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Abstract

Uncertainty estimates in theoretical physics are just as important as they are in experimental

physics. As a theorist, one must qualify a given calculation with the assumptions on which

the calculation is performed. Such a practice equips the scientific community with the

context necessary to evaluate the validity of a theory. It also provides some basis upon

which the theory can develop improvements. The work presented here concerns itself with

two sources of uncertainty in theoretical physics. First, we discuss numerical uncertainties.

Particularly, we quantify the uncertainties introduced by basis truncations and the exploit

it to extrapolate infinite-basis results. Second, we examine framework uncertainties — those

attributable to the inherent failure of the employed model to describe the fullness of nature.

We establish the sufficiency of a two-body contact interaction to renormalize short-distance

physics in the two- and three-body sectors of systems where singular potentials relevant to

nuclear and atomic dominate the low-energy behavior.
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Chapter 1

Infrared Extrapolations

This section describes the investigation into truncation error. A majority of the content of

this section comes from the corresponding publications [45] and [1].

First, we introduce the underlying concepts. Then we apply them to the derivation

of an extrapolation formula for the deuteron’s quadrupole moment and study our result

for a toy model as well as a realistic nucleon-nucleon interaction. We then generalize the

extrapolation formula to the case where the bound-state wave functions mix partial waves

with orbital angular momenta l and l+ 2, respectively, or where the bound-state has a finite

l > 0. We generalize those concepts to derive an IR extrapolation formula for E2 transition

matrix elements between bound states and conclude with a summary. Finally, we extend our

analysis from bound-state properties to Eλ and M(λ + 1) matrix elements between bound

states and the continuum.

1.1 Background

The numerical calculation of observables of strongly interacting systems frequently requires

the use of truncated Hilbert spaces. For example, lattice QCD simulations are carried

out in a finite volume with periodic boundary conditions. Nuclear structure calculations

frequently employ the spherical harmonic oscillator (HO) basis as it preserves rotational

symmetry and facilitates a straightforward way of separating out the center-of-mass motion,

see, e.g., Refs. [42, 3]. Such calculations require a clear understanding of the quantitative and

1



qualitative corrections due to the imposed Hilbert space truncation. For nuclear structure

calculations in the HO basis it was only recently understood that the truncated HO can be

thought of as imposing long-range, hard-wall boundary conditions with an additional short

distance regulator [18]. Specifically, it was found that a HO basis consisting of N oscillator

shells with oscillator length b has an ultraviolet (UV) cutoff [55].

Λ ≈
√

2N/b , (1.1)

while the infrared (IR) cutoff and therefore the spatial extent of the basis is approxi-

mately [30, 32]

L ≈
√

2Nb . (1.2)

Relations (1.1) and (1.2) are leading order (LO) approximations and valid for N � 1. A

more precise expression for an HO in three dimensions was derived in Ref. [39]

L =
√

2(Nmax + 3/2 + 2)b . (1.3)

Here, b =
√

~/(µΩ), µ, and Ω denote the oscillator length, the reduced mass, and the

oscillator frequency, respectively. We note that Eq. 1.3 is specific to a two-body system

in relative coordinates (or a single particle in three dimensions). Precise values for the IR

length scale L were also derived for many-body product spaces [19] and no-core shell model

spaces [57].

Previous work [18, 20] have shown the bound-state energies converge as

EL = E∞ + a0e
−2k∞L , (1.4)

and radii converge as

〈r̂2〉L ≈ 〈r̂
2〉∞ −

[
c0(k∞L)3 + c1k∞L

]
e−2k∞L . (1.5)

Here a0, k∞, E∞, and c0, c1, and 〈r̂2〉∞ are determined by fitting to numerical data in

many-body systems.
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In both cases (as well as for the quadrupole moment extrapolation derived below) the

e−2k∞L term comes from the universal long-range behavior of the radial wave function, Rl(r).

The spherical Hankel functions, hl(±ikr), are the negative-energy solutions in the free region,

and imposing a Dirichlet boundary condition such that Rl(L) = 0 gives a solution of the

form

Rl(r) = hl(ikLr) + Chl(−ikLr) , (1.6)

where C = e−2kLL in LO for kLL� 1. Here and in what follows, kL denotes the momentum

of the system bounded by a hard wall at r = L, k∞ denotes the momentum of the

system bounded only by the asymptotic boundary condition at r → ∞, and k denotes

the momentum of an unspecified system.

1.2 Quadrupole Moments

Derivation Here, we summarize the derivation of an IR extrapolation formula for the

quadrupole moment

〈r′| Q̂ |r〉 = e

√
π

5
r2Y20(θ, φ)δ(3)(r− r′) , (1.7)

and take the deuteron as an example. For the deuteron, r is the relative coordinate. While

computing the deuteron’s quadrupole moment poses no challenge in HO model spaces,

it is already challenging to compute converged quadrupole moments in p-shell nuclei, see

Refs. [9, 16, 38] for examples. This motivates us to study the IR convergence for bound-

state expectation values of the quadrupole moment and for E2 transition matrix elements

between bound states.

The deuteron is a spin-1, J = 1 state

|Ψ〉 = |Ψ0〉+ η |Ψ2〉 , (1.8)

superposed of an S-state Ψ0 and a D-state Ψ2. The d-state amplitude is denoted by η.

Without loss of generality we focus on the state with maximum Jz = 1 spin projection. The
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wave function for a state with orbital angular momentum l is

Ψl(r, θ, φ) = Rl(r)
∑
m,ms

C1,1
l,m;1,ms

Yl,m(θ, φ)χs,ms . (1.9)

Here Rl(r) denotes the solution to the radial Schrödinger equation. The orbital angular

momentum, represented by the spherical harmonics Ylm(θ, φ), and spin, represented by the

spinor χs,ms , are coupled to a total angular momentum J = 1 by means of the Clebsch-

Gordan coefficient C1,1
l,m;1,ms

[56].

For the computation of the IR correction of the quadrupole moment we follow closely the

corresponding derivation made in Ref. [20] for the radius squared. In a finite oscillator basis

with IR length scale L, the expectation value of the quadrupole moment (1.7) will differ

from the infinite-space result, and

QL = Q∞ + ∆QL . (1.10)

Here

∆QL =
〈ΨL|Q̂|ΨL〉
〈ΨL|ΨL〉

− 〈Ψ∞|Q̂|Ψ∞〉
〈Ψ∞|Ψ∞〉

, (1.11)

defines the expressions for QL and Q∞ such that any L-independent terms will cancel in

Eq. (1.11). The wave functions ΨL and Ψ∞ are the deuteron wave functions in the finite

and infinite oscillator spaces, respectively.

Using Eqs. (1.8) and (1.9), four terms enter the expectation value in the first term of

Eq. (1.11), and

〈ΨL|Q̂|ΨL〉 = e

√
π

5

L∫
0

π∫
0

2π∫
0

drr2dθ sin θdφ

[
RL,0Y

∗
00χ
†
1 + ηRL,2

∑
m,ms

C1,1
2,m;1,msY

∗
2mχ

†
ms

]

×r2Y20

[
RL,0Y00χ1 + ηRL,2

∑
m,ms

C1,1
2,m;1,msY2mχms

]
.

(1.12)

The expectation value in the second term on the right-hand side of Eq. (1.11) is found

by replacing L by ∞. The S-S term is zero, so we have only to consider the remaining S-D
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mixing terms and the D-D term. Our interest is in the L-dependence of the quadrupole

moment which is contained entirely in the radial integrations carried out in the first term on

the right-hand side of Eq. (1.11)

L∫
0

drr4RL,0(r)RL,2(r) , (1.13)

and
L∫

0

drr4RL,2(r)RL,2(r) . (1.14)

We assume that the nuclear potential vanishes beyond r = R and split the radial

integration into two parts. In general,

∫ L

0

drr4RL,l1(r)RL,l2(r) =

∫ R

0

drr4RL,l1(r)RL,l2(r) +

∫ L

R

drr4RL,l1(r)RL,l2(r) . (1.15)

The interior region, between 0 and R, depends primarily on the details of the

interaction. The resulting L-dependence from the integration over the interior region scales

as O(L0)e−2kL [20] and therefore does not contribute to the dominant correction terms [the

polynomial in kL at O(e−2kL)]. We therefore concentrate on the second region between R

and L, and consider the integrals

L∫
R

drr4RL,0(r)RL,2(r) , (1.16)

and
L∫

R

drr4RL,2(r)RL,2(r) , (1.17)

in the region free from the potential. Here, the radial wave functions are

RL,0(r) = h0(ikLr) + C0h0(−ikLr) , (1.18)
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with

C0 = − h0(ikLL)

h0(−ikLL)
= e−2kLL , (1.19)

and

RL,2(r) = h2(ikLr) + C2h2(−ikLr) , (1.20)

with

C2 = − h2(ikLL)

h2(−ikLL)
= e−2kLL

(kLL)2 + 3kLL+ 3

(kLL)2 − 3kLL+ 3
. (1.21)

The coefficients C0 and C2 are chosen such that the wave function vanishes at r = L.

Restricting our analysis to the highest powers of kL, we arrive at

QL = Q∞ − a(k∞L)3

(
1 +

d

k∞L

)
e−2k∞L , (1.22)

with corrections of order O(k∞Le
−2k∞L). Here Q∞, a, d, and k∞ can be treated as fit

parameters. Note that to LO, kL ≈ k∞, where (in the two-nucleon system)

kL = k∞ − γ2
∞e
−2k∞L +O(e−4k∞L) , (1.23)

and γ∞ is the asymptotic normalization coefficient [20]. The LO term is all we need to

determine the polynomial at O(e−2k∞L) for QL.

Results To test our prediction, we calculate the quadrupole moment of the deuteron using

an interaction derived from chiral effective field theory as described in Ref. [37]. For the

quadrupole fits, we take the bound-state momentum k∞ from the known binding energy of

the deuteron for this interaction. Fits of the quadrupole moment to Eqs. (1.22) and (1.29)

yield virtually identical results and are shown in Fig. 1.1.

One might also try to extract higher-order corrections to the quadrupole moment that

are smaller than O((k∞L)2e−2k∞L). These are terms proportional to (k∞L)me−2k∞L with

m ≤ 1, and terms proportional to e−4k∞L. We define (with Q(L) ≡ QL)

δQm =
Qcalculated −Qm+1(L)

cm(k∞L)m
, (1.24)

6



20 25 30 35 40
L(fm)

0.265

0.270

0.275

Q
 (
e

fm
2

)

Figure 1.1: Extrapolation of the deuteron quadrupole moment computed from a chiral
potential. The yellow circles are the data from the calculation. The thin, blue, solid line
is the fit to Eq. (1.29). The thick, blue, solid line is Q∞ from the fit to Eq. (1.29). The
thin, red dashes are the fit to Eq. (1.22), and the thick, red dashes are Q∞ from the fit to
Eq. (1.22).
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Figure 1.2: The yellow circles represent δQ1 as defined by Eq. (1.24). The blue triangles
represent δQ0. The orange crosses represent δQ−1. The red line is proportional to e−2k∞L.

where

Qm(L) =
3∑

n=m

cn(k∞L)ne−2k∞L , (1.25)

is the data reproduced with the fit parameters (represented by cn and cm). If we plot δQ

alongside what we expect analytically, we ought to be able to establish trends for the higher

order corrections. The results are shown in Fig. 1.2. The overall slopes of the corrections

match well with the predicted slope, and as each lower order of (k∞L) is included, the data

approaches the e−2k∞L line as expected, supporting the validity of our analysis.

1.3 Generalized Angular Momentum States

We can apply this reasoning to a system with an arbitrary mixture of l states, i.e.

|Ψ〉 = |Ψl1〉+ η |Ψl2〉 . (1.26)
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For simplicity we limit ourselves to LO and consider only the asymptotic form

hl(ρ)→ i

ρ
e−i(ρ−

lπ
2

) , (1.27)

of the spherical Hankel functions at large ρ. As before, if we consider ±iρ (where ρ = kr)

solutions and enforce the boundary condition at r = L, we have for the radial behavior

RL,l(kLr) = − 1

kLr
eiπl/2

(
e−kLr − e−2kLLekLr

)
. (1.28)

We compute the quadrupole moment as before and obtain an expression for the IR

extrapolation

QL = Q∞ − a(k∞L)3e−2k∞L . (1.29)

We see that the general case agrees in LO with the particular case (1.22) for the deuteron.

Furthermore, Eq. (1.29) also applies to quadrupole expectation values of bound-states of a

single, finite orbital angular momentum l > 0. This makes Eq. (1.29) the main result of

this section. Higher-order corrections depend on orbital angular momenta involved in the

particular case under consideration.

1.4 E2 Bound State Transitions

Derivation The quadrupole moment operator also describes electric quadrupole (E2)

transitions. If we consider a simple model where the initial state is a pure D-wave state

and the final state is a pure S-wave state, the amplitude for such a transition is

A = 〈Ψ0|Q̂|Ψ2〉 . (1.30)

As before, computing such an amplitude in a truncated basis effectively imposes a Dirichlet

boundary condition on the wave functions. Likewise, we can describe the amplitude in the

truncated basis (AL) as the amplitude in the infinite basis (A∞) plus a correction term.

AL = A∞ + ∆AL , (1.31)
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and we seek to compute ∆AL. We note that the bound-state momentum kl depends on

the state Ψl. With Ψl from Eq. (1.9), and the radial wave functions from Eqs. (1.18) and

(1.20) for ΨL,0 and ΨL,2, respectively, we can easily derive an expression for AL. Essentially,

we need to evaluate Eq. (1.16) for states with different angular momenta (or different kl

values). While the procedure is similar to the calculation of quadrupole moments, the result

is somewhat more complex. We obtain (written explicitly as a function of L)

AL = A∞ + a0

[
1 +

a1

k2L
+O

(
1

(k2L)2

)]
e−2k2L , (1.32)

where terms of O[(k0 + k2)Le−(k0+k2)L] and higher have been dropped. Here, k0 and k2

represent the S- and D-wave binding momenta, respectively (as k∞ previously represented

the separation energy in the case of the deuteron), and the constants a0 and a1 are fit

parameters.

In general, E2 transitions might occur between any states of identical parities whose

angular momenta differ by at most two units. Employing the asymptotic form (1.27), we

find that the transition between bound states with angular momenta l1 and l2 and bound-

state momenta k1 and k2, respectively, extrapolates as

AL = A∞ + a0e
−2k<L . (1.33)

Here, k< ≡ min (k1, k2). The general LO formula (1.33) is the main result of this section.

One might be surprised that the LO formula (1.33) for E2 transitions differs from the

LO formula (1.29) for expectation values by the absence of the factor proportional to L3.

Inspection shows that the limit k1 → k2 is interesting because terms with prefactors involving

(k1 − k2)−3 become proportional to L3 in this limit.

Results To test our result (1.32) for E2 transitions, we employ a Hamiltonian with a

Gaussian well potential

V (r) = −V0e
−( rR)

2

, (1.34)
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Figure 1.3: Convergence of the E2 transition amplitude as a function of L for a simple
Gaussian well model. The yellow dots are the results of the numerical calculation. The thin,
light blue dashes are the fit to the LO result in Eq. (1.32). The thick, red dashes correspond
to a fit including the (1/k2L)2 term in Eq. (1.32). And the solid orange line includes the
(1/k2L)3 term in the fit.

that is deep enough to contain a bound D-wave state as well as the ground S-wave state.

Because k2 < k0, the dominant correction contains the exponential e−2k2L. Below, we

consider three different orders of the polynomial in k2L preceding the exponential e−2k2L

that governs the correction term. From Fig. 1.3 we can see that the data is more accurately

described as increasing powers of 1/(k2L) are considered. However, over large ranges of k2L,

which we are able to take advantage of in the simple model presented here, the LO result

can be sufficient to obtain accurate asymptotic values. Figure 1.3 highlights a small region

where the differences in the fitting can be seen.

The log-scale plot, shown in Fig. 1.4, reveals the differences between the fits and, more

importantly, the improvement as higher orders of (1/k2L) are included. Here, we plot

the residual transition amplitude, i.e. the difference between the values calculated in the

truncated basis (Acalculated) and the values reproduced by the fit parameters (A∞ and cn).

