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Abstract

The increasing penetration of renewable energy resources brings a number of
uncertainties to modern power system operation. In particular, the frequent variation of
wind or solar power output causes a short-term mismatch between generation and demand
and system frequency fluctuation. The traditional approach to dealing with this problem is
to increase the amount of system spinning reserve, which increases costs. In recent years,
researchers have been actively exploring the utilization of residential and commercial loads
in frequency regulation without affecting customers’ comfort level. This is called dynamic
demand control (DDC). This dissertation describes an in-depth study of DDC for bulk

power system frequency regulation, from both a technical and economic perspective.

Fist, an analytical method was proposed for aggregating a multi-machine system
frequency response (SFR) model. The SFR model can accurately represent the bus
frequency response of small-scale systems and the center-of-inertia frequency of large
systems. The method is a fast tool for simulating the system frequency response after a
disturbance. Therefore, it has wide applications in power system dynamic studies and acts

as a solid theoretical foundation for DDC studies.

Second, DDC strategies for both primary and secondary frequency regulation were
studied. The control strategy has the following features. 1) The target load reduction
amount can be achieved in a decentralized manner, while the control parameters are
updated by the control center. Therefore, the control strategy is easy to implement in the
hardware. 2) The daily demand profiles of thermostatic loads are modeled. 3) The load

recovery process is considered in the control strategy. Consequently, the aggregate loads

iv



can provide flexible frequency control capability without causing significant power
rebound. Therefore, demand side control is an essential compensation for traditional
frequency regulation approaches and can improve the frequency response of the bulk

power system.

Furthermore, this dissertation also conducts an economic analysis on demand response
(DR). Based on a large-scale customer survey, we estimate the expense of frequency
regulation and peak load reduction via incentive-based demand response (IBDR). The
results provide useful suggestions for utility companies when implementing IBDR

programs.

Key words: demand response, frequency regulation, system frequency response,
thermostatic load, electric water heater, HVAC, incentive-based demand response, demand

profile.
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Chapter 1

Introduction

This chapter discusses the general techniques of demand side control for power system

frequency regulation.

1.1 Overview

One essential requirement for power system operation is to ensure the balance between
power generation and demand in real time. As a result of the considerable unbalance
between generation and demand, frequency instability is usually associated with poor
coordination of control and protection equipment, insufficient generation reserves, and
inadequacies in equipment responses [1]. In recent years, however, the increasing
penetration of renewable energy resources and the development of the power market bring
three challenges to frequency stability, which amplify the need for frequency regulation for
both long-term (hourly) and short-term (minute to second timescale). Those challenges are

as follows:

e The intermittent nature of renewable energy causes a mismatch between power
generation and demand [2]-[4], therefore, frequency fluctuation is more likely to

happen than ever before;

e Some synchronous generators are replaced by converter-based energy sources, which

may decrease the mechanical inertia of the present system [4]-[6]; and

e Hourly-based electricity market or system operations (like Union for the Coordination
of Transmission of Electricity and Western Electricity Coordinating Council (WECC))
are likely to cause a mismatch between generation and load in the first few minutes of

an hour [7].

In regard to the aforementioned problems, conventional thinking suggests that the

generation side should always be prepared to satisfy all required generation-demand



mismatches, while new theories state that the system will be most efficient if the large
mismatches, mainly due to wind power fluctuation in recent years, are minimized by
suitable demand control [8]-[9]. Demand Response (DR) has been introduced to adjust
demand-side power consumption whenever necessary. From the power system operation
perspective, the essential purpose of DR is to reduce the amount of spinning reserve while
maintaining frequency stability to improve the system. A wide variety of DR programs
have been designed for peak load shaving and valley load filling, which can be regarded as
mitigating long-term (usually 24 hours) frequency fluctuation. Based on the objective, DR
programs can be divided into three categories: incentive-based programs that focus on a
utility’s welfare [10]-[11], price-based programs that focus on customer’ welfare [12], and
the hybrid programs that focus on both [13]. In all, study on DR applications for economic-

related issues began in the 1980s with many established research works.

