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Abstract

The chemical behavior of uranyl fluoride (UO2F2), a byproduct of the nuclear fuel cycle, is of

significant interest for nuclear security applications. Two phases of uranyl fluoride (UO2F2

and [(UO2F2)(H2O)]7 · 4 H2O) have been previously identified; these structures and the phase

transition between them are further characterized in this work. In addition, the stability of

uranyl fluoride is assessed under varying environmental conditions. While previous studies

have suggested that uranyl fluoride may degrade upon exposure to high humidity, the

chemical pathway of degradation was not well understood. This work demonstrates that

uranyl fluoride undergoes a chemical reaction with water vapor to form a novel uranyl

hydroxide hydration product. This species, shown to be structurally similar to the uranyl

hydroxide mineral schoepite, can be further hydrated to form a uranyl peroxide species.

The unexpected and novel nonphotochemical formation of uranyl peroxide from multiple

uranyl hydroxide species is explained by unusually high uranyl ion reactivity in these reactant

species. While the uranyl ion is typically fairly inert, strong σ-donating equatorial ligands

and strong interactions between uranyl oxygens and interlayer water molecules weaken the

uranyl ion in these species such that an increase in the water vapor pressure can induce a

redox reaction that is normally dependent on the photoexcitation of the uranyl ion.
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Chapter 1

Introduction

1.1 Motivation

The chemistry of uranium is exceedingly complex. Uranium supports a wide number

of coordination environments in the solid state, leading to a large number of potential

structures, many of which have highly complex or noncrystalline structural arrangements.

It is likely that only a small fraction of possible solid-state uranium compounds have

been identified, and of those that have been identified, an even smaller number have

been rigorously characterized. Characterization of solid-state inorganic uranium compounds

has been generally limited to the study of uranium oxides for nuclear fuel development

or naturally occurring uranium-containing minerals of interest to geochemists. Detailed

structural and chemical information is often lacking for other compounds, including nuclear

fuel cycle byproducts. However, characterization of these byproducts is important to support

nuclear forensics and environmental monitoring for nonproliferation treaty compliance, as

well as environmental remediation and waste management.

One nuclear fuel cycle byproduct of particular interest is uranyl fluoride (UO2F2), which

is the hydrolysis product of uranium hexafluoride (UF6) via Reaction 1.1. Solid-state

uranyl fluoride is produced when traces of UF6 interact with moisture in the environment,

and is thus an important material in the context of nuclear forensics and environmental

monitoring analyses. Understanding the chemical behavior of uranyl fluoride under

various environmental conditions is crucial for identifying unknown species and connecting

1



laboratory measurements to material history. However, the degradation pathways of uranyl

fluoride in environmentally relevant conditions are not well understood. While earlier work

has suggested that uranyl fluoride undergoes chemical reactions upon exposure to a humid

environment, including a loss of fluorine, potential hydration products have not been well

characterized. This has left significant uncertainty about the fate of uranyl fluoride in

different conditions, motivating a rigorous analysis of degradation pathways and thorough

characterization of all relevant species.

UF6 + 2 H2O −−→ UO2F2 + 4 HF (1.1)

One of the main themes of this dissertation is the correlation of the structural

and vibrational properties of uranyl fluoride and its degradation products. Vibrational

spectroscopic techniques such as Raman and infrared (IR) spectroscopy are nondestructive,

rapid, and relatively low-cost methods that are commonly used to identify uranium

compounds. However, clear connections between the structure, vibrational spectra, and

chemical properties of the material are often lacking. This essentially limits the utility

of vibrational characterization to spectral matching, which becomes problematic when the

vibrational spectrum of a sample of interest does not match any known, well-characterized

materials. Performing complementary structural and vibrational studies on the material of

interest in this study not only improves the ability to identify and characterize these materials

in the future, but also provides insight into the structure–spectroscopy relationship of other

related materials.

In addition to having direct applications in nuclear forensics and environmental monitor-

ing, the study of uranyl fluoride and its degradation products is also motivated by a desire to

advance the current understanding of uranyl chemistry. Despite the maturity of the nuclear

fuel industry, uranium chemistry remains in its infancy in many regards. Work in this field

consistently uncovers new findings, some of which may cause reexamination of previously

held beliefs. For example, one of the fundamental tenets of uranium chemistry has been the

stability and inertness of the linear uranyl ion, UO 2+
2 [83, 109, 16, 122, 95]. The uranyl

ion lacks the complex redox chemistry of transition metal oxides due to the formation of
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hybrid 5f-6p orbitals, which participate in a strong σ bond. However, recent studies have

demonstrated that the uranyl ion can be functionalized under specific conditions after all

[8, 21, 9, 57, 10].

Findings like these challenge old assumptions about the chemical behavior of uranium

and may have revolutionary impacts on fields such as advanced fuel development, waste

management, and environmental remediation. Developing a better understanding of uranium

chemistry is possible through rigorous study of different compounds under a variety of

conditions. In addition to clarifying the conditions in which uranyl fluoride is unstable and

characterizing the hydration products, elucidating the mechanistic details of these hydration

reactions will contribute to a more complete understanding of the chemical behavior of the

uranyl ion. In this manner, the present work has impact beyond the study of uranyl fluoride,

as it will provide insight into the types of reactions that other uranyl compounds may undergo

in similar environments.

1.2 Scope

This dissertation presents a rigorous characterization of the structural forms of species in the

uranyl fluoride degradation pathway, as well as their chemical response to environmentally

relevant perturbations. Complementary experimental and computational techniques are

employed to more fully interpret structural information and to correlate structural and

vibrational properties. In addition, both bulk and microanalytic tools are used to examine

chemical behavior on different scales. The remaining section of this chapter provides more

details of the methodology of this study.

Chapters 2–5 each focus on a specific aspect of the degradation pathway of uranyl fluoride.

Each chapter begins with a discussion of relevant prior research that motivates or informs

the present study. Chapter 2 clarifies the relationship between the two known uranyl fluoride

structures (i.e., anhydrous and hydrated) and presents a thorough analysis of the structure

and spectroscopic properties of hydrated uranyl fluoride. Chapter 3 describes findings that

uranyl fluoride is not stable at elevated water vapor pressure, but rather undergoes a chemical

transformation to form a uranyl hydroxide hydration product, which can be further hydrated
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to form a uranyl peroxide hydrate. Chapter 4 further characterizes the novel layered uranyl

hydroxide hydrate produced from the hydration of uranyl fluoride via comparison to synthetic

metaschoepite ([(UO2)4O(OH)6] · 5 H2O), a known uranyl hydroxide hydrate. Chapter 5

elucidates the novel nonphotochemical formation reaction of a uranyl peroxide hydrate from

hydrated uranyl hydroxide. Chapter 6 offers conclusions and avenues for further research.

A number of articles presenting components of this dissertation have been published or

are in preparation, including:

A. Miskowiec, M. C. Kirkegaard, A. Huq, E. Mamontov, K. W. Herwig, L.

Trowbridge, A. Rondinone, and B. B. Anderson. “Structural phase transitions and

water dynamics in uranyl fluoride hydrates.” J. Phys. Chem. A 2015, 119, 11900-

11910.

M. C. Kirkegaard, A. Miskowiec, M. W. Ambrogio, and B. B. Anderson. “Evidence

of a nonphotochemical mechanism for the solid-state formation of uranyl peroxide.”

Inorg. Chem., 2018, 57, 5711-5715.

M. C. Kirkegaard, A. Miskowiec, M. W. Ambrogio, J. Langford, A. E. Shields, J. L.

Niedziela, R. Kapsimalis, and B. B. Anderson. “Characterizing the chemical behavior

of uranium compounds for nuclear forensics.” Proceedings of the Institute for Nuclear

Materials Management, 2018.

M. C. Kirkegaard, J. L. Niedziela, A. Miskowiec, A. E. Shields, and B. B. Anderson.

“Elucidation of the structure and vibrational spectroscopy of synthetic metaschoepite

and its dehydration product.” Accepted to Inorg. Chem.

M. C. Kirkegaard, M. W. Ambrogio, T. L. Spano, J. L. Niedziela, A. Miskowiec,

A. E. Shields and B. B. Anderson. “Formation of a uranyl hydroxide hydrate via

hydration of [(UO2F2)(H2O)]7 · 4 H2O.” Submitted to Dalton Trans.

M. C. Kirkegaard, M. W. Ambrogio, A. Miskowiec, J. L. Niedziela, T. L.

Spano, A. E. Shields and B. B. Anderson. “Characterization of the degradation of

[(UO2F2)(H2O)]7 · 4 H2O under humid conditions.” In preparation.
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M. C. Kirkegaard, T. L. Spano, A. Miskowiec, J. L. Niedziela, A. E. Shields and B.

B. Anderson. “Evidence of unusual uranyl ion reactivity in uranyl hydroxide hydrates.”

In preparation.

1.3 Methodology

1.3.1 Experimental techniques

The experimental techniques used in this study focus on structural and spectroscopic

characterization of uranyl fluorides, hydroxides, and peroxides. The diffraction techniques

utilized in this study (x-ray and neutron diffraction) allow for the identification of these

species. These techniques are reliant on the presence of long-range order, however, and do

not provide useful information about amorphous materials, alterations in local ordering, or

particle samples with a mass below the limit of detection of these methods. Vibrational

characterization via Raman and infrared (IR) spectroscopy can provide indirect structural

information in these cases. Where appropriate, structural and vibrational techniques are also

complemented by additional analytical techniques such as scanning electron microscopy–

energy dispersive x-ray spectroscopy (SEM-EDS) that provide additional information about

the morphology and elemental composition of a material. Each of these methods is discussed

in further detail below.

X-ray and neutron diffraction

Structural analysis of materials in this study was performed using both x-ray and

neutron diffraction techniques. x-ray and neutron diffraction are complementary structural

characterization techniques as they probe distinct atomic constituents. The x-ray and

neutron scattering cross sections of the atoms in materials relevant to this study are shown

in Table 1.1. Since x-ray cross sections are equal to Z number, x-ray diffraction (XRD)

is the most sensitive to the position of uranium atoms. The location of the lighter atoms,

especially hydrogen/deuterium, must be determined instead via neutron diffraction.

5



Table 1.1: X-ray and neutron scattering cross sections of relevant atoms.

Atom x-ray (e) Neutron (b)
U-238 92 13.78
U-235 92 8.87

F 9 4.0
O 8 4.2
D 1 7.64
H 1 82
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The XRD experimental parameters used in this dissertation are summarized in Table 1.2.

Samples were produced by dispersing material on zero-background silicon plates. Samples

were prepared in the absence of any solvent to prevent dehydration or other unintended

alteration. A small amount of either Si or LaB6 powder was frequently mixed with samples

to serve as an in situ standard for lineshape and diffractometer calibration.

Time-of-flight neutron diffraction data was collected using the POWGEN instrument [73]

at the Spallation Neutron Source (SNS). Sample material was loaded into 6 mm vanadium

sample cans, which were backfilled with argon prior to sealing. Other relevant experimental

parameters are shown in Table 1.3. Reduction of neutron diffraction data was performed

using the Mantid framework [7]. Where possible, Rietveld refinement was performed on

x-ray and neutron diffraction patterns using GSAS-II [157]. This technique uses an iterative

approach to refine metrics such as the lattice parameters and crystallite size to derive a

calculated diffraction pattern that best fits the experimental data.

Raman and IR spectroscopy

Raman and IR spectroscopy are vibrational spectroscopic techniques that are useful for

characterizing the local structure of materials. These techniques complement diffraction

data by providing insight into how atoms are organized in a structure, clarifying things like

the functional groups present, the equatorial coordination of the uranyl ion, and the water

structure in crystal hydrates. Vibrational spectroscopy can also be used to characterize

materials that cannot be studied via diffraction, such as amorphous species or very small

samples.

While Raman and IR spectroscopy are both optical spectroscopy techniques that provide

similar chemical information, they are fundamentally different processes. IR spectroscopy is

an absorption technique that measures the energy required to bring a system to an excited

vibrational state (Figure 1.1). In comparison, Raman spectroscopy is a scattering technique;

the system is excited to a virtual energy state (not quantized) and then relaxes. Rayleigh

scattering occurs when the system relaxes to the initial ground-state energy state, while

Stokes Raman scattering occurs when the system relaxes to an excited vibrational state.

7



Table 1.2: XRD experimental parameters.

Instrument Proto AXRD
x-ray source Cu Kα

Slit width 0.5 mm
Range 2θ = [10,50] degrees
Step size δ2θ = 0.02 deg
Scan time 1-14 hours

8



Table 1.3: Neutron diffraction parameters.

Instrument POWGEN [73]
Sample container 6 mm vanadium cans
Center wavelength 1.5 Å
Range d = 0.5 to 12 Å

9



The recorded Raman shift is the difference between the excitation and emission energy

(Figure 1.1).

IR and Raman spectroscopy are often used together as complementary techniques because

distinct selection rules make some vibrational modes Raman active and others IR active.

Vibrational modes that involve a change in dipole moment are IR active, and vibrational

modes that involve a change of polarizability are Raman-active. If a vibrational mode is both

IR and Raman active, the measured IR absorption frequency will be equal to the Raman

shift, as demonstrated in Figure 1.1.

Raman and IR spectroscopy are particularly useful for characterizing the coordination

environment of the uranyl ion. Because of the different selection rules associated with Raman

and IR spectroscopy, the symmetric uranyl stretching mode is a dominant peak in the Raman

spectra, while the asymmetric uranyl stretching mode is a dominant peak in the IR spectra.

Both of these modes are highly sensitive to the environment of the uranyl ion, such as the

number and type of equatorial ligands [27, 122, 47, 100]. Therefore, shifts in the band

frequency are often indicative of structural or chemical changes [107, 82].

Vibrational spectroscopy can also complement XRD measurements by providing infor-

mation about the water structure within crystal hydrates. As shown in Table 1.1, x-rays

are not sensitive to light elements such as hydrogen, and the Raman scattering cross-section

of water is very low. In contrast, IR spectroscopy is very sensitive to water and hydrogen-

bonding interactions, [101, 59] and can thus be used to characterize the water structure in

crystal hydrates.

Vibrational spectroscopy is also useful for studying reaction mechanisms, particularly

through isotopic labeling studies. Because the frequency of vibrational modes is dependent

on element masses, isotopic substitution causes observable shifts of the modes related to the

movement of the substituted atoms. Labeling a subset of the atoms in a system can thus

help elucidate how those atoms are or are not involved in chemical reactions [110].

The experimental parameters for the Raman and IR spectroscopy experiments described

in this dissertation are summarized in Tables 1.4 and 1.5. Since IR spectroscopy is very

sensitive to water, a diamond attenuated total reflectance (ATR) attachment was used to

obtain all IR spectra to prevent oversaturation of the detectors when studying hydrated

10



Figure 1.1: Schematic of infrared absorption and Stokes Raman scattering.
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Table 1.4: Raman spectroscopy experimental parameters.

Instrument inViaTM Raman spectrometer (Renishaw)
Excitation wavelength typically 785 nm (532 nm where noted)
Laser power density typically ≤100 W/cm2

Grating 1200 l/mm (2400 l/mm when 532 nm laser used)
Microscope objective typically 50x (8.2 mm working distance)
Scan settings 3-second exposure time, 25+ accumulations
Range typically 0–1200 cm−1

12



Table 1.5: IR spectroscopy experimental parameters.

Instrument Nicolet iS50 FTIR (Thermo Scientific) with ATR attachment
ATR crystal Diamond
Scan settings 2-second exposure time, 32 accumulations
Range 650–4000 cm−1

13



materials. For most of the Raman spectroscopy experiments, a 785 nm excitation laser

and low laser power density (∼100 W/cm2) were used throughout to avoid alteration of the

studied material via laser heating, which was observed to occur for some samples at higher

laser powers [90]. Samples were examined through a microscope objective, providing spatial

resolution unlike bulk diffraction techniques. The Raman spectrometer used in this study is

also capable of performing in situ studies with temperature and/or relative humidity control.

Where possible, Raman and IR spectra were fit to pseudo-Voigt functions with both

Gaussian and Lorentzian components using the LmFit curve-fitting package in Python

[121]. Prior to fitting, spectra were baseline corrected using the asymmetric least squares

(ALS) approach [51, 52]. Due to significant peak overlap and a more complex background

component, IR peak locations were more often identified by examining the first and second

derivatives of the spectra than by peak fitting.

Multivariate curve analysis (MCR) was also used to analyze Raman datasets collected

over time. MCR decomposes a set of time-resolved spectra into “pure” spectral components

and the concentration profiles of each component. The MCR equation,

D = CST + E, (1.2)

where D is the matrix of collected spectra, S is the matrix of component, “pure” spectra,

C is the matrix of concentration profiles for each component, and E is the residual matrix,

is solved iteratively using the alternating least squares (ALS) method. Calculations were

performed with the MCR-ALS GUI 2.0 implemented in MATLAB [79, 78].

SEM-EDX

SEM-EDS was employed to provide elemental information. The principle of SEM is that an

incident electron beam interacts with the sample and produces secondary and backscattered

electrons that produce high resolution images of the sample and can provide morphological

information. Detection of secondary electrons provides topographical information, while

detection of backscattered electrons provides qualitative compositional information, since

heavier elements backscatter electrons more strongly than light elements.

14



The incident electron beam also leads to the production of characteristic x-rays for the

different elements in the sample, which are detected in EDS spectroscopy. These x-rays are

produced because the electron beam excites electrons in the inner shells of atoms, creating

electron holes that are then filled by electrons from higher energy outer shells. The excess

energy of these electrons is released in the form of x-rays. This mechanism is shown in

Figure 1.2. Because the electrons of different elements reside in different discrete energy

levels, the energy of the released x-ray is characteristic of the atom it comes from. The EDS

spectrum thus provides information about elements present in the sample. Table 1.6 shows

experimental parameters for the SEM-EDS experiments described in this dissertation.

1.3.2 Computational techniques

Computational modeling was carried out to complement experimental studies. In particular,

computational geometry optimization provides additional structural insight, such as the

location of water atoms in crystal hydrates, which can be difficult to assess experimentally.

Ab initio molecular dynamics simulations provide additional dynamic information about

these water molecules and also allow for the prediction of vibrational spectra. These

predicted spectra can be broken down by atomic components and the direction of movement,

assisting in the interpretation of experimental spectra by comparison and allowing for the

correlation of structural and vibrational properties. [90]

Density Functional Theory

While more accurate methods of calculating electronic structure and ground-state energies

are feasible on smaller and less complex systems, the large number of electrons in solid-

state uranium compounds limits the applicable computational method to Density Functional

Theory (DFT). DFT can be applied to larger systems because it reduces the 4N variables

(3N spatial + N spin) required to calculate the electronic wavefunctions of an N atom

system into just three variables that define the electron density (ρ) of the system. Since the

external potential of a many-electron system is a unique functional of the electron density, the

electron density uniquely determines the Hamiltonian and associated properties including the

15



Figure 1.2: Schematic of energy dispersive x-ray spectroscopy. The incident electron beam
excites an electron in a lower energy level, leaving a hole that is quickly replaced by a higher
energy electron. The residual energy is released in the form of an x-ray, with an energy that
is characteristic of the initial energy levels of the two electrons.

16



Table 1.6: SEM-EDS experimental parameters.

Instrument Carl Zeiss MERLIN VP-SEM (Carl Zeiss)
Detector XFlash detector 5030 (Bruker Nano GmbH)
Accelerating voltage 10 kV
Beam current 1.1 nA
Magnification ∼2000–8000x

17



ground-state energy. The energy functional, EKS, contains three terms: the kinetic potential

(T ), classical Coulombic potential (J), and the electron–electron interaction (E), as shown

below.

EKS[ρ] = T [ρ] + J [ρ] + E[ρ] (1.3)

The classical external potential of the system is well defined, as is the kinetic energy

of the system assuming noninteracting electrons (Ts.) However, the residual of the true

kinetic energy and the electron–electron functional are unknown. For simplicity, the energy

functional can be rewritten to combine these unknown components into one term, the

exchange-correlation energy, Exc, as shown below.

EKS[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (1.4)

This equation can be expanded as

EKS[ρ] =
∑
i

−1

2
< ψi|∇2|ψi > +

∫
ρ(r)vext(r) +

1

2

∫ ∫
ρ(r)ρ(r’)

|r− r’|
+ Exc[ρ], (1.5)

where ψi(r) are Kohn-Sham “orbitals”. The electron density, ρ(r), can be rewritten in terms

of these “orbitals” as

ρ(r) =
N∑
i

|ψi(r)|2. (1.6)

In a periodic system, the Kohn-Sham orbitals are typically expanded using a basis set of

orthogonal plane waves,

ψi(r) =
∑
G

ci(G)eiG·r, (1.7)

where G is the reciprocal lattice vector.

From Equation 1.5, the Kohn-Sham orbitals satisfy the Kohn-Sham equation,

{
−1

2
∇2 + VKS(r)

}
ψi(r) = εiψi(r), (1.8)

where VKS is the ground-state Kohn-Sham potential.
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Since the Kohn-Sham potential depends on the unknown electron density, ρ(r), Equa-

tion 1.8 must be solved iteratively, beginning with an initial estimate of the electron density:

ρinitial → V initial
KS → ψinitialKS → ρ1 → V 1

KS → ψ1
KS → ρ2... (1.9)

This process is further complicated by the fact that Exc is still unknown. However, it is at

least constrained by the variational principle, which requires that the correct energy density

is that which produces the lowest ground-state energy. Various approximations exist to

describe Exc, which can be expressed in terms of the exchange-correlation energy density as

Exc =

∫
εxc(r). (1.10)

The simplest approximation is the Local Density Approximation (LDA), which states that

εxc at point r depends only on the density at that point. A more accurate description is the

Generalized Gradient Approximation (GGA), which takes into account the derivatives of the

density at point r as well. The GGA-type Perdew-Burke-Ernzerhof (PBE) functional [128]

is used in this work. A second functional optimized to best account for dispersion forces,

op!86b-vdW [91, 92], is used where appropriate to more accurately describe van der Waals

interactions in crystal hydrates and layered structures.

DFT is used in this work to calculate optimized crystal structures as well as absorption

energies of water molecules in crystal hydrates. Structural optimization was typically

conducted using the conjugate-gradient algorithm. Following the first calculation, the ion

positions (and/or cell parameters, if allowed) are moved in the direction of the calculated

stress tensor. The energy and forces are then recalculated, and the minimum of the total

energy is approximated via interpolation from the change in both total energy and forces.

A corrector step to the approximate minimum is performed, and the forces are recalculated.

This process is repeated until the minimization is sufficiently accurate, defined in this study

as producing atomic forces <5 meV/atom. A more precise minimization, to <1 meV/atom,

was utilized for Density Functional Perturbation Theory (DFPT) calculations, discussed in

the next section. In instances where the starting atomic positions were unknown, i.e. the

location of hydrogen atoms in crystal hydrates, damped molecular dynamics was used to
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perform a preliminary optimization before beginning a more precise optimization via the

conjugate-gradient algorithm.

DFT parameters were optimized for each calculation to produce convergent values.

Typical parameters are summarized in Table 1.7. Uranyl hydrates are particularly

complicated systems to study computationally due to the large unit cells, f electrons, mobile

hydrogen-bonded water molecules, and van der Waals forces between polyhedra layers. These

characteristics present challenges and can require correction factors. For example, accurate

treatment of actinide compounds can sometimes require using the DFT+U method, which

includes an extra intra-atomic interaction term in the energy functional to better account

for localized d and f electrons, such that the new energy can be written as [5]

EDFT+U [ρ(r)] = EDFT [ρ(r)] +
∑
a

Ū − J̄
2

Tr(ρa − ρ2a), (1.11)

where ρa is the orbital occupation matrix and Ū and J̄ are semi-empirical parameters to

describe the additional Coulomb and exchange interactions, respectively. For simplicity,

these terms can be combined into a single effective +U parameter, Ueff = Ū − J̄ [49]. The

+U correction was used where appropriate in this work, with Ueff set to 5.5 eV, which was

shown to best reproduce the experimental parameters of anhydrous uranyl fluoride [88].

Density Functional Perturbation Theory

To complement experimental vibrational spectroscopy studies, Density Functional Pertur-

bation Theory (DFPT) was used to calculate the predicted vibrational modes of systems

of interest. This technique has been used in several recent studies of uranyl materials

[20, 89, 40, 39, 38, 41] and is most appropriate for highly symmetric, static systems. For more

complex, mobile systems, vibrational information was calculated from ab initio molecular

dynamics (AIMD) simulations, described in the following section.

In the equilibrium geometry of the system, the forces acting on individual atoms equal

zero:

Fi = −∂E(R)

∂Ri

= 0. (1.12)
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Table 1.7: DFT parameters.

DFT implementation VASP 5.4.4
Functional PBE [128]/optB86b-vdW [91, 92]
Cut-off energy typically 600 eV
Ionic optimization conjugate-gradient algorithm damped molecular dynamics
Structural convergence all forces <5 meV/atom (<1 meV for DFPT)
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The vibrational frequencies of interest, ω, are determined by the eigenvalues of the Hessian

matrix of the ground-state energy, also called the interatomic force constant matrix:

det

∣∣∣∣∣ 1√
MiMj

∂2E(R)

∂Ri∂Rj

− ω2

∣∣∣∣∣ = 0. (1.13)

The Hessian can be rewritten in terms of the forces and then expanded by way of the

Hellmann-Feynman theorem, which relates the derivative of the total energy with respect to

a parameter to the expectation value of the derivative of the Hamiltonian with respect to

that same parameter,

∂2E(R)

∂Ri∂Rj

= − ∂Fi
∂Rj

=

∫
∂ρ(r)

∂Rj

∂V (r)

∂Ri

dr +

∫
ρ(r)

∂2V (r)

∂Ri∂Rj

dr +
∂2EN(r)

∂Ri∂Rj

. (1.14)

Expanded in this manner, the above equation states that determination of the Hessian

requires the calculation of the electron density, ρ(r), as well as the linear response of the

electron density to a geometric distortion, ∂ρ(r)
∂Rj

. For this reason, DFPT is also known as

linear response theory. The electron density is solved via DFT as previously described. The

linear response is solved using first-order perturbation theory [15].

Ab Initio Molecular Dynamics

Ab initio molecular dynamics (AIMD) simulations were used to both characterize dynamic

information and calculate the vibrational properties of systems that cannot be adequately

described using DFPT. Like classical molecular dynamics simulations, AIMD simulations

involve the propagation of atoms over time based on a force field. In classical molecular

dynamics, this force field is static and described by predefined interatomic potentials, which

are generally empirically derived or determined from an electronic structure calculation. This

method fails when interatomic interactions are particularly complex or change during the

course of the simulation. In AIMD, the electronic variables are treated as active degrees of

freedom. Instead of using predefined pair potentials, the full many-body potential is derived

via DFT or other quantum mechanical methods. This study uses Born-Oppenheimer AIMD,
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in which the electronic and ionic dynamics are decoupled due to a difference in timescale,

and the static electronic structure is solved self-consistently at each time step.

All AIMD simulations were conducted in the canonical (NVT) ensemble using a Nosé-

Hoover thermostat [125, 124, 72]. A slightly elevated temperature of 400 K was used in some

cases to improve system convergence, while other calculations were run at room temperature

(298.5 K). A 1 fs time step was used in order to capture the dynamics of crystallographic

water molecules. These parameters and others are summarized in Table 1.8. The software

package TRAVIS [22] was used to calculate radial distribution functions (RDFs), mean

squared displacements (MSDs), and mass-weighted power spectra.

RDFs describe the probability of finding an observed particle a certain distance from a

reference particle, relative to the uniform density of the observed particle:

gab(r) =
V

Na ·Nb

Na∑
i=1

Nb∑
j=i+1

〈δ (r − |~ri(t)− ~rj(t)|)〉t . (1.15)

MSDs describe the average distance that a particle has moved away from its starting point

within the time interval τ :

M(τ) =
〈
|~ri(t+ τ)− ~ri(t)|2

〉
t,i
. (1.16)

Power spectra contain the frequencies of all of the normal mode vectors and are calculated

by Fourier transforming the sum of all velocity autocorrelation functions in the system or

subsystem of interest:

P (ω) = m

∫
〈ṙ(τ)ṙ(t+ τ)〉τ e

−iωtdt. (1.17)

Prediction of vibrational spectra for molecules via AIMD has proved useful for demonstrating

the effect of solvent influence, especially when hydrogen bonds form between the solvent

and analyte [154]. Similarly, AIMD is a promising method for calculating the vibrational

properties of solid-state uranyl hydroxide hydrates, which are characterized by strong

hydrogen bonding interactions between the uranyl layers and interlayer water molecules

that fluctuate over time [90].
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Table 1.8: Ab initio molecular dynamics (AIMD) parameters.

DFT/AIMD implementation VASP 5.4.4
Functional PBE [128]/optB86b-vdW [91, 92]
Cut-off energy typically 600 eV
Ensemble canonical (NVT)
Temperature 298.5K / 400K
Time step 1 fs
Simulation length 15-20 ps
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Chapter 2

Characterization of uranyl fluoride

This chapter presents a computational analysis of the structure and spectroscopic properties

of the uranyl fluoride hydrate and clarifies the relationship between the hydrous and

anhydrous phases of uranyl fluoride. Components of this chapter come from the following

papers:

A. Miskowiec, M. C. Kirkegaard, A. Huq, E. Mamontov, K. W. Herwig, L.

Trowbridge, A. Rondinone, and B. B. Anderson. “Structural phase transitions and

water dynamics in uranyl fluoride hydrates.” J. Phys. Chem. A 2015, 119, 11900-

11910.

M. C. Kirkegaard, A. Miskowiec, M. W. Ambrogio, J. Langford, A. E. Shields, J. L.

Niedziela, R. Kapsimalis, and B. B. Anderson. “Characterizing the chemical behavior

of uranium compounds for nuclear forensics.” Proceedings of the Institute for Nuclear

Materials Management, 2018.

2.1 Previous studies of uranyl fluoride

Uranyl fluoride exists in the form of an anhydrous crystal and one or more crystal hydrates.

Anhydrous uranyl fluoride (UO2F2) has a hexagonal layered structure, as shown in Figure 2.1,

with a = 4.206 Å and c = 15.69 Å (R3̄m) [174, 11]. The structure can alternatively be

described by a rhombohedral unit cell with a = 5.755 Å and α = 42.5°. Significant line
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Figure 2.1: The structure of anhydrous uranyl fluoride, UO2F2, as solved by Zachariasen,
shown in the hexagonal representation [174].
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broadening in the XRD pattern of UO2F2 observed by both Zachariasen [174] and Atoji [11]

is suggestive of stacking faults in the c direction.

Anhydrous uranyl fluoride is hygroscopic and has been observed to absorb some amount

of water between the layers of uranyl polyhedra without inducing a significant change in

the crystal structure [115, 102]. Measurements by Lychev et al. [102] showed a continuous

mass increase in a sample of anhydrous uranyl fluoride exposed to increasing water vapor

pressure up to 0.68 kPa, above which a discrete phase transition occurs. The mass increase

before this phase transition corresponded to the absorption of 0.5 H2O per uranium atom.

The presence of water molecules in the anhydrous crystal structure was further explored by

Miskowiec et al. [112], who used quasi-elastic neutron scattering (QENS) to probe the water

dynamics in the species. The water content of a commercial sample of anhydrous uranyl

fluoride was first assessed by dehydrating the material at 130◦C. The observed mass loss

corresponded to the loss of 0.46 H2O/U, consistent with the previous findings of Lychev et

al. Neutron diffraction showed that the initial partially hydrated material was isostructural

with the dehydrated material, with both matching the Zachariasen structure for anhydrous

uranyl fluoride (with significant line broadening as observed previously). The presence of

water in the initial material was supported by the observation of a significant background

contribution in the diffraction pattern due to the large incoherent cross section of hydrogen.

This background contribution was significantly reduced for the dehydrated sample. The

QENS data of partially hydrated sample could be modeled by spherically restricted diffusion,

suggesting that water molecules reside in pockets between the uranyl polymerization units

in the anhydrous structure. The presence of these water molecules was proposed to be at

least partially responsible for the stacking disorder in the c direction [112].

While the precise amount of water that can be absorbed between the layers of anhydrous

uranyl fluoride remains in question, multiple studies have found that above a threshold

water vapor pressure (0.68 kPa, according to Lychev et al. [102]), a discrete phase transition

occurs to produce a crystal hydrate [23, 102, 115]. The chemical formula of this hydrate has

been reported to be between UO2F2 · 1.5 H2O and UO2F2 · 2 H2O [23, 102, 115]. Variation in

the reported water content could indicate the formation of a hydrate capable of absorbing

nonstructural water molecules. Alternatively, the existence of multiple distinct uranyl
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fluoride hydrate species has also been proposed [104]. A lack of thorough characterization of

the hydrate specie(s) leaves significant uncertainty as to the number of structures that can

be formed from the hydration of uranyl fluoride as well as their attributes.

In 2001, the structure of a uranyl fluoride hydrate with the form [(UO2F2)(H2O)]7 · 4 H2O

was solved by Mikhailov. This hydrate, shown in Figure 2.2, is monoclinic and belongs to

the C2/c space-group. The uranyl ion is pentagonally coordinated to four fluorine equatorial

ligands and one water ligand. This hydrate was produced from the reaction of uranyl

acetate dihydrate in excess n-perfluoropropoxy-1-perfluoropropionic acid [111]. Because this

structure was not produced from anhydrous uranyl fluoride, it is not clear how this structure

relates to the previously proposed uranyl fluoride hydrate structures. The water content

of this structure, 1.57 H2O/U, as well as the observed stability at ambient conditions, are

both consistent with the previously proposed hydrates. As shown in Figure 2.3, the x-ray

diffraction (XRD) pattern of the Mikhailov structure matches the reflections observed by

Lychev et al. on a material believed to be uranyl fluoride dihydrate [102, 111].

Miskowiec et al. [114] sought to clarify the relationship between these species by collecting

neutron diffraction data on a sample of anhydrous uranyl fluoride initially, after hydration

at 40% relative humidity (RH) at ambient temperature, and after subsequent desiccation

(Figure 2.4). The initial sample was consistent with anhydrous uranyl fluoride, UO2F2. Upon

hydration and subsequent desiccation, anhydrous uranyl fluoride was observed to undergo

a phase transition to form the Mikhailov hydrate structure, [(UO2F2)(H2O)]7 · 4 H2O. A

liquid-like intermediate with little long-range order was observed upon hydration prior

to desiccation. Pair distribution function measurements showed that the uranyl ion is

pentagonally coordinated in this intermediate, as in the hydrated structure, indicating that a

change in coordination number from six to five occurs between the anhydrous and liquid-like

intermediate [114].

Miskowiec et al. [114] also investigated the water content and thermal properties of

the resulting uranyl fluoride hydrate via thermogravimetric analysis (TGA). The observed

thermogram is shown in Figure 2.5 . The initial reduction in mass below 65◦C was presumed

to be due to the loss of surface-bound water. Between about 70 and 90◦C another mass loss

occurs, hypothesized to be due to the loss of the four hydrogen bonded water molecules per
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Figure 2.2: The structure of hydrated uranyl fluoride, [(UO2F2)(H2O)]7 · 4 H2O, as solved
by Mikhailov [111]. The four oxygen atoms in each pore correspond to water molecules.
Additional water molecules are coordinated to the uranium atoms; hydrogen atoms have
been omitted as their locations have not been determined experimentally.
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Figure 2.3: Comparison of the reflections reported for UO2F2 · 2 H2O by Lychev et al [102].
and of the XRD pattern of [(UO2F2)(H2O)]7 · 4 H2O as solved by Mikhailov [111]. In both
cases, a Cu Kα sourced was used.
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Figure 2.4: Neutron diffraction patterns of anhydrous uranyl fluoride initially, after
exposure to 40% RH, and after subsequent dessication. The diffraction pattern after
dessication matches that expected for [(UO2F2)(H2O)]7 · 4 H2O, as solved by Mikhailov [111].
Data reproduced from Miskowiec et al. [114].
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Figure 2.5: Thermogram of a 262.1 mg sample of uranyl fluoride that was hydrated
at 40% RH and subsequently desiccated such that the diffraction pattern of the material
matches that of the Mikhailov hydrate, [(UO2F2)(H2O)]7 · 4 H2O. The temperature was
ramped at 0.48◦C against an Al2O3 standard under 100 mL/min Ar flow. Dashed lines at T
= 70◦C and 127◦C indicate dehydration temperatures. Data reproduced from Miskowiec et
al. [114].
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unit cell that are present in the pores of the [(UO2F2)(H2O)]7 · 4 H2O structure as solved by

Mikhailov. Finally, beginning at 127◦C, a large mass loss occurs as the material is dehydrated

to form anhydrous uranyl fluoride. No further mass loss was noted up to 170◦C. Based on

the mass loss over these transitions, the water content of the hydrate was calculated to

be 1.65 H2O/U, between the value of 1.57 H2O/U as determined by Mikhailov [111] and

1.98 H2O/U as determined by Lychev et al. [102] This discrepancy could indicate that

the uranyl fluoride hydrate can absorb a variable number of water molecules. This theory

is supported by additional QENS measurements by Miskowiec et al. that show that the

water enters the uranyl fluoride crystal structure at a rate proportional to the water vapor

pressure over at least an 80 hour timescale [113]. While the initial material in this study was

anhydrous uranyl fluoride, subsequent dynamic rehydration experiments (described below)

indicate that a transition to the hydrate structure likely occurred in the first hours of of the

QENS hydration experiment, and that at least a portion of the increase in water intensity

upon hydration can thus be assigned to absorption in the hydrate structure.

Observation of a two-step dehydration process for the uranyl fluoride hydrate was

consistent with prior thermogravimetric analysis of uranyl fluoride hydrates. Both Lychev et

al. [102] and Morato et al. [115] observed a small initial mass loss between 70 and 90◦C prior

to a large mass loss at 95-100◦C corresponding to the formation of anhydrous uranyl fluoride.

The lower dehydration temperature in these studies suggests that the uranyl fluoride hydrate

analyzed may differ slightly in structure from the species characterized by Miskowiec et al.

[114]. Additionally, Morato et al. found the dehydration reaction to be sensitive to the

environmental water vapor pressure. While dehydration was observed to occur around 95◦C

in ambient air (40-80% RH), it was found to start at 80◦C under vacuum and as low as 70◦C

under nitrogen. Additional shifting of some of the XRD peaks under vacuum and nitrogen

that was not observed at ambient conditions, suggesting that water vapor pressure not only

affects transition temperature, but also the mechanism of the phase transition [115].
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2.2 Computational analysis of hydrated uranyl fluoride

2.2.1 Water structure and dynamics in hydrated uranyl fluoride

The structure and dynamics of water molecules that exist between the uranyl layers of

anhydrous uranyl fluoride have been recently characterized in multiple publications by

Miskowiec et al. [112, 113] Crystallographic water molecules are also present in the uranyl

fluoride hydrate. The structure as solved by Mikhailov [111] includes four water molecules

per unit cell that exist within the pores of the uranyl polyhedra framework, such that the

H2O/U ratio is 1.57. The location of hydrogen atoms of these water molecules has not been

solved experimentally. Hydrogen atoms cannot be effectively analyzed via XRD, which is

not sensitive to lighter elements. While neutron diffraction can often be used to identify

hydrogen locations, the inability to do so for this structure [114] suggests that the water

molecules may be disordered or dynamic.

Computational studies can help clarify the structure of the water molecules in the

hydrate structure in the absence of an experimental determination. The unit cell of

[(UO2F2)(H2O)]7 · 4 H2O was structurally optimized via Density Funcational Theory (DFT)

using both the Perdew-Burke-Ernzerhof (PBE) [128] and op86b-vdW (vdW) [91, 92])

functionals (see Chapter 1 for more detail). The structure as solved experimentally by

Mikhailov was used as the initial input for the structural optimization. Hydrogen atoms

were added manually in reasonable locations. Both calculations were carried out in three

steps. First, the location of the manually added hydrogen atoms was optimized while the

other atoms were frozen in place. Then, the location of all atoms was optimized. Finally, the

lattice parameters were relaxed along with the atomic positions. The final computationally

optimized structures are shown in Figure 2.6.

A comparison of experimentally and computationally determined structural parameters

is shown in Table 2.1. All of the lattice parameters as well as the average uranyl bond length

are slightly overestimated relative to the experimental structure using the PBE functional

(0.8–1.6%), leading to a 2.7% overestimation of the unit cell volume. Overestimation of bond

lengths and lattice parameters is common for generalized gradient approximation (GGA)

functionals like PBE [61]. The same overestimation of the uranyl bond length is observed
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(a) (b)

Figure 2.6: (a) Unit cell of [(UO2F2)(H2O)]7 · 4 H2O with all atoms and cell parameters
computationally optimized via DFT with the PBE functional. (b) Unit cell of
[(UO2F2)(H2O)]7 · 4 H2O with all atoms and cell parameters computationally optimized via
DFT with the vdW functional. Slight differences exist in the lattice parameters as well of
the tilt of some uranyl polyhedra and the hydrogen bonding network formed by the water
molecules.
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Table 2.1: Comparison of experimentally determined and computationally optimized
structural parameters of [(UO2F2)(H2O)]7 · 4 H2O. Symmetry was not forced on the
computationally optimized structures, leading to slight deviations in the α and γ angles.
However, these deviations were <0.008° from 90° and thus not reported.

Exp [111] DFT-PBE DFT-vdW
a 13.843 14.068 (+1.6%) 13.373 (=3.4%)
b 9.801 9.910 (+1.1%) 9.823 (+0.2%)
c 24.970 25.160 (+0.8%) 24.448 (=2.1%)
β 104.470 106.206 (+1.7%) 105.818 (+1.3%)
V 3280.3 3368.1 (+2.7%) 3089.9 (=5.8%)

avg U−−O 1.771 1.811 (+2.3%) 1.815 (+2.5%)
avg U−F 2.309 2.321 (+0.5%) 2.307 (=0.1%)

avg U−Ow 2.447 2.443 (=0.2%) 2.396 (=2.1%)
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for the vdW functional as well, but the a and c lattice parameters are underestimated by 3.4

and 2.1%, respectively, leading to a more significant 5.8% underestimation of the volume.

This is expected, as the vdW functional increases the strength of vdW interactions like

hydrogen bonding, which leads to a contraction of the uranyl polyhedra towards the pore

water molecules.

Despite these small differences, both DFT-optimized structures are relatively consistent

with the experimental structure, as demonstrated by comparison of the predicted XRD

pattern of each structure (Figure 2.7). Optimizing the location of the hydrogen atoms in

the hydrate structure reveals an intricate hydrogen bonding network. Hydrogen bonds are

formed between uranyl oxygens and pore water molecules, between pore water molecules and

equatorially bound water molecules, and between equatorially bound water molecules and

uranyl oxygens. These three different types of hydrogen bonds are illustrated in Figure 2.8.

Aspects of the hydrogen bonding network cannot be understood from examining the static

structure of [(UO2F2)(H2O)]7 · 4 H2O since the water molecules have at least some limited

rotational dynamics that cause fluctuations in the hydrogen bonding network. To better

characterize the water dynamics and hydrogen bonding network, an ab initio molecular

dynamics (AIMD) simulation was performed. The unit cell optimized with the vdW

functional was used as the starting structure for this calculation. The optimized structure was

evolved in 1 ps timesteps at 400K to accelerate equilibration. Following 5 ps of equilibration,

an additional 20 ps of data was collected for analysis.

Calculation of the AIMD trajectory allows for additional characterization of the hydrogen

bonding network. The average length of each of the three types of hydrogen bonding outlined

in Figure 2.8 was determined by calculating the radial distribution function (RDF) between

all hydrogen bond donors and acceptors. Figure 2.9 shows the average RDF for each type

of hydrogen bond. Hydrogen bonds between uranyl oxygens and the hydrogens of pore

water molecules are the shortest, normally distributed about 1.59 Å with a large variation.

Hydrogen bonds of this type as short as 1.20 Å exist over the course of the simulation,

suggesting that strong hydrogen interactions with uranyl oxygens could have a significant

effect on the vibrational properties or reactivity of the uranyl ion in this system. Hydrogen

bonds between uranyl oxygens and the hydrogens of equatorial bound water molecules
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Figure 2.7: XRD patterns of the experimentally determined unit cell of
[(UO2F2)(H2O)]7 · 4 H2O [111] and the DFT-optimized unit cell of [(UO2F2)(H2O)]7 · 4 H2O,
calculated with the PBE and vdW functionals.
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Figure 2.8: Subset of [(UO2F2)(H2O)]7 · 4 H2O structure demonstrating the three different
types of hydrogen bonds formed in the hydrate.
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Figure 2.9: Average RDFs over the AIMD simulation depicting O–H lengths for each of
the three different types of hydrogen bonds in the [(UO2F2)(H2O)]7 · 4 H2O structure. Each
RDF is normalized to 1.0 to better compare the bond lengths. Dashed lines at x = 1.59,
1.63, and 1.90 Å show the most likely Oyl–Hp, Op–Heq, and Oyl–Heq distance, respectively.
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are slightly longer on average (1.63 Å), but more consistent in length. Hydrogen bonds

between the oxygens of the pore water molecules and hydrogens of equatorial bound water

molecules are significantly longer on average (1.90 Å). These hydrogen bonds can still be

characterized as medium strength, however: hydrogen bonds between 1.2 and 1.5 Å are

typically characterized as strong hydrogen bonds, 1.5–2.2 Å as medium hydrogen bonds,

and 2.2+ Å as weak hydrogen bonds [147].

2.2.2 Vibrational characterization of hydrated uranyl fluoride

The calculation of the AIMD trajectory of hydrated uranyl fluoride also provides information

about the vibrational properties of the structure. The vibrational properties of anhydrous

uranyl fluoride were previously assessed using Density Functional Perturbation Theory

(DFPT) [89], a static technique that works well for calculating the vibrational modes

of rigid symmetric structures but does not adequately describe more mobile systems like

uranyl hydrates [90]. Instead, the predicted power spectrum of [(UO2F2)(H2O)]7 · 4 H2O was

calculated by Fourier transforming the velocity autocorrelation function obtained from the

AIMD trajectory (see Chapter 1 for more details). This method has the benefit of better

characterizing the influence of fluctuating hydrogen bonding interactions on the vibrational

modes [90].

Calculation of the predicted power spectrum can provide insight into the vibrational

spectrum of [(UO2F2)(H2O)]7 · 4 H2O. The Raman spectrum of [(UO2F2)(H2O)]7 · 4 H2O has

been well determined experimentally and is dominated by the symmetric uranyl stretching

mode at 868 cm−1 which has a low-energy shoulder centered near 862 cm−1 (Figure 2.10) [89].

The presence of multiple uranyl stretching modes is not unexpected given the complexity

of the crystal structure and multiple slightly variant uranyl ion environments. However,

it is difficult to assign each peak component to specific uranyl ions from the experimental

spectrum alone, motivating a computational comparison study.

Figure 2.11 shows the computationally determined power spectrum broken into atomic

components. The symmetric uranyl stretching modes appear between 810 and 870 cm−1.

These modes can be distinguished from the infrared (IR) active asymmetric uranyl stretching
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Figure 2.10: Uranyl stretching region of the Raman spectrum of [(UO2F2)(H2O)]7 · 4 H2O
fit to two pseudo-Voigt curves centered at 868.5 and 861.6 cm−1. The full-width-half-
maximum of the curves are 4.3 and 7.2 cm−1, respectively.
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Figure 2.11: Power spectrum of [(UO2F2)(H2O)]7 · 4 H2O, decomposed into atomic
contributions and compared to the experimental Raman spectrum.
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modes that exist at slightly higher energy because the latter involve the movement of the

uranium atoms in addition to the uranyl oxygens.

The structure of [(UO2F2)(H2O)]7 · 4 H2O as determined by Mikhailov contains four

symmetrically distinct uranyl ions (Figure 2.12) with slightly differing coordination envi-

ronments. The most significant difference is that U1 uranyl ions are connected via double

fluorine bridges (Figure 2.13a), while the rest of the uranyl ions are solely coordinated to

single fluorine bridges (Figure 2.13b). The distinct environments of these uranyl ions leads

to splitting of the uranyl stretching modes. As shown in Figure 2.14, the symmetric and

asymmetric stretching modes of the U1 uranyl ions are higher in energy than the other uranyl

ions.

The U2–4 uranyl ions have nearly identical equatorial planes, but the orientation of

the uranyl ions results in distinct hydrogen bonding interactions with both equatorial and

pore water molecules that further split the vibrational frequencies of the symmetric uranyl

stretch. Differences in hydrogen bonding interactions to each type of uranyl ion are illustrated

in Figure 2.15, where the Oyl···Hwater RDF is shown for both pore and equatorially bound

waters. U3 and U4 uranyl ions are characterized by strong hydrogen bonding to pore water

molecules. U3 uranyl ions also form moderate hydrogen bonds with equatorially bound

water molecules, while U4 uranyl ions do not. U1 and U2 uranyl ions have weak hydrogen

bonding interactions with equatorially bound water molecules and even weaker interactions

with the pore waters. The overall extent of hydrogen bonding can be characterized as

U3>U4>U1'U2. This explains the split in symmetric uranyl stretching frequency between

U2, U3, and U4 uranyl ions.

While the four symmetrically distinct uranyl ions are predicted to have slightly different

uranyl symmetric stretching frequencies, only two distinct peaks appear in the Raman

spectrum: a dominant peak at 868 cm−1 with a weaker shoulder near 862 cm−1. The

computational analysis leaves some uncertainty as to whether these peaks can be attributed

to U1 uranyl ions vs. U2+U3+U4 uranyl ions (separation based on equatorial environment)

or U1+U2+U4 uranyl ions vs. U3 uranyl ions (separation based on hydrogen bonding).

The stronger intensity of the higher energy peak seems to favor the latter, but a rigorous

determination cannot be made. Slight variations in the location and intensity of the 862 cm−1
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Figure 2.12: Symmetrically distinct uranyl ions labeled in [(UO2F2)(H2O)]7 · 4 H2O. Atoms
within the uranyl polyhedra have been omitted for clarity.
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(a) (b)

Figure 2.13: (a) Equatorial bonding environment of U1 uranyl ions in the
[(UO2F2)(H2O)]7 · 4 H2O structure. (b) Equatorial bonding environment of the U2–4 uranyl
ions in the [(UO2F2)(H2O)]7 · 4 H2O structure.
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Figure 2.14: Uranyl stretching region of the power spectrum of [(UO2F2)(H2O)]7 · 4 H2O,
decomposed into contributions from each symmetrically distinct uranyl ion. Symmetric
uranyl stretching modes (Raman-active) appear between 810 and 870 cm−1 while the
asymmetric modes appear at slightly higher energy. The splitting of the asymmetric peaks
for each uranyl ion occurs as a result of the slight bend in the uranyl ion in this structure. The
U4 peaks are smaller, as there are half as many U4 uranyl ions in the [(UO2F2)(H2O)]7 · 4 H2O
unit cell compared to the other types.
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Figure 2.15: Oyl···Hwater RDFs for pore and equatorially bound water molecules with
respect to each symmetrically distinct uranyl ion in [(UO2F2)(H2O)]7 · 4 H2O.
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shoulder between batches of [(UO2F2)(H2O)]7 · 4 H2O (Figure 2.16) is also more consistent

with observed splitting being due to hydrogen bonding interactions, which are more likely to

vary if, as suggested by previous studies, the amount of crystallographic water in the uranyl

fluoride hydrate is dependent on the synthesis and environmental conditions [112]. Further

characterization work on this point is required.

2.3 Relationship between anhydrous and hydrated

uranyl fluoride

The relationship between anhydrous and hydrated uranyl fluoride was clarified first by

performing dynamic XRD and Raman spectroscopy experiments to characterize both the

hydration of anhydrous uranyl fluoride and the dehydration of hydrated uranyl fluoride.

Uranyl fluoride was prepared as previously published [113] through the hydrolysis of UF6

(UF6 + 2 H2O −−→ UO2F2 + 4 HF) in a reaction chamber containing approximately 20% RH

at 23◦C. Uranyl fluoride particulates were collected on silicon plates at the bottom of the

chamber, and the harvested material was then baked under a steady flow of N2 (10 ml/s) at

150◦C for 18 hours. This methodology has been shown to produce anhydrous uranyl fluoride

[113]. This material was then allowed to hydrate at ambient temperature and humidity

(20–22◦C, 20–50% RH) for several weeks. After this time, the material was confirmed to be

[(UO2F2)(H2O)]7 · 4 H2O via powder XRD.

Samples of this material were prepared for dynamic XRD and Raman experiments. For

the XRD experiment, a small amount of [(UO2F2)(H2O)]7 · 4 H2O powder was mixed with Si

standard and deposited on a silicon XRD plate without the use of solvent. For the Raman

experiment, a small amount of [(UO2F2)(H2O)]7 · 4 H2O powder was placed in an aluminum

crucible. Both samples were analyzed using temperature stages with humidity control via

RH generators.
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Figure 2.16: Comparison of the Raman spectra of different batches of
[(UO2F2)(H2O)]7 · 4 H2O prepared by the same synthesis method.
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2.3.1 In situ X-ray diffraction

Dehydration of hydrated uranyl fluoride

Figure 2.17 shows the XRD pattern of uranyl fluoride as [(UO2F2)(H2O)]7 · 4 H2O was

heated from 30 to 130◦C in 10◦C increments while under a steady flow of dry air

(<5% RH). Each XRD pattern was collected over approximately 2 hours after the sample

had equilibrated for 30 minutes at each temperature. The temperature was ramped at

1◦C/min between set points. The initial material has an XRD pattern consistent with that

of [(UO2F2)(H2O)]7 · 4 H2O, with the exception of an extraneous peak at 2θ = 12.7° that

cannot be assigned and is presumably a contaminant or other instrumental artifact. This

peak does not move as the sample was heated and does not obscure the phase transition

to anhydrous uranyl fluoride (UO2F2) that occurs between 100 and 110◦C. This transition

temperature was found to be slightly lower than previously determined via TGA [112] and

dynamic Raman spectroscopy [89], which could be due to slight structural differences in

the starting material. Previous Raman measurements were also conducted under ambient

humidity, and a significant effect of humidity on the phase transition has been previously

characterized [115, 112].

The anhydrous UO2F2 produced by heating [(UO2F2)(H2O)]7 · 4 H2O has very broad XRD

peaks, consistent with prior observations of this material [174, 11, 115, 112]. The broadness

of the peaks has been interpreted as indicative of stacking disorder in the c direction, due

in part to the presence of strongly hydrogen-bonded water molecules between the layers

of the anhydrous structure [114]. The anhydrous UO2F2 produced in this experiment has

an expanded interlayer spacing compared to the structure solved by Zachariasen [174], as

indicated by the location of the (003) reflection. This reflection appears at 2θ = 16.70°

rather than 2θ = 16.94°, as observed by Zachariasen, corresponding to an interlayer spacing

of 5.3 Årather than 5.23 Å. It is plausible that the presence of interlayer water molecules

expands the layer spacing, and that the layer spacing would have been observed to shrink

slightly upon heating to a higher temperature.

Prior to the phase transition, minor changes are noted in the XRD pattern between

60 and 100◦C. These minor shifts are better visible by overlaying the XRD patterns, as
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Figure 2.17: XRD pattern of a sample of uranyl fluoride hydrate at increasing temperature.
The expected patterns of [(UO2F2)(H2O)]7 · 4 H2O [111] and anhydrous UO2F2 [174] are
shown for comparison. Dashed lines at 2θ = 28.443° and 47.303° correspond to the Si
standard added to the sample.
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shown in Figure 2.18. The slight changes in the XRD pattern above 60◦C are consistent

with previously collected TGA data (Figure 2.5), which showed a small mass reduction

between 70 and 90◦C, corresponding to the loss of the hydrogen-bonded water molecules

in the pores of the structure. Because these water molecules are not directly bound to the

[(UO2F2)(H2O)]7 backbone, their removal is not expected to have a significant effect on the

structure.

The structural effect of losing these water molecules can be further analyzed by examining

the resulting diffraction maxima shift or change in intensity. The most notable changes in

the XRD pattern occur near 2θ = 22° and near 2θ = 29°. Figure 2.19 further examines these

regions. As shown in Figure 2.19a, the (221̄) reflection is observed to decrease in intensity,

while the (220) reflection shifts slightly. The (115) is also observed to shift, although not

until 80◦C. The shift in the (314) reflection, shown in Figure 2.19b, is more similar to that

of the (220) reflection, starting at 70◦C. These shifts are consistent with a buckling of the

fluorine ligands in the [(UO2F2)(H2O)]7 · 4 H2O structure, suggesting that removal of the

pore water molecules allows for a slight rearrangement of the fluorine ligands as they start

to move into the staggered orientation observed in the anhydrous structure (Figure 2.1).

Hydration of anhydrous uranyl fluoride

After ramping the temperature to 130◦C, the temperature was reduced back to 30◦C at

1◦C/min while continuing to expose the sample to a flow of dry air to prevent rehydration.

Once the sample had cooled, rehydration of the anhydrous product was examined by

increasing the water vapor pressure. Due to a malfunction of the RH generator, the precise

water vapor pressure during this rehydration experiment is unknown. However, the rate

of rehydration was observed to be consistent with rehydration experiments at 40–50% RH

relative to 30◦C, or a water vapor pressure of 1.70–2.13 kPa. Changes in the XRD pattern

upon rehydration are shown in Figure 2.20. The rehydrated structure is nominally consistent

with the Mikhailov hydrate, [(UO2F2)(H2O)]7 · 4 H2O. However, slight differences are noticed

between the pattern of the initial sample prior to dehydration and the pattern of the hydrated

material, which are illustrated more clearly in Figure 2.21. The most significant differences

are the disappearance of the peak at 2θ = 12.7° attributed to a contaminant, and the growth
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Figure 2.18: XRD pattern of a sample of uranyl fluoride hydrate at increasing temperature.
The dashed line at 2θ = 28.443° corresponds to the Si standard added to the sample.
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(a) (b)

Figure 2.19: Two regions of the XRD pattern of a sample of uranyl fluoride hydrate at
increasing temperature. The dashed line at 2θ = 28.443° corresponds to the Si standard
added to the sample.
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Figure 2.20: XRD pattern of a sample of anhydrous uranyl fluoride exposed to
increasing RH at 30◦C. The sample of anhydrous uranyl fluoride was produced by heating
[(UO2F2)(H2O)]7 · 4 H2O to 30◦C and cooling under dry air. The expected patterns of
[(UO2F2)(H2O)]7 · 4 H2O [111] and anhydrous UO2F2 [174] are shown for comparison.
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Figure 2.21: Comparison of the XRD pattern of a sample of [(UO2F2)(H2O)]7 · 4 H2O
initially, after dehydration at 150◦C and rehydration for 70 hours at 50% RH/30◦C, and
after an additional 22 hours of desiccation at 0% RH/30◦C.
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of a peak at 2θ=11.2°, which may correspond to either the same contaminant or the (110)

reflection of [(UO2F2)(H2O)]7 · 4 H2O. Replication of this experiment is required to elucidate

this.

Miskowiec et al. [114] observed a liquid-like intermediate upon hydration of anhydrous

uranyl fluoride at 40% RH at ambient temperature. Subsequent desiccation was required

to convert this intermediate into [(UO2F2)(H2O)]7 · 4 H2O. It is therefore plausible that

the rehydrated material in this study is similarly an intermediate structure, although the

diffraction data suggests that it is much more crystalline than the previously observed

intermediate. To assess this possibility, after hydrating for 70 hours, the sample was

desiccated under a steady flow of dry air while continuing to collect XRD data. As shown in

Figure 2.21, slight changes in the XRD pattern were observed, including the disappearance of

the peak at 2θ = 11.2°. Thus, it remains unclear how the previous observance of a liquid-like

intermediate connects with these results.

2.3.2 In situ Raman spectroscopy

Dehydration of hydrated uranyl fluoride

In situ Raman spectroscopy also proved useful for studying these dehydration and rehydra-

tion transitions, since anhydrous and hydrated uranyl fluoride can be easily distinguished

via Raman spectroscopy. The Raman-active uranyl symmetric stretching mode is highly

sensitive to the environment of the uranyl ion (i.e., number and type of equatorial ligands)

[27, 122, 47, 100] and thus appears at a distinct frequency in anhydrous and hydrated uranyl

fluoride. Raman spectra collected on samples of anhydrous and hydrated uranyl fluoride

were in agreement with past studies [6, 87, 132], with the Raman-active uranyl stretching

mode appearing at 915 and 868 cm−1, respectively (Figure 2.22).

Raman data were collected on a sample of [(UO2F2)(H2O)]7 · 4 H2O as the sample was

heated from 30◦C to 130◦C under a steady flow of dry air (<5% RH). The temperature

was ramped at 1◦C/min while spectra were collected continuously in 1 min increments. The

microscope was refocused every 10◦C without causing a significant gap in the data collection.

Data were collected using the 532 nm laser because a large fluorescence background
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Figure 2.22: Characteristic Raman spectra of anhydrous uranyl fluoride (UO2F2) and
hydrated uranyl fluoride ([(UO2F2)(H2O)]7 · 4 H2O).
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component was visible with the 785 nm laser at higher temperature. Figure 2.23 shows

the changes in the Raman spectrum as the temperature was increased. A discrete phase

transition from [(UO2F2)(H2O)]7 · 4 H2O to anhydrous UO2F2 occurred around 110◦C, as

evidenced by the disappearance of the uranyl stretching mode of [(UO2F2)(H2O)]7 · 4 H2O

at 868 cm−1, and the appearance of the uranyl stretching mode of UO2F2 at 915 cm−1. The

noted transition temperature is in agreement with the dynamic XRD data.

Because the uranyl stretching peaks of hydrated and anhydrous uranyl fluoride can be

fully resolved, the relative heights of these peaks can be used to assess the progression of

the phase transition. Figure 2.24 shows the normalized relative intensities of the two peaks

over time during the temperature ramp. The phase transition occurs fairly rapidly when the

transition temperature is reached. The transition temperature is again lower than previously

reported [89], potentially because previous Raman temperature ramps were conducted

under ambient humidity. To further assess the effect of humidity on the dehydration

transition, additional temperature ramps were conducted using the same settings, but under

an increased water vapor pressure of 0.85, 1.70, or 2.13 kPa (20%, 40%, and 50% RH relative

to 30◦C, respectively). Figure 2.25 shows the fraction of anhydrous UO2F2 in the sample

as the temperature was increased, as measured by the intensity of the 915 cm−1 peak of

UO2F2 relative to the 868 cm−1 peak of [(UO2F2)(H2O)]7 · 4 H2O. The transition temperature

increases with increased water vapor pressure. While the phase transition was noted to begin

at approximately 101◦C at 0.21 kPa, it does not start until 110◦C at 0.85 kPa and 118◦C at

1.70 and 2.13 kPa. This dependence on the environmental humidity is consistent with the

previous findings of Lychev et al. [102].

Returning to Figure 2.23, it is clear that there is a slight shift in the uranyl stretching

mode of the uranyl fluoride hydrate prior to the dehydration transition. This shift is

more noticeable when expanding the uranyl stretching region of the spectrum, as shown

in Figure 2.23b. In addition to a shift upwards, the peak is observed to broaden. This

is better illustrated in Figure 2.26a, which shows the Raman spectra collected every 10◦C

overlaid on top of one another. The uranyl stretching mode begins to broaden slightly as

low as 40–50◦C, but significant broadening and a shift in frequency begin to occur at 70-

80◦C. This is the same temperature at which slight changes in the XRD pattern were noted,
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(a) (b)

Figure 2.23: (a) Waterfall plot showing changes in the Raman spectrum of uranyl fluoride
as the sample temperature was ramped from 30◦C to 130◦C. Each spectrum was normalized
independently to the sum of the areas of the [(UO2F2)(H2O)]7 · 4 H2O and UO2F2 uranyl
stretching peaks at 868 and 915 cm−1, respectively. (b) Expanded view of the uranyl
stretching region of the same plot.
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Figure 2.24: Normalized relative intensity of the uranyl stretching peak of hydrated uranyl
fluoride (blue) and anhydrous uranyl fluoride (green) over time as the sample temperature
was ramped from 30◦C to 130◦C and then cooled to 30◦C. The dashed red line corresponds
to the temperature over time. A transition from hydrated to dehydrated uranyl fluoride was
observed to occur at approximately 110◦C.
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Figure 2.25: Fraction of UO2F2 present in a sample of uranyl fluoride, as measured
by the intensity of the 915 cm−1 peak of UO2F2 relative to the 868 cm−1 peak
of [(UO2F2)(H2O)]7 · 4 H2O, at increasing temperature under four different water vapor
pressures: 0.21, 0.85, 1.70, and 2.13 kPa, corresponding to 5%, 20%, 40%, and 50% RH
at 30◦C, respectively.
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(a) (b)

(c) (d)

Figure 2.26: Raman spectrum of [(UO2F2)(H2O)]7 · 4 H2O at increasing temperature under
a water vapor pressure of (a) 0.21 kPa, (b) 0.85 kPa, (c) 1.70 kPa, and (d) 2.13 kPa,
corresponding to 5%, 20%, 40%, and 50% RH at 30◦C, respectively. All spectra have been
independently scaled to 1 for easier comparison of the broadening effect.
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suggesting that these observations are correlated, and that the broadening and shifting of

the uranyl stretching peak in the Raman spectrum is also related to the loss of hydrogen

bonded water molecules in the pores of the [(UO2F2)(H2O)]7 · 4 H2O structure. The redshift

of the peak is consistent with a strengthening of the uranyl bond due to the removal of

water molecules that form hydrogen bonds with the uranyl oxygens. The broadening may

be indicative of a decrease in crystallinity, [85] consistent with the buckling of fluorine ligands

identified from the dynamic XRD data.

Interestingly, as shown in Figures 2.26b–2.26d, the shift and broadening of the uranyl

stretching peak is much less pronounced for the temperature ramps conducted under higher

water vapor pressure. The magnitude of the frequency shift in each of the four experiments

was compared by fitting the uranyl stretching mode to two psuedo-Voigt functions at each

time step. At ambient temperature, the uranyl stretching mode fits to two peaks centered

at 869 cm−1 and 862 cm−1. The frequency of the dominant higher energy peak is plotted

in Figure 2.27 with increasing temperature. At 0.21 kPa, the peak shifts from 868.9 to

872.6 cm−1 before the transition to anhydrous uranyl fluoride occurs. At higher water vapor

pressure, however, the peak only shifts to 870–870.5 cm−1 before the transition. It is unclear

why the initial frequency of the uranyl stretching mode is slightly lower to start at 0.85 kPa

than for the other three experiments. This may be indicative of a slightly different initial

water content or other small structural deviation.

Hydration of anhydrous uranyl fluoride

As in the dynamic XRD experiment, the Raman sample was cooled back to 30◦C after

dehydration under a steady flow of dry air to prevent rehydration. To monitor the

rehydration process via Raman spectroscopy, the humidity was increased to 50% RH after

the sample had cooled to 30◦C and been equilibrated for 12 hours. As shown in Figure 2.28,

rehydration was found to occur readily at this humidity, and the UO2F2 uranyl stretching

mode at 915 cm−1 was quickly replaced by a peak at 868 cm−1, characteristic of the

hydrated structure. No further changes were observed in the Raman spectrum as the sample

was hydrated for 17 hours while scanning continuously. As with the dynamic XRD data,

differences were noted in the Raman spectrum of the hydrated material initially and post
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Figure 2.27: Frequency of the dominant uranyl stretching mode in the Raman spectrum
of [(UO2F2)(H2O)]7 · 4 H2O with increasing temperature under four water vapor pressures:
0.21, 0.85, 1.70, and 2.13 kPa, corresponding to 5%, 20%, 40%, and 50% RH at 30◦C,
respectively.
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(a) (b)

Figure 2.28: (a) Waterfall plot showing changes in the Raman spectrum of uranyl fluoride
over time as the sample was exposed to 50% RH at 30◦C. (b) Normalized relative intensity of
the uranyl stretching peak of anhydrous uranyl fluoride (green) and hydrated uranyl fluoride
(blue).
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dehydration/rehydration. This difference is illustrated in Figure 2.29. The uranyl stretching

peak of the rehydrated material appears much broader than the starting material. Comparing

the pseudo-Voigt fits of the uranyl stretching modes of the initial and rehydrated material,

shown in Figure 2.30, suggests that the bulk of this broadening is actually the result of an

increase in the intensity of the lower energy shoulder centered at 862 cm−1.

As discussed in Section 2.2.2, the origin of the splitting of the uranyl stretching mode

in [(UO2F2)(H2O)]7 · 4 H2O is not entirely clear and is likely the result of both differences

in equatorial coordination as well as hydrogen bonding to the uranyl oxygens. The

rehydrated material was shown to have a similar, albeit distinct, structure to the initial

[(UO2F2)(H2O)]7 · 4 H2O, especially in terms of lattice parameters. It is possible that the

uranyl ions are slightly rearranged in the hydrated structure, allowing a greater fraction

of them to participate in hydrogen bonds with water hydrogens. If the 862 cm−1 peak is

interpreted as corresponding to the uranyl stretching mode of such uranyl ions, the observed

increase in intensity is consistent with this description.

After hydrating for 17 hours, the sample was desiccated under dry air for an additional 26

hours. As shown in Figure 2.29, desiccation did not have a significant effect on the Raman

spectrum. The Raman spectrum does not convert back to that of the initial material,

suggesting that the structural changes between the initial and rehydrated material are not

reversible—at least not on the timescale studied.

Understanding the effect of dehydration and rehydration on the structure of the uranyl

fluoride hydrate is worth analyzing further but is not explored in this dissertation. The

fact that the initial [(UO2F2)(H2O)]7 · 4 H2O material used in the dehydration/rehydration

studies was also produced via hydration of anhydrous uranyl fluoride, albeit at a lower

humidity over a longer timescale, suggests that the structural changes observed may be

connected to hydration rate. Additionally, hydration in the dynamic experiments was carried

out at 30◦C to ensure temperature stability in the absence of a cooling mechanism. This

slightly elevated temperature could also explain the formation of the altered rehydration

product.
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Figure 2.29: Comparison of the uranyl stretching region of the Raman spectrum of a
sample of uranyl fluoride hydrate initially, after dehydration at 130◦C and rehydration at
50% RH at 30◦C, and after subsequent desiccation at 0% RH at 30◦C.
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Figure 2.30: Comparison of the pseudo-Voigt fits of the uranyl stretching region of
the Raman spectrum of a sample of uranyl fluoride hydrate initially (upper) and after
dehydration at 130◦C/rehydration at 50% RH (30◦C) (lower). The center frequency and
full-width-half-maximum of each curve are labeled.
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2.4 Summary and future directions

In summary, this chapter presents a computational characterization of hydrated uranyl

fluoride and clarifies the phase transition between hydrous and anhydrous uranyl flu-

oride. The structure and dynamics of the crystallographic water molecules in the

[(UO2F2)(H2O)]7 · 4 H2O structure were solved computationally in the absence of clear

experimental data. This represents the first computational study of this structure.

Computational methods were also used to analyze the relationship between the hydrogen

bonding network and the experimentally observed Raman spectrum. Several open questions

remain regarding the characterization of the [(UO2F2)(H2O)]7 · 4 H2O structure. Despite an

attempt to computationally assess the origin of the multiple Raman-active symmetric uranyl

stretching modes, it remains uncertain whether the splitting is primarily due to differences

of the equatorial environment of different uranyl ions or differences in hydrogen bonding to

different uranyl oxygens.

This study marks the first time the phase transition between anhydrous and hydrated

uranyl fluoride was studied experimentally in real time, clarifying the mechanism of this

transition as well as the conditions under which it occurs. The consistency of the obtained

XRD and Raman data with previous TGA analyses suggests that the crystallographic

pore water molecules in [(UO2F2)(H2O)]7 · 4 H2O are driven off above 70◦C, while the

transformation to anhydrous uranyl fluoride occurs at 100–120◦C. Both of these dehydration

steps are shown to be dependent on the environmental humidity. In the future, dynamic IR

spectroscopy could provide more detail regarding the loss of the interlayer water molecules

because this technique is much more sensitive to water-related vibrational modes than Raman

spectroscopy is.

The formation of a slightly altered hydrate structure after the dehydration and

rehydration of [(UO2F2)(H2O)]7 · 4 H2O also requires further study. It is likely that these

structural changes are related to the rate of hydration, motivating future work exposing

anhydrous uranyl fluoride to a range of lower humidity environments and analyzing hydration

over a much longer timescale than presented in this work. This more in-depth study may
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also clarify how the structural changes upon rehydration relate to the observation of an

amorphous intermediate by Miskowiec et al. [114].

72



Chapter 3

Chemical transformation of hydrated

uranyl fluoride

Chapter 2 clarified characteristics of the two known structures of uranyl hydrate (UO2F2 and

[(UO2F2)(H2O)]7 · 4 H2O) and the phase transition between them. This chapter explores

the chemical behavior of hydrated uranyl fluoride ([(UO2F2)(H2O)]7 · 4 H2O) at elevated

water vapor pressure. Uranyl fluoride is shown to be unstable above a threshold humidity,

undergoing a complete loss of fluorine to form two hydration products. These products

are tentatively identified in this chapter as uranyl hydroxide and uranyl peroxide species,

respectively, from their Raman spectra. Components of this chapter come from the following

papers:

M. C. Kirkegaard, A. Miskowiec, M. W. Ambrogio, and B. B. Anderson. “Evidence

of a nonphotochemical mechanism for the solid-state formation of uranyl peroxide.”

Inorg. Chem., 2018, 57, 5711-5715.

M. C. Kirkegaard, A. Miskowiec, M. W. Ambrogio, J. Langford, A. E. Shields, J. L.

Niedziela, R. Kapsimalis, and B. B. Anderson. “Characterizing the chemical behavior

of uranium compounds for nuclear forensics.” Proceedings of the Institute for Nuclear

Materials Management, 2018.
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M. C. Kirkegaard, M. W. Ambrogio, A. Miskowiec, J. L. Niedziela, T. L.

Spano, A. E. Shields and B. B. Anderson. “Characterization of the degradation of

[(UO2F2)(H2O)]7 · 4 H2O under humid conditions.” In preparation.

3.1 Previous studies of the hydration of uranyl fluoride

Although the Mikhailov hydrate ([(UO2F2)(H2O)]7 · 4 H2O) is the only uranyl fluoride

hydrate structure that has been solved, [111] previous studies suggest that additional

hydrates may exist at higher water vapor pressures. For example, Marshall et al.

suggested the existence of three different hydrates with the same approximate composition,

UO2F2 · 2 H2O [104]. Brooks et al. observed the formation of an additional species,

tentatively identified as a trihydrate, after equilibrating material at 100% RH for 144 hours

[23]. Gromov et al. identified four distinct hydrates with X-ray and equilibrium vapor

pressure measurements that could be formed by equilibrating uranyl fluoride powder with

water vapor at varying temperatures over 2–8 weeks [160, 143]. On the other hand, Lychev et

al. did not observe the formation of any additional species at elevated water vapor pressure

[102]. The current literature thus leaves uncertainty regarding how many uranyl fluoride

hydrate structures may exist. None of the above studies provide conclusive identification

of chemical composition or crystal structures, meaning that it is feasible that some of the

species observed may not have actually been uranyl fluoride hydrates, but rather other uranyl

species produced in a chemical reaction with water vapor.

The hydration of uranyl fluoride has been studied more recently by Kips et al., who

examined how the Raman spectrum of the uranyl fluoride hydrate evolves upon exposure

to elevated water vapor pressure. Upon long-term exposure to a humid environment, a

redshifted uranyl stretching mode around 845 cm−1 was observed in the Raman spectra in

addition to the Raman peak characteristic of [(UO2F2)(H2O)]7 · 4 H2O at 868 cm−1. This

new peak was tentatively attributed to the absorption of water in the uranyl fluoride hydrate

structure [86, 146]. Similar redshifting of uranyl modes upon hydration was previously

observed via infrared (IR) spectroscopy as well, with the IR-active asymmetric stretching
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mode shifting from 966 to 955 to 948 to 945 cm−1 in what were tentatively identified as

hydrates with one, two, three, and four waters per uranium, respectively [161].

In a separate study, Kips et al. [87] also raised the possibility that uranyl fluoride

undergoes a loss of fluorine upon exposure to elevated water pressure. Using scanning

electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and ion-

microprobe secondary ion mass spectrometry (IM-SIMS), the authors measured a reduction

in the fluorine/uranium (F/U) ratio of uranyl fluoride particles that were aged in humid

environments that was accelerated by UV exposure. The measured loss of fluorine supports

the possibility that a chemical reaction with water vapor produces additional uranyl species.

The measured loss of fluorine was not correlated with the authors’ previously observed

changes in the Raman spectrum, however, leaving it unclear if the additional peaks in the

Raman spectra after hydration could be attributed to species other than uranyl fluoride

hydrates.

3.2 Evidence of a chemical transformation of uranyl

fluoride at high humidity

Uncertainty about whether or not additional hydrate structures exist motivated a more

rigorous study of the behavior of hydrated uranyl fluoride at elevated water vapor pressures.

This was achieved by exposing particles of [(UO2F2)(H2O)]7 · 4 H2O to a humid environment

and monitoring changes in the particles over several months via micro-Raman spectroscopy.

Particles of [(UO2F2)(H2O)]7 · 4 H2O, produced via the same process described in Section 2.3,

were deposited on three adhesive carbon tabs on SEM mounts, two of which were then

suspended in capped glass vials above a NaCl saturated-salt solution in deionized water

to achieve an environment of approximately 75% relative humidity (RH) at 20–23◦C

(corresponding to a water vapor pressure of 1.75–2.11 kPa) [26]. The third tab was suspended

in an empty vial and thus exposed to ambient RH to act as a control. These sample conditions

are summarized in Table 3.1. Multiple particles on each sample were tracked throughout the

study, and the same region of each particle was analyzed each time.
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Table 3.1: Sample conditions. The 75% RH environment was achieved by exposing samples
to the headspace of a NaCl saturated-salt solution, and the 100% RH environment was
achieved by replacing the saturated-salt solution with deionized water.

Sample Equilibration conditions
a 75% RH for 238 days
b 75% RH for 190 days + 100% RH for 48 days
c Ambient (40–55% RH) for 238 days
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Initial Raman spectra of all three samples were characteristic of hydrated uranyl fluoride

with a uranyl stretching peak at 868 cm−1 and shoulder around 862 cm−1 [89]. No significant

changes were noted throughout the course of the experiment in sample c, which was left at

ambient RH. For the particles on samples a and b, hydrated at 75% RH, however, the

868 cm−1 peak decreased in intensity, while additional peaks appeared at 845 and 820 cm−1

(Figure 3.1a). Over the first 30 days, significant color changes were observed for these

particles as well, as shown in Figure 3.2. After this time, the color appeared fairly consistent,

although the Raman spectra continued to change through the end of the experiment.

After 190 days of equilibrating at 75% RH, sample b was moved into a new vial and

exposed to the headspace of pure deionized water as opposed to the NaCl saturated-salt

solution, increasing the RH to 100% for an additional 48 days of equilibration. As shown

in Figure 3.1b, this led to the complete disappearance of the 845 cm−1 peak and the rapid

growth of the 820 cm−1 peak as well as a peak at 865 cm−1 similar in frequency to the

initial uranyl fluoride peak. After 48 days of additional hydration at 100% RH, the Raman

spectra of the particles on sample b were stable, and no further changes were observed.

The disappearance of the 845 cm−1 peak suggests that the peaks at 845 and 820 cm−1

corresponded to two different species, while the correlated growth of the 820 and 865 cm−1

peaks suggests that these two peaks are related to the same species. It is therefore evident

that the 865 cm−1 peak observed to grow in intensity with exposure to elevated water

pressure is not related to the 868 cm−1 peak characteristic of [(UO2F2)(H2O)]7 · 4 H2O, but

instead corresponds to a mode in a different species with a coincidentally similar frequency.

Thus, at least two hydration species are formed as [(UO2F2)(H2O)]7 · 4 H2O is exposed to

elevated water vapor pressure, one with a characteristic peak at 845 cm−1 and another with

characteristic peaks at 820 and 865 cm−1.

A more mathematically rigorous analysis of the data was performed using multivariate

curve resolution (MCR) to decompose the spectra collected at each time point into

component spectra corresponding to different species. Singular value decomposition (SVD)

suggested that there were three component species, consistent with a visual interpretation of

the spectra. Figure 3.3 shows the resulting three deconvoluted spectral components, denoted

β, γ, and δ. Some artifacts are noted, especially in the spectra of the second species, γ,
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(a) (b)

Figure 3.1: (a) Evolution of the micro-Raman spectrum of a representative particle of
[(UO2F2)(H2O)]7 · 4 H2O from sample a after increasing amounts of time spent equilibrating
in a 75% RH environment (20–23◦C). (b) Evolution of the micro-Raman spectrum of a
representative particle of [(UO2F2)(H2O)]7 · 4 H2O from sample b after increasing amounts
of time spent equilibrating in a 75% RH environment and then 100% RH environment after
190 days (20-23 ◦C). In both figures, the lower wavenumber region of each spectrum has
been scaled by a factor of three to show weaker intensity peaks more clearly. Vertical lines
are at 136, 151, 188, 236, 257, 295, 348, 406, 460, 552, 820, 845, and 868 cm−1. All spectra
are normalized to the Rayleigh line intensity (not shown) to allow for better comparison of
peak intensities among different days [88].
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(a) (b) (c)

Figure 3.2: Microscope images of a representative particle of [(UO2F2)(H2O)]7 · 4 H2O from
sample a (a) initially, (b) after hydrating at 75% RH for 16 days, and (c) after hydrating
at 75% RH for 31 days. The red circles identify the location where Raman spectra were
collected at each time point. Images are not white balanced.
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Figure 3.3: Deconvoluted spectral components. The lower wavenumber region of each
spectrum has been scaled by a factor of three to show weaker intensity peaks more clearly.
Vertical lines show peaks at 136, 151, 188, 236, 257, 295, 348, 406, 460, 552, 819, 845, and
868 cm−1 [88].
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due to difficulties deconvoluting the overlapping peaks given the limited number of spectra

collected. The γ species is characterized by peaks at 845, 552, and 460 cm−1, while the δ

species is characterized by peaks at 865, 820, 348, 295, 236, and 136 cm−1. The normalized

concentration profiles of these component species are shown in Figure 3.4. It is clear that

the β species ([(UO2F2)(H2O)]7 · 4 H2O) undergoes a transition to the γ and δ species over

the course of several weeks at 75% RH, and that a transition from γ to δ, which happens

slowly at 75% RH, occurs much more rapidly at 100% RH.

At the conclusion of the experiment, energy dispersive X-ray spectroscopy (EDX) was

used to perform a qualitative elemental analysis of particles on both hydrated samples as

well as a third sample of fresh [(UO2F2)(H2O)]7 · 4 H2O. From the final Raman spectra of

characteristic particles from each hydrated sample (Figure 3.5), it is apparent that particles

on sample a, left at 75% RH throughout the entire experiment, were a mixture of the

γ and δ species after 238 days of equilibration, while particles on sample b, which was

further hydrated at 100% RH for 38 days, have undergone a complete transition to the δ

product. On each sample, EDS spectra were collected on five particles and found to be

consistent. As shown in the bottom-left panel of Figure 3.5, the EDS spectrum of a particle

of [(UO2F2)(H2O)]7 · 4 H2O freshly mounted on a GSR tab has peaks attributed as uranium

M-peaks (3.17 keV and 3.34 keV), a fluorine K-peak (0.67 keV), and a oxygen K-peak

(0.53 keV). Peaks associated with carbon and nitrogen appear as well, attributed to the

substrate and off-gassing, respectively. No obvious contaminants were observed.

The EDS spectra of particles on both samples a and b were found to contain all of the

same peaks as fresh uranyl fluoride, with the exception of the peak attributed to fluorine.

No measurable fluorine was noted in any of the hydrated particles studied via EDS. This

confirms that neither the γ nor δ species are additional uranyl fluoride hydrates. Rather,

the [(UO2F2)(H2O)]7 · 4 H2O starting material undergoes a chemical reaction with exposure

to a humid environment, transforming into hydration products that contain only uranium

and oxygen (and hydrogen, which cannot be detected via EDS). The presence of Raman

active modes in the 750–900 cm−1 region of both of these species suggests that the uranyl

ion remains intact. Thus, it is more likely that the γ and δ species correspond to uranyl

hydroxides or peroxides than uranium oxides.
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Figure 3.4: Normalized concentration gradients of the three component species as
determined by MCR analysis for a representative particle on (a) sample a, exposed to
75% RH for 238 days and (b) sample b, exposed to 75% RH for 190 days and 100% RH
for an additional 48 days, illustrated by the shaded portion of the graph [88].
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(a) (b) (c)

Figure 3.5: Raman (top row) and EDS spectra (bottom row) of a characteristic particle
of (a) fresh [(UO2F2)(H2O)]7 · 4 H2O, (b) sample a, [(UO2F2)(H2O)]7 · 4 H2O exposed to
75% RH for 238 days, and (c) sample b, [(UO2F2)(H2O)]7 · 4 H2O exposed to 75% RH for
190 days and then 100% RH for an additional 48 days.
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3.3 Preliminary characterization of uranyl fluoride hy-

dration products

One of the goals of this study was to not only determine under what conditions uranyl

fluoride is unstable, but to rigorously characterize the products of these hydration reactions.

Initial characterization is possible from the deconvoluted Raman spectra of these products

(Figure 3.3). As shown in Figure 3.6, the deconvoluted Raman spectrum of δ is an

excellent match with that of the mineral studtite, a uranyl peroxide hydrate of the form

[(UO2)O2(H2O)2] · 2 H2O [29]. The Raman spectrum of studtite has been well characterized.

Peaks at 819 and 864 cm−1 are assigned to the symmetric uranyl stretch and peroxide stretch,

respectively [4, 17, 132, 31, 96, 18, 40]. Excellent agreement is noted between the hydrated

particle and studtite for not only these two dominant peaks, but also for all of the lower

energy peaks of studtite, at 68, 106, 135, 151, 163, 187, 237, 263, 294, 348, and 406 cm−1.

The slight shoulder at 835–840 cm−1 that appears in the spectrum of the hydrated particles

is attributed to metastudtite ((UO2)O2(H2O)2), the dehydration product of studtite. While

the structure of δ cannot be confirmed via Raman spectroscopy, the excellent agreement

of these spectra leave little doubt that hydrated particles have transformed into a uranyl

peroxide species with a local structure at least similar to that of studtite [88]. In addition,

as shown in Figure 3.7, following vacuum exposure during SEM-EDS analysis, the Raman

spectra of the fully hydrated particles matched that reported for metastudtite, with a uranyl

stretching mode at 830 cm−1 [17, 96]. This is further evidence that the structure of this

hydration product is studtite-like.

Characterization of the γ hydration product via Raman spectroscopy is less straightfor-

ward. The MCR analysis suggests that γ is characterized by dominant Raman peaks at 845,

552, and 460 cm−1. These peaks are reasonably consistent with published Raman spectra of

uranyl hydroxide hydrate minerals like schoepite ((UO2)4O(OH)6 · 6 H2O) and metaschoepite

((UO2)4O(OH)6 · 5 H2O), which are typically found to have a symmetric uranyl stretching

frequency between 830 and 855 cm−1, as well as peaks near 550 and 450 cm−1 attributed to

stretching modes of equatorial ligands [4, 60, 132, 31, 2, 70, 69, 18]. However, as described

in the following chapter, Raman spectra of uranyl hydroxide compounds in the literature
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Figure 3.6: Raman spectrum of δ compared to published Raman spectrum of studtite,
[(UO2)O2(H2O)2] · 2 H2O [88]. The structure of the studtite sample was confirmed XRD
prior to the collection of Raman spectra.
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Figure 3.7: Raman spectra of a particle from sample b collected after 238 days of hydration,
prior to and following SEM-EDS analysis (exposure to vacuum). The Raman spectra of
studtite and metastudtite, collected from lab standards structurally confirmed via XRD, are
shown for comparison. Dashed lines at 819 and 865 cm−1 show the location of the uranyl
and peroxo stretching modes, respectively, in studtite.
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are significantly varied, making identification of the species difficult from Raman data alone.

This motivates the use of complementary structural techniques such as x-ray diffraction

(XRD) to study this material. Further characterization of these hydration products will be

discussed in Chapters 4 (γ) and 5 (δ).

3.4 Effect of temperature and water vapor pressure on

the transformation of uranyl fluoride

The initial particle hydration study described in Section 3.2 demonstrated that hydrated

uraynl fluoride ([(UO2F2)(H2O)]7 · 4 H2O) is stable at room temperature (20–22◦C) and

ambient humidity (40–50% RH) but not at 75% RH. This finding motivated a follow-up study

exposing particles to a wider range of conditions. Five different saturated-salt solutions were

used to achieve varying humidity at two different environmentally relevant temperatures.

In total, 10 samples were prepared with SEM tabs in a similar method as before, with the

equilibration conditions summarized in Table 3.2. In the initial study, samples were removed

from their equilibration environments each time they were analyzed via Raman spectroscopy.

In this follow-up experiment, the SEM tabs were sealed in plastic containers with saturated-

salt solutions throughout the entirety of the experiment, and Raman spectra were collected

through glass windows on the top of the containers. Additionally, while the SEM tabs were

suspended upside down in the initial experiment, they were oriented facing up in this follow-

up experiment. The new sample setup is shown in Figure 3.8. Eight particles were tracked

over time on each sample.

The stability of uranyl fluoride under this wider range of conditions was again assessed

by tracking the evolution of the Raman spectra of particles on each sample over time. The

evolution of the uranyl stretching region of the Raman spectrum for a characteristic particle

on each sample is shown in Figure 3.9. The initial spectra collected on each sample were

characteristic of hydrated uranyl fluoride, with a uranyl stretching peak at 868 cm−1 and

shoulder around 862 cm−1 [89, 88]. The Raman spectra of particles on sample 1 (25◦C,

33% RH) and sample 6 (35◦C, 32% RH), did not change over the course of the 220-day
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Table 3.2: Sample conditions. RH as measured for each saturated-salt solution by
Greenspan [62]. Water vapor pressures were calculated using the Buck equation [26].

Sample Temperature/◦C Sat. Salt RH Water Vapor Pressure/kPa
1 25 MgCl2 32.8% 1.04
2 25 NaBr 57.6% 1.83
3 25 NaCl 75.3% 2.39
4 25 KCl 84.3% 2.67
5 25 KNO3 93.6% 2.97
6 35 MgCl2 32.0% 1.80
7 35 NaBr 49.9% 2.81
8 35 NaCl 74.9% 4.22
9 35 KCl 83.0% 4.67
10 35 KNO3 90.8% 5.11
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Figure 3.8: Diagram of the sample containers used to hydrate [(UO2F2)(H2O)]7 · 4 H2O
particles. Each container was sealed throughout the course of the experiment and stored in
incubators at either 25 or 35◦C.
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Figure 3.9: Evolution of the Raman spectrum of a representative particle of
[(UO2F2)(H2O)]7 · 4 H2O on samples 1–10. Individual spectra are normalized by the
peak area in the region shown to allow for easier comparison. Multiple scans were
performed on the same particle over 220 days of equilibration (day 1 in dark blue, day
220 in dark red). Equilibration conditions are listed in each subfigure and in Table 3.2.
[(UO2F2)(H2O)]7 · 4 H2O was found to be stable to hydration in samples 1 and 6 but
underwent changes in more humid environments.
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experiment, indicating that the uranyl fluoride hydrate is stable under these conditions,

consistent with the prior finding that uranyl fluoride was stable at ambient temperature and

humidity. In all remaining samples, changes were apparent in the uranyl stretching region

of the Raman spectrum. This indicates that there is a threshold humidity between 33% and

59% RH at 25◦C and between 32% and 50% RH at 35◦C, above which uranyl fluoride begins

to degrade.

The changes in the Raman spectra observed at humidities above this threshold were

consistent with the findings of the previous study at 75% RH. In the uranyl stretching

region of the Raman spectra, shown in Figure 3.9, hydration led first to the growth of a peak

at 845 cm−1, previously attributed to the γ hydration species [88]. At higher humidities, this

peak is replaced by peaks at 820 and 864 cm−1, attributed to the δ hydration species. The

transformation of [(UO2F2)(H2O)]7 · 4 H2O to these hydration products was also marked

by the appearance of additional peaks in the lower energy region, consistent with prior

observations at 75% RH [88]. In addition to the changes in the Raman spectra, the particles

underwent color changes at high humidity, illustrated in Figure 3.10.

Once again, at the conclusion of the 220-day experiment, each sample was analyzed via

SEM-EDS. Five random particles were examined on each sample. Particles from samples 1–4

and 6–9 had similar subhedral/blocky morphology, consistent with the morphology of fresh

[(UO2F2)(H2O)]7 · 4 H2O particles studied previously [88]. As shown in Figure 3.12, particles

on sample 5 had a distinct fibrous/irregular morphology. Particles on sample 10 also looked

distinct from the others, with a concentric morphology. The circular outline around the

particle from sample 10 is evidence of deliquescence, which was also observable under the

microscope when collecting Raman spectra. Some particles appeared to recrystallize over

the course of the experiment, while others remained semiliquid-like.

Approximate oxygen/uranium (O/U) and F/U ratios calculated from the EDS data are

shown in Figure 3.11. As expected from the Raman spectra, a fluorine peak was not

resolvable above the background in any of the particles from samples 9, 10, 13, 14, and

15, while samples 7, 8, and 12 showed a reduction in fluorine relative to samples 6 and

11. In addition to a loss of fluorine, the EDS spectra showed an increase in the O/U

ratio upon hydration. This is consistent with the formation of uranyl hydroxide/peroxide
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(a) (b)

Figure 3.10: (a) Microscope images of the eight particles on sample 1 over time at 33% RH
and 25◦C. (b) Microscope images of the eight particles on sample 5 over time at 94% RH
and 25◦C. Images were taken with the same color-balance settings at each time point but
are not white balanced.
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Figure 3.11: Approximate O/U and F/U ratios for each sample. Ratios were calculated
by dividing the intensities of the dominant peak in the EDS spectra corresponding to each
element. Results from five random particles are averaged for each sample; error bars show
± one standard deviation. Ratios have been normalized to sample 1 (25◦C, 32% RH), which
is assumed to be pure [(UO2F2)(H2O)]7 · 4 H2O.
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(a) (b) (c)

Figure 3.12: SEM images of a characteristic particle from (a) sample 1, (b) sample 5, and
(c) sample 10. The morphology of particles on the remaining samples most closely matched
that of sample 1.
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species as the O/U ratio in known uranyl hydroxide and uranyl peroxide hydrates is higher

than in [(UO2F2)(H2O)]7 · 4 H2O. Calculated O/U ratios are likely underestimates since the

vacuum conditions necessary for EDS have been observed to pull water from some crystal

hydrates during the measurement. As discussed previously, the 820 cm−1 Raman peak was

observed to shift upwards in energy in some samples after vacuum exposure, consistent

with the dehydration of studtite to metastudtite ((UO2)O2(H2O)2), which has an O/U ratio

of 6 instead of 8. Furthermore, the calculated elemental ratios are not intended to be

quantitative since variables like particle orientation can significantly affect the intensity of

different elemental contributions.

One of the goals of analyzing a wider range of humidity levels in this follow-up experiment

was to assess whether any additional hydration products could be formed above or below

75% RH. In almost all of the samples, no additional peaks were noted in the Raman spectrum

over time, suggesting that γ and δ are the only hydration products. For sample 5, however,

at 25◦C and 94% RH, an additional peak is visible near 838 cm−1. Figure 3.13 expands this

region of the Raman spectrum for sample 5 from Figure 3.9, starting with day 5 of hydration

to focus on the peaks of the hydration products. At least four peaks are visible in the data.

The peak at 847 cm−1 is attributed to γ, and the peaks at 819 and 864 cm−1 are attributed

to δ. The remaining peak, near 838 cm−1, was observed only in this sample and is difficult

to assign. The intensity of this peak roughly follows that of the 847 cm−1 peak, although

the ratio of these peaks changes over time. The 838 cm−1 peak is tentatively assigned to

the uranyl stretch of a uranyl hydroxide species based on the frequency of the mode and

the observed similarities to the 847 cm−1 peak. It is unclear if this peak corresponds to

an additional uranyl hydroxide hydrate product distinct from γ, or to a redshifted mode in

γ. Such redshifting could be the result of stronger hydrogen bonding interactions to uranyl

oxygens due to the presence of additional water molecules at high humidity. While this peak

was not observed for sample 10, equilibrated at a similarly high humidity, findings described

in the next chapter suggest that the elevated temperature may limit water absorption in γ.

Part of the uncertainty regarding the attribution of this additional peak stems from the

observed variability of the peak attributed to γ over time and across the different samples

studied. While the Raman peak near 868 cm−1, attributed to [(UO2F2)(H2O)]7 · 4 H2O,
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Figure 3.13: Evolution of the Raman spectrum of a representative particle on sample 5
(25◦C and 94% RH). Data collected on the first 4 days of hydration is eliminated to highlight
peaks corresponding to the hydration products. Day 5 is shown in dark blue, day 220 in dark
red. Dashed lines at 819, 838, 847, and 864 cm−1 indicate the location of observed peaks.
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appears at more or less the same frequency in each sample and was not observed to shift

during the course of the experiment, the Raman peak near 845 cm−1, attributed to γ,

was observed to shift downwards in energy with hydration in nearly every sample where it

appeared. Similar redshifting is observed for the 819 cm−1 peak attributed to δ in some

samples (e.g., in Figure 3.13), but this shift is less exaggerated than the shift in the γ peak

with continued hydration. Figure 3.14 shows a subset of the data presented in Figure 3.9 to

highlight shifts in the γ peaks. Only spectra in which γ was the dominant component were

included.

It is clear from Figure 3.14 that in addition to the shifting of this peak in each sample over

time, the position of this peak differs significantly between samples. Figure 3.15 shows the

final spectrum in Figure 3.14 for samples 3, 4, 5, 7, 8, 9, and 10 overlaid for easier comparison

of the frequency and width of the peak attributed to γ. This peak is considerably wider and

shifted down in energy in the samples stored at lower humidity, where δ was not observed

to form. The wider peaks suggests that γ may be less crystalline when formed under these

conditions. This lack of crystallinity can be explained by comparing the water content

of [(UO2F2)(H2O)]7 · 4 H2O and the two hydration products. [(UO2F2)(H2O)]7 · 4 H2O has

an H2O/U ratio of 1.54. Studtite ([(UO2)O2(H2O)2] · 2 H2O), on the other hand, has an

H2O/U ratio of 4. While the water content of δ may not exactly match that of studtite,

the increased O/U ratio observed in the SEM-EDS spectra supports a significant increase

in water content. The uranyl hydroxide hydrate schoepite ([(UO2)4O(OH)6] · 6 H2O) has

an H2O/U ratio of 1.5. Again, the water content of γ is likely not exactly the same as

stoichiometric, crystalline schoepite, and further studies described in the next chapter suggest

that γ may be additionally hydrated relative to schoepite. Still, by this comparison, the water

content of γ is likely much closer to that of the initial [(UO2F2)(H2O)]7 · 4 H2O material than

that of δ.

At moderate humidity (i.e., 50% RH at 35◦C), the initial [(UO2F2)(H2O)]7 · 4 H2O

transforms into γ, but the water vapor pressure is not high enough to induce further

transformation to δ. The reaction from uranyl fluoride to γ is dependent on interactions

with additional water molecules (see Section 3.5.1), but if the water content of crystalline γ

is similar to that of [(UO2F2)(H2O)]7 · 4 H2O, these water molecules are excess in the product
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Figure 3.14: Subset of the Raman datasets on representative particles as shown in
Figure 3.9 for samples 3, 4, 5, 7, 8, 9, and 10. Only spectra in which γ was the dominant
component have been included. The first spectrum meeting this criterion is shown in dark
blue, and last in dark red. Samples 1, 2, and 6 have been omitted since γ was never the
dominant species in these samples. All spectra are shown normalized to the intensity of the
γ peak to better highlight the shift in peak frequency over time. The first/last peak positions
are: sample 3: 846.1/843.9 cm−1, sample 4: 848.5/846.2 cm−1, sample 5: 847.3/847.3 cm−1,
sample 7: 839.1/840.2 cm−1, sample 8: 845.0/844.9 cm−1, sample 9: 847.9/846.2 cm−1,
sample 10: 849.7/847.3 cm−1.
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Figure 3.15: Comparison of the final spectra in Figure 3.14 for samples 3, 4, 5, 7, 8, 9, and
10. Spectra have been normalized to the intensity of the γ peak for better comparison.
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structure and may reduce the crystallinity of the γ product. This explains the broadness

of the γ Raman peak under these conditions, as well as the redshifted energy. At higher

humidity, enough water vapor is present to cause the formation of the highly hydrated δ

species from γ. Formation of δ pulls excess water from the γ structure, causing better

crystallization that results in a much narrower Raman peak.

This assessment may also explain why the 845 cm−1 Raman peak attributed to γ was

much sharper in the previous study conducted at 75% RH at ambient temperature than

observed at 75% RH and 25◦C in this follow-up study. In the initial study, the samples

were removed from their hydration environments each time they were analyzed via Raman

spectroscopy, exposing them to ambient humidity for short amounts of time. This likely

resulted in the loss of some of the residual water from the γ structure, sharpening the

Raman peak. Variation in the crystallinity of γ between experiments could also explain why

formation of δ was observed to occur readily in the initial experiment at 75% RH but to

a much smaller extent in the follow-up study. Alternatively, this discrepancy could be due

to differences in the initial [(UO2F2)(H2O)]7 · 4 H2O material. As shown in Chapter 2, the

Raman spectra of different batches of [(UO2F2)(H2O)]7 · 4 H2O material were observed to

differ slightly, suggesting that the structural and chemical properties of the material might

vary between batches, affecting the hydration reactions.

Variation in the position of Raman peak attributed to γ over time and between different

samples complicated the utility of MCR analysis, which deconvolutes the real spectra into

linear combinations of “pure” spectral components that are assumed to be static. In

reality, as demonstrated in this case, changes in local environment can induce slight shifts

in the “pure” spectra over time. An approximate analysis was conducted by inputting

the Raman spectrum of pure γ, obtained via experiments described in Chapter 4. These

experiments revealed that γ has a shoulder near 825–830 cm−1, previously not identified

because it was obscured by the overlap of the uranyl stretching mode of δ. This explains

why sample 7 is observed to have a shoulder near 825–830 cm−1 despite the absence of δ, as

indicated by the lack of a peak near 864 cm−1 corresponding to the peroxide stretching

mode. To further constrain the MCR analysis, the Raman spectrum of δ, identified

from the initial particle hydration study and not observed to be particularly humidity
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dependent, was fixed during the iterative calculations. In addition, the concentration of

the initial [(UO2F2)(H2O)]7 · 4 H2O material was set to zero after a complete transformation

from [(UO2F2)(H2O)]7 · 4 H2O to γ was observed. This prevented the growth of the

peroxide stretching mode at 864 cm−1 from being falsely attributed to reformation of

[(UO2F2)(H2O)]7 · 4 H2O, which can be ruled out as the sample was devoid of fluorine in the

SEM-EDS analysis. With these constraints, convergence was achieved in the MCR analysis

of each sample, although the resulting deconvoluted spectral components and normalized

concentration gradients are approximate.

Because the position and width of the Raman peak attributed to γ was observed to vary

significantly between samples, MCR was applied to each sample independently. Since the

spectra of δ was fixed for all samples and the spectra of the initial uranyl fluoride is clear from

the initial scan, only the predicted spectra of γ differed between samples. The deconvoluted

spectral components obtained from the analysis of sample 5 are shown in Figure 3.16 and are

very similar to the spectra deconvoluted in the previous hydration study, shown in Figure 3.3.

That initial study likely overestimated the relative concentration of δ because the low-energy

shoulder of the γ Raman peak had not been identified. The opposite is the case in this follow-

up study; the deconvoluted spectra of γ is predicted to have a more pronounced shoulder

than observed in a pure sample of γ (Figure 4.14), likely leading to a slight underestimate

of δ in a majority of the samples.

The normalized concentration gradients for the majority of the samples are shown in

Figure 3.17. Samples 1 (25◦C, 33% RH) and 6 (35◦C, 32% RH) have been omitted since

no reaction was observed to occur for these samples. It is clear from Figure 3.17 that two

separate reactions occur over the experimental timescale, consistent with the findings of the

initial hydration experiment. The first hydration reaction, from [(UO2F2)(H2O)]7 · 4 H2O

to β, occurred rapidly at higher humidity levels, while the second reaction, from γ to δ,

occurred much more slowly. As noted previously, the rates of both of these reactions were

observed to vary between particles on the same sample. This variation is potentially due

to differences in the morphology and/or the initial water content of the individual particles

tracked in the experiment [88].
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Figure 3.16: Deconvoluted spectral components from the MCR analysis of all particles on
sample 5. The lower energy region of the Raman spectra has been scaled by a factor of three.
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Figure 3.17: Normalized concentration of each species over time, as determined via MCR,
on samples 2–5 and 7–10. Eight lines are shown for each sample, corresponding to the eight
different particles analyzed over the course of the experiment.
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To supplement the MCR analysis, the relative concentration of each species in each

sample over time was also estimated directly from the relative peak intensities in the Raman

spectra. A version of this method, using the relative intensities at 868, 845, and 820 cm−1

to correspond to the the fraction of [(UO2F2)(H2O)]7 · 4 H2O, γ, and δ, respectively, was

previously shown to produce similar concentration gradients to MCR [88]. Here, the method

is updated to better account for observed peak overlap. For example, the observed intensity

at 820 cm−1 was previously assumed to directly correlate to the concentration of δ present

in the particle. However, further characterization of the γ hydration species, presented in

Chapter 4, clarifies that γ has a shoulder near 825 cm−1 in its Raman spectrum in addition

to a dominant peak near 845 cm−1. This shoulder overlaps the uranyl stretching mode of

δ. The ratio of the expected intensity at 820 cm−1 and 845 cm−1 for γ was determined

to be 0.15 from the Raman spectrum of what is assumed to be pure γ (Figure 4.14). The

intensity at 820 cm−1 corresponding to δ is therefore taken to be the raw intensity of the

820 cm−1 peak minus 0.15 times the intensity of the 845 cm−1 peak. Similarly, the amount

of [(UO2F2)(H2O)]7 · 4 H2O is described by the intensity of the 868 cm−1 peak minus 0.28

times the amount of δ due to the overlap of the [(UO2F2)(H2O)]7 · 4 H2O uranyl stretching

mode and δ peroxide stretching mode. Finally, the amount of γ in the sample is described

by the intensity of the 845 cm−1 peak minus 0.06 times the intensity of the 820 cm−1 peak.

The resulting concentration gradients for each species over time are shown in Figure 3.18.

The curves are again approximate, as the overlap ratios described above are expected to be

temperature and humidity dependent. The results were reasonably similar to the MCR

results in Figure 3.17. The most notable difference is for sample 7; the MCR analysis did

not resolve δ in this sample, while the peak intensity method did. The lack of a peroxide

stretching mode at 864 cm−1 in this sample after hydration (Figure 3.9), suggests that the

concentration gradients calculated via MCR are more accurate, at least for this sample. On

the other hand, the MCR analysis showed the γ and δ concentrations stabilizing towards

the end of the experiment in samples 3 and 8. In Figure 3.9, it is clear that the ratio of

the 845 cm−1 and 820 cm−1 peaks continues to change in these samples, as shown with the

peak intensity method. These inconsistencies limit the feasibility of a quantitative kinetic

analysis of the second reaction, from γ to δ.
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Figure 3.18: Normalized concentration of each species over time, as determined via ratios
of the Raman intensity at 868 cm−1, 845 cm−1, and 868 cm−1, on samples 2–5 and 7–10.
Eight lines are shown for each sample, corresponding to the eight different particles analyzed
over the course of the experiment.
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3.5 Kinetic analysis

3.5.1 Uranyl fluoride to uranyl hydroxide (γ)

While neither analysis method seems to fully resolve the relative concentrations of the γ

and δ across this dataset, the concentration gradients of the initial [(UO2F2)(H2O)]7 · 4 H2O

material calculated with each method are quite consistent. The relative concentration of

this species is easier to determine because the 868 cm−1 peak does not shift in frequency or

broaden significantly with hydration. The quantification of this species over time allows for

a more detailed kinetic analysis of the first reaction, from [(UO2F2)(H2O)]7 · 4 H2O to γ, to

reveal mechanistic information.

Figure 3.19 shows the concentration gradient of [(UO2F2)(H2O)]7 · 4 H2O for a charac-

teristic particle on samples 2, 3, 4, 7, and 8 to better illustrate the curve shape. The

remaining samples were excluded because the transformation from [(UO2F2)(H2O)]7 · 4 H2O

to γ either did not proceed significantly over the experiment timescale (samples 1 and 6), or

occurred too rapidly to collect an adequate number of data points along the reaction curve

(samples 5, 9, and 10). The concentration of [(UO2F2)(H2O)]7 · 4 H2O over time follows

a sigmoidal shape; this is most apparent for sample 7, where the complete conversion of

[(UO2F2)(H2O)]7 · 4 H2O occurs over roughly the same timescale as the experiment. The

rate of conversion from [(UO2F2)(H2O)]7 · 4 H2O to γ is slow at first but then accelerates as

the conversion proceeds. As the amount of [(UO2F2)(H2O)]7 · 4 H2O is reduced, the rate of

conversion again slows.

This sigmoid shape is suggestive of some sort of nucleation-and-growth mechanism,

which often describes the kinetics of crystallization and solid-state phase transitions [99].

Nucleation reactions occur in three phases, as illustrated in Figure 3.20. Nuclei begin to

form during the initial induction phase. As these nuclei begin to grow and additional nuclei

are formed, the reaction rate increases significantly. Finally, the reaction slows as the growing

particles come into contact with each other and as the amount of remaining reactant where

nuclei can form is decreased.
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Figure 3.19: Normalized concentration gradients of [(UO2F2)(H2O)]7 · 4 H2O for a
characteristic particle on samples 2, 3, 4, 7, and 8 over the 220 day hydration experiment.
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Figure 3.20: Normalized concentration curves of the reactant and product phases in a
solid-state nucleation reaction. Insets show a schematic of the three-phase nucleation-and-
growth process. Nuclei begin to form during the initial induction phase. As these nuclei
begin to grow and additional nuclei are formed, the rate increases significantly. Finally, the
rate slows as the growing particles come into contact with each other and as the amount of
remaining reactant where nuclei can form is decreased.
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The simplest nucleation reaction model is described by the Avrami equation [12, 13],

y = e−(kt)n , (3.1)

where y(t) is the normalized concentration of the reactant species over time, and n and k are

constants that describe the rate. From the derivation of the Avrami equation, n is related

to the number of dimensions in which nuclei growth occur, and is thus sometimes fixed or

constrained to be an integer value. However, due to the often irregular shape of nuclei as well

as the assumptions of this model, n is also often determined to be noninteger. The other fit

parameter in the Avrami model, k, is a time independent rate constant, with units [1/time].

Thus, one of the assumptions of the Avrami equation is that the nucleation and growth rate

are not dependent on time or the extent of the reaction. Additionally, nucleation is assumed

to occur randomly and homogeneously.

The Avrami equation (Equation 3.1) can be rewritten,

ln(− ln(1− y(t))) = n ln(k) + n ln(t), (3.2)

allowing for the determination of n and k by plotting ln(− ln(y(t))) vs. ln(t), which will

be linear for reactions following Avrami behavior. Figure 3.21 shows ln(− ln(y(t))) vs.

ln(t) plotted for representative particles on samples 2, 3, 4, 7, and 8. The curves for

samples 2 and 7 look approximately linear, but the curves for the remaining samples are

clearly nonlinear, indicating that the simplistic Avrami model cannot accurately describe

the kinetics of the observed reaction. This is also clear from Figure 3.22, which shows the

[(UO2F2)(H2O)]7 · 4 H2O concentration curves for a representative particle on samples 3, 4,

7, and 8 fit to the Avrami model. While the Avrami model reproduces the general shape of

these curves, it overestimates the reaction rate as the conversion proceeds toward completion.

This indicates that the nucleation and growth rates in this reaction are time dependent.

While the Avrami model is still widely used to interpret solid-state reaction mechanisms

[99], newer dispersive kinetic models have attempted to account for time-dependent

nucleation and growth rates. Prominent examples inslude the acceleratory and deceleratory
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Figure 3.21: ln(− ln(y(t))) vs. ln(t) plotted for the uranyl fluoride concentrations over
time for representative particles on samples 2, 3, 4, 7 and 8.
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(a) (b)

(c) (d)

Figure 3.22: Normalized concentration gradients of [(UO2F2)(H2O)]7 · 4 H2O for a
representative particle on (a) sample 3, (b) sample 4, (c) sample 7, and (d) sample 8 over
the 220-day hydration experiment, fit to the Avrami and Skrdla deceleratory dispersive
models. The Avrami n/k[1/hr] parameters were 2.0/0.069, 1.55/0.085, 2.1/0.0082, and
3.0/0.0491 for samples 3, 4, 7, and 8, respectively. The Skrdla α[1/hr]/β[1/hr2] parameters
were 0.037/0.00112, 0.095/0.024, 0.0115/0.000092, and 0.2/0.0006.
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dispersive models introduced by Skrdla in 2009 [145]. These models are described by

Equation 3.3 (acceleratory) and Equation 3.4 (deceleratory). In these models, the rate

“constant”, k, is, in fact, no longer constant, but rather either increases or decreases as a

function of time. The fit parameters, α and β, describe the initial rate and the evolution of

the rate over time, respectively. Skrdla presents a physicochemical interpretation of these

parameters as well, relating α and β to the activation enthalpy and entropy, respectively

[145].

y(t) = e(−α/t)(e
βt2−1); k(t) = αeβt

2

(3.3)

y(t) = e(αt)(e
−βt2−1); k(t) = αe−βt

2

(3.4)

A comparison of the general shape of both Skrdla models and the Avrami model is

shown in Figure 3.23. Based on the fact that the time-independent rate constant of the

Avrami model seems to overestimate the conversion rate toward the end of the conversion

(Figure 3.22), the deceleratory Skrdla model was fit to the data. These fits, shown compared

to the Avrami fits in Figure 3.22, reduced the residuals in each case. Additional sigmoidal

models, such as the Prout-Tompkins [134, 24] model, were also fit to the data but resulted

in larger residuals than the Skrdla deceleratory model and are not shown in Figure 3.22.

The deceleratory nature of the conversion from [(UO2F2)(H2O)]7 · 4 H2O to γ suggests

that it is denucleation, rather than nucleation, driven [145]. This means that formed nuclei

promote the dissociation of the reactant species ([(UO2F2)(H2O)]7 · 4 H2O) rather than the

formation of the product species (γ). Denucleation reactions tend to be deceleratory because

the reaction rate is correlated to the volume of unreacted reactant where new nuclei can form,

which is small toward the end of the conversion [145].

As discussed in Chapter 2, it is likely that the [(UO2F2)(H2O)]7 · 4 H2O structure can

absorb additional water molecules into its pores with exposure to elevated water vapor

pressure. A quasi-elastic neutron scattering study by Miskowiec et al. found that these

absorbed water molecules could not be removed upon desiccation [113], suggesting that

these water molecules form strong hydrogen bonds to the uranyl framework, as anticipated

from the structure. A plausible denucleation mechanism involves the incorporation of water

molecules into specific positions within the crystal structure that drives the dissociation of
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Figure 3.23: Comparison of the Avrami and acceleratory/deceleratory dispersive models
of Skrdla. The example parameters are Avrami: k=0.0176 1/hr, n=1.912, Skrdla - accel.:
α=0.5 1/hr, β=0.001 1/hr2, Skrdla - decel.: α = 0.04 1/hr, β = 0.001 1/hr2.
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the fluorine ligands at these sites, forming hydroxy ligands and releasing HF gas that leaves

the crystal matrix. A dissociative reaction mechanism is consistent with findings of Kips et

al. that the loss of fluorine can be accelerated with UV irradiation [87].

Attempts to fit all of the [(UO2F2)(H2O)]7 · 4 H2O concentration curves to the Skrdla

model were only successful for samples 3, 4, 7 and 8. The fitted α and β parameters

for all particles on these four samples are shown in Figure 3.24, plotted against the water

vapor pressure. Both α and β increase with increasing water vapor pressure, although the

relationship is dependent on the temperature as well. Using the average α and β values each

of the four samples analyzed, the calculated time-dependence of the respective reaction rates

are shown in Figure 3.25. It is clear that at higher water vapor pressure, the initial rate

of the denucleation is high but also decreases more rapidly. The rate curves in Figure 3.25

are qualitatively similar to the [(UO2F2)(H2O)]7 · 4 H2O concentration curves of the same

samples, further supporting a reactant-driven denucleation mechanism.

The relationship between the reaction rate and water vapor pressure is unclear from

Figure 3.24 since only two samples could be fit at each temperature. To get a clearer

picture of the effect of temperature and water vapor pressure on the rates, the concentration

curves for all of the particles on samples 2–5 and 7–9 of the curves were fit to the simpler

Avrami model. Sample 10 was excluded from this analysis because the data collected during

this first rapid hydration reaction were sparse, and because it is unclear how the observed

deliquescence of particles on this sample would effect the reaction mechanism. To achieve

convergent fits for the remaining particles and better compare the k values, n was arbitrarily

fixed at 2.5 for all fits.

Figure 3.26 shows the resulting k values as a function of the water vapor pressure. The

water vapor pressure dependence at each individual temperature is qualitatively as expected,

but the two sets of data do not follow the same trendline. The reaction rates for samples

stored at 35◦C are lower than predicted solely by extrapolating the results from 25◦C to higher

water vapor pressure. This is likely explained by the effect that temperature has on the water

sorption isotherm; at constant water activity, the amount of absorbed water is reduced with

increasing temperature [44]. The first step of the proposed denucleation reaction involves

the absorption of additional water molecules into the pores of the [(UO2F2)(H2O)]7 · 4 H2O
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(a) (b)

Figure 3.24: Skrdla (a) α and (b) β parameters vs. water vapor pressure for particles on
samples 3, 4, 7 and 8. Particles from samples 3 and 4 (25◦C) are shown in blue, and particles
from samples 7 and 8 (35◦C) are shown in red. Note the logarithmic y-axes.
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(a) (b)

Figure 3.25: Time dependence of the reaction rate based on the average α and β parameters
for samples 3, 4, 7, and 8, shown with a (a) linear and (b) logarithmic y-scale.
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Figure 3.26: Avrami k parameter vs. water vapor pressure, including fits from all particles
on samples 2–5 and 7–9. Particles from samples 2–5 (25◦C) are shown in black, particles
from samples 7–9 (35◦C) are shown in blue. n has been fixed at 2.5 in all fits.
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structure. At higher temperatures, less water is absorbed, which has a negative effect on the

overall reaction rate. Repeating this experiment over a wider temperature range would help

clarify this effect.

3.5.2 Uranyl hydroxide (γ) to uranyl peroxide (δ)

As discussed previously, a thorough kinetic analysis of the second reaction, from γ to δ, is

impeded by the inability to accurately resolve the relative concentrations of these two species

due to variation in the shape and location of the Raman peak attributed to γ. Figure 3.27

shows the approximate concentration gradients of δ over time as calculated by the MCR

and point ratio methods. While precise rate information cannot be extracted from these

approximations, it is clear that formation of δ is dependent on the water vapor pressure.

The δ species was the dominant species by the end of the experiment in samples 5 and 10,

which were exposed to the highest RH. Temperature again seems to have a negative effect on

the reaction rate. Samples 8 and 9 were stored under higher vapor pressure than sample 5

(4.22 and 4.67 kPa vs. 2.97 kPa, respectively), yet the rate of δ formation was much greater

in sample 5, indicating that the elevated temperature of samples 8 and 9 impeded formation.

This can be potentially explained again by the negative effect that temperature has on water

absorption. Alternatively, this effect may be related to the finding, described in the next

chapter (Section 4.5), that the structure of γ is sensitive to small changes in temperature.

A contraction in the interlayer spacing of the γ structure could have a significant effect on

the reactivity of the species.

3.6 Summary and future directions

Two particle hydration studies have demonstrated that uranyl fluoride is unstable in humid

conditions, with a threshold humidity of 30–60% RH depending on the temperature (25◦C

vs. 35◦C). Above this threshold, uranyl fluoride undergoes a transformation to γ, tentatively

identified in this chapter as a uranyl hydroxide hydrate species. Further characterization of

this species is discussed in Chapter 4. With exposure to high enough water vapor pressure, γ

can be transformed into δ, identified as a uranyl peroxide hydrate species similar to studtite.
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(a)

(b)

Figure 3.27: Concentration gradients for uranyl peroxide (δ) over time for samples 3–5
and 7–10 as calculated via (a) MCR and (b) the point ratio method. Samples 1, 2, and 6
are omitted, as δ was not observed to form in the timescale examined.
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The Raman spectra of these three species overlap significantly, necessitating the tracking of

particles over time to deconvolute the pure spectra and reveal the concentration gradients.

A partial loss of fluorine in uranyl fluoride particles upon hydration was first documented

by Kips et al. via SEM-EDS and IM-SIMS. [87] The hydration studies discussed in

this chapter confirm this finding, clarifying that a complete loss of fluorine is expected

under a humid environment. Analysis of the same particles over several months provides

a much more complete understanding of this reaction and insight into the reaction

mechanism. The deceleratory sigmoidal shape of this conversion is consistent with a

denucleation reaction mechanism, suggesting that the absorption of additional water into

the [(UO2F2)(H2O)]7 · 4 H2O structure creates reactive sites where water molecules interact

with fluorine ligands, leading to the dissociation of the fluorine ligands and release of HF

gas. The observed effect of temperature on the reaction rate is consistent with a multistep

mechanism involving water absorption; the increase in the rate at elevated temperature was

not observed to fully scale with the correlated increase in water vapor pressure because

the amount of water absorbed into the [(UO2F2)(H2O)]7 · 4 H2O structure is reduced with

increasing temperature. Additional experiments at fixed water vapor pressure and a wider

temperature range would help clarify the temperature dependence of the rate, providing

additional mechanistic insight. Future computational studies could also further clarify the

mechanistic details of this reaction. In particular, nudged elastic band calculations could

provide insight about potential transition states in the water–fluorine interaction.

The formation of a uranyl peroxide species from the uranyl hydroxide intermediate was

also observed on multiple samples stored at high humidity. This reaction is clearly dependent

on the water vapor pressure; in the first particle hydration study, the rate of uranyl peroxide

formation was significantly accelerated when the RH was increased from 75% to 100%. A

detailed analysis of the water vapor pressure and temperature dependence of this second

reaction is complicated, however, by the water vapor pressure and temperature dependence

of the structure of the uranyl hydroxide intermediate. A worthwhile follow-up experiment

would be to track the uranyl peroxide reaction under a variety of conditions starting from

the same pure γ starting material.
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Chapter 4

Characterization of a novel layered

uranyl hydroxide hydrate (γ) from the

hydration of uranyl fluoride

Chapter 3 demonstrated that uranyl fluoride is not stable under humid environments, but

instead transforms into two hydration products, γ and δ. SEM-EDS measurements confirm

that neither γ nor δ contain fluorine, identifying them as uranyl hydroxide or peroxide

species rather than additional uranyl fluoride hydrates. The Raman spectrum of the

first hydration product, γ, is generally consistent with uranyl hydroxide hydrates like the

minerals schoepite ([(UO2)4O(OH)6] · 6 H2O) and metaschoepite ([(UO2)4O(OH)6] · 5 H2O).

This chapter presents a more thorough characterization of γ, in part via a comparative

analysis with respect to synthetic metaschoepite. The structure of γ is shown to be similar

to that of schoepite and metaschoepite, but with a significantly expanded layer spacing

that allows for the incorporation of additional interlayer water molecules. This structural

distinction explains differences in the vibrational spectra of γ and synthetic metaschoepite,

as well as in the chemical behavior upon desiccation and dehydration. Components of this

chapter come from the following papers:
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M. C. Kirkegaard, J. L. Niedziela, A. Miskowiec, A. E. Shields, and B. B. Anderson.

“Elucidation of the structure and vibrational spectroscopy of synthetic metaschoepite

and its dehydration product.” Accepted to Inorg. Chem.

M. C. Kirkegaard, M. W. Ambrogio, T. L. Spano, J. L. Niedziela, A. Miskowiec,

A. E. Shields and B. B. Anderson. “Formation of a uranyl hydroxide hydrate via

hydration of [(UO2F2)(H2O)]7 · 4 H2O.” Submitted to Dalton Trans.

4.1 Literature review of uranyl hydroxide hydrates

4.1.1 Known uranyl hydroxide hydrate structures

Much of the current understanding of solid-state uranyl hydroxide species comes from the

study of minerals [130]. The hydrated uranyl hydroxide mineral schoepite,

[(UO2)4O(OH)6] · 6 H2O, was first described by Walker et al. in 1923 [164] and was partially

characterized in the following decades [34]. In the 1990s, a full structure determination was

made by Finch et al. from a naturally occurring sample. X-ray diffraction (XRD) confirmed

that the uranyl ion in schoepite is coordinated to five hydroxy groups, creating edge-sharing

UO7 pentagonal bipyramids that form 2D layers (Figure 4.1). Water molecules exist between

the layers, hydrogen bonded to the hydroxy groups. These water molecules can also act as

hydrogen bond donors to uranyl oxygens [53].

It was noted in the 1960s that multiple distinct uranyl hydroxide hydrates exist, and

that conversion between these forms occurs readily upon hydration/dehydration [34, 33].

The most notable example of this is the slow dehydration of schoepite in air to a partially

dehydrated form known as metaschoepite [54]. Because this transformation occurs under

ambient conditions, schoepite and metaschoepite are often found together in nature [55, 54].

The stoichiometry of metaschoepite was identified as [(UO2)4O(OH)6] · 5 H2O, with one

fewer water molecule than schoepite [45, 71, 54]. Metaschoepite is difficult to distinguish

from schoepite with powder XRD, suggesting that they have similar crystal structures and

leading Finch et al. to propose that the dehydration transition involves the simple removal

of specific water molecules [54]. However, while metaschoepite and schoepite display very
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(a) (b)

Figure 4.1: (a) Top-down and (b) side views of the crystal structure of schoepite,
[(UO2)4O(OH)6] · 6 H2O, as determined by Finch et al.[53] Oxygen atoms in between the
layers of uranyl polyhedra correspond to water molecules; hydrogen atoms are omitted as
their location was not solved experimentally.
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similar powder XRD patterns, they are readily distinguishable via single-crystal diffraction

[34]. In 1999, Weller et al. finally produced large enough single crystals of synthetic

metaschoepite for full structural characterization via this method [171].

Single-crystal diffraction studies confirmed that metaschoepite has a very similar

structure to schoepite, with the same layers of edge-sharing pentagonal bipyramids in layers.

Slight differences in the orientation and tilt of the pentagonal bipyramids were noted, as

well as differences in the organization of the interlayer water molecules. In schoepite, there

are the same number of hydroxy groups and water molecules, such that each hydroxy group

forms a strong hydrogen bond with a water molecule. In metaschoepite, this is no longer the

case and two water molecules interact with hydroxy groups in both layers, forming weaker

hydrogen bonds [171]. This leaves one remaining water molecule that does not interact with

a hydroxy group but rather forms hydrogen bonds with the other waters and the uranyl

oxygens [171]. While Finch et al. suggested that the dehydration transition involved the

simple removal of specific water molecules, the distinct arrangement of water molecules in

metaschoepite suggests that the dehydration transition is more complicated and that the

removal of four water molecules in the unit cell is followed by shifts in the remaining oxygen

positions [171]. The minor structural differences between schoepite and metaschoepite are

shown in Figure 4.2.

Due to these minor structural differences, schoepite and metaschoepite can be distin-

guished by their a and b lattice parameters [171, 90]. An analysis of all crystallographic

studies of schoepite [19, 133, 34, 53, 131] and metaschoepite [34, 171, 93, 25, 90] finds that

while the a and b lattice parameters are both statistically distinct (p = 5.5 · 10−5 and 0.026,

respectively), the c lattice parameter, which defines the interlayer spacing, is not statistically

distinct (p = 0.48). This is illustrated in Figure 4.3. Thus, removal of interlayer water

molecules in the transition from schoepite to metaschoepite does not change the interlayer

spacing.

An additional uranyl hydroxide hydrate mineral, paraschoepite, was identified by Schoep

and Stradiot in 1947 [142] and later partially characterized via powder XRD by Christ

and Clark in 1960 as a component of a mixed phase mineral sample [34]. No further

evidence of paraschoepite has been presented. The existence of paraschoepite was more
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(a)

(b)

Figure 4.2: (a) Comparison of the uranyl layers in schoepite (left) and metaschoepite
(right). Reproduced from Weller et al. 2000 [171]. (b) Comparison of the position of oxygen
atoms in the interlayer water layers in schoepite (left) and metaschoepite (right). Reproduced
from Weller et al. 2000 [171].
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Figure 4.3: Average lattice parameters reported from structural characterization of
schoepite [19, 133, 34, 53, 131] and metaschoepite [34, 171, 93, 25, 90]. Error bars are
±σ. For consistency, lattice parameters for both schoepite and metaschoepite are defined as
reported for schoepite, which belongs to the Pbcn space group. The c parameter is normal
to the uranyl layers.

126



recently questioned by Burns et al., who suggested that the extraneous diffraction maxima

in a schoepite sample that Christ and Clark assigned to paraschoepite may have been

due to crystallographically oriented inclusions of the mixed-valence uranium oxide hydrate

ianthinite, [U 4+
2 (UO2)4O6(OH)4(H2O)4] · 5 H2O [28]. Alternatively, paraschoepite has been

interpreted as a mixture of schoepite, metaschoepite, and “dehydrated schoepite” [55]. Thus,

there remains lingering uncertainty over the number of different uranyl hydroxide hydrate

species that exist, whether as minerals or produced synthetically. The identification of

a likely uranyl hydroxide hydrate species formed from the hydration of uranyl fluoride is

particularly interesting in this light, and further characterization of this species is motivated

to elucidate how this species is distinct from other known or predicted species.

4.1.2 Vibrational spectroscopy of uranyl hydroxide hydrates

While natural and synthetic uranyl hydroxides hydrates have been studied at length, there

is significant variation among published vibrational spectra supposedly corresponding to

the same species. Raman spectra of uranyl hydroxide species typically have at least one

symmetric uranyl stretching mode in the 830-855 cm−1 range, as well as peaks near 550 and

450 cm−1, but are not very consistent, as illustrated in Figure 4.4 [4, 60, 132, 31, 2, 70,

69, 18, 165]. Infrared (IR) spectra, while rarer in the literature, are similarly inconsistent

[71, 3]. Characterizing pure species is difficult since transitions between the different states

of hydration occur at ambient conditions. Naturally occurring samples of uranyl hydroxide

have been shown via single-crystal diffraction to contain multiple phases, [55, 54] so it is not

surprising that Raman spectra of natural samples are inconsistent and show multiple peaks

in the uranyl stretching region (Figure 4.4).

However, this discrepancy persists among synthetically produced samples as well. This

can be explained at least in part by the sensitivity of these species to dehydration, whether

via laser heating or desiccating storage conditions. It was recently demonstrated in a study

related to this present work, described elsewhere [90], that synthetic metaschoepite is not

stable to dehydration when stored for 4–6 weeks at 16% or 40% RH, leading instead to

the formation of anhydrous uranyl hydroxide [90]. In addition, synthetic metaschoepite was

shown to be very sensitive to laser heating [90]. Figure 4.5 shows the Raman spectrum
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Figure 4.4: Raman spectra of various uranyl hydroxide hydrates in the literature. (a)
Sweet 2013 [149] (metaschoepite), (b) Alam 2016 [2] (metaschoepite), (c) Maya 1981 [107]
(schoepite), (d) Amme 2002 [4] (schoepite), (e) Frost 2007 [60] (schoepite), (f) Ho Mer Lin
2014 [70] (schoepite), (g) Ho Mer Lin 2015[69] (schoepite, Alligator), (h) Ho Mer Lin 2015
[69] (schoepite, Belgian Congo), (i) Ho Mer Lin 2015 [69] (schoepite, North Span), (j) Ho
Mer Lin 2015 [69] (schoepite, synthetic), (k) Berlizov 2016 [18] (schoepite), (l) Walshe 2017
[165] (schoepite, synthetic). The higher and lower energy regions of each spectrum have been
normalized independently to allow for ease of comparison.
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Figure 4.5: Uranyl stretching region of the Raman spectrum of a representative particle
of uranyl hydroxide hydrate examined under increasing laser power density compared to
the Raman spectrum of synthetic “metaschoepite” determined by Sweet et al. [149]. The
sample studied by Sweet et al. may have been dehydrated during laser exposure. The Raman
spectra presented in this study were obtained with a laser power density of 101 W/cm2 to
avoid unintended alteration of the samples.
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of synthetic metaschoepite obtained with increasing laser power density. Changes in the

Raman spectra were observed with a laser power density of 334 W/cm2, while at 964 W/cm2,

dehydration via laser heating produced a Raman spectrum consistent with anhydrous uranyl

hydroxide [90]. Inadvertent dehydration of metaschoepite, whether due to storage conditions

or laser heating, likely explains why Sweet et al. found the Raman spectra of metaschoepite

and α−UO2(OH)2 to be nearly indistinguishable, despite XRD patterns consistent with the

distinct structural forms [149] and why several Raman spectra of natural uranyl hydroxide

hydrate samples are more consistent with anhydrous uranyl hydroxide [70, 69, 18]. To

minimize the likelihood of sample alteration when studying uranyl hydroxide hydrates for

this work, the laser power density was kept at 101 W/cm2 in all subsequent Raman studies.

4.2 Structural characterization of γ

The uranyl fluoride particle hydration experiments described in Chapter 3 revealed that

uranyl fluoride is not stable at high relative humidity (RH), but rather undergoes a

complete loss of fluorine to form a uranyl hydroxide species. Structural information

was unattainable from these particle studies, however, motivating a follow-up experiment

involving the hydration of much larger samples of uranyl fluoride suitable for XRD analysis.

XRD and Raman spectroscopy data were collected periodically on two different samples

of uranyl fluoride stored at approximately 84% RH at 25 and 35◦C, respectively. Each

sample was produced by depositing approximately a few mg of uranyl fluoride hydrate

([(UO2F2)(H2O)]7 · 4 H2O) onto zero-background silicon XRD plates along with a small

amount of silicon powder to act as a standard. No solvent was used in the preparation of

the XRD plates to prevent dehydration or other alteration of the material. The two plates

were then placed on top of mounts in separate plastic containers filled with a small amount

of a KCl saturated-salt solution and stored in different incubators set to 25 and 35◦C. The

water vapor pressures of the two samples were approximately 2.67 and 4.67 kPa. Samples

were removed from their hydration containers for periodic XRD and Raman analysis, and

measurements were carried out at ambient conditions. Multiple micro-Raman spectra were

collected in different regions of the sample during each analysis to assess homogeneity.
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Both uranyl fluoride samples, equilibrated at 84% RH at 25 or 35◦C, were observed

to undergo a chemical transformation upon hydration, as characterized by both XRD and

Raman spectroscopy. At 25◦C (PH2O = 2.67 kPa), this hydration reaction proceeded very

slowly over the course of the 140-day experiment, as visible from both the XRD pattern

and the uranyl stretching region of the Raman spectrum (Figure 4.6). At 35◦C (PH2O =

4.67 kPa), however, a complete transformation occurred over this time frame, as shown

in Figure 4.7. The changes in the Raman spectra were consistent with the reaction from

uranyl fluoride to a uranyl hydroxide hydration product previously identified in hydrated

[(UO2F2)(H2O)]7 · 4 H2O particles, although the hydration reaction was found to occur much

more slowly in bulk. For comparison, complete transformation of uranyl fluoride particles

to uranyl hydroxide at 75% RH at ambient temperature (20–22◦C) was observed to take

approximately 50 days [88], while the same reaction had barely progressed after 140 days

at 84% RH and 25◦C. Increasing the temperature and thus water vapor pressure was found

to significantly accelerate the reaction such that complete conversion of a bulk sample was

attainable in several months.

Collection of multiple micro-Raman spectra during each analysis revealed that the sample

did not hydrate homogeneously. This is illustrated in Figure 4.8. While the initial uranyl

fluoride material was found to be homogeneous as characterized via Raman spectroscopy,

formation of the uranyl hydroxide product occurred more rapidly in some regions than others,

potentially due to variations in the surface morphology of the sample. This is consistent with

prior observations that the rate of hydration varied somewhat among different particles on the

same sample [88]. After 140 days, the sample hydrated at 35◦C had completely transformed

from uranyl fluoride to uranyl hydroxide as evident from the XRD data (Figure 4.7a). At

this point, as shown in Figure 4.8, the Raman spectra were once again consistent across the

sample, with no evidence of remaining [(UO2F2)(H2O)]7 · 4 H2O.

After 140 days of hydration, there was also no evidence of the uranyl peroxide species

that was previously observed to form in hydrated particulate samples. While it is difficult to

rule out the presence of a peak near 820 cm−1 corresponding to the uranyl stretching mode in

this species due to overlap with the uranyl hydroxide peak, the presence of uranyl peroxide in

the hydrated sample would be evident by a peroxo stretching mode near 865 cm−1 [88, 40].
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(a) (b)

Figure 4.6: (a) XRD patterns over time of a sample of [(UO2F2)(H2O)]7 · 4 H2O stored at
84% RH at 25◦C (PH2O = 2.67 kPa) compared to the expected patterns of uranyl fluoride
hydrate ([(UO2F2)(H2O)]7 · 4 H2O) and schoepite ([(UO2)4O(OH)6] · 6 H2O). Dashed lines
show the position of peaks corresponding to the silicon standard added to the sample. (b)
The uranyl stretching region of the Raman spectrum of the same sample over time. Dashed
lines at 868 and 846 cm−1 highlight the location of the dominant uranyl stretching modes of
[(UO2F2)(H2O)]7 · 4 H2O and the new hydration product (γ), respectively.
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(a) (b)

Figure 4.7: (a) XRD patterns over time of a sample of [(UO2F2)(H2O)]7 · 4 H2O stored at
84% RH at 35◦C (PH2O = 4.67 kPa) compared to the expected patterns of uranyl fluoride
hydrate ([(UO2F2)(H2O)]7 · 4 H2O) and schoepite ([(UO2)4O(OH)6] · 6 H2O). Dashed lines
show the position of peaks corresponding to the silicon standard added to the sample. (b)
The uranyl stretching region of the Raman spectrum of the same sample over time. Dashed
lines at 868 and 846 cm−1 highlight the location of the dominant uranyl stretching modes of
[(UO2F2)(H2O)]7 · 4 H2O and the new hydration product (γ), respectively.
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Figure 4.8: The uranyl stretching region of the Raman spectrum over time of a sample of
[(UO2F2)(H2O)]7 · 4 H2O stored at 85% RH at 35◦C (PH2O = 4.67 kPa). Five Raman spectra
were collected from random regions of the sample on each day, with the exception of after 18
days of hydration, when only two spectra were collected. Dashed lines at 868 and 846 cm−1

highlight the location of the dominant uranyl stretching modes of [(UO2F2)(H2O)]7 · 4 H2O
and the new hydration product (γ), respectively.
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The absence of this second hydration product of uranyl fluoride is not surprising given

the much slower hydration rate observed for the bulk vs. particle samples. As described

in Chapter 3, on a particle scale, the formation of this uranyl peroxide species from the

uranyl hydroxide intermediate is already observed to occur much more slowly than the first

hydration reaction from uranyl fluoride to uranyl hydroxide. Complete transformation of the

bulk uranyl fluoride sample to uranyl hydroxide in this study took at least 100 days at 35◦C,

suggesting that it could possibly take years to form a significant quantity of the peroxide

species.

As shown in Figure 4.7, the diffraction maxima of the hydration species are similar

to those expected of the schoepite, [(UO2)4O(OH)6] · 6 H2O. The most notable difference

between the two patterns is a shift in the (002) and (004) peaks near 2θ = 12 and 24°,

respectively, indicative of an expanded layer spacing. Rietveld refinement was used to

determine the lattice parameters of γ using the crystal structure of schoepite as an initial

structure. A satisfactory fit was obtained, with major reflections assigned, as shown in

Figure 4.9. The refined lattice parameters are shown in Table 4.1 compared to other uranyl

hydroxide hydrates. The primary distinction of γ from the known structures schoepite and

metaschoepite is an expanded c lattice parameter (the c direction has been redefined to be

perpendicular to uranyl sheets in both schoepite and metaschoepite). This lattice parameter

is approximately 14.73 Å in both schoepite and metaschoepite, compared with 15.118 Å as

measured for γ.

The expanded layer spacing in γ relative to schoepite or metaschoepite is reminiscent of

the proposed mineral paraschoepite [142]. As shown in Figure 4.10, the diffraction maxima

of γ match reflections of paraschoepite reported by Christ and Clark from a mixed-phase

mineral sample [34]. While ianthinite has a similarly expanded layer spacing relative to

schoepite and metaschoepite, the presence of ianthinite in this sample seems unlikely due to

lack of prominent peaks in the 2θ = 26–27° region of the powder diffraction pattern. The

diffraction maxima of γ cannot be attributed to a mixture of schoepite and its dehydration

products either. The sharpness of the diffraction maximum at 2θ = 12° and the homogeneity

of collected Raman spectra suggests that γ consists of a single phase. While it is impossible to

confirm whether γ is a synthetic analog of paraschoepite, the existence of a uranyl hydroxide
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Figure 4.9: Rietveld refinement of γ using the crystal structure of schoepite [53]. Silicon
powder was added to the sample as a standard.
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Table 4.1: Rietveld refinement parameters of γ compared to other uranyl hydroxide
hydrates. Lattice parameters are oriented so that the c-axis is perpendicular to the uranyl
sheets. All distances are in Å, and all lattice angles are 90 degrees.

Sample a b c
schoepite [53] 14.337(3) 16.813(5) 14.731(4)
syn. metaschoepite [171] 14.050(2) 16.709(2) 14.7291(2)
aged metaschoepite [171]a 14.112 16.768 15.143
syn. metaschoepite [90] 14.037 16.678 14.622
paraschoepite [34]b 14.12 16.83 15.22
γ 14.168 16.741 15.118

a Weller et al. found that a crystal of metaschoepite cooled to 150K and then warmed to
room temperature and left at ambient conditions for several months transformed to a distinct
structure with the composition UO3 · 2.25 H2O and space group Pbna. A full structural
solution of this species was not made.
b Christ and Clark also refer to this species as schoepite-III.
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Figure 4.10: XRD pattern of γ compared to the reflections reported for the debated
species “paraschoepite” [34] (also referred to as schoepite-III by Christ and Clark) and the
known patterns of ianthinite [28], metaschoepite [171], schoepite [53], and anhydrous uranyl
hydroxide (α−UO2(OH)2) [152].
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hydrate with similarly expanded layer spacing adds weight to claims that this mineral may

exist.

There is additional evidence of synthetic uranyl hydroxide hydrate species with expanded

layer spacing. As shown in Table 4.1, Weller et al. found that a crystal of metaschoepite

cooled to 150K and then warmed to room temperature and left at ambient conditions for

several months transformed to a distinct structure with an expanded layer spacing. A full

structural solution of this species was not made, and the relationship between metaschoepite

and this distinct species is unclear. However, the composition of the aged sample was

determined to be UO3 · 2.25 H2O, with more water per unit cell than metaschoepite, which

has the empirical formula UO3 · 2 H2O. This suggests that the layer spacing expands to

incorporate additional water molecules. Since γ is formed at high RH, it may have a similarly

elevated water content in comparison to schoepite and metaschoepite.

4.3 Hydration of synthetic metaschoepite

The hypothesis that the uranyl hydroxide hydration product may contain more interlayer

water molecules than schoepite and metaschoepite raises the question of whether or not

it is possible to form this species via the hydration of these known materials. Synthetic

metaschoepite can be readily produced for such a hydration experiment. It was demonstrated

previously that the structure of bulk synthetic metaschoepite is not altered by long-term

exposure to a 75% RH environment [90]. A follow-up experiment was carried out to

investigate whether synthetic metaschoepite might transform into a γ-like species with

expanded layer spacing upon equilibration in a more humid environment.

Synthetic metaschoepite material was prepared from the hydration of amorphous UO3

as described previously [90]. Uranyl nitrate hexahydrate crystals (depleted, from SPI-

Chem) were first ground into a powder and then heated in air at 300◦C for 24 hours to

produce dark red x-ray–amorphous UO3. The heat was then reduced to 80◦C, and deionized

water was introduced while stirring continuously. After the solution turned bright yellow

(approximately 10 minutes), it was removed from the heat and allowed to evaporate in

ambient conditions (approximately 22◦C and 60% RH). Once dry, the bright yellow powder
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was rinsed twice with deionized water to remove residual nitrates and again allowed to

dry at ambient conditions. The XRD pattern of the resulting material (Figure 4.11)

was consistent with synthetic metaschoepite, [(UO2)4O(OH)6] · 5 H2O[171], with a minor

component attributable to anhydrous uranyl hydroxide, α−UO2(OH)2. Because synthetic

metaschoepite was found to be unstable to dehydration at moderate and low humidity [90],

the uranyl hydroxide material was stored in a glass jar with a NaCl saturated-salt solution,

providing approximately 75% RH at ambient temperature (22–23◦C).

To further hydrate the synthetic metaschoepite, an XRD sample was prepared from this

synthesized material and stored in a container with a KNO3 saturated-salt solution at 35◦C

(91% RH, PH2O = 5.11 kPa) for 127 days. XRD and Raman data were collected periodically

over this time period. While collecting XRD data required removing the sample from the

hydrating environment, scans were limited to 45 minutes to minimize potential dehydration

during measurement. Figure 4.12 shows the XRD pattern over time. An initial analysis

suggests that the (002) peak shifts to lower 2θ slightly upon hydration, indicating expansion

of the layer spacing. However, based upon comparison to the initial pattern and the predicted

location of this peak from previous studies of metaschoepite, it is more plausible that the

material was slightly dehydrated during some measurements relative to others, contracting

the interlayer spacing to a small degree. This is not surprising since XRD measurements were

conducted under ambient conditions, and the interlayer spacing of synthetic metaschoepite

has been shown to be highly dependent on the RH of the environment (see Section 4.5).

While the XRD pattern of this hydrated sample was not indicative of a major structural

change, Raman spectra collected on the sample over time showed changes in the uranyl

stretching region (Figure 4.13). In particular, the initial Raman peak near 868 cm−1 was

observed to redshift significantly upon hydration, while peaks at 845 cm−1 and below were

observed to broaden slightly but did not shift notably. Collection of multiple spectra in

different regions of the sample on each date of analysis revealed that these changes did not

occur homogeneously across the sample. However, the 868 cm−1 peak(s) were consistently

redshifted.

No changes were observed in the lower energy peaks of the Raman spectrum over time,

suggesting that the equatorial environment of the uranyl ions remains unchanged upon
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Figure 4.11: XRD pattern of the initial uranyl hydroxide powder used to form samples
for hydration. Pattern matching identifies this material as synthetic metaschoepite,
[(UO2)4O(OH)6] · 5 H2O[171], with no noticeable impurities. Dashed lines correspond to
the location of peaks associated with the LaB6 standard added to the sample.
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(a) (b)

Figure 4.12: (a) XRD pattern of synthetic metaschoepite upon increasing time spent
exposed to 95% RH at 35◦C. (b) Expanded view of the (002) peak.
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Figure 4.13: Raman spectra collected on a sample of synthetic metaschoepite equilibrated
for increasing amounts of time in a 95% RH, 35◦C environment. The multiple spectra at
each point of hydration correspond to Raman spectra collected on different regions of the
sample on the same day. Dashed lines at 868 and 845 cm−1 show the initial location of the
two dominant uranyl stretching modes. Peaks at 521 and 301 cm−1 are attributed to the
silicon XRD plate.
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hydration. This is consistent with the lack of structural change concluded from the XRD

pattern. This means that the redshift in the higher energy uranyl stretching mode cannot

be explained by a change in equatorial coordination. Instead, it appears that the local

environment of a subset of the uranyl ions changes without any effect on the long-range

structure or equatorial bonding. This is consistent with a change in the interlayer water

structure that strengthens hydrogen bonding interactions to some of the uranyl ions. The

nature of these changes deserves additional study but is beyond the scope of this dissertation.

This experiment suggests that is not possible to form the novel γ species via hydration of

synthetic metaschoepite.

4.4 Comparison of the vibrational spectra of γ and

synthetic metaschoepite

Production of essentially pure γ via hydration of XRD samples allows for better character-

ization of the vibrational spectra of γ. Material from the fully hydrated XRD plate was

subjected to Raman and IR spectroscopy. The full Raman spectrum of γ, including low-

energy modes, is shown in Figure 4.14. The Raman spectrum of synthetic metaschoepite,

as previously reported [90], is shown for comparison. Pseudo-Voigt fits of the Raman peaks

of γ are shown in Figure 4.15. The uranyl stretching region of the Raman spectrum of γ

is characterized by a dominant peak at 846 cm−1 with a shoulder centered at 830 cm−1.

The presence of two uranyl stretching modes indicates the existence of multiple uranyl ion

environments that may differ by equatorial coordination or hydrogen bonding interactions.

Additional Raman peaks appear at 555, 515, 459, 400, 330, 257, 199, 158, and 127 cm−1.

Many of the peaks in this lower-energy region are distinct from those observed in synthetic

metaschoepite, suggesting that the arrangement of equatorial hydroxy and oxide ligands

in two structures is distinct. This potentially explains why γ cannot be formed from the

hydration of synthetic metaschoepite, as discussed in Section 4.3.

IR spectroscopy was performed to assess higher-energy water and hydroxy-related modes.

These modes were not visible in the Raman spectrum due to the low incident laser power used
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Figure 4.14: Comparison of the Raman spectrum of γ and synthetic metaschoepite. The
lower-energy region of the spectra is scaled by a factor of five.
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Figure 4.15: Pseudo-Voigt fits of the Raman peaks of γ.
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to avoid unintentionally altering the sample and because water is a weak Raman scatterer.

Figure 4.16 shows the IR spectrum of γ, again compared to that of synthetic metaschoepite

[90]. OH stretching modes appear between 2500 and 3700 cm−1. This region of the spectrum

can be adequately fit to five pseudo-Voigt curves (Figure 4.17a) centered at 3569, 3483, 3258,

3037, and 2833 cm−1. The 3569 and 3483 cm−1 peaks are attributed to the OH stretching

mode of interlayer water molecules, while the remaining peaks are attributed to the OH

stretching mode of hydroxy ligands. The presence of multiple stretching modes for both

water and hydroxy groups suggests that some water and hydroxy ligands in the structure

participate in stronger hydrogen bonding than others. In general, the OH stretching modes

in γ are slightly redshifted compared to synthetic metaschoepite, suggesting the presence of

stronger hydrogen bonds. Stronger hydrogen bonding also explains the broadening of peaks

between 3400 and 3600 cm−1 relative to metaschoepite.

The peak at 1624 cm−1 (Figure 4.17b) is attributed to the bending mode of the interlayer

water molecules. The frequency of this mode is consistent with the frequency of the

same mode in synthetic metaschoepite, suggesting that the crystallographic water molecules

experience similar hydrogen bonding interactions. However, the δ(U−O−H) bending mode

is blueshifted in the uranyl hydroxide hydration product (1043 cm−1) compared to synthetic

metaschoepite (1005 cm−1). Based on a comparison of the computationally predicted

vibrational spectra of schoepite and metaschoepite (Figure 4.18), this mode is demonstrated

to be the most sensitive to differences in the interlayer water structure and hydrogen bonding

network.

A peak at 1423 cm−1 in the experimental IR spectrum is not easily attributable. A

much smaller peak in this region was noted previously in the IR spectrum of synthetic

metaschoepite. Since no peaks were predicted in this region in the computational study

of metaschoepite, this peak, along with a small peak at 1335 cm−1, was attributed to the

presence of impurities in the sample, possibly unreacted uranyl nitrate. The presence of

this peak in the IR spectrum of γ cannot be explained by the presence of uranyl nitrate,

however, since uranyl nitrate was not part of the synthetic process. Curiously, a peak in

this region was also noted by Urbanec and Cejka in a natural sample of schoepite, although

it was not assigned [162]. The energy of this peak is similar to that of the ν3 vibrational
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Figure 4.16: Comparison of the IR spectrum of γ and synthetic metaschoepite.
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(a)

(b)

(c)

Figure 4.17: Pseudo-Voigt fits of the IR peaks of γ.
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(a) (b)

Figure 4.18: Comparison of the power spectra of schoepite and metaschoepite calculated
from ab initio molecular dynamics simulations calculated with the (a) PBE [128] functional
or (b) op!86-vdW [91, 92] functional. In both cases, the U-O-H bending mode near
1000 cm−1 is demonstrated to be the most sensitive to the differences between schoepite
and metaschoepite.

150



mode of the carbonate ion in the uranyl carbonate minerals rutherfordine and sharpite [162].

The presence of carbonate in this species is not infeasible since CO2 from the atmosphere is

soluble near neutral pHs and could become concentrated in hydrated regions on the material.

However, if carbonate were present, the symmetric carbonate stretch would be expected in

the Raman spectrum near 1000–1100 cm−1 [58], and such a peak is not observed for γ.

To assess whether or not carbon is present in the γ structure, particles of γ were

analyzed via scanning electron microscopy–energy dispersive x-ray spectroscopy (SEM-EDS).

The particles studied were produced from the hydration of uranyl fluoride on a silicon

XRD plate and transferred to another silicon substrate for EDS analysis to prevent carbon

contamination. Multiple particles were analyzed on the sample and found to be relatively

consistent. Figure 4.19 shows a representative EDS spectrum. Uranium, oxygen, and silicon

(from the background) are identified as the major elemental components, as expected. A

small peak near 0.68 keV is attributed to residual fluorine, which is not unexpected since

this material was produced from the hydration of uranyl fluoride and likely still contains a

minor component of uranyl fluoride. It is difficult to make a definitive conclusion regarding

the presence of carbon in this sample due to the overlap of the carbon Kα peak (expected

at 0.28 keV) and a satellite uranium peak near 0.29 keV (Figure 4.19b). Carbon was not

identified as a component species in the EDS spectral matching software. Ultimately, while

the presence of carbon in the system cannot be definitively ruled out, carbon is not identified

as a major elemental component, suggesting that the mysterious 1423 cm−1 peak cannot be

attributed to the stretching mode of the carbonate group. The origin of this peak thus

remains unknown and deserves further study. Characterization of the thermal degradation

of γ with dynamic IR spectroscopy could potentially help identify the mode.

The uranyl stretching region of the IR spectrum can be fit to three curves at 921, 890, and

830 cm−1 (Figure 4.17c). The peaks at 921 and 890 cm−1 are assigned to asymmetric uranyl

stretching modes. The presence of two modes again indicates multiple uranyl environments.

The peak in the IR spectrum at 830 cm−1 the location of the uranyl stretching shoulder in the

Raman spectrum. Hydrogen bonding interactions are known to break the symmetry of the

uranyl ion, causing a symmetric stretching mode to appear in the IR spectrum. This peak

is thus tentatively assigned to the symmetric stretch of uranyl ions that are characterized by
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(a) (b)

Figure 4.19: (a) SEM-EDS spectrum of a representative particle of γ on a silicon substrate.
Peaks are attributed to U, O, F, and Si as shown. (b) Expanded view of the low-energy
region of the same spectrum.
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strong hydrogen bonding interactions with interlayer water molecules. The corresponding

asymmetric mode appears at 890 cm−1. Uranyl ions that are not characterized by strong

hydrogen bonding have a symmetric stretching mode at 846 cm−1 and an asymmetric

stretching mode at 921 cm−1.

A list of the IR and Raman peaks and their assignments is shown in Table 4.2.

4.5 Relative humidity dependence of the interlayer

spacing of γ and synthetic metaschoepite

In previous studies of synthetic metaschoepite [90], variation was noted in the crystal

structure, as determined by XRD, depending on the environmental conditions of the sample.

In particular, the interlayer spacing was demonstrated to be sensitive to the RH under which

the sample was studied. Dynamic XRD experiments with humidity control were carried out

to further probe this behavior. Figure 4.20 shows the interlayer spacing, determined from

the position of the (002) reflection, as a sample of synthetic metaschoepite was exposed

to increasing humidity at 30 ◦C. The interlayer spacing is clearly humidity dependent,

increasing by roughly 0.025 Åas the RH was increased from 40 to 60%. Expansion of the

layer spacing occurs rapidly as the humidity is increased, and remained fairly stable over 12

hours at each humidity level. While the interlayer spacing determined at 40% RH (∼7.384 Å)

was still expanded relative to literature values for schoepite and metaschoepite, which range

between 7.31 and 7.375 Å [19, 133, 34, 53, 131], and 7.3065 and 7.365 Å [34, 171, 93, 25, 90],

respectively (Figure S8), these values were measured under an ambient RH that may have

been lower than 40%.

The lower limit of the interlayer spacing was explored by desiccating another sample of

synthetic metaschoepite under dry air at 30◦C. One-hour XRD scans were again collected

consecutively. As shown in Figure 4.21, the (002) and (004) reflections were observed to shift

towards higher angles upon desiccation, indicating a contraction of the c lattice parameter

and thus interlayer spacing (c/2). The (002) reflection stopped shifting after 24 hours of

desiccation. At this point, the sample was rehydrated by increasing the RH to 50%. The
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Table 4.2: Raman and IR spectroscopy peaks.

IR / cm−1 Raman/ cm−1 Assignment
3569 ν(OH) (water)
3482 ν(OH) (water)
3258 ν(OH) (hydroxy)
3037 ν(OH) (hydroxy)
2833 ν(OH) (hydroxy)
1624 δ(H2O)
1423 ???
1043 δ(U−O−H)
921 νas(UO 2+

2 )
890 νas(UO 2+

2 )
846 νs(UO 2+

2 )
830 830 νs(UO 2+

2 )
555 ν(U−−Oeq)/ν(U−−(OH))
515 ν(U−−Oeq)/ν(U−−(OH))
459 ν(U−−(OH))/γ(U−(OH)−U)
400 ν(U−−(OH))/γ(U−(OH)−U)
330 ν(U−−(OH))/γ(U−(OH)−U)
257 δ(UO 2+

2 )/δ(U−(OH)−U)
199 δ(UO 2+

2 )/δ(U−(OH)−U)
158 δ(UO 2+

2 )/lattice modes
127 δ(UO 2+

2 )/lattice modes
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Figure 4.20: Interlayer spacing of synthetic metaschoepite at 40%, 50%, and 60% RH at
30◦C, as determined by the position of the (002) reflection. A series of one-hour XRD scans
were collected consecutively at each humidity level after equilibrating the sample for one
hour.
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(a) (b)

Figure 4.21: (a) XRD pattern of synthetic metaschoepite upon dessication under dry air.
(b) Expanded view of the (002) reflection. Dashed lines show the expected location of the
(002) and (004) reflections of synthetic metaschoepite at 2θ = 12.043° and 2θ = 24.2216°
[171]. Peaks at 2θ = 21.36, 30.38, and 37.44° correspond to the LaB6 standard added to the
sample.
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(002) and (004) reflections shifted back toward lower angles, indicating a rapid re-expansion

of the layer spacing. As the sample was rehydrated at 50% RH for several hours, a second

peak becomes visible at 2θ = 11.6°. The position of this peak matches the position of the

(002) peak of γ at 50% RH, suggesting that a component of the synthetic metaschoepite is

converted to a γ-like species with expanded layer spacing. This peak cannot be definitely

attributed, however, due to the absence of a corresponding (004) reflection near 2θ = 23.43°.

Further experiments are necessary to identify this component and assess whether or not γ

can be formed from synthetic metaschoepite after all, via rehydration following an initial

desiccation. It is plausible that desiccation induces some disorder in the uranyl layers such

that the hydrogen bonding interactions that link the layers via interlayer water molecules

are weakened. This would allow the interlayer to be more easily expanded via absorption of

additional water molecules.

After the RH had been held at 50% for 24 hours, the dessication and rehydration cycle

was repeated a second time (24 hr 0% RH, 24 hr 50% RH). As demonstrated in Figure 4.22,

the contraction and expansion of the c lattice parameters, indicated by the shifting of the

(002) and (004) reflections, was found to be reversible over both cycles. Unlike the (002) and

(004) reflections, the (240) and (4̄00) reflections did not shift significantly over the course

of the experiment, indicating that the a and b lattice parameters of synthetic metaschoepite

are stable to changes in the environmental humidity. This is illustrated in Figure 4.23,

which shows the three lattice parameters over the course of the experiment, as calculated

via sequential Rietveld refinement (see Chapter 1 for details on Rietveld refinement). The

b lattice parameter was found to be very constant throughout the experiment. The sudden

changes in RH had small effect on the a parameter, although this effect does not appear to

be correlated to the direction of the humidity change and is much smaller in magnitude than

the observed variation in the c lattice parameter.

The humidity dependence of the c lattice parameter and thus interlayer spacing may

explain the variability of this parameter in the literature for measurements of schoepite and

metaschoepite (see Figure 4.3). Figure 4.24 shows the interlayer spacing (c/2) over the

course of the experiment compared to past measurements of schoepite and metaschoepite,

conducted at ambient RH. Upon desiccation, the interlayer spacing contracts, approaching
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Figure 4.22: Position of dominant reflections in synthetic metaschoepite as the
environmental humidity was cycled between 0% and 50% RH (30◦C): 24 hr 0% RH, 24
hr 50% RH, 24 hr 0% RH, 24 hr 50% RH. One-hour XRD scans were collected consecutively
throughout the entire experiment, with no delay between.
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Figure 4.23: Lattice parameters of synthetic metaschoepite with the environmental
humidity cycled between 0% and 50% RH (30◦C), as determined via sequential Rietveld
refinement. One-hour XRD scans were collected consecutively throughout the entire
experiment, with no delay between.
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Figure 4.24: Interlayer spacing of synthetic metaschoepite with the environmental humidity
cycled between 0% and 50% RH (30◦C), as determined via sequential Rietveld refinement.
One-hour XRD scans were collected consecutively throughout the entire experiment, with
no delay between. Horizontal lines show reported values in the literature for schoepite
[19, 133, 34, 53, 131] and metaschoepite [34, 171, 93, 25, 90].
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approximately 7.15 Å after 24 hours. Rehydration at 50% RH leads to a rapid re-expansion

of the spacing to a stable maximum value of approximately 7.38 Å after 5–6 hours. All of

the reported values in the literature fall between these two values. The minimum interlayer

spacing after the second desiccation cycle was found to be slightly expanded relative to the

first, likely due to an introduction of some disorder in the metaschoepite uranyl layers that

limits the contraction. However, it is also possible that the interlayer spacing would have

continued to contract slowly had the desiccation period been extended.

The relative stability of the a and b lattice parameters, as well as the observed reversibility

of this change in interlayer spacing, suggests that there was no significant structural change in

the uranyl layers. The contraction and expansion of the c lattice parameter is presumably due

to the removal and replacement of a portion of the interlayer water molecules. This behavior

is somewhat unexpected given the strong hydrogen bonding network in metaschoepite [2, 90].

Water molecules are hydrogen bonded not only to each other, but to the hydroxy groups in

the uranyl layers as well. The removal of each of these interlayer water molecules would thus

require the breaking of multiple fairly strong hydrogen bonds.

Density Functional Theory (DFT) calculations were carried out to better understand

the structural effect of removing a subset of the interlayer water molecules. Schoepite was

used in place of metaschoepite for this study because the increased symmetry lessened the

computational effort. A series of calculations were carried out in which the schoepite unit cell

was re-optimized upon the removal of different numbers of water molecules. The 48 interlayer

water molecules in the schoepite unit cell are organized in 12 symmetrically distinct positions.

One or more of these 12 groups of water molecules were removed in each calculation. Selection

among the 12 groups was random. Because the choice of the specific water molecules removed

was expected to affect the resulting interlayer spacing, three separate calculations were run at

each water content. An additional two calculations were run with 40 and 44 waters molecules

removed due to greater variation in the optimized structures at this water content level.

Structural optimization was done in two steps. Following removal of the water molecules, the

atomic positions of the remaining atoms were optimized while keeping the lattice parameters

fixed. Once the atomic positions were optimized, the lattice parameters were allowed to relax

as well, and the atomic positions were optimized for a second time.
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The DFT-optimized interlayer spacing of each of these calculations is shown in Figure 4.25

as a function of the number of water molecules removed. As water molecules are removed

from the structure, the interlayer contracts as expected. When all or almost all of the

interlayer water molecules are removed, the structure collapses in the c direction, and

hydrogen bonds form between the uranyl oxygens and hydroxy groups in adjacent layers

(see Figure 4.33). This full dehydration was previously demonstrated to occur in synthetic

metaschoepite upon extended exposure to a desiccating environment [90]. This irreversible

phase transition is distinct from the reversible contraction and expansion of the layer spacing

that occurs more quickly upon changes in the humidity. Figure 4.25 suggests that the removal

of about half of the water molecules in the unit cell of schoepite would result in the 2–3%

interlayer contraction observed experimentally without causing the irreversible collapse of the

structure. This is a very rough comparison however. The average water dissociation energy

over all of the calculations was 0.686 eV, likely an underestimate as the PBE functional

underestimates the strength of long-range van der Waals interactions [66, 65].

Since γ was identified as a layered uranyl hydroxide hydrate with structural similarity

to schoepite and metaschoepite, the humidity dependence of the structure was investigated

for comparison. An XRD sample of γ was desiccated and rehydrated two times as in the

experiment with synthetic metaschoepite. The initial scan of the material under ambient

conditions, shown in Figure 4.26, roughly matches that measured previously (Section 4.2),

with the exception of a shoulder on the (002) reflection that indicates that a component

of the sample has a smaller interlayer spacing and may be partially dehydrated relative

to the rest of the material. Upon desiccation, the (002) peak was observed to shift to

higher 2θ, indicating a contraction of the layer spacing similar to that observed in synthetic

metaschoepite. Unlike for metaschoepite, however, where this shift occurred continuously

after the first hour of desiccation (Figure 4.22), a discrete jump in the peak position was

observed to occur after about 12 hours of desiccation, likely due to a rearrangement of

the remaining interlayer water molecules. The XRD pattern was stable after 24 hours of

desiccation. A low-angle shoulder on the (002) reflection after desiccation indicates that a

minor component of the species retained a slightly larger layer spacing, potentially due to

additional disorder in the uranyl layers.
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Figure 4.25: DFT-optimized interlayer spacing of schoepite with varying number of water
molecules removed from the unit cell. Interlayer spacing of metaschoepite with an increasing
number of interlayer water molecules removed.
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(a) (b)

Figure 4.26: (a) XRD pattern of γ upon dessication under dry air. (b) Expanded view of
the (002) reflection. The peak at 2θ = 28.443° corresponds to the Si standard added to the
sample.
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After desiccating for 36 hours, the sample of γ was rehydrated at 50% RH. As with

synthetic metaschoepite, rehydration induced a rapid re-expansion of the interlayer spacing,

as evidenced by a shift in the (002) and (004) reflections. This contraction and expansion of

the interlayer spacing was again found to be repeatable over two dessication–rehydration

cycles, as shown in Figure 4.27. The discrete shift of the (002) reflection that occurs

approximately 10–12 hours into each period of dessication is clearly visible in Figure 4.27 as

well. Unlike observed for synthetic metaschoepite, the (240) and (4̄00) reflections do shift

appreciably over the course of the experiment, indicating that the a and b lattice parameters

in γ are also sensitive to changes in humidity, albeit to a much smaller degree than the c

parameter.

While sequential Rietveld refinement of all scans was not successful due in part to the

splitting of the (002) reflection and the overlap of the (4̄02) reflection with a peak from the

Si standard, Table 4.3 shows the lattice parameters of γ, as well as synthetic metaschoepite,

calculated from Rietveld refinements of single scans at 0% RH and 50% RH. At 50% RH,

the interlayer spacing of γ is significantly expanded relative to synthetic metaschoepite. The

interlayer spacing of γ is still larger than synthetic metaschoepite after both species were

desiccated, although the values become closer. The a and b lattice parameters of γ shrink

by =0.5 and =0.4% upon dessication relative to 50% RH, indicating that the uranyl layers

in γ are less rigid than in synthetic metaschoepite. This is potentially explained by a less

rigid hydrogen bonding network of interlayer water molecules in γ.

After the first desiccation cycle, the interlayer spacing of γ was still expanded relative

to synthetic metaschoepite (Table 4.3); however, after the second desiccation cycle, which

is shown in Figure 4.28, the interlayer spacings were comparable. This is likely due to an

introduction of some disorder in the metaschoepite uranyl layers that already existed in γ.

However, it is clear that these desiccated species are still structurally distinct since upon

rehydration at 50% RH, the interlayer spacings are re-expanded to the previous distinct

values at 50% RH. Differences in the arrangement of equatorial hydroxy and oxide groups,

alluded to by differences in the Raman spectra of γ and synthetic metaschoepite (Section 4.4),

could potentially explain the distinct rehydration behavior.
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Figure 4.27: Position of dominant reflections in synthetic metaschoepite as the
environmental humidity was cycled between 0% and 50% RH (30◦C): 36 hrs 0% RH, 21
hrs 50% RH, 35 hrs 0% RH, 18 hrs 50% RH. Unfortunately, data was not collected for the
first six hours of desiccation due to an instrument malfunction. The peak at 2θ=28.443°
corresponds to the Si standard added to the sample.
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Table 4.3: Rietveld refinement parameters of γ and synthetic metaschoepite after
equilibration at 50% RH and 0% RH (30◦C). Lattice parameters are oriented so that the c
axis is perpendicular to the uranyl sheets. All distances are in Å, and all lattice angles are
90°.

Sample a b c V
syn. metaschoepite, 50% RH 13.985(7) 16.684(9) 14.728(8) 3436(2)
syn. metaschoepite, 0% RH 13.9985(1) 16.7179(1) 14.17017(9) 3316.18(7)
percent change 0.1% 0.2% =3.8% =3.5%
γ, 50% RH 14.156(1) 16.786(2) 15.183(2) 3608.8(5)
γ, 0% RH 14.080(9) 16.716(8) 14.387(5) 3386(2)
percent change =0.5% =0.4% =5.2% =6.2%
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Figure 4.28: Interlayer spacing of synthetic metaschoepite (blue circles) and γ (green
triangles) over a portion of the rehydration and second dessication cycle. The RH was set
to 50% (at 30◦C) for the first 10 hours, and then 0% for the remainder for the time shown.
One-hour XRD scans were collected consecutively throughout the entire experiment, with
no delay between. The interlayer spacing of synthetic metaschoepite was calculated via
sequential Rietveld refinement, while the interlayer spacing of γ was calculated from the
position of the (002) reflection. The dashed line at 7.165 Å shows the approximate interlayer
spacing of both desiccated structures.
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4.6 Thermal stability of γ and synthetic metaschoepite

Differences between γ and synthetic metaschoepite were further assessed by studying the

thermal dehydration of each species via dynamic XRD and Raman spectroscopy with

temperature control. Figure 4.29 shows the XRD pattern of synthetic metaschoepite with

increasing temperature. Two-hour XRD scans were collected at 10◦C increments between 30

and 100◦C, then at 20◦C increments up to 200◦C, and at 250 and 300◦C. The temperature

was ramped 1◦C/min between scans and the sample was equilibrated at each temperature

for 30 minutes prior to data collection. The dehydration reaction occurs in two steps. Shifts

in the (002) and (004) reflections between 30 and 70◦C (Figure 4.30) indicate a contraction

of the layer spacing similar to that observed upon desiccation. As shown in Figure 4.31, the

magnitude of this contraction is comparable in each case, suggesting that the dehydration

mechanism is the same. In addition to this contraction in the c direction, a slight expansion

occurs in the a and b directions, as evident via sequential Rietveld refinement (Figure 4.32).

At 80◦C and above, a phase transition to anhydrous uranyl hydroxide (α−UO2(OH)2,

Figure 4.33) occurs. This transition is similar to the complete dehydration of synthetic

metaschoepite that was previously demonstrated to occur upon prolonged exposure to a

desiccating environment at ambient temperature [90]. However, as shown in Figure 4.34,

the anhydrous product of the heating experiment is considerably more amorphous than the

anhydrous sample produced via dessication at ambient temperature. This is unsurprising

since the anhydrous product crystallized much more slowly (i.e., over weeks) via desiccation

than dehydration.

This dehydration phase transition was also examined via Raman spectroscopy. Fig-

ure 4.35 shows the Raman spectrum of synthetic metaschoepite at increasing temperature.

There is again evidence of two dehydration steps, consistent with the XRD data. Between

30 and 70◦C, the higher energy uranyl stretching peak redshifts from an original position of

869 cm−1 to 862 cm−1. This shift is illustrated in Figure 4.36. The lower uranyl stretching

peak(s) do not change notably over this temperature range, nor do any of the lower energy

peaks. By comparison of the XRD and Raman data, the redshifting of the upper uranyl

stretching peak is correlated with the contraction of the layer spacing. It is plausible that
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Figure 4.29: XRD pattern of synthetic metaschoepite at increasing temperature, from
30 to 300◦C. The temperature was ramped 1◦C/min between scans, and the sample was
equilibrated at each temperature for 30 minutes prior to data collection. Each XRD pattern
was collected over 2 hours. The expected patterns of metaschoepite [171] and anhydrous
uranyl hydroxide [152] are shown for comparison.
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(a) (b)

Figure 4.30: Regions of the XRD pattern of synthetic metaschoepite at increasing
temperature, showing shifts in the (a) (002) reflection, and (b) (004) reflection. Dashed
lines at 2θ = 12.043° and 2θ=24.2216° show the expected location of the (002) and (004)
reflections, as determined by Weller et al. [171].
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Figure 4.31: Interlayer spacing of synthetic metaschoepite as a function of temperature
(red squares) and as a function of desiccation time (blue circles). The dashed line at 7.165 Å
shows the approximate minimum layer spacing upon desiccation and upon heating before a
discrete phase transition occurred >90◦C.
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Figure 4.32: Lattice parameters of synthetic metaschoepite between 30 and 70 ◦C, as
determined via sequential Rietveld refinement.
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Figure 4.33: Crystal structure of α−(UO2(OH)2, as determined by Taylor [152].
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Figure 4.34: Comparison of the XRD pattern of anhydrous uranyl hydroxide produced by
desiccating synthetic metaschoepite for 6 weeks at 16% RH and ambient temperature (22◦C)
and of anhydrous uranyl hydroxide produced by heating synthetic metaschoepite to 250◦C.
The predicted XRD pattern of α−UO2(OH)2 [152] is shown for comparison. Dashed lines
show the locations of peaks corresponding to LaB6 or Si powder standards, which should be
ignored in a comparison of the two samples.
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Figure 4.35: Raman spectrum of synthetic metaschoepite at increasing temperature from
30 to 140◦C. The temperature was ramped at 0.2◦C/min.
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Figure 4.36: Raman spectra of synthetic metaschoepite at 30 to 70◦C overlaid. The
temperature was ramped at 0.2◦C/min. Dashed lines at 868, 845, and 841 cm−1 highlight
the location of the two dominant uranyl stretching modes of synthetic metaschoepite at
ambient temperature [90].
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this contraction promotes increased hydrogen bonding interactions to a subset of the uranyl

ions, redshifting the stretching mode of those uranyl ions. The upper uranyl stretching peak

was previously attributed to the subset of uranyl ions in the metaschoepite structure that

are equatorially bound to five hydroxy groups, as opposed to four hydroxy groups and an

oxide group. It is unclear why contraction of the layer spacing would selectively affect these

uranyl ions, and it is possible that this assignment needs to be re-examined. Additional

computational experiments could help assess which uranyl ions are predicted to be most

affected by changes in the interlayer spacing.

As observed in the XRD experiment, a phase transition to anhydrous uranyl hydroxide

occurs between 80 and 100◦C. The resulting single uranyl stretching mode centered at

841 cm−1 is consistent with previous measurements of anhydrous uranyl hydroxide [149].

However, this transition temperature is significant lower than has been previously reported

for metaschoepite. Nipruk et al. studied the dehydration transition from schoepite to

metaschoepite to anhydrous uranyl hydroxide via thermogravimetric analysis (TGA) and

found the two transitions to occur near 116 and 156◦C [123]. It is possible that starting from

the more hydrated schoepite affects the dehydration temperature, however, complicating

a direct comparison to the data presented in this work. In addition, the IR spectrum of

metaschoepite presented by Nipruk et al. is not a perfect match with the IR spectrum of the

material used in this study, suggesting that there may be slight structural differences in the

samples. Finch et al. previously noted that a sample of schoepite was partially dehydrated

to anhydrous uranyl hydroxide by heating at 120◦C for one hour [54]. While this observation

was made for schoepite and not metaschoepite, the finding suggests that it is possible to

dehydrate uranyl hydroxide hydrates at lower temperatures than determined by Nipruk et

al.

The same dynamic XRD and Raman temperature experiments were repeated with

samples of γ to compare the thermal stability of this new material to synthetic metaschoepite.

The same experimental settings were used in each case. Figure 4.37 shows the XRD pattern

of γ at increasing temperature. Between ambient temperature and 50◦C, the (002) and (004)

peaks were observed to shift upwards, indicating a contraction of the layer spacing consistent

with that observed upon desiccation. As found for metaschoepite, the magnitude of this
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Figure 4.37: XRD pattern of γ at increasing temperature, from ambient to 300◦C. The
temperature was ramped 1◦C/min between scans, and the sample was equilibrated at each
temperature for 30 minutes prior to data collection. Each XRD pattern was collected
over 2 hours. The previously determined expected pattern of the γ structure is shown
for comparison, as well as that of anhydrous uranyl hydroxide [152].
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contraction in each case is comparable (Figure 4.38). Distinct from synthetic metaschoepite,

the a and b parameters of the new uranyl hydroxide hydration product contract along with

the c lattice parameter prior to the phase transition (Figure 4.39), suggesting that the

uranyl polyhedra begin to buckle as water molecules are removed. The contraction of the c

lattice parameter occurs more rapidly between 25 and 40 ◦C and at the same slower rate as

synthetic metaschoepite between 40 and 70 ◦C. If this species is hydrated relative to synthetic

metaschoepite, and there are more water molecules than hydroxy ligands, the excess water

molecules cannot form strong hydrogen bonds with hydroxy groups. These water molecules

may be removed from the structure more easily, leading to the initial rapid contraction of

the interlayer spacing.

Beginning at 60◦C, a phase transition is indicated by a discrete shift of the (002) peak,

more clearly illustrated in Figure 4.40. At 250 and 300◦C, the XRD pattern indicates

a predominantly amorphous material, with no well-defined Bragg reflections. Unlike

observations of synthetic metaschoepite, a discrete phase transition to anhydrous uranyl

hydroxide never occurs. Instead, the position of the (002) reflection indicates that the layer

spacing contracts upon heating to approximately 6.19 Å, in between the spacing observed

for the hydrates at room temperature (7.34 Å for synthetic metaschoepite and 7.56 Å for γ)

and the spacing observed for anhydrous uranyl hydroxide (5.09 Å).

This difference in the dehydration behavior between synthetic metaschoepite and γ is

illustrated in Figure 4.41, which shows the interlayer spacing of each species as a function of

temperature. The spacing at each temperature was determined by the position of the (002)

reflection (or (020) in anhydrous uranyl hydroxide, which is oriented with the uranyl layers

normal to the b-direction [152]). In the cases where multiple (002)/(020) reflections were

observed due to a phase mixture, both corresponding interlayer spacings are shown.

Why the γ dehydration product has an expanded interlayer spacing relative to anhydrous

uranyl hydroxide is unclear. It is possible that the uranyl polyhedra are buckled in the

structure such that they cannot stack as tightly as observed in anhydrous uranyl hydroxide;

unfortunately the a and b lattice parameters cannot be adequately determined for this

structure due to the limited number of broad reflections. Above 200 ◦C, the structure

becomes X-ray amorphous, suggesting that, as a result of buckling or other disorder,
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Figure 4.38: Interlayer spacing of γ as a function of temperature (red squares) and as a
function of desiccation time (blue circles). The dashed line at 7.165 Å shows the approximate
minimum layer spacing upon desiccation.
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Figure 4.39: Lattice parameters of γ between 30 and 70 ◦C, as determined via sequential
Rietveld refinement.
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(a) (b)

Figure 4.40: Regions of the XRD pattern of γ at increasing temperature, showing shifts
in the (a) (002) reflection, and (b) (004) reflection.
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Figure 4.41: Interlayer spacing of synthetic metaschoepite (blue circles) and γ (green
triangles), as determined by the position of the (002) reflection (or corresponding reflection
in the anhydrous species), as a function of temperature.
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the dehydration product does not have the same organized hydrogen bonding scheme as

anhydrous uranyl hydroxide (Figure 4.33) which promotes stability at higher temperatures.

It is also possible that there is something between the layers preventing them from

collapsing completely. If a subset of the interlayer water molecules were not removed in

the phase transition, the interlayer spacing of the dehydration product would be expanded

relative to anhydrous uranyl hydroxide. The structural effect of residual water molecules was

explored computationally in the study of the effect of water removal on the layer spacing of

schoepite described in Section 4.5. Figure 4.42 shows the optimized unit cells in two different

cases where 44 of the 48 interlayer water molecules in the schoepite unit cell were removed. In

one case (Figure 4.42a), the remaining water molecules keep the layers from forming hydrogen

bonds to each other, maintaining a layer spacing of 6.55 Å. In the other, hydrogen bonds

between the layers do form, and the water molecules become trapped in pockets formed by

the tilting of surrounding uranyl polyhedra. The layer spacing in this case was calculated

to be 5.85 Å, still expanded relative to the experimental value for purely anhydrous uranyl

hydroxide (5.151 Å [152]). The expanded water spacing of the γ dehydration product is

observed to persist up to 200◦C, where it would be highly unexpected for hydrogen bonded

water molecules to remain in the structure. It is unclear, however, how strongly remaining

water molecules could be bonded in these uranyl pockets.

To better understand both the structure of the γ dehydration product and how this dehy-

dration transition occurs, γ was studied via Raman spectroscopy upon heating. Figure 4.43

shows the Raman spectrum of γ at increasing temperature. Unlike metaschoepite, no change

was observed in Raman spectrum below 110◦C (Figure 4.44). This was unexpected given

the significant changes that occur in the XRD pattern over this range. The two samples

of γ used in the XRD and Raman heating experiments were produced independently via

the hydration of two different batches of uranyl fluoride, and while the initial XRD patterns

and Raman spectra of each sample were consistent, it is possible that differences could have

existed that were not observable with these techniques. A follow-up study using the same

batch of material for both experiments is necessary to clarify these findings.

Around 120◦C, a transition finally occurs in the Raman spectrum. The initial uranyl

stretching mode at 846 cm−1 broadens and shifts slightly to 841 cm−1. In addition, a broad
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(a) (b)

Figure 4.42: Two different optimized structures of schoepite after the random removal of
11 of the 12 groups of interlayer water molecules in schoepite. The interlayer spacing is
calculated to be (a) 6.55 Å and (b) 5.85 Å.
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Figure 4.43: Raman spectrum of γ at increasing temperature, from 30 to 140◦C. The
temperature was ramped at 0.2◦C/min.
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Figure 4.44: Raman spectra of γ at 30 to 70◦C overlaid. The temperature was ramped at
0.2◦C/min. Dashed lines at 846 and 823 cm−1 highlight the location of the uranyl stretching
modes of γ at ambient temperature.
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weak peak grows in at 750 cm−1. The origin of this peak is unclear; it is somewhat low in

energy to be a second uranyl stretching mode. The uranyl stretching mode at 841 cm−1 is

consistent with previous studies of anhydrous uranyl hydroxide and with the dehydration

product of synthetic metaschoepite observed in this work. The similarities between the high-

temperature spectra suggest that the dehydration products have structural similarities, at

least in terms of the equatorial coordination of the uranyl ion. The higher temperature

required to dehydrate γ in this Raman study is consistent with the previously discussed

hypothesis that γ is characterized by stronger hydrogen bonds between hydroxy groups and

interlayer water molecules. However, the dynamic XRD study of γ suggested that it was

less stable than synthetic metaschoepite at increasing temperature. Additional studies are

necessary to clarify these inconsistencies.

4.7 Summary and future directions

In summary, the initial hydration product of uranyl fluoride, γ, has been characterized using

a variety of complementary methods. In Chapter 3, this species was tentatively identified as

a uranyl hydroxide species based on the SEM-EDS and Raman spectra. XRD confirms this

identification, showing structural similarities between γ and the known uranyl hydroxide

hydrate minerals schoepite and metaschoepite. Rietveld refinement of the XRD pattern

shows that γ has a significantly expanded layer spacing relative to these known species.

This structure has never been isolated previously.

The structure and chemical behavior of γ has been further analyzed through a

comparative study to synthetic metaschoepite. Comparison of the Raman and IR spectra

of γ with synthetic metaschoepite suggests that the uranyl layers in each differ slightly

and that γ is characterized by stronger hydrogen bonding interactions between the uranyl

layers and the interlayer water molecules. The fact that γ transforms into a dehydration

product distinct from anhydrous uranyl hydroxide when heated is further evidence that γ has

notable structural differences from synthetic metaschoepite. However, dynamic XRD and

Raman temperature scans of samples of γ found different transition temperatures and cannot

be reconciled without a follow-up study. One of the present limits to the characterization
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of γ is the inability to produce large samples of material in a reasonable amount of time.

Formation of γ via hydration of uranyl fluoride is slow, particularly in bulk. This limits the

ability to replicate experiments or perform complementary experiments on the same batch

of material, introducing additional uncertainty into the analysis. The origin of a strong IR

peak at 1423 cm−1 in γ also requires further study.

Future work should focus on identifying ways of accelerating the formation of γ from

uranyl fluoride or identifying alternate synthesis routes. The inability to form γ via hydration

of synthetic metaschoepite at ambient temperature and pressure was demonstrated in this

work. However, the formation of a minor component species with an expanded layer

spacing in the rehydration of synthetic metaschoepite following desiccation suggests that

a synthesis method from synthetic metaschoepite should be further explored. It is possible

that a hydrothermal synthesis route from either uranyl fluoride or uranyl hydroxide starting

material could be identified. The ability to produce larger samples of γ would enable the

application of additional complementary techniques such as TGA and neutron scattering

that could provide additional insight into the water content and structure. In addition,

multiple experiments could be carried out on samples from the same batch of material,

reducing uncertainties in the correlating of data sets. Production of a single crystal of γ,

if feasible, would allow for a more detailed structural analysis and better understanding of

how the uranyl layers differ in γ relative to schoepite and metaschoepite.
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Chapter 5

Elucidation of a novel formation

mechanism for solid-state uranyl

peroxide (δ)

Chapter 4 presented efforts to characterize γ, the uranyl hydroxide hydrate formed via

hydration of uranyl fluoride. As discussed in Chapter 3, at high enough humidity, γ can be

further converted into δ. This product was proposed to be a uranyl peroxide species based

on the excellent agreement of the Raman spectrum with that of the uranyl peroxide hydrate

mineral studtite, [(UO2)O2(H2O)2] · 2 H2O. The formation of a uranyl peroxide species in

this system was unexpected given the lack of hydrogen peroxide (H2O2). The excellent

agreement of all peaks leaves no doubt that a uranyl peroxide species has been produced, but

Raman spectroscopy does not provide direct structural information for confirmation. This

chapter presents additional structural characterization of δ as well as elucidation of the novel

nonphotochemical formation mechanism for uranyl peroxide. The unexpected formation of

uranyl peroxide in this system is attributed to oxidation of water by the uranyl ion. While

this reaction is expected to require photoexication of the uranyl ion, the environment of the

uranyl ion in the uranyl hydroxide reagent appears to facilitate the redox reaction from the

uranyl ground state.

Components of this chapter come from the following papers:
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M. C. Kirkegaard, M. W. Ambrogio, A. Miskowiec, J. L. Niedziela, T. L.

Spano, A. E. Shields and B. B. Anderson. “Characterization of the degradation of

[(UO2F2)(H2O)]7 · 4 H2O under humid conditions.” In preparation.

M. C. Kirkegaard, T. L. Spano, A. Miskowiec, J. L. Niedziela, A. E. Shields and B.

B. Anderson. “Evidence of unusual uranyl ion reactivity in uranyl hydroxide hydrates.”

In preparation.

5.1 Literature review of uranyl peroxide hydrate species

5.1.1 Known uranyl peroxide hydrate structures

Uranyl peroxides were first identified by Zachariasen in 1944 [175]. Subsequent studies

showed that two different uranyl peroxide species, of the form [(UO2)O2(H2O)2] · 2 H2O

and (UO2)O2(H2O)2, can be synthesized by adding H2O2 to uranyl solutions at differing

temperature. It was also observed that [(UO2)O2(H2O)2] · 2 H2O can be converted to

(UO2)O2(H2O)2 by drying in air at 100◦C or under vacuum at room temperature [140].

The minerals studtite and metastudtite were later shown to be structurally identical to

synthetic [(UO2)O2(H2O)2] · 2 H2O and (UO2)O2(H2O)2, respectively [163, 46]. Studtite and

metastudtite remain the only known peroxide-containing minerals [94].

The full structure of studtite was solved by Burns and Hughes in 2003 [29]. Each linear

uranyl group is bonded to six additional oxygens, two of which are water ligands and the

other four of which comprise peroxide groups. The O−O bonds of two peroxide groups thus

make up two equatorial edges of each uranyl hexagonal bipyramid, as shown in Figure 5.1.

The uranyl polyhedra share peroxide groups, forming chains that are linked together by

hydrogen bonds between water molecules.

Unlike studtite, no refined structure of metastudtite has been published. In the absence

of single-crystal x-ray data, first-principle calculations have been used to attempt to refine

the structure of metastudtite [127, 170]. Weck et al. predicted an orthorhombic cell with

structural similarities to studtite that matches experimental data well (Figure 5.2) [170].

Metastudtite is thought to form by the loss of interlayer water in studtite [29]. This
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(a) (b)

Figure 5.1: (a) Top-down and (b) side views of the crystal structure of studtite,
[(UO2)O2(H2O)2] · 2 H2O, as determined by Burns and Hughes [29].
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(a) (b)

Figure 5.2: (a) Top-down and (b) side views of the crystal structure of metastudtite,
(UO2)O2(H2O)2, as predicted computationally by Weck et al. [170].
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dehydration transition has been demonstrated to be irreversible [64, 126], presumably due

to the formation of strong hydrogen bonds between adjacent uranyl chains.

The most thorough experimental study of metastudtite is presented in the thesis

of S. Labs [96]. X-ray diffraction (XRD) analysis showed that the chains of uranyl

polyhedra move slightly toward each other upon dehydration. Labs also attempted

to refine the structure of metaschoepite via neutron scattering. Starting with the

computationallypredicted structure from Weck et al. [170], refinement shortened one uranyl

bond and lengthened the other, tilting one of the uranyl oxygens toward the peroxo group

and leaving the uranyl unit bent at a fairly extreme 143° angle. Labs noted that this refined

structure is somewhat questionable, but that the tilt of the uranyl oxygen towards the peroxo

unit allows for intramolecular hydrogen bonding, which could explain why the dehydration

transition is irreversible.

Thermogravimetric analysis (TGA) by Labs showed that the dehydration reaction from

studtite to metastudtite occurs around 80◦C. However, a variable temperature XRD analysis

showed dehydration occurring much sooner, between 30 and 60◦C. Above 56◦C, studtite

could no longer be detected in the XRD pattern. Labs suggested that a structural change

may occur at lower temperatures, but the water released from the crystal structure remains

adsorbed to the surface and thus no weight loss is detected until higher temperatures

[96]. Alternatively, Colmenero et al. noted that this dehydration reaction occurs at higher

temperatures in the presence of water [40]. It is possible that the TGA and XRD studies

performed by Labs were conducted under different water vapor pressures, which could thus

also explain the discrepancy.

Labs also used inelastic incoherent neutron scattering (IINS) to look at water bonding

in studtite and metastudtite. Water librational modes were resolvable in studtite only,

suggesting that hydrogen-bonded water exists in studtite but not metastudtite. Strong

UOH and HOH bending vibrations are visible in metastudtite, suggesting that water is

more restricted in metastudtite than studtite. These observations offer further support of

the structural model of metaschoepite proposed by Weck et al. [169].
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5.1.2 Vibrational spectroscopy of uranyl peroxide hydrates

Studtite and metastudtite have also been characterized via vibrational spectroscopy. Infrared

(IR) spectra of studtite and metastudtite published by Labs [96] are shown in Figure 5.3. As

expected, there are some differences between the two species in the bands associated with

water. For example, studtite has two peaks in the water bending region (1500–1750 cm−1)

corresponding to the two different types of water in the structure. The most notable

difference in the 400–1000 cm−1 region of the spectra is the presence of a broad feature around

730 cm−1 in studtite, which Labs tentatively attributed to a symmetric uranyl stretching

mode [96] but which might alternatively correspond to water librational modes. Raman

spectra collected by Labs [96] are shown in Figure 5.4. The peroxo stretching mode is nearly

identical for both species, at 866 cm−1 in studtite and 867 cm−1 in metastudtite, while the

uranyl stretching mode shifts from 819 cm−1 in studtite to 833 cm−1 in metastudtite. These

spectra are in good agreement with those of both natural and synthetic samples published

by others [4, 17, 132, 31, 18, 40]. The published Raman spectra of studtite and metastudtite

are much more consistent than those of schoepite and metaschoepite.

5.1.3 Rising interest in uranyl peroxide species

As illustrated in Figure 5.5, uranium peroxide species have gained significant attention

in recent years. Interest in these species has grown in a number of different areas, from

fundamental solution chemistry to radiochemistry. Studtite and metastudtite are the

only known peroxide-containing minerals, prompting investigation into how the complex

electronic structure of uranium might stabilize these units [127]. The discovery that uranium

peroxide units can self-assemble into large stable cage clusters has garnered additional

interest [144, 135]. On the more applied side, uranyl peroxide species have been observed

to form in spent nuclear fuel that comes in contact with water [67], creating safety concerns

due to off-gassing and motivating additional study of the long-term stability of these species

[14, 126]. Increased interest in uranyl peroxide species further motivated a more thorough

characterization of δ and its formation mechanism from γ.
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Figure 5.3: IR spectra of studtite (left) and metastudtite (right). Reproduced from Labs
2015 [96].
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Figure 5.4: Raman spectra of studtite (left) and metastudtite (right). Reproduced from
Labs 2015 [96].
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Figure 5.5: Number of publications in the Web of Science database per year matching the
keywords “uranium/uranyl peroxide” or “studtite.”
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5.2 Structural characterization of δ

The formation of δ, a proposed uranyl peroxide species, from the hydration of uranyl fluoride

was introduced in Chapter 3. Analysis of the concentration curves over time suggested

that δ forms upon further hydration of the initial hydration product of uranyl fluoride, γ,

which was characterized as a uranyl hydroxide hydrate in Chapter 4. While the excellent

agreement of the Raman spectrum of δ with the uranyl peroxide hydrate studtite is strong

evidence that δ has peroxo ligands and a similar overall structure, Raman spectroscopy is

not a direct structural technique. To confirm the production of a peroxide species in this

system, a larger sample of uranyl fluoride was hydrated to obtain XRD data. The previous

chapter described the hydration of two XRD samples of uranyl fluoride to form the uranyl

hydroxide hydrate species, γ. A third XRD sample was similarly prepared by depositing

[(UO2F2)(H2O)]7 · 4 H2O powder on a silicon XRD plate with silicon powder standard. This

sample was hydrated for a longer period of time than the samples described in Chapter 4 —

185 days at 83% relative humidity (RH) and 35◦C (PH2O = 4.67 kPa), and then an additional

62 days at 91% RH and 35◦C (PH2O=5.11 kPa).

Figure 5.6 shows the XRD pattern of this sample initially and at two different stages

of hydration. After 76 days, the initial [(UO2F2)(H2O)]7 · (H2O)4 material has undergone a

complete transformation and the XRD pattern is a good match to the γ species previously

identified. The Raman spectrum of the sample at this point matches the previously

determined Raman spectrum of γ, with a dominant uranyl stretching mode near 845 cm−1

and lower shoulder centered near 825 cm−1.

After 247 days of hydration, the Raman spectrum shows the growth of δ, with

characteristic peaks at 820 and 865 cm−1. The Raman peak attributed to the γ species near

845 cm−1 has shifted down slightly in frequency, suggestive of strengthened hydrogen bonding

due to the absorption of additional water molecules. In general, the Raman spectrum at this

point is consistent with particles in the particle hydration study that were determined to be

a mix of the γ and δ species. In addition to these changes in the Raman spectrum, there

are additional peaks in the XRD diffractogram compared to after 76 days. The location of

many of these peaks matches the location of the expected diffraction maxima of studtite
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(a) (b)

Figure 5.6: (a) XRD patterns over time of a sample of [(UO2F2)(H2O)]7 · (H2O)4 stored
at 85% RH at 35◦C (PH2O = 4.67 kPa). The initial pattern is shown compared to the
expected pattern of [(UO2F2)(H2O)]7 · (H2O)4. After 76 days, the pattern matches the
expected pattern of the γ species, as determined via Rietveld refinement in the previous
chapter. The pattern after 247 days of hydration is shown compared to the expected patterns
of [(UO2)O2(H2O)2] · 2 H2O (black) and [(UO2)(O2)(H2O)2] (gray). Dashed lines show the
position of peaks corresponding to the LaB6 standard added to the sample. (b) The uranyl
stretching region of the Raman spectrum of the same sample over time. Dashed lines at
868, 846, and 820 cm−1 highlight the location of the dominant uranyl stretching modes of
[(UO2F2)(H2O)]7 · (H2O)4, γ, and [(UO2)O2(H2O)2] · 2 H2O, respectively.
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([(UO2)O2(H2O)2] · 2 H2O) and metastudtite ((UO2)O2(H2O)2). In particular, new peaks

are visible near 2θ = 15, 21, and 26°, as in studtite. Broader peaks near 2θ = 17, 20, and

23° are suggestive of the presence of a more amorphous metastudtite-like component. The

dominant uranyl stretching peaks in the Raman spectrum at 820 cm−1 is more characteristic

of studtite than metastudtite, but the peak is fairly broad, suggesting that a second peak

near 830 cm−1 corresponding to a metastudtite-like component may simply not be resolvable.

This is supported by previous observations of a shoulder on this peak in the particle hydration

study.

The water content of [(UO2F2)(H2O)]7 · (H2O)4 and its hydration products may explain

why δ appears to be much more amorphous than γ. As discussed in Chapter 3, the H2O/U

ratio for studtite is 4, compared to 1.54 in [(UO2F2)(H2O)]7 · (H2O)4. Two of the four

water molecules per uranium in studtite are equatorially bound to the uranium atoms,

while the remaining two are hydrogen-bonded between the chains of peroxo-linked uranyl

polyhedra. These crystallographic water molecules are not present in metastudtite, which

has a H2O/U ratio of 2. The water content of the γ species remains unknown, but based

on the characterization of this species as structurally similar to schoepite, it is hypothesized

that the water content is closer to that of schoepite (H2O/U = 1.5) than of studtite. The

formation of a uranyl peroxide species structurally similar to studtite from a uranyl hydroxide

species similar to schoepite thus requires the incorporation of a large number of additional

water molecules.

If a limited number of water molecules are present in the formation of δ from γ, as is the

case of a reaction occurring at a solid–gas interface, it is plausible that peroxo-linked uranyl

polyhedra chains form, but additional water molecules are not available to crystallize these

chains with long-range order through a hydrogen bonding network. This would result in a

mixture of poorly crystalline synthetic studtite and metastudtite with a variable amount of

crystallographic water throughout, consistent with the observed XRD pattern. Additional

hydration would not necessarily result in the formation of more crystalline studtite because

once hydrogen bonds form directly between the chains of uranyl polyhedra, as found in

metastudtite, they are unlikely to be broken to allow for the incorporation of additional water
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molecules. Previous studies have found that the dehydration of studtite to metastudtite is

irreversible for this reason [64, 126].

This XRD hydration experiment confirms the identification of δ as a uranyl peroxide

species. Formation of a uranyl peroxide species from a uranyl hydroxide species (γ) was

not expected in this system given the absence of added H2O2. The novelty of this reaction

prompted an investigation to further elucidate the formation mechanism.

5.3 Known uranyl peroxide formation reactions

The formation of a uranyl peroxide species from the hydration of uranyl fluoride through a

uranyl hydroxide intermediate has not been demonstrated previously. In fact, there are no

prior examples of formation of uranyl peroxide species in the solid state at all. The lack of

observed solid-state reactions is not particularly surprising since the high water content of

studtite makes crystallization challenging in a nonaqueous environment. As demonstrated

in this work, a very high water vapor pressure is required to induce the formation of δ from

γ.

While this reaction is the first evidence of a solid-state formation mechanism, multiple

aqueous formation mechanisms for uranyl peroxide species are described in the literature.

The simplest involves the addition of H2O2 to uranium oxides. Uranyl peroxides have been

observed to form on the surface of UO2 disks or precipitate out of uranyl solutions when

exposed to a H2O2 solution of at least 5 · 10−4 M [166, 4, 94, 36, 67, 42, 31]. Since H2O2 was

not added in this study, this formation mechanism is less relevant and will not be discussed

further. The remaining mechanisms generally involve the in situ production of H2O2 in the

system, whether by radiolysis or a photochemical reaction. These mechanisms and their

potential relevance to the reaction observed in this work will be discussed in turn.

5.3.1 Radiolytic

Uranyl peroxides have been observed to form in systems where H2O2 is produced in situ

via water radiolysis, such as on the surface of fresh UO2 fuel pellets irradiated in water

[141, 42, 63, 31], on the surface of spent fuel pellets exposed to de-ionized water [67], and in
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irradiated samples of hydrated uranyl hydroxide [74]. H2O2 is produced via water radiolysis

by the combination of two hydroxyl radicals (·OH + ·OH −−→ H2O2), as summarized in

Figure 5.7.

In these examples, the activity of the sample or external source is significant—several

orders of magnitude above the activity of the depleted uranium material used in this study.

However, the radiolytic production of H2O2 was also suggested to be responsible for the

formation of the uranyl peroxide mineral studtite in nature. While 238U and 235U have

very long half-lives (4.5 billion and 700 million yrs, respectively), uraninite minerals can be

relatively radioactive due to a build-up of radioactive daughter products. Assuming an α

activity of 35,000 dpm/cm2 at the surface of uraninite, Kubatko and Burns calculated that

the H2O2 concentration could reach 3.5 · 10−3 M in the layer of water between uraninite

crystals in just 4 years [94].

The possibility of forming uranyl peroxide radiolytically at much lower activity levels

seems to make a radiolytic mechanism more likely in this system. However, there are

significant differences between this work and the assumptions made by Kubatko and Burns.

For one, the material in this study was made with depleted uranium (0.03% 235U), which has

an α activity that is a fraction of that of uraninite at secular equilibrium with its radioactive

daughter products. Given that the initial uranyl fluoride material was purified from any

radioactive daughters during the UF6 hydrolysis reaction, the α activity of this material

is estimated to be approximately 8.6 Bq/mg, compared to 91 Bq/mg for UO2 in secular

equilibrium with all of its daughter products. In this work, δ was also observed to form in

days at elevated humidity rather than years [88]. A proposed radiolytic mechanism would

need to account for why the observed peroxide formation mechanism is several orders of

magnitude faster than expected based on previous studies.

One possible explanation for a radiolytic mechanism is that the radiolytic yield of

hydrogen peroxide is higher than expected. In their calculations of uranyl peroxide formation

from uraninite, Kubatko and Burns assume a radiolytic yield of 0.985 H2O2 molecules/100 eV

[35]. Thus, every 4.27 MeV α particle released from 238U produces approximately 42,700

molecules of H2O2. It is possible that this value needs to be reassessed. In addition, Kubatko

and Burns only consider the α activity of the mineral in their calculations [94]. The initial
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Figure 5.7: Schematic for the decomposition of water leading to the formation of H2O2.
Reproduced from Hiroki et al. [68]
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material used in this study has some β and γ activity after aging for a few months due to

the growth of the short-lived daughter products 234Th and 234mPa, and β and γ radiolysis

have been known to cause hydrogen peroxide formation as well [148, 97, 77, 50]. However,

adjusting the radiolytic yield to account for β and γ radiolysis still cannot explain the

acceleration of the rate by several orders of magnitude, as observed in this work.

Most relevant radiolysis studies have focused on the interaction of bulk materials with

liquid water. As described in Chapter 4, the uranyl hydroxide reactant γ has a layered

structure with interlayer water molecules. If a radiolytic mechanism does describe peroxide

formation in this system, the generation of H2O2 likely occurs between these layers. It is

possible that the radiolytic yield from these confined water molecules differs significantly

from radiolytic yields in bulk water. Previous studies have observed increased yields of

radiolytic products, including H2O2, with the γ irradiation of hydrated oxides or porous

species with confined water [120, 118, 119, 129, 56, 138, 98]. This result was explained as

evidence of an efficient energy transfer from the crystal to the confined or surface water.

Ionizing radiation produces excitons that migrate to the surface of the oxide and react with

surface hydroxy groups to produce surface radical oxygens. Water molecules then interact

with these surface radicals, producing hydroxyl radicals which can combine to form H2O2

[98].

The existence of a similar catalytic effect must be considered as a potential mechanism

for the formation of H2O2 in the system studied in this work, especially since the uranyl

hydroxide reactant, γ, has hydroxy groups that could form hydroxyl radicals. However, it

is important to note that this effect has only been observed in the case of γ radiolysis, not

α radiolysis, and the estimated γ energy rate of the source material (4·10−8 Gy/s) is many

orders of magnitude below the γ dose rates in these studies (0.03–1.8 Gy/s) [120, 118, 119,

129, 56, 138, 98]. Le Caer et al. found that H2O2 formation actually decreased when the

system was irradiated with 10 MeV electrons instead of a γ source, because the higher-energy

radiation caused defects in the crystal structure rather than excitons [98]. It is likely that α

particles would cause similar defects and not result in a catalytic effect.

In summary, while water radiolysis has been shown to produce uranyl peroxide species,

there is no clear explanation for the significantly reduced timescale of uranyl peroxide
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formation observed in this work. The possibility of a radiolytic mechanism is revisited in

Section 5.5.2 following additional experiments to elucidate the origin of the peroxo oxygens.

5.3.2 Photochemical

Uranyl peroxide species can also be generated in systems where H2O2 is produced in situ via

a photochemical rather than radiolytic reaction. A few different photochemical mechanisms

have been proposed to explain the production of multiple uranyl peroxide species found to

form without adding H2O2 as a reagent [137, 156, 155, 81, 105, 1, 48, 32, 151, 153].

Uranyl-promoted autoxidation

The primary photochemical mechanism for uranyl peroxide formation involves autoxidation

of the photoexcited uranyl ion, which generates H2O2 as a byproduct. When UO 2+
2

is exposed to light, *UO 2+
2 is generated. *UO 2+

2 can be reduced by H abstraction or

electron transfer to produce UO +
2 , which can then be reoxidized by atmospheric oxygen

(Reaction 5.1) to regenerate UO 2+
2 and produce H2O2 in the process. Thangavelu and

Cahill recently demonstrated that this mechanism was responsible for the production of

three uranyl peroxo complexes [153]. These species were observed to form in uranyl solutions

exposed to ambient light or sun, but not when syntheses were performed in the absence of

light. Peroxo species also failed to form when the synthesis was carried out under nitrogen,

indicating that atmospheric O2 was required to form in situ hydrogen peroxide, consistent

with Equation 5.1.

2 UO +
2 + O2 + 2 H+ −−→ 2 UO 2+

2 + H2O2 (5.1)

Oxidative coupling of hydroxy bridges

A recent study by McGrail et al. [110] presents an alternative mechanism for the formation

of a uranyl peroxide species, in which the peroxo bridge is formed via the oxidative coupling

of water or hydroxy bridges (Figure 5.8). The authors still observed the formation of this

uranyl peroxide species after light exposure in the absence of atmospheric oxygen, suggesting
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Figure 5.8: Oxidative coupling reaction scheme proposed by McGrail et al. [110].
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that autoxidation via Equation 5.1 was not occurring. Isotopic labeling confirmed that the

peroxo ligand resulted from the oxidative coupling of two water or hydroxy ligands, with

the observed evolution of H2 gas supporting this proposed mechanism. This mechanism

has since been proposed to explain the formation of uranyl peroxide species from two other

hydroxy-bridged compounds [76, 158]. However, Jayasinghe et al. [80] recently suggested

that peroxide formation in this system could instead be the result of the photoexcitation of

the diethyl ether solvent, which is a known peroxide former. Such a mechanism would not

be dependent on the presence of gaseous O2 and would result in the release of H2, as noted

in this study. Thus, the mechanistic details of this proposed oxidative coupling reaction are

in question.

5.4 Confirmation of a nonphotochemical mechanism

To determine whether or not a photochemical reaction is responsible for the formation of

uranyl peroxide in this system, the uranyl fluoride particle hydration experiment was repli-

cated in the absence of light. Particles of uranyl fluoride hydrate ([(UO2F2)(H2O)]7 · 4 H2O)

were again deposited onto an adhesive carbon tab and exposed to a 75% RH environment

at 35◦C (PH2O=4.22 kPa). The sample container was wrapped in aluminum foil to prevent

light exposure to the particles during the experiment. Figure 5.9 shows the evolution of the

Raman spectrum over time. Peaks at 845 cm−1 and 820 cm−1 once again appear in the

uranyl stretching region upon hydration, and the peaks at 820 and 865 cm−1 increase in

intensity relative to the peak at 845 cm−1 between 57 and 81 days. It is thus clear that both

γ and δ form when particles of [(UO2F2)(H2O)]7 · 4 H2O are hydrated in the dark, ruling out

a photochemical reaction mechanism for the formation of either species [88].

For thoroughness, a similar experiment was carried out starting with particles of the

isolated uranyl hydroxide intermediate γ. Particles of γ were hydrated in a 84% RH

environment at 25◦C (PH2O=2.57 kPa) for 45 days. The sample container was again

wrapped in aluminum foil to prevent light exposure during hydration. The evolution of

the uranyl stretching region of the Raman spectrum of a representative particle is shown

in Figure 5.10. The decrease in the intensity of the 847 cm−1 peak, attributed to γ, and
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Figure 5.9: Representative micro-Raman spectra of a uranyl fluoride particle
([(UO2F2)(H2O)]7 · 4 H2O at t = 0) after increasing amounts of time spent equilibrating
in a 75% RH environment at 35◦C in the dark. After 57 and 81 days of hydration, it is
clear that both of the hydration products observed previously (uranyl hydroxide and uranyl
peroxide) are present.
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Figure 5.10: Uranyl stretching region of the Raman spectrum of a representative particle
of γ hydrated in a 85% RH environment at 25 ◦C). The sample was wrapped in tinfoil
during equilibration to minimize light exposure. The lower energy region of each spectrum
is scaled by a factor of 3. Dashed lines at 820, 847, and 867 cm−1 highlight peak locations.
The decrease in the intensity of the 847 cm−1 peak and increase in the intensities of the 820
and 867 cm−1 peaks indicate the transformation of γ into the uranyl peroxide species δ.
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increase in the intensities of the 820 and 867 cm−1 peaks, attributed to δ, clearly indicates

that the conversion of γ to δ proceeds in the absence of light.

Demonstration of the formation of δ from uranyl fluoride in the dark was the first

evidence of a nonphotochemical mechanism for the formation of uranyl peroxide in the

absence of significant radiation [88]. While never proposed previously, the existence of a

nonphotochemical, nonradiolytic mechanism could explain previous unexpected observations

of uranyl peroxide species in the literature. For example, studtite was recently identified in

addition to metaschoepite as a corrosion product found on depleted uranium ammunitions

retrieved from soil in Bosnia and Herzegovina [168]. The authors attributed the formation of

studtite to the same radiolytic reaction mechanism responsible for the formation of studtite

from natural uraninite. However, as noted previously, the α activity of depleted uranium

is significantly reduced compared to uraninite in secular equilibrium with its radioactive

daughter products.

Since the publication of nonphotochemical formation of δ [88], another study has pre-

sented evidence of the formation of a uranyl peroxide species in solution by nonphotochemical

means. Jayasinghe et al. [80] demonstrated transformation of a uranyl carbohydrate

coordination polymer into two different uranyl peroxide coordination complexes in the

presence and absence of light. The proposed mechanism for the reaction that occurred in

the presence of light involved the photoexcitation of the uranyl ion and in situ formation of

H2O2 via autoxidation of the tetrahydrofuran (THF) solvent (Figure 5.11) [80]. Formation

of a uranyl peroxide compound in the absence of light led the authors to conclude that

photoexcitation of the uranyl ion is not a requirement for peroxide formation, which was

again explained by autoxidation of the THF solvent.

5.5 Elucidation of the peroxide formation reaction

It is evident that water molecules play a mechanistic role in the formation of the uranyl

peroxide species because the rate of formation increases with water vapor pressure. In

addition, any potential role of the carbon substrate in the particle hydration experiments

is ruled out since the same reaction was observed on silicon substrates employed for XRD
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Figure 5.11: Proposed catalytic cycle for the formation of H2O2 from the autoxidation of
THF. Reproduced from Jayasinghe et al. [80].
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studies. However, the mechanistic details remain unclear from the hydration experiments

presented thus far. Additional experiments were undertaken to elucidate these details.

5.5.1 Formation of uranyl peroxide from uranyl hydroxide starting

material

The confirmation of γ as a uranyl hydroxide hydrate raised the question of whether other

known uranyl hydroxide species can be likewise converted into uranyl peroxide at high humid-

ity. To test this, multiple particles of synthetic metaschoepite ([(UO2)4O(OH)6] · 5 H2O) were

monitored via micro-Raman spectroscopy while equilibrating at 25◦C and 75% RH/85% RH/

95% RH for 58 days. The synthetic metaschoepite material came from the synthesis decribed

in Section 4.3. The initial Raman spectra of the particles on each sample were consistent with

prior findings, with the uranyl stretching region showing strong peaks at 869 and 845 cm−1

[90]. Figure 5.12 shows the evolution of the Raman spectrum of a representative particle of

synthetic metaschoepite at each humidity.

Upon hydration at 75% RH, the 869 cm−1 peak is observed to redshift to 855 cm−1, where

it is stable for the remainder of the experiment. This shift was observed at each humidity

level, and as discussed in Section 4.3, is tentatively attributed to a change in the interlayer

water structure that strengthens hydrogen bonding interactions to some of the uranyl ions.

No comparable shift was observed for the 845 cm−1 peak, again consistent with the findings in

Section 4.3. At 75% RH, however, a broad lower shoulder grows in on the 845 cm−1 peak. It is

unclear if this shoulder corresponds to the formation of uranyl peroxide or structural changes

within the uranyl hydroxide structure. At 85% RH, a clear peak grows in at 819 cm−1, at

the same frequency of the uranyl stretching mode in studtite. A peak near 866 cm−1 likely

corresponds to the peroxide stretch of a uranyl peroxide hydration product, but it is difficult

to confirm given potential overlap with the initial uranyl hydroxide peak at 869 cm−1. At

95% RH, the transformation to uranyl peroxide is much clearer; after 58 days, the Raman

spectrum is dominated by strong peaks at 819 and 864 cm−1. The formation of uranyl

peroxide from uranyl hydroxide confirms that fluorine or hydrogen fluoride gas released from
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(a) (b) (c)

Figure 5.12: Evolution of the Raman spectrum of a representative particle of synthetic
metaschoepite at 25◦C and (a) 75% RH, (b) 85% RH, and (c) 95% RH. Multiple scans were
performed on the same particle over 58 days of equilibration (day 1 in dark blue, day 58 in
dark red). Individual spectra are normalized by the peak area in the region shown to allow
for easier comparison. Dashed lines at 819 cm−1 and 864 cm−1 show the expected location
of peaks corresponding to the uranyl and peroxo stretching modes of uranyl peroxide.
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uranyl fluoride was not somehow responsible for the formation of uranyl peroxide from uranyl

fluoride.

5.5.2 Origin of the peroxo groups

The origin of the peroxide oxygens in the uranyl peroxide species produced via the hydration

of synthetic metaschoepite was assessed through an isotopic labeling study. Given the

similarities between synthetic metaschoepite and γ, it is assumed that uranyl peroxide forms

via hydration of each species by the same mechanism. Labeled synthetic metaschoepite was

produced in the same manner described in Section 4.3 but using 97% H2
18O. Raman spectra

collected on the labeled material indicate the exchange of a majority of both the uranyl and

equatorial oxygens (i.e., formation of [(U18O2)4
18O(18OH)6] · 5 H2O (Figure 5.13). Because

peaks corresponding to the bending and stretching modes of the interlayer water molecules

do not appear in the Raman spectrum, it is not possible to determine whether these oxygen

atoms have been exchanged as well.

Particles of this labeled uranyl hydroxide material were deposited onto an adhesive carbon

tab and exposed to the headspace of a KCl saturated-salt solution (84% RH) in the same

configuration described in Chapter 3. The sample was stored in an incubator maintained

at 25◦C. Raman spectra of several different particles on the sample were collected initially

and after 2, 4, and 11 days of hydration. Changes observed in the uranyl stretching region

of the Raman spectra for a representative particle over this time are shown in Figure 5.14.

Initially, the dominant Raman peaks are at 819 and 796 cm−1, corresponding to doubly

labeled uranyl ions (18OU18O) in the synthetic metaschoepite starting material (Table 5.1

for a list of relevant expected frequencies). Initial intensity between 825 and 875 cm−1 is

indicative of incomplete exchange of the uranyl oxygens during synthesis.

After hydrating for two days, the 819 cm−1 peak shifts to 806 cm−1, consistent with the

redshift observed in this mode (869 to 855 cm−1) when hydrating samples of isotopically

natural synthetic metaschoepite (Section 5.5.1). The changes in the Raman spectrum

over this time period were further analyzed by subtracting the spectrum after two days

of hydration from the initial spectrum (Figure 5.15). In addition to the shift in the 819 cm−1

peak, there is a decrease in the intensity of the 796 cm−1 peak, which is attributed to
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Figure 5.13: Representative Raman spectrum of synthetic metaschoepite made with H2O
and H2

18O. The spectrum of the labeled sample was weaker in intensity and has been scaled
by a factor of 2.5 to allow for better comparison of the peak frequencies. Isotopic shifts in both
the uranyl stretching region (750–900 cm−1) and equatorial stretching region (200–600 cm−1)
confirms replacement of these 16O atoms with 18O. Uranyl stretching modes observed at 868
and 845 cm−1 shift to 819 and 797 cm−1, respectively, while modes at 542 and 409 cm−1

shift to 511 and 386 cm−1, respectively. Modes below 200 cm−1 correspond primarily to
uranium motion, and thus do not experience the same isotopic shift upon exchange of the
oxygen atoms. Weaker peaks that correspond to unlabeled or partially labeled uranyl ions
are observed in the labeled sample, a not-unexpected finding since the water used in synthesis
was only 97% H2

18O.
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Figure 5.14: Evolution of the uranyl stretching region of the Raman spectrum of a
characteristic particle of labeled synthetic metaschoepite upon hydration at 85% RH, 25◦C.
All Raman spectra have been normalized to the intensity of the Rayleigh peak (not shown).

218



Table 5.1: Expected frequencies of the uranyl ν(OUO) and peroxo ν(OO) stretching modes
with the labeling of one or both oxygen atoms. Frequencies for ν(16OU16O)/ν(16O16O)
stretches come from observations described in this work. Frequencies for isotopically labeled
stretches are estimated based on the square root of the isotopic masses.

Species Stretch 16O16O 16O18O 18O18O
uranyl hydroxide ν(OUO) 869/855a 845/831 819/806

ν(OUO) 845 821 797
uranyl peroxide ν(OUO) 820 797 773

ν(OO) 865 841 816

a As shown in Figure 5.12, this peak undergoes a significant redshift upon hydration.
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Figure 5.15: (Top) Subtraction of the normalized Raman spectra for Days 0 and 2 shown
in Figure 5.14. Dashed lines at 775, 806, 831, 840, 855, and 866 cm−1 identify peaks that
increase in intensity over this time period; dashed lines at 796 and 818 cm−1 identify peaks
that decrease in intensity. (Middle) Subtraction of the normalized Raman spectra for days
2 and 4 shown in Figure 5.14. Dashed lines at 773, 820, 835, 865 cm−1 identify peaks that
increase in intensity over this time period; dashed lines at 794 and 806 cm−1 identify peaks
that decrease in intensity. (Bottom) Subtraction of the normalized Raman spectra for days
4 and 11 shown in Figure 5.14. Dashed lines at 775, 820, and 866 cm−1 identify peaks that
increase in intensity over this time period; dashed lines at 794 and 806 cm−1 identify peaks
that decrease in intensity.
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18OU18O ions in the uranyl hydroxide starting material. On the other hand, a peak grows

in at 855 cm−1 as well as between 830 and 845 cm−1. These peaks are consistent with

the stretching modes of 16OU16O ions in the hydrated isotopically natural uranyl hydroxide

species. Thus, it is clear that in the first two days of hydration, a subset of the uranyl ions

in the uranyl hydroxide species undergo oxygen exchange with the unlabeled water vapor.

This a significant finding given the expected stability of the uranyl ion in the solid state,

and is discussed further in Section 5.5.3.

There is also some evidence of formation of the uranyl peroxide species in the first two

days of hydration. A broad peak between 775 and 785 cm−1 is attributed to labeled uranyl

ions (ν(18OU18O)) in the uranyl peroxide species, while a small peak that begins to form at

865 cm−1 is attributed to the unlabeled peroxo stretch (ν(16O16O)) in the same species [40].

It is difficult to resolve other peaks that may correspond to the uranyl peroxide species due

to significant overlap with the uranyl hydroxide species.

Beyond two days of hydration, the uranyl hydroxide peak at 806 cm−1 does not redshift

further. Between two and four days of hydration, this peak decreases in intensity along with

the peak at 796 cm−1 identified as the other uranyl stretching mode in the same species.

The decrease in these peaks indicates a transformation of the uranyl hydroxide species as

expected upon hydration. These peaks are replaced by peaks at 775, 820, 835, and 865 cm−1.

The 775 cm−1 peak is again identified as corresponding to 18OU18O ions in the uranyl

peroxide species, while the 865 cm−1 peak is identified as corresponding to unlabeled peroxo

groups. The 820 cm−1 peak is tentatively assigned to 16OU16O ions in this species. While

a ν(16OU18O) mode of the uranyl hydroxide species could appear at a similar frequency,

previous studies have found that the exchange of both uranyl ions in a concerted mechanism

is more likely than the exchange of just one [57]. The fact that there is no additional growth

of uranyl hydroxide ν(16OU16O) peaks at 845 and 855 cm−1 also suggests that the 820 cm−1

peak is unrelated to the incorporation of 16O into the uranyl oxo ligands of the uranyl

hydroxide species.

Changes in the Raman spectrum between days 4 and 11 help clarify the assignment of

the 820 cm−1 peak, which grows significantly over this time period, along with the peak

at 866 cm−1. The correlated growth of these two peaks is consistent with their respective
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assignments as the unlabeled uranyl and peroxo stretching modes of the uranyl peroxide

hydration product.

The significant presence of 16OU16O ions in the uranyl peroxide product was unexpected

and indicative of additional uranyl oxygen exchange, explored further in Section 5.5.3. The

775 and 866 cm−1 peaks still correspond to labeled uranyl ions and unlabeled peroxo groups,

respectively, while the decrease in the peaks at 794 and 806 cm−1 indicates the continued

loss of uranyl hydroxide as it is converted into uranyl peroxide.

The goal of this experiment was to determine the origin of the peroxo oxygens in the

uranyl peroxide product. It is clear from Figure 5.15 that unlabeled peroxo groups are present

in the product, suggesting that the peroxo oxygens come from water vapor or atmospheric

oxygen rather than the hydroxide ligands in the uranyl hydroxide starting material, the

majority of which were labeled.

An alternative possibility to consider is that the hydroxide ligands in the uranyl hydroxide

material, which were initially labeled, undergo exchange with water and/or atmospheric

oxygen prior to the formation of the peroxo groups. This can be analyzed by examining the

lower-energy region of the Raman spectra collected over hydration. As shown in Figure 5.13,

the labeling of the uranyl hydroxide material shifts the major equatorial oxide/hydroxy

modes from 542 and 409 cm−1 to 511 and 386 cm−1, respectively. If oxygen exchange was

occurring in these equatorial groups, peaks would be expected to grow in at 542 and 386 cm−1

as observed in isotopically natural metaschoepite (see Section 4.3 or [90]). However, as shown

in Figure 5.16, this was not the case.

It should also be considered that labeled peroxo groups could form from the labeled

hydroxy groups and then undergo oxygen exchange with the water vapor or atmospheric

oxygen, resulting in the unlabeled peroxo groups identified in the spectra in Figure 5.15.

There is no evidence that such exchange occurs on the same timescale as the uranyl hydroxide

to uranyl peroxide transition, which would result in the increase and subsequent decrease

of peaks attributed to labeled peroxo groups near 816 cm−1 (ν(18O18O)) and 841 cm−1

(ν(16O18O)). Instead, as shown in Figure 5.15c, the growth of the unlabeled peroxo stretching

mode at 866 cm−1 is correlated with the disappearance solely of the uranyl hydroxide species

and not with labeled peroxide groups. It is possible that exchange of the peroxide oxygens
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Figure 5.16: Evolution of the low-energy region of the Raman spectrum of a characteristic
particle of labeled synthetic metaschoepite upon hydration at 85% RH, 25◦C. All Raman
spectra have been normalized to the intensity of the Rayleigh peak (not shown).
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does occur, just at a much faster rate than the rate of peroxide formation. This cannot

be ruled out from the collected data, but is deemed unlikely in the solid-state. Additional

experiments to probe oxygen exchange in peroxo groups should to carried out to clarify this

possibility.

Identifying the peroxo oxygens as most likely originating from water or atmospheric

oxygen provides further insight regarding the applicability of potential radiolytic mechanisms

presented in Section 5.3.1. As discussed there, previous studies have found an increase in

expected radiolytic yields with the γ irradiation of hydrated species where water molecules

are present on the surface or within pores of the material [120, 118, 119, 129, 56, 138, 98].

The increased yield of radiolytic products, including H2O2, has been explained as the result

of the production of radical oxygens from surface hydroxy groups following interactions with

excitons. If a similar mechanism were to explain the formation of uranyl peroxide from the

uranyl hydroxide hydrate γ, the peroxo oxygens would be expected to come from the hydroxy

groups in γ and thus be predominantly labeled in this experiment. While this finding does

not rule out a radiolytic mechanism, it raises additional questions as to how the observed

fast reaction rate could be explained via radiolysis.

5.5.3 Uranyl oxygen exchange

The isotopic labeling study discussed in the previous section revealed that uranyl oxygen

exchange occurs slowly in synthetic metaschoepite upon exposure to elevated water vapor.

This was unexpected given the general stability of the uranyl ion. In fact, it was the very

slow exchange of the oxo ligands that initially identified the characteristic strength of relative

inertness of the uranyl bond [43]. Uranyl oxygen exchange can occur in solution depending

on the speciation of the uranyl ion, and can be accelerated by UV irradiation [57]. There

was no evidence of deliquescence during the metaschoepite hydration experiment from the

Raman microscope images, however, and uranyl oxygen exchange has never been reported

across a solid–gas interface.

The chemical makeup of synthetic metaschoepite may explain why the uranyl oxygens

are more susceptible to exchange than expected for a uranyl solid. In solution, uranyl

hydroxide compounds have been observed to undergo uranyl oxygen exchange with solvent
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water molecules at a much faster rate than observed for other uranyl species [37, 150]. This

behavior has been attributed to a weakening of the uranyl bond due to reduced ionic bonding

generated in part by the σ-donating ability of the hydroxy ligands [75]. It is possible that

a similar charge transfer weakens the uranyl bonds in synthetic metaschoepite, increasing

the rate of uranyl oxygen exchange with nearby water molecules. Additional computational

calculations could investigate how the electronic structure of this compound may explain the

observed reactivity.

The uranyl oxygen exchange observed in synthetic metaschoepite upon hydration still

occurs fairly slowly; after 11 days, most uranyl ions in the remaining uranyl hydroxide

fraction are still labeled. Much faster uranyl oxygen exchange is demonstrated to occur

during the uranyl hydroxide to uranyl peroxide conversion, as evidenced by the growth of

a Raman peak at 820 cm−1 corresponding to 16OU16O ions in the uranyl peroxide product.

Since the majority of the uranyl ions in the uranyl hydroxide reactant were labeled with 18O,

the uranyl ions in the peroxide product were expected to be labeled as well, with a stretching

frequency near 775 cm−1. As shown in Figure 5.15c, a peak does grow in at 775 cm−1, but

it is much less intense than the peak at 820 cm−1 corresponding to unlabeled uranyl ions.

The presence of unlabeled uranyl ions in the uranyl peroxide product cannot be explained

solely by uranyl oxygen exchange that occurs in the uranyl hydroxide species prior to

conversion to the peroxide product. Figure 5.14 shows that the growth of the 820 cm−1

peak corresponding to 16OU16O ions in the uranyl peroxide product is correlated with a

decrease in the peaks corresponding to 18OU18O ions in the uranyl hydroxide material. This

indicates that significant exchange of the uranyl oxygens occurs during the reaction, an

unexpected finding again considering the general stability of the uranyl ion. The absence of

16OU18O ions in the peroxide product is consistent with previous findings that a concerted

exchange of both uranyl oxygens actually occurs at a faster rate than the exchange of just

one [57].

The exchange of uranyl oxygen atoms during this reaction was further analyzed by

conducting the opposite labeling study, exposing isotopically natural uranyl hydroxide to

isotopically labeled water vapor. A droplet of deionized water spiked with 97% H2
18O was

placed next to particles of synthetic metaschoepite that were adhered to a carbon tab. This
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system was sealed and stored at 25◦C. The RH of the sample chamber was not monitored,

but deliquescence of the particles was not observed. The hydration of the particles was

measured via Raman spectroscopy initially and after 6 and 12 days of hydration.

The evolution of the Raman spectrum of a representative particle is shown in Figure 5.17.

The initial spectrum is characteristic of synthetic metaschoepite, with dominant uranyl

stretching modes at 869 and 845 cm−1. After 6 days of hydration, the 869 cm−1 peak

redshifts to 855 cm−1, as observed previously. In addition, a broad peak begins to form at

820 cm−1 with a broad low-energy shoulder. After 12 days of hydration, the uranyl hydroxide

stretching modes decreased in intensity, replaced by dominant peaks at 820 and 866 cm−1

corresponding to the unlabeled uranyl and peroxo stretching modes of the uranyl peroxide

product. In addition, a clear peak appears at 797 cm−1. As shown in Table 5.1, the peak

could be interpreted either as the ν(18OU18O) stretching mode in uranyl hydroxide or the

ν(16OU18O) stretching mode in uranyl peroxide. However, there are two dominant uranyl

stretching modes in uranyl hydroxide, and an increase in a peak corresponding to one of

the ν(18O18O) stretching modes in uranyl hydroxide is expected to be accompanied by an

increase in the other ν(18OU18O) stretching mode. Such a peak, expected near 806 cm−1,

is not observed. The absence of this peak could in theory be explained by a preferential

exchange within the uranyl ions with lower-energy stretching frequency; however, this is

deemed unlikely since both of the uranyl hydroxide uranyl stretching peaks were observed

to shift due to oxygen exchange in the labeling experiment described in Section 5.5.2. Thus,

it is more likely that the 797 cm−1 peak corresponds to the ν(16OU18O) stretching mode in

uranyl peroxide.

Two separate isotopic labeling studies show evidence that significant uranyl oxygen

exchange occurs with water during the formation of the uranyl peroxide species. This

exchange occurs much more rapidly than the oxygen exchange observed in synthetic

metaschoepite prior to the conversion, and cannot be explained solely by a weakening of

the uranyl bond due to σ donation of the hydroxy ligands. This suggests that interactions

with water molecules further facilitate this exchange.

The heightened reactivity of the uranyl ion in this system is similar to that observed in the

photoexcited uranyl ion. Photoexcitation of the uranyl ion has long been known to facilitate
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Figure 5.17: Uranyl stretching region of the Raman spectrum of a representative particle
of synthetic metaschoepite adjacent to a droplet of deionized water spiked with H2

18O.
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exchange of the uranyl oxygens [57]. Importantly, the geometry of the uranyl ion is altered in

the excited state, with one or both of the uranyl bonds elongated depending on the specific

excited state. The more distant oxygen atoms acquire some radical character, becoming a

strong hydrogen or proton acceptor [136]. A computational study by Réal et al. determined

that the first step of the uranyl oxygen exchange mechanism involves intramolecular hydrogen

or proton transfer from a coordinated water molecule to the photoexcited uranyl ion through

a second-sphere water molecule that acts as a proton/hydrogen shuttle (Figure 5.18). As

shown in Figure 5.18, the lengthening of one of the uranyl bonds due to photoexcitation is

crucial to this interaction, as is the presence of a hydrogen bonding network that facilitates

hydrogen/proton shuttling. Isomerization of the two hydroxy ligands formed as a result of

this mechanism (Figure 5.18) was concluded to be responsible for uranyl oxygen exchange

[136].

It is unclear exactly how a similar mechanism could explain the observed uranyl

oxygen exchange in solid-state synthetic metaschoepite. Exchange appears to be occurring

intermolecularly rather than intramolecularly since all of the equatorial hydroxy ligands were

also labeled. The proton transfer mechanism shown in Figure 5.18 is plausible in the system

given the presence of interlayer water molecules that are known to act as hydrogen bond

donors to uranyl oxygens. The orientation of the uranyl ions and interlayer water molecules

upon exposure to increased water vapor pressure may be such that excitation of the uranyl

ion is not required to promote a proton transfer mechanism that further weakens the uranyl

bond and facilitates oxygen exchange.

5.5.4 Interactions between the uranyl ion and water

The unexpected uranyl oxygen exchange and formation of peroxide both appear to be driven

by interactions between the uranyl ion and vapor phase water molecules. These interactions

were studied computationally through ab initio molecular dynamics (AIMD) simulations of

the uranyl hydroxide species schoepite. The strength of these interactions can be examined

through the pair distribution functions (PDFs) of all pairs of nearest-neighbor uranyl oxygen

atoms and water hydrogen atoms and uranyl oxygen atoms, shown in Figure 5.19 in the

schoepite and metaschoepite unit cells, averaged over the 18 ps AIMD simulation. Results
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Figure 5.18: Schematic of hydrogen or proton transfer to the excited uranyl ion.
Reproduced from Réal et al. [136].
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Figure 5.19: Radial distribution functions of uranyl oxygens and nearest neighbor water
hydrogens in schoepite and metaschoepite with the PBE and optB86b-vdW functionals.
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are presented for both schoepite and metaschoepite with the Perdew-Burke-Ernzerhof (PBE)

[128] and op!86b-vdW (vdW) [91, 92]) functionals (see Chapter 1 for additional detail).

As evidenced by the bimodal shape of the curves, the interlayer water structure in

schoepite and metaschoepite is such that only a subset of the uranyl oxygens interact

significantly with water molecules. In both simulations of schoepite and the PBE simulation

of metaschoepite, the hydrogen bonds that do form between uranyl oxygens and water

hydrogens can be characterized as medium in strength; the hydrogen bond distances are

rarely less than 150 pm over the course of the simulation. However, in the vdW simulation

of metaschoepite, significantly stronger hydrogen bonding interactions are observed, with

Oyl···Hwater hydrogen bonds as short as 110 pm in some instances. This short distance

suggests that some hydrogen atoms are even briefly coordinating with uranyl ions over the

course of this simulation, supporting the hypothesis that hydrogen or proton transfer can

occur in uranyl hydroxide hydrate systems in the absence of photoexcitation of the uranyl

ion.

5.6 Proposed mechanism

The occurrence of uranyl oxygen exchange in the uranyl peroxide formation mechanism

suggests that hydrogen abstraction occurs without photoexcitation of the uranyl ion. This

helps to explain the unexpected nonphotochemical formation of uranyl peroxide. Despite

the lack of photoexcitation of the uranyl ion, the peroxide formation mechanism is likely

very similar to previously determined photochemical mechanisms [153]. In the first step,

uranyl ions in the uranyl hydroxide product are reduced by water via hydrogen abstraction

(Reaction 5.2/5.3). Autoxidation of the reduced uranyl ion can then proceed in the presence

of atmospheric oxygen, generating H2O2 (Reaction 5.4) that reacts with the regenerated

uranyl ions to form the uranyl peroxide product (Reaction 5.5). Formation of additional

H2O2 molecules via the recombination of hydroxyl radicals formed in Reaction 5.2/5.3 is

also possible (Reaction 5.6).

UO 2+
2 + H2O −−→ UO +

2 + ·OH + H+ (5.2)
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UO 2+
2 + H2O −−→ UO2H

2+ + ·OH (5.3)

2 UO +
2 + O2 + 2 H+ −−→ 2 UO 2+

2 + H2O2 (5.4)

UO 2+
2 + H2O2 + xH2O −−→ [(UO2)2(O2)(H2O)x] (5.5)

2 ·OH −−→ H2O2 (5.6)

The demonstration of water as the reducing agent of the uranyl ion in this system is

noteworthy. While photo-oxidation of water by the uranyl ion has been observed previously

[30, 116, 84, 172, 173], examples of the photochemical formation of uranyl peroxide have

all relied on hydrogen abstraction from organic substrates or solvents such as methanol

[117, 106, 139, 167, 108, 103, 153]. A computational study by Tsushima offers an explanation

of why water is less likely to act as a uranyl reducing agent. Tsushima found that the

distance between uranyl oxygens and the hydrogen atoms in methanol or ethanol contracted

significantly when the uranyl ion was excited, while a similar contraction was not observed in

interactions with a water molecule [159]. In the proposed hydrogen abstraction mechanism

(Reaction 5.2/5.3) this effect is overcome due to the existence of a rigid hydrogen bonding

network in uranyl hydroxide hydrates that facilitates strong hydrogen bonding interactions

between uranyl oxygens and water hydrogens.

Photoexcitation of the uranyl ion is not a requisite for this redox reaction due to

specific attributes of the uranyl hydroxide reactant. The strong σ-donating character of

the hydroxy ligands and hydrogen bonding interactions between uranyl oxygens and water

hydrogens both weaken the uranyl ion even prior to hydration. Elevation of the water

vapor pressure presumably strengthens the interaction between the uranyl ions and water

molecules, prompting hydrogen abstraction. In the absence of these particular structural

characteristics, photoexcitation of the uranyl ion is necessary to trigger a similar reaction.

The significance of the structure of the uranyl hydroxide reactant explains why uranyl

peroxide was unexpectedly found with metaschoepite as a corrosion product found on

depleted uranium ammunitions [168]. However, uranyl hydroxide species do not appear

to uniquely satisfy the conditions necessary to facilitate hydrogen abstraction in the absence

of photoexcitation, as evidenced by the recent demonstration of nonphotochemical uranyl
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peroxide formation in a uranyl solution with THF solvent. It is worth further probing

interactions between the uranyl ion and THF molecules computationally to understand what

similarities may exist in the geometry and electronic structure of this system relative to

uranyl hydroxide hydrates.

Elucidation of a nonphotochemical mechanism for the formation of uranyl peroxide from

hydrated uranyl hydroxide raises the question of whether the mechanism explaining the

formation of the uranyl peroxide mineral studtite needs to be revisited. Due to the absence of

light below ground, Kubatko and Burns proposed that studtite formation must be radiolytic,

pointing to the fairly high activity of uraninite in secular equilibrium with its radioactive

daughters [94]. However, this work suggests that it is plausible that studtite forms from

the uranyl hydroxide hydrate minerals schoepite or metaschoepite via a nonphotochemical

autoxidation reaction. The existence of a second mechanistic route could help explain the

prevalence of uranyl peroxide minerals.

5.7 Summary and future directions

In summary, the formation of a uranyl peroxide species (δ) via further hydration the uranyl

hydroxide hydrate γ has been confirmed via XRD. The resulting species is structurally

similar to the known uranyl peroxide minerals studtite and metastudtite, but with reduced

crystallinity because, unlike formation from a solution phase, there are not enough water

molecules readily available in the solid-state system to crystallize the peroxo-linked uranyl

chains.

This reaction is demonstrated to be nonphotochemical and is also likely nonradiolytic

based on the limited α activity of the system. These findings thus appear to indicate

the existence of a novel uranyl peroxide formation mechanism. The fact that the same

reaction is observed upon hydration of synthetic metaschoepite suggests that the structure

and resulting chemical environment of uranyl hydroxide hydrates is relevant to promoting

a reaction that otherwise would be unlikely to proceed without photochemical or radiolytic

excitation. It is hypothesized that the significant σ-donating character of the hydroxide

ligands and the strong hydrogen bonding network in these species both weaken the uranyl
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ion such that increasing the water vapor pressure induces reduction of the uranyl ion via

hydrogen abstraction and subsequent autoxidation via atmospheric oxygen. This proposed

mechanism is very similar to that described by Thangavelu and Cahill [153] except that,

in this work, photoexcitation of the uranyl ion is not required to trigger the reaction. The

observation that significant uranyl oxygen exchange occurs during the formation of the uranyl

peroxide species is consistent with a hydrogen abstraction mechanism.

Further work could help confirm the proposed mechanism. Repeating the isotopic labeling

studies with γ labeled with 18O in place of synthetic metaschoepite would help support

the Raman peak assignments made in this chapter and confirm that formation of uranyl

peroxide from γ and synthetic metaschoepite proceeds by the same mechanism as expected.

The isotopic labeling studies presented here were somewhat complicated by the fact that

synthetic metaschoepite has two dominant uranyl stretching modes, one of which redshifts

significantly upon hydration. However, isotopic experiments with γ require the identification

of an alternative synthetic route for γ, a challenge identified in Chapter 4. Complementary

IR spectroscopy experiments would be a useful addition to future labeling studies, and could

also provide additional structure characterization of the uranyl hydroxide product, such as

how water molecules are arranged relative to the peroxo-linked uranyl chains. Determining

whether or not the discovered mechanism relies on atmospheric oxygen would also clarify

how autoxidation of the reduced uranyl ion occurs.
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Chapter 6

Conclusions

6.1 Clarifying the chemical behavior of uranyl fluoride

The findings described in this work significantly clarify the chemical behavior of uranyl

fluoride. Understanding the degradation pathways of uranyl fluoride in environmentally

relevant conditions was one of the primary motivations of this study, and considerable

progress has been made on this topic.

The phase transition between anhydrous uranyl fluoride (UO2F2) and hydrated uranyl

fluoride ([(UO2F2)(H2O)]7 · 4 H2O) was clarified through dynamic experiments. The dehy-

dration transition is demonstrated to occur in two steps, with the removal of the hydrogen-

bonded water molecules present in the pores of the uranyl fluoride hydrate structure occurring

before a transformation to anhydrous uranyl fluoride. The rehydration of anhydrous uranyl

fluoride is also clarified; while rehydration occurs readily in moderate humidity (>40%

relative humidity (RH)), the rehydrated material appears to differ slightly in structure from

the initial material. This suggests that the structure and water content of the uranyl fluoride

hydrate may be dependent on factors such as the rate of rehydration.

Above a temperature-dependent threshold humidity (30–60% RH), particles of the uranyl

fluoride hydrate undergo a complete loss of fluorine, resulting in the formation of a uranyl

hydroxide hydrate. This reaction is demonstrated to be denucleation driven; water molecules

are absorbed into the uranyl fluoride structure, driving fluorine dissociation at these sites

through strong F···H interactions. This conversion occurs in just days for particles stored at
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very high humidity (95% RH), although conversion is observed to occur much more slowly

in the bulk phase.

The uranyl hydroxide hydration product of uranyl fluoride (γ) is demonstrated to be

structurally similar to the uranyl hydroxide hydrate mineral schoepite, with layered uranyl

sheets and interlayer water molecules. The layer spacing of γ is significantly expanded relative

to schoepite, however. Analysis of the vibrational spectra of γ and synthetic metaschoepite

suggest that hydrogen bonding between hydroxide ligands and interlayer water molecules is

enhanced in γ, potentially due to the presence of additional interlayer water molecules.

At high enough water vapor pressure, γ can be further hydrated to form a second

hydration product, δ, that is identified via x-ray diffraction (XRD) and Raman spectroscopy

as a uranyl peroxide species similar to the known uranyl peroxide hydrate minerals studtite

and metastudtite with chains of peroxo-linked uranyl ions. In studtite, these chains are

linked by hydrogen-bonded water molecules; in metastudtite, these water molecules have

been removed, and the chains are hydrogen bonded directly to each other. This explains

why δ is more amorphous than γ. The limited number of available water molecules at the

solid-gas interface compared to synthesis in solution prevents crystallization of the peroxo-

linked chains, leading to a poorly crystalline uranyl peroxide species with regions structurally

similar to both studtite and metastudtite.

This work has clarified the conditions under which uranyl fluoride is unstable and

expected to undergo a chemical transformation. While evidence of fluorine loss with exposure

to humidity indicated that some sort of transformation occurred over time, the two hydration

products of uranyl fluoride characterized in this work have not been identified previously.

The identification of the elemental and vibrational signatures of these products in particular

is a significant contribution to the nuclear materials community, as these species will now be

more easily identifiable in the future.

6.2 Characterization of uranyl species

This work provides a broader contribution to the understanding of solid-state uranyl

compounds. As stressed in Chapter 1, very few solid-state uranyl compounds have been
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rigorously characterized. Identification of uranyl compounds is often made via indirect

structural techniques such as vibrational spectroscopy, but a clear understanding of how

to correlate vibrational spectra to structures can be lacking. Presentation of complementary

XRD, Raman, infrared (IR), and computational data of the structures studied in this

work essentially expands a database that can be used to help interpret data collected from

unknown materials in the future. Identification of significant phenomena that could affect

measurements like the humidity dependence of the interlayer spacing in uranyl hydroxide

hydrates is an essential component of this contribution as well.

6.3 Re-visiting uranyl reactivity

The identification of a novel non-photochemical uranyl peroxide formation mechanism

represents a significant contribution to uranyl chemistry on its own. Further elucidation of

this mechanism has revealed that the reaction proceeds because of an unexpected reactivity

of the uranyl ion in uranyl hydroxide hydrates caused by the combination of σ-donating

ligands and strong interactions between uranyl oxygens and interlayer water molecules. This

is a novel finding with broad impact in uranyl chemistry research.

While the uranyl ion has been historically regarded as fairly inert, this work adds to a

growing body of research that demonstrates that in specific cases, the oxo ligands can be

much more chemically reactive than previously thought. Renewed interest in investigating

uranyl ion reactivity was catalyzed in 2008 when Arnold et al. [8] demonstrated the first

instance of selective functionalization of the uranyl oxo ligand. This was achieved by using

a flexible ligand to simultaneously bind the uranyl ion and two potassium ions, creating a

“Pac-Man” structure in which one of the uranyl oxygens donates electrons to the potassium

ions. This charge transfer weakens the strong uranyl bonds, reducing the uranium and

allowing the formation of a silicon–oxygen bond at the other oxo group [8, 21]. This work

has since prompted a reevaluation of uranyl reactivity, and similar functionalization has been

demonstrated in other systems as well [9, 10].

The potential for manipulation of the uranyl ion has garnered considerable interest

because it has wide-reaching applications in nuclear waste management and environmental
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remediation, among others. In this study, it was demonstrated that the uranyl bonds

in uranyl hydroxide hydrates are weakened such that increased water vapor pressure can

induced interactions that would typically require photoexcitation. As found by Arnold, the

geometry of the system is crucial in facilitating this reaction. The 2008 study by Arnold et

al. introduced “Pac-Man” structures that facilitate oxo ligand functionalization [8]. Multiple

variants of these structures have now been identified. Similarly, this work demonstrates a

class of layered uranyl hydroxide hydrates with novel uranyl reactivity. It is likely that

additional structures exist with similar chemistry. In this manner, this work will help drive

basic uranyl chemistry investigations for years to come.

6.4 Future directions

While this work significantly clarifies the chemical behavior of uranyl fluoride, the discovery

of new reactions raises several additional areas of future study. Many of the specific remaining

questions related to this work are discussed at the end of each chapter. General themes of

future exploration are summarized here.

6.4.1 Probing the structure of water in hydrated uranyl fluoride

The uranyl fluoride hydrate solved by Mikhailov, [(UO2F2)(H2O)]7 · 4 H2O, contains both

equatorially bound and hydrogen-bonded water molecules. A computational analysis of

the water structure in [(UO2F2)(H2O)]7 · 4 H2O is presented in Chapter 2, but there is

remaining work to be done to experimentally characterize how water interacts with the

crystal structure. The dehydration and rehydration of this structure is demonstrated to

result in slight structural changes, potentially due to a rearrangement of this water network.

It is also likely that the structure can incorporate a variable number of water molecules and

that the hydrogen bonding network varies significantly based on the water content.

Clarifying these points will provide important insight regarding the hydration reaction

from [(UO2F2)(H2O)]7 · 4 H2O to the uranyl hydroxide species, γ. This reaction has been

demonstrated to occur above a threshold humidity, presumably due to the absorption of

additional water molecules that interact strongly with fluorine ligands. The mechanistic
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details of this reaction can be further probed with additional computational calculations. In

particular, nudged elastic band calculations may prove useful for identifying the transition

state of the fluorine–water interaction.

6.4.2 Further characterization of the structure of γ

Chapter 4 describes characterization of γ, a novel uranyl hydroxide hydrate formed from the

hydration of uranyl fluoride. XRD analysis reveals that γ has a layered structure similar to

the known uranyl hydroxide hydrate mineral species schoepite and metaschoepite. However,

the interlayer spacing in γ is significantly expanded. Comparison of the IR spectrum of γ and

synthetic metaschoepite also suggests that γ is characterized by stronger hydrogen bonds

between the uranyl layers and interlayer water molecules. Both of these findings, along with

the fact that γ is formed at high humidity, suggest that γ may have a higher water content

than schoepite or metaschoepite. Future thermogravimetric analysis would help clarify this

hypothesis.

Powder XRD allowed for a partial structural determination of γ in this study, namely

the determination of the lattice constants. Comparison of the Raman spectrum of γ and

synthetic metaschoepite suggests that the equatorial environment of the uranyl ions differs in

the two structures, motivating additional structural studies. Full structural characterization

of this species could be made via single-crystal XRD. However, this requires determination

of a direct synthetic route. The identification of an alternative synthetic route would also

allow for the production of larger quantities of γ, allowing the application of additional

characterization methods such as neutron scattering techniques, as well as the the ability to

replicate experiments or perform complementary experiments on the same batch of material.

Future computational studies would also be useful in determining structural character-

istics of γ such as the position and dynamics of interlayer water molecules. Now that the

lattice constants of γ have been assessed via XRD, a computational model of the structure

including interlayer water molecules can be built. Carrying out ab initio molecular dynamics

simulations on this structure may also help clarify why the vibrational spectra of γ and

synthetic metaschoepite differ.
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6.4.3 Further elucidation of peroxide formation reaction

The uranyl peroxide species δ, produced via hydration of γ or synthetic metaschoepite,

is partially characterized in Chapter 5. Characterization of this species is complicated by

the long formation time. Additional long-term hydration experiments may result in higher

quality XRD patterns that could further clarify the structure of this species. IR spectroscopy,

which was not obtained in this study, would be a useful complementary technique to probe

the water structure within the crystal.

The novel nonphotochemical reaction by which δ deserves significant follow-up study as

well. The mechanistic details of this reaction are elucidated in Chapter 5 in part via the

hydration of isotopically labeled synthetic metaschoepite. If an alternative synthetic route

for the formation of γ can be identified, repeating these experiments with labeled γ would

help support the conclusions made in Chapter 5 and confirm whether or not the formation of

uranyl peroxide via γ and synthetic metaschoepite proceeds by the same reaction. Additional

hydration studies in an inert atmosphere would clarify how atmospheric oxygen is involved

in the proposed autoxidation reaction.

In addition to further clarification of the specific mechanistic details of this reaction,

future work should also focus on better understanding the unusual uranyl ion reactivity

demonstrated in uranyl hydroxide hydrates. As discussed in Chapter 5, this is proposed

to arise due to the combined effect of the strong σ-donating character of the hydroxy

ligands and strong hydrogen bonding interactions between uranyl ions and interlayer water

molecules. The electronic structure of these species should be assessed computationally to

more thoroughly understand the effect of these structural characteristics. The observed

uranyl oxygen exchange that occurs as a result of the weakening of the uranyl bonds can

also be quantified through additional isotopic labeling studies.
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Structure d’un complexe binucléaire du nitrate d’uranyle et du N,N-diméthyl-
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