We define

δAm =
Acalculated −A∞∑0

n=m cn(k2L)n
, (1.35)
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Figure 1.4: The residual transition amplitude from fitting to increasing powers of (1/k2L)
in Eq. (1.32). The yellow dots represent a LO fit (m = 0), the light blue squares include
also the (1/k2L) term (m = −1), the dark blue diamonds include also the (1/k2L)2 term
(m = −2), and the orange triangles include also the (1/k2L)3 term (m = −3). The red, solid
line represents e−2k2L where k2 is determined from a d-wave energy fit.

where m < 0, and we plot the result in Fig. 1.4 as a measure of how well the fit describes

the data for different m values. Little improvement comes from the m = −2 term due to

its small coefficient. Most importantly, we can see that the deviation of the data from the

expected behavior happens at larger and larger L values as more terms in the polynomial

factor are included.

We note that the sudden drops shown in the Figures 1.2 and 1.4 are the result of the

fitting line crossing the original data, implying that the difference changes its sign. As

higher-order terms are included in the fit, these dips tend to move to increasing values of L.

1.5 Electromagnetic Multipole Transitions between

Bound-States and the Continuum

Derivation We now turn to nucleon capture reactions where we have a transition from

a scattering state to a bound state (or vice versa). We assume that the scattering state is
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obtained in a way that is independent of basis truncation error. However, the bound state is

still subject to such errors, and we derive the IR extrapolation for the matrix elements that

use this truncated state.

In what follows, we focus on the nucleon-nucleon (NN) processes as examples where the

truncation error can be fully understood. This allows us to derive IR extrapolation formulas

that have a more general applicability. The generalization to heavier nuclei will be discussed

below. We assume that the nuclear interaction vanishes beyond the range R. Thus, at

relative distances r ≥ R the bound state radial wave function calculated in a truncated basis

has the asymptotic form [39]

uL(r)→ A∞e
−γ∞r

[
1− e−2γ∞(L−r)] , (1.36)

where uL(r) ∼ rRL(r). Here, γ∞ and A∞ are, respectively, the binding momentum and

the asymptotic normalization coefficient in the infinite volume limit [39]. Equation (1.36) is

asymptotically valid for all partial waves. However, its higher order corrections for s-wave

are of O(e−γ∞(2L+r)), much smaller than the O(1/(γ∞r)) corrections for higher partial waves.

Calculations of capture cross sections in a truncated basis, therefore, effectively involve

the radial matrix elements

Iλ(k; η;L) ≡
∫ L

0

dr uL(r) rλ uk(r) , (1.37)

where k is the momentum of the scattering wave function uk(r) in the initial state. η

is the Sommerfeld parameter and λ defines the multipolarity of the transition. For an

electromagnetic capture process, the multipolarity is equal to λ for electric transitions and

to λ + 1 for magnetic transitions. For the weak process, the dominant contribution at low

energies comes form I0(k; η;L).

At r ≥ R and kr � η, the radial wave function of the initial state has the form

uk(r)→ cos δl sin

[
kr − η log(2kr) + σl −

πl

2

]
+ sin δl cos

[
kr − η log(2kr) + σl −

πl

2

]
, (1.38)
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with σl being the Coulomb phase shift. For the case of neutron capture, σl = 0 = η. Apart

from the subleading η dependence, Eq. (1.38) has additional O(1/(kr)) corrections for l > 0

even in the absence of Coulomb interaction.

We now derive the IR truncation error, ∆Iλ(k; η;L), in the matrix element Iλ(k; η;L)

calculated in Hilbert spaces with L� R. However, in order to use the asymptotically valid

approximations for the wave functions given in Eqs. (1.36) and (1.38), we additionally require

kL � η for proton capture and fusion reactions, and kL � l for capture in partial waves

with orbital angular momentum l.

As previously done with the quadrupole moment, we split the radial integral, Eq. (1.37),

into two regions and focus on the region r ∈ [R,L], which is independent of the details of

the nuclear interaction. This integral can be evaluated analytically using Eqs. (1.36) and

(1.38) to give

∫ L

R

dr uL(r) rλ uk(r) =

∫ ∞
R

dr u∞(r) rλ uk(r) + 2 Re [fλ(k; η;L)] , (1.39)

where u∞(r) is uL(r) at L→∞, and

fλ(k; η;L) =
i

2
A∞ e

i(δl+σl−πl/2) (2k)−iη[(γ∞ − ik)(−λ−1+iη)

× Γ(λ+ 1− iη, γ∞L− ikL)− e−2γ∞L(−γ∞ − ik)(−λ−1+iη)

× Γ(λ+ 1− iη,−γ∞L− ikL)], (1.40)

is the result of an overlap integral of the asymptotic incoming and outgoing scattering wave

function with the finite volume bound state wave function.

Here Γ(c, z) is the complex continuation of the incomplete Gamma function. We have

dropped terms of O(e−γ∞(2L−R)) in Eq. (1.39). We express the corrections to the radial

integral as

∆Iλ(k; η;L) = Iλ(k; η;∞)− Iλ(k; η;L)

= −2 Re [fλ(k; η;L)] , (1.41)
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where

Iλ(k; η;∞) =

∫ ∞
0

dr u∞(r) rλ uk(r) (1.42)

is the radial matrix element Iλ(k; η;L) at L→∞.

In addition to the exponentially suppressed term we explicitly dropped above, we have

also neglected the contributions to ∆Iλ(k; η;L) from the higher-order η dependence and

higher partial wave corrections to Eqs. (1.36) and (1.38). These terms scale as ∆Iλ−1(k; η;L)

and are therefore only suppressed by a factor of 1/L. Using the LO approximation in the

asymptotic expansion of the Gamma function,

Γ(c, z) = zc−1 e−z
(

1 +
c− 1

z
+ . . .

)
, (1.43)

valid for |z| � 1 and | arg z| < 3π/2, in Eq. (1.40), the IR truncation error in the capture

matrix element reduces to a much simpler form,

∆Iλ(k; η;L) =
2A∞γ∞
γ2
∞ + k2

Lλe−γ∞L sin

(
δl + σl −

πl

2
+ kL− η log 2kL

)
, (1.44)

for asymptotically large values of γ∞L. We note that the approximation for Γ(c, z) used

here in order to arrive at Eq. (1.44) is exact for λ = 0 neutron capture. However, at larger

values of λ and η, this approximation gets worse and it may be necessary to obtain the IR

truncation error using Eqs. (1.40) and (1.41) instead.

Eqs. (1.41) and (1.44) hold for heavier nuclei and for all reasonable models of the nuclear

Hamiltonian because the single-particle wave functions have the asymptotic forms given in

Eqs. (1.36) and (1.38) in the range R ≤ r < L. They are valid for neutron capture as well

as for proton capture unless the energy is low enough to warrant the use of Coulomb wave

functions Fl(kr) and Gl(kr) for all r . L instead of the sine and the cosine functions in

Eq. (1.38).

Results For numerical calculations, we use the chiral EFT interaction from Ref. [12].

We obtain the proton-proton (pp) and neutron-proton (np) scattering states by solving

the momentum-space Schrödinger equation. We then calculate the radial matrix elements,
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Figure 1.5: Numerical (black, dotted) and analytic (red, dashed) results for the correction
∆I0(k; η;L) to the radial overlap between the 1S0 pp scattering wave function at 1 MeV
center-of-mass energy and the deuteron s-wave state.

Iλ(k; η;L), numerically for a range of L values by expanding the deuteron wave function in

HO bases of varying dimensionality.

For the NN processes, it is computationally feasible to calculate Iλ(k; η;L) in a large

enough basis and obtain an accurate numerical approximation to Iλ(k; η;∞). We begin by

comparing the numerical truncation error, ∆Iλ(k; η;L), thus obtained with those predicted

by Eq. (1.44).

In Fig. 1.5, we plot ∆Iλ(k; η;L) for pp fusion at 1 MeV center-of-mass energy. Since

η = 0.11� 1 at this energy, we obtain excellent agreement even at smaller L.

Finally, in Fig. 1.6, we plot the IR truncation error in the matrix element of the electric

dipole (E1) operator between the deuteron s-wave and the np 3P1 wave functions, which

contributes to the radiative np capture,

n+ p→ d+ γ, (1.45)

and its reverse process, deuteron photodisintegration. Here the analytic formula for

∆Iλ(k; η;L) has neglected terms from the O(1/(kr)) corrections to Eq. (1.38). Since these
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Figure 1.6: Numerical (black, dotted) and analytic (red, dashed) results for the correction
∆I1(k; η;L) to the radial matrix element of the E1 operator between the np 3P1 scattering
wave function at 1 MeV center-of-mass energy and the deuteron s-wave state.

terms are suppressed by a factor of 1/L, we get a better agreement between the analytic and

the numerical results at larger L values.

The analytic results shown above in Fig. 1.5 were not fit to the data. The quantities

A∞, γ∞, and δl were known a priori from the wave functions, and the IR truncation error

was thus completely predicted by Eq. (1.44). For systems with A > 2, however, extracting

values for the single-particle separation energies, asymptotic normalization coefficients and

phase shifts might not be as straight-forward. Moreover, the use of our analytic results in

practical applications is to obtain Iλ(k; η;∞) by extrapolation when the size of the basis is

constrained due to unavailability of computational resources. One computes Iλ(k; η;L) at

several large values of L, and fits Eq. (1.44) [or, if required, Eq. (1.41)] to this data with

Iλ(k; η;∞), A∞, γ∞, and δl treated as fit parameters.

Since Eq. (1.44) is valid at asymptotically large values of L, we obtain better fits when

the input data contains larger L values. However, even for smaller L, the extrapolation error

is much smaller than the IR truncation error one would make by avoiding extrapolation and

simply using I0(k; η;Lmax) instead.
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Chapter 2

Effective Field Theory

Effective theories have proven to be useful tools for making accurate calculations. They

allow us to work with simpler descriptions of nature within a well-defined energy range.

With EFT, there is also a well-defined process for adding in corrections to these simplified

descriptions and therefore improving the results [33].

One example that illustrates the separation of distance scales is gravitation. The

Newtonian gravitational potential energy for a mass m is the presence of the gravitational

field due to the presence of mass M is

U = −GMm

r
, (2.1)

where r is the distance between the two bodies and G is the gravitational constant. Let us

consider that M is a sphere of radius R and m rests on the surface of M . We could express

U as

U = −G Mm

R + h
, (2.2)

where h is the small (relative to R) distance above the surface that m can move. If we do

an expansion of this equation in h/R, we get

U =−GMm

R

1

1 + h/R

≈−GMm

R

[
1− h/R + (h/R)2 +O

(
(h/R)3)

)]
. (2.3)
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The LO term is a constant, and since what we care about in dynamics is changes to U , we

can drop it. The next-to-leading-order term can be simplified as

U ≈ mgh , (2.4)

where g = GM/R2. We recover what is commonly taught in early physics courses as the

gravitational potential energy. And we see that the error in this approximation is estimated

by the next term in the expansion at O
(
(h/R)2). This gives 1% accuracy for values of h

up to about 60km, quite reasonable for the kinematics typically explored in early physics

classes.

An example from quantum field theory that illustrates the usefulness of the separation

of scales, this time in momentum space, is the Fermi theory of the weak interaction. At low

energies, the propagator for the W boson

1

q2 −M2
W

, (2.5)

can be expanded in q/MW

(1/M2
W )
[
1 + (q/MW )2 +O

(
(q/MW )4)] , (2.6)

where q is the incoming momentum and MW is the mass of the W boson. The LO term,

(1/M2
W ), translates to a contact interaction, the same type of interaction proposed by Fermi

to explain β decay. The large mass of the W boson makes the interaction necessarily short-

ranged. In fact, at low energies, it is indistinguishable from a contact interaction. The

interaction’s LO position in the low-energy q/MW expansion accounts for Fermi’s success in

applying it.

We aim to develop such an effective theory for systems that are characterized by a short-

range interaction and a long-range 1/rα (α > 2) tail. For example, the strength of the

potential
−C6

r6
, (2.7)
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is defined by the C6 coefficient. This coefficient can be translated to a length

β6 =

(
2µC6

~2

)1/4

, (2.8)

where µ is the reduced mass of the 2-body system. For systems where this length is much

greater than the length scale (R) of the more complicated short-range physics, we ought

to be able to establish an expansion for observable quantities in terms of R/β6. Such an

expansion exploits the separation of scales between R and β6.

Effectively, the short-range interactions are replaced by a contact interaction (δ(~r−~r′) in

coordinate space). Higher-order corrections to this assumption are associated with increasing

powers of R/β6.

To accurately describe van der Waals physics with an EFT, we need to deal with the

singularity of (2.7) and be able to renormalize. Our first efforts are discussed below.

20



Chapter 3

Inverse Cube Potential

This section describes our study the regularization and renormalization of a finite range

inverse cube (FRIC) potential in the two- and three-body sectors. The majority of the

content presented here has been submitted to Physical Review C for publication [44].

Specifically, we compare and contrast three different regularization schemes frequently

used to study few-body systems as well as the associated renormalization group (RG)

flows. We also calculate bound state and scattering observables over a wide range of

cutoffs, demonstrating the sufficiency of a two-body contact interaction to renormalize two-

and three-body observables. We supplement these plots with quantified analyses of the

observables’ residual cutoff dependence.

3.1 Introduction

Effective field theories (EFTs) have become a standard tool in nuclear few-body physics to

construct the interactions between the considered degrees of freedom [13, 31]. For example,

chiral effective theory is a low-energy expansion of the nucleon-nucleon (NN) interaction

that employs only nucleons and pions as degrees of freedom and that uses the pion mass mπ

(or a small momentum) over a large scale Λ that can be associated with the lightest degree

of freedom not included in the EFT (e.g. the ρ-meson)[37]. This framework is then used to

derive the nuclear Hamiltonian in a systematic low-energy expansion. The resulting potential

has been used extensively in few-nucleon studies and ab initio nuclear structure calculations.
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It was pointed out that the most singular piece of the one-pion exchange in the deuteron

channel is an inverse cube potential [53, 48]. The renormalization of this leading order (LO)

potential has been studied repeatedly in the two- and three-nucleon sector [47, 43, 7, 35, 52].

Here, we intend to study the renormalization of the inverse cube potential in the much

simpler three-boson system thereby removing the complications due to the spin-dependent

tensor force. In particular, we will study whether the three-body system with pairwise

inverse cube interactions requires a three-body counterterm for renormalization, and whether

residual cutoff corrections can be used as a reliable tool to build a power counting scheme

as suggested in Ref. [29]. We note that there is also interest in atomic physics regarding

the inverse cube interaction, however, most attention has been focused on the low-energy

properties in the infinite range limit [40, 23] as opposed to the case we study here where the

mass of the exchanged pion limits the range of the inverse cube potential.

Since the residual cutoff dependence to some extent can be influenced by the chosen

regularization scheme, we will carry out this analysis for various schemes that are currently

used by the community. Specifically, we will consider a local regularization scheme [25] that

cuts off the potential in coordinate space at a small distance R, a non-local regularization

scheme [13] that cuts off the high momenta in the momentum space form of the two-body

interaction V (p, p′) separately, and a semi-local regularization scheme [14] that applies these

strategies separately to the long-range inverse cube part of the interaction and the short-

distance regulator.

These different regularization schemes have different advantages for different methods

that are used to diagonalize the nuclear Hamiltonian. For example, local interactions are

commonly used in quantum Monte Carlo calculations, though progress has been made

including nonlocal interactions (e.g. [51, 36]). However, while these have been used

extensively in the literature, a detailed comparison of these approaches is missing.

We find that the regularization schemes analyzed can be used to obtain regulator-

independent results. We find however that the regulator dependence of the short-distance

counterterm is different for the regulation schemes we apply. In agreement with findings

in the three-nucleon sector[43, 52], we find that three-body observables are completely

renormalized without the inclusion of an additional three-body counterterm. However, an
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analysis of the cutoff dependence of three-body observables shows also that observables

converge more slowly than expected from previous studies of the three-nucleon sector [52].

In Sec. 3.2, we will discuss the regularization schemes, the renormalization and calculation

of observables. In Sec. 3.3, we will present the results obtained for the two- and three-boson

system as well as quantitative analyses of the remaining cutoff corrections. We conclude

with a summary and an outlook.

3.2 Theory

In the following subsections, we describe the interaction that is used in this work, how it

is regulated, and how it is renormalized. We comment also briefly on technical details such

as the normalization of states and the calculation of observables through the Schrödinger,

Lippmann-Schwinger, and Faddeev equations.