To mitigate short-term frequency fluctuation, turbine governor control and automatic
generation control (AGC) are designed to automatically adjust the output power of
generation units in order to compensate for power shortfalls or to avoid power surplus. On
the demand side, under-frequency load shedding (UFLS), is activated as a protection
approach when system frequency falls under a particular threshold (e.g., 59.30 Hz) [14]-
[15]. In 2007, J. A. Short proposed a new frequency regulation approach, named as
dynamic demand control (DDC) [16]. Compared with conventional frequency regulations,

DDC is superior for the following reasons:

e Fast response: Compared with generator-side control, DDC can capture sudden
frequency drops and restore the frequency faster than AGC, which typically takes

several minutes [17].

e Flexibility: Compared with UFLS which is activated at a large frequency drop, DDC is
more flexible because it is activated at a relatively small frequency drop with multiple
frequency thresholds (e.g., 59.85 ~ 59.95Hz) [7], [18].

e Economic efficiency: A large number of controlled loads can emulate the frequency
droop characteristic of a generation unit in order to mitigate frequency fluctuation,
which is caused by short-period wind power shortage or generator outage [18]-[21].

Therefore, we can expect that the wide application of DDC helps reduce the

2



requirement for spinning reserve capacity and further reduce the system operation costs
[22]-[23].

In summary, DDC can be a useful compensation for conventional power system

frequency regulation approaches.
1.2 Brief Description of Frequency Regulation

The mission of frequency regulation is to quickly respond to system frequency
deviation by increasing or decreasing power generation or load demand to bring frequency
back to a nominal value (50 or 60 Hz). This section first introduces the so-called load-
frequency control (LFC) model to illustrate the relationship between frequency and power
unbalance, and then discusses the concept of frequency regulation in the industry. The
model and concept are the theoretical basis of various DDC strategies that will be

discussed in later chapters.
1.2.1 Power system frequency response

Consider a single-machine system in which the exciter is neglected. The rotating speed
of the generator follows the 2" Newton Law. Applying small deviations around the

nominal frequency, we have [24],

NCISIO

+ DAf (t) =P, (t) - P, (t) = AP, (t) — AP, (t) (1.1)

where Pp(t) is the generator mechanical power, Py(t) is the load demand, and Af(t) is the
system frequency deviation (=f(t) — 60), all at time t. Note: Power and frequency variables
are in per-unit values here. H is the inertia constant, denoting the kinetic energy at the rated
speed divided by the rated power base. D is the system load damping coefficient which is
expressed as a percent change in load for a 1% change in frequency. If we assume the pre-
disturbance state as the steady state, then the accelerating power (P, — Pg) equals to the
difference between the generation and demand power deviations from the steady state
(AP — APy).

The complete LFC system is presented in Figure 1.1 [24]. When a step disturbance AP

happens, representing a generation outage or a sudden load increase, the turbine governor
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modifies the power output of the prime mover Pn(t) to regulate system frequency. The
prime mover model consists of the boiler, governor, and reheater. The governor and
turbine transfer function are expressed by (1.2). The LFC system may include two types of
generators: one does not participate in AGC, and its generation reference is determined by
the economic dispatch (Load ref. 1 in Figure 1.1); the other one participates in AGC, and
its generation reference is controlled by AGC center (Load ref. 2 in Figure 1.1). Both
generators reserve a specified amount of capability such that they can perform frequency
droop control. The system also includes the DDC, which acts as a “fast power compensator”
in response to the frequency change. The formulation of D(s) is determined by the specific
load control strategy. Because of the effect of the generator turbine inertia, droop value and
load damping factor, the system frequency can experience a dynamic process and enter
another equilibrium point. The system parameters are listed in Table 1.1 [24]-[25].

