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ABSTRACT 
Candida albicans is an important cause of systemic infections in the immune 

compromised population. However, drug resistance and toxicity have put limits on 

antifungals efficacy. The C. albicans cell wall is considered a good therapeutic 

target due to its role in fungal pathogenicity. Thus, a potential method for improving 

antifungal drugs could be to enhance the detection of fungal cell wall antigens by 

host immune cells. Detection of C. albicans largely occurs through the receptor 

Dectin-1 that can recognize β [beta] (1,3)-glucan, an important component of 

fungal cell walls. However, a layer of glycosylated proteins masks the β (1,3)-

glucan, hiding it from immune detection. In order to better understand possible 

mechanisms of unmasking β (1,3)-glucan, we must develop a deeper 

comprehension of the mechanism behind unmasking. 

The phosphatidylserine (PS) synthase enzyme (Cho1) was reported to 

control β (1,3)-glucan exposure. In this dissertation, I utilized classical genetics 

and biochemical methods to identify the potential protein(s) involved in causing 

this phenotype. Several fungal cell wall associated signaling pathways are overly 

activated when CHO1 is disrupted, including GTPase Cdc42, a central regulator 

of cellular polarity and morphological development, and its regulated protein kinase 

Cek1. When Cek1 is activated independent of CHO1, it leads to β (1,3)-glucan 

exposure. To understand thoroughly how Cek1 and its associated pathway govern 

β (1,3)-glucan exposure, I further screened the upstream signaling protein(s) 

causing Cek1 over-activation. A novel signaling cascade was identified where the 

predicted GTPase activating protein (GAP) Lrg1 represses Cek1 activity by 

downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. The 

consequences to virulence for upregulation of Cek1 are that pathogenicity is 

diminished in the mouse model of systemic infection, and this correlates with 

increased cytokine responses from macrophages. Data from RNA-sequencing 

demonstrates that a number of cell wall associated genes are significantly up-

regulated transcriptionally when Cek1 is hyper-activated, which might be 

responsible for the cell wall exposure. Thus, we propose a model that Cek1 

hyperactivation causes β (1,3)-glucan exposure by upregulating cell wall proteins 
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and leads to a more robust immune detection in vivo, promoting more effective 

clearance.  

  



 vii 

TABLE OF CONTENTS 

CHAPTER I: Introduction ................................................................ 1 

Construction of the bi-layered C. albicans cell wall ........................................... 2 

Immune-recognition of individual cell wall components ..................................... 9 

β (1,3)-glucan unmasking can be induced by manipulation of cell wall signaling 

pathways ......................................................................................................... 15 

Summary ......................................................................................................... 26 

Reference ........................................................................................................ 27 

CHAPTER II: Unmasking of Candida albicans β (1,3)-glucan Is 
Promoted by Activation of the Cek1 Pathway ............................. 36 

Abstract ........................................................................................................... 38 

Introduction ..................................................................................................... 39 

Methods .......................................................................................................... 42 

Results ............................................................................................................ 49 

Discussion ....................................................................................................... 63 

Conclusions ..................................................................................................... 69 

References ...................................................................................................... 70 

Appendix ......................................................................................................... 76 

CHAPTER III: Hyperactivation of Cek1 Attenuates Virulence in 
Candida albicans ........................................................................... 87 

Abstract ........................................................................................................... 89 

Introduction ..................................................................................................... 90 

Methods .......................................................................................................... 92 

Results ............................................................................................................ 98 

Discussion ..................................................................................................... 112 



 viii 

Reference ...................................................................................................... 116 

Appendix ....................................................................................................... 122 

CHAPTER IV: Genetic Analysis of Genes Expressed during β 
(1,3)-glucan Exposure Induced by Cek1 Hyperactivation ........ 131 

Abstract ......................................................................................................... 133 

Introduction ................................................................................................... 134 

Methods ........................................................................................................ 135 

Results .......................................................................................................... 138 

Discussion ..................................................................................................... 148 

Reference ...................................................................................................... 152 

Appendix ....................................................................................................... 155 

CHAPTER V: Conclusion and Future Direction ........................ 165 

Conclusion .................................................................................................... 166 

Future direction ............................................................................................. 167 

Reference ...................................................................................................... 174 

VITA .............................................................................................. 176 

 



 ix 

LIST OF TABLES 
Table S.2. 1. C. albicans strains used in this study ............................................. 76 

Table S.2. 2. Plasmids used in this study ........................................................... 77 

Table S.2. 3. Primers used in this study .............................................................. 78 

Table S.3. 1. C. albicans strains used in this study ........................................... 122 

Table S.3. 2. Plasmids used in this study ......................................................... 123 

Table S.3. 3. Primers used in this study ............................................................ 124 

Table 4. 1: Commonly regulated genes induced by STE11ΔN467–doxycycline vs. 

Wild-type± and STE11ΔN46 +doxycycline ........................................................... 147 

Table S.4. 1. C. albicans strains used in this study ........................................... 155 

Table S.4. 2. Genes that were differentially regulated in STE11ΔN467–doxycycline

 .......................................................................................................................... 156 

 

  



 x 

LIST OF FIGURES  
Figure 1. 1. The structure of C. albicans cell wall.................................................. 4 

Figure 1. 2. A model of N- and O-glycosylation of C. albicans cell wall proteins 

biosynthsis. ........................................................................................................... 8 

Figure 1. 3. C. albicans β (1,3)-glucan is an important PAMP for detecting fungi.

 ............................................................................................................................ 12 

Figure 1. 4. The MAPKs pathways in C. albicans that are involved in cell wall 

construction. ....................................................................................................... 17 

Figure 2. 1. The Cek1 and Mkc1 MAP kinase signaling cascades in C. albicans 

are involved in cell wall biogenesis. .................................................................... 41 

Figure 2. 2. Cek1 and Mkc1 MAPKs exhibit increased activation in cho1Δ/Δ yeast 

cells compared to wild-type. ................................................................................ 51 

Figure 2. 3. Hyperactive Ste11 (STE11ΔN467) causes significant increases in β 

(1,3)-glucan exposure and TNF-α secretion. ...................................................... 54 

Figure 2. 4. Cdc42 activity is upregulated in cho1Δ/Δ compared to wild-type. .... 57 

Figure 2. 5. Cho1 is essential for GFP-Cdc42 polarization at the plasma 

membrane. .......................................................................................................... 60 

Figure 2. 6 Deletion of MKC1 in cho1Δ/Δ does not diminish β (1,3)-glucan 

exposure. ............................................................................................................ 62 

Figure 2. 7. Active GTP-Rho1 is de-localized in cho1Δ/Δ. .................................. 64 

Figure 2. 8. Hyper-activated Rho1 causes β (1,3)-glucan exposure. .................. 65 

Figure S.2. 1. STE11ΔN467 exhibited significantly increased β (1,3)-glucan exposure 

compared to wild-type cells. ................................................................................ 81 

Figure S.2. 2. Growth curves were measured to determine the growth rate of 

strains in YPD vs YPM. ....................................................................................... 82 

Figure S.2. 3. The exposed β (1,3)-glucan in STE11ΔN467 YPM cells was not 

restricted to bud scars. ........................................................................................ 83 

Figure S.2. 4. CDC42G12V increases β (1,3)-glucan exposure, but also reduces the 

viable cell population. .......................................................................................... 84 

Figure S.2. 5. MKC1 was knocked out in C. albicans via CRISPR-Cas9. ........... 85 



 xi 

Figure S.2. 6. Deleting one PKC1 allele in cho1Δ/Δ did not rescue β (1,3)-glucan 

exposure. ............................................................................................................ 86 

Figure 3. 1. Lrg1 represses β (1,3)-glucan unmasking in C. albicans. ................ 99 

Figure 3. 2 .The Cek1p MAPK is hyper-phosphorylated in lrg1Δ/Δ cells compared 

to wild-type ........................................................................................................ 101 

Figure 3. 3. Lrg1 inhibits the activity of GTPases Cdc42 and Ras1, but not Rho1.

 .......................................................................................................................... 103 

Figure 3. 4. Disruption of LRG1 causes Cek1 over-activation through Ste11 

MAPKKK ........................................................................................................... 106 

Figure 3. 5. LRG1 disruption significantly induces TNF-α secretion. ................ 109 

Figure 3. 6. Activated Cek1 leads to attenuated fungal virulence in the mouse 

model of systemic infection. .............................................................................. 110 

Figure 3. 7. Ste11 hyper-activation causes decreased kidney fungal burden in the 

mouse model of systemic infection. .................................................................. 111 

Figure 3. 8. A model shows that Lrg1 acts as a molecular switch regulating Cek1 

activity negatively via the GTPase Cdc42. ........................................................ 114 

Figure S.3. 1. Loss of Lrg1 decreases GTPase Rac1 activity. .......................... 126 

Figure S.3. 2. The hyperactive Ras1G13V does not display Cek1 phosphorylation.

 .......................................................................................................................... 127 

Figure S.3. 3. Cek1 MAPK is hyper-phosphorylated when the PtetOFF-STE11ΔN467 

construct is induced. ......................................................................................... 128 

Figure S.3. 4. An overnight culture of PtetOFF-STE11ΔN467 exhibits increased β (1,3)-

glucan exposure when induced. ....................................................................... 129 

Figure S.3. 5. The growth rate of different Candida strains was measured to 

determine if hyperactivation of Cek1 MAPK affects cellular growth. ................. 130 

Figure 4. 1. The PtetOFF -STE11ΔN467 strain exhibits β (1,3)-glucan exposure in a 

time-dependent manner in the absence of doxycycline. ................................... 140 

Figure 4. 2. PCA plot displays the clustering of samples within each group. .... 141 

Figure 4. 3. Housekeeping genes expression was similar among different Candida 

strains. .............................................................................................................. 144 



 xii 

Figure 4. 4. Differentially expressed genes in STE11ΔN467-inducing condition are 

enriched for cell wall repair genes..................................................................... 145 

Figure 4. 5. Caspofungin treatment over-activates the Cek1 MAPK. ................ 149 

 

 

 

 

 

 

 

 



 1 

CHAPTER I: Introduction 
  



 2 

Candida species are the most common human fungal pathogens and are also 

ranked as the fourth-greatest cause of hospital-acquired bloodstream infections, 

with up to 40% mortality in epidemiological studies [1, 2]. Candida species colonize 

the human gastrointestinal tract and skin asymptomatically in immuno-competent 

individuals. Under certain condition, however, Candida species can cause 

mucosal and systemic infections. Risk factors include central venous catheter 

implants, major surgeries such as organ transplants, neutropenia, cancer therapy, 

and HIV infection. Current anti-fungal drugs include three major classes –azoles, 

polyenes, and echinocandins, and each of them has its specific drug target [3, 4]. 

However, drug toxicity and drug resistance have limited the efficacy of current anti-

fungal medicine. 

The majority of life-threatening fungal infections are opportunistic in nature, 

and a novel approach that may be necessary to complement current antifungals 

will be to simultaneously improve host immune efficacy. This can include cytokine 

therapy and other adjunctive therapy approaches [5]. A related strategy to improve 

adjunctive therapy will be to make the fungi more recognizable to the host immune 

effector cells. A better understanding of the interaction of Candida species with 

their cognate host receptors, particularly of how different cell wall components are 

recognized by their receptors on immune cells, will provide new insights that will 

facilitate such an approach. It will also improve our understanding of the process 

of fungal pathogenesis.  

The immune recognition of fungal pathogens is the first step in determining 

the host response to fungal infection, which also plays an important role in shaping 

fungal colonization and the subsequent induction of disease. Cell wall composition 

and architecture are critical in modulating host immune responses. This review will 

summarize various conditions leading to the modification of cell wall structure, and 

their immune-modulatory significance.  

 

Construction of the bi-layered C. albicans cell wall  
The C. albicans cell wall is a firm, but dynamic structure which is essential for 

fungal viability since it serves as a tough, but malleable barrier that sustains cell 
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shape and prevents osmotic lysis. It is also important for fungal virulence because 

it is the interface between the fungus and the host, and the architecture of its 

antigenic polysaccharides, lipids, and proteins presents virulence factors and 

dampens host responses. As a result, some cell wall impaired mutants (e.g. 

cho1Δ/Δ, sun41Δ/Δ, kre5Δ/Δ, phr1Δ/Δ) exhibit avirulence in the mouse systemic 

infection model [6-9]. When exposed to the immune system, cell wall components 

modulate host immune recognition in a variety of ways [10]. For instance, Dectin-

1, a C-type signaling lectin, located at the surface of myeloid-derivative immune 

cells, specifically recognizes the immunogenic polysaccharide β (1,3)-glucan and 

initiates pro-inflammatory antifungal responses including TNF-α secretion [11]. 

Chitin, a type of polysaccharide composed of N-acetylglucosamine subunit, is 

shown to have immune-inhibitory effects in a concentration- and size- dependent 

manner [10]. However, the cell wall is a multi-layered structure that minimizes the 

exposure of some of these components to the immune system. The C. albicans 

cell wall is composed of an outer layer of N- and O-linked glycosylated proteins 

with 80%-90% mannose content [12], as well as an inner layer of the core 

polysaccharides β (1,3)-glucan, β (1,6)-glucan and chitin. Each layer serves 

different roles in fungal physiology and virulence and have different components 

(Figure 1. 1).  
 

Inner layers 
β-glucans 
β-glucans are the main cell wall components in C. albicans and account for about 

60% by weight of the cell wall [8]. β (1,3)-glucan is present in the cell walls of 

plants, bacteria and fungi. It is a crucial cell wall structural polysaccharide residing 

in the inner layer of the cell wall and represents about 40% of cell wall weight [13]. 

This polysaccharide is synthesized by a plasma membrane-bound glucan 

synthase complex and uses UDP-glucose as a substrate to create a linear polymer 

of glucose covalently linked at 1-, 3- position through glycosidic bonds. The 

resultant β (1,3)-glucan is extruded into the periplasmic space where it is released 

from membrane and covalently attached to other cell wall components by various 
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Figure 1. 1. The structure of C. albicans cell wall.  
C. albicans has layered cell wall structure, where the inner layer is comprised of chitin and β-glucan, 

and the outer layer is made of glycosylated proteins. Chitin is synthesized by chitin synthases using 

substrate UDP-GlcNAc, and β (1,3)-glucan is synthesized by its synthase and substrate UDP-

Glucose. Glycosylated proteins (glyco-proteins) are modified by N- and O-mannans with 80%-90% 

mannose content  
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trans-glycosidase enzymes in the periplasmic space and/or cell wall [14] (Figure 

1.1). The C. albicans glucan synthase complex include two subunits: a catalytic 

subunit Fks1 and a regulatory subunit Rho1 [15]. Rho1 and Fks1 are essential in 

C. albicans [16], and this enzyme complex is the target of the echinocandin anti-

fungal drug class, which acts by inhibiting β (1,3)-glucan synthesis. Fks1 encodes 

a 210-kDa transmembrane protein, and is important for echinocandin resistance, 

as the mechanism involves point mutations clustered in two hotspot regions within 

this protein, encoding residues 641-649 and 1345 to 1365, respectively [4, 17]. 

The C. albicans genome harbors two other FKS homologs FKS2 and FKS3, which 

also play roles in echinocandin resistance. Cells lacking FKS2 or FKS3 contain 

increased amount of glucan and are more resistant to cell wall-damaging agents, 

suggesting that Fks1 expression is negatively regulated by the other two homologs 

[18].  

The small GTPase Rho1 was first identified as a regulatory subunit of the 

β-glucan synthase complex in S. cerevisiae [19]. In this organism, temperature-

sensitive mutants in ScRHO1 display thermolabile glucan synthase activities, 

which could be restored by adding purified wild-type ScRho1 protein along with 

GTP [19]. ScRho1 can be co-purified with the catalytic subunit Fks1, and is co-

localized to cell wall remodeling sites, i.e., to the bud tip during growth and to 

septum during cytokinesis [19]. CaRho1 was later identified to act in the same 

manner as ScRho1, being the regulatory subunit of glucan synthase [20]. This is 

also reflected in the sequence similarity between these two species, where 

CaRho1 shares 82.9% identity to ScRho1 in the amino acid level, and CaRHO1 

can rescue the glucan synthase activity in a Scrho1-deficient mutant. 

 β (1,6)-glucan is another critical cell wall component and plays an important 

role in stabilizing fungal cell wall integrity since it acts as linker for the attachment 

of chitin and mannan proteins to β (1,3)-glucan [8]. It accounts for ~20% of the cell 

wall weight in yeast form cells and increases to about 27% in hyphae; almost 

double the amount in S. cerevisiae [8]. The biosynthesis of β (1,6)-glucan is not 

fully understood at the biochemical level, while genetic work reveals that several 

genes appear to be involved in this process, including the KRE family and BIG1. 
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Kre5 and Kre9 are the well-studied members in this family, and they play roles in 

morphogenesis and fungal virulence. Unlike ScKRE5, deletion of both alleles of 

CaKRE5 does not affect viability, but the Cakre5Δ/Δ mutation does cause aberrant 

morphology including cell aggregation and enlarged vacuoles. Moreover, the 

individual null mutants of kre5Δ/Δ, kre9Δ/Δ, or big1Δ/Δ display a great reduction 

of β (1,6)-glucan, suggesting they are all required for the polymer’s biosynthesis 

[8, 21, 22]. It is also reported that the remaining β (1,6)-glucan polymer displays 

characteristic structural features when KRE5 is disrupted [8]. This suggests that 

Kre5 might play an indirect role in polysaccharide synthesis.  

 
Chitin  
Chitin is an essential polysaccharide in most fungal cell walls [23], and this polymer 

normally resides at the innermost layer, with a content of less than 10% of cell wall 

weight [23]. Chitin is a homopolymer of β (1,4)-linked N-acetylglucosamine 

(GlcNAc) [24]. A family of four chitin synthases encoded by CHS1, CHS2, CHS3 

and CHS8 are responsible for chitin biosynthesis with uridine diphosphate (UDP)-

GlcNAc as its substrate (Figure 1. 1). Chs1 is an essential chitin synthase that is 

required for septa formation, cell wall integrity and virulence [25]. Loss of CHS1 

prevents the daughter cells from separating from the parents, and therefore forms 

a chain of daughter cells with continuous constrictions but no septa [25]. Chs2 

preferentially expresses in hyphal cells, and disruption of CHS2 decreases chitin 

by about 40% in hyphal cells compared to the parental strain. The CHS2 null 

mutant is also prototrophic and does not exhibit attenuated virulence [26]. Chs3 is 

not required for growth, germ-tube formation, septation, but is essential for overall 

chitin synthesis, bud scar formation, virulence and stress responses [27-29]. Chs8 

is a non-essential chitin synthase in C. albicans, reflected by normal cell growth, 

morphologies and chitin content in the homozygous knockout mutant [30]. 

However, individual disruption of CHS2 and CHS8 increases the calcofluor white 

sensitivity and correlates with increased glucan content and decreased mannan 

content [30]. Two chitin microfibril architectures have been reported: long- and 

short- chitin fibrils, and they are primarily located at the septa and lateral cell walls, 
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respectively [31]. Each chitin synthase plays an individual role in synthesizing 

differing microfibril structures at specific locations in the cell wall [24]. Chitin can 

also be remodeled through the actions of four chitinases (Cht1-4), which cleave 

the glycosidic bonds in chitin, therefore the resultant short fibril can be better 

embedded in the cell wall. 

 

Outer layer  
The outer layer of the cell wall consists of highly glycosylated mannoproteins that 

are modified by O-linked and N-linked mannosylation and phosphomannosylation 

[23] (Figure 1. 2). The glycoproteins serve a variety of functions, including 

adhesion, morphogenesis and biofilm formation. The protein O-

mannosytransferase (Pmt) family of enzymes catalyze the first step of O-

mannosylation on secretory proteins at specific serine or threonine residues during 

transit through the endoplasmic reticulum (ER), and further mannose residues can 

be added by Mnt1/2 family proteins in the Golgi [32]. Five Pmt isoforms (Pmt1-5) 

have been identified in C. albicans, where Pmt1, Pmt2 and Pmt4 are the major 

enzymes of O-mannosyl transferase, and each of them has different expression 

profiles to counteract cell wall stress. For instance, when cells are treated with the 

N-glycosylation inhibitor tunicamycin, Pmt1 expression is de-repressed, whereas 

the other two are inhibited compared to non-stressed conditions, suggesting that 

PMT isoforms play distinct roles in Candida cells for better adaptation to cell wall 

insults [33].  

The N-glycosylation processes occur as proteins cross through the ER [34]. 

The N-mannan precursor is attached to asparagines at the sequence N-X-S/T, 

where X is any amino acid, and the sugar core is further processed in the ER by 

glycosidases, resulting in a mature yet shorter N-mannan core. As proteins pass 

through the Golgi, a single mannose is attached to the core by the α (1,6)-

mannosyl transferase Och1, and further elaborated with α (1,6)-mannose by what 

is believed to be two complexes consisting of M-Pol I (Mnn9 and Van1), and then 

M Pol II (Mnn9, Mnn10, Mnn11, Anp1, and Hoc1), respectively, to form the linear 

α (1,6)-mannan backbone [35]. The branched chains are built on this backbone  
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Figure 1. 2. A model of N- and O-glycosylation of C. albicans cell wall proteins.  
N-glycosylation initiates at the ER, where the N-mannan is attached to asparagines at the sequence N-X-S/T. When the protein passes 

through the Golgi, a single mannose is attached to the core by Och1, and further elaborated with α (1,6)-mannose by M-Pol I and then M 

Pol II complex to form the linear α (1,6)-mannan backbone. The branched chains consist of α (1,2)- residues that are added by α (1,2)-

mannosyl transferases Mnt4 and Mnt5, Mnn2 family, and Mnn5. β (1,2)-mannan and α (1,3)-mannose are found to cap the branched chain 

by Bmt family and transferase Mnn1, respectively. The Pmt family enzymes catalyze the first step of O-mannosylation at specific serine or 

threonine residues and mannose residues are further added by Mnt1/2 family proteins in the Golgi. Phosphomannan is attached to the outer 

chain via a phosphodiester bond through transferase Mnn4 and family members, and capped with β (1,2)-mannan by Bmt family.
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and consist of α (1,2)-residues that are added by α (1,2)-mannosyl transferases 

Mnt4 and Mnt5, Mnn2 family, and Mnn5. In C. albicans, β (1,2)-mannan is found 

to cap the outer chain and is added by β-mannosyl transferases (Bmt1 and Bmt3) 

and alternatively, α (1,3)-mannose is added by transferases like Mnn1 [35, 36]. 

Phosphomannan can also be attached to the outer chain via a phosphodiester 

bond through transferase Mnn4 and family members, and capped with β (1,2)-

mannan by Bmt2, Bmt3 and Bmt4 [32].  

Most of these proteins are glycosylphosphatidylinositol (GPI) anchored, and 

GPI-anchored proteins are found ubiquitously across fungi species, and their 

functions range from enzymatic to antigenic and adhesion [23]. They are linked at 

the C-terminus through a phosphodiester bond to phosphoethanolamine which is 

attached to a tri-mannosyl-glucosamine core (Man3-GlcN) that is bound to 

phosphatidylinostol (PI) in the membrane. Release of the GPI remnant is 

accomplished by hydrolysis of the mannose-GlcN bond, and this carbohydrate 

remnant is covalently linked to β (1,6)-glucan in the cell wall [23, 37-39]. 

 

Immune-recognition of individual cell wall components 
The first step in initiation of an immune response to Candida species is the 

recognition of fungal pathogens through pattern-recognition receptors (PRRs). 

This process involves the detection of conserved pathogen-associated molecular 

patterns (PAMPs) by the cognate PRRs, including C-type lectin receptors (CLRs), 

Toll-like receptors (TLR), and Galectin-3. The distinct structures of various 

polysaccharides within the Candida cell wall represent conserved PAMPs and are 

further recognized by the corresponding PRRs during the development of anti-

fungal immune responses.  

 

β (1,3)-glucan is an important PAMP for detecting fungi 
The myeloid-expressed receptor Dectin-1 plays a major role in anti-fungal innate 

immune responses [40]. It belongs to the C-type signaling lectin family, and 

specifically recognizes β (1,3)-glucan-containing particles by its single extracellular 

carbohydrate-recognition-domain (CRD). Upon recognition of β (1,3)-glucan by 
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CRD, Dectin-1 responds through its tyrosine-based activation motif in the 

cytoplasmic tail [41, 42], which in turn triggers pro-inflammatory responses 

including phagocytosis of the fungal pathogen and induces cytokine secretion for 

fungal clearance [43]. Leukocytes derived from Dectin-1-deficient mice are unable 

to recognize fungal particles unless opsonized with serum and display impaired 

immune responses toward fungal pathogens, including reduced recruitment of 

immune cells and decreased production of pro-inflammatory cytokines. The 

Dectin-1-deficient mice are therefore susceptible to fungal infection and exhibit 

significantly enhanced systemic fungal dissemination and reduced survival rates 

when infected with some strains of C. albicans [43]. Leukocytes isolated from wild-

type mice are more capable of killing Candida cells with exposed β (1,3)-glucan by 

producing increased levels of pro-inflammatory cytokines compared to that of 

Dectin-1-deficient mice [44]. In contrast, specific strains of C. albicans did not show 

differences in virulence when infecting Dectin-1-/- mice [45], and there was a 

correlation between increased chitin levels and decreased dependence on Dectin-

1. This suggests that chitin levels can influence the relationship between exposed 

β (1,3)-glucan and Dectin-1 in the immune response to C. albicans. However, even 

in strains that are more resistant to Dectin-1 in their wild-type state, if they are 

treated with caspofungin, which exposes β (1,3)-glucan and increases chitin, 

Dectin-1 is required for clearance by the drug [45]. This suggests that β (1,3)-

glucan exposure to Dectin-1 plays an important role in clearance in response to 

caspofungin.   

While Dectin-1 acts as the major receptor for β (1,3)-glucan recognition, 

several other receptors mediate host immune responses to β (1,3)-glucan-

containing particles. TLR2 receptors synergize with Dectin-1 signaling in 

responses to zymosan, a β (1,3)-glucan preparation from yeast cell wall, by 

increasing pro-inflammatory cytokines production in vitro, in spite of the fact that 

TLR2 alone does not directly recognize zymosan nor activate immune responses 

sufficiently when stimulated by zymosan [42]. In neutrophils, phagocytosis of 

zymosan-containing particles is promoted by Dectin-1 in the absence of serum, 

but in the presence of serum it is independent [46]. Complement receptor 3 (CR3) 
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is also a receptor of β (1,3)-glucan on neutrophils. Neutrophils exhibit reduced 

phagocytosis of zymosan when derived from the patients deficient in CR3, and 

these patients have higher susceptibility to fungal infections [47].   

 

Fungi can mask β (1,3)-glucan from immune surveillance  
Although fungal cells can induce host inflammatory responses by way of β (1,3)-

glucan detection, it is not surprising that fungal pathogens have evolved 

mechanisms for immune avoidance by concealing β (1,3)-glucan in various ways 

[23]. In Histoplasma capsulatum, α-glucan and the glycosyl-hydrolyase Eng1 are 

important for minimizing β-glucan exposure [48]. Alpha-glucan functions by 

concealing β-glucan, while Eng1 hydrolyzes β-(1,3)-glycosyl bonds, and therefore 

removes exposed β-glucans [49]. Aspergillus fumigatus Uge3 regulates the 

biosynthesis of galactosaminogalactan, which masks hyphal β-glucan from 

immune detection [50]. In C. albicans, β (1,3)-glucan is buried underneath the outer 

layer of glycosylated proteins in a process referred to as masking [23]. During 

infection, unmasking can occur in response to the host environment (Figure 1. 3). 