The starting point of our calculations is most generally a local interaction. A local

interaction is diagonal in coordinate space such that

〈~r ′|V |~r〉 = δ(~r ′ − ~r)V (~r) . (3.1)

These interactions appear frequently in nuclear and atomic systems, and they allow for a

clear interpretation of the relevant scales of the physics involved. The non-regulated, singular

potential VS(r) that we will consider is a FRIC potential of the form

VS(r) = −C3
e−mπr

r3
. (3.2)

We choose mπ = 138 MeV and C3 = 0.8 fm2 such that a deuteron-like state (B2 = 2.2 MeV)

exists when we regulate the potential at ∼ 1 fm. This potential has to be regulated at short

distances and observables will depend strongly on the regularization scale as the interaction

is too singular [17]. Below we will display how a (smeared out) short-distance counterterm

can be introduced to address this problem.
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We perform our calculations in momentum space, and we Fourier transform the

interaction V and carry out a partial-wave projection

Ṽl(p, k) ≡ FT [V (r)] =
2

π

∫ ∞
0

drr2jl(pr)V (r)jl(kr) , (3.3)

where jl(z) are the spherical Bessel functions of order l.

3.2.1 Regulator Formulations

Local Regulation

For a local, singular potential, VS(r), we have implemented three different forms of regulation:

local, semi-local, and nonlocal. The locally regulated potential has the form

V (r) = ρ(r;R)VS(r) + g(R)χ(r;R) , (3.4)

where ρ(r;R) is an arbitrary function that overcomes VS(r) in the r → 0 limit such that the

product ρ(r;R)VS(r) is finite. For the locally regulated case we use

ρ(r;R) =
(

1− e−(r/R)2
)4

, (3.5)

where R is the range at which the characteristic behavior of VS(r) is cut off. The powers

were chosen to match the semi-locally regulated case where some care had to be taken in

the selection (see Appendix A). The counterterm

g(R)χ(r;R) , (3.6)

has two components. The first, g(R) is an R-dependent coupling strength. We tune this

parameter to match some low-energy, two-body observable such as the two-body binding

energy. The second, χ(r;R), is a contact-like interaction or a smeared δ function such that

lim
R→0

χ(r;R) ∼ δ(r) . (3.7)
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For the locally regulated case we use

χ(r;R) = e−(r/R)3 . (3.8)

The power of r/R in the exponential is chosen to match the divergence of the long-

range potential so that the range below which the inverse cube potential is not considered

corresponds well with the range beyond which the short-distance counterterm does not act.

We will discuss below that the RG flow of the locally-regulated counterterm strength, g(R),

contains multiple branches [4]. To ensure consistency between our results and others’, we

have also implemented a semi-local regulation scheme.

Semi-Local Regulation

The difference between local regulation and semi-local regulation lies in the definition of the

counterterm. In Eq. (3.4) we defined the counterterm in coordinate space. This counterterm,

that regulates the relative distance in the two-body system and thereby the momentum

exchange, has multiple solutions (provided the short-distance cutoff is small enough) for

which the two-body binding energy B2 is reproduced.

If we instead define the counterterm in momentum space as

g(R)χ̃(p;R)χ̃(k;R) , (3.9)

such that, by itself, only permits one state, we obtain a unique RG flow. The full potential

in momentum space is then

Ṽ (p, k) = FT [ρ(r;R)VS(r)] + g(R)χ̃(p;R)χ̃(k;R) , (3.10)

where FT represents the Fourier transform and partial-wave projection shown in Eq. (3.3).

For the semi-locally regulated case, similar to [14], we use

ρ(r;R) =
[
1− e−(r/R)2

]4

, (3.11)
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and

χ̃(p;R) = e−(pR/2)2 = e−(p/Λ)2 , (3.12)

where Λ ≡ 2/R. For a brief discussion on the different ρ(r;R) functions used for the locally

and semi-locally regulated cases, see Appendix A.

Nonlocal Regulation

For the fully nonlocal interaction, we take the semi-local interaction Eq. (3.10), including

the forms of ρ(r;R) and χ̃(p;R), and modify the first term as follows

Ṽ (p, k) = χ̃(p;R)FT [ρ(r;R<)VS(r)] χ̃(k;R) + g(R)χ̃(p;R)χ̃(k;R) . (3.13)

The momentum-space regulators multiplying the first term suppress the diagonal matrix

elements where the incoming and outgoing momenta are large but similar, removing some

sensitivity to the choice of ρ(r;R) that we discuss in A. The short-distance cutoff used

before we take the Fourier transform, R<, is chosen to be much less than R. This allows

us to ensure that the resulting cutoff dependence in the observables is attributable to the

regulator function, χ̃(p;R), rather than the Fourier transform.

3.2.2 Two-Body Bound States

We calculate two-body binding energies by solving the Schrödinger equation

(Ĥ0 + V̂ ) |ψ〉 = E |ψ〉 , (3.14)

in coordinate and momentum space. Ĥ0 = p̂2/m is the kinetic energy operator, V̂ is the

interaction, |ψ〉 is the state representing the system, and E is the total energy of the system.

In coordinate space, we tune the counterterm such that for a desired value E, the radial

equation

− 1

m

d2u

dr2
+ V (r)u(r) = E u(r) , (3.15)
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is solved where u(r) ≡ rR0(r). We have dismissed the centrifugal term as only s-waves are

considered. We rearrange Eq. (3.14) such that we have

Ĝ0(E)V̂ |ψ〉 = |ψ〉 , (3.16)

where G0(z) ≡ 1/(z−Ĥ0). After discretization with the basis states |pi〉, Eq. (3.16) becomes

an eigenvalue problem that is easily solved by finding the energies that fulfill

det
[
1̂−Kij(E)

]
= 0 , (3.17)

where Kij(E) = 〈pi|Ĝ0(E)V̂ |pj〉 and we tune the counterterm such that the requirement

Eq. (3.17) is satisfied.

3.2.3 Lippmann-Schwinger Equation

To obtain two-body phase shifts, we calculate the two-body t-matrix defined as

t̂ = V̂ + V̂ ĜV̂ , (3.18)

where

Ĝ = Ĝ(z) ≡ (z − Ĥ)
−1

,

is the Green’s operator for the full Hamiltonian

Ĥ = Ĥ0 + V̂ .

The Green’s operator corresponding to the free Hamiltonian, Ĥ0 is defined by

Ĝ0 ≡ (z − Ĥ0)
−1

.

We can relate Ĝ to Ĝ0 by the operator identity

Â−1 = B̂−1 + B̂−1(B̂ − Â)Â−1 ,
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such that

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ .

Multiplying Eq. 3.18 by Ĝ0 from the left, we have

Ĝ0t̂ = Ĝ0V̂ + Ĝ0V̂ ĜV̂ ,

Ĝ0t̂ =
[
Ĝ0 + Ĝ0V̂ Ĝ

]
V̂ ,

Ĝ0t̂ = ĜV̂ . (3.19)

Inserting the last line of Eq. 3.19 into Eq. 3.18, we get the Lippmann-Schwinger equation

in operator form

t̂ = V̂ + V̂ Ĝ0t̂ . (3.20)

In the partial-wave projected momentum basis, considering bosons interacting in s-waves

only, we have

〈p |t̂|p′〉 = 〈p |V̂ |p′〉+ 〈p |V̂ Ĝ0(E + iε) t|p′〉 ,

t(p, p′;E) = Ṽ (p, p′) +

∫ ∞
0

dq q2 Ṽ (p, q) t(q, p′;E)

E + iε− q2/m
(3.21)

wherem is the nucleon mass and ε→ +0. From the on-shell matrix element t(p, p;E = p2/m)

we extract the phase shift via

t(p, p;E = p2/m) = − 2

mπ

1

p cot δ − ip
. (3.22)

The scattering length is defined by the effective range expansion

p cot δ ≈= −1

a
+
rs
2
p2 , (3.23)

which allows us to calculate it exactly from the on-shell t-matrix amplitude at p = 0.

a =
mπ

2
t(0, 0; 0) . (3.24)
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3.2.4 Three-Body Bound States

To calculate three-body binding energies, we start with the equation for a single Faddeev

component of a system containing three identical particles

|ψ〉 = Ĝ0(E)t̂P̂ |ψ〉 , (3.25)

where

P̂ = P̂12P̂23 + P̂13P̂23 , (3.26)

is the permutation operator with P̂ij interchanging particles i and j [28]. After projecting

onto the partial-wave, momentum basis for three identical bosons described by two Jacobi

momenta p (the relative momentum between particles 1 and 2) and q (the relative momentum

between particle 3 and the center of mass of the 1–2 subsystem), we discretize the equation

and solve for the bound state energy E using the same techniques as in the two-body case,

as long as E remains below the deepest state in the two-body spectrum. However, this

limitation is in conflict with our goal of studying the cutoff dependence of two- and three-

body observables. As we go to higher momentum-space cutoffs (smaller R values), spurious

bound states enter the two-body spectrum. Three-body states quickly become resonances in

this regime, bounded above and below by two-body bound states. There are two ways that

we deal with this.

The first method follows [43] and is repeated here. It involves removing the spurious

two-body state from the spectrum by transforming the potential

V̂ → V̂ + |φ〉λ 〈φ| , (3.27)

which takes the eigenvalue of the state φ and modifies it by an amount λ. Using this

transformed potential in the Lippmann-Schwinger equation and taking the limit of λ → ∞

(removing the state from the spectrum), we have

lim
λ→∞

t̂(λ) = t̂− |η〉 1

〈φ|Ĝ0|η〉
〈η| , (3.28)
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as our modified t-matrix where

|η〉 = |φ〉+ t̂Ĝ0 |φ〉 . (3.29)

This only requires that we have the wave function 〈p|φ〉 to calculate the modified t-matrix

where that state no longer contributes a pole. In practical calculations using a large, finite

λ value in (3.27) is sufficient. If there are several spurious two-body states, the procedure is

repeated for each of them.

The second method we employ to study the cutoff dependence of three-body resonances

is to look for the resonances in the three-body phase shifts.

3.2.5 Three-Body Phase Shifts

In the cutoff regime where spurious two-body bound states exist, we can scatter a third

particle off the spurious deep two-body state and scan the phase shifts in the energy range

between the two-body states for a resonance. To do this, we calculate the three-body T -

matrix using [27]

T̂ = t̂P̂ + t̂Ĝ0P̂ T̂ , (3.30)

which relates to the elastic scattering operator U by

Û = P̂ Ĝ−1
0 + P̂ T̂ . (3.31)

In the partial-wave-projected, momentum basis, considering bosons interacting only via s-

waves, we have

〈pq|T̂ |φ〉 = 〈pq|t̂P̂ |φ〉+∫ ∞
0

dq′(q′)
2

∫ 1

−1

dx
t(p, π1, E − 3q2/4m)G(q, q′, x)

E + iε− q2/m− (q′)2/m− qq′x/m
〈π2q

′|T̂ |φ〉 ,
(3.32)

where the incoming state |φ〉 = |ϕk〉 contains the wave function ϕ(p) of the two-body bound

state and the relative momentum k between the third particle and the center of mass of
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the two-body subsystem, G(q, q′, x) is a geometrical factor introduced by the permutation

operator, π1 =
√
q2/4 + (q′)2 + qq′x, and π2 =

√
q2 + (q′)2/4 + qq′x.

The elastic scattering amplitude M is related to the U operator by

M = −2mπ

3
〈φ|Û |φ〉 , (3.33)

and the atom-dimer phase shift by

M =
1

k cot δ − ik
. (3.34)

In the three-body sector, we have a similar effective range expansion

k cot δ ≈ − 1

aAD
+
rs,AD

2
k2 , (3.35)

which defines the atom-dimer scattering length aAD and atom-dimer effective range rs,AD.

3.2.6 Quantitative Uncertainty Analysis

To analyze the uncertainties induced by short-distance physics of our regularization

procedure, we study in this section the regulator dependence of observables. Similar to

the analysis done by Song et al. [52], our uncertainty analysis is based on a simple power

series expansion of observables quantities O of the form

O(Λ) ≈ O∞

[
1 +

∞∑
i

ci

( q
Λ

)i]
, (3.36)

where q is associated with the low-momentum scale relevant to the calculation; however, i is

not assumed to be an integer. For the purposes of this project, we truncate the summation

over i after the first term i = n, leaving

O(Λ) ≈ O∞
[
1 + cn

( q
Λ

)n]
, (3.37)
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We seek to establish the value of n. In Ref. [52], n was found by fitting the first few terms

in the above expansion with integer n to the cutoff dependence of observables. Here, we

will study the cutoff dependence at very large cutoffs, focus on the dominant term in the

expansion, and fit n itself to data and allow for non-integer values.

To extract the power of the leading cutoff correction, we examine both the Λ and the

q dependence. The first approach we take to investigate the Λ dependence is to calculate

observable O over a range of Λ values, and fit the results to Eq. (3.37) for a range of n values.

For each n, we evaluate a penalty function that we define as

pn =
∑
i

(
Ocalc(Λi)−Ofit(Λi)

Ocalc(Λi)

)2

, (3.38)

where Ocalc(Λ) is the observable calculated for a specific value of Λ and Ofit(Λ) is the value

of the observable as it is “reproduced” by Eq. (3.37) and the fit parameters O∞ and cn.

Once we have pn for a range of n values, we search for a minimum pn where n is optimal.

Another way to isolate the Λ dependence is to extract O∞ from a fit to Eq. (3.37) and

construct the quantity
O(Λ)−O∞
O∞

=
∑
i

ci

( q
Λ

)i
, (3.39)

such that truncating the sum after the first term leaves

O(Λ)−O∞
O∞

≈ cn

( q
Λ

)n
. (3.40)

Now our task is to determine n. Taking the logarithm of both sides, we have

ln
O(Λ)−O∞
O∞

≈ ln
[
cn

( q
Λ

)n]
. (3.41)

Finally, we expose ln Λ by itself, leaving

ln
O(Λ)−O∞
O∞

≈ −n ln Λ + b , (3.42)

where b is an intercept that we fit. Plotting the residual uncertainties as a function of ln Λ,

we ought to be able to extract the slope n, or at least some upper limit on it.
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Grießhammer has argued [29] that the q dependence of observables provides a necessary

though insufficient window into the order of cutoff-dependent corrections. To isolate the q

dependence, we have to restrict the observables we study to those whose q dependence is

well understood. Doing so allows us to calculate the observable at two different cutoffs and

study the relative difference

O(Λ2)−O(Λ1)

O∞
≈ qncn

[
1

Λn
2

− 1

Λn
1

]
. (3.43)

Taking the logarithm, we get

ln

[
O(Λ2)−O(Λ1)

O∞

]
= n ln q + b , (3.44)

where b, again, is an intercept that we fit. As in Eq. (3.42), n corresponds to the slope.

3.3 Results

3.3.1 Renormalization Group Flow

The first aspect of the regulation schemes we compare is the running of the counterterm

constants, the RG flow. We choose to fix the shallowest two-body state at B2 = 2.2 MeV.

Figure 3.1 shows the stark difference between the RG flow found using a local counterterm

and the RG flows found with nonlocal counterterms. The main difference is the issue of

uniqueness. For the locally regulated potential, as pointed out by [4], g(R) has multiple

solutions that give a two-body bound state at the desired binding energy. There is one

branch where there exists one state in the two-body system. Each branch below that branch

contains successively one additional state. The RG flow shown for the locally regulated

interaction connects four of those branches, “hopping” downward when it is easier to add

an additional state than to continue to maintain the shallowness of the fixed state. Only

two of the “hops” are visible in the plot due to the scale and the relative difference between

the magnitudes of g between the different branches. Note also the difference in the units of
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Figure 3.1: RG flows of the counterterm coupling g. The yellow circles in the upper plot
represent g(R) values calculated with a local regulator and local counterterm. The red, solid
line in the upper plot are the g(R) values used to calculate the phase shifts in Fig. 3.2. The
blue, dashed line in the lower plot corresponds to the semi-locally regulated interaction. The
orange, dashed line corresponds to the nonlocally regulated interaction.

the upper and lowers plots if Fig. 3.1. There is a factor of R3 that comes from the Fourier

transform and partial-wave projection of χ(r;R).

The other two functions shown in the lower plot of Fig. 3.1 are qualitatively very similar.

They correspond to the semi-local and nonlocal regulation schemes. While the same ρ(r;R)

is used in both, the prescription is somewhat different as one can see from Eq. (3.10)

and Eq. (3.13). The semi-local regulation scheme brings in spurious bound states faster

than the nonlocal regulation scheme, but as mentioned before, nonlocal regulation cuts

off the potential at large incoming and outgoing momenta, suppressing high-momentum

contributions. Still, they are very similar interactions, thus they provide very similar RG

flows.