G(s)=1 L and T(s) = L1+ FTes

+T.s (1+Tcs)(1+Tgs) (12)

When the system consists of multiple generators, the parameters are aggregated from

each generator with its capacity as a weighting factor, according to the definition of H [24].
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Figure 1.1. LFC system with DDC participation.



Table 1.1. Typical parameters of LFC system.

Parameter Typical value
Governor time constant Tg 0.2s
Steam chest time constant T¢ 0.3s
Reheat time constant T 6~14s
High-pressure turbine fraction Fy 0.15~0.4
Inertia constant H 3~6s
Governor speed regulation droop R 0.04~0.1
Load damping coefficient D 1

where S; is the rated apparent power of the i-th generator.

In the ideal steady state, the system frequency is very close to the nominal value. In
dynamic state, however, the real-time frequency differs with the electrical distance to the
disturbance point. It is proven and observed that the frequency disturbance (or the so-called
electromechanical dynamics) is propagated in the form of traveling waves through long
transmission lines [26]-[28]. Different locations would have different frequency responses
after a generator trip. The wave propagation speed is affected by the transmission line
impedance, system inertia and line voltage ratings. The wave propagation speed varies
from 500 to 700 miles/sec in transmission systems [29]. Therefore, within a system of 60
miles (or 100 km) geographical size, the frequency is almost identical everywhere such
that we can consider the global system frequency the same as a local frequency that is

measured at the low-voltage side or the demand side.
1.2.2 Description of power system frequency regulation

Frequency regulation is an important ancillary service and can be generally classified
into three categories [22], [30]:

e Primary Frequency Regulation (PRFR): PRFR refers to governor control that adjusts
the active power of generation units and the consumption of loads to arrest frequency

variations within a few seconds.

e Secondary Frequency Regulation (SCFR): SCFR refers to automatic generation
control (AGC) that adjusts the active power output of generation units to bring system

frequency back to the nominal value. The reacting time of SCFR is about 30 seconds,



and it will sustain for 5~20 minutes.

e Tertiary Frequency Regulation (TRFR): TRFR means manual changes in the

dispatching and commitment of generation units (reacting in more than 15 minutes).

TRFR is used to restore PRFR and SCFR reserves and to manage congestions in the

transmission networks.

In the practical ancillary market of different countries, different terminologies are used

for frequency regulation. For example, PRFR are named as frequency response in North

America, operating reserve in Britain and contingency service in Australia. The

terminology details are summarized in [31]. The general scope of frequency regulation

approaches is summarized in Figure 1.2, which includes both traditional approaches and

emerging approaches. In particular, DDC has the advantage of faster responsive speed over

traditional approaches and has received considerable attention [16]. Other emerging

approaches include the control of renewable energy source [32]-[35], EV smart charging
[36] and energy storage [37]-[39].

Figure 1.3 illustrates the frequency response of an actual generation outage in the UK

system with the participation of frequency regulation services [40].

Time
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1hr.

1 min.

1 sec.

A |:| Traditional approach
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Economic dispatch & unit Peak sha\;.llr;'g and valley
commitment fing Tertiary

Energy-storage
B Wind turbine . . .
Turbine governor control Icon"tJroII Dynamic demand control EV smart charging

Secondary

Primary

Generation side Demand side Energy storage

Figure 1.2. Approaches for balancing power generation and consumption.
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Figure 1.3. Example of frequency response following a major generation outage.
1.3 Responsive Load

So-called “responsive loads” may adjust their operation status to provide reserves for
frequency regulation based on locally measured system frequencies [7]. Since a power
system with high renewable energy penetration has many short-term frequency variations
with large mismatches (due to the high penetration of wind), responsive loads are expected
to be large in order to provide reserves for frequency regulation. Conventionally, some
large-scale industrial loads (i.e., aluminum smelting plants [41]) and agricultural loads
such as water pumps [42] may participate in frequency regulation. However, this
dissertation is focused on residential loads for DDC, including only some commercial
loads. Generally, the ideal candidates among residential loads for frequency regulation
should satisfy the following requirements: First, they must be in operation continuously or
regularly, since frequency regulation is needed at all times; Second, a high power rating is
needed in order to obtain a considerable total power compensation with a relatively low
number of loads, which require a small number of controllers; Third, participating in
frequency regulation should have little impact on customers’ comfort levels [43].
Therefore, electro-thermal and space-cooling loads, including electric water heaters
(EWHs) and heating, ventilation and air-conditioners (HVAC), are considered perfect

candidates due to their thermal inertias and high power ratings [44].