Wheeler et al. described a time-course of β (1,3)-glucan exposure during 

disseminated infection of C. albicans in a mouse model [51]. The polymer is 

masked by the outer layer of glycoprotein at the beginning of infection and 

becomes exposed after several days [51]. The percentage of cells with β (1,3)-

glucan exposed increases from about 20% (early infection, 16 hours post-infection) 

to 80% (late infection, 7 days post-infection) [51]. The exact mechanism by which 

unmasking occurs is not fully understood, but it has been observed that when C. 

albicans is exposed to neutrophils in vitro, they can damage cell wall and cause β 

(1,3)-glucan unmasking. Furthermore, caspofungin pretreatment causes 

significantly higher levels of β (1,3)-glucan exposure in C. albicans during systemic 

infection compared to the non-treated fungal cells. This drug also displays a 

filament-bias for unmasking [51]. The mechanism by which filaments are more 

readily unmasked is unknown. However, Lowman et al. reported that C. albicans 

hyphal glucan exhibited a novel glucan structure, where hyphal glucan has a 

unique cyclical structure and an unexpected 2,3 linkage [52]. It has also been
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Figure 1. 3. C. albicans β (1,3)-glucan is an important PAMP for detecting fungi.  
Under certain circumstances, β (1,3)-glucan is exposed at cell surface, and this exposure can be 

detected by its cognate receptors Dectin-1 on immune cells (macrophages and neutrophils) to 

stimulate pro-inflammatory immune responses. Chitin is recognized by the Mannose Receptor and 

further initiates anti-inflammatory responses.  
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observed that hyphal glucan is more immunogenic than yeast glucan and 

stimulates higher levels of pro-inflammatory cytokine production from human 

peripheral blood mononuclear cells (PBMCs) and macrophages by a Dectin-1 

dependent mechanism [52]. This finding provides evidence that the glucan 

architecture can influence how innate immune cells discriminate between the yeast 

form and hyphal cells of C. albicans.  

 

Impacts of β (1,3)-glucan exposure on virulence  
β (1,3)-glucan is naturally present in the cell wall of bacteria, fungi and plant, 

whereas it differs in biomass, structure, solubility and branching structure 

depending on the source. This polymer can be used as a fiber supplement, 

cosmetic products or medical uses etc. [53]. A large body of work on this 

polysaccharide is driven by the immunomodulatory effect it has in animals [13, 54]. 

Particularly in the medical mycology field, the significance of understanding β (1,3)-

glucan recognition by Dectin-1 during fungal commensalism and pathogenesis has 

been appreciated in gastrointestinal (GI) tract colonization model and a systemic 

infection model [43, 54, 55]. The human GI tract contains a large variety of 

microbes and the most frequently isolated fungi are Candida species. However, 

the factors impacting fungal cells colonization in vivo have not been thoroughly 

defined yet. Sem et al. reports that the cell wall β (1,3)-glucan exposure trait, but 

not total β (1,3)-glucan level nor other cell wall component levels, critically 

determines the ability of Candida species colonizing the GI tract [55]. Several 

mutants including the chs3Δ/Δ mutant defective in chitin biosynthesis, or the 

mnt1Δ/Δmnt2Δ/Δ double mutant defective in O-mannosylation surprisingly 

colonize in mouse GI tract well, although they individually display cell wall 

dysfunction. There is no association between in vivo fitness and the ability to grow 

under a variety of stressful environments, which the microbes normally encounter 

within the host, including organic acid, ox bile, bile salt, low pH, high reactive 

oxygen species (ROS), high NO. Instead, the fungal cell wall architecture plays an 

essential role in shaping the in vivo fitness, and this trend is also seen in different 

Candida species, including C. glabrata, C. tropicalis, and C. dubliniensis. This 
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highlights the significance of the dynamics of β (1,3)-glucan structure in shaping 

Candida cells as GI commensals or pathogens. 
Altogether, considering the crucial immunobiological relevance of β (1,3)-

glucan exposure and the mechanisms used by many pathogens to mask it, a new 

strategy for drug design may be to make fungal pathogens more visible and 

susceptible to the host immune attack by exposing β (1,3)-glucan. Goals should 

be set to identify signaling pathways that cause β (1,3)-glucan unmasking as these 

may serve as targets for novel antifungal drugs to improve adjunctive therapy.   

 

Chitin modulates inflammation based on size and dosage   
Chitin plays an important role in modulating pro- and anti-inflammatory immune 

responses in a concentration- and size-dependent manner. Low concentrations 

(<10 µg/ml) induce anti-inflammatory cytokine production, including IL-10, while 

high chitin concentrations (>100 µg/ml) strongly induce TNF-α secretion via 

Dectin-1 and TLR-2 receptors [56, 57]. Large chitin particles (>70 µm) are 

immunologically-inert, whilst intermediate sized chitins (40-70 µm) induce pro-

inflammatory cytokine production at higher dosages [57]. Small chitin particles 

(<10 µm) modulate immune responses based on concentration [56, 57]. The 

majority of chitin particles derived from C. albicans are small in size (between 1-

10 µm). Fungal chitin particles in this organism are recognized via a mannose 

receptor located on the membrane of immune cells, and chitin further induces anti-

inflammatory responses via intracellular NOD2- and TLR9- signaling [56] (Figure 

1. 3). As mentioned above increased chitin levels seems to correlate with 

decreased Dectin-1 dependence for clearance in mice in C. albicans [45]. 

Conversely, however, increased chitin exposure in response to caspofungin or 

some mutations, increases Dectin-1 dependent immune responses in vitro [45, 51, 

58]. Thus, the role of chitin levels in modulating immunity seems to be context 

dependent and needs further study.     
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Glycosylated protein recognition 
Glycosylation of cell wall proteins is critical in the immune-modulation during fungal 

infection. N-glycan is found to play a dominant role in inducing epithelial immunity 

in vitro [59]. Due to the sophisticated biochemical makeup of mannan layer, several 

PRRs are involved in the immune recognition. For instance, Mannose receptor 

primarily detects N-mannan and TLR-4 targets O-mannan, while Dectin-2 and 

Galectin-3 participate in α-mannan and β-mannan recognition respectively [59, 

60]. However, immune recognition of glycosylated proteins is not relevant for this 

study, but has been extensively studied/reviewed in [34, 36, 60-62] 

 

β (1,3)-glucan unmasking can be induced by manipulation of cell 
wall signaling pathways  
The process of cell wall biogenesis and remodeling is regulated through complex 

signaling pathways including several MAP kinase (MAPK) cascades. The MAPK 

pathways are well-conserved signaling cascades in eukaryotes, which are 

essential for coping with a wide range of stimuli, including osmotic stress, oxidative 

stress, cell wall damage, and changes in glycosylation [11, 63-66]. A conserved 

module of three kinases comprises the MAPK signaling cascade: the MAP kinase 

kinase kinase (MAPKKK), the MAP kinase kinase (MAPKK) and the MAP kinase 

(MAPK). After an upstream signal phosphorylates (activates) the MAPKKK, it in 

turn phosphorylates and activates the MAPKK, followed by MAPK phosphorylation 

and activation. The activated MAPK further phosphorylates downstream 

transcription factors to initiate gene expression for better adaption to the 

environment [66]. Three major cell wall MAPK pathways have been discovered in 

fungal pathogens, and they each play specific roles in sustaining cell wall 

architecture.   
 

Central role of Cek1 activity in controlling β (1,3)-glucan masking 
Among these MAPK pathways, Ste11-Hst7-Cek1, comprising the Cek1 MAPK 

cascade, serves pivotal functions in maintaining sophisticated cell wall structure in 

equilibrium, including masking β (1,3)-glucan from immune detection, thus 
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sustaining cell wall glycostructures [33, 64, 67] (Figure 1. 4). In this pathway, 

activated Cek1 phosphorylates downstream transcription factors including Cph1 

and Ace2 to initiate compensatory transcriptional activities. The activation of Cph1 

further stimulates the upstream Cek1 pathway by a positive feedback mechanism 

that provides transcription of higher levels of the MAP kinase [68]. Cek1 can be 

degraded by the proteasome, and is found to be a short-lived protein, as revealed 

by quick degradation to 25% of the starting levels 30mins after being treated with 

the protein synthesis inhibitor nourseothricin [69]. 

Cek1 activity is regulated tightly by multiple stimuli in C. albicans. Several 

conditions induce Cek1 phosphorylation, including disruption of 

phosphatidylserine synthase Cho1 [70], growth resumption from the overnight 

culture to fresh media [69], being treated with human salivary fungicidal histatin 5 

(Hst5) protein which protects the oral cavity from oropharyngeal candidiasis [71], 

hyperactivation of upstream GTPases Cdc42 and Rho1 [70], anti-fungal drug 

caspofungin treatment [65], cleavage of the extracellular domain of signaling mucin 

Msb2 [72], and activation of filamentous growth [73]. The quorum sensing 

molecule farnesol, in contrast, is found to inhibit Cek1 phosphorylation, mediated 

by the transmembrane adaptor protein Sho1 [69]. Besides sustaining cell wall 

structure, activated Cek1 plays a broad role in establishing fungal infections. Cek1 

is involved in the yeast-to-hyphal morphogenesis, a critical step to initiate 

pathogenicity of C. albicans. Loss of CEK1 impairs morphogenesis on certain 

agar-invasive hyphal growth media, such as Lee’s medium with mannitol as a 

carbon source instead of glucose and SLAD medium (low nitrogen) [73]. Although 

10% serum, a potent inducer for morphogenesis, induces morphologically normal 

hyphae in a cek1Δ/Δ mutant, the growth rate of mycelial colonies of the mutant is 

affected [73]. Cek1 also controls the virulence in the mouse disseminated infection 

model and the mouse mastitis model [73, 74]. Furthermore, Cek1 is involved in 

switching of regular white yeast cells to the mating-competent opaque cells and 

induction of mating responses in opaque cells through the transcription factor Cph1 

[68]. 
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Figure 1. 4. The MAPKs pathways in C. albicans that are involved in cell wall construction.  
The Cek1, Mkc1 and Hog1 MAPK cascades, and their upstream activating proteins are shown. 

The Cek1 pathway is activated by upstream GTPase Cdc42 and PAK kinase Cst20. The Mkc1 

pathway is stimulated by GTPase Rho1 and protein kinase C (Pkc1). Two-component phospho-

relay system Ypd1p and Ssk1 regulates the downstream Hog1 pathway activation.  
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Cek1 disruption causes exposure of cell wall components  
The cek1Δ/Δ mutant displays unmasking of β (1,3)-glucan and hyper-sensitivity to 

agents that disturb the cell wall such as Congo red, and the N-glycosylation 

inhibitor tunicamycin [75, 76]. This mutant also exposes α (1,2)- and β (1,2)-

mannosides, suggesting the glycostructure is defective in CEK1 disruption. 

Exposed β-mannan increases the binding to murine macrophages partially through 

the recognition receptor galectin-3, although this receptor itself does not account 

for the mutant’s impaired virulence in the mouse systemic infection model [67]. 

This suggests that pathogen-specific β-mannan is not immunogenic enough to 

initiate fungal killing. Transcriptome analysis reveals that in the cek1Δ/Δ mutant, 

27 genes are down-regulated, including genes encoding proteins that respond to 

drug/chemical stress and cell wall biogenesis. This confirms the significance of the 

Cek1 pathway in cell wall construction. The transcriptomic profile of the cek1Δ/Δ 

mutant treated with tunicamycin further reveals that a significant number of genes 

involved in cell wall biogenesis are differentially expressed. The cell wall genes 

that were specifically defective in this condition include CHT2, a chitinase which 

causes chitin exposure when repressed [77]; XOG1, an exo-β (1,3)-glucanase that 

participates in glucan metabolism [78]; MSB2, a cell wall damage sensor protein 

which induces β (1,3)-glucan exposure when disrupted [72]; and EFG1, the key 

transcription factor for morphogenesis. This differential expression profile might 

account for the C. albicans hypersensitivity to cell wall insults when CEK1 is 

disrupted, and also highlights the importance of Cek1 for cell wall stress adaption 

transcriptionally.  

Ace2, another transcription factor downstream of Cek1, has been shown to 

play an important role in sustaining cell wall structure in C. albicans. The ace2Δ/Δ 

mutant displays severe β (1,3)-glucan exposure, and transcripts induced by Ace2 

upregulation are thought to be responsible for β (1,3)-glucan masking induced by 

lactate treatment [67, 79, 80]. This may be related to the role Ace2 plays in 

controlling cell wall glycostructure [76]. Damage of N-glycans is sensed by cell wall 

proteins Msb2 and Sho1, and results in the activation of Cek1, which in turns 

activates cell wall repair activities mediated by Ace2 transcriptionally [76]. In 
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addition, Ace2 controls the expressions of O-glycosylation genes in an isoform-

specific manner [33]. Under unstressed condition, Ace2 represses Pmt1 

expression via transcription factor Zcf21, and de-represses it in response to 

tunicamycin [76]. It is possible that the cell wall damage induced by CEK1 deletion 

is potentially due to loss of Ace2 transcriptional activity.   

 

Cek1 activation promotes exposure of cell wall β (1,3)-glucan  
Davis et al. reported that the phosphatidylserine (PS) synthase enzyme (Cho1) 

controls cell wall β (1,3)-glucan exposure [58]. Phospholipids are crucial 

components of cellular membranes in eukaryotes, and PS is essential for C. 

albicans virulence [6]. A cho1Δ/Δ mutant exhibits greater β (1,3)-glucan exposure 

compared to wild-type [58, 81]. This exposure allows increased recognition by 

Dectin-1 and elicits a stronger pro-inflammatory response from macrophages [11, 

58, 81]. Interestingly, in the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are 

constitutively activated [70]. Li et al. reported that conditions that induce Cek1, 

such as incubation with N-acetylglucosamine (GlcNAc), cause increased β (1,3)-

glucan exposure in C. albicans [71]. However, this has the caveat that GlcNAc 

induces yeast-to-hyphal transition, and filaments have higher level of glucan 

exposure due to the intrinsic cell wall architecture differences [52]. Chen et al. 

found that hyper-activation of Cek1 via hyperactivation of the upstream Ste11 

MAPKKK causes glucan exposure in yeast-form cells in the form of punctate 

exposed glucan foci along the periphery.  This is similar to the phenotype exhibited 

by the cho1Δ/Δ mutant and may be the reason cho1Δ/Δ exhibits β (1,3)-glucan 

exposure. Unmasking from hyperactive Cek1 stimulates an immune response, as 

up-regulated TNF-α secretion is induced from murine macrophages. The 

mechanism by which Cek1 is hyperactivated in the cho1Δ/Δ mutant is not 

completely clear but appears to be acting downstream of the small GTPase Cdc42, 

which is up-regulated in cho1Δ/Δ [70]. This indicates a model where PS synthase 

normally down-regulates Cdc42. This is most likely mediated by synthesis of PS, 

which has been shown to be an activator of GTPase activating proteins (GAPs) 

that downregulated Cdc42 in S. cerevisiae, such as Rga1 and Rga2 [82]. Thus, 
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the model is that loss of PS synthesis leads to hyperactivation of Cdc42, which in 

turn activates Cek1 and causes β (1,3)-glucan exposure. However, the mechanism 

by which this occurs is not yet known. 

Caspofungin, an echinocandin antifungal, causes β (1,3)-glucan exposure 

even at sublethal concentrations [83], and this correlates with Cek1 activation [65]. 

This suggests that Cek1 activation might contribute to β (1,3)-glucan exposure, at 

least partially, after caspofungin treatment. This also indicates that improper 

activation of Cek1 seems involved in cell wall structure alteration in different 

situations. The resultant β (1,3)-glucan exposure promoted by Cek1 

hyperactivation may be induced by the downstream transcription factor Cph1, an 

important regulator for C. albicans filament development [79], and white-to-opaque 

switching [68]. Cph1 expression depends on Cek1 and further boosts Cek1 

expression in a positive-feedback loop [68]. A Cph1-overexpressing strain under 

yeast condition induces pseudo-hyphal structure, and several hyphal-specific 

genes are induced transcriptionally [84]. The overall mechanism by which these 

proteins might cause unmasking is unknown, but discovery of this could help 

explain unmasking under cell wall altering conditions.   

 

The Mkc1 pathway does not appear to cause β-glucan unmasking 
In C. albicans, the Mkc1 MAPK cascade, consisting of Bck1-Mkk2-Mkc1, is 

activated in response to exogenous cell wall stress, oxidative stimuli, antifungal 

drugs, or low-temperature shocks [85] (Figure 1. 4). Mkc1 is also important for 

fungal virulence, as loss of MKC1 reduces fungal virulence in the mouse systemic 

infection model [86]. Although Mkc1 is central for cell wall construction in C. 

albicans, this pathway does not appear to be required for β-glucan masking in C. 

albicans, as evidenced by a lack of β-glucan unmasking in mkc1Δ/Δ mutants [87]. 

In addition, while loss of PS synthase in C. albicans increases Mkc1 activity, 

disruption of this MAPK in cho1Δ/Δ does not prevent β (1,3)-glucan exposure, but 

in fact exacerbates the phenotype in the cho1Δ/Δ mkc1Δ/Δ double mutant [70]. 

This suggests that Mkc1 is activated to compensate for cell wall disfunction when 

PS synthase is deleted, perhaps in response to hyperactivation of Cek1. Finally, a 
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hyperactive GTP-bound form of Rho1 (RHO1Q67L), located upstream of Mkc1 

pathway, displays increased β (1,3)-glucan exposure compared to wild-type. 

Surprisingly it also exhibits increased phosphorylation of Cek1 along with Mkc1 

[70]. This further suggests that the increased β-glucan exposure from the 

hyperactive RHO1Q67L mutant may be caused by Cek1 upregulation, instead of 

Mkc1.   

 
Hog1 activity contributes to neutrophil-driven β (1,3)-glucan exposure  
The Hog1 pathway, comprised of Ssk2-Pbs2-Hog1, is well-known for its response 

to osmotic stress, oxidative stress and morphogenesis [66, 88, 89] (Figure 1. 4). 

This pathway is also involved in cell wall biosynthesis, as HOG1 disruption 

increases resistance to certain cell wall inhibitors such as Congo red (a dye 

interacting with the fungal cell wall), and Nikkomycin Z (an inhibitor of chitin 

biosynthesis) [89] and enhances susceptibility to cell wall digestion by β (1,3)-

glucanase [88]. Hopke et al. discovered that the C. albicans Hog1 pathway is 

necessary for hyphal cells to respond to damage from neutrophils. Hyphae 

damaged by neutrophils exhibit increased β (1,3)-glucan exposure, but unmasking 

does not occur in the hog1Δ/Δ mutant. [11]. Neutrophil-damage of hyphae results 

in remodeling during which the outer layer of glycosylated proteins is damaged 

within seconds upon neutrophils attack, followed by chitin deposition 30 mins post-

insult, and β-glucan unmasking takes place even later. HOG1 disruption greatly 

impairs the ability of fungal cells to adapt to neutrophil attack [11]. Increased chitin 

synthesis can rescue fungal cells from cell wall stress, and chitin synthase (Chs) 3 

is shown to be essential for most of the localized chitin deposition and glucan 

unmasking during cell wall remodeling triggered by neutrophils insult. Although 

Chs2 and Chs8 are also induced, they are not responsible for β-glucan exposure 

[11]. Of note, the cell wall associated Cek1- and Mkc1- pathways are not required 

for this response. This demonstrates the specificity of individual MAPK pathways 

in coping with distinct cell wall stresses.  
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Caspofungin treatment remodels cell wall architecture  
Wheeler et al. identified that sub-lethal dosages of caspofungin upset the intricate 

cell wall structure and causes β (1,3)-glucan exposure without killing the fungi, and 

this elicits more potent proinflammatory responses including TNF-α secretion from 

the macrophages through Dectin-1 [83]. A genetic network responsible for masking 

β (1,3)-glucan was identified in a screen of the S. cerevisiae non-essential gene 

deletion mutant library. Most of the genes within the network are involved in 

regulating polarized cell wall remodeling, (i.e. polarized actin). The S. cerevisiae 

genetic network for concealing β (1,3)-glucan is partially conserved in C. albicans 

[83]. For instance, CaPHR2, the sole homolog of ScGAS1, a β-glucan 

transglycosylase, plays a role for concealing glucan in both organisms. In contrast, 

ScSLT2, a homolog of CaMKC1, is required for masking in S. cerevisae, but does 

not cause β (1,3)-glucan exposure when deleted in the pathogen.  

Badrane et al. determined that sublethal concentrations of caspofungin 

treatment causes fundamental cell wall re-arrangements, but also leads to rapid 

responses at the plasma membrane in components related to the actin 

cytoskeleton [90]. This includes redistribution of both phosphatidylinositol-(4,5)-

bisphosphate (PI (4,5) P2), a signaling phospholipid, and septins, which serve as 

scaffolds for cytokinesis events [90]. PI (4,5) P2 and septins are re-localized 5 mins 

after exposure to caspofungin, which represents an early event in response to drug 

treatment, and further re-direct chitin and cell wall proteins to deposit at the site of 

co-localization [90]. This response might be important for membrane localized cell 

wall repair proteins like chitin synthases to fix the damage caused by β (1,3)-glucan 

biosynthesis inhibition. In fact, chitin production also increases in response to 

caspofungin treatment [58, 81, 90].  

 

Acidic pH induces cell wall structure remodeling   
Sherrington et al. revealed that C. albicans adaptation to an acidic pH of 2 

promotes cell wall remodeling, exposure of both chitin and β (1,3)-glucan, and 

reduced thickness of the outer mannan layer [77]. The mechanism by which β 

(1,3)-glucan exposure is induced by acidic pH remains to be fully defined. The 
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major signaling cascades such as the Mkc1 and Hog1 pathways are not involved 

in this pH driven glucan unmasking mechanism, suggesting a non-canonical cell 

wall remodeling pathway is involved. In contrast, Chitinase 2 (Cht2) regulates chitin 

exposure in a pH-dependent manner by cleaving the glyosidic bonds in the long-

chain of chitin and allowing correct incorporation of chitin short fibril into the inner 

layer for better masking. In alkaline environments, CHT2 expression is dependent 

on the transcription factors Bcr1 and Rim101, while in the acidic environment, the 

Rim101 signaling pathway is inactivated and Cht2 expression is repressed. 

Decreased Cht2 results in longer chitin fibrils and less efficient remodeling of the 

inner layer, thus enhancing exposure of chitin at the cell surface.  

 

Physiological-relevant L-lactate enhances β (1,3)-glucan masking 
Ballou et al. has reported that changes in carbon sources alters cell wall 

architecture, particularly by using physiologically-relevant levels of L-lactate as a 

carbon source that stimulates β (1,3)-glucan masking [80]. The G-protein coupled 

receptor Gpr1, the key lactate binding receptor in C. albicans, is found to sense 

environmental lactate and plays a role in lactate-driven β (1,3)-glucan masking 

[80]. While Gpr1 is the upstream regulator of cyclic adenosine monophosphate 

(cAMP) pathway responsible for morphogenesis in this organism, neither this 

pathway nor other key morphogenetic signaling modules like Efg1 or Cph1, are 

responsible for the cell wall remodeling in lactate condition [80, 91]. Instead, the 

transcription factor Crz1, which is important for cell wall integrity, antifungal 

resistance, and cation homeostasis, is found to mediate masking induced by 

lactate in a calcineurin-independent manner [80]. This is interesting since in C. 

albicans Crz1 is thought to be regulated by calcineurin when stimulated by 

exogenous Ca2+, suggesting Gpr1 is another regulator of Crz1 activation that acts 

independently of the canonical pathway [92]. A significant number of cell wall 

genes are altered transcriptionally and some of these may facilitate the glucan 

masking process [80]. Strikingly, major changes in mannan distribution or 

disruption of several cell wall crosslinking enzymes do not appear to account for 

lactate-induced β (1,3)-glucan masking. For instance, deletion of MNN22 (α(1,2)-



 24 

mannosyltransferase) or EXG2 (exo-1,3-beta-glucosidase) does not block 

masking caused by lactate [80].  

 
Contribution of mannan layer to β (1,3)-glucan (un)cloaking 
A number of studies have been conducted to determine if structural alterations in 

the mannan layer result in β (1,3)-glucan (un)masking under various condition [77, 

80]. Thus far, no definitive conclusion has been reached. Mnn4 is the regulator of 

mannosyl-phosphorylation of N-linked mannans to cell wall proteins [32] (Figure 1. 

3). It is reasoned that disruption of MNN4 might reduce the mannan complexity 

and therefore results in a porous mannan layer, which makes the glucan layer 

more accessible to the immune detection. However, loss of MNN4 does not cause 

higher levels of β (1,3)-glucan exposure compared to the parental strain. Some 

other characteristics such as cell growth, morphogenesis, and fungal virulence are 

not affected either [61]. This suggests that loss of phosphomannan is not sufficient 

to cause glucan exposure. In contrast, the MNN2 α (1,2)-mannosyltransferase 

family, responsible for the formation of N-glycan outer chains by addition of α (1,2)-

mannose to the α (1,6)-backbone (Figure 1. 3), is required for maintaining β (1,3)-

glucan cloaking. Loss of this family results in 70% reduction in the relative 

proportion of mannan in the cell wall, which then unmasks the β (1,3)-glucan, 

despite no changes in the overall β-glucan levels [34]. Och1, an important α (1,6)-

mannosyltransferase that initiates the outer N-glycan chain branching (Figure 1. 

3), plays a role in masking the underlying β-glucan layer. Loss of OCH1 results in 

significantly increased amounts of β-glucan and reduced mannan contents, and 

also causes β-glucan architectural changes [55, 93]. This further indicates that 

glycosylation is essential for maintaining C. albicans cell wall structure and β (1,3)-

glucan masking.  

Most of the N- and O-linked glycosylation are glycosylphosphatidylinositol 

(GPI) anchored. Due to the requirement of cell wall protein modification by GPI 

remnants, it provides an important strategy to attack the fungal pathogen. A novel 

chemical compound named gepinacin is found to specifically inhibit the activity of 

a critical acyltransferase Gwt1 in yeast, which initiates inositol acylation of GPI 
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anchor biosynthesis within the ER [94]. Incubation of C. albicans wild-type cells 

with a sublethal dose of gepinacin impairs filamentation, increases β (1,3)-glucan 

exposure and strain immunogenicity which induces higher levels of TNF-α 

secretion from murine macrophages [95]. Alternatively, disruption of CaGPI7, a 

protein essential for GPI anchor biosynthesis, blocks the decoration of the second 

mannose in the glycan with phosphoethanolamine, and subsequently unmasks β 

(1,3)-glucan [44]. The gpi7 deletion mutant further promotes the inflammatory 

response through the recruitment of immune cells in a Dectin1-dependent manner 

in vivo [44].  
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Summary  
My dissertation focuses on the identification of signaling proteins that cause cell 

wall β (1,3)-glucan exposure in the fungal pathogen C. albicans, thus enhancing 

host immune responses. We previously found disruption of the synthesis of the 

phospholipid phosphatidylserine in C. albicans (cho1Δ/Δ mutation), then cho1Δ/Δ 

exhibits significantly increased exposure of β (1,3)-glucan to immune detection 

compared to wild-type. However, the mechanisms through which CHO1 disruption 

results in β (1,3)-glucan exposure are not clear. In Chapter II, I used genetic 

approaches to evaluate the effect of cell wall associated signaling pathways on β 

(1,3)-glucan unmasking in C. albicans, and found Cek1 MAPK cascade is involved 

in the modulation of cell wall remodeling when over-activated. In Chapter III, I 

screened the upstream regulators of Cek1 and characterized the impact of Cek1 

activity on fungal virulence. In Chapter IV, I performed RNA-sequencing analysis 

to assess the whole genome transcription profile when Cek1 is hyper-activated. In 

Chapter V, I concluded the findings in this dissertation and proposed future 

directions to continue studying the influence of Cek1 activation on fungal cell wall 

remodeling.  
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Abstract 
Candida albicans is among the most common causes of human fungal infections 

and is an important source of mortality. C. albicans is able to diminish its detection 

by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with 

an outer layer of heavily glycosylated mannoproteins (mannan). However, 

mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan 

(unmasking) and enhanced detection by innate immune cells through receptors 

like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the 

pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in 

β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, 

exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein 

Kinase (MAPK) pathways and their upstream Rho-type small GTPases are 

important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ 

mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act 

downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, 

Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation 

of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of 

MKC1 does not decrease unmasking in cho1 Δ/Δ, and hyperactivation of Rho1 in 

wild-type cells increases unmasking and activation of both Cek1 and Mkc1. 

Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in 

wild-type cells leads to Cek1 activation and increased β (1,3)-glucan unmasking. 

Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be 

responsible for unmasking in cho1 Δ/Δ.  



 39 

Introduction 
Candida albicans is a human commensal that is part of the natural flora of the oral, 

genital and gastrointestinal tracts. Candida species are also the most common 

fungal pathogens of humans and cause diseases ranging from superficial 

infections of mucosal surfaces to severe systemic bloodstream infections in 

immune-compromised patients [1-4], with a mortality rate of approximately 30% 

[2]. Three major classes of antifungals are used to treat systemic infections 

including azoles, echinocandins, and polyenes [5-7]. However, drug resistance or 

toxicity has put limits on these agents.  

The C. albicans cell wall is considered a good therapeutic drug target due 

to its role in fungal pathogenicity as it presents important virulence factors, 

antigenic cell wall proteins and polysaccharides, and serves as the intermediate 

for fungal-host interactions [3, 8, 9]. One potential method for improving anti-fungal 

strategies could be to enhance the detection of fungal cell wall antigens by host 

immune cells. A major innate immune receptor for fungi like C. albicans is Dectin-

1, a C-type signaling lectin that can recognize β (1,3)-glucan, which is an important 

component of fungal cell walls [8, 10, 11]. This recognition can initiate protective 

antifungal immune responses in innate immune cells like macrophages, dendritic 

cells and neutrophils. The fungal cell wall consists of an inner layer that is enriched 

in β (1,3)-glucan and underlying chitin, and an outer layer of mannosylated proteins 

[8]. Under normal conditions, C. albicans masks β (1,3)-glucan from Dectin-1 

detection via the outer layer of mannosylated proteins [12, 13]. However, 

unmasking of β (1,3)-glucan can be induced through treatments with drugs such 

as echinocandins [12] or by certain genetic mutations that disrupt cell wall integrity 

[12-15].  

It has been previously reported that the phosphatidylserine (PS) synthase 

enzyme (Cho1) controls cell wall β (1,3)-glucan exposure [13]. Phospholipids are 

crucial components of cellular membranes in eukaryotes. Cho1 synthesizes PS 

that can act as an end product, but also can be further decarboxylated to form 

phosphatidylethanolamine (PE). PS and PE are both essential for C. albicans 

virulence [16]. We found that the homozygous CHO1 mutant, cho1Δ/Δ, exhibits 
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greater β (1,3)-glucan exposure compared to wild-type [13, 14]. This exposure 

allows increased recognition by Dectin-1 and elicits a stronger pro-inflammatory 

response [13, 14, 17]. However, the detailed mechanism by which β (1,3)-glucan 

exposure is caused by CHO1 disruption remains unknown.  

The process of cell wall biogenesis and remodeling is governed through 

complex signaling pathways, including several mitogen-activated protein kinase 

(MAPK) cascades and their upstream Rho-type GTPases (Figure 2. 1). MAPK 

pathways are conserved signaling cascades in eukaryotes that are important for 

dealing with a wide range of stimuli, including osmotic stress, oxidative stress, cell 

wall damage, and changes in glycosylation [9, 15, 17-19]. This signaling cascade 

is composed of a conserved module of three kinases: the MAP kinase kinase 

kinase (MAPKKK), the MAP kinase kinase (MAPKK) and the MAP kinase (MAPK). 

The MAPK activates downstream transcription factors and effectors to initiate gene 

expression for better adaptation to the environment [19]. Among these MAPK 

pathways, Ste11-Hst7-Cek1 composes the Cek1 MAPK cascade, and is reported 

to control β (1,3)-glucan masking in C. albicans [15, 20, 21]. CEK1 null mutants 

display unmasking of β (1,3)-glucan and hyper-sensitivity to agents that disturb the 

cell wall such as Congo red [15]. The Mkc1 MAPK route, consisting of Bck1-Mkk2-

Mkc1, is primarily involved in cell wall construction, as well as responding to 

exogenous cell wall stress, oxidative stimuli, antifungal drugs, and low-

temperature shocks [22, 23]. Yet, this pathway does not appear to be required for 

masking in C. albicans [24], although it is hypersensitive to specific cell wall insults 

such as echinocandins or calcofluor white. 
The upstream small GTPases Cdc42 and Rho1 transmit the signal toward 

Cek1- and Mkc1- associated MAPK cascades, respectively (Figure 2. 1) [18, 23]. 

They are also important in remodeling the rigid structure of the cell wall during 

vegetative growth and during pheromone-induced morphogenesis [25]. Rho1 is a 

well-known major regulator of the cell wall integrity signaling cascade through 

several downstream effectors [23, 25-30]. Rho1 is also the regulatory subunit of β 

(1,3)-glucan synthase, and therefore directly controls cell wall biosynthesis via the 

binding and activation of its catalytic subunits, such as Fks1 [26, 31]. Cdc42 is 
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Figure 2. 1. The Cek1 and Mkc1 MAP kinase signaling cascades in C. albicans are involved 
in cell wall biogenesis.  
The Cek1 and Mkc1 MAP kinase cascades, and their respective upstream activator signaling 

proteins are shown. Rho1 activates protein kinase C (Pkc1), which activates the Mkc1 MAP kinase 

cascade. Cdc42 activates the PAK kinase Cst20 which activates the Cek1 MAP kinase cascade. 
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essential for cellular polarized growth through a variety of downstream effector 

proteins in C. albicans, including the actin cytoskeleton regulator Bni1, and kinases 

such as PAK kinase family members Cst20/Cla4 [32-37].  

Given the role of the GTPase-associated signaling pathways in cell wall 

remodeling and regulation, we studied the impact of these signaling routes in 

affecting β (1,3)-glucan masking in the C. albicans cho1Δ/Δ PS synthase mutant. 

We found that in the cho1Δ/Δ mutant there is upregulation of the activity of both 

Cek1 and Mkc1 MAPKs. Furthermore, we present data indicating that activation of 

the Cek1 pathway, in particular, is sufficient to cause β (1,3)-glucan exposure in 

the cho1 Δ/Δ mutant. 

 

Methods 
Strains and growth media 
All of the strains and plasmids used for these experiments are described in Table 

S.2. 1 and Table S.2. 2. All the primers used in this study were described in Table 

S.2. 3. The medium used to culture strains was yeast extract-peptone-dextrose 

(YEPD) medium (1% yeast extract, 2% peptone, and 2% dextrose (Thermo Fisher 

Scientific) (unless otherwise stated) [38]. To express the gene from the promoter 

of the gene for ATP sulfurylase (MET3), SD minimal medium (2% dextrose, 0.67% 

Yeast nitrogen base without amino acids) with 1mM ethanolamine (to support 

cho1Δ/Δ) was used [39]. For the induction of genes under the control of the MAL2 

maltase promoter, YPM (1% yeast extract, 2% peptone, and 2% maltose (Thermo 

Fisher Scientific)) [40] was used. To induce hyphal formation, cells were sub-

cultured in Gibco RPMI 1640 medium (Thermo Fisher Scientific). 

 

Strain construction 
For the generation of strains that conditionally express green fluorescent protein 

(GFP) tagged Cdc42 under the regulation of PMET3, we used the plasmid pTC1 

composed of PMET3-yEGFP-CDC42, which was constructed as follows. yEGFP 

was amplified with primers TRO988+TRO989 with BamHI flanking at both ends, 

and CDC42 was amplified from SC5314 genomic DNA with primers 
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TRO995+TRO996 with SacI flanking both ends. Both fragments were cloned into 

pYLC314 [41] 3-end to the MET3 promoter, where yEGFP is in frame and 5-end 

to CDC42 and connected by a sequence that encodes an 8-alanine linker. 

CDC42K183-187Q was chemically synthesized by Genescript Inc. with SacI sites. It 

was used to replace wild-type CDC42 in pTC1 to create pTC14. The pYLC314 

plasmid was made by amplifying a SAT1-PMET3 fragment from pYLC229 [41] with 

primers JCO165 + JCO166 that introduced EcoRI sites and cloning it into the 

EcoRI site in pBluescript II SK+. Both pTC1 and pTC14 were linearized within 

PMET3 using AflII, and then transformed into the strains of interests by 

electroporation. The transformation methods have been previously described [42]. 

TCO1+TCO2 were used to validate if the fragment was integrated into PMET3 locus 

in the chromosome.  
To generate the strain CaTC11 that conditionally expresses STE11ΔN467 

under the regulation of MAL2 promoter, we constructed the plasmid pTC20 that 

consists of PMAL2- STE11ΔN467-TTEF3. First, pTC19 containing the PMAL2 promoter 

was generated from pYLC314 [41]. The PMET3 was removed from pYLC314 by 

restriction with PstI. The regulatable promoter PMAL2 was amplified from wild-type 

C. albicans genomic DNA using the primers TCO36+TCO37. The promoter was 

then cloned into the PstI site of the linearized pYLC314 to create pTC19.  Then, 

the hyperactive domain of STE11ΔN467 with a TEF3 terminator was amplified from 

the PTET-ON - STE11ΔN467 plasmid (generously provided by Dr. Joachim 

Morschhausser) [43] with primers TCO42+TCO43, with BamHI at both ends and it 

was cloned into pTC19. The resultant pTC20 was then linearized with XcmI and 

transformed into wild-type SC5314.  

To generate the heterozygous deletion of PKC1, ~500 bp 5- and 3- 

untranslated regions (UTRs) flanking PKC1 were amplified as KpnI-XhoI and NotI-

SacI fragments, by using the primers TCO59+TCO60 and TCO62+TCO110, 

respectively. The 5- and 3- UTR fragments were cloned into the corresponding 

sites of the SAT1 flipper in the plasmid pSFS2A [44], respectively. The resulting 

plasmid pTC041 was digested with KpnI and SacI, and the larger fragment was 

gel purified (Qiagen Inc.) and transformed into the strains of interest. The 
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nourseothricin-resistant transformants were further cultured in medium containing 

maltose as a carbon source to induce caFLP expression, which is under MAL2 

promoter regulation. The confirmation of a PKC1 allele being deleted was verified 

with TCO63+JCO95. 

To introduce the Q67L mutation into RHO1, first the RHO1 gene was PCR 

amplified with primers TCO8+TCO72 from SC5314 genomic DNA as a SacI-NotI 

fragment and cloned into vector pBT1 to generate pTC35. To generate the pBT1 

plasmid, the MET3 promoter was removed from pYLC314 by cutting with PstI. The 

ENO1 promoter was amplified with primers BTO30+BTO31 as a BamHI-NotI 

fragment and cloned into pYLC314 to generate pBT1. Then primers 

TCO74+TCO75 were used to create pTC38 from pTC35 by point mutating RHO1 

using site-directed mutagenesis. A similar site directed mutagenesis protocol was 

used to introduce the G12V mutation into CDC42. TRO996+TCO101 were used 

for CDC42 PCR amplification and it was cloned into pBT1 to create pTC34. Then 

TCO76+TCO77 were used to introduce the G12V mutation to CDC42 to result in 

pTC37 which expresses PENO1-CDC42G12V. pTC37 and pTC38 were linearized with 

MscI and transformed into SC5314.  

To create the strain that has GFPCRIB (Cdc42-Rac1 interactive binding 

motif) to probe the localization of GTP-Cdc42, RAC1 was disrupted in SC5314 

using C. albicans CRISPR-Cas9. This was to exclude GFPCRIB binding with 

Rac1. Primers TCO38+TCO39 were annealed to generate a RAC1 sgRNA flanked 

with BsmbI, which were then ligated with the deletion construct pV1393 [45] to 

create the plasmid pTC18. TCO40+TCO41 were used to generate the repair 

template that spanned the Cas9 cut site in order to introduce 3 stop codons to 

prevent RAC1 expression and a new HindIII cut site to allow quick genotyping of 

the transformants. pTC18 was digested with KpnI and SacI, and the larger 

fragment was transformed into both SC5314 and cho1Δ/Δ together with repair 

template. TCO51+TCO52 were used for colony PCR to test if the repair template 

had integrated into the Cas9 cut site. The positive rac1Δ/Δ transformant was then 

transformed with linearized pTC029. The pTC029 plasmid was created from 

pExpArg-pADH1CRIBGFP [46] by cutting it with NotI and ligating it with a Candida-
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adapted hygromycin B resistance marker amplified with primers TCO92/TCO93 

from pRB436 (a gift from Dr. Richard Bennett). CRISPR/Cas9 was also utilized to 

knock out MKC1 and PKC1 in the strains of interests. TCO32+TCO33 and 

TCO44+TCO45 were used to generate the sgRNA for MKC1 and PKC1, 

respectively. TCO34+TCO35, TCO46+TCO47 were used to create the repair 

templates for MKC1 and PKC1 with EcoRI and BglII introduced, respectively. 

TCO28+TCO29 and TCO49+TCO50 were used for colony PCR on transformants 

respectively to check if the repair template integrated into the Cas9-cut region.   

To generate strains that have GFPRID (Rho1 Interactive Domain) to probe 

the localization of GTP-Rho1, each strain was transformed with pTC033. The 

pTC033 plasmid consists of pExpArg-pACT1GFPRID [46] with a SAT1 marker 

cloned into the Not I restriction site following amplification with TCO15+TCO16. 

The pTC033 plasmid was linearized with StuI and transformed into the strains of 

interest.  

 

Western blotting  
Cells were grown overnight in liquid YPD at 30°C, diluted to an OD600 of 0.2 in 

fresh YPD medium and allowed to grow for 3 hours. For the STE11ΔN467 strain 

under the MAL2 promoter regulation, cells were grown overnight in liquid YPM at 

30°C and diluted back to OD600 of 0.1 into fresh YPM medium and grown to log 

phase. Cells were pelleted by centrifugation and resuspended in 250μl phosphate 

buffered saline (PBS) supplemented with protease inhibitor cocktail (PMSF, 

leupeptin, and pepstatin (RPI, Corp., Mount Prospect), complete Protease Inhibitor 

tablet and PhosStop Phosphatase Inhibitor tablet (Roche Diagnostics GmbH, 

Mannheim, Germany). An equal volume of 150-212μm acid-washed beads (Sigma 

Aldrich, MO, USA) was added to each tube. Cells were mechanically disrupted in 

a Biospec Mini-BeadBeater (Bio Spec Product Inc., USA) with 6 rounds of 1min 

homogenization at 4°C and 1min intervals for each cycle. Samples were 

centrifuged at 5,000×rpm for 10 min at 4°C, the supernatant was collected, and 

the protein concentration was quantified using the Bradford protein assay (Bio-Rad 

Laboratories Inc., USA). Extracts were heated for 3 min at 95°C, and equal 
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amounts of protein from each sample were separated on an SDS-12% 

polyacrylamide gel. Separated proteins were transferred onto a polyvinylidene 

difluoride (PVDF) membrane with a Hoefer MiniVE vertical electrophoresis unit 

(Amersham Biosciences Inc., USA). Membranes were blocked in blocking buffer 

(LI-COR biosciences Inc., USA) at room temperature for 1hour and subsequently 

incubated overnight at 4°C with Anti-phospho-p44/p42 MAPK (Thr202/Tyr204) 

antibody at a 1:2000 dilution (Cell Signaling Technology, Inc., USA) to detect 

phosphorylated Mkc1 and Cek1 MAPKs. The expression of total Mkc1 was 

detected with the primary antibody against total Mkc1. The expression of total 

Cek1 was measured with an antibody to total Cek1. The secondary antibody 

against Phospho-p44/42 Ab, Mkc1 Ab and Cek1 Ab was IRye800CW goat anti–

rabbit IgG (H+L) conjugate (green, 1:10,000 dilution; LI-COR Biosciences) 

incubated in the dark followed by extensive washing and quantitation using an 

Odyssey IR imaging system (LI-COR Biosciences). Phosphorylated and total 

proteins levels were quantitated using ImageJ (National Institutes of Health, 

Bethesda, MD). As a control protein, tubulin was detected with rat anti-tubulin 

primary antibody (Bio-Rad Laboratories Inc., USA) at a 1:1000 dilution and IRDye 

680RD Goat-anti-Rat IgG (H+L) (red, 1:10,000 dilution; LI-COR Biosciences).  

 

Pull-down assay for active Cdc42 
Cells were grown in YPD to log phase, and pelleted by centrifugation, and re-

suspended in Lysis/Binding/Wash buffer, provided by Active Cdc42 Pull-Down and 

Detection Kit (Thermo Fisher Scientific) with protease inhibitors cocktail (PMSF, 

leupeptin, and pepstatin) (RPI, Corp., Mount Prospect) and complete phosphatase 

inhibitor tablet (Roche Diagnostics GmbH, Mannheim, Germany), and cells were 

disrupted with acid-washed glass beads (Sigma-Aldrich Co. LLC., USA) in a 

Biospec Mini-Bead Beater with 6 rounds of 1min homogenization at 4°C and 1min 

interval for each cycle. The protein concentration was quantified using the Bradford 

protein assay (Bio-Rad Laboratories Inc., USA).  

1,500 μg of total protein were used for the pull-down procedure following 

the instruction from Active Cdc42 Pull-Down and Detection Kit (Thermo Fisher 
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Scientific). 50ul of the pull-down samples containing active Cdc42 were separated 

by SDS-PAGE, transferred to PVDF with the Hoefer MiniVE vertical 

electrophoresis unit (Amersham Biosciences Inc., USA), and detected with mouse 

monoclonal anti-Cdc42 antibody at a 1:250 dilution (Cytoskeleton Inc., USA), 

followed by secondary detection with IRye800CW goat anti–mouse IgG (H+L) 

conjugate (1:10,000; LI-COR biosciences). As a control protein, tubulin was 

detected with rat anti-tubulin primary antibody (Bio-Rad Laboratories Inc., USA) 

and IRDye 680RD Goat-anti-Rat IgG (H+L) (LI-COR biosciences). Densitometry 

quantification of Cdc42 bands was performed with ImageJ (National Institutes of 

Health, Bethesda, MD). 

 

Immunofluorescent imaging of β (1,3)-glucan exposure 
This procedure was done as described in [13] with minor modification. C. albicans 

cells were grown overnight in YPD or YPM medium at 30°C. Mouse anti-β (1,3)-

glucan antibody (Biosupplies Australia Pty Ltd., Australia) at a 1:800 dilution was 

used as the primary antibody, and a goat anti-mouse antibody conjugated to Cy3 

(Jackson ImmunoResearch Inc., USA) at 1:300 dilution was used as secondary 

antibody. For imaging, Candida cells were resuspended in 100 μL of PBS and 

visualized with LEICA DM5500B epi-fluorescent microscope with Hamamatsu 

Orca-ER CCD digital camera (Model#C4742-80-12AG). The pictures were taken 

through Leica Application Suite AF (Advanced Fluorescence) software.  

 

Fluorescence imaging  
For imaging GFP-Cdc42 expressed under the MET3 promoter, Candida cells were 

cultured overnight in SD minimal medium plus 1mM ethanolamine at 30°C, diluted 

to an OD600 of 0.2 in the fresh SD medium and allowed to grow for about 4-5 hours 

to reach the OD600 of 0.6-0.8. Cells carrying the CRIB-GFP or GFP-RID constructs 

(the expression of each is under the constitutive ADH1 and ACT1 promoters, 

respectively), were cultured in YPD medium. The overnight culture at 30°C was 

diluted back to an OD600 of 0.2 in fresh YPD medium and grown for 3 hours to 

reach log phase. 1mL of cells was collected and re-suspended in 100μl of PBS. 
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3μl of samples were mounted on the slide and observed under Leica DM RXA epi-

fluorescent microscope with Leica DFC365FX CCD camera (Vashaw Scientific, 

Inc.). The pictures were taken through Leica Application Suite (LAS) V4.4 software.  

  

Flow cytometry 
To stain the STE11ΔN467 strain (PMAL promoter) and its controls, overnight cultures 

in YPM or YPD were collected and blocked in PBS plus 3% bovine serum albumin 

(BSA, Thermo Fisher Scientific, USA) for 30mins. Primary and secondary antibody 

incubations occurred on ice in PBS plus 3% BSA for 1.5 h and 20mins, 

respectively.  Soluble human Dectin-1–Fc (sDectin-1-Fc) [8] at 16.5 μg/ml was 

used to detect exposed β (1,3) glucan and mouse anti-Als3 antibody with 1:800 

dilution was used for staining Als3 on hyphal cells. The Donkey anti-human IgG 

(H+L) Alexa Fluor 488 (Jackson Immuno Research) and goat anti-mouse antibody 

conjugated to R-Phycoerythrin (R-PE) were used as secondary antibodies, 

respectively.  

To stain exposed β (1,3)-glucan on CDC42G12V cells, overnight cultures 

were collected, and mouse anti-β (1,3)-glucan antibody at a 1:800 dilution and 

rabbit anti-mouse IgG (H+L) Alexa Fluor 488 (Jackson Immuno Research) were 

utilized as primary and secondary antibodies, respectively. 5ul of eBioscienceTM 

propidium iodide dye (Thermos fisher) was then added to the solution for the 

live/dead staining and incubated for 5min at room temperature.  

To stain β (1,3)-glucan in Candida cells with MKC1 deleted, the overnight 

culture was incubated with mouse anti-β (1,3)-glucan antibody at a 1:800 dilution 

as primary antibody and followed by goat anti-mouse antibody conjugated to R-

Phycoerythrin (R-PE) at 1:300 dilution (Jackson ImmunoResearch) as a 

secondary antibody. The staining process for RHO1Q67L strains was the same 

except that the overnight cultures were diluted back to OD600 at 0.1 and the log 

phage cells were collected after 3hrs growth for staining.  

For all of the above conditions, after staining, cells were processed by 

washing five times with PBS, and samples were resuspended in 500μl of FACS 

buffer (PBS, 1% serum, 0.1% sodium azide) for flowcytometry in a FACSCalibur 
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LSR II flow cytometer (Becton Dickinson). Singlets were gated by using a forward 

scatter area (FSC-A) versus side scatter area (SSA) plot, followed by forward 

scatter width (FSC-W) versus forward scatter area (FSC-A) density plot, as well as 

a side scatter width (SSC-W) versus side scatter area (SSC-A) plot to exclude 

clumping cells. We further compare the PE fluorescence intensity from the P3 

singlets population in different Candida cells. Flow cytometry data were obtained 

for 100,000 gated events per strain and experiments were performed in triplicate 

and analyzed using FlowJo software package with version 10.11 (FlowJo LLC, 

OR, USA).  

 
Enzyme-linked immunosorbent assay (ELISA) of TNF-α 
RAW264.7 macrophages were plated the day prior at 5×105/well in a 24-well plate. 

To activate STE11ΔN467 expression under PMAL regulation, STE11ΔN467 mutant cells 

were grown at YPM. Overnight cultures were washed and diluted to an OD600 of 

1.25 in 5ml PBS/well in a 6-well plate for UV-kill. To do this, the 6-well plate was 

placed in the Spectrolinker XL-1000 UV Crosslinker (Spectroline Inc., USA) and 

the ENERGY mode was set to 100,000 µJ/cm2. The UV-killing process was 

repeated 5 times. UV-killed Candida cells were then added to the RAW264.7 

macrophages and coincubated at a 1:10 ratio for 4 h at 37°C and 5% CO2. The 

supernatant of each well was collected and filtered through a syringe filter with 

0.2µm pore size (Millipore Sigma, US) to exclude the macrophage debris. The 

ELISA kit instructions from the manufacturer (R&D Systems) were followed. Each 

sample has three individual wells, and the statistical analysis was performed by 

using Two-way analysis of variance ANOVA (GraphPad Prism, v7.04 software).  

 

Results 
C. albicans cho1Δ/Δ exhibits activated MAPKs 
Given the strong cell wall phenotypes seen in cho1Δ/Δ, we hypothesized that this 

mutant might exhibit increased activation of cell wall signaling pathways such as 

Cek1 and Mkc1 MAP kinase cascades. As shown in Figure 2. 2A, Western blots 

with the Phospho-p42/44 antibody, that labels the phosphorylated (activated) 
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forms of both Cek1 and Mkc1, revealed that these kinases were constitutively 

phosphorylated in cho1Δ/Δ compared to wild-type and other test strains. No 

significant difference was found between the psd1Δ/Δpsd2Δ/Δ mutant 

(synthesizes PE from PS) and wild-type (Figure 2. 2A). This indicates that 

disruption of the PS synthase specifically up-regulates the activity of both cell wall 

MAPK cascades. Similar trends were also seen under hyphal induction conditions. 

When cells were sub-cultured in RPMI 1640 medium (induces filamentation [47]), 

cho1Δ/Δ exhibited greater phosphorylation of Cek1 and Mkc1 than wild-type and 

other test strains (Figure 2. 2B). Collectively, these results indicate that loss of 

Cho1 activates the Cek1 and Mkc1 MAPK pathways. 
 

Activation of the Cek1 pathway causes β (1,3)-glucan masking 
Galán-Díez et al. observed that a cek1Δ/Δ homozygous deletion mutant exhibits β 

(1,3)-glucan exposure in C. albicans [15]. In contrast, Li et al. reported that Cek1-

inducing conditions, such as incubation with N-acetylglucosamine (GlcNAc) in the 

media, causes increased β (1,3)-glucan exposure in C. albicans [48]. To further 

investigate if activation of the Cek1 pathway increases exposure of β (1,3)-glucan 

in C. albicans yeast-form cells, we constructed a strain that expresses a hyper-

active allele of STE11 (STE11Δ467) under the regulation of the maltose promoter 

(PMAL2). Deletion of 467 N-terminal amino acids, including the inhibitory domain of 

Ste11, hyper-activates this kinase [43]. Ste11 is upstream of Cek1 and activates it 

via sequential phosphorylation through Hst7 (Figure 2. 1). Expression of the 

STE11∆N467 allele in YP maltose (YPM) media results in greater phosphorylation 

of Cek1 compared to growth of this strain in YPD (represses STE11ΔN467 

expression) (Figure 2. 3A). The STE11ΔN467 expressing strain exhibited greater β 

(1,3)-glucan exposure in YPM than YPD when stained with anti-β (1,3)-glucan 

antibody (Figure S.2. 1).   