34



3.3.2 Two-Body Scattering

As the different regulation schemes are tuned to reproduce the same shallow state at B2 = 2.2

MeV, we expect that differences in low-energy scattering observables are highly suppressed

when large cutoffs are employed. We calculate the phase shifts using all three regulation

schemes and show the results in Fig. 3.2. The left plot contains the phase shifts of an non-

renormalized, nonlocally regulated potential with g(R) = 0, demonstrating the strong cutoff

dependence of low-energy observables and the need for a counterterm. The most important

feature of the right plot is the agreement between the different regulation schemes. It is also

worth mentioning the Λ value at which the phase shifts begin to converge (≈ 2 GeV). Studies

of the one-pion-exchange potential [52, 43] share a similar scale. This is consistent with the

known result that the one-pion-exchange potential goes like an inverse cube potential at

short distances (high cutoffs) [53, 48]. Coupled with our chosen C3 value, we expect similar

renormalization behavior.

It is clear from Fig. 3.2 that a two-body contact interaction is sufficient to renormalize

the two-body phase shifts. The corresponding result for the two-body scattering length is

shown in Fig. 3.3.

One of the advertised, key advantages of EFT is quantifiable uncertainty which in turn

requires a power counting that orders contributions in the Hamiltonian according to their

importance. These uncertainties have usually two sources: (i) the truncation of the low-

energy expansion and (ii) uncertainties that are introduced when low-energy counterterms

are fitted to data. Here we focus on the first source of uncertainties and some information

on this truncation error is contained in the convergence behavior of observables as the short-

distance cutoff is increased. To study this problem, we first choose a range of cutoffs over

which to fit the scattering length to Eq. (3.37). As we fix the bound state, we assume

q = γ ≡ mB2 in the fit. Then we assume a number of n values and evaluate Eq. (3.38) for

each one. The results are shown in Fig. 3.4. Of course, we want to know how robust this

procedure is. To establish that, we repeat the procedure for different windows of cutoffs.

The results are shown in Fig. 3.4. In the left-hand plot of 3.4, we show the penalty function

Eq. (3.38) as it depends on the n used in the fit to Eq. (3.37). We performed this fit over range
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Figure 3.2: [Left] Cutoff dependence of the s-wave phase shifts at E = 1 (red, dashed),
10 (green, dotted), and 100 MeV (blue, dot-dashed) calculated via a nonlocally regulated
potential without a counterterm. [Right] Cutoff dependence of the s-wave phase shifts at
(from top to bottom) E = 1, 10, and 100 MeV in the center-of-mass frame. The solid,
red lines are the phase shifts calculated from a locally regulated potential. The green,
dashed lines are the phase shifts at the same energies calculated with a semi-locally regulated
interaction. The blue, dot-dashed lines are the phase shifts using a nonlocally regulated
interaction. All three schemes include a contact-like counterterm.
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Figure 3.3: The scattering length is shown as a function of the high-momentum (short-
distance) cutoff. The blue circles are the numerical results.

[Λmin,Λmax] with Λmax = 10 GeV. Each line corresponds to a different Λmin. Our expectation

was that as the range of Λ shrinks to include exclusively higher and higher values, the value

of n would converge. However, it is easy to see that n is sensitive to the range of cutoffs over

which a(Λ) is fit. Second, above ≈ 4 GeV, the minimum pn moves to higher and higher n

values. The coefficients, cn, at these higher values of n grow unnaturally large, clouding the

reliability with which we can relate n to the LO correction. As the results of fitting a(Λ)

to Eq. (3.37) are somewhat inconclusive, we turn to our second method of extracting the

power of the LO corrections — fitting to Eq. (3.43). Fig. 3.5 shows the results of calculating

the two-body phase shifts and cross sections at two different cutoffs, Λ1 = 2439 MeV and

Λ2 = 6316 MeV. The fit of the phase shifts is performed over a small region of k above γ.

The region is chosen to be relatively small to ensure that the slope is not affected by the

unfortunate zero that occurs just above 2 fm−1. Momenta below γ are ignored to ensure that

the low-momentum scale most relevant to the calculation is, in fact, k. The slope of the fit

line is ≈ 1.4. As Grießhammer explains in [29], the slope from these corrections is an upper
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Figure 3.4: [Left] The penalty function as a function of the power, n, used to fit the two-
body scattering length to Eq. (3.37). Different lines correspond to different lower bounds,
Λmin, used to perform the fit. The correspondence between the lines and the specific value
of Λmin is not being emphasized, just the existence of a minimum and its movement as Λmin

varies. [Right] The location of the minima in the left hand plot as a function of the lower
bound used in the fit to Eq. (3.37).

limit. However, we also perform a similar fit to Eq. (3.44) for the cross sections at the same

values of Λ1 and Λ2. Here, we choose a small region that straddles an unfortunate crossing

of σ(Λ1) and σ(Λ2) at ≈ 0.75 fm−1 and a zero in σ(Λ2) between 2 and 3 fm−1. The slope

from a fit to this small region is ≈ 3.3. A similar fit of k cot δ at the same cutoffs results in

a slope just a little greater than 1. These inconsistencies prohibit a strong conclusion about

the value of n from Eq. (3.37) for two-body observables.

A closer examination of the cutoff dependence of the two-body scattering length reveals

some interesting behavior that may explain the inconsistencies in our results. Fig. 3.6

contrasts the numerical results of Λ(da/dΛ) against the expected behavior based on a fit

to Eq. (3.37) with n = 1.5. Clearly, there is additional, oscillatory behavior that is not

captured by the simple form of Eq. (3.37). Similar oscillations are observed in the two-body

phase shifts as well. These oscillations are likely responsible for the variation in n as the

window of Λ values is adjusted.
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Figure 3.5: [Left] Residual cutoff corrections to the two-body phase shifts as a function of
the relative momentum. The blue circles represent the numerical calculation. The yellow
line represents the fit to Eq. (3.44). The pink, shaded region represents the range of k over
which the fit was performed. The vertical, green line is the binding momentum γ. [Right]
Residual cutoff corrections to the two-body cross sections at two distinct Λ values. The
legend goes similarly to the left-hand plot.
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Figure 3.6: Λ(da/dΛ) as a function of the cutoff. The blue dots are the numerical
calculation. The solid, red line is the expected behavior based on a fit to Eq. (3.37) with
n = 1.5.
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Figure 3.7: Three-body excited state/resonance energy as a function of the short-distance
cutoff. Blue dots represent the numerical calculation. The yellow, dashed line represents a
fit to Eq. (3.42). The red, solid line is E

(1)
3,∞ from the fit to Eq. (3.37) with n = 1.

3.3.3 Three-Body Bound States

One of the main goals of these efforts has been to examine the sufficiency of a two-body

counterterm to renormalize three-body observables. In Figs. 3.7 and 3.8, we plot the cutoff

dependence of the three-body binding energies associated with two three-body states that

appear in the system defined by the nonlocally regulated interaction Eq. (3.13).

The primary feature of Figs. 3.7 and 3.8 is the convergence of the binding energies. At

≈ 2 GeV, the binding energies (or rather, the resonant energies) begin to flatten out, just as

in the two-body phase shifts.

We analyze the three-body states as we did the two-body scattering length — fitting the

energy values over a wide range of cutoffs to Eq. (3.37) for a range n values and calculating

Eq. (3.38) each time. The n values for which pn is a minimum are plotted in Fig. 3.9. The

left-hand plot in Fig. 3.9 corresponds to the ground three-body state; the right-hand plot in

Fig. 3.9 corresponds to the excited three-body state. Again, we see a strong sensitivity to
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Figure 3.8: Three-body ground state/resonance energy as a function of the short-distance
cutoff. Blue dots represent the numerical calculation. The yellow, dashed line represents a
fit to Eq. (3.42). The red, solid line is E
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Figure 3.10: [Left] Λ(d/dΛ) applied to the three-body ground state energy. The blue dots
are the numerical calculation. The solid, red line is the expected behavior based on Eq. (3.37)
with n = 1. [Right] Λ(d/dΛ) applied to the three-body excited state. The blue dots and
solid, red line are as in the left-hand plot.

the lower bound Λmin used in the fit. If Eq. (3.37) accurately captured the behavior of the

cutoff dependence, one would expect these nopt values to converge as the window of cutoff

values focuses increasingly on larger values of Λ. However, we see no such convergence.

Fig. 3.10 shows the same Λ(d/dΛ) analysis we performed with the two-body scattering

length. Clearly there are oscillations in the cutoff dependence that are not properly accounted

for by a simple power series expansion. These oscillations are again suspected as the source

of the inconsistencies we encounter when fitting n.

3.3.4 Three-Body Scattering

Alongside the binding energies, we also study the cutoff dependence of the atom-dimer (or

2+1) scattering length, aAD, shown in Fig. 3.11.

As with the two-body scattering length, we show our analysis of the cutoff dependence

of the atom-dimer scattering length in Fig. 3.12. The plot is similar to the right-hand plot
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Figure 3.11: The cutoff dependence of the atom-dimer scattering length.

in Fig. 3.3. We track the value of n that minimizes our penalty function Eq. (3.38). We

see the same kind of sensitivity to Λmin and the same increase as the coefficients cn grow

unnaturally large.

Looking closer at the cutoff dependence of aAD, we see the now familiar oscillations,

shown in Fig. 3.13 where they are enhanced by the taking the derivative of aAD with respect

to Λ. Again, these oscillations can not be captured by the power series expansion Eq. (3.36)

we apply. They are most likely responsible for the sensitivity of nopt to Λmin.

3.4 Summary

In this manuscript, we have set out to understand the renormalization properties of the FRIC

potential in the two- and three-body sector. In particular, we have studied the regulator

dependence of observables such as two-body phase shifts, three-body binding energies, and

the atom-dimer scattering length. Motivated by a recent development in the nuclear theory

community, we did these calculations using different, frequently used regulator functions.
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Figure 3.13: Λ(d/dΛ) applied to the atom-dimer scattering length. Shown as a function
of the cutoff. Blue dots are the numerical calculation. The solid, red line represents the
expected behavior based on a fit to Eq. (3.37) with n = 1.5.
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Our results in the two-body sector confirm that the two-body sector is properly

renormalized. One input parameter is required (at leading order) to renormalize one low-

energy counterterm and thereby the two-body sector. In the three-body sector, we have

demonstrated that a three-body force is not needed at leading order to renormalize three-

body observables for the inverse cube interaction.

In both the two- and three-body sectors, we have observed significant oscillatory behavior

in the cutoff dependence of observables. These oscillations are not captured by a simple power

series expansion. It is therefore hard to extract the leading cutoff dependence even when

observables are calculated up to very large cutoffs. This is an important outcome since it

seems to imply that a numerical analysis of cutoff dependence will also provide very limited

information in the nuclear case. So while it is of course always possible to identify whether

observables converge, it might not be easy to clarify whether the addition of a counterterm

reduces the residual cutoff dependence as required in a working power counting scheme.

The oscillatory behavior of the cutoff dependence obscures a conclusive determination of

the power of the LO correction. However, our analysis indicates that n is consistent with

approximately 1.5 for two-body observables and approximately 1 for three-body observables.

It is an interesting question whether this has any significance for the counting of two- and

three-body counterterms in an EFT for the inverse cube potential. For example, the singular

1/r2 has been considered previously as the starting point for an EFT expansion in Ref. [34],

however the inverse cube and all other singular coordinate space potentials need their own

independent analysis.

Having tested several different local, semi-local, and nonlocal regulators and having found

no significant differences, we conclude that these oscillations are most likely attributable to

the singular nature of the inverse cube potential in coordinate space.

In the future, we plan to carry an analysis of higher order corrections in the three-

boson and three-nucleon sector. However, we plan to also extend our work to the infinite

range inverse cube potential that is of relevance to the atomic dipole interaction. This will

let us combine the results obtained by Müller [40] with three-body observables and study

the dependence of three-body observables on the boundary condition employed in the two-

body sector. A more detailed analysis of the short-distance behaviour of the three-nucleon
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wave function might also provide novel insights into the power counting of electroweak

currents [49].
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Chapter 4

One-Pion Exchange

4.1 Introduction

The results shown in Ch. 3 motivated us to study the One-Pion-Exchange (OPE) potential

directly. Specifically, we wanted to test the consistency between different regularization

schemes. Alongside those tests, we also wanted to introduce a different regularization scheme

that may offer the minimal number of required counterterms.

Motivated by Gao’s result[24] for atomic systems and an unsuccessful attempt made by

Nogga et al. [43] to renormalize all p-wave channels with a single counterterm with tensor

structure, we sought to simplify the requirement established by previous work [52] which

showed that counterterms are required in all attractive tensor channels. One promising

technique previously applied to nuclear physics [5] is Pauli-Villars regularization which

mimics the complicated spin-isospin structure of the OPE. Using this technique, we

investigate the possibility of renormalizing all spin-triplet channels with a single counterterm.

4.2 Theory

In the following subsections, we describe the one-pion exchange potential and how it is

regulated and renormalized. We also comment briefly on technical details such as the

normalization of states and the calculation of observables through the Schrödinger and

Lippmann-Schwinger equations.
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4.2.1 One-Pion-Exchange Potential

The OPE is given in coordinate space by

V (~r) =
m3
π

12π

(
gA
2fπ

)2

(τ1 · τ2) [S12T (r) + σ1 · σ2Y (r)] (4.1)

where the pion mass mπ = 138 MeV, the axial coupling constant gA = 1.25, the pion decay

constant fπ = 93 MeV, τi is the isospin operator of the i-th particle, σi is the spin operator

of the i-th particle, S12 is the tensor operator, and

T (r) =
e−mπr

mπr

[
1 +

3

mπr
+

3

mπr

]
,

Y (r) =
e−mπr

mπr
.

(4.2)

There are a couple of features of Eq. (4.1) we want to point out. One, the most

singular piece of the OPE goes like 1/r3. Being more singular than 1/r, this requires an

additional boundary condition [34] that we impose with a local regulator function. Two,

the attractiveness or repulsiveness of T (r) and Y (r) is determined by (τ1 · τ2)S12 and

(τ1 · τ2)(σ1 · σ2), respectively. The nuclear interaction conserves total angular momentum

j, but it does not conserve the relative angular momentum l. This introduces l1− l2 coupling

in certain channels. This fact along with the variety of values and signs taken by T (r) and

Y (r) introduces a significant amount of complex behavior.

In general, the complexity of this behavior can be ignored. Applying a local regulator

and a simple (local or nonlocal) counterterm appears to be sufficient to produce accurate

and stable results. However, as we present below, we have found that accommodating this

complex behavior can result in a simplified renormalization procedure.

4.2.2 Regulator Formulations

The local, semi-local, and nonlocal regulation schemes were covered in Chapter 3 Sec-

tion 3.2.1.
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Pauli-Villars Regulation

Following a regularization technique developed in quantum field theory [46] and previously

applied perturbatively in nuclear physics [5], we employ a local regulation scheme that is

designed to capture all of the details of the OPE. The full potential is

V (~r) = ρ(r;R) [V1π(~r) + g(M)VPV (~r;M)] , (4.3)

where ρ(r;R) is a local regulator acting on the OPE and the Pauli-Villars term. g(M)VPV (r;M)

resembles a heavy-particle-exchange potential with mass M and g(M) is a tunable strength

similar to g(R). Here, M is the high-momentum scale on which our observables will depend.

ρ(r;R) is still necessary here as V1π(~r) and VPV (~r) are both singular, and of course, as before,

there is a momentum scale associated with R. We choose R ≡ 2/(10M) to ensure that M

is the lowest and therefore the most influential of the two scales. VPV (r;M) is found by

replacing m with M in Eq. (4.1). From Eq. (4.1) one can see that as M increases the range

of VPV (r;M) decreases.

4.2.3 Lippmann-Schwinger Equation

To obtain two-body phase shifts, we calculate the numerical solution of the Lippmann-

Schwinger Equation (LSE). In the partial wave projected momentum basis, we have

〈pα|t|p′α′〉 = 〈pα|Ṽ |p′α′〉+ 〈pα|Ṽ G0(E) t|p′α′〉 (4.4)

= 〈pα|Ṽ |p′α′〉+
∑
α′′

∫ ∞
0

dq q2 〈pα|Ṽ |q α′′〉 〈q α′′|t|p′α′〉
E + iε− q2/m

(4.5)

tαα′(p, p
′) = Ṽαα′(p, p

′) +
∑
α′′

∫ ∞
0

dq q2 Ṽαα′′(p, q)tα′′α′(q, p
′)

E + iε− q2/m
(4.6)

where m is the nucleon mass. For the sake of brevity, we have lumped all of the quantum

numbers together in α. Our partial-wave states are normalized such that

I =
∑
l,m

∫
dq q2 |q lm〉 〈q lm| . (4.7)
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For uncoupled channels, we extract take the on-shell matrix element tαα(p, p) and extract

the phase shift via

tαα(p, p) = − 2

mπ

1

p cot δ − ip
. (4.8)

For coupled-channel calculations, we use the Stapp [54] parameterization of the S-matrix

S =

 cos(2ε̄)e2iδ̄1 i sin(2ε̄)ei(δ̄1+δ̄2)

i sin(2ε̄)ei(δ̄1+δ̄2) cos(2ε̄)e2iδ̄2

 . (4.9)

The S-matrix is related to the t-matrix by

S = 1− iπmqt. (4.10)

where in the coupled-channel case,

t =

 tαα tαα′

tα′α tα′α′

 . (4.11)

Now, we calculate the Stapp parameters from the coupled-channel t-matrix amplitudes by

tan 2ε̄ =
−mπqtαα′

[(1− imπqtαα) (1− imπqtα′α′)]1/2
,

e2iδ̄1 =
1

cos 2ε̄
(1− iπmqtαα),

e2iδ̄2 =
1

cos 2ε̄
(1− iπmqtα′α′),

(4.12)

where the on-shell t-matrix element for arbitrary input channel β and output channel β′ is

tββ′ = 〈qβ|t(E = q2/m)|qβ′〉 . (4.13)

4.3 Results

The OPE potential is an important piece of chiral EFT, so we take the coordinate-space

definition and apply the same tests as we did for the finite range inverse cubed potential.
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First, we compare all four regulation techniques in the 1S0 channel as well as the 3S1 − 3D1

channel. Second, we study the 1P1 and 1D2 channels with the Pauli-Villars RG flow in the

1S0 channel. Finally, we apply the same analyses of the renormalization of the 3P1, 3D2, and

3P2 − 3F2 channels with the Pauli-Villars RG flow in the 3S1 − 3D1 channel.

The coordinate-space behavior of the 1S0 channel is significantly different from the 3S1

channel. In the 1S0 channel, S12 = 0. What is left is simply the Yukawa term. On top of

that, the interaction in the 1S0 channel is repulsive as opposed to the attractive 3S1 channel.

Because of those differences, we get very different results as the reader will see below.

4.3.1 1S0 Channel

The local regulator used in the locally, semi-locally, and Pauli-Villars regulated cases is

(per 3.4)

ρ(r;R) = 1− e−(r/R)2 , (4.14)

and

χ(r;R) = e−(r/R)2 . (4.15)

The nonlocal regulator we use in the semi-locally and nonlocally regulated cases is

χ̃(p;R) = e−(pR/2)2 . (4.16)

In the Pauli-Villars regularization formulation, we regulate the OPE at R = 1/(10M) fm.

In all of these cases we tune g to reproduce the known 1S0 scattering length as = −23.75

fm.

The RG flows generated by tuning the spin-singlet scattering length to as = −23.75 fm

are shown in Fig. 4.1. The upper left and lower right plots correspond to the locally regulated

Pauli-Villars regulated cases, respectively. Both schemes allow for multiple branches as with

the inverse cube potential (see Sec. 3.3.1). What is shown is simply one of the non-unique

paths. In the upper left plot of Fig. 4.1, the local counterterm is tuned such that the

scattering length is reproduced and the number of states is fixed. It follows a single branch.

In contrast, in the lower right plot of Fig. 4.1, the path shown “hops” across multiple
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Figure 4.1: The running of the counterterm coupling constants for the locally (upper left),
semi-locally (upper right), nonlocally (lower left), and Pauli-Villars regulated OPE potentials
in the 1S0 channel.

branches, resulting in a changing two-body spectrum as M increases. It was tuned in such

a way as to minimize the absolute value of g. As shown in Fig. 4.3, the low-energy physics

is the same regardless of the path chosen.

The cutoff dependence of the 1S0 phase shifts is calculated using the RG flows shown in

Fig. 4.1 and is shown in Fig. 4.2. Each of the four regularization schemes produces a similar

LO approximation to the phase shift at E = 2.5 keV, and none of them change dramatically

over the wide ranges of cutoffs or masses that were used in the calculation. This demonstrates

the consistency between the different regulation techniques and the sufficiency of our single,

two-body counterterm to renormalize two-body observables.

The energy dependence of 1S0 phase shifts is calculated using the RG flows in Fig. 4.1

and is shown in Fig. 4.3. The maximum energy shown is only 2.5 MeV. This was chosen

for two reasons. First, it highlights that the four regularization techniques produce accurate

and similar results at low energies. Second, the 1S0 channel phase shifts have a notoriously

sharp turn above ≈ 1 MeV. At LO, it is very difficult to reproduce this turn as one can see

from other approaches [52, 43, 58].
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Figure 4.2: 1S0 phase shifts using local (green circles), semi-local (red squares), nonlocal
(yellow x’s), and Pauli-Villars regularization (blue plus signs). These phase shifts are shown
for E = 2.5 keV.

55



0.0 0.5 1.0 1.5 2.0 2.5
E (MeV)

20

30

40

50

60

70

 (°
)

0.0 0.5 1.0 1.5 2.0 2.5
E (MeV)

20

30

40

50

60

70

 (°
)

0.0 0.5 1.0 1.5 2.0 2.5
E (MeV)

20

30

40

50

60

70

 (°
)

0.0 0.5 1.0 1.5 2.0 2.5
E (MeV)

20

30

40

50

60

70

 (°
)

Figure 4.3: 1S0 phase shifts using local (upper left), semi-local (upper right), nonlocal
(lower left), and Pauli-Villars regularization (lower right). The blue circles correspond to
our calculation while the red x’s correspond to the Nijmegen partial-wave analysis PWA93.
The momentum cutoff or mass used to calculate these phase shifts was 10 GeV.
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4.3.2 3S1 Channel

The spin-triplet channel of the OPE also requires its own counterterm [43]. We perform the

same procedure with the triplet channel of the OPE as we did with the singlet channel and

the FRIC. The RG flows are calculated by tuning the scattering length of the triplet channel

to atriplet = 5.42 fm.

The local regulator used in the locally, semi-locally, and Pauli-Villars regulated schemes

is

ρ(r;R) =
[
1− e−(p/Λ)2

]4

. (4.17)

The local counterterm used in the locally regulated case is

χ(r) = g(R) e−(r/R)4 . (4.18)

The nonlocal regulator used in the semi-locally and nonlocally regulated schemes is

χ̃(p;R) = e−(pR/2)4 (4.19)

The RG flows found with the various regulation schemes are shown in 4.4.

The 3S1 phase shift at E = 10 MeV for the four different regularization schemes is shown

in Fig. 4.5 as a function of the high-momentum scale at which the potential is regulated. All

four regularization schemes converge to a very similar value.

The energy dependence of the 3S1 phase shifts is shown in Fig. 4.6.

4.3.3 Pauli-Villars Tensor Structure

Spin-Singlet Channels

One of the features of the Pauli-Villars regularization technique that we want to test is the

tensor structure, specifically S12 is Eq. (4.1). By definition, our PV term potential has the

same spin, isospin, and angular momentum structure as the OPE. This means that by fixing

the deuteron binding energy in the 3S1−3D1 channel we are also fixing the other spin-triplet

channels.
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Figure 4.4: RG flows for the locally (upper left), semi-locally (upper right), nonlocally
(lower left), and Pauli-Villars (lower right) regulated OPE potential in the 3S1–3D1 channel.
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Figure 4.5: Cutoff dependence of the 3S1 phase shifts at a center-of-mass energy of 10MeV
for the locally (left plot, solid blue), semi-locally (left plot, green dot-dashed), nonlocally
(left plot, yellow dashed), and Pauli-Villars (right plot) regulated OPE potentials.
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Figure 4.6: Energy dependence of the 3S1 phase shifts for the locally (blue circles), semi-
locally (yellow squares), nonlocally (green x’s), and Pauli-Villars (red +’s) regulated OPE
potentials. The data from the Nijmegen PWA93 partial-wave analysis is represented by the
solid, black line.
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Figure 4.7: Phase shifts calculated with Pauli-Villars regularization in the 1P1 channel.
[Left] 1P1 phase shifts as a function of the mass used in VPV (~r). [Right] 1P1 phase shifts at
the maximum M value used in the calculation; plotted against the Nijmegen PWA93 data.

In Figs. 4.7 and 4.8, we try to exploit the tensor structure of the Pauli-Villars

regularization to renormalize multiple channels with a single counterterm. We take the

RG flow generated by tuning as in the 1S0 and apply it to the phase shift calculations in the

1P1 and 1D2 channels.

Fig. 4.7 shows the cutoff dependence (left plot) and the energy dependence (right plot)

of the 1P1 phase shifts. The cutoff dependence clearly shows that the phase shifts are

renormalized with the counterterm even though it is tuned in a different channel. The

energy dependence shows that we are capturing the correct physics by comparing our values

to the Nijmegen PWA93 partial-wave analysis. Our results are comparable to others’ LO

results [52, 43].

In Fig. 4.8, we see the same convergence with respect to M and accuracy with respect to E

observed in the 1D2 phase shifts. It should be noted that S12 = 0 in all spin-singlet channels

and therefore do not require a counterterm [52]. The coefficient to Y (r) does change by as

much as a factor of -3. Of course, this is captured by VPV (~r) precisely because it is chosen

to replicate the OPE tensor structure. In this limited case, the Pauli-Villars regularization

allows the counterterm to act outside of the channel in which it was tuned.
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Figure 4.8: Phase shifts calculated with Pauli-Villars regularization in the 1D2 channel.
[Left] 1D2 phase shifts as a function of the value of M used in VPV (~r). [Right] 1D2 phase
shifts at the maximum M value used in the calculation (blue circles); plotted against the
Nijmegen PWA93 data (red x’s).

Spin-Triplet Channels

Having established some degree of confidence, we move on to the spin-triplet channels where

we attempt to renormalize with a single counterterm using the Pauli-Villars regularization

technique is the spin-triplet channels where the two spin-1
2

nucleons are coupled to a total

spin of 1. In the s-wave channel, there exists a bound state, the deuteron. We fix the energy

of this bound state by tuning g(M) in (4.3). The 3S1 − 3D1 phase shifts were shown in

Fig. 4.6.

We now extend that work and use the g(M) values found by requiring the deuteron

binding energy to calculate the phase shifts in other S = 1 channels. The 3P1 phase shifts

are showing in Fig. 4.9. The left plot shows the convergence of the phase shifts with respect

to the fictitious mass in VPV (~r). The right plot clearly displays that the correct physics is

being captured as the low-energy phase shifts match up with the Nijmegen PWA93 data

very well. Of course, as expected in an effective theory, the calculations increasingly deviate

from experiment at high energy.

The 3P1 channel is a repulsive tensor channel. According to Song et al. [52], a counterterm

is not required to renormalize this channel. If we remove the counterterm and plot the cutoff
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Figure 4.9: 3P1 phase shifts calculated with the Pauli-Villars regularization technique.
[Left] M dependence at 10 (red), 40 (green), 70 (blue), and 100 (yellow) MeV. [Right]
Energy dependence of the calculated phase shifts (blue line) plotted against the Nijmegen
PWA93 partial-wave analysis.

dependence, shown in Fig. 4.10, it is clear that the phase shift converges. In contrast, the

3D2 channel is an attractive tensor channel, like the 3S1−3 D1 coupled channel in which the

Pauli-Villars term is tuned. It serves as a much more rigorous test of our analysis.

The 3D2 phase shifts are shown in Fig. 4.11. At lower values of M , the convergence and

agreement with experiment is quite good. However, there appears to be some unfortunate

“fine-tuning” at higher M values. We have tried a number of different approaches to remove

this behavior including different local regulator forms, cutting off the Fourier transform

in place of the local regulator, and repeating the calculation with the momentum-space

definition of the interaction. The unexpected cutoff dependence persists regardless. At this

point, we see the behavior as akin to the local regulator sensitivity though far more resilient.

One might hope that the unfortunate fine-tuning in the 3D2 channel is isolated. It is

not. The 3P2 − 3F2 phase shifts are shown in Fig. 4.12 and they contain the same type

of unexpected cutoff dependence at as-yet-unpredictable values of M . Like the 3S1 − 3D1

channel, the 3P2 − 3F2 channel is a mixture of repulsive and attractive tensor interactions.

Though we have not been able to eliminate the cutoff dependence to arbitrary cutoffs, we

suspect that it is limited to attractive spin-triplet channels.
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Figure 4.10: 3P1 phase shift at a center-of-mass energy of 10 MeV as a function of the
high-momentum (short-distance) cutoff. No counterterm is included in the calculation.
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Figure 4.11: 3D2 phase shifts calculated with the Pauli-Villars regularization technique.
[Left] M dependence at 10 (red), 40 (green), 70 (blue), and 100 (yellow) MeV. [Right] Energy
dependence of the calculated phase shifts (blue line) plotted against the Nijmegen PWA93
partial-wave analysis.
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Figure 4.12: 3P2 − 3F2 phase shifts calculated with the Pauli-Villars regularization
technique. [Left] M dependence at 10 (red), 40 (green), 70 (blue), and 100 (yellow) MeV.
[Right] Energy dependence of the calculated phase shifts (blue line) plotted against the
Nijmegen PWA93 partial-wave analysis.

4.4 Summary and Outlook

We have demonstrated numerical and physical consistency between the two-nucleon scat-

tering observables found using three different regularization techniques: local, semi-local,

and nonlocal. We have also shown that the use of the Pauli-Villars regularization technique

fails to meet the goal for which we tasked it. While we are able to reduce the number

of counterterms required to renormalize the spin-singlet channels and repulsive spin-triplet

channels, the historically problematic attractive spin-triplet channels have failed to converge

at large cutoffs.

In the future, we are working to implement a momentum-space formulation of the

potential where

V (~q) = [V1π(~q)− VPV (~q)] + gX(~q), (4.20)

such that [V1π(~q)− VPV (~q)] always cancels at large |~q| and the counterterm we add mimics

the tensor structure but lacks the singular terms associated with the OPE.
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Chapter 5

van der Waals Potential

5.1 Introduction

Cold, neutral atoms can induce dipole moments in one another. Fixed dipoles interact via

a 1/r3 potential. The interaction of these induced dipoles, referred to the as van der Waals

force, falls off like 1/r6. In systems where the electron configuration is such that these effects

are pronounced (e.g. alkali metals), though limr→∞ 1/r6 = 0, the long-range (low-energy)

behavior is dominated by this 1/r6 tail.

Currently, these systems are studied with finely tuned potentials [2] composed of a 1/r6

tail and several terms accounting for short-distance effects. As the electron structure becomes

more complex, the ab initio treatment of these short-range terms becomes untenable. Our

goal is to apply an EFT description to these systems whereby the interaction consists

minimally of a van der Waals tail and a parameterized contact interaction. This contact

interaction can then be tuned to a number of different systems with widely varying

electronic structures. Once LO is established, corrections to this simple description can

be systematically included to improve the accuracy of the theory’s predictions. Also, the

universal features of the van der Waals potential [21, 41] — those depending solely on the

strength of the potential — suggest that our description will be applicable to systems where

the scattering length is not large.

In this chapter, we present the details of our proposed interaction as well as the results

obtained in the two- and three-body sectors. We establish the renormalization of this LO
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interaction and test for the order of NLO corrections. We also show that our EFT is able

to capture information about the system outside of large-scattering-length universality by

explicitly including the van der Waals potential as the dominant, low-energy interaction.

Many of the techniques will look familiar. In fact, much of the work presented in Chapters 3

and 4 came out of our initial investigation into the van der Waals potential.

5.2 Background

The van der Waals potential dominates the low-energy physics of alkali atoms, but it also

has some universal features that make it particularly interesting to study. These “universal”

features are universal in the sense that any system whose long-range behavior goes like 1/r6

has them.

5.2.1 Analytical Solutions

Bo Gao derived solutions to the attractive 1/r6 potential [22],

f 0
El(r) = (α2

El + β2
El)
−1
[
αElf̄El(r)− βElḡEl(r)

]
g0
El(r) = (α2

El + β2
El)
−1
[
βElf̄El(r) + αElḡEl(r)

]
. (5.1)

at energy E and angular momentum l. The general solution is composed of a linear

combination of the two solutions

uEl(r) = AEl
[
f 0
El(r)−K0

l g
0
El(r)

]
. (5.2)

With those solutions and a technique called Quantum Defect Theory, he was able to calculate

a modified effective range expansion and several universal relations for the observables in

terms of the van der Waals length [21], the length scale associated with the strength of the

van der Waals tail. With the potential described by −C6/r
6, the length scale is defined as

β6 ≡ (mC6)1/4, (5.3)
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where m is the mass. Of course, Gao solved the Schrödinger equation in the region where only

the attractive 1/r6 acts. He connects the solution to the unknown, short-distance solution

via the short-range K0
l matrix. For our purposes, this amounts to a boundary condition, set

by the short-distance physics we wish to parameterize. The universal relations he gets are

then dependent on the value of K0
l . The scattering length and effective range are

a =
2π

[Γ(1/4)]2
K0

0(0)− 1

K0
0(0)

β6 ,

r0 ≈
[Γ(1/4)]2

3π

K0
0(0)2 + 1

[K0
0(0)− 1]

2 β6 ,

(5.4)

where the K0
l (0) is evaluated at zero energy (threshold). The relation for r0 is truncated

under the assumption that the derivative of the short-range K-matrix is small. In effect, we

can calculate the boundary condition, K0
0(0), from a, and then calculate r0.

For bound states, Gao finds a expression for K0
l from the asymptotic forms of f 0

El(r) and

g0
El(r) given by r →∞

f 0
El(r)→ (2πκ)−1/2(Wf−e

κr +Wf+e
−κr) ,

g0
El(r)→ (2πκ)−1/2(Wg−e

κr +Wg+e
κr) , (5.5)

where κ represents the bound state momentum. The functions Wf±,g± are defined by the

energy and the shift in the order of the Bessel functions, and for the sake of brevity, we

will not discuss their form. However, we can look at the asymptotic forms of f and g and

conclude that in order to obtain a normalizable solution, the eκr terms must cancel. This

condition provides a restriction on K0
l , and it is defined as

K0
l (E) = χl(∆) = Wf−/Wg− , (5.6)

where ∆ = 2µEβ2
6/16~2.

An example plot of χl=0(∆) is shown in Fig. 5.1. Once χl(∆) is known (from the scattering

length or a bound state), the intersections of the dashed, red line at that value and the χl(∆)

function predict the presence of bound states.
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Figure 5.1: χl=0 as a function of the dimensionless parameter ∆. The solid, blue line is χl=0.
The dashed, red line is example value of χl=0 given to illustrate the multiple intersections
and the corresponding bound state spectrum.
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5.2.2 Universality in the Three-Body Sector

Another fascinating aspect of van der Waals universality is its reach beyond the two-body

sector. In the three-body sector, the three-body parameter is defined at unitarity for three

identical bosons by [8]

E
(n)
T →

(
1

515.03

)n−n∗ ~2κ2
∗

m
as n→∞ with a→ ±∞, (5.7)

is related to β6 by [41]

κ(0)
∗ = 2(0.21± 0.01)/β6. (5.8)

Also, the quantity a− is the value of the scattering length where the three-body state

disappears through threshold and is related to β6 [41] by

a− = −(10.70± 0.35)β6/2 . (5.9)

and with more testing, we intend to confirm Eq. (5.9) and improve the accuracy of the

coefficient of β6.

The implication from Eqs. (5.8), (5.9), and (5.4) is that, provided a system with a large

two-body scattering length and β6 � R, our proposed theory can fix the two- and three-body

sectors simply by fixing a shallow, two-body state.

5.2.3 Feshbach Resonances

In general, the scattering length for a given system is fixed — a result of the particular

configuration of the charge distribution and spin that describes the system. We study systems

that have a large scattering length not because they occur in nature so frequently but because

in atomic physics there is a very convenient technique for tuning the scattering length. The

technique exploits the existence of Feshbach resonances [15].

If one is able to control the strength and range of an interaction, one can choose

parameters that fix a bound state near threshold, thus giving a large scattering length.

In practice, we do not have such control. However, Feshbach showed that when a state in
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an energetically forbidden (closed), weakly coupled channel is tuned to the threshold in the

energetically allowed (open) channel, the scattering length goes like [8]

a(B) = abg +
c

B −Bres

, (5.10)

where B is an externally applied magnetic field, c is the width of the resonance, and abg is

the scattering length where B is far away from the resonant value Bres.

For our purposes, when we show observables as a function of the scattering length, we

are addressing experimentally attainable regimes.

5.2.4 Efimov Effect

The Efimov Effect [11] is a phenomenon that occurs when a large scattering length exists

between at least two particles in a three-particle system. Vitaly Efimov showed that when

the magnitude of the scattering length is much larger than the range of the interaction,

a system a trimers (three-body states) exists whose separation is set by a discrete scaling

factor. In the case of identical bosons at the unitary limit where a → ±∞, each state is

separated by a factor of approximately 515 from the states above and/or below it. Under

these circumstances, we expect that

E
(n+1)
3 /E

(n)
3 = e−2π/s0 , (5.11)

where s0 = 1.00624. For finite scattering lengths as well as in the unitary limit, the three-

body states are shown in Fig. 5.2 (previously presented by [8]) where

K = sign(E)

(
m|E|
~2

)1/2

(5.12)

is the trimer momentum variable, T represents a trimer state, AAA is the three-particle

scattering region, and AD is the atom-dimer scattering region. Along the negative y-axis,

the crossings of the trimer states correspond to the three-body parameter κ∗ times some

multiple of ≈
√

515 ≈ 22.7 Likewise, as 1/a moves to the left, the crossings of the trimer
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Figure 5.2: Efimov trimers as a function of the inverse scattering length.

states and the x-axis are separated by the same multiplicative factor. This discrete scaling

is a universal feature of systems characterized by a large scattering length and will serve as

a benchmark for our calculations.

The unique aspect for identical bosons interacting via a van der Waals potential, as

mentioned in the previous section, is that not only is the separation between the three-body

states fixed but there position is fixed as well. The advantage is that by fixing the shallow,

two-body state, we gain information about about the three-body spectrum.

5.3 van der Waals Effective Field Theory

Systems characterized at low energies by a long-range van der Waals tail

V6(r) = −C6

r6
, (5.13)
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where C6 is a measure of the strength, can have a number of different aspects as short

distances. Our proposed theory is based on the assumption that we can parameterize those

short-distance effects and systematically include corrections to that parameterization. We

propose a nonlocally regulated, LO interaction of the form

Ṽ (p, k) = χ̃(p;R)Ṽ6(p, k)χ̃(k;R) + g(R)χ̃(p;R)χ̃(k;R), (5.14)

where Ṽ6(p, k) is the momentum-space, s-wave projection per Eq. 3.3 of

ρ(r;R<)V6(r), (5.15)

with

ρ(r;R<) = [1− e−(r/R<)2 ]
6
, (5.16)

and

χ̃(p;R) = e−(pR/2)6 , (5.17)

and R< ≡ R/10.

We arbitrarily choose the binding energy of the shallowest bound state of our system to

be B2 = 1× 10−4 1/Å2, which corresponds to a scattering length of a ≈ 100Å. The mass of

each particle is chosen to be 1. Our results for the simple model are discussed below.

5.3.1 Test Case

We tune g(R) such that the shallowest bound state lies at a binding energy of our choosing,

B2. The result of that tuning over a range of R values is shown in Fig. 5.3. The system starts

out with 2 two-body states, the shallowest of which lies at B2. The first pole in the running

of g(R) corresponds to the inclusion of a third deep state. The second pole in the running of

g(R) corresponds to the inclusion of a fourth deep state. Because the counterterm is defined

in momentum space while the long-range interaction is defined in coordinate space, the ratio

g/C6 has somewhat unhelpful units, but nevertheless, it provides a useful perspective on the

repulsion/attraction required to maintain the shallow B2.
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Figure 5.3: The running of the nonlocal counterterm strength as the momentum cutoff
increases.

Using the RG flow in Fig. 5.3, we calculate the two-body scattering length as a function of

β6Λ (with Λ ≡ 2/R) and show the results in Fig. 5.4. The blue, solid line is our calculation

and the red, dashed line is a fit to Eq. (3.37). There are a few aspects of the plot that

we wish to highlight. First, the curve is smooth and slowly flattens out, showing that the

scattering length converges in the limit of Λ→∞. This shows that our two-body, contact-

like counterterm is sufficient to renormalize two-body observables. Second, the value to

which the scattering length converges is of the order of what we would expect. A shallow

bound state of binding energy, B2, corresponds to a large scattering length [8]

a ≈
√

1

mB2

. (5.18)

With B2 = 1×10−4Å
−2

and m = 1, we expect a scattering length close to 100Å which is very

close to what we get. Finally, the fitted line shown is a fit to Eq. (3.37) with n = 2. However,

similarly to the inverse cube study, there does not seem to be a clear determination of n. The

standard deviation in the fit parameter cn is roughly 4% as n is varied between 1 and 2.5.
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Figure 5.4: Two-body scattering length of our vdW test potential. The solid, blue line is
our calculation. The dashed, red line represent a fit to Eq. (3.37).

From the plot, one can clearly see a(β6Λ) oscillating about the fit line. These oscillations

are discouragingly similar to the inverse cube results and represent analytical behavior that

is not captured by the simple power series expansion we propose (see Eq. (3.36)).

To highlight these oscillations, we plot Λ(da/dΛ) in Fig. 5.5. While the function tends

toward zero, there is a pronounced oscillatory dependence on Λ that obscures a well-

supported conclusion on the value of n for the higher-order corrections. This is highlighted

by taking the derivative of a with respect to Λ and compared to the expected behavior based

on a fit to Eq. (3.37).

From the scattering length, we can calculate the short-range K-matrix via Eq. (5.4).

Checking the intersections of that K-matrix value with χl=0, we ought to be able to predict

the presence of deeper, two-body bound states. Fig. 5.6 shows the deeper two-body state

approaching the prediction from χl=0 as β6Λ increases. We do not expect that the deeper

spurious bound states that enter the spectrum will be predicted by the χ function as they are

so deep that they corresponding the distances where the regulators have significant effects.
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Figure 5.5: Λ(d/dΛ) applied to the two-body scattering length of our vdW test potential
as a function of the dimensionless quantity β6Λ. The solid, blue line is our calculation. The
dashed, red line is the expected behavior based on a fit to Eq. (3.37).

As a check of our scattering length calculation, we also show the phase shifts at three

different energies: 0.001, 0.01, and 0.1 Å−2 in Fig. 5.7. The primary feature of the plot is the

consistently flat behavior of the cutoff dependence at three different orders of magnitude.

Along with the scattering length, this clearly demonstrates the sufficiency of a two-body,

contact interaction to renormalization the vdW potential at short distances.

Unfortunately, applying the same Λ(d/dΛ) analysis to the phase shifts, shown in Fig. 5.8,

reveals the same oscillations seen in the scattering length. As expected, the functions tend

toward zero, but the only insight gained from Fig. 5.8 is the increasing oscillation amplitude

as the scattering energy E increases, an insight that fails to clearly reveal the source of these

oscillations.

With the two-body observables renormalized, we turn to the three-body sector. From

Section 5.2.2, we expect that the three-body bound states are fixed, at least in the unitary

limit. The scattering length we chose is large which should get us close to the unitary limit.

We plot our results as a function of β6Λ or β6(2/R) such that the asymptotic values meet
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Figure 5.6: Two-body binding energies in our van der Waals test case potential as a
function of the dimensionless parameter β6Λ. The blue circles are the calculated values. The
red x’s correspond to the deeper state as predicted by the intersection of K0

0(0) and the χl=0

function.
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Figure 5.7: Phase shifts at 0.001 (red, solid line), 0.01 (green, dotted line), and 0.1 (blue,
dot-dashed line) Å−2 as a function of the dimensionless parameter β6Λ.
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Figure 5.8: Λ(d/dΛ) applied to the phase shifts at 0.001 (red, solid line), 0.01 (green, dotted
line), and 0.1 (blue, dot-dashed line) Å−2 as a function of the dimensionless parameter β6Λ.
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Figure 5.9: Trimer binding energies as a function of the dimensionless parameter β6Λ.

the condition that β6 � R. Fig. 5.9 shows the cutoff dependence of the three-body states

found with our test parameters.

Finally, we compare our results for the universal predictions of κ∗ and a−. Fig. 5.10

shows the three-body states (through the trimer momentum variable) as a function of the

inverse scattering length. The blue circles represent the three-body states. For a > 0, there

are two three-body states. As a→∞, the ratio of these states increases, presumably toward

the expected ratio of ≈ 515 as shown in Fig. 5.11. The agreement between the crossing

of the deep, three-body states and the y-axis at the universal prediction of κ∗ in Fig. 5.10
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Figure 5.10: Trimer momentum variable (Eq. (5.12)) as a function of the inverse, two-body
scattering length. Blue circles are the calculated states where β6/R = 0.1. The green, solid
line is 1/a. The green, dashed line is two-body, binding momentum. The short, red lines are
the universal predictions for van der Waals systems.

is promising but incomplete. Likewise for the agreement between the disappearance of the

three-body states and the universal predictions for 1/a−. Right now, we are only capable

of including s-waves in the three-body, binding energy calculation. Including d− d coupling

should decrease the binding energy, pulling the blue circles downward and hopefully matching

up much better with the universal predictions (Eq. (5.7) and (5.9)).

5.3.2 4He

In Section 5.3.1, we proposed a LO effective theory that includes a long-range van der Waal

tail and a short-distance, contact-like counterterm. We presented stable and converged

results when applying test parameters to this potential. Here, we will apply the same

procedure to a realistic system. The system of interest is a cold gas of neutral 4He atoms.

There are several potentials that have been finely tuned and rigorously tested against

the 4He dimer binding energy, two-body scattering length, trimer binding energies, and
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Figure 5.12: RG flow of the two-body counterterm found by tuning the shallow, two-body
state to 1.31mK.

atom-dimer scattering length [10]. We will compare our vdWEFT approach to the LM2M2

potential. This potential has 17 parameters corresponding to 6 different terms, the most

long-range of which is the 1/r6 tail. We take the coefficient of that vdW tail and add the

same contact-like counterterm with its single, tunable parameter, g.

To start, we fix the single, two-body, bound state at B2 = 1.31 mK. This gives the

RG flow shown in Fig. 5.12. Initially, there exists only a single, two-body state. Another

spurious bound state enters the spectrum almost immediately as R decreases. Eventually,

a third bound state enters a little above β6/R = 5. As in Ch. 3, these states are beyond

the energy range in which our EFT claims accuracy and thus are too deep to be considered

physical.

Having fixed the bound state, we calculate the two-body scattering length and present the

results in Fig. 5.13. The figure shows the two-body scattering converging nicely with respect

to β6/R, and the value to which it converges matches up well with known LM2M2 result

of 100Å. One may suspect however that this is simply a result of the universal relationship
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Figure 5.13: Two-body scattering length as the short-distance cutoff, R, decreases. The
solid, blue line is our calculation. The dashed, red line is the LM2M2 result.

between a shallow bound state and a large scattering length. A better test of vdWEFT is

the effective range.

The effective range cutoff dependence is shown in Fig. 5.14. Like the scattering length,

the effective range converges with respect to β6Λ, and the value to which is converges to

matches up very well with the LM2M2 result of 7.33Å. The reason we are able to match

this value so well is because we include the long-range vdW tail. If we were to employ a

separable interaction of the form

Ṽ (p, k) = ge−(p/Λ)2e−(k/Λ)2 , (5.19)

and tune the bound state, we would reproduce the scattering length because it is related to

the shallow bound state. The more shallow that state becomes, the more accurate Eq. (5.18)

is. However, we would require another parameter to tune the effective range. As shown by

Gao [21], once the scattering length is set, the van der Waals tail fixes the effective range.
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Figure 5.14: 4He−4He effective range as the high-momentum (short-distance) cutoff, Λ,
increases. The blue dots are the calculation. The solid, green line represents the predicted
values per Eq. (5.4). The dashed, red line is the LM2M2 result.

This makes our theory particularly powerful in that it captures more information about the

system with very little input.

As the effective range is known from the scattering length via the short-range K-matrix,

so also should any deeper two-body states that are shallow enough to be associated with the

van der Waals tail. Fig. 5.15 shows the deeper state meeting up with the χl=0 intersection

as β6/R increases, further establishing the reach of our theory’s predictive power.

The LM2M2 is also finely tuned to reproduce two three-body states. The three-body

spectrum found with our potential and the comparison to the LM2M2 results is shown in

Fig. 5.16. The excited, three-body state differs by more than 10%, and the ground, three-

body state differs by more than 20%. We attribute our inaccuracy to the current limitations

of our calculation not the theory. We have computed the three-body binding energies using

s-wave states. However, two d-wave states can couple to a final s-wave state. As mentioned

in Section 5.3.1, our three-body binding energy calculations are currently limited to s-waves.

We strongly suspect that once the d− d coupling is included, our values will be much closer.
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Figure 5.15: 4He two-body binding energies as a function of the dimensionless parameter
β6Λ. The blue circles are the calculated energies. The red x’s correspond to the predicted
value via the intersections of K0

0(0) and the χl=0 function.
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Figure 5.16: 4He trimer binding energies as a function of the dimensionless parameter β6Λ.
The blue circles are the calculated energies. The red, dashed line is the energy from the
LM2M2 potential [10].
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5.4 Summary and Outlook

We have constructed a LO effective theory composed of a long-range van der Waals tail and a

short-distance, contact-like counterterm. We have tested this theory on a simple system and

demonstrated that results the results are consistent with known aspects of van der Waals

universality. We have also applied our vdWEFT to a realistic system of 4He atoms and

compared it against an accurate, well-accepted model of the 4He-4He interaction.

The primary outstanding discrepancy between vdWEFT and the LM2M2 is the three-

body spectrum. The three-body states calculated with vdWEFT are too shallow. We have

proposed that this is due solely to our current lacking ability to perform calculations with

higher partial waves as our current three-body codes employ s-waves only. In the future, we

will include partial waves with l > 0, most likely resolving the discrepancy.

There is also a discrepancies between our values for κ∗ and a− and the predicted, universal

relations. Again, we anticipate that including higher partial waves will account for these

discrepancies.

Beyond confirming known results and improving their accuracy, we also intend to

investigate the β6 dependency of other observables such as decay widths. This requires that

we significantly advance our three-body scattering code. First, we need to include higher

partial waves. Second, we need to either implement the removal of multiple, spurious bound

states in the scattering code or refine our implementation of the complex energy method.
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Chapter 6

Numerical Implementation

The majority of the work presented in this thesis was based on numerical calculations. These

calculations were implemented using Mathematica, Python, and C++. In this chapter, we

will summarize how those implementations were constructed.

6.1 General Remarks

6.1.1 Frame of Reference

We perform our calculations in the center-of-mass system where the center-of-mass momen-

tum is zero. The quantity of interest is then the relative momentum of the two particles

~p =
1

2
(~p2 − ~p1). (6.1)

We perform a partial-wave decomposition such that

〈~p|p lm〉 =
δ(|~p| − p)

p2
Y m
l (θ, φ), (6.2)

where θ and φ correspond to the direction of ~p.

The normalization of the partial-wave states is

〈p lm|p′l′m′〉 =
δ(p− p′)

p2
δl,l′δm,m′ .
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6.1.2 Numerical Integration

Most of the calculations performed in this thesis relied on numerical integration to some

extent. For this we rely heavily on Gaussian quadrature. For cases where the integration

was performed over the interval [-1, 1], we either extract the abscissa and weights from a

library (e.g. SciPy) or calculate them via the method described in Section 4.6.1 of Numerical

Recipes [50].

For cases where the integration was performed over the interval [0, Λ], we use at most

two simple variable transformations. First, we shift and extend (or contract) the abscissa

(xi) and weights (wi) on the interval [-1, 1] to the interval [a, b] by

xi → [(b− a)/2]xi,

xi → [(b+ a)/2]xi,

wi → [(b− a)/2]wi.

(6.3)

Second, when the function being integrated has much more varying behavior at the low

end of the interval than the high end, we redistribute the abscissa such that the density

of points at lower values of the range is much higher than at higher values of the range.

Specifically, consider the variable transformation

y = log x+ 1. (6.4)

If the integration is to be carried out over the interval x = [a, b], obtaining Gauss-

Legendre abscissa and weights on the interval y = [log(a+ 1), log(b+ 1)] and performing

the transformation

xi = eyi − 1,

wx,i = eyiwy,i.
(6.5)

creates an integration mesh that packs a majority of the points at the low end of the interval.

This dramatically improves the convergence of the integration of functions whose low-end

behavior is much more complex. The momentum-space potentials employed in this thesis
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by design act more strongly at low momentum or low momentum transfer than at high

momentum. Thus the procedure described in this section proved very useful.

6.2 Two-Body Calculations

Two types of two-body calculations were performed in this thesis: binding energies and

scattering amplitudes. The binding energy calculations are described in Section 6.2.1, and

the scattering calculations are described in Section 6.2.2

6.2.1 Binding Energies

The two-body binding energy calculations dealt with the solution of the discretized

Schrödinger equation — eigenvalue problems. In momentum space, the Schrödinger equation

is

(
p̂2

2m
+ V̂ ) |ψ〉 = E |ψ〉 . (6.6)

Projecting onto the partial-wave-project, momentum state, 〈pl|, we have

〈pl| ( p̂
2

2m
+ V̂ ) |ψ〉 = E 〈pl|ψ〉 . (6.7)

Inserting the complete set of states

∑
l

∫ ∞
0

dqq2 |ql〉 〈ql| = 1, (6.8)

we get (
p2

2m
δll′ +

∑
l′

∫ ∞
0

dqq2 〈pl|V̂ |ql′〉

)
〈ql′|ψ〉 = E 〈pl|ψ〉 . (6.9)

Considering l = l′ = 0, we reduce this to

(
p2

2m
+

∫ ∞
0

dqq2 〈p|V̂ |q〉
)
〈q|ψ〉 = E 〈pl|ψ〉 . (6.10)
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Now, via the method described in Section 6.1.2, we discretize the integral

∫ ∞
0

dqq2 ≈
N−1∑
j=0

wjq
2
j . (6.11)

We arrive at
N−1∑
j=0

[
p2
i

2m
δij + wjq

2
jV (pi, qj)

]
ψ(qj) = Eψ(pi). (6.12)

Recognizing that everything inside the square brackets is a matrix, we are left with

N−1∑
j=0

Hijψj = Eψi (6.13)

where Hij is a real matrix, the eigenvalues and eigenvectors of which can be found with

the use of library routines (e.g. NumPy’s eig function or GSL’s gsl eigen symmv and

gsl eigen nonsymm).

Another way to formulate the problem is to rearrange the Schrödinger equation such that

V̂ |ψ〉 = [E − p̂2/(2m)] |ψ〉

V̂ |ψ〉 = Ĝ−1
0 (E) |ψ〉

Ĝ0(E)V̂ |ψ〉 = |ψ〉[
1̂− Ĝ0(E)V̂

]
|ψ〉 = 0[

1̂− K̂(E)
]
|ψ〉 = 0.

(6.14)

Projecting onto the same 〈pi| state and inserting the same complete set of states as before

allows us to construct the matrix

Kij ≡ δij −
wjq

2
jV (pi, qj)

E − p2
i /2m

, (6.15)

which by Eq. (6.14) requires that detKij = 0. As a function of the energy E, the determinant

tends to be a fairly smooth function, making the call to a simple root-finding algorithm (e.g.

SciPy’s fsolve or newton) quick and highly effective.
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6.2.2 Scattering

Uncoupled Channels Two-body scattering is governed by the Lippmann-Schwinger

equation as first stated in Section 3.2.3. For the convenience of the reader, we repeat it

here. For uncoupled channels we have

t(p, q0;E) = Ṽ (p, q0) +

∫ ∞
0

dq q2 Ṽ (p, q) t(q, q0;E)

E + iε− q2/m
. (6.16)

Again, we discretize the integral with Gauss-Legendre abscissa and weights with a finite

upper limit Λ, but the added complication here is the iε prescription. Two-body scattering

happens at positive energy. Therefore, there is a pole in the integral of Eq. (6.16) at q =
√
mE. Using the identity

∫
f(x)

g(x) + iε
= P

∫
f(x)

g(x)
− iπ

∫
f(x)δ(g(x)) (6.17)

we now have a principal value integral (denoted by P)

t(p, q0;E) = Ṽ (p, q0) + P
∫ Λ

0

dq q2 Ṽ (p, q) t(q, q0;E)

E − q2/m

− iπ
∫ Λ

0

dq q2 Ṽ (p, q) t(q, q0;E)δ(E − q2/m). (6.18)

The incident energy E = q2
0/m, and the δ function is evaluated as

δ(q2
0/m− q2/m) =

mδ(q0 − q)
2q0

, (6.19)

such that Eq. (6.18) becomes

t(p, q0;E) = Ṽ (p, q0) + P
∫ Λ

0

dq q2 Ṽ (p, q) t(q, q0;E)

E − q2/m

− iπmq0

2
Ṽ (p, q0) t(q0, q0). (6.20)

91



Now, all we have left to do is deal with the principal value prescription. We use a

technique called pole subtraction. We modify the first integral in Eq. (6.20)

P
∫ Λ

0

dq q2 Ṽ (p, q) t(q, q0;E)

E − q2/m
=

∫ Λ

0

dq
q2Ṽ (p, q) t(q, q0;E)− q2

0Ṽ (p, q0) t(q0, q0;E)

E − q2/m

+

∫ Λ

0

dq
q2

0Ṽ (p, q0) t(q0, q0;E)

E − q2/m
(6.21)

The first integral on the right-hand side of Eq. (6.21) is now zero at q = q0. The subtracted

term in that integral is calculated numerically

∫ Λ

0

dq
q2

0Ṽ (p, q0) t(q0, q0;E)

E − q2/m
, ≈ q2

0Ṽ (p, q0) t(q0, q0;E)
∑
j

wj
1

E − q2/m
,

= mq2
0Ṽ (p, q0) t(q0, q0; q2

0/m)
∑
j

wj
1

q2
0 − q2

,

≡ mq2
0Ṽ (p, q0)N t(q0, q0; q2

0/m) (6.22)

to offset any numerical inconsistencies contributed by the mesh spacing.

The second integral on the right-hand side of Eq. (6.21) can be done analytically, giving

∫ Λ

0

dq
q2

0Ṽ (p, q0) t(q0, q0;E)

E − q2/m
= q2

0Ṽ (p, q0) t(q0, q0;E)

∫ Λ

0

dq
1

E − q2/m

= q2
0Ṽ (p, q0) t(q0, q0;E)

∫ Λ

0

dq
1

E − q2/m
(6.23)

Now,

∫ Λ

0

dq
1

E − q2/m
=

∫ Λ

0

dq
m

q2
0 − q2

=

∫ Λ

0

dq
m

(q0 − q)(q0 + q)

=
m

2q0

∫ Λ

0

dq

(
1

q0 − q
+

1

q0 + q

)
=

m

2q0

(∫ Λ

0

dq
1

q0 − q
+ log

(
q0 + Λ

q0

))
. (6.24)
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The remaining integral is now split into two intervals

∫ Λ

0

dq
1

q0 − q
=

∫ 2q0

0

dq
1

q0 − q
+

∫ Λ

2q0

dq
1

q0 − q
, (6.25)

where the first is an odd integrand evenly integrated about the pole leaving the result as

zero. The second integral results in

∫ Λ

2q0

dq
1

q0 − q
= log

(
q0

Λ− q0

)
. (6.26)

Collecting all of the terms that multiply the on-shell amplitude, t(q0, q0), we have

C t(q0, q0; q2
0/m) =

mq0

2
Ṽ (p, q0)

[
2q0N + log

(
Λ + q0

Λ− q0

)
− iπ

]
t(q0, q0; q2

0/m)

In order to solve for the on-shell amplitude, we must include q0 explicitly in the

momentum mesh over which the integration. However, we do not want to include the

point in the sum. We exclude it by appending q0 to the momentum mesh but requiring its

corresponding weight to be zero.

In discretized form where

p→ pi

q → qj

Ṽ (p, q)→ Ṽ(pi, qj) = Ṽij

t(p, q)→ t(pi, qj) = tij∫
dq →

N∑
j=0

wj (6.27)

with pi and qj representing a discrete momentum mesh

[q0, q1, . . . , qN−1, q0].

93



and wj representing the discrete values

[w0, w1, . . . , wN−1, 0].

we have

[δij −Kij] tij = Ṽij. (6.28)

Kij for j < N is

Kij =
mwjq

2
j Ṽij

q2
0 − q2

j

and

Kij =
mq0

2
Ṽ (pi, qj)

[
2q0N + log

(
Λ + q0

Λ− q0

)
− iπ

]
for j = N .

What we have arrived at is a matrix-vector multiplication of the form

Ax = b,

where matrix A is known and vector b is known. Solving for x requires the calculation of

A−1 which is facilitated by the computation of the LU factorization of A. The result, x, are

t-matrix amplitudes. The last element of vector x is the on-shell amplitude from which we

calculate the partial wave amplitude by

f(q0) = −mπ
2
t(q0, q0; q2

0/m),

which is related to the phase shift by

f(k) =
1

k cot δ − ik
.

Coupled Channels For coupled channels we have

tαα′(p, q0) = Ṽαα′(p, q0) +
∑
α′′

∫ ∞
0

dq q2 Ṽαα′′(p, q)tα′′α′(q, q0)

E + iε− q2/m
, (6.29)
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which is solved in a similar fashion. Consider a potential that is not diagonal in angular

momentum such that l = 0 couples to l = 2. We will call α = 0 and α′ = 2. If we wish to

calculate the phase shift between two s-wave states, we have

t00 = v00 + v00G0t00 + v02G0t20,

which requires the solution of t20 which comes from

t20 = v20 + v20G0t00 + v22G0t20.

The equations are coupled and must be solved simultaneously. We construct the matrixv00 v20

v20 v22


such that we have t00

t20

 =

v00

v20

+

v00 v02

v20 v22

G0

t00

t20


The Stapp parameterization given by Eq. (4.9) requires not only t00 and t20, but t22 which

comes from the solution of the similar coupled equationt02

t22

 =

v02

v22

+

v00 v02

v20 v22

G0

t00

t22


Where A was an N×N matrix in the uncoupled channel case, there are now two 4N×4N

matrices that need to be constructed. And each channel must implement the pole subtraction

described above.
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6.3 Three-Body Calculations

We work in Jacobi coordinates where

~p =
1

2
(~p2 − ~p1) (6.30)

~q =
1

3
(2~p3 − ~p2 − ~p1) (6.31)

(6.32)

using partial-wave-projected states with the same normalization requirements as in Sec-

tion 6.2.

6.3.1 Binding Energies

To calculate s-wave, three-body bound states, as mentioned in Section 3.2.4, we solve [28]

〈pq|ψ〉 =
1

E − p2/m− 3q2/4m

∫ ∞
0

dq′q′ 2
∫ 1

−1

dx t(p, π1;E − 3q2/4m) 〈π2q
′|ψ〉 , (6.33)

where ψ represents a single, arbitrary Faddeev component, t is the two-body t-matrix, π1 =√
q2/4 + (q′)2 + qq′x, and π2 =

√
q2 + (q′)2/4 + qq′x.

Because we are looking for bound states, the E values are negative. Therefore, the only

poles we have to concern ourselves with are the poles in the two-body t-matrix at the two-

body bound state energies. As long as we are looking for proper, normalizable three-body

states — states that lie beneath the deepest two-body state, we can avoid those poles entirely.

The task of discretizing Eq. (6.33) is greatly simplified. We simply take

p→ pi,

q → qj,

q′′ → ql,

x→ xn, (6.34)
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and rewrite Eq. (6.33) as

ψ(pi, qj) =
1

E − p2
i /m− 3q2

j/4m

∑
l,n

wlq
2
l wnt(p, π1,jln;E − 3q2

j/4m)ψ(π2,jln, ql) . (6.35)

One of the difficulties of solving this equation is dealing with the off-grid values of p at which

ψ must be evaluated. We solve the problem with splines, interpolating ψ without actually

knowing the values of ψ. The splines we employ are derived very clear by Glöckle et al. [26].

Their function is such that

ψ(π2,jln, ql) ≈
∑
k

Sk(π2,jln)ψ(pk, ql).

Now, we have

ψ(pi, qj) =
1

E − p2
i /m− 3q2

j/4m

∑
l,n,k

wlq
2
l wnt(p, π1,jln;E − 3q2

j/4m)Sk(π2,jln)ψ(pk, ql) ,

and the summation over n can be carried out numerically, leaving

ψ(pi, qj) =
1

E − p2
i /m− 3q2

j/4m

∑
l,k

wlq
2
l Aijklψ(pk, ql) .

Though ψ is a function of two variables, we flatten this into a single vector, create indices

such that I = jN + i and J = lN + k, simplifying the problem to

ψI =
∑
J

KIJ(E)ψJ .

What we have reduced the problem to is a familiar eigenvalue problem where the determinant

of δIJ−KIJ(E) can be tuned to zero, providing the binding energies of the three-body states

we are looking for.
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6.3.2 Scattering

To further elaborate on the brief summary given in Section 3.2.5 over how we compute

three-body phase shifts, we will provide more details in this section.

We begin with

T |φ〉 = tP |φ〉+ tPG0T |φ〉 . (6.36)

Our 3-body basis will be represented by

|pqα〉 (6.37)

where α stands in for all of the relevant quantum numbers. Their normalization is such that

〈p′q′α′|pqα〉 =
δ(q − q′)
qq′

δ(p− p′)
pp′

δαα′ . (6.38)

Once we insert a few sets of states and project onto 〈pqα|, we arrive at

〈pqα|T |φ〉 = 〈pqα|tP |φ〉+∑
α′

∑
α′′

∫ ∞
0

dq′q′2
∫ 1

−1

dx
t̃α̃α̃′(p, π1, E − 3q2/4m)

πl
′

1

Gα′α′′(qq
′x)

1

E + iε− q2/m− q′2/m− qq′x/m

× 〈π2q
′α′′|T |φ〉
πl
′′

2

(6.39)

where

〈pqα|tP |φ〉 =
∑
α′

∫ 1

−1

dx t̃α̃α̃′(p, π1, E − 3q2/4m)
∑
α′′αd

Gα′α′′(q, q0, x)
ϕl′′(π2)

πl
′′

2

CmdmN
α′′ (6.40)

with

CmdmN
α′′ =

√
2λ+ 1

4π
C(λ

1

2
I, 0mN)C(1IJ,mdmN). (6.41)
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What we have now is Eq. (165) of [27]. We only study s-wave bosons in this thesis, so we

drop the α notation entirely. Eq. (6.39) simplifies to

〈pq|T |φ〉 = 〈pq|tP |φ〉+

∫ ∞
0

dq′q′2
∫ 1

−1

dx t(p, π1, E − 3q2/4m)

1

E + iε− q2/m− q′2/m− qq′x/m
〈π2q

′|T |φ〉
(6.42)

and (6.40) simplifies to

〈pq|tP |φ〉 =

∫ 1

−1

dx t(p, π1, E − 3q2/4m)ϕ(π2)

≈
∑
n

w(x)
n t(pi, π1(qj, q0, xn), E − 3q2

j/4m)ϕ(π2(qj, q0, xn))
(6.43)

There is a pole in t at the 2-body binding energy, E = −γ2/m. This is a problem because

as we integrate over q′, we are going to hit that pole as 〈pq|T |φ〉 depends on every 〈pq′|T |φ〉

(and consequently every t(p, π1, E − 3q′2/4m)). In order to subtract this pole, we expose it

explicitly with the substitutions

t(z) ≡ t̂(z)

z − εd
(6.44)

where εd ≡ −γ2/m.

The kernel term also benefits from a convenient definition (again from Glöckle)

〈pq|T |φ〉 ≡ 〈pq|T̂ |φ〉
E + iε− 3q2/4m− εd

. (6.45)

Substituting these definitions into (6.42) and multiplying the entire equation by (E −

3q2/4m− εd), we obtain

〈pq|T̂ |φ〉 = 〈pq|t̂P |φ〉+

∫ ∞
0

dq′q′2
∫ 1

−1

dx t(p, π1, E − 3q2/4m)

1

E + iε− q2/m− q′2/m− qq′x/m
〈π2q

′|T̂ |φ〉
E + iε− 3q′2/4m− εd

(6.46)

The driving term for (6.46) is simply (6.43) with t→ t̂.
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|φ〉 is the incoming state. More explicitly, |φ〉 = |ϕq0〉. For E = −γ2/m + 3q2
0/4m < 0,

we only have to deal with the on-shell pole which contributes to the q′ integration.

First, let’s simplify (6.46).

1

E + iε− 3q′2/4m− εd
→ 1

εd + 3q2
0/4m− 3q′2/4m− εd

=
1

(3/4m)(q2
0 − q′2)

=
1

(3/4m)(q0 + q′)(q0 − q′)

→ 1

(3/4m)(q0 + q′)(q0 − q′ + iε)

(6.47)

Now, (6.46) becomes

〈pq|T̂ |φ〉 = 〈pq|t̂P |φ〉+

∫ ∞
0

dq′q′2
∫ 1

−1

dx t(p, π1, εd + (3/4m)(q2
0 − q2))

1

εd + 3q2
0/4m− q2/m− q′2/m− qq′x/m

〈π2q
′|T̂ |φ〉

(3/4m)(q0 + q′)(q0 − q′ + iε)

= 〈pq|t̂P |φ〉+
4m

3

∫ ∞
0

dq′q′2
∫ 1

−1

dx t(p, π1, εd + (3/4m)(q2
0 − q2))

1

εd + 3q2
0/4m− q2/m− q′2/m− qq′x/m

〈π2q
′|T̂ |φ〉

(q0 + q′)(q0 − q′ + iε)

(6.48)

We interpolate T̂ with splines such that

〈π2q
′|T̂ |φ〉 ≈

∑
k

Sk(π2) 〈pkq′|T̂ |φ〉 (6.49)

Now, we have

〈pq|T̂ |φ〉 = 〈pq|t̂P |φ〉+
4m

3

∑
k

∫ ∞
0

dq′q′2
∫ 1

−1

dx t(p, π1, εd + (3/4m)(q2
0 − q2))

Sk(π2)

εd + 3q2
0/4m− q2/m− q′2/m− qq′x/m

〈pkq′|T̂ |φ〉
(q0 + q′)(q0 − q′ + iε)

= 〈pq|t̂P |φ〉+
∑
k

∫ ∞
0

dq′
∫ 1

−1

dx
K(p, q, x, pk, q

′) 〈pkq′|T̂ |φ〉
(q0 − q′)

(6.50)
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where

K(p, q, x, p′, q′) =
4m

3

q′2 t(p, π1, εd + (3/4m)(q2
0 − q2))

εd + 3q2
0/4m− q2/m− q′2/m− qq′x/m

Sk(π2)

q0 + q′
. (6.51)

Before we discretize things, we’ll express the pole subtraction of the q′ integration

explicitly. We have∫ ∞
0

dq′
K(p, q, x, pk, q

′)

q0 − q′ + iε
〈pkq′|T̂ |ϕ q0〉 =P

∫ ∞
0

dq′
K(p, q, x, pk, q

′)

q0 − q′
〈pkq′|T̂ |ϕ q0〉−

iπ

∫ ∞
0

dq′K(p, q, x, pk, q
′) 〈pkq′|T̂ |ϕ q0〉 δ(q′ − q0)

= P
∫ ∞

0

dq′
K(p, q, x, pk, q

′)

q0 − q′
〈pkq′|T̂ |ϕ q0〉−

iπK(p, q, x, pk, q0) 〈pkq0|T̂ |ϕ q0〉

(6.52)

To handle the principal value prescription numerically, we subtract the integrand at the pole

and add it back analytically. We end up with∫ ∞
0

dq′
K(p, q, x, pk, q

′)

q0 − q′ + iε
〈pkq′|T̂ |ϕ q0〉 ≈

∑
l

wl
K(p, q, x, pk, ql)

q0 − q′
〈pkql|T̂ |ϕ q0〉+

K(p, q, x, pk, q0)

[
log

(
q0

Λ− q0

)
− iπ −

∑
l′

w
(q)
l′

q0 − ql′

]
〈pkq0|T̂ |ϕ q0〉

(6.53)

The kernel has two expressions. The integration expression looks like

4m

3

w
(x)
n w

(q)
l q2

l tijln
εd + 3q2

0/4m− q2
j/m− q2

l /m− qqlx/m
Sjkln
q2

0 − q2
l

(6.54)
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where

x→ xn

(∫ 1

−1

dx ≈
∑
n

w(x)
n

)
p→ pi

q → qj

q′ → ql

t(pi, π1(qj, ql, xn), εd + (3/4m)(q2
0 − q2

j ))→ tijln

Sk(π2(qj, ql, xn))→ Sjkln.

(6.55)

The pole-subtraction term becomes

4m∆

3

q0

2

w
(x)
n tijlnSjkln

εd + 3q2
0/4m− q2

j/m− q2
0/m− qq0x/m

(6.56)

where

∆ = log

(
q0

Λ− q0

)
− iπ −

∑
l′

w
(q)
l′

q0 − ql′
. (6.57)

Physical observables require the scattering amplitude, given in Eq. (87) by Glöckle et

al. [27]

Mm′dm
′
NmdmN

(~q′, ~q0) ≡ −2

3
m(2π)2 〈φ′|U |φ〉 . (6.58)

For the case of s-wave bosons and considering only the elastic amplitude, we write

M(~q0, ~q0) ≡ −2

3
m(2π)2 〈φ|U |φ〉 . (6.59)

U is defined by Eq.(74) of [27]

U = PG−1
0 + PT + T4. (6.60)

We do not include a three-body force, so we only have

U = PG−1
0 + PT. (6.61)
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Acting on the incoming state |ϕq0〉 and projecting onto the same outgoing state 〈ϕq0|, we

get

〈ϕ q0|U |ϕ q0〉 = 〈ϕ q0|PG−1
0 |ϕ q0〉+ 〈ϕ q0|PT |ϕ q0〉 (6.62)

The first term on the right-hand side becomes∫ ∫
dpp2dqq2 〈ϕ q0|pq〉 〈pq|PG−1

0 |ϕ q0〉

=

∫ ∫ ∫ ∫
dpp2dqq2dp′p′2dq′q′2 〈ϕ q0|pq〉 〈pq|P |p′q′〉 〈p′q′|G−1

0 |ϕ q0〉

=

∫ ∫ ∫ ∫
dpp2dqq2dp′p′2dq′q′2ϕ(p)

δ(q0 − q)
qq0

〈pq|P |p′q′〉 (E − p′2/m− 3q′2/4m)ϕ(p′)
δ(q0 − q′)

qq0

=

∫ ∫
dpp2dp′p′2ϕ(p) 〈pq0|P |p′q0〉 (E − p′2/m− 3q2

0/4m)ϕ(p′)

=

∫ ∫
dpp2dp′p′2ϕ(p)

∫ 1

−1

dx
δ(p− π1)

pπ1

δ(p′ − π2)

pπ2

(E − p′2/m− 3q2
0/4m)ϕ(p′)

=

∫ 1

−1

dxϕ(π1)(E − π2
2/m− 3q2

0/4m)ϕ(π2).

(6.63)

Here, the total energy E = −γ2/m+ 3q2
0/4m, so we end up with

−1

m

∫ 1

−1

dxϕ(π
(0)
1 )(γ2 + π

(0)2
2 )ϕ(π

(0)
2 ) (6.64)

with π
(0)
1 =

√
1
4
q2

0 + q2
0 + q2

0x = q0

√
5
4

+ x = π
(0)
2 for the first term on the right-hand side of

(6.62). I have added the (0) superscript to distinguish from the later use of π1 and π2.
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Now, for the second term on the right-hand side of (6.62).∫ ∫
dpp2dqq2 〈ϕ q0|pq〉 〈pq|PT |ϕ q0〉

=

∫ ∫ ∫ ∫
dpp2dqq2dp′p′2dq′q′2 〈ϕ q0|pq〉 〈pq|P |p′q′〉 〈p′q′|T |ϕ q0〉

=

∫ ∫ ∫
dpp2dp′p′2dq′q′2ϕ(p) 〈pq0|P |p′q′〉 〈p′q′|T |ϕ q0〉

=

∫ ∫ ∫
dpp2dp′p′2dq′q′2ϕ(p)

∫ 1

−1

dx
δ(p− π1)

pπ1

δ(p′ − π2)

pπ2

〈p′q′|T |ϕ q0〉

=

∫ 1

−1

dx

∫
dq′q′2ϕ(π1) 〈π2q

′|T |ϕ q0〉

=

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)

〈π2q
′|T̂ |ϕ q0〉

E − 3q′2/4m− εd

=

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)

〈π2q
′|T̂ |ϕ q0〉

(3/4m)(q2
0 − q′2)

=
4m

3

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)

〈π2q
′|T̂ |ϕ q0〉

(q0 + q′)(q0 − q′)

→ 4m

3

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)

〈π2q
′|T̂ |ϕ q0〉

(q0 + q′)(q0 − q′ + iε)

=
4m

3

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)

〈π2q
′|T̂ |ϕ q0〉

(q0 + q′)(q0 − q′ + iε)

=
4m

3

∑
k

∫ 1

−1

dx

∫
dq′q′2ϕ(π1)S

(p)
k (π2)

〈pkq′|T̂ |ϕ q0〉
(q0 + q′)(q0 − q′ + iε)

=
4m

3

∑
k

∫ 1

−1

dx

[∫
dq′q′2ϕ(π1)S

(p)
k (π2)

〈pkq′|T̂ |ϕ q0〉
(q0 + q′)(q0 − q′)

+

q0

2
ϕ(π

(0)
1 )S

(p)
k (π

(0)
2 ) 〈pkq0|T̂ |ϕ q0〉∆

]

(6.65)

where

π1 =

√
1

4
q0 + q′2 + q0q′x

π2 =

√
q0 +

1

4
q′2 + q0q′x

∆ = log

(
q0

Λq − q0

)
− iπ −

∑
l′

wl′

q0 − ql′
.

(6.66)
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Once we have U , we can calculate the atom-dimer phase shift δ by the following.

Again, we are working in the partial wave basis. Explicitly, we calculate

〈ϕq0|U |ϕq0〉 (6.67)

which relates to the amplitude in Cartesian-momentum coordinates by

〈φ|U |φ〉 =
〈ϕq0|U |ϕq0〉

4π
. (6.68)

Now, (6.59) looks like

M(~q0, ~q0) ≡ −2

3
m(2π)2 〈ϕq0|U |ϕq0〉

4π
. (6.69)

M is the elastic scattering amplitude, so we relate it to the partial-wave phase shifts by

M =
∑
l

2l + 1

k cot δl − ik
Pl(cos θ). (6.70)

Only considering s-waves, we have

M =
1

k cot δ0 − ik

=⇒ 1

M
= k cot δ0 − ik

=⇒ k cot δ0 =
1

M
+ ik

cot δ0 =
1

Mk
+ i =

1 + iMk

Mk

tan δ0 =
Mk

1 + iMK

=⇒ δ0 = tan−1

(
Mk

1 + iMK

)
.

(6.71)

Now we have a relationship between the three-body T -matrix and the phase shift δ.
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A Local Regulator Sensitivity

To regulate the interaction

− C3
e−mπr

r3
, (72)

a general (local) regulator of the form

(1− e−(r/R)n1 )
n2
, (73)

can be used. Our earliest calculations using the semi-local regulation scheme used n1 = 3

and n2 = 1. However, we observed some unexpected cutoff dependence in the phase shifts as

shown in Fig. A.1. Simply increasing the n2 to 4 removes the dramatic changes in the phase

shift. We have also compared our local regulators with those used by others [14, 6]. In the

interest of consistency and to ensure we avoid unexpected cutoff dependence, we have used

a local regulator of the form n1 = 2 and n2 = 4 for the calculations carried out it in this

work. The unexpected cutoff dependence was observed exclusively when using semi-local

regulation.
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Figure A.1: Phase shifts at a center-of-mass energy of 1 MeV for three different regulators.
Per Eq. (73), the solid, blue line corresponds to n1 = 3 and n2 = 1. The dashed, yellow line
corresponds to n1 = 4 and n2 = 1. The dotted, green line corresponds to n1 = 2 and n2 = 4.
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