In contrast to generation spinning reserve, responsive loads are not always in operation.
In particular, the operation cycles of EWHs and HVACs are determined by various

unpredictable factors including random hot water consumption and outdoor air temperature,
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respectively. Consequently, the available capacity of responsive loads in real time
(PrLavai(t)) is a stochastic variable, and it is smaller than the registered capacity of the loads
(Prreg). Therefore, load behavior uncertainty should be assessed before designing a DDC
strategy. This section will briefly discuss several important practical considerations for

implementing DDC strategies.
1.3.1 Classification of responsive loads

Based on existing studies [7], [36], [45]-[46], responsive loads can be divided into four
categories according to their control characteristics.

Type I: This type is referred to as pure resistive loads for electric heating. A Type | load
can immediately disconnect and reconnect to the grid when system frequency drops and
recovers, respectively. Space heaters and EWHs are examples of Type | load. EWH has
one or two resistive heating elements controlled by thermostats. The heating elements are
switched on when the water temperature reaches a low setpoint, and switched off when the
temperature reaches a high setpoint [47]. Although one EWH can provide at least 1.5 kW
frequency reserve when staying on, its operation cycle is determined by customers’
random hot water consumption. Based on the heat transfer model of EWHs [48] (presented
in Appendix A), a typical profile of the water temperature and on/off operating cycle is
simulated, as shown in Figure 1.4. The figure indicates that a hot water consumption event
makes the water temperature drop below the temperature lower limit. Then the EWH is
switched on for some time in order to bring the water temperature to the normal value.
Since taking a shower consumes more hot water than dishwashing, the EWH will be
switched on for a longer time to recover the water temperature. Also, the water cools down
0.3°C per hour if hot water consumption does not happen and the heating element is off.
Therefore, the customers’ comfort level will not be affected if EWHs are utilized for

frequency regulation at the time scale of second to minutes.

Type IlI: This type refers to compressor-based loads, which can be controlled by
modifying the temperature setpoints [7], [16], [49]. Type Il loads include HVACs,
refrigerators/freezers, etc. Taking HVAC (in cooling mode) as an example, the on and off

states are determined by the high and low temperature setpoint limits, Ghigh and Giow.
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Figure 1.4. Water temperature and power demand profile of EWH.
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where @ is the indoor air temperature. Based on the heat transfer model of HVACs [50]
(presented in Appendix A), a typical profile of the indoor temperature and on/off operating
cycle is simulated and presented in Figure 1.5. According to the figures, the operating
cycle of HVACs (usually 1~2 hours) is much shorter than that of EWHSs (around 10 hours).

If the system frequency drops, we can modify the temperature setting by [7]

Hlow = (9Iow + kaf
(1.5)

@ pigh = Ohign + K¢ Af

hig

where ks is the coefficient of frequency change (°C/Hz). We have ki < 0 when the HVAC is
on cooling mode, meaning that the temperature setpoint is increased when the system
frequency drops below the rated value. Similarly, we have k; > 0 when the HVAC is on
heating mode. Hence, the power consumption of a large number of HVACs decreases and

the frequency can be promoted accordingly.

Type I1I: The variable speed heat pump (VSHP) is another type of compressor-based
load. As mentioned in Appendix A, the Type Il load has a constant heat transfer rate and
compressor power (both in Watt) once it is switched on. By contrast, the heat transfer rate
of a Type Ill load can be adjusted by the compressor variable-speed controller. Therefore,

the Type 111 load is not periodically switched between on and off states when in operation
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Figure 1.5. Temperature and power demand profile HVAC (cooling mood).

[45]. A data-driven dynamic model of VSHP is derived for demand control study [46]. In
this model, the compressor rotor frequency (f.), the evaporator return water temperature
(Bwr), and the condenser ambient temperature (Oamp) together determine the steady-state
compressor power (Pyp). It is given by

P =K o + Ko Oarp + K o +K

wr ~wr offset

(1.6)
where the coefficients ks, Kamp, Kur, and Kosrset are determined by a linear regression method.

The reference power of VSHP (Pup re) can be modified according to the measured
frequency deviation. The VSHP dynamic power with respect to the reference power signal
is approximated by a first-order transfer function:

n
APHP (S) = T:P_i_l . APHP_ref (S) (17)

where the coefficients n,, and T, are typically determined by simulation. This model is

able to approximate the aggregated dynamic response of a large number of VSHPs,
regardless of their parameter difference.

Type 1V: Electric vehicles (EVs) can be regarded as Type IV loads, although some
literature considers EVs as an energy storage unit for frequency regulation [36]. EVs can
both charge and discharge, therefore they are able to provide both under- and over-

frequency regulation. The charging/discharging power can be dynamically controlled by
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considering both the system frequency deviation and the state of charge (SOC) of the
battery [36].

1.3.2 Assessment of responsive load uncertainty as frequency reserve

In order to assess the effect of a DDC strategy on system frequency response, it is
necessary to propose a probabilistic model to estimate Pr; avai(t). The operation cycles of
two major responsive loads, EWHs and HVACs, are affected by hot water usage and
ambient temperature, respectively. Based on the statistic hot water demand profile, a
simulation of 10,000 EWHs is conducted [51]. The Pgr_avai(t) profile with 5-minute
resolution is shown in Figure 1.6. The figure indicates that Pri_avai(t) fluctuates over a day.
In the morning and evening hours, hot water consumption is higher than other hours,
consequently a larger portion of EWHs are switched on and the total power demand
becomes high. In contrast, little hot water is consumed at midnight, consequently the total
power demand is low. In this case, the 10,000 EWHSs with Pgg req(t) = 18MW can provide
PRrLavai(t) = 0.95 ~ 5.2 MW throughout the day, or 2.0 ~ 5.2MW during the daytime (6:00 —
24:00). Since the ratio between Prpavi(t) and Prpreg depends on the resident’s hot water
consumption behavior, it can be diverse in different regions. Therefore, for the same
frequency deviation occuring at different times of day in different regions, the system
frequency response can be different even if we apply the same DDC strategy, due to the
uncertainty of load availability. Similarly, given the outdoor temperature profile, the
PrL avai(t) parameter of aggregated HVACs can also be estimated.
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Figure 1.6. Total power demand of 10,000 EWHs.
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1.4 Dissertation Outline

Chapter 2 summarizes the technical features and advantage/disadvantages of three types
of DDC algorithms, namely centralized control, decentralized control and hybrid control.
The technical and economic concerns of this research field are also discussed, which

indicates the necessity of this research.

Chapter 3 proposes an analytical method for aggregating the multi-machine system
frequency response (SFR) model into a single-machine model. The verification study
indicates that the proposed aggregated SFR (ASFR) model can accurately represent the
multi-machine SFR model. The SFR model can support many research areas related to
power system dynamics, such as frequency control, renewable energy integration and
power system dynamic model reduction. In particular, the ASFR model is an important

theoretical basis for the DDC study in latter chapters.

Chapter 4 proposes a hybrid DDC strategy for the primary and secondary frequency
regulation. The study is based on some idealized assumption that the responsive load is

always available.

Chapter 5 presents an in-depth study on DDC. In this chapter, the thermostatic load
control strategy (TLC) is proposed,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>