 The Cek1 pathway is involved in inducing the yeast-to-hyphae transition. A 

small subset of cells forms filaments in the hyper-activated STE11ΔN467 strain in 

YPM, and hyphae exhibit β (1,3)-glucan unmasking more readily than yeast-form 

cells [12, 13]. To determine if the yeast-form cells themselves exhibited greater
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Figure 2. 2. Cek1 and Mkc1 MAPKs exhibit increased activation in cho1Δ/Δ yeast cells 
compared to wild-type.  
(A) Proteins from yeast-form cells growing in log phase in YPD media were extracted and Western 

blotting was performed with anti-phospho-p44/42 antibody to detect Phospho-Mkc1 and Phospho-

Cek1. Anti-Mkc1 was used for total Mkc1, anti-Cek1 for total Cek1, and anti-tubulin as a loading 

control. Graphs of quantification by Image J of the phosphorylated forms of each kinase are 

expressed as a percent of the wild-type control after being normalized to the total kinase blot for 

each respective MAP kinase and the tubulin loading controls for each gel. Quantification is based 

on three biological replicates. The statistical analysis was performed by using One-way ANOVA *, 

p=0.0308. ***, p=0.0005. (B) Western blotting was performed on extracts from cells grown as 

hyphae in RPMI media and probed with antibodies detecting Phospho-Cek1 and Phospho-Mkc1 

as well as the tubulin loading control. 
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unmasking, we used flow cytometry with a second hyphal-specific probe to gate 

out hyphal cells while measuring β (1,3)-glucan exposure. In particular, we stained 

strains with soluble Dectin-1 (sDectin-1) protein which binds with exposed β (1,3)-

glucan and anti-Als3 antibody, which stains the hyphal-specific protein Als3. Thus, 

Als3 staining was used as a marker to gate out hyphae by flow cytometry allowing 

us to focus on yeast-form cells. This double staining revealed that wild-type yeast-

form cells expressing hyper-activated Ste11 (STE11ΔN467) in YPM have 

significantly increased unmasking compared to yeast cells in YPD (Figure 2. 3B); 

compare the 1st quadrants (Q1) of the plots of STE11Δ467 grown in both YPM and 

YPD (bottom two plots).   

β-1,3-glucan exposure is more intense at bud scars, which presented the 

possibility that the higher glucan exposure in STE11ΔN467-YPM is associated with 

more bud scars provided that maltose increases growth rate. In fact, a growth 

curve demonstrated that both wild-type and STE11ΔN467 cells cultured in YPM grew 

slightly better compared to corresponding strains in YPD culture (Figure S.2. 2). 

However, when we co-stained cells with β (1,3)-glucan antibody and calcofluor 

white, a dye that stains the chitin that is normally concentrated at the bud scar [49], 

the exposed β (1,3)-glucan in STE11ΔN467 is scattered along the cell periphery, 

whereas the calcofluor white staining is constricted to the division sites (e. g. bud 

scars), revealing little overlap (Figure S.2. 3). Furthermore, STE11ΔN467 and wild-

type have similar growth rates in YPM (Figure S.2. 2), but STE11Δ467 has 

significantly elevated β (1,3)-glucan unmasking in this medium (Figure 2. 3B and 

C). Conversely, the strains have similar rates of growth and β (1,3)-glucan 

exposure in YPD (Figure 2. 3B and C), a condition where Cek1 is not hyperactived 

(Figure 2. 3A). Moreover, wild-type replicates more rapidly in YPM than YPD, but 

β (1,3)-glucan exposure is comparable for wild-type in both media (Figure 2. 3B). 

Altogether, these data indicate that hyperactivation of the Cek1 pathway leads to 

increased β (1,3)-glucan exposure that is not based on increased numbers of bud 

scars. 

The correlation between increased β (1,3)-glucan exposure and enhanced 

immune responses such as upregulated tumor necrosis factor alpha (TNF-α) 
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secretion has been studied intensively [12-14, 17, 50, 51]. Exposed β (1,3)-glucan 

is recognized by the receptor Dectin-1 on the surface of immune cells including 

macrophages and neutrophils, and this recognition activates the host immune 

response for fungal clearance including the secretion of TNF-α [12]. To determine 

if the increased β (1,3)-glucan exposure in the STE11ΔN467 strain is 

immunologically relevant, we performed an enzyme-linked immunosorbent assay 

(ELISA) to quantify TNF-α secretion from RAW264.7 macrophages exposed to this 

strain. As seen in Figure 2. 3D, TNF-α secretion was significantly upregulated 

when the Cek1 MAPK pathway was hyper-activated (STE11ΔN467 in YPM). It 

should be considered when examining the data in Figure 2. 3D that production of 

TNF-α is reduced in all strains that were grown in YPM, including wild-type and 

cho1ΔΔ. Thus, while the increase in TNF-α of cultures of STE11∆N467 grown in 

YPM is ~35% greater than that in YPD, the increase of STE11∆N467 over wild-type, 

both grown in YPM, is 2-fold. Thus, increased β (1,3)-glucan exposure in the 

STE11∆N467 strain increases proinflammatory responses from macrophages.  

 
CHO1 disruption upregulates Cdc42 activity in C. albicans  
The above results indicate that hyper-activation of Ste11 can cause unmasking, 

and since the Cek1 MAPK pathway, which acts downstream of Cdc42 [18], is 

constitutively activated in cho1Δ/Δ, this suggests that Cdc42 activity might be 

upregulated in cho1Δ/Δ (Figure 2. 1). To test this possibility, Cdc42 activity was 

measured by monitoring the amount of active Cdc42 (GTP-bound) in cells. GTP-

bound Cdc42 was isolated using agarose beads coated with Cdc42/Rac1 

interactive binding (CRIB) domain [46]. As seen in Figure 2. 4A, the concentration 

of GTP-bound Cdc42 in cho1Δ/Δ is higher than that in the other two strains. This 

confirms our hypothesis that cho1Δ/Δ has a higher concentration of active Cdc42 

than wild-type. Thus, Cho1 or its biochemical product PS may impact Cdc42 

activity negatively in wild-type cells, although the regulation may be indirect.  

 We then compared the localization of active Cdc42 in cho1Δ/Δ and wild-

type by using a CaCRIB-GFP probe [46]. This motif binds with both Cdc42 and 

Rac1 GTPases. As seen in Figure 2. 4B, both wild-type and cho1Δ/Δ cells have 
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Figure 2. 3. Hyperactive Ste11 (STE11ΔN467) causes significant increases in β (1,3)-glucan exposure and TNF-α secretion.  
(A) The Cek1 MAPK is hyper-activated by transforming wild-type cells with a hyperactive allele of STE11 (PMAL-STE11ΔN467), which is induced 

by adding maltose as a carbon source. (B) Both wild-type and STE11ΔN467 expressing cells were cultured overnight (16hrs) in YPD or YPM 

individually and then were doubly stained. The Y-axis represents staining with soluble Dectin-1-Fc (sDectin-1-Fc) that binds to exposed β 

(1,3)-glucan, and the X-axis represents anti-Als3 antibody, which binds to the hyphal-specific protein Als3. Flow cytometry was performed 

to quantify β (1,3)-glucan exposure from the yeast-form population (Q1: sDectin-1 single positive staining; Q2: sDectin-1 & Als3 double 

positive staining; Q3: Als3 single positive staining; Q4: double negative staining). Gates were established with an unstained control where 

97% of unstained cells gated within Q4. Gating strategies are further described in the Methods. (C) Left graph: Comparison of β (1,3)-glucan 

exposure from the yeast-form population of STE11ΔN467 versus that of wild-type, both of which are cultured in YPM. *, p=0.0289. Right graph: 

β (1,3)-glucan exposure was compared between these two strains when grown in YPD medium. (D) Expression of STE11ΔN467 significantly 

induces TNF-α secretion after growing in YPM overnight. RAW264.7 macrophages were challenged with various C. albicans stains. C. 

albicans strains were grown in YPD or YPM, washed, UV-inactivated, and then add to the macrophages for 4hrs. The macrophage 

supernatant was collected and assayed by ELISA to quantify TNF-α production. **, P=0.0030; ***, P=0.0002; ****, p<0.0001. 
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Figure 2. 3 Continued 
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similarly localized active Cdc42 with the CRIB-GFP probe concentrated at the 

growth sites (buds). CRIB-GFP can bind both Rac1 and Cdc42, so to measure 

Cdc42 localization alone, we disrupted RAC1 in both wild-type and cho1Δ/Δ by 

using a C. albicans CRISPR-Cas9 system [45]. Both rac1Δ/Δ and cho1Δ/Δ 

rac1Δ/Δ mutant cells have a similar pattern of CRIB-GFP localization during 

budding growth compared to wild-type and cho1Δ/Δ (Figure 2. 4B and C). This 

suggests that active Cdc42 is found in its normal localization in cho1Δ/Δ cells. 

These results were in potential contrast to those for Cdc42 in a S. cerevisiae 

cho1Δ mutant, where PS disruption causes impaired Cdc42 polarization [52]. 

However, in this study, Fairn et al. used a GFP-Cdc42 construct to examine 

localization, which visualizes total Cdc42 rather than just active Cdc42. Therefore, 

we examined localization of total GFP-Cdc42 in C. albicans cho1Δ/Δ to determine 

how total Cdc42 responds to PS deficiency (Figure 2. 5A). In the wild-type and 

reintegrated strains (cho1Δ/Δ::CHO1), Cdc42 is localized to the plasma membrane 

and internal membranes, and accumulates in bud necks and bud tips. The 

cho1Δ/Δ mutant has impaired polarization of GFP-Cdc42 to bud necks and tips. 

There is an overall decrease in plasma membrane binding of GFP-Cdc42, and 

instead GFP-Cdc42 accumulates in the cytoplasm. Approximately 80% of wild-

type yeast cells have polarized Cdc42 localization, while only 20% of cho1Δ/Δ cells 

show polarized localization (Figure 2. 5B). This result indicates that CHO1 is 

necessary for the proper localization of total GFP-Cdc42 in C. albicans.  

We next examined the mechanism by which PS may impact GFP-Cdc42 

localization to buds and bud necks. PS is the most abundant anionic phospholipid 

of the plasma membrane, and it is largely restricted to the inner leaflet [52, 53]. A 

C-terminal polybasic region in some Rho-family small GTPases is a crucial domain 

for lipid interaction, where several positively charged amino acid residues promote 

plasma membrane localization and have been suggested to do so via electrostatic 

interactions with negatively charged phospholipids including PS [54, 55]. To 

elucidate if this domain is crucial for localization of Cdc42 in C. albicans, we 

constructed a GFP-Cdc42 mutant where the four C-terminal lysines were mutated 

to glutamines (GFP-Cdc42K183-187Q) and observed its localization in C. albicans
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Figure 2. 4. Cdc42 activity is upregulated in cho1Δ/Δ compared to wild-type. 
(A) GTP-Cdc42 was pulled-down with beads conjugated with GST-CRIB, which specifically binds with active GTP-Cdc42/Rac1. Cdc42 that 

was pulled down was then detected via Western blotting with anti-Cdc42 antibody. The amount of total Cdc42 in the extract was also probed 

as a control. The GTP-Cdc42/Total-Cdc42 ratio is expressed as a percentage of wild-type. (B) CaCRIB-GFP localization is not altered upon 

CHO1 deletion. The CaCRIB-GFP probe was transformed into Candida strains to investigate the active GTP-Cdc42 localization. The scale 

bar represents 10μm. (C) Cells from Figure 2. 4B were analyzed by microscopy for the number that exhibited CaCRIB-GFP localization to 

buds. Quantification is of three biological replicates, and each replicate has at least 50 cells. 
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Figure 2. 4 Continued 
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wild-type cells. As shown in Figure 2. 5A, most of the GFP-Cdc42K183-187Q was 

associated with endomembrane structures instead of the plasma membrane. Of 

note, the preferential accumulation of GFP-Cdc42 seen in the buds of normal wild-

type yeast was absent in the mutated Cdc42K183-187Q protein. This indicates that 

the C-terminal polybasic region of Cdc42p is important for association of total GFP-

Cdc42 with plasma membrane. However, this does not show if the C-terminal 

domain is regulating localization by directly interacting with PS, although that is 

one possibility.   

In contrast, as observed in Figure 2. 4, GTP-bound unmodified Cdc42 is still 

able to associate with the bud necks and tips in the absence of CHO1, indicating 

that active Cdc42 can still localize to the appropriate places in the cell. The 

discrepancy we see between total GFP-Cdc42 localization and localization of 

GTP-bound native Cdc42 could be caused by the GFP or reflect differences 

between total versus active Cdc42 populations.   

 

Activation of Cdc42 activity contributes to cell wall unmasking 
The above results indicate that the GTPase Cdc42 has increased activation in 

cho1Δ/Δ (Figure 2. 4). To further investigate if this up-regulated Cdc42 activity 

contributes to β (1,3)-glucan exposure, we constructed a mutant strain that 

ectopically expresses a CDC42 hyperactive allele (CDC42G12V) in wild-type. 

Introduction of CDC42G12V decreases the intrinsic GTPase activity, therefore 

increasing the proportion of Cdc42 in an active GTP-bound state [18]. Cells 

overexpressing CDC42G12V exhibited decreased proliferation in YPD liquid and 

poor growth on YPD agar plates [32]. Similarly, a hyper-activated CDC42G12V 

mutant was dominant lethal in S. cerevisiae [56]. Our strain is viable, but does 

exhibit growth defects, so we measured β (1,3)-glucan exposure in the CDC42G12V 

mutant by staining with anti-β (1,3)-glucan antibody, but also co-stained cells with 

propidium iodide to control for cell-viability. Propidium iodide staining revealed that 

the overnight CDC42G12V culture contained fewer live cells compared to wild-type 

(Figure S.2. 4A). However, within the live cell populations for both strains, there 

was a much greater level of β (1,3)-glucan exposure in the CDC42G12V cells 
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Figure 2. 5. Cho1 is essential for GFP-Cdc42 polarization at the plasma membrane.  
(A) GFP-Cdc42 localization is examined for each strain by microscopy. The red arrows indicate the fluorescence concentrated at the bud 

tips or bud necks. The scale bar represents 5μm. (B) Quantification of the degree of polarization of GFP-Cdc42 in Candida cells. A 

minimum of 50 cells was counted for each strain and the imaging experiment was repeated three times. The statistical analysis was 

carried out by One-way ANOVA. ****, p<0.0001. 
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compared to wild-type (Figure S.2. 4B). This suggests that increased Cdc42 

activity causes β (1,3)-glucan masking, with the caveat that CDC42G12V is clearly 

having pleiotropic effects. 

 
The Rho1-associated signaling pathway does not have a clear role in 
causing β (1,3)-glucan exposure  
Our data indicate that the Cek1 pathway can cause β (1,3)-glucan exposure when 

hyper-activated, and this may help explain the increased β (1,3)-glucan exposure 

seen in the cho1Δ/Δ mutant. However, the Mkc1 pathway is also upregulated in 

cho1Δ/Δ (Figure 2. 2), and we wanted to determine if activation of this pathway 

plays a role in β (1,3)-glucan exposure as well. First, both MKC1 alleles were 

disrupted via the C. albicans CRISPR-cas9 system [45] in wild-type and cho1Δ/Δ. 

Western blotting was performed to confirm that Mkc1 was not expressed in the 

mutants with both MKC1 alleles disrupted (Figure S.2. 5). Immunostaining with 

anti-β (1,3)-glucan antibody on wild-type, cho1Δ/Δ, mkc1Δ/Δ and 

cho1Δ/Δmkc1Δ/Δ strains showed that deletion of MKC1 did not rescue the β (1,3)-

glucan exposure phenotype in the cho1Δ/Δ mutant (Figure 2. 6). In fact, flow 

cytometry demonstrated that the mkc1Δ/Δcho1Δ/Δ double mutant cells exhibited 

increased levels β (1,3)-glucan exposure compared to cho1Δ/Δ (Figure 2. 6B). 

This suggests that Mkc1 MAPK probably plays a role in sustaining cell wall 

organization when CHO1 is disrupted.  

 Pkc1 acts as a signaling module to connect Rho1 to the Mkc1 MAPK 

cascade [25-27]. We deleted one PKC1 allele in cho1Δ/Δ, and this did not 

suppress the β (1,3)-glucan exposure phenotype (Figure S.2. 6). 

Attempts to make a complete cho1Δ/Δ pkc1Δ/Δ double mutant failed. This does 

not completely test for a role for Pkc1 in unmasking but is consistent with those 

above indicating that increased activation of the Mkc1 pathway does not cause β 

(1,3)-glucan exposure.  

 We then examined if Rho1 might play a role in increased β (1,3)-glucan 

exposure in cho1Δ/Δ. Total, but not active, Cdc42 is mis-localized in the cho1Δ/Δ  

(Figure 2. 4 and Figure 2. 5), therefore, we tested the distribution of active Rho1.
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Figure 2. 6 Deletion of MKC1 in cho1Δ/Δ does not diminish β (1,3)-glucan exposure.  
(A) Cells were stained with primary anti-β (1,3)-glucan antibody and Cy3-conjugated secondary antibody and imaged by epi-fluorescent 

microscopy. The scale bar indicates 10μm.  (B) Flow cytometry was carried out to quantify β (1,3)-glucan exposure. Cells were incubated 

with primary anti-β (1,3)-glucan antibody and PE-conjugated secondary antibody. The statistical analysis was carried out by doing One-way 

ANOVA analysis. *, P=0.0485; **, P=0.0024. 
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This was achieved using a probe for active Rho1, that consists of a GFP tagged 

C. albicans Pkc1 Rho Interactive Domain (GFP-RID) [46]. In wild-type and 

cho1Δ/Δ::CHO1, GFP-RID is localized to the growth sites (i.e. buds and sites of 

cell division) (Figure 2. 7), however the signal in cho1Δ/Δ is delocalized. This 

suggests that the Rho1 cell wall remodeling system might be re-localized when 

Cho1 is disrupted. Rho1 also has multiple lysines on its extreme C-terminus, 

similar to Cdc42, thus its mislocalization in cho1Δ/Δ could be affected for similar 

reasons as observed for total GFP-Cdc42 (Figure 2. 5). Due to the lack of GFP-

Rho1, we have not examined GFP-Rho1 to find the exact localization of total Rho1 

in cho1Δ/Δ. The increased activation of Mkc1 in cho1Δ/Δ suggests that its 

upstream regulator, Rho1, might exhibit a similar increase in activation. To test if 

up-regulated Rho1 can cause β (1,3)-glucan exposure, we constructed a strain 

that ectopically expresses a hyperactive allele of RHO1Q67L in wild-type. 

Introduction of the RHO1Q67L allele decreases the ability of Rho1 to cleave GTP to 

GDP, therefore increasing the level of GTP-Rho1 [25]. As shown in Figure 2. 8A 

and B, hyper-activated RHO1Q67L did cause a significant increase in cell wall 

unmasking compared to wild-type, but not as great as that seen with STE11∆N467.   

However, examination of MAPK phosphorylation revealed that active Cek1 was 

unexpectedly upregulated along with active Mkc1 (Figure 2. 8C). Thus, the β (1,3)-

glucan exposure in the RHO1Q67L strain could be due at least in part to Cek1 

activation rather than Mkc1 (Figure 2. 8C).   

 

Discussion 
Previously, our lab showed that the enzyme for synthesizing PS, Cho1, plays a 

role in controlling β (1,3)-glucan exposure [13]. The homozygous PS synthase 

knockout mutant, cho1Δ/Δ, exhibits increased β (1,3)-glucan exposure compared 

to wild-type [13]. However, the mechanism by which cho1Δ/Δ displays the β (1,3)-

glucan exposure phenotype was unclear.  

 In this report, we identify two MAPK signaling pathways (Cek1 and Mkc1) 

that are activated in the cho1Δ/Δ mutant (Figure 2. 2), and we hypothesized that 

one or both may contribute to increased β (1,3)-glucan exposure in cho1Δ/Δ. 
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Figure 2. 7. Active GTP-Rho1 is de-localized in cho1Δ/Δ.  
(A-C) GFP-RID localization was used as proxy for active (GTP-bound) Rho1 in cells and was 

analyzed by epifluorescent microscopy. (D) Quantification of the degree of polarization of GTP-

Rho1 in Candida cells. A minimum of 50 cells were counted for each strain and this repeated three 

times. The statistical analysis was done by One-way ANOVA. *, p<0.019. 
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Figure 2. 8. Hyper-activated Rho1 causes β (1,3)-glucan exposure.  
(A-B) Candida cells were stained for β (1,3)-glucan exposure as described in Figure 2. 6. The scale 

bar represents 10μm. ***, p=0.0003.  (C) Western blotting was performed to examine the effect of 

expressing hyperactive RHO1Q67L on the regulation of downstream MAPKs activities. Phospho-

p44/42 antibody was used to detect Phospho-Cek1 and Phospho-Mkc1 and anti-tubulin, anti-Mkc1, 

and anti-Cek1 antibodies were used as controls.  
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MAPK signal transduction cascades are essential pathways for C. albicans 

adaptation to the host environment [35, 57]. Cek1 and Mkc1 are major MAPK 

pathways in this organism that play roles in cell wall regulation. The Mkc1-

associated pathway is primarily responsible for cell wall integrity, while the Cek1-

mediated signaling cascade is important for cell wall construction and hyphal 

formation [19, 58-60].  

 

Cdc42-Cek1 MAPK pathway activation can increase β (1,3)-glucan exposure 
We tested the hypothesis that one or both of these pathways can cause β (1,3)-

glucan exposure in cho1Δ/Δ by determining if they could contribute to this 

phenotype independently of loss of PS. We found confirming evidence for the Cek1 

pathway. In particular, a hyperactive form of Ste11 (STE11ΔN467), the MAPKKK that 

activates Cek1 (Figure 2. 1), stimulates significant β (1,3)-glucan exposure in 

yeast-form cells compared to wild-type cells (Figure 2. 3). This confirms an 

assertion that β (1,3)-glucan can be unmasked in Cek1 inducing conditions [48]. 

The cells with STE11∆N467-induced unmasking also exhibit more TNF-α secretion 

from the macrophages (Figure 2. 3D).  

Ste11 is downstream of the small GTPase Cdc42 (Figure 2. 1), which has 

been well-studied in C. albicans [18, 32, 46, 61]. Cdc42 is involved in cellular 

proliferation and bud emergence and activates the downstream protein kinase 

Cst20 [32], which also controls the activation of the Cek1 MAPK cascade including 

Ste11 [15, 18, 58]. To control accurate cellular function, Cdc42 cycles between an 

active GTP-bound and inactive GDP-bound state [61]. By performing pull-downs 

of GTP-Cdc42 with CaCRIB-GST and Western blotting, we have evidence that the 

level of active GTP-Cdc42 is higher in cho1Δ/Δ compared to wild-type (Figure 2. 

4A). This might be responsible for the increased activation of the downstream 

Ste11-associated cascade. We did not test to see if disruption of CEK1 in the 

cho1Δ/Δ strain would decrease β (1,3)-glucan exposure because cek1Δ/Δ also 

exhibits more exposed β (1,3)-glucan than wild-type [15], and this would be 

uninterpretable.   
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Possible roles of PS in regulating Cdc42 activity and localization 
The impact of PS on β (1,3)-glucan exposure is likely indirect, but may be occurring 

through its role in regulating Cdc42. The loss of PS correlates with increased 

Cdc42 activity, which in turn can lead to activation of the Cek1 pathway, which 

does cause β (1,3)-glucan exposure when activated (Figure 2. 3). However, the 

mechanism by which loss of PS causes Cdc42 activation is currently unclear, but 

possibilities are discussed below. 

PS may impact Cdc42 activity indirectly by regulating the GTPase activating 

proteins (GAPs) for Cdc42. These GAPs act as repressors of Cdc42 activity. 

Previous investigations identified that PS stimulates the GAP activity of Rga1 and 

Rga2 toward Cdc42 in S. cerevisiae [62]. Given that C. albicans cho1Δ/Δ lacks PS 

[16], this may result in less inhibition of the GAP activity, and in turn results in less 

inhibition of Cdc42 activity. 

Alternatively, there are data indicating that PS can control the localization 

of a subpopulation of Cdc42. For example, we found that GFP-tagged Cdc42 is 

mislocalized in C. albicans cho1Δ/Δ. Moreover, mutating the C-terminal lysines to 

glutamine in GFP-Cdc42 led to mislocalization of GFP-Cdc42K183-187Q in wild-type 

cells (Figure 2. 5). This is similar to what has been observed in S. cerevisiae, where 

Cdc42 localization is affected by both PS and the basic lysine residues at the C-

terminal domain of Cdc42 [52, 55]. However, in contrast to this, the localization of 

active GTP-Cdc42 in C. albicans, as measured by CaCRIB-GFP (binds to GTP-

Cdc42/Rac1) appears to be focused in the bud necks and tips like wild-type (Figure 

2. 4B). Therefore, PS might control only a subpopulation of Cdc42 localization. It 

is also possible that GFP-Cdc42 does not fully represent endogenous Cdc42 in its 

activated state. 

The mechanism by which PS controls Cdc42 localization in C. albicans 

remains to be fully elucidated. One model suggests that Cdc42 localization is 

controlled in part through the interaction between the negatively charged PS head 

group and the lysines at the C-terminus of Cdc42 (Figure 2. 5). However, this is 

only a model at this point and remains to be tested, as the impact of PS on GFP-

Cdc42 may be indirect. These lysines may interact with another protein that is 
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required to localize Cdc42 that itself is impacted by PS. In addition, the correct 

localization of active Cdc42 in cho1Δ/Δ indicates that other factors, perhaps GEFs 

or GAPs, play an important role in Cdc42 localization, independently of PS (Figure 

2. 4). 

 

Activation of the Mkc1 MAPK pathway does not appear to be sufficient to 
cause unmasking  
The other MAPK pathway upregulated in cho1Δ/Δ is the Mkc1 pathway (Figure 2. 

1 and Figure 2. 2). We tested for its role in cho1Δ/Δ-dependent β (1,3)-glucan 

exposure by generating a cho1Δ/Δmkc1Δ/Δ double mutant, and this did not 

diminish β (1,3)-glucan exposure (Figure 2. 6). Moreover, we disrupted one allele 

of the upstream kinase Pkc1, and this also did not diminish β (1,3)-glucan exposure 

(Figure S.2. 6). Finally, a hyperactive GTP-bound form of Rho1 (RHO1Q67L) was 

generated, and it did lead to modest β (1,3)-glucan exposure compared to wild-

type, however surprisingly it also led to increased phosphorylation of Cek1 as well 

as Mkc1 (Figure 2. 8), thus the increase may be caused by Cek1 upregulation.   

An alternative role for Mkc1 may be to diminish β (1,3)-glucan exposure in 

stress conditions. For example, the mkc1Δ/Δ mutant did not exhibit enhanced β 

(1,3)-glucan exposure compared to wild-type, but the cho1Δ/Δ mkc1Δ/Δ double 

mutant exhibited greater β (1,3)-glucan exposure than cho1Δ/Δ alone. This 

coupled with the mislocalization of active Rho1 in cho1Δ/Δ (Figure 2. 7), may 

indicate that Mkc1 is activated to compensate for cell wall disfunction that is 

caused by the cho1Δ/Δ mutation, perhaps even due to upregulated Cek1. 

Surprisingly, our results with the Mkc1 pathways relationship to PS contrast 

with what is observed for the orthologous pathway in S. cerevisiae. In baker yeast, 

PS has been shown to be necessary for the activation of the C. albicans Mkc1 

homolog Slt2 in S. cerevisiae [22, 63]. However, we observed that loss of PS 

synthase in C. albicans causes increased Mkc1 activity (Figure 2. 2), suggesting 

that there are fundamental differences in the manner through which the Mkc1-

associated cascade is regulated in pathogenic versus non-pathogenic yeasts. This 
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report also sets the stage for better understanding how the phospholipid PS 

synthase influences GTPase activity and localization in this pathogenic organism.  

 
Conclusions 
Candida albicans is able to diminish its detection by innate immune cells through 

masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily 

glycosylated mannoproteins (mannan) [12, 64, 65]. Once exposed, this glucose 

polymer antigen can be detected by Dectin-1, a C-type signaling lectin found on 

host immune cells [10, 11]. However, it usually takes several days after infection 

before β (1,3)-glucan is exposed to the immune system [64]. Therefore, if the β 

(1,3)-glucan exposure process could be induced more rapidly, the immune 

responses would be expected to improve and clear fungal pathogens more 

effectively [12, 64, 66-68]. 

Identification of specific pathways that contribute to β (1,3)-glucan exposure 

when activated could help elucidate future drug targets that can induce β (1,3)-

glucan exposure to improve immune response. Thus, compounds that specifically 

activate Cek1 may be useful in this regard. If such compounds were combined with 

the current azole class of antifungals, which act statically, and immune detection 

were simultaneously enhanced, this could potentially enhance the clearance of 

fungi. 
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Appendix  
Table S.2. 1. C. albicans strains used in this study 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Strain Parent Genotype Source or 

reference 

SC5314 Clinical 

isolate 

Prototrophic wild type [69] 

YLC337 SC5314 cho1Δ/Δ [16] 

SED022 YLC337 cho1Δ/Δ::CHO1 [13] 

YLC375 SC5314 psd1Δ/Δ psd2Δ/Δ [16] 

TC001 SC5314 Wild-type PMET3-GFP-CDC42 This study 

TC002 YLC337 cho1Δ/Δ PMET3-GFP-CDC42 This study 

TC003 SED022 cho1Δ/Δ::CHO1 PMET3-GFP-

CDC42 

This study 

TC004 YLC375 psd1Δ/Δpsd2Δ/Δ PMET3-GFP-

CDC42 

This study 

TC005 SC5314 mkc1Δ/Δ This study 

TC006 SC5314 Wild-type PMET3-GFP-

CDC42K183-187Q 

This study 

TC007 SC5314 rac1Δ/Δ This study 

TC011 SC5314 Wild-type PMAL-STE11ΔN467 This study 

TC033 YLC337 cho1Δ/Δrac1Δ/Δ This study 

TC034 YLC337 cho1Δ/Δmkc1Δ/Δ This study 

TC046 SC5314 Wild-type GFP-RID This study 

TC064 TC033 cho1Δ/Δrac1Δ/Δ CRIBGFP This study 

TC071 YLC337 cho1Δ/Δ GFPRID This study 

TC072 SED022 cho1Δ/Δ::CHO1 GFPRID This study 

TC073 TC007 rac1Δ/Δ CRIBGFP This study 

TC078 SC5314 Wild-type PENO1-CDC42G12V This study 

TC083 SC5314 Wild-type PENO1-RHO1Q67L This study 

TC107 SC5314 Wild-type PKC1/pkc1Δ This study 

TC110 YLC337 cho1Δ/Δ PKC1/pkc1Δ This study 
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Table S.2. 2. Plasmids used in this study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain Name Description Source 

pYLC314 CaNAT-PMET3, ampR [41] 

pTC001 CaNAT-PMET3-GFP-CDC42, ampR, This study 

pYLC146 FLP-CaNAT, chloraR This study 

pBT1 CaNAT-PENO1, ampR This study 

pExpArg-

pADH1CRIBGFP 

pExpArg-pADH1CRIBGFP 
[46] 

pTC009 pExpArg-pADH1CRIBGFP+HYGR This study 

pTC014 CaNAT-PMET3-GFP-CDC42K183-187Q, ampR This study 

pV1393 FLP-CAS9-CaNAT-SNR52p-sgRNA, ampR [45] 

pTC015 pV1393 CaMKC1-sgRNA, ampR This study 

pTC018 pV1393 CaRAC1-sgRNA, ampR This study 

pTC019 CaNAT-PMAL, ampR, This study 

pTC020 pTC019 CaSTE11ΔN467, ampR This study 

pTC029 pExpArg-pADH1CRIBGFP+HygR This study 

pExpArg-

pACT1GFPRID 

pExpArg-pACT1GFPRID, ampR 
[46] 

pTC033 pExpArg-pACT1GFPRID+NATR This study 

pTC034 pBT1 CaCDC42, ampR This study 

pTC035 pBT1 CaRHO1, ampR This study 

pTC037 pBT1 CaCDC42G12V, ampR This study 

pTC038 pBT1 CaRHO1Q67L, ampR This study 

pTC041 pYLC146 CaPKC1-KO, chloraR This study 
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Table S.2. 3. Primers used in this study 

Name Sequence Description 

TCO1 GATTGTGGCTCATAGTAAC Primer-F to check if pTC1/pTC14 integrated into pMET3 locus 

TCO2  AGTAGCATCACCTTCACCT Primer-R to check if pTC1/pTC14 integrated into pMET3 locus 

TCO8 AAAAGAGCTCAAAAGTATAGGATAAAACATAAT Primer-R for CaRHO1 amplification with SacI flanking  

TCO15 AAAGCGGCCGCCGTCAAAACTAGAGAATAATAAG Primer-F to amplify SAT1 resistance gene with NotI flanking  

TCO16 AAAGCGGCCGCGACCACCTTTGATTGTAAA Primer-R to amplify SAT1 resistance gene with NotI flanking  

TCO28 TATATTATGGCAGATCCGTAA Primer-R at CaMKC1+23bp for colony PCR to detect if the 
MKC1 repair template integrated into the chromosome 

TCO29 AACCCATCTACAGTCTCAAA Primer-R at CaMKC1+1097 for colony PCR to detect if the 
MKC1 repair template integrated into the chromosome 

TCO32 ATTTGAGAACCCCGACGAAAATGCTG  Primer-F at CaMKC1+602 to amplify MKC1 SgRNA 

TCO33 AAAACAGCATTTTCGTCGGGGTTCTC Primer-R at CaMKC+621 to amplify MKC1 SgRNA 

TCO36 AAAACTGCAGTTGATATTTTTGTCTAGTACC Primer-F at CaMAL2-543 to amplify MAL2 promoter 

TCO37 AAAACTGCAGTGTAGTTGATTATTAGTTAAAC Primer-R at CaMAL2-1 to amplify MAL2 promoter 

TCO38 ATTTGAACCAATCAAATTAGGATTAG Primer-F at CaRAC1 to amplify RAC1 SgRNA 

TCO39 AAAACTAATCCTAATTTGATTGGTTC Primer-R at CaRAC1 to amplify RAC1 SgRNA 

TCO42 AAAAGGATCCATGGATTCGAGATCCATAAT Primer-F to amplify CaSTE11ΔN467 with BamHI flanking  

TCO43 AAAAGGATTCCTCGAGGGAAATAACTACTA Primer-R to amplify CaSTE11ΔN467 with BamHI flanking  

TCO44 ATTTGAGTCGAAAATAAGTATTCCGG Primer-F at CaPKC1 to amplify PKC1 SgRNA 

TCO45 AAAACCGGAATACTTATTTTCGACTC Primer-R at CaPKC1 to amplify PKC1 SgRNA 

TCO48 AAGACACGGTATAAAAATGG Primer-F at pMAL2 region of pTC19 to check if pTC19 
reintegrated into the chromosome  

TCO49 ACAAGTTGTCAATGATATTAG Primer-F for colony PCR to detect if the PKC1 repair template 
integrated into the chromosome 
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Table S.2. 3. Continued 

Name Sequence Description 

TCO50 ATCACTTGAAGGAGATACTG Primer-R for colony PCR to detect if the PKC1 repair template 
integrated into the chromosome 

TCO51 AGCATTAAATCAGTCGTAGT Primer-F at CaRAC1+7bp for colony PCR to detect if the RAC1 
repair template integrated into the chromosome 

TCO52 TCTTTTCTTACCAGTACCAG Primer-R at CaRAC1+675bp for colony PCR to detect if the 
RAC1 repair template integrated into the chromosome 

TCO57 TTTCCACAATCAAACATCCAA Primer-R at CaSTE11ΔN467 region of pTC19 to check if pTC19 
reintegrated into the chromosome  

TCO59 AAAAGGTACCTACAAGAAAGTAAAGCCAAAG Primer-F at CaPKC1-501bp to amplify CaPKC1 promoter with 
KpnI flanking  

TCO60 AAAACTCGAGATTGGAATTACACTGATCTC Reverse primer at CaPKC1-1bp to amplify CaPKC1 promoter 
with XhoI flanking  

TCO62 AAAAGAGCTCGATACAAATAGAGAAGTTTCC Primer-R at +700bp of CaPKC1 3'NTR to amplify CaPKC1 
terminator with SacI flanking  

TCO63 GCAATAGTAAGTAGCGAATAA Primer-F at CaPKC1-688 to check if the linearized pTC41 
integrated into chromosome 

TCO72 AAAAGCGGCCGCATGGTTAACGGTCCAGCTGA Primer-F for CaRHO1 amplification with NotI flanking  

TCO74 ATTATGGGATACTGCTGGTCTAGAAGATTATGATAGATTAA Primer-F for point mutation of CaRHO1R67L 

TCO75 TTAATCTATCATAATCTTCTAGACCAGCAGTATCCCATAAT Primer-R for point mutation of CaRHO1R67L 

TCO76 TGTGTTGTTGTCGGTGATGTTGCCGTTGGTAAAACTTGCT Primer-F for point mutation of CaCDC42G12V 

TCO77 AGCAAGTTTTACCAACGGCAACATCACCGACAACAACACA Primer-R for point mutation of CaCDC42G12V 

TCO92 AAAGCGGCCGCTCGATATTGCTAGAGGCAAA Primer-F to amplify Hygromycin resistant gene 

TCO93 AAAGCGGCCGCATTTTATGATGGAATGAATGG Primer-R to amplify Hygromycin resistant gene 

TCO101  AAAAGCGGCCGCATGCAAACTATAAAATGTGTTG Primer-F to amplify CaCDC42 with NotI flanking  

TCO110 AAAAGCGGCCGCTGATTAAAGTAGATATATAATAATA Primer-F at +1bp of CaPKC1 3'NTR to amplify CaPKC1 
terminator with NotI flanking  

TCO988 AAAAGGATCCATGTCTAAAGGTGAAGAATTA Primer-F to amplify EGFP with BamHI flanking  
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Table S.2. 3. Continued 

Name Sequence Description 

TRO989 AAAAGGATTCTTTGTACAATTCATCCATAC Primer-R to amplify EGFP with BamHI flanking  

TRO993 TTGGTGATGGTCCAGTCTTGT Primer-F at the EGFP region of pTC1 to check if EGFP and 
CDC42 ligated in a correct orientation 

TRO994 CAGAACACTCAACATACTTGACAGC Primer-R at CaCDC42+463bp to check if EGFP and CDC42 
ligated in a correct orientation 

TRO995 AAAAGAGCTCGCAGCTGCAGCTGCAGCTGCAGCTCAAACTA
TAAAATGTGTTGT Primer-F to amplify Cdc42 with SacI flanking  

TRO996 AAAAGAGCTCTGATTTATATTATGTCTAGAGT Primer-R to amplify CaCDC42 with SacI flanking  

JCO95 GATTATTAGTTAAACCACTGC Primer-R at pMAL2 of pTC41 to check if the linearized pTC41 
integrated into chromosome  

BTO30 AAAAGGATTCAGGTCTGTCATATTTCTATC Primer-F to amplify ENO1 promoter  

BTO31 AAAAGCGGCCGCGTTGTAATATTCCTGAATTATC Primer-R to amplify ENO1 promoter  

JCO165 AAAGAATTCCGTCAAAACTAGAGAATAATAAAG Primer-F to amplify pMET3-SAT1 

JCO166 AAAGAATTCGTTTTCTGGGGAGGGTATTT Primer-R to amplify pMET3-SAT1 

TCO34 CTTAAAATTTGTGACTTTGGTTTAGCAAGAGGGTTTTCTGAG
AACCCCTAAGAATAAGCTT CaMKC1-F for crispr-cas9 repair template  

TCO35 CCCTGTACCATCTGGTGGCAACATACTCTGTCATAAACTATT
AAGCTTATTCTTAGGGGTTCT CaMKC1-R for crispr-cas9 repair template 

TCO40 GTTTTTGATAATTATTCAGCCTCAGTTATGATTGATGGCGAAC
CAATCTAATAAGGATAAGCTT CaRAC1-F for crispr-cas9 repair template 

TCO41 GTCTTAATCTATCATATTCTGATTGACCAGCGGTATAAGCTTA
TCCTTATTAGATTGGTT CaRAC1-R for crispr-cas9 repair template 

TCO46 AGATTCAATTTATGTTGCAATATTTGGAATTCAAACTCCAGAT
CTAAAATAAGTAATCCTAA CaPKC1-F for crispr-cas9 repair template 

TCO47 CCATCCATAAGATAAAGATGAGACAATTTTTTATTGGCTTAG
GATTACTTATTTTAGATCT CaPKC1-R for crispr-cas9 repair template 
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Figure S.2. 1. STE11ΔN467 exhibited significantly increased β (1,3)-glucan exposure compared 
to wild-type cells.  

Overnight cultures of Candida cells were incubated with anti-β (1,3)-glucan primary antibody and 

PE-conjugated secondary antibody, followed by flow cytometry to quantify the fluorescence 

intensity. Data represent three biological replicates. The statistical analysis was done by One-way 

ANOVA. ***, P=0.0004; *, p=0.0137. 
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Figure S.2. 2. Growth curves were measured to determine the growth rate of strains in YPD 
vs YPM.  
Cells were grown overnight in YPD, diluted back to 0.1 OD600 and transferred to fresh YPD or 

YPM. A growth curve was performed with three replicates per condition, and plotted based on the 

growth rate of different strains measured in 48 hrs. The growth at each time-point between YPD 

and YPM cultures of STE11ΔN467 were compared by Two-way ANOVA (****, p<0.0001; *, 

p=0.0286).  The same comparison was made between wild-type YPD and YPM culture (####, 

p<0.0001; ###, p=0.0007).  
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Figure S.2. 3. The exposed β (1,3)-glucan in STE11ΔN467 YPM cells was not restricted to bud 
scars.  
Overnight cultures of wild-type and STE11ΔN467 grown in YPM were co-stained with anti-β (1,3)-

glucan antibody and Cy3 secondary to visualize exposed β (1,3)-glucan and calcofluor white to 

visualize chitin.  
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Figure S.2. 4. CDC42G12V increases β (1,3)-glucan exposure, but also reduces the viable cell 
population.  
(A) Propidium iodide staining was performed to quantify the live cells in Candida strains. (B) β (1,3)-

glucan exposure in live (gated for propidium iodide negative cells) wild-type and CDC42G12V 

populations was measured by flow cytometry.  
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Figure S.2. 5. MKC1 was knocked out in C. albicans via CRISPR-Cas9.  
Western blotting was performed using anti-Mkc1 antibody to confirm the absence of MKC1 in the 

MKC1 knockout mutants compared to wild-type (WT) and other strains. Tubulin was probed with 

anti-tubulin antibody as a loading control.  

  



 86 

 
Figure S.2. 6. Deleting one PKC1 allele in cho1Δ/Δ did not rescue β (1,3)-glucan exposure.  
One PKC1 allele was deleted through SAT1-flipper method. Cells were then stained with anti-β 

(1,3)-glucan primary antibody and phycoerythrin (PE)-conjugated secondary antibody. The 

statistical analysis was carried out by doing One-way ANOVA. 
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CHAPTER III: Hyperactivation of Cek1 Attenuates 
Virulence in Candida albicans  
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Abstract 
Candida albicans is among the most prevalent opportunistic human fungal 

pathogens and is an important source of mortality, particularly in immune-

compromised patients. The ability to mask the immunogenic polysaccharide β 

(1,3)-glucan from immune detection via an outer layer of heavily mannosylated 

proteins is a key virulence factor of C. albicans. We previously reported that 

hyperactivation of the Cek1 Mitogen Activated Protein Kinase (MAPK) pathway 

promotes β (1,3)-glucan exposure and enhances detection of cells by 

macrophages. In this communication, we report a novel upstream regulator of 

Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. 

Lrg1 encodes a GTPase activating protein (GAP) homolog that has been reported 

to inhibit the GTPase Rho1. We find that disruption of LRG1 causes Cek1 

hyperactivation and β (1,3)-glucan unmasking, but when GTPase activation is 

measured for a panel of cellular small GTPases, the lrg1Δ/Δ mutant exhibits 

increased activation of the GTPases Cdc42 and Ras1, but not Rho1 or Rac1. 

Unmasking and Cek1 activation in lrg1Δ/Δ can be blocked by inhibition of the 

Ste11 MAPKKK, indicating that Lrg1 acts through the canonical Cek1 MAPK 

cascade. In order to determine how Cek1 hyper-activation specifically impacts 

virulence, a doxycycline repressible hyperactive Ste11ΔN467 was generated in C. 

albicans and was found to induce production of the pro-inflammatory cytokine 

TNF-α from murine macrophages. This in vitro phenotype correlates with 

decreased colonization and virulence in a mouse model of systemic infection.  
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Introduction  
Candida spp. species are the fourth most common cause of bloodstream 

infections, and the leading causes of invasive fungal infections in hospitalized 

patients in the United States [1]. Despite the presence of several effective 

antifungals, the mortality rate of these infections still exceeds 40% [1]. Current anti-

fungal drugs for Candida include polyenes, azoles, and echinocandins, however 

mortality rates are unacceptably high even after accounting for limitations like drug 

resistance or toxicity. This suggests that other therapeutic approaches need to be 

used in conjunction with anti-infectives. One approach is to improve the residual 

immune response of patients to these pathogens [2-4]. This could be improved by 

making fungal pathogens more visible to the immune system’s sensory cells. The 

fungal cell wall is a major focus for this as it is the main interface between the 

immune system and the fungus [5].  

The C. albicans cell wall is composed of three major layers, where the outer 

layer is enriched for glycosylated proteins (mannan), and the inner layer consists 

of chitin, β (1,6)-glucan and the highly immunogenic β (1,3)-glucan. Fungal 

pathogens have a diversity of mechanisms to manipulate cell wall architecture to 

mask pro-inflammatory β (1,3)-glucan epitopes from host recognition. In 

Histoplasma capsulatum, α-glucan serves a masking function by concealing the β-

glucan, while the Eng1 exoglucanase hydrolyzes β-(1,3)-glycosyl bonds and 

removes exposed β-glucans not covered by α-glucan [6, 7]. Aspergillus fumigatus 

Uge3 regulates the biosynthesis of galactosaminogalactan, a polymer that covers 

hyphal β-glucan from immune detection [8]. In C. albicans, β (1,3)-glucan is 

masked by the outer layer of mannan. In this organism, certain genetic mutations, 

treatment with the cell wall inhibitor caspofungin, or damage by neutrophils can 

expose C. albicans β (1,3)-glucan [9-11]. This exposure facilitates recognition by 

host immune cells through receptors like Dectin-1, and therefore launches immune 

responses more efficiently and rapidly, including induction of pro-inflammatory 

cytokines like tumor necrosis factor (TNF)-α for anti-fungal clearance [12]. The 

importance of β (1,3)-glucan exposure and resultant enhancement of immune 
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detection is becoming better appreciated in medical mycology and may lead to 

discoveries that will improve adjunctive therapy approaches [9, 11, 13-16].  

We previously identified that the activated GTPase Rho1 (RHO1Q67L) 

exhibited β (1,3)-glucan unmasking in C. albicans [17]. The most well-known 

contribution of Rho1 in this organism is to maintain sophisticated cell wall 

architecture through regulating several downstream effectors including the β (1,3)-

glucan synthase Fks1, protein kinase C (Pkc1), and the cell wall integrity MAPK 

cascade containing Mkc1 [18, 19]. To function accurately, Rho1 serves as a 

molecular switch by cycling between active GTP-bound and inactive GDP-bound 

state [20]. The regulatory proteins of GTPases generically include guanosine 

exchange factors (GEFs), which stimulate GTP to be loaded onto the enzyme and 

keep it in the active GTP-bound state, and GTPase-activating proteins (GAPs), 

which promote the hydrolysis of GTP and convert the enzyme into the inactive 

GDP-bound state [21-24]. In C. albicans, Lrg1 is proposed to act as the Rho1 GAP 

based on the evidence that lrg1Δ/Δ mutant and hyper-activated RHO1Q67L mutants 

both induce hyphal formation individually and ScLrg1 is a GAP for ScRho1 in 

Saccharomyces cerevisiae, suggesting that Lrg1 negatively regulates Rho1 

activity [25, 26]. However, GAP activity towards Rho1 in vitro has not been 

evaluated in C. albicans [25]. 

Cdc42 is also an essential GTPase in C. albicans, and it is required for cell 

viability, polarized growth, yeast-to-hyphal morphogenesis etc. [27, 28]. Like other 

GTPases, CaCdc42 activity is regulated by GAPs negatively and the GEFs 

positively [23]. The activated Cdc42 turns on downstream effectors including PAK 

kinase Cst20, which further initiates hyphal formation by mediating Cek1 MAPK 

cascade signaling [17, 27]. The Cek1 MAPK cascade, comprised of Ste11-Hst7-

Cek1, is primarily responsible for gene transcription involved in morphogenesis, 

cell wall stress adaption, and cell growth [17, 29-31]. In C. albicans, Cek1 has been 

reported to respond to several GTPases including Cdc42, Rho1, Ras1, and Rac1, 

although most of this data is genetic in nature [17, 32, 33]. Here, we demonstrate 

for the first time that in C. albicans, Lrg1 negatively controls Cdc42 and Ras1 

activity in vivo, but not Rho1 or Rac1. Moreover, activation of Cek1 downstream of 
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lrg1Δ/Δ occurs through the canonical Ste11 MAPKKK. Furthermore, we reveal that 

hyperactivation of Cek1 by a Ste11ΔN467 allele compromises fungal virulence in the 

mouse model of systemic infection.  

 

Methods 
Strains and growth media 
All the strains and plasmids in this study are described in Table S.3. 1 and Table 

S.3. 2, respectively. Primers used in this study were described in Table S.3. 3. The 

media used to culture strains was yeast extract-peptone-dextrose (YPD) medium 

(1% yeast extract, 2% peptone, and 2% dextrose (Thermo Fisher Scientific)) [34]. 

YPM medium (1% yeast extract, 2% peptone, and 2% maltose (Thermo Fisher 

Scientific)) was used to flip out SAT1-flipper which is under the control of maltose 

(MAL2) promoter. Doxycycline (Sigma-Aldrich, USA) was added with the working 

concentration of 0.5 µg/mL as the repressor for the tetracycline-repressing 

promoter. 

 

Strain construction 
To generate the LRG1 reintegrated strain, primers TCO68 and TCO69 were used 

to amplify the LRG1 open reading frame (ORF) and 200bp of terminator as a SacI-

NotI fragment, which was cloned into the pBT1 vector [35] between the constitutive 

ENO1 promoter and the SAT1 selective marker. The resultant pTC7 was cut with 

MscI and the linearized fragment was transformed to the lrg1Δ/Δ competent cells 

by electroporation to create the TC14 mutant. The transformation method has 

been described in [36]. 

To generate the homozygous deletion of STE11, the same protocol was 

utilized as described in [37] with minor modification. ~500 bp of 5’ promoter and 3’ 

terminator flanking the STE11 ORF were amplified as KpnI-XhoI and NotI-SacI 

fragments, by using the primers TCO155+TCO156 and TCO157+TCO158, 

respectively. These two fragments were cloned to the corresponding ends of the 

SAT1-flipper plasmid pSFS2A, respectively [38]. The resulting plasmid pTC71 was 

digested with KpnI and SacI, and the larger fragment was transformed into lrg1Δ/Δ. 
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The nourseothricin-resistant transformants were further cultured in YPM medium 

containing maltose as a carbon source to induce caFLP expression, which is under 

MAL2 promoter regulation. Successful deletion of one STE11 allele was confirmed 

by PCR with the primers TCO159+JCO95. To delete the second STE11 allele in 

the resultant Candida strain TC41, primers TCO162+TCO163 were used to 

amplify the tetracycline-repressing promoter PtetOFF with the template of plasmid 

pWTF1 [39]. The PtetOFF N-terminal was flanked by 60bp of homology to the STE11 

promoter and the C-terminal was flanked by 60 bp of homology to the STE11 open 

reading frame (ORF) located at 1402 -1461 bp. The PCR product was gel-purified 

(Qiagen Inc., Germany), and transformed into the competent Candida TC41 cells, 

and plated on YPD plates with 2mg/ml hygromycin B. The primers 

TCO181+TCO57 were utilized for colony PCR to confirm if the pWTF1 fragment 

replaced the N-terminal 1401bp of STE11 ORF on the chromosome. 

To generate the Candida strain which expresses the doxycycline regulated 

PtetOFF–STE11ΔN467, primers TCO162+TCO163 were utilized as mentioned above 

to amplify the tetracycline-repressing promoter from the template of plasmid 

pWTF1 [39]. The PCR product was transformed to the wild-type DAY286 

competent cells, and then plated on the YPD plates with 2mg/ml hygromycin B. 

TCO168+TCO169 were used to check if pWTF1 was integrated into the 

chromosome.  

To generate the GST-RID-6×His construct, primers TCO139+TCO140 were 

used to amplify the RID domain located at 1111-1908bp of the CaPKC1 ORF as a 

BamHI-SalI fragment by using C. albicans genomics DNA as template, which was 

then cloned into the expression vector pGEX to create pTC55. The resultant 

plasmid was transformed into competent E. coli BL21 cells for high protein 

expression. Primers TCO165+TCO92 were used to amplify a Candida-adapted 

hygromycin B resistance marker from pRB436 as a NotI-XbaI fragment. The PCR 

product was ligated to the corresponding sites in pYGS1244 [24], in which Rho1 

was tagged with 6×myc at the N-terminus. The resultant pTC73 was transformed 

into the Candida strains of interest.  
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To tag the N-terminus of Rac1 with GFP, TCO170+TCO175 were used to 

amplify the RAC1 ORF flanked by RsrII and Mlu, from genomic DNA extracted 

from the C. albicans DAY286 strain. The PCR product was digested and inserted 

into the corresponding locus of the plasmid pTC33 to replace the RID domain. 

TRO993 was used for sequencing to check if the RAC1 was ligated into the 

plasmid in the correct orientation. The resultant plasmid pTC76 was linearized by 

StuI restriction enzyme, followed by electroporation into Candida competent cells. 

The positive transformants selected on YPD with nourseothricin were further 

screened for GFP fluorescence by performing microscopy with a LEICA DM5500B 

epi-fluorescent microscope with a Hamamatsu Orca-ER CCD digital camera 

(Model#: C4742-80-12AG).  

To generate the hyperactive RAS1G13V allele, primers TCO185+TCO186 

were used to PCR amplify the RAS1G13V allele from the genome of the Ca79 strain 

[40].and introduce NotI and SacI restriction sites. The PCR product was digested 

and ligated into the plasmid pBT1. TCO185 was used for sequencing to check if 

the RAS1G13V allele was inserted with the correct orientation. The resultant plasmid 

pTC78 was linearized with BglII and transformed to the C. albicans competent cells 

of interest. The positive colonies were selected on YPD plates with nourseothricin 

and TCO185 and TCO186 were used to check if the fragment was located on the 

chromosome. 

 

Protein purification 
To measure Rho1 activity, we first generated a GST-RID-6×His (Rho1 Interactive 

Domain) construct that binds with GTP-Rho1 and expressed it in E. coli BL21 

strain. The overnight culture was diluted to 1:100 ratio in fresh LB medium and 

grown to OD600 0.6-0.9. IPTG (Sigma-Aldrich) was added to the final concentration 

of 5mM to induce GST-RID expression at 20°C for 20hrs. The culture was pelleted 

by centrifugation and resuspended into cell lysis buffer (50mM Tris-HCl, 500mM 

NaCl, 30mM Imidazole, 400ul of 0.25mM PMSF (phenylmethylsulfonyl fluoride), 

100ul of BME, 10mM MgCl2, and 1 protease inhibitor tablet (Roche Diagnostics 

GmbH, Mannheim, Germany)) was agitated by sonication (Sonic Dismembrator 
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F550 Ultrasonic Homogenizer, Fisher Scientific). The liquid was centrifuged for 1hr 

at 17,000rpm at 4°C. The protein is soluble and was thus located in the 

supernatant. The solution was then slowly run through a Ni-NTA column (QIAGEN 

Inc., Germany) for binding, and the beads were then gently washed with wash 

buffer (50mM Tris-HCl, PH8.0, 500mM NaCl, 30mM imidazole) to remove the 

nonspecific binding protein. To elute out the His-tagged protein, 6 rounds of 250ul 

of elution buffer (the same as wash buffer except with 300mM imidazole) was 

added. The eluted fractions were then run through a PD-10 column (GE 

Healthcare) to remove the imidazole. The product was applied to an Amicon ultra 

0.5ml-centrifugal filter unit (Merck KGaA, Darmstadt, Germany) to concentrate the 

protein. 

 

Western Blotting  
Western Blotting was performed as previously described [17]. To detect the 

phosphorylation of Cek1 and Mkc1 MAPKs, rabbit anti-Phospho-p44/42 antibody 

(Cell Signaling Technology, Inc., USA) at 1:2,000 dilution was utilized. The 

expression of total Mkc1 was detected with the primary rabbit-anti-total Mkc1 Ab 

at a 1:1000 dilution. The expression of total Cek1 was measured with a rabbit-anti-

total Cek1 Ab at a 1:1000 dilution. The secondary antibody against Phospho-

p44/42 Ab, Mkc1 Ab and Cek1 Ab was IRye800CW goat anti–rabbit IgG (H+L) 

conjugate (green, 1:10,000 dilution; LI-COR Biosciences). Tubulin was detected 

as a control with rat anti-tubulin primary antibody (Bio-Rad Laboratories Inc., USA) 

at a 1:1000 dilution and IRDye 680RD Goat-anti-Rat IgG (H+L) (red, 1:10,000 

dilution; LI-COR Biosciences).  

 

Pull-down assay for active GTPases  
GTPase activity assay was performed as previously described [17]. The procedure 

of cell wall disruption and protein concentration determination followed the above-

mentioned Western Blotting protocol. To detect Cdc42 activity, 1,500 μg of total 

protein was used for the pull-down procedure following the instruction from the 

Active Cdc42 Pull-Down and Detection Kit (Thermo Fisher Scientific, USA). The 
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same kit was used to pull down the active GTP-bound GFP-tagged-Rac1 (See 

Strain Construction), since the GST-Pak1 provided in the kit can also bind with 

active Rac1. GTPase Ras1 activity was evaluated following the protocol from the 

Active Ras1 Pull-Down and Detection Kit (Thermo Fisher Scientific, USA). To pull-

down the active GTP-bound c-myc-tagged Rho1 (See Strain Construction), the 

Active Rho Pull-Down and Detection Kit (Thermo Fisher Scientific, USA) was 

purchased and the instruction was followed, except that the purified GST-

Rhotekin-RBD peptides provided in the kit was replaced with the purified GST-

RID-6×His that we generated (See Protein Purification above) for optimized 

binding capacity between GTP-Rho1 and the RID domain.  

The antibody used to detect Cdc42 was rabbit polyclonal anti-S. cerevisiae 

Cdc42 (kindly sent by Dr. Doug Kellogg at University of California, Santa Cruz). 

The antibody to detect Ras1 was mouse monoclonal anti-Ras1 antibody (Anti-Ras, 

clone RAS10, Millipore Sigma, USA) with the working concentration at 1.5µg/ml. 

The antibody for c-myc-Rho1 detection was mouse anti-c-Myc Monoclonal 

Antibody (9E10) (Thermo Fisher Scientific, USA) at 1:1000 dilution. The rabbit anti-

GFP antibody was used for the GFP tagged-Rac1 detection (Sigma Inc., USA). 

The antibody to recognize the loading control tubulin was rat anti-tubulin (Bio-Rad 

Inc., USA). The secondary antibody included IRye800CW goat anti–mouse IgG 

(H+L) conjugate (1:10,000; LI-COR biosciences), IRye800CW goat anti-rabbit 

IgG(H+L) conjugate (1:10,000; LI-COR biosciences), and IRye600RD goat anti-rat 

IgG(H+L) conjugate (1:10,000; LI-COR biosciences). Densitometry quantification 

of active GTP-bound GTPases versus the total GTPases input bands was 

performed with ImageJ (National Institutes of Health, Bethesda, MD). 

 

Immunofluorescent imaging of β (1,3)-glucan exposure 
To stain the lrg1Δ/Δ mutant, Candida cells were grown overnight in YPD at 30 °C. 

The culture was collected and processed to immunostaining. The staining and 

imaging protocol were described as [17] 
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Flow cytometry 
To stain the STE11ΔN467 strain under the regulation of PtetOFF promoter over-time, 

overnight cultures in YPD with doxycycline were diluted back to 0.2, and cells were 

collected after 1h, 2h, 4h and 6h grown in the fresh YPD medium without 

doxycycline. To stain the lrg1Δ/Δ mutant, overnight culture in YPD was collected 

for immunostaining. The staining protocol and gating strategy was followed as 

described in [17]. Flow cytometry data were obtained for 100,000 gated events per 

strain and experiments were performed in triplicate, and the data were analyzed 

using FlowJo software package with version 10.11 (FlowJo LLC, OR, USA).  

 
Enzyme-linked immunosorbent assay (ELISA) of TNF-α 
To activate Ste11ΔN467 expression under the PtetOFF regulation, the PtetOFF-

STE11ΔN467 mutant was grown in YPD without doxycycline overnight. RAW264.7 

murine macrophages were in used in this assay. ELISA kit instructions (R&D 

Systems, USA) were followed. Each sample has three individual wells, and the 

statistical analysis was performed by using Two-way analysis of variance ANOVA 

(GraphPad Prism, v7.04 software).  

 

Mouse model  
Outbred male ICR mice were used in this study. C. albicans wild-type DAY286 and 

PtetOFF–STE11ΔN467 strains were cultured overnight at 30°C in 50ml YPD with 0.5 

µg/ml of doxycycline to repress Ste11ΔN467 expression. The overnight culture was 

counted via hemocytometer and diluted to 107 cells/ml. The diluted fungal cells 

were plated on YPD plate to test the viability. Mice were injected via the lateral tail 

vein with 0.1 ml of the fungal cells. Mice were given drinking water either co-

supplemented with 2 mg/ml doxycycline plus 5% sucrose to cover the bitter taste 

of the antibiotics [41] or given 5% sucrose water alone. Mice were monitored 

closely for 21 days for signs of illness. For the fungal burden counting experiment, 

mice were sacrificed 4 days post infection. Kidneys were harvested, homogenized 

and serial diluted in water, and plated on YPD plate. The plates were incubated at 

30°C for 2 days to determine cfu per gram of kidney.   
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Ethics statement 
All mouse model experiments in this study were performed under an animal 

protocol (1083) that was approved by the University of Tennessee Institutional 

Animal Care and Use Committee (IACUC) and followed the ethical guidelines set 

forth by the National Institute of Health (NIH) for the ethical treatment of animals. 
 

Results  
The lrg1Δ/Δ mutation causes β (1,3)-glucan exposure in C. albicans   
Lrg1 homologs impact several cell wall-related functions in fungi (e.g. cell wall 

integrity, cell fusion, and morphogenesis) [25, 26, 42, 43]. In S. cerevisiae, Lrg1 

stimulates the intrinsic GTPase activity of Rho1, and therefore converts Rho1 to 

its inactive, GDP-bound state [26, 42, 43]. We previously showed that hyperactive 

Rho1 exposes β (1,3)-glucan in the cell wall, but appeared to act through the Cek1 

MAPK rather than Mkc1 [17]. Since Lrg1 has been described as the Rho1 GAP in 

C. albicans, we hypothesized that disruption of LRG1 would cause β (1,3)-glucan 

exposure. To this end, we performed immunofluorescence staining with anti-β 

(1,3)-glucan antibody to examine if the lrg1Δ/Δ mutant exhibits increased β (1,3)-

glucan exposure. As shown in Figure 3. 1A, β (1-3)-glucan is noticeably more 

exposed in lrg1Δ/Δ cells than in wild-type or the complemented strain, where Lrg1 

expression is under the regulation of constitutive promoter PENO1. Flow cytometry 

confirms that lrg1Δ/Δ has significantly increased levels of β (1,3)-glucan 

unmasking compared to control strains (Figure 3. 1B). This reveals that Lrg1 acts 

as a repressor of cell wall β (1,3)-glucan unmasking in C. albicans.  

 

LRG1 disruption up-regulates the Cek1 MAPK activity 
Several MAPKs pathways are involved in the regulation of cell wall architecture in 

C. albicans [29, 44], and improper activation of the Cek1 MAPK by upstream 

GTPases such as Cdc42 or Rho1 causes β (1,3)-glucan exposure [17]. Lrg1 is a 

proposed Rho1 GAP in C. albicans [25], which should upregulate Mkc1 and 

possibly Cek1. To this purpose, we performed Western blotting to detect the 

activated (phosphorylated) forms of Cek1 and Mkc1 in C. albicans. As seen in 
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Figure 3. 1. Lrg1 represses β (1,3)-glucan unmasking in C. albicans.  
(A) Cells cultured overnight in YPD medium were stained with anti-β (1,3)-glucan antibody and 

Cy3-conjugated secondary antibody. Cells were imaged by epi-fluorescent microscopy. (B) Cells 

were stained with anti-β (1,3)-glucan antibody and Phycoerythrin (PE) –conjugated secondary 

antibody. Flow cytometry was performed to quantify β (1,3)-glucan exposure in different Candida 

cells. The statistical analysis was performed by doing One-way ANOVA. ****, p<0.0001 
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Figure 3. 2, lrg1Δ/Δ does not visibly increase the intensity of phosphorylated Mkc1, 

but instead Cek1 was hyper-phosphorylated up to 15-fold compared to wild-type. 

This indicates that Lrg1 represses the activity of Cek1 instead of Mkc1 in C. 

albicans, and this might be responsible for the cell wall exposure in the lrg1Δ/Δ 

mutant. 

 
 LRG1 disruption hyper-activates the small GTPases Cdc42 and Ras1 
The small GTPase Cdc42 sits upstream of Cek1, and is essential for many cellular 

functions, including cellular polarized growth and bud emergence in C. albicans 

[27, 45]. Regulation of the GTP/GDP-binding state controls the Cdc42 activation 

state [27]. Given that Cdc42 is known to control Cek1 MAPK activity in C. albicans, 

we hypothesized that the lrg1Δ/Δ disruption activates Cek1 through Cdc42. To test 

this, we measured Cdc42 activity by quantifying the amount of GTP-bound active 

Cdc42 in vivo. As seen in Figure 3. 3A and B, the concentration of GTP-bound 

Cdc42 was clearly up-regulated compared to that of wild-type DAY286 and the 

reintegrated strain. Thus, this suggests that Lrg1 controls Cdc42 activity negatively 

in C. albicans. Cdc42 has been shown to control Cek1 phosphorylation in this 

organism [17], so LRG1 disruption-dependent Cek1 hyper-activation may be 

mediated by Cdc42.  

There is a possibility that Lrg1 impacts other Cek1-associated GTPases. To 

address this, we measured the activity of the GTPase Rac1, which has been 

implied to function upstream of Cek1 [33]. Rac1 activity was assessed by pulling 

down the activated GTP-bound GFP-tagged Rac1. The Cdc42/Rac1 interactive 

binding (CRIB) protein used in the Cdc42 pull-down assay were used as the probe 

to isolate GTP-bound Rac1, while GFP antibody was utilized to detect the amount 

of GFP-Rac1 specifically. As shown in Figure S.3. 1, the level of GTP-bound GFP-

Rac1 in the lrg1Δ/Δ mutant is reduced compared to that of wild-type. This suggests 

that Rac1 and Cdc42 might work antagonistically when Lrg1 is disrupted in C. 

albicans.   

Ras1 is an important GTPase for filamentation and controls the cyclic AMP 

signaling cascade and protein kinase A. It has been suggested to act upstream of 
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Figure 3. 2 .The Cek1p MAPK is hyper-phosphorylated in lrg1Δ/Δ cells compared to wild-
type  
(A). Proteins were isolated from Candida cells sub-cultured 3 hrs into log phases after grown 

overnight in YPD at 30°C. Western blotting was performed with anti-phospho-p44/42 antibody, 

which stains both phosphorylated Mkc1 and Cek1, as well as anti-Mkc1 and -Cek1 antibodies, 

which stain total Mkc1 and Cek1 proteins, respectively. Phospho-MAPKs signal was expressed as 

a percent of wild-type (WT) control after being normalized to the tubulin loading control. (B). The 

P-Mkc1 bands were quantified and normalized based on the total Mkc1 bands and tubulin. (C). The 

P-Cek1 bands were quantified and normalized based on the total Cek1 bands and tubulin. The 

graphs in both cases were based on quantification of 3 blots, and statistical analysis was performed 

by doing one-way ANOVA. ****, p<0.0001 
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Cek1 in C. albicans [32]. Since Cek1 is hyper-active in the lrg1Δ/Δ mutant (Figure 

3. 2), it is reasonable to evaluate if Ras1 activity is upregulated when LRG1 is 

disrupted. We performed pull-down assay to isolate active GTP-Ras1 by using its 

downstream effector Raf1 as a probe. The ratio of GTP-Ras1 to total Ras1 is 

significantly higher in lrg1Δ/Δ than that in other strains, indicating that LRG1 

disruption induces Ras1 activity (Figure 3. 3C and D). To biochemically test if Ras1 

can cause Cek1 hyperactivation, we performed Western blotting on the PMAL-

RAS1G13V mutant (hyperactive allele) with Phospho-p44/42 antibody recognizing 

the phosphorylated Cek1 and Mkc1. Unexpectedly, as seen in Figure 3. 3E, 

hyperactivated Ras1G13V does not induce Cek1 activation under the inducing 

conditions of using maltose as the carbon source. Similar results were seen in the 

RAS1G13V mutant under the constitutive promoter PENO1 (Figure S.3. 2). These 

results indicate that in C. albicans Ras1 is not activating Cek1 downstream of the 

lrg1Δ/Δ mutation.   

 

Lrg1 does not act as the Rho1 GAP in C. albicans  
In S. cerevisiae, Lrg1 represses Rho1, and this has been implied by genetic data 

in C. albicans, therefore, we measured Rho1 activity in the lrg1Δ/Δ mutant. Due to 

lack of a commercial reagent to pull down active GTP-Rho1, we expressed and 

purified a GST-tagged Rho1 interactive domain (RID) protein specific for C. 

albicans GTP-Rho1 [46]. Due to lack of available commercial CaRho1 antibody, 

CaRho1 was tagged with the c-myc epitope tag for the Western blot detection [24]. 

However, as shown in Figure 3. 3F and G, the lrg1Δ/Δ mutant does not contain a 

higher concentration of GTP-Rho1 compared to wild-type. GTPγS is a non-

hydrolysable substrate for these GTPases and therefore acts as positive control to 

evaluate if our reagents work. The lack of an induction of Rho1 activity in the 

lrg1Δ/Δ mutant suggests that Lrg1 does not act as the Rho1 GAP in C. albicans. 
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Figure 3. 3. Lrg1 inhibits the activity of GTPases Cdc42 and Ras1, but not Rho1.  
(A). GTP-Cdc42 was pulled-down by glutathione beads conjugated with glutathione S-transferase (GST)-PAK1, which specifically binds active GTP-

Cdc42/Rac1. Western blotting was performed on the isolated GTP-Cdc42 portion with anti-Cdc42 antibody and tubulin was used as loading control. 

(B). The GTP-bound Cdc42/Total-Cdc42 ratio compared to WT was calculated. The densitometry of active GTP-Cdc42 band and total Cdc42 band 

was quantified by Image J based on 2 blots. *, p=0.0261. (C). The active GTP-Ras1 was pulled down by using the Ras1 binding domain (RBD) 

within Raf1 as a probe, followed by Western blotting using anti-Ras1 antibody to evaluate the amount of active Ras1. (D). The ratio of GTP-bound 

Ras1/Total-Ras1 compared to WT was calculated as shown in B. ***, P=0.0006. (E). Western blotting was performed with anti-P-p44/42 antibody to 

assess the phosphorylation of Cek1 in the hyperactive RAS1G13V mutant under the regulation of maltose promoter. (F). The active c-myc-tagged 

Rho1 was isolated by incubating with the purified GST-RID protein. The mixture was incubated with glutathione beads. Western blotting was 

performed with anti-c-myc antibody to demonstrate the amount of GTP-bound Rho1 in the pulled-down portion. Total Rho1 was determined by 

performing Western blotting on the total protein extract. (G). The ratio of GTP-bound Rho1/Total-Rho1 compared to WT was calculated as shown in 

B. NS, no significance. 
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Figure 3. 3 Continued 
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Ste11 disruption blocks Cek1 hyper-phosphorylation and β (1,3)-glucan 
exposure in lrg1Δ/Δ 
Our results indicate that Lrg1 negatively controls Cek1 phosphorylation through 

Cdc42 (Figure 3. 3), but it is was not clear if the pathway acts through the canonical 

Cek1 MAPK cascade. Therefore, we next elucidated which upstream kinase 

participates in this signal transduction pathway. The Ste11 MAPKKK sits at the top 

of the Cek1 MAPK module, therefore we disrupted STE11 in lrg1Δ/Δ to determine 

if this would prevent Cek1 activation. One STE11 allele was deleted in lrg1Δ/Δ 

using SAT1-flipper [37]. However, we could not disrupt the second STE11 allele in 

lrg1Δ/Δ. Thus, we replaced the second allele with the hyperactive STE11ΔN467 

allele under the regulation of tetracycline-repressible promoter (PtetOFF-

STE11ΔN467). This resulted in an lrg1Δ/Δste11Δ/Δ::PtetOFF-STE11ΔN467 strain, 

indicating that STE11 is not essential in the lrg1Δ/Δ background, but may be 

difficult to recover from transformation conditions. The lrg1Δ/Δste11Δ/Δ::Ptet-OFF-

STE11ΔN467 mutant was treated with 0.5µg/ml of doxycycline overnight to repress 

STE11 expression, followed by sub-culture in fresh YPD medium ±doxycycline for 

3 hours. Western blotting was performed to measure Cek1 and Mkc1 activation.

 As seen in Figure 3. 4A, failure to express Ste11 in lrg1Δ/Δ 

(lrg1Δ/Δste11Δ/Δ::PtetOFF-STE11ΔN467 +doxycycline) blocks Cek1 phosphorylation. 

This result indicates that Lrg1 negatively controls Cek1 activity through Ste11. We 

next investigated if β (1,3)-glucan exposure can be suppressed in lrg1Δ/Δ when 

Ste11 expression is repressed. The overnight cultured Candida cells 

(±doxycycline) were stained with anti-β (1,3)-glucan antibody, and then measured 

by flow cytometry to quantify the unmasking. As seen in Figure 3. 4B, inhibition of 

Ste11 expression by adding doxycycline (lrg1Δ/Δste11Δ/Δ::PtetOFF-STE11ΔN467 

+doxycycline) completely blocked β (1,3)-glucan unmasking. This indicates that 

hyper-activation of the Cek1 MAPK pathway is responsible for exposing β (1,3)-

glucan in the lrg1Δ/Δ mutant. 
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Figure 3. 4. Disruption of LRG1 causes Cek1 over-activation through Ste11 MAPKKK  
A. One STE11 allele was deleted in lrg1Δ/Δ using the well-established SAT1-flipper method. The second STE11 allele was replaced by the 

PtetOFF-STE11ΔN467 allele. The Candida cells were treated with 0.5µg/ml of doxycycline overnight at 30°C, followed by sub-culture in fresh 

YPD medium for 3 hours at 30°C into log phase with or without doxycycline. Western blotting was performed with the anti-P-p44/42 antibody. 

B. The Candida cells were cultured overnight with or without doxycycline, followed by immunofluorescent staining with anti-β (1,3)-glucan 

antibody and PE-conjugated secondary antibody. The stained cells were measured by flow cytometry for the quantification of β (1,3)-glucan 

exposure. Strains were tested three times with 2 technical replicates each time, and statistical analysis was performed by doing one-way 

ANOVA. ****, p<0.0001. *, p=0.0142.
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Cells with a lrg1Δ/Δ mutation or expressing the hyperactive STE11ΔN467 allele 
induce TNF-α secretion from RAW264.7 macrophages 
The relationship between the increased β (1,3)-glucan exposure and more TNF-α 

secretion has been studied intensively [9, 11, 13, 15, 17, 30]. Due to the strong β 

(1,3)-glucan exposure exhibited by lrg1Δ/Δ (Figure 3. 1), we performed enzyme-

linked immunosorbent assays (ELISAs) to study if unmasking in lrg1Δ/Δ correlates 

with increased TNF-α production. As seen in Figure 3. 5A, loss of LRG1 

significantly up-regulates TNF-α secretion released from RAW264.7 murine 

macrophages. The cho1Δ/Δ mutant in Figure 3. 5A served as a positive control, 

which has shown to cause upregulation of TNF-α production compared to the wild-

type SC5314 strain [11, 15, 17]. Cek1 is hyperactivated in multiple conditions 

associated with β (1,3)-glucan exposure including caspofungin treatment [47], 

cho1Δ/Δ [11], hyperactivation of Cdc42, [17], and lrg1Δ/Δ (Figure 3. 1 and Figure 

3. 2). Furthermore, hyperactivation of Cek1 via an activated allele of STE11 

(STE11ΔN467) causes unmasking [17]. We suspect that this hyperactivation of Cek1 

will lead to decreased virulence. Many of the mutants we have described such as 

hyperactive Cdc42 or Rho1, lrg1Δ/Δ, or cho1Δ/Δ have pleotropic effects, which 

makes it challenging to assess specific roles in virulence. However, the 

STE11ΔN467 mutation causes a more specific upregulation of Cek1 activation [17]. 

 Thus, to test this in vivo, we overexpressed STE11ΔN467 from the 

doxycycline repressible promoter (PtetOFF) [39], so we could then use this in the 

mouse model of infection and turn the gene on or off in the host after infection. We 

transformed the PtetOFF-STE11ΔN467 allele into the wild-type Candida strain DAY286 

cells and confirmed that in the absence of doxycycline Cek1 is hyperactivated 

(Figure S.3. 3), but in the presence of the drug the strain behaved like wild-type. 

Previous overexpression experiments with STE11ΔN467 using the PMAL2-

STE11ΔN467 construct showed hyperactivation of Cek1, but not Mkc1, however 

when we upregulated STE11ΔN467 with the PtetOFF-STE11ΔN467 construct, we 

observed stronger hyperactivation of Cek1 and Mkc1. This may be because a 

strong enough activation of Cek1 causes a compensatory activation of Mkc1 [17], 

although this is not certain.   
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 Immunofluorescent staining of the PtetOFF-STE11ΔN467 strain for β (1,3)-

glucan exposure indicates that when cultured in YPD medium overnight without 

doxycycline, the mutant exhibits significantly increased β (1,3)-glucan exposure 

(Figure S.3. 4). To evaluate the correlation between β (1,3)-glucan exposure 

exhibited by STE11ΔN467 expression from the PtetOFF promoter and TNF-α secretion, 

we performed ELISAs on overnight cultures of wild-type DAY286 and the PtetOFF-

STE11ΔN467 strain in the presence or absence of doxycycline. As seen in Figure 3. 

5B, when Ste11ΔN467 is induced in the PtetOFF-STE11ΔN467 strain (-doxycycline), 

TNF-α production is significantly up-regulated from RAW246.7 macrophages. 

 

Hyperactivation of Cek1 results in decreased fungal virulence in vivo 
We predict that due to increased unmasking, activation of PtetOFF-STE11ΔN467 in 

mice will lead to a loss of virulence. To test this, wild-type and PtetOFF-STE11ΔN467 

strains were cultured in YPD overnight with doxycycline to repress Ste11ΔN467 

expression, and then injected into the tail vein of outbred ICR mice. The mice 

injected with the PtetOFF-STE11ΔN467 strain and provided with doxycycline 

succumbed to fungal infection in ~10 days. This is similar to mice injected with 

wild-type ±doxycycline. However, mice infected with PtetOFF-STE11ΔN467 without  

doxycycline (where STE11ΔN467 is overexpressed), survived significantly longer 

than mice in the other groups (Figure 3. 6).   

 Furthermore, when mice were sacrificed at day 4 post-infection, mice 

infected with PtetOFF-STE11ΔN467 minus doxycycline exhibited (2.43±1.07) ×102 cfu 

g-1 kidney, while the mice infected with the same strain with doxycycline exhibited 

(2.51±0.65) ×104 cfu g-1 of kidney (Figure 3. 7). Thus, there was a decrease of ~ 2 

logs (P=0.0006) in kidney fungal burden when the gene was expressed. A growth 

curve in vitro demonstrated that wild-type and STE11ΔN467 had a similar growth 

pattern without doxycycline, and addition of doxycycline did increase the cell 

division rate modestly from 90 minutes to ~103 minutes in early log phase, 

however, the strain rapidly catches up to wild-type, suggesting only a temporary 

decrease in growth as the STE11ΔN467 is turned on (Figure S.3. 5). This suggests  
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Figure 3. 5. LRG1 disruption significantly induces TNF-α secretion.  
(A). C. albicans cells were grown in YPD overnight at 30°C, UV-inactivated, and then co-cultured 

with RAW264.7 macrophages for 4hrs. The RAW264.7 macrophage supernatant was collected 

and filtered through a 0.22µm syringe filter to remove cell debris. The filtrates were assayed by 

ELISA to quantify the TNF-α production. Samples were tested in triplicate three times for an n of 9. 

The statistical analysis was done by one-way ANOVA. ****, P<0.0001. (B). C. albicans wild-type 

and PtetOFF-STE11ΔN467 strains were cultured overnight in YPD at 30°C, plus or minus doxycycline. 

The UV-kill, incubation with macrophages RAW264.7, filtration and ELISA procedures were the 

same as described in A. ****, P<0.0001.  
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Figure 3. 6. Activated Cek1 leads to attenuated fungal virulence in the mouse model of systemic infection.  
C. albicans strains wild-type (DAY286) and PtetOFF-STE11ΔN467 were cultured overnight at 30°C with doxycycline to repress Ste11ΔN467 

expression. The overnight culture was diluted to 106 cells/ml, and 100 µl of the suspension were injected into the lateral tail vein of outbred 

ICR mice. Mice were given 2 mg/ml of sucrose in their drinking water either without doxycycline or with doxycycline to repress Ste11ΔN467 

expression in vivo. The symptoms of illness were monitored over 21 days. Each group has 10 ICR mice. *, p=0.016 
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Figure 3. 7. Ste11 hyper-activation causes decreased kidney fungal burden in the mouse 
model of systemic infection.  
C. albicans strains wild-type DAY286 and PtetOFF-STE11ΔN467 were cultured overnight at 30°C with 

doxycycline to repress Ste11ΔN467 expression. The overnight culture was diluted to 107 cells/ml, and 

100 µl of the suspension was injected to the lateral tail vein of outbred ICR mice. Mice were given 

sucrose drinking water either with doxycycline to repress Ste11ΔN467 expression in vivo or given 

sucrose water alone. The mice were sacrificed 4 days post-infection and the kidneys from each 

mouse were taken and homogenized. The homogenates were diluted to 10-3 by performing serial 

dilution. 1 ml of the diluted homogenates from each dilution were plated on the YPD plates and 

cultured in 30°C for two days. The colony forming unit was counted on each plate. Eight mice were 

tested for each strain. ***, p=0.0006; ****, p<0.0001.  
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that β (1,3)-glucan exposure driven by PtetOFF-STE11ΔN467 activates the host 

immunity more efficiently, which further clears the fungal pathogen more rapidly. 

 

Discussion  
Previously our lab determined that hyper-activation of Cek1 promotes β (1,3)-

glucan exposure in response to loss of phosphatidylserine synthase [17]. This 

process involves the activation of the GTPase Cdc42 which positively regulates 

Cek1 MAPK activity [17]. In this communication, we characterized a novel 

upstream regulator of Cek1 by identifying that the Lrg1 GAP negatively regulates 

Cek1 activity. Lrg1 acts through the GTPase Cdc42, but not the GTPase Rho1, 

which has been reported as a target of Lrg1 in the literature. Lrg1 disruption 

stimulates significantly increased β (1,3)-glucan unmasking, which further induces 

a higher level of TNF-α secretion from murine macrophages. 
 
The Lrg1-Cdc42 cascade modulates Cek1 MAPK activity via Ste11 in C. 
albicans 
In S. cerevisiae, Lrg1 has been shown to interact with the activated form of Rho1 

and act as GAP [26, 48]. However, there are discrepancies concerning the 

negative regulation of other GTPases by Lrg1 in different studies. Roumanie et. al. 

found that Lrg1 acts as GAP for two other GTPases, Rho2 and Cdc42 by 

performing spectroscopic measurement in vitro based on 7-methyl-6-

thioguanosine (MESG)/phosphorylase system [49]. In contrast, Fitch et al. found 

Lrg1 is a Rho1-specific GAP in vitro by measuring the amount of Rho1 bound with 

[α-32P]-labeled GDP or GTP, after stimulation with purified Lrg1 [26]. Regarding 

the effect of Lrg1 on Rho1-mediated cell wall processes, Lrg1 is reported to 

negatively regulate glucan synthase activity, whilst controversy appears on its role 

in activation of the cell wall integrity Mkc1 pathway [42, 48]. These opposing results 

could be due to the different backgrounds of S. cerevisiae strains used. In 

Neurospora crassa, Lrg1 was shown to serve as a Rho1-specific GAP and impact 

several downstream pathways of Rho1 [43]. In C. albicans, the lrg1Δ/Δ mutant 

increases hyphal formation and biofilm development, which are phenotypes 



 113 

shared with a RHO1Q67L gain of function mutant. However, in this study there was 

no biochemical evidence to demonstrate that Lrg1 acts as Rho1 GAP [25, 50].  

In this communication, we provided evidence that in C. albicans loss of Lrg1 

increases β (1,3)-glucan masking (Figure 3. 1), and this is likely mediated by hyper-

activated Cek1 (Figure 3. 2). Our results also suggest that Lrg1 does not act as a 

Rho1 GAP in C. albicans. Lrg1 does not show Rho1 inhibitory activity in vivo, nor 

does it inhibit Rac1 activity (Figure 3. 3 and Figure S.3. 1). Instead, Lrg1 exhibits 

repression of the activities of both Cdc42 and Ras1, as indicated by significant 

induction of both GTPase activities in vivo in the lrg1Δ/Δ mutant (Figure 3. 3). The 

unexpected results imply signal rewiring occurs in the pathogenic C. albicans 

versus the non-pathogenic S. cerevisiae. Ras1 plays pivotal roles in fungal 

morphogenesis, and as a result contributes to virulence [32]. Loss of RAS1 causes 

defects in yeast-to-hyphal transition, which nonetheless can be restored by 

overexpressing signaling component in the Cek1 pathway in the ras1Δ/Δ mutant 

[32]. Although this suggests that Ras1 might be upstream of Cek1, we cannot rule 

out the possibility that Cek1 and Ras1 act in a parallel manner. Our western blot 

result shows that hyperactive RAS1G13V mutant does not display Cek1 

overactivation (Figure 3. 3E and Figure S.3. 2), suggesting that hyperactivation of 

Ras1 is not sufficient to induce Cek1 phosphorylation, and that these two proteins 

are not in a linear signaling cascade.  

 The Ste11 MAPKKK is a well-known upstream regulator of Cek1 activity 

and the hyperactivated STE11ΔN467 mutant causes β (1,3)-glucan exposure in C. 

albicans [17]. Here we show that Ste11 is also involved in the Lrg1-dependent 

Cek1 hyperactivation, given that disruption of STE11 rescues both β (1,3)-glucan 

exposure and Cek1 hyper-phosphorylation in the lrg1Δ/Δ mutant (Figure 3. 4). 

Given the established effect of Cdc42 on Cek1 activation [17], our results indicate 

that Lrg1 negatively modulates Cek1 activity via the GTPase Cdc42 (Figure 3. 8).  

 
β (1,3)-glucan exposure compromises fungal virulence  
Several cell wall defective mutants have exhibited attenuated fungal virulence in 

the mouse model of systemic infection, including the phosphatidylserine synthase  
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Figure 3. 8. A model shows that Lrg1 acts as a molecular switch regulating Cek1 activity 
negatively via the GTPase Cdc42.  
(A). Lrg1 disruption turns on GTPase Cdc42 activity in vivo, which is represented by higher level of 

GTP-bound Cdc42. This further phosphorylates/activates the canonical downstream Ste11-Hst7-

Cek1 cascade. Hyperactivated Cek1 is shown in this study to stimulate β (1,3)-glucan exposure 

and compromise fungal virulence. (B). Lrg1 is speculated to act as GTPase Cdc42 GAP, which 

stimulates its intrinsic GTPase activity. Cdc42 is therefore favorably disposed to GDP-bound state 

to suppress Cek1 phosphorylation.
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mutant (cho1Δ/Δ), ace2Δ/Δ, cek1Δ/Δ, kre5 Δ/Δ, phr1 Δ/Δ [11, 15, 30, 51, 52]. 

However, all these mutants display pleotropic phenotypes. Therefore, it is hard to 

differentiate the effect of β (1,3)-glucan exposure versus the role that other types 

of defects play on fungal virulence. Also, β (1,3)-glucan of the mutants is exposed 

even before the fungal cells are injected into the mouse tail. This raises a problem 

that the mutants with β (1,3)-glucan exposed might be recognized and cleared by 

the immune systems more rapidly, even before the systemic infection is 

established.  

 In this communication, we made the PtetOFF-STE11ΔN467 mutant that 

addressed the above-mentioned disadvantages. Ste11 sits upstream and 

specifically regulates Cek1 activity in C. albicans [53]. The truncated STE11ΔN467 

mutant without the N-terminal inhibitory domain displays great induction of Cek1 

activity and higher level of β (1,3)-glucan exposure [17]. The PtetOFF promoter can 

be further used to control Ste11ΔN467 expression, by adding/removing the inhibitor 

doxycycline as needed. The STE11ΔN467 mutant when induced to hyper-activate 

Cek1 has decreased virulence in vivo, reflected by significantly greater mouse 

survival over 21 days compared to other control groups, and an ~100 fold 

decreased in fungal burdens in mouse kidneys (Figure 3. 6 and Figure 3. 7). This 

suggests that the exposed β (1,3)-glucan might contribute to the attenuated fungal 

virulence, due to its higher visibility to immune receptors via Dectin-1 potentially. 

Regardless of the mechanism, virulence is compromised, thus hyperactivation of 

Cek1 via a variety of different pathways may be useful for improving immune 

recognition of C. albicans and adjunctive therapy. 
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Appendix  
Table S.3. 1. C. albicans strains used in this study 
Strain  Parent  Genotype Source or 

reference 

SC5314 Clinical 

isolate 

Prototrophic wild type [54] 

YLC337 SC5314 cho1Δ/Δ [38] 

DAY286 SC5314 ura3::imm434/ura3::imm434 

iro1/iro1::imm434 

his1::hisG/his1::hisG arg4/arg4 

[55] 

 

lrg1Δ/Δ DAY286 ura3::imm434/ura3::imm434 

iro1/iro1::imm434 

his1::hisG/his1::hisG arg4/arg4 

 lrg1::Tn7-UAU1/lrg1::Tn7-URA3 

[25] 

TC14 lrg1Δ/Δ lrg1Δ/Δ:: PENO1-LRG1 This study 

TC41 lrg1Δ/Δ lrg1Δ/Δste11Δ/STE11 This study  

TC48 TC41 lrg1Δ/Δste11Δ/Δ::PtetOFF-STE11ΔN467 This study  

TC128 DAY286 DAY286 with 6×myc-Rho1  This study  

TC131 lrg1Δ/Δ lrg1Δ/Δ with 6×myc-Rho1 This study  

TC132 lrg1Δ/Δ::R lrg1Δ/Δ:: R with 6×myc-Rho1 This study 

TC147 DAY286 DAY286+PtetOFF-STE11ΔN467 This study 

TC44 DAY286 DAY286 with GFP-Rac1 This study  

TC158 lrg1Δ/Δ lrg1Δ/Δ with GFP-Rac1 This study  

CAF2-1 SC5314 URA3/ura3::imm434  

IRO1/iro1::imm434 

[55] 

Ca79 CAF2-1 RAS1/RAS1/PMAL2-RAS1G13V [40] 

TC159 DAY286 DAY286+PENO1-RAS1G13V-1 This study  

TC160 DAY286 DAY286+ PENO1-RAS1G13V-2 This study  
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Table S.3. 2. Plasmids used in this study 
Strain Name Description Source 

pYLC146  FLP-CaNAT, chloraR  This study 

pBT1 CaNAT-PENO1, ampR  [35] 

pTC7 pENO1+CaLRG1, ampR This study 

pExpArg-

pACT1GFPRID 

pExpArg-pACT1GFPRID 
[46] 

pTC33 pExpArg-pACT1GFPRID+NATR [17] 

pTC55 pGEX+RIDHIS in DH5α, ampR This study 

pTC57 pGEX+RIDHIS in BL21, ampR This study 

pTC71 pYLC146+STE11-KO, chloraR This study 

pYGS1244 TetO-Myc-RHO1-UTR*-TetR/CIP10U [24] 

pTC73 pYGS1244+HYGROR This study  

pTC76 pExpArg-pACT1GFPRAC1+NATR This study  

pTC78 pENO1+CaRAS1G13V, ampR This study  

pWTF1 PtetOFF+HYGROR [39] 
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Table S.3. 3. Primers used in this study 

Name Sequence Description 

TCO57 TTTCCACAATCAAACATCCAA Primer-R sits at the C-terminus of STE11 to check if PTETOFF- STE11ΔN467 

is replaced the 2nd allele of STE11 in TC41 

TCO69 AAAAGCGGCCGCATGAAGCATTCGTTTGATAC Primer-F to amplify CaLRG ORF and Terminator 

TCO68 AAAAGAGCTCGGTTTAGATTAAGCAGAGTT Primer-R to amplify CaLRG ORF and Terminator 

TCO92 AAAGCGGCCGCTCGATATTGCTAGAGGCAAA Primer-F to amplify Hygromycin resistance B gene with NotI flanking 

TCO93 AAAGCGGCCGCATTTTATGATGGAATGAATGG Primer-R to amplify Hygromycin resistance B gene with NotI flanking 

TCO139 AAAAGGATCCTTAGAACCAGGTGGTCAAAT Primer-F to amplify RID domain located at 1111-1908bp of CaPKC1 

ORF flanking with BamHI 

TCO140 AAAAGTCGACCCGACGTCTAGTAGAAGGA Primer-R to amplify RID domain located at 1111-1908bp of CaPKC1 

ORF flanking with SalI 

TCO155 AAAAGGTACCGATGAACAGGTATTAGTATCA Primer-F to amplify 500bp of CaSTE11 promoter with KpnI flanking 

TCO156 AAAACTCGAGGACTGTTTGTTAGATTTGAGT Primer-R to amplify 500bp of CaSTE11 promoter with XhoI flanking 

TCO157 AAAAGCGGCCGCCCATTAATTATGTCGAAACAA Primer-F to amplify 500bp of CaSTE11 terminator with NotI flanking 

TCO158 AAAAGAGCTCCAAGTAGGTTCACTGTAGAT Primer-R to amplify 500bp of CaSTE11 terminator with SacI flanking 

TCO159 AGGAGAGATTAAAACTTGGA Primer-F to check if the pYLC146+STE11 KO construct was integrated 

into chromosome 

TCO162 ATATAGAAAACCTAATACATTAGTTCGTGTGTAT

ATGGTACTCAAATCTAACAAACAGTCCTTGGACT

CTTGAATCCGCGG 

Primer -F to amplify tetracycline-repressing promoter flanking by 60-mer 

homology of STE11 promoter 

TCO163 AATCCTATGCAATGCAGTTCCCCCACTTAATGAT

TTTGACGATATTATGGATCTCGAATCCATGACTG

CACCAGCTCCGGTACCACT 

Primer -R to amplify tetracycline-repressing promoter flanking by 60-mer 

homology of STE11 ORF located at 1402-1461bp 

TCO181 CTACTCGATTGAGTAATAGA Primer-F sits at PminiOP4 of pWTF1 to check if pWTF1 replaced the 

STE11 promoter and the N-terminal 467 aa. 
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Table S.3. 3. Continued 

Name Sequence Description 

TCO57 TTTCCACAATCAAACATCCAA Primer-R sits at the C-terminal of STE11 to check if pWTF1 replaced the 

STE11 promoter and the N-terminal 467 aa. 

TCO165 AAATCTAGAATTTTATGATGGAATGAATGG Primer-R to amplify Hygronyocin B resistance gene with XbaI flanking 

TCO168 CTGTTCTTTCATGGTATTCT Primer-F sits at -117bp of the STE11 promoter to check if PTETOFF- 

STE11ΔN467 was integrated into the chromosome 

TCO169 ACTGATTTATTCAATTGATGG Primer-R sits within the pTDH3 of pWTF, and is to check if PTETOFF- 

STE11ΔN467 was integrated into the chromosome 

TCO170 AAAACGGACCGTGTACCCATACGATGTCCCAGA

CTACGCAATGAGAAGCATTAAATCAGTCGTAG 

Primer-F to amplify RAC1 ORF with RsrII flanking 

TCO175 AAAAACGCGTCCCATGATTATAATATAGTACATT

TTTTAGCTCTC 

Primer-R to amplify RAC1 ORF with MluI flanking 

TRO993 TTGGTGATGGTCCAGTCTTGT Primer-F at the EGFP region of pTC76 to check if EGFP and RAC1 

ligated in a correct orientation 
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Figure S.3. 1. Loss of Lrg1 decreases GTPase Rac1 activity. 
(A) Active GTP-bound GFP-tagged Rac1 was pulled-down using GST-CRIB as a probe, followed 

by Western blotting with anti-GFP antibody. The amount of total Rac1 was also detected from whole 

cell lysates by using anti-GFP antibody. (B). The GFP-Rac1 band in the pull-down lanes was 

quantified by Image J and normalized to the total GFP-Rac1. This data represents 2 blots. *, 

P=0.0154. 
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Figure S.3. 2. The hyperactive Ras1G13V does not display Cek1 phosphorylation. 
The RAS1G13V mutant under regulation of constitutively expressing enolase promoter was cultured 

overnight in YPD at 30 °C and diluted back to OD600 at 0.2 for 3 hours growth. Cells were collected, 

and Western blotting was performed with anti-P-p44/42 antibody to assess Cek1 phosphorylation.  
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Figure S.3. 3. Cek1 MAPK is hyper-phosphorylated when the PtetOFF-STE11ΔN467 construct is 
induced.  
The PtetOFF-STE11ΔN467 strain was cultured overnight in YPD medium at 30°C in the presence of 

doxycycline, washed with PBS, diluted back to 0.2 and grown for 3 hours into log phase. Western 

blotting was performed on the Candida cell extracts to evaluate the activation state of MAPKs. 

Phospho-p44/42 antibody was used as the primary antibody to detect the level of phosphorylated 

Cek1 and Mkc1 MAPKs. The lrg1Δ/Δ mutant was used as a control. The overnight lrg1Δ/Δ culture 

without doxycycline was diluted back to OD600 0.2 and grown for 3 hours.  
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Figure S.3. 4. An overnight culture of PtetOFF-STE11ΔN467 exhibits increased β (1,3)-glucan 
exposure when induced.  
The PtetOFF-STE11ΔN467 strain was cultured overnight in YPD medium at 30°C in the presence or 

absence of doxycycline. The overnight culture was stained with anti-β (1,3)-glucan antibody and 

PE-conjugated secondary antibody. Flow cytometry was then performed to quantify the level of β 

(1,3)-glucan exposure shown in the mutants. **, P=0.0043, *, P=0.0158. 
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Figure S.3. 5. The growth rate of different Candida strains was measured to determine if 
hyperactivation of Cek1 MAPK affects cellular growth.  
Cells were grown overnight in YPD at 30°C plus doxycycline, diluted back to OD600 of 0.1 and 

transferred to fresh YPD with or without doxycycline. A growth curve was generated with three 

replicates for each condition. The growth rate of STE11ΔN467 at each timepoint without (w/o) 

doxycycline was compared with that of wild-type under the same condition by using Two-way 

ANOVA (**, p=0.0024; ****, p<0.0001).  
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CHAPTER IV: Genetic Analysis of Genes Expressed 
during β (1,3)-glucan Exposure Induced by Cek1 
Hyperactivation 
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Abstract  
A full molecular model to explain β (1,3)-glucan exposure has not yet been 

developed, although a growing body of data indicates it correlates with cell wall 

repair processes. Activation of Cek1 is consistent with this. To investigate how 

Cek1 activation could contribute to this, the gene expression profile controlled by 

hyperactive Cek1 needs to be determined. To achieve this goal, we utilized the 

Cek1-hyperactivating mutant (PtetOFF-STE11ΔN467), where the N-terminus inhibitory 

domain of Ste11 is deleted, and the C-terminus is under the regulation of the 

tetracycline repressible promoter. We found that the STE11ΔN467 mutant displays a 

statistically significant increasing β (1,3)-glucan unmasking 4 hours after sub-

culturing into conditions without doxycycline. Total RNA was thus extracted from 

wild-type and PtetOFF-STE11ΔN467 strains based on timing parameter. The RNA 

samples were sequenced via the Illumina MiSeq platform, and 109 genes were 

identified to be differentially expressed more than 2-fold in STE11ΔN467 inducing 

condition compared to other control conditions. These genes are enriched for cell 

wall construction/repair, including chitin production, and the β-glucan biosynthesis 

process. Several signal transduction genes were also found to be expressed 

differentially. Of note, the Cek1-regulated transcription factor Cph1, required for 

hyphal development, is induced ~9-folds under Cek1-inducing condition. This 

suggests that Cph1 might be the downstream effector mediating cell wall 

unmasking induced by Cek1 hyperactivation. Moreover, Cek1 is induced to be 

hyper-phosphorylated when treated with the anti-fungal caspofungin, and 

disruption of CPH1 decreases the level of β (1,3)-glucan exposure caused by the 

drug. This highlights the significance of Cek1-Cph1 in cell wall remodeling for 

therapeutic applications. Our data also provides groundwork to further assess 

potential cell wall proteins causing β (1,3)-glucan exposure when 

overexpressed/repressed, which can then be considered as future drug targets. 
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Introduction 
Cek1 is a well-known MAP kinase involved in cell wall biogenesis, morphological 

alterations, and fungal virulence [1-5]. Disruption of CEK1 attenuates hyphal 

development on certain agar media when mannitol is used as the carbon source, 

or on glucose media while the nitrogen source is limited. The cek1Δ/Δ mutation 

also adversely affects the serum-induced mycelial colony diameters and growth 

rate [1] and compromises fungal virulence in the mouse mastitis and systemic 

infection models [1, 2].  

Recently, Cek1 activity was identified to be key to controlling β (1,3)-glucan 

exposure. Loss of Cek1 causes exposure of certain cell wall components, including 

β (1,3)-glucan, α (1,2)- and β (1,2)-mannosides, via transcriptionally regulating a 

significant number of cell wall biogenesis genes (PGA13, IHD1, etc.) and stress 

response genes (HSP21, DDR48, etc.) [6, 7]. The cek1Δ/Δ mutant stimulates the 

host immune response more effectively compared to the wild-type, via a dectin-1 

receptor-dependent fungal recognition mechanism [7]. This mutant is also better 

recognized by the galectin‑3 receptor, a member of β‑galactoside‑binding protein 

family [8]. On the other hand, we previously identified that hyper-activated Cek1 

promotes β (1,3)-glucan exposure [9]. Like cek1Δ/Δ, the mutant containing Cek1 

hyperactivation is recognized more effectively by murine macrophages than wild-

type, and fungal virulence is attenuated in the mouse model of systemic infection 

(Figure 3. 5, Figure 3. 6, and Figure 3. 7). However, the genetic mechanisms 

causing β (1,3)-glucan exposure in this mutant are unknown.  

Cek1 has two downstream transcription factors Cph1 and Ace2, where 

Cph1 impacts hyphal growth and white-opaque switching and Ace2 affects cell 

wall glycosylation [1, 8]. Disruption of ACE2 was reported to cause severe β (1,3)-

glucan exposure [10]. Conversely, transcriptional upregulation of ACE2 is thought 

to be responsible for increased β (1,3)-glucan masking driven by lactate treatment 

[10]. This is possibly due to the regulation of Ace2 on homeostasis of cell wall 

glycostructure in order to cover the glucan layer underneath [8]. Cph1 is also 

involved in C. albicans cell wall construction [11-13]. The CPH1 over-expressing 

mutant exhibit pseudo-filament formation under yeast growth condition, and 
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several transcriptionally upregulated cell wall genes driven by Cph1 

hyperexpression under this condition were also induced in a wild-type strain grown 

under hyphal-culturing condition [13]. Given that C. albicans hyphae intrinsically 

display a higher level of β (1,3)-glucan exposure, it is possible that Cph1 

overexpression under yeast condition might drive cell wall to transition to a hyphal-

like structure. Altogether, this indicates that the cell wall dysfunction resulted from 

Cek1 activity imbalance might be mediated through these two downstream 

effectors transcriptionally.  

To determine the genetic profile induced by Cek1 hyperactivation which 

might result in β (1,3)-glucan exposure, we performed RNA-seq on the PtetOFF-

STE11ΔN467 mutant which has been confirmed to hyper-activate Cek1 when 

induced (Figure S.3. 3). Our transcriptome analysis identified a group of genes that 

are enriched for cell wall synthesis and responses to chemicals/stress and are 

increased in expression by more than 2-fold in the hyperactive Cek1 mutant 

compared to control groups. The transcription factor Cph1 is among them and is 

up-regulated ~9-fold, which might impact cell wall architecture.    

 

Methods 
Strains and plasmids  
All the strains in this chapter were described in Table S.4. 1.  

 

Growth conditions  
The media used to culture Candida cells was yeast extract-peptone-dextrose 

(YPD) medium (1% yeast extract, 2% peptone, and 2% dextrose (Thermo Fisher 

Scientific)) [14]. Doxycycline (Sigma-Aldrich, USA) was added at the working 

concentration of 0.5 µg/mL as the repressor for the tetracycline-repressing 

promoter. 

 

Western blotting  
To extract proteins from PtetOFF-STE11ΔN467 mutant, the strain was cultured 

overnight in the presence of doxycycline, and sub-cultured in fresh YPD 
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±doxycycline and grown for 4 hours to mid-log phase. To extract proteins from 

Candida cells being treated with caspofungin, the wild-type DAY286 cells were 

cultured without caspofungin overnight, and then transferred to in the fresh YPD 

medium without the drug for 3 hours into log phase. Then, a ½ MIC of caspofungin 

(63ng/ml) was added to the culture for further incubation for 30min, 1 hr and 2 hrs. 

Western Blotting was performed as previously described [9].  

To detect the phosphorylation of Cek1 and Mkc1 MAPKs, rabbit anti-

Phospho-p44/42 antibody (Cell Signaling Technology, Inc., USA) at 1:2000 dilution 

was utilized. The expression of total Mkc1 was detected with the primary rabbit-

anti- Mkc1 Ab at a 1:1000 dilution (provided by Dr. Jesus Pla at Universidad 

Complutense de Madrid, Spain). The expression of total Cek1 was measured with 

a rabbit-anti- Cek1 Ab at a 1:1000 dilution (a gift from Dr. Mira Edgerton at The 

State University of New York). The secondary antibody for Phospho-p44/42 Ab, 

Mkc1 Ab and Cek1 Ab was IRye800CW goat anti–rabbit IgG (H+L) conjugate 

(green, 1:10,000 dilution; LI-COR Biosciences). Tubulin was probed as a control 

with rat anti-tubulin primary antibody (Bio-Rad Laboratories Inc., USA) at a 1:1000 

dilution and IRDye 680RD Goat-anti-Rat IgG (H+L) (red, 1:10,000 dilution; LI-COR 

Biosciences) as a secondary antibody.  

 

Flow cytometry 
To stain the STE11ΔN467 strain under the regulation of PtetOFF promoter over-time, 

overnight cultures in YPD with doxycycline were diluted back to 0.2, and cells were 

collected after 1hr, 2hrs, 4hrs and 6hrs grown in the fresh YPD medium without 

doxycycline. To stain Candida cells treated with caspofungin, the overnight culture 

without the drug was sub-cultured for 3 hours. The staining protocol and gating 

strategy was followed as described in [9]. Flow cytometry data were obtained for 

100,000 gated events per strain and experiments were performed in triplicate, and 

the data were analyzed using the FlowJo software package with version 10.11 

(FlowJo LLC, OR, USA).  
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RNA extraction 
The RNA extraction protocol was modified from [15]. 15 ml of yeast overnight 

culture were collected and washed 3 times with PBS. 750 µl of TES buffer (Tris-Cl 

(10 mM, pH 7.6), EDTA (10 mM), Sodium dodecyl sulfate (SDS) (0.5%, w/v)), 

which was prepared with RNAse-free water (RPI, Corp. USA) and 750 µl of acid 

phenol at pH 4.5 (Thermo Fisher, USA) were added to the pellet and an equal 

volume of 150-212μm acid-washed glass beads (Millipore-Sigma, USA) were 

added to each tube. Cells were mechanically disrupted in a Biospec Mini-

BeadBeater (Bio Spec Product Inc., USA) with 4 rounds of 1 min homogenization 

at 4°C and 2 min intervals for each cycle on ice. Samples were placed in a 65°C 

heat block for 30min and vortexed thoroughly every 10mins. The mixture was 

centrifuged for 5 min at 13,000 ×rpm at room temperature, and the aqueous layer 

was transferred to a fresh tube containing 700 µl of acid phenol at pH 4.5 and spun 

for 5 mins. The aqueous layer was transferred and washed twice with 600 µl of 

neutral pH phenol (Thermo Fisher, USA), followed by washing with 600 µl of 

chloroform until the interface was clean.  The supernatant was further transferred 

to the tube containing 150 µl of 3M sodium acetate, followed by adding 1 ml 100% 

ethanol, and the mixture was placed in -80°C freezer overnight to precipitate the 

nucleic acid out of solution. The pellet was collected by centrifugation at 

13,000×rpm at 4°C for 10mins, and further washed with 500 µl of 70% ice-cold 

ethanol. The pellet was dried at room temperature and resuspended in 100 µl of 

RNase-free water. DNA was removed by using Turbo DNA-free kit (Thermo Fisher, 

USA) following manufacturer’s instructions. 

RNA Samples were analyzed by the 2100 series bioanalyzer (Agilent 

Technologies, USA) for quality at the University of Tennessee Genomics Core, 

followed by cDNA library preparation and sequencing. Barcoded cDNA libraries 

were prepared with a TruSeq Stranded mRNA Sample Preparation Illumina kit 

according to manufacturer’s specifications (Illumina, Inc., USA). The libraries’ 

qualities were validated by bioanalyzer (Agilent Technologies, USA), and then 

arranged on a flow cell from the MiSeq reagent kit v3 (150×cycle) (Illumina, Inc., 

USA), and sequenced on the Illumina MiSeq M04398 machine.  
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Bioinformatic Analysis 
All the operations were performed on CLC Genomics Workbench v.12.0 software 

(Qiagen, Germany). Trimming was performed with a quality score limit set as 0.01 

and ambiguity set as 0. The read length to be discarded is set to below 50. The 

hits were mapped to the assembly 22 of the C. albicans reference strain SC5314 

[16]. Genome annotations were performed using the corresponding GFF file and 

annotated with the GFF file tool which is available on CLC Genomics Workbench 

v.12.0 software. The mapping parameters for mismatch cost, insertion cost, 

deletion cost, length fraction, and similarity fraction used at default values, which 

were 2, 3, 3, 0.8, 0,8, respectively. Expression values for each gene were 

calculated from unique gene reads (maximum number of hits for a read is set to 1) 

and normalized by gene length and sequencing depth yielding the expression 

value of transcripts per million (TPM). To determine if gene expression values are 

correct, the TPM reads of five housekeeping genes (TEF1, ACT1, TUB1, ENO1, 

and PMA1) were evaluated to calculate the average for each condition, which was 

further plotted as shown in [17]. To identify differentially expressed genes between 

treatment and control, P-values of individual genes were adjusted for false 

discovery rate (FDR), and genes with an FDR adjusted p-value < 0.05 in the 

treatment group were considered differentially expressed.  Expression values 

exceeding a factor of 2 (fold change), either higher or lower than that in control 

were considered of significantly different expression.  

 

Results 
The PtetOFF-STE11ΔN467 mutant displays increased β (1,3)-glucan over-time  
To investigate how Cek1 activation could contribute to β (1,3)-glucan exposure, 

the gene expression profile resulting from hyper-activated Cek1 was measured. 

First, we determined the parameters for this experiment. The PtetOFF-STE11ΔN467 

strain ±doxycycline was compared to the isogenic wild-type in identical conditions. 

To determine the time-point when the STE11ΔN467 mutant starts to display β (1,3)-

glucan exposure, we cultured Candida cells overnight with doxycycline to repress 

Ste11ΔN467 expression, followed by dilution into fresh YPD medium without 
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doxycycline to switch on STE11ΔN467 expression up to 6 hours. The Candida cells 

were then subjected to immunofluorescent staining by using anti-β (1,3)-glucan 

antibody, and subsequent flow cytometry to quantify the exposure level over time. 

As seen in Figure 4. 1A, the STE11ΔN467 mutant began to display statistically 

significant increased unmasking 4 hours sub-cultured in the medium without 

doxycycline. Interestingly, the time-point when unmasking became significant 

correlates well with the Western blotting results where Cek1 began to display 

increased phosphorylation after doxycycline was removed 4 hours (Figure 4. 1B). 

on this, we extracted total RNA from the wild-type and PtetOFF-STE11ΔN467 strains 4 

hours after sub-culturing into ±doxycycline conditions. 

 
β (1,3)-glucan exposure induced by hyper-activation of the Cek1 cascade 
correlates with upregulation of cell wall synthesis genes 
Based on these timing parameters, we extracted total RNA from the wild-type and 

PtetOFF-STE11ΔN467 strains 4 hours after sub-culturing into ±doxycycline conditions, 

with each condition represented by three biological replicates (12 total samples). 

RNA sequencing was performed using the Illumina MiSeq platform, which 

generated a total of 59 million 75bp paired-end reads from 12 libraries. A principal 

component plot (PCA) was created by using the RNA Analysis Package in CLC 

Genomics Workbench software to determine the variabilities between replicates 

Based and different treatment samples. As seen in Figure 4. 2, the two wild-type 

groups (±doxycycline) clustered tightly, suggesting that doxycycline does not 

cause undesired effect on wild-type. The PtetOFF-STE11ΔN467 strain was found in 

two distinct clusters based on the presence and absence of doxycycline, which 

both separated from wild-type. The STE11ΔN467 strain +doxycycline grouped away 

from wild-type and this may be because of basal expression of STE11ΔN467, which 

would explain the modest increase in TNF-α elicited by macrophages by these 

cells compared to wild-type, even in the presence of doxycycline (Figure 3. 5B). 

To be certain that the expression levels of genes overall were consistent, we 

examined 5 housekeeping genes that are known to have differential expression 

levels. We found that those housekeeping genes were highly consistent between  
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Figure 4. 1. The PtetOFF -STE11ΔN467 strain exhibits β (1,3)-glucan exposure in a time-
dependent manner in the absence of doxycycline.  
A. The STE11ΔN467 mutant was cultured overnight in YPD at 30°C in the presence or absence of 

doxycycline. Aliquots of the overnight culture (O/N+ and O/N-) were taken as 0 timepoint controls 

and stained with mouse anti-β (1,3)-glucan antibody and goat-anti-mouse PE-conjugated 

secondary antibody. An aliquot of the overnight PtetOFF-STE11ΔN467 culture treated with doxycycline 

was washed three times with PBS and diluted back to 0.2 in fresh YPD without doxycycline to 

switch on Ste11ΔN467 expression and was grown for 1hr, 2hrs, 4hrs, and 6hrs. Cells were collected 

at the indicated time points and stained as described above. All the stained cells were subject to 

the flow cytometer to quantify the β (1,3)-glucan exposure level. Samples were tested three times 

with 2 replicates each time. **, P<0.008. B. Cells were cultured as described in A, and then total 

protein was isolated, and Western blotting was performed to evaluate the MAPKs phosphorylation 

by using phospho-p44/42 antibody and total Cek1 and tubulin as controls.  
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Figure 4. 2. PCA plot displays the clustering of samples within each group. 
PCA plot was created by using RNA Analysis Package in CLC Genomics Workbench software (V12.0) to determine the variabilities between 

replicates and different treatment samples.  
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Figure 4. 2. Continued  
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the samples (Figure 4. 3). In STE11ΔN467 inducing-condition (-doxycycline), 109 

genes are commonly regulated by a > 2-fold change in expression value, 

compared to the other three conditions (wild-type±doxycycline and STE11ΔN467 

+doxycycline) (Figure 4. 4A). Among the commonly regulated 109 genes, 16 

genes are down-regulated, and 93 genes are up-regulated (Figure 4. 4B). The 

commonly regulated genes were listed in Table S.4. 2. Although Cek1 activation 

is associated with hyphal formation, there are only a few genes that are 

conventional hyphal-specific proteins. A number of genes commonly associated 

with hyphal formation like members of the Als family and Ece1 are not upregulated. 

However, 13 genes that are involved in cell wall construction are upregulated 

(Figure 4. 4B and Table 4. 1). These genes are enriched for cell wall or extracellular 

genes (14% of upregulated genes were secreted genes compared to 5% secreted 

genes in the total Candida genome, indicating that there was 2× fold enrichment 

in cell wall genes in our data set). 26 genes are responsive to chemicals and stress, 

including OPY2 and RBT4 and 10 genes encode signal transduction proteins 

(CPP1, BUD5, RGA2, HAC1, WSC2, CPH1 etc.). In the category of down-

regulated genes, it is worth noting that Eng1 expression was decreased ~2 fold in 

the STE11ΔN467-inducing condition. Eng1 is an endo-β (1,3)-glucanase, which has 

been reported to keep glucan masked by removing the exposed β (1,3)-glucan in 

the fungal pathogen Histoplasma capsulatum. Altogether, these data suggest that 

the β (1,3)-glucan unmasking could be caused by Cek1 hyper-activation through 

inappropriate expression of cell wall repair machinery. 

In addition, our data suggest that Cph1 is likely responsible for these effects. 

Cek1 has two known downstream transcription factors, Cph1 and Ace2, but they 

display distinct profiles in our data. Cph1 is up-regulated 8.4-fold in STE11ΔN467 

yeast condition compared to that of wild-type. Cph1 is important for Candida 

albicans filament development on certain solid media [18] and is involved in the 

switching from white cells to the mating-competent opaque cells [19]. In contrast, 

Ace2, involved in cell wall glycosylation, morphogenesis and virulence [8, 20] does 

not display altered transcripts when Cek1 is hyperactivated. This indicates Cph1 

is likely the transcription factor responsive to Cek1-inducing condition.
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Figure 4. 3. Housekeeping genes expression was similar among different Candida strains.  
The TPM reads of five housekeeping genes (TEF1, ACT1, TUB1, ENO1, and PMA1) were used to 

calculate the average for each condition to determine if gene expression values are correct.  
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Figure 4. 4. Differentially expressed genes in STE11ΔN467-inducing condition are enriched for cell wall repair genes.  
(A). Venn diagram shows that 109 genes are differentially expressed in the PtetOFF-STE11ΔN467 mutant when Cek1 is induced (STE11 –

doxycycline) compared to the other three control groups (wild-type± and STE11+doxycycline). Genes with a false discovery rate (FDR) 

adjusted p-value < 0.05 were considered differentially expressed. (B). Heat-maps were generated for genes with expression values 

exceeding a factor of 2 (fold change) in STE11ΔN467 inducing condition (STE11 –doxycycline) compared to the other three controls 
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Figure 4. 4. Continued  
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Table 4. 1: Commonly regulated genes induced by STE11ΔN467 –doxycycline vs. Wild-type± 
and STE11ΔN467 +doxycycline 

Gene Ontology terms Names 

• Function  

Cell Wall Organization 
CEK1, CHS2, CPH1, CRH11, ENG1*, HAC1, HWP1, 

KRE6, PGA13, PGA31, RLM1, WSC2, XOG1 

Stress/Chemical Response 

BRG1, C1_03870C_A, C1_10710C_A*, C3_02290W_A, 

CEK1, CPH1, CPP1, DDR48, FGR41*, GPX1, HAC1, 

MDR1*, MEP1, OPY2, PMS1, RLM1, STE11, WSC2, 

C7_01170C_A*, DAG7, GFA1, PGA23, PGA31, RBT4, 

RLM1, TNA1* 

• Component 
 

Cell Wall and Extracellular Regions 

CRH11, CSH1, DDR48, ENG1*, HWP1, IFF11, KRE1, 

PGA13, PGA30, PGA31, XOG1, C4_01800W_A*, DAG7, 

FGR41*, RBT4,SAP7 

*: transcriptionally down-regulated genes 

  

http://www.candidagenome.org/cgi-bin/locus.pl?locus=CRH11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CSH1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=DDR48&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=ENG1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=IFF11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=KRE1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA13&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA30&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA31&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=XOG1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=C4_01800W_A&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=DAG7&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=FGR41&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT4&organism=C_albicans_SC5314
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Cek1 activity is induced by caspofungin treatment 
β (1,3)-glucan exposure has been reported to correlate with activation of Cek1 

pathway under various conditions, such as phosphatidylserine synthase (Cho1) 

disruption and hyperactivation of the GTPases Cdc42 and Rho1 [9]. Caspofungin, 

an antifungal drug inhibiting β (1,3)-glucan biosynthesis, causes β (1,3)-glucan 

exposure even at sublethal condition [21]. However, the mechanism regarding β 

(1,3)-glucan exposure induced by caspofungin insult has not yet been discovered. 

Here we evaluated if the correlation between β (1,3)-glucan unmasking and Cek1 

phosphorylation holds true under caspofungin treatment. As shown in Figure 4. 5, 

the Cek1 MAPK is induced to be activated 30 mins after incubation with ½ MIC of 

caspofungin, and the induction increases over-time. This suggests that Cek1 

activation might contribute to β (1,3)-glucan exposure, at least partially, under the 

caspofungin insult. This further indicates that improper activation of Cek1 seems 

involved in cell wall remodeling in different situations. 

 

Discussion 
In this chapter, we provided the transcriptome analysis to address the genetic 

mechanism regarding β (1,3)-glucan exposure induced by Cek1 hyperactivation. 

Our RNA-Seq results reveal that several categories of genes are expressed 

differentially when Ste11-Cek1 are hyperactivated, and they include cell walls 

genes, signal transduction genes, and stress genes (Table S.4. 2). Cph1, one of 

two well-known downstream transcription factors that is phosphorylated/activated 

by Cek1, is significantly up-regulated in STE11ΔN467 inducing conditions. Cph1 is 

important for C. albicans filament development [18], and white-to-opaque 

switching [19]. The Cph1-overexpressing mutant under yeast conditions induces 

pseudo-hyphal structure, and several hyphal-specific genes are also induced 

transcriptionally [13]. Lowman et al. reported that C. albicans hyphal glucan 

exhibited a novel glucan structure, where hyphal glucan has a unique cyclical 

structure which intrinsically display higher levels of β (1,3)-glucan exposure and 

immunogenicity [11]. Our data shows that CPH1 is induced ~9 fold, and it is 

possible that the β (1,3)-glucan structure might transition to a more hyphal glucan  
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Figure 4. 5. Caspofungin treatment over-activates the Cek1 MAPK.  
C. albicans wild-type DAY286 strain was cultured at 30°C in YPD medium overnight. The next day 

the overnight culture was diluted back to OD600 of 0.2 in fresh YPD medium for 3 hours growth into 

the log phase, followed by ½ MIC of caspofungin treatment (+) for 30 min, 1 hr and 2hrs, 

respectively. The culture was collected and proceeded to the Western blotting procedure. The 

antibody to detect phosphorylated Cek1 was phospho-p44/42, which can also detect the 

phosphorylated Mkc1. Tubulin was detected as the loading control. 
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structure even under yeast-conditions, and therefore display more glucan 

exposure. Alternatively, Cek1 is upregulated in response to caspofungin treatment 

and the changes in exposure may be related to aberrantly induced cell wall repair. 

 The cek1ΔΔ mutant displays β (1,3)-glucan exposure, hyper-sensitivity to 

agents that disturb the cell wall such as Congo red, and the N-glycosylation 

inhibitor tunicamycin [7, 22, 23]. This mutant also exhibits α (1,2)- and β (1,2)-

mannosides exposure, suggesting the glycostructure is defective upon CEK1 

disruption. This characteristic facilitates the immune recognition by the receptor 

galectin-3. Ace2, a second downstream transcription factor of Cek1, is required for 

cell wall glycosylation, and causes β (1,3)-glucan exposure when disrupted [8, 10]. 

Interestingly, Ace2 is not induced transcriptionally when Cek1 is hyperactivated. 

Thus, Cek1 may be able to deploy specific transcription factors for unique 

adaptation responses based on the nature of the insult. 

Cek1 activity is regulated tightly by multiple stimuli in C. albicans. Several 

conditions induce Cek1 phosphorylation, including disruption of the 

phosphatidylserine synthase Cho1[9], growth resumption from the overnight 

culture to fresh media [24], being treated with fungicidal salivary histatin 5 (Hst5) 

protein [25]. We found that Candida cells treated with caspofungin also exhibit 

Cek1 hyperphosphorylation in a time-dependent manner (Figure 4. 5). Given the 

correlation of Cek1 activation and resultant cell wall remodeling [9], this might 

explain, at least partially, the mechanism through which β (1,3)-glucan is 

unmasked stimulated by caspofungin. This indicates the significance of Cek1 

activity in regulating cell wall structure.  

Overall, our RNA-seq profile on the Cek1-overactivating mutant provides 

groundwork for further understanding the genetic mechanisms of β (1,3)-glucan 

exposure caused by this mutation. We hypothesize that differential expression of 

some of those genes cause β (1,3)-glucan exposure, including Cph1. Genetic work 

can be done by Cph1 overexpression to evaluate if the mutation leads to cell wall 

remodeling and increases immunogenicity. Several cell wall associated proteins 

are also of interest, including chitin synthases (Chs2, 3 and 8), given the correlation 

between increased chitin levels and β (1,3)-glucan exposure [26, 27]. The same 
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genetic strategy can be performed on these target genes by overexpression to 

assess their involvement in causing cell wall unmasking. 
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Appendix  
Table S.4. 1. C. albicans strains used in this study 
Strains Parent  Genotype Source or reference 

DAY286 Wild-type ura3::imm434/ura3::imm434 

iro1/iro1::imm434 his1::hisG/his1::hisG 

arg4/arg4 

[28] 

 

 

TC147 DAY286 DAY286+PtetOFF-STE11ΔN467 Table S.3. 1 

SN50 Wild-type  ura3::imm434/ura3::imm434 

iro1/iro1::imm434 his1::hisG/his1::hisG 

arg4/arg4 

[29] 

cph1ΔΔ SN50 SN50-cph1ΔΔ [29] 
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Table S.4. 2. Genes that were differentially regulated in STE11ΔN467 –doxycycline 

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

PBR1 Protein of unknown function; required for cohesion, adhesion, and 
RPMI biofilm formation; induced by alpha pheromone in white cells; 
fluconazole-induced; Spider biofilm induced 

1,269.77 1,276.88 333.46 

PGA13 GPI-anchored cell wall protein involved in cell wall synthesis; required 
for normal cell surface properties; induced in oralpharyngeal 
candidasis; Spider biofilm induced; Bcr1-repressed in RPMI a/a 
biofilms 

114.57 93.25 22.48 

C2_09880C_
A 

Putative protein of unknown function; Plc1-regulated; transcript 
induced by Mnl1 under weak acid stress; flow model, rat catheter, 
Spider biofilm induced 

59.07 32.66 14.68 

XOG1 Exo-1,3-beta-glucanase; 5 glycosyl hydrolase family member; affects 
sensitivity to chitin and glucan synthesis inhibitors; not required for 
yeast-to-hypha transition or for virulence in mice; Hap43-induced; 
Spider biofilm induced 

51.34 55.89 37.56 

C2_02220C_
A 

Protein of unknown function; F-12/CO2 early biofilm induced 47.72 46.24 18.21 

RBT4 Pry family protein; required for virulence in mouse systemic/rabbit 
corneal infections; not filamentation; mRNA binds She3, is localized to 
hyphal tips; Hap43-induced; in both yeast and hyphal culture 
supernatants; Spider biofilm induced 

40.37 31.85 43.55 

C7_02280W_
A 

Ortholog of C. parapsilosis CDC317: CPAR2_808370, C. dubliniensis 
CD36: Cd36_72070, Candida orthopsilosis Co 90-125: 
CORT_0C00800 and Candida albicans WO-1 : CAWG_05577 

39.92 43.07 19.01 

PGA31 Cell wall protein; putative GPI anchor; expression regulated upon 
white-opaque switch; induced by Congo Red and cell wall 
regeneration; Bcr1-repressed in RPMI a/a biofilms 

36.75 44.22 17.82 

SAP7 Pepstatin A-insensitive secreted aspartyl protease; self-processing; 
expressed in human oral infection; Ssn6p-regulated; role in murine 
intravenous infection; induced during, but not required for, murine 
vaginal infection; N-glycosylated 

36.55 16.76 14.56 

KRE1 Cell wall glycoprotein; beta glucan synthesis; increases glucan content 
in S. cerevisiae kre1, complements killer toxin sensitivity; caspofungin 
induced; Spider/rat catheter/flow model biofilm induced; Bcr1-
repressed in RPMI a/a biofilms 

34.49 25.71 18.03 
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Table S.4. 2. Continued 

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

C7_02260W_
A 

Ortholog of C. parapsilosis CDC317: CPAR2_808350, C. dubliniensis 
CD36: Cd36_72060, Candida orthopsilosis Co 90-125: 
CORT_0C00820 and Candida albicans WO-1 : CAWG_05575 

33.04 31.96 17.09 

DAG7 Secretory protein; a-specific, alpha-factor induced; mutation confers 
hypersensitivity to toxic ergosterol analog; fluconazole-induced; 
induced during chlamydospore formation in C. albicans and C. 
dubliniensis 

27.47 28.28 24.06 

FAV1 Protein with weak similarity to S. cerevisiae Fus2p; induced by alpha 
pheromone mating factor in MTLa/MTLa opaque cells 

23.68 36.82 8.76 

RBR1 Glycosylphosphatidylinositol (GPI)-anchored cell wall protein; required 
for filamentous growth at acidic pH; expression repressed by Rim101 
and activated by Nrg1; Hap43-induced 

21.41 28.04 5.53 

LDG3 Putative LDG family protein; F-12/CO2 early biofilm induced 20.45 23.8 11.02 
C6_02100W_
A 

Secreted potein; Hap43-repressed; fluconazole-induced; regulated by 
Tsa1, Tsa1B under H2O2 stress conditions; induced by Mnl1p under 
weak acid stress; Spider biofilm induced 

18.17 20.69 8.74 

C1_07040C_
A 

Pry family pathogenesis-related protein; oral infection upregulated 
gene; mutant has reduced capacity to damage oral epithelial cells 

16.15 13.23 13.55 

MRV8 Protein of unknown function; Spider biofilm induced 15.68 15.16 11.93 
PGA23 Putative GPI-anchored protein of unknown function; Rim101-

repressed; Cyr1-regulated; colony morphology-related gene regulation 
by Ssn6 

15.46 17.02 12.49 

CR_05330W_
A 

Protein of unknown function; Spider biofilm repressed 13.1 13 7.97 

C1_05970W_
A 

Putative adhesin-like protein; macrophage-induced gene 13.06 14.56 14.35 

HWP1 Hyphal cell wall protein; host transglutaminase substrate; opaque-, a-
specific, alpha-factor induced; at MTLa side of conjugation tube; 
virulence complicated by URA3 effects; Bcr1-repressed in RPMI a/a 
biofilms; Spider biofilm induced 

13.05 6.29 4.22 

IFF11 Secreted protein required for normal cell wall structure and for 
virulence; member of the IFF family; Hap43p-repressed gene 

12.7 17.03 9.93 

C4_04380C_
A 

Protein of unknown function; Spider biofilm induced 12.04 12.56 11.25 
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Table S.4. 2. Continued  

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

FAV2 Adhesin-like protein; induced by mating factor in MTLa/a opaque cells, 
in cyr1 null, in filaments; regulated by Nrg1, Rfg1, Tup1, Tec1, Efg1, 
Ntd80, Rob1, Brg1; induced in oralpharyngeal candidasis; Spider 
biofilm induced 

10.33 7.52 10.97 

C4_03500C_
A 

Protein of unknown function; regulated by Tsa1, Tsa1B in minimal 
media at 37 degrees C 

9.13 8.58 36.84 

KCH1 Ortholog of Kch1 a potassium transporter; mediates K+ influx and 
activates high-affinity Ca2+ influx system during mating pheromone 
response in S. cerevisiae; induced by alpha pheromone in SpiderM 
medium 

8.95 12.59 9.23 

ALK8 Alkane-inducible cytochrome P450; catalyzes hydroxylation of lauric 
acid to hydroxylauric acid; overproduction causes fluconazole 
resistance in WT and causes multidrug resistance in a cdr1 cdr2 
double mutant; rat catheter biofilm repressed 

8.84 7.53 4.37 

CPH1 Transcription factor; for mating, filamentation on solid media, 
pheromone-stimulated biofilms; in pathway with Ess1, Czf1; required 
with Efg1 for host cytokine response; regulates galactose metabolism 
genes; rat cathether biofilm repressed 

8.46 9.24 7.52 

C5_03440W_
A 

Protein of unknown function 7.98 8.3 6.92 

CPP1 VH1 family MAPK phosphatase; regulates Cst20-Hst7-Cek1-Cph1 
filamentation pathway; negatively regulates mating, represses yeast-
hyphal switch; required for virulence in mice; yeast-enriched; induced 
by alpha pheromone in SpiderM medium; 

6.7 8.03 6.9 

CSH1 Aldo-keto reductase; role in fibronectin adhesion, cell surface 
hydrophobicity; regulated by temperature, growth phase, benomyl, 
macrophage interaction; azole resistance associated; Spider biofilm 
induced; rat catheter biofilm repressed 

6.61 8.4 5.01 

C5_04940W_
A 

Maltase; induced during growth on sucrose; induced by alpha 
pheromone in SpiderM medium; early-stage flow model biofilm indced 

6.57 6.29 5.56 

STE11 Protein similar to S. cerevisiae Ste11p; mutants are sensitive to 
growth on H2O2 medium 

6.56 6.02 8.53 

C4_01330W_
A 

Protein of unknown function; Spider biofilm induced 6.45 4.56 2.52 
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Table S.4. 2. Continued 

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

PRM1 Putative membrane protein with a predicted role in membrane fusion 
during mating; Hap43p-repressed gene; protein induced during the 
mating process 

6.16 5.83 7.85 

CR_09930W_
A 

Protein of unknown function; induced by alpha pheromone in SpiderM 
medium 

5.99 5.11 4.88 

C6_04190C_
A 

Protein of unknown function; Spider biofilm induced 5.92 6.05 3.84 

CR_04770C_
A 

Ortholog of C. dubliniensis CD36 : Cd36_30140, C. parapsilosis 
CDC317 : CPAR2_204040, Candida tenuis NRRL Y-1498 : 
CANTEDRAFT_114703 and Debaryomyces hansenii CBS767 : 
DEHA2G22880g 

5.83 6.28 2.89 

PTR2 Oligopeptide transporter involved in uptake of di-/tripeptides; highly 
induced during chlamydospore formation in both C. albicans and C. 
dubliniensis 

5.73 5.02 2.27 

GFA1 Glucosamine-6-phosphate synthase, homotetrameric enzyme of 
chitin/hexosamine biosynthesis; inhibited by UDP-GlcNAc, FMDP, N-
acyl peptide, kanosamine-6-P; functional homolog of S. cerevisiae 
Gfa1p; Cagrowth-phase regulated; catalytic Cys 

5.65 7.04 4.98 

GST3 Glutathione S-transferase; expression regulated upon white-opaque 
switch; induced by human neutrophils; peroxide-induced; induced by 
alpha pheromone in SpiderM medium; Spider biofilm induced 

5.52 5.73 2.45 

C4_02260C_
A 

Protein of unknown function; repressed by prostaglandins; Hap43-
induced, Spider biofilm induced 

5.48 17.53 6.59 

CRH11 GPI-anchored cell wall transglycosylase, putative ortholog of S. 
cerevisiae Crh1p; predicted glycosyl hydrolase domain; similar to 
Csf4p and to antigenic A. fumigatus Aspf9; predicted Kex2p substrate; 
caspofungin-induced 

4.95 4.45 3.31 

WSC2 Putative cell wall integrity and stress response protein; mRNA binds 
She3; Spider biofilm induced 

4.74 5.31 2.99 

PGA58 Putative GPI-anchored protein; transcription is positively regulated by 
Tbf1p 

4.59 4.42 2.97 

MNN12 Predicted alpha-1,3-mannosyltransferase activity with a role in protein 
glycosylation 

4.25 4.88 3.61 
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Table S.4. 2. Continued  

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

C1_09430W_
A 

Putative membrane protein; induced by alpha pheromone in SpiderM 
medium; Hap4-induced gene; Spider biofilm induced 

4.24 5.89 4.82 

C1_03870C_
A 

Predicted heme-binding stress-related protein; Tn mutation affects 
filamentous growth; induced during chlamydospore formation in C. 
albicans and C. dubliniensis; Spider biofilm induced 

4.23 4.46 4.99 

C6_00810C_
A 

Protein of unknown function; Hap43-repressed gene 4.21 2.98 3.56 

KAR4 Transcription factor; required for gene regulation in response to 
pheromones; ortholog of S. cerevisiae Kar4; role in karyogamy; 
opaque-specific, a-specific; induced by alpha factor 

4.21 3.62 2.99 

CR_00090C_
A 

Protein of unknown function; stationary phase enriched protein; 
induced upon yeast-hypha transition; benomyl or caspofungin 
induced; Hap43-repressed; Spider biofilm induced 

4.17 3.76 2.01 

OPY2 Predicted transmembrane protein; role in cell wall biogenesis; required 
for Cek1 phosphorylation; Spider biofilm induced 

4.14 4.11 2.81 

MNN14 Predicted alpha-1,3-mannosyltransferase activity with a role in protein 
glycosylation; Hap43-repressed; Spider biofilm induced 

4 3.91 2.57 

C2_05040C_
A 

Ortholog(s) have cellular bud neck, fungal-type vacuole localