making the ROC curve closer to the origin. Fig. 4.7

shows the delay with different values of β and ε. As we can see, when the threshold controlled

by β increases, the delay increases as well; when the sensitivity fraction ε increases, the delay

also increases. When β and/or ε are too small, the delay tends to 0, which in fact indicates

almost sure false alarms.

Fig. 4.8 shows the ROC curve for the setting when the distance between the PU and SU

is fixed at 2m and the angle of incidence changes from 20◦ to 0◦. The quantization step is

set to P = 20 and reference sample size is K = 4000. Like most detections, we have to find

a tradeoff between the false alarm rate and detection delay. We did not take into account

the missed detection, when the interval between the status change of the PU is too short for

the SU to detect, since we only focus on the sensing from H0 to H1 or otherwise.
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Figure 4.8: ROC: average delay vs. false alarm rate

4.5 Qualitative Performance Analysis

In this section, we will provide some performance analysis on our proposed MRT detection

based spectrum sensing. The motivation for us to adopt the MRT detection is: first, simple

thresholding does not work well in change point detection, since it will take a random spike as

an indicator of hitting a threshold; second, the commonly used likelihood ratio test does not

work in our situation, since no certain distributions for pre-change and post-change random

processes are assumed; third, in the scenario of mmWave communications, interference is

notably mitigated thanks to the directional antenna. Therefore the spectrum sensing only

needs to focus on significant changes instead of temporary fluctuations.

The MRT detection essentially utilizes the stationarity of the Markov process. If there

is no change, the random process should remain stationary, with the transition matrix

unchanged. Therefore the MRT defined in Eq (4.4) for each state should be theoretically

unchanged. Once the change occurs, indicating the PU’s activities either from absence to

presence or vice versa, at least a fraction of the states will have substantially different MRTs.

Hence, by setting a threshold parameter β and the fraction ε, the SU could detect the change
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when the following inequality is satisfied, as we mentioned in previous sections:

1

P

P∑
i=1

1
τi≥E[Ti]+β

√
V ar[Ti]

> ε

However, there is a limitation of this approach, that the minimum detection delay exists,

and it is bounded from below by the minimum MRT of all states plus the deviation, given

by

Dmin ≥ min
i

{
E[Ti] + β

√
V ar[Ti]

}
(4.7)

We can see that it is not only related to β and ε but also to the sample mean E[Ti] and

variance V ar[Ti] of the MRT for each state. Hence, the performance relies on the reference

sample size as well. In our experiment, the setup of P = 20 and K = 4000 will lead to better

ROC performance due to the lower error rate for estimation of MRT.

The last but not the least, this MRT detection can also serve as a framework for universal

change detection, not only for the change in amplitude but also in other statistics such as

phase or frequency. It can be quite useful when no prior knowledge of the pre-change or

post-change distribution is given and the sample independency is not guaranteed, as long as

the process is stationary Markov process before and after the change point.

4.6 Conclusion

In this chapter we have proposed a universal spectrum sensing technique that can be

applied to mmWave cognitive network, where the signal received by SU is vulnerable to

environmental interference and thus fluctuates. By quantizing the sensed signal to states

in a Markov process, monitoring significant changes in MRT for each state, an SU can

know whether the PU is present or not, to decide whether it can use the PU-licensed band

to transmit. It provides a way to detect a change in statistics from H0 to H1, while not

knowing the exact distributions of them. It does not rely on the sample independency, thus

being universal. We can also extend this as a detection framework for other areas beyond

spectrum sensing.
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Chapter 5

Conclusion

This thesis extends the scope of quickest change detection to two practical use cases: multi-

agent coorperative detection in networks and universal data-driven quickest detection, and

applies proposed quickest detection algorithms to wireless spectrum sensing in cognitive

radio, which has been a thoroughly studied topic in regards to spectrum crowdedness

problem.

The first chapter describes the limitation of CUSUM quickest detection and necessity of

the proposed approaches to make it more applicable to spectrum sensing scenario. Then

chapter 2 shows how quickest detection can be used to facilitate dynamic primary user

activities detection in coorperative spectrum sensing given non-perfect message passing

channel. The finite length approximation of CUSUM with BP in a Gaussian Markov random

field has been theoretically analyzed, and the numerically results show the performance gain

over BP without change detection scheme.

Then in chapter 3, non-parametric quickest detection algorithm is proposed, which is

illuminated by and based on a machine learning based sequential detection algorithm KLIEP

and the multi-thread form of optimal CUSUM stopping time. The merit of this universal

quickest detection algorithm is that the detection of abrupt change in spectrum occupancy

can be carried out without any prior knowledge of pre-change and post-change distribution,

which comes with a tradeoff between the increased computational cost and better sensing

performance.
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Last but not the least, in chapter 4 for spectrum sensing application in mmWave

environment, where assumption of i.i.d. random variable does not necessarily hold, a pure

data-driven detection framework is proposed based on mean recurrence time of a Markov

process. It provides a way to detect a change in statistics from H0 to H1, while not knowing

the exact distributions of them and also does not rely on the sample independency, thus being

truly universal. This framework can also extend to other areas beyond spectrum sensing.
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A Proof of Lemma 2.1

Proof. By the nature of matrix Q as in (2.24) we can relate Vxy and y to the ones in the

unwrapped tree. For convenience, we copy (2.24) and (2.25) here as follows:

ŷ = Qy, (1)

V̂xyQ = QVxy, (2)

V̂xxQ+ ∆ = QVxx (3)

By marginalization, we can obtain the conditional mean of x̂ given the observation ŷ as in

Eq. (2.22). For the graph Ĝ′, we have

V̂xxµ̂ = −V̂xyŷ (4)

Based on equations from (1) to (4), we can easily obtain

V̂xxµ̂ = −QVxyy (5)

For the true expectation of loopy network, we have

Vxxµ = −Vxyy (6)

We multiply (6) by Q, and multiply (3) by µ. Combining these two, we then have

V̂xxQµ+ ∆µ = QVxxµ = −QVxyy (7)

From (5) and (7), we have

V̂xxQµ+ ∆µ = V̂xxµ̂ (8)

Since the covariance matrix for unwrapped tree Ĉx|y = V̂ −1xx , we left multiply (8) by Ĉx|y,

thus resulting in

Qµ+ Ĉx|y∆µ = µ̂ (9)
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By taking the first row on both sides of (9), Eq, (2.26) is thus proved.

B Proof of Lemma 2.2

Proof. From V −1xx = Cx|y, we know

VxxCx|y = I (10)

Therefore,

VxxC
T
x1|y = (1 0 0 0 0 · · · 0)T (11)

Denote by e1 the vector (1 0 0 0 0 · · · 0)T . By (3) and (11) we have

V̂xxQC
T
x1|y + ∆CT

x1|y = Qe1 (12)

Similarly to (11), we can obtain

V̂xxĈ
T
x1|y = (1 0 0 0 0 · · · 0)T = ê1 (13)

Subtracting (12) from (13) yields

Ĉx1|y = QCT
x1|y + Ĉx|y∆C

T
x1|y + Ĉx|y(ê1 −Qe1) (14)

Take the first row on both sides, we have

σ̂2(1) = σ2(1) + Ĉx1|y∆C
T
x1|y + Ĉx1|y(ê1 −Qe1) (15)

C Proof of Lemma 2.4

Proof. Since we need to guarantee the same message flows in the original graph G and the

unwrapped tree Ĝ, we can first construct an unwrapped tree Ĝ, with any desired depth m.

Then we modify the local function ψi(x̂i|ŷi) and the observations in the leaves as follows:
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• for each leaf node x̂i (which corresponds to xi′ in the cyclic graph G), set ψi(x̂i|ŷi) and

ŷi such that the message sent from ŷi to x̂i is the product of belief messages (under

fixed point φ) sent from the neighbors of xi′ excluding the parent node of x̂i.

• for any two adjacent nodes x̂i, x̂j in Ĝ, if both of them are replicas from the same node

xi′ in G, one will forward any message it receives to the other without any calculation.

By this construction, all the leaves in Ĝ will send messages to their neighbors based on the

fixed point φ. All non-leaf nodes in Ĝ have the same relationship with their neighbors as

the corresponding nodes in G, except for the buffer nodes, which will not affect the message

passing algorithm. The local message passing updates are the same as those in G.

D Proof of Theorem 2.5

Proof. We denote by µ̂ the conditional expectation in modified Ĝ. By the result of Lemma

2.4, we have

µ̂ = Qµ0 (16)

where µ0 is the posterior expectation under the fixed point φ. We know that µ̂ is a solution

to (4). Therefore by substituting (16) into (4) we have

V̂xxQµ0 = −V̂xyŷ (17)

Denote by [·]k the first k rows of a matrix or column vector. Applying this operator on (17),

we have

[V̂xxQ]kµ0 = −[V̂xyŷ]k (18)

Similarly for k < M − l, we have

[V̂xxQ]k = [QVxx]k, [V̂xyŷ]k = [QVxyy]k (19)
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Combining (18) and (19) gives

[Q]kVxxµ0 = −[Q]kVxyy, ∀ k < M − l (20)

Since we can expand the unwrapped tree to any depth, we can always find a sufficiently large

M to make (21) hold. Thus the expectations derived from φ are exact:

Vxxµ0 = −Vxyy, (21)

E Proof of Theorem 2.6

Proof. By the extended Wald’s Identity and the inequality (A.205) in [41] we show that

IAE1[TA] + IBE1[max(TA −D, 0)]

≥(1− β0)log
(

1− β0
α0

)
+ β0log

(
β0

1− α0

)
+DIB

(22)

where α0 and β0 are the error probabilities of one-sided sequential test. Then we use the

same procedure as that of Eq. (15) in [21] to prove the following fact: for any ε ∈ (0, 1) and

any stopping time TA, ∃C(ε) <∞ such that

IAE1[TA] + IBE1[max(TA −D, 0)] ≥ (1− ε) logE∞[TA]− C(ε). (23)

Then, based on Brownian motion approximation and (23), we can obtain

IADA + IB max(DA −D, 0) ≥ logFA as γA →∞ (24)

Also we have the inequality in the opposite direction based on (2.47) and (2.50)

IADA + IB max(DA −D, 0) ≤ logFA as γA →∞ (25)
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Therefore the equality holds asymptotically.

F Definition of MRT

Consider a discrete time Markov chain with the transition probability pnij, where pnij means

the probability that the state transits from i to j after exact n steps. Then, the mean

recurrent time of state i is defined as

MRTi =
∞∑
n=1

npnii. (26)

If MRTi is finite, state i is called positive recurrent. Note that the state i is called recurrent,

if its probability of finite return time is 1, which is weaker than the finite mean return time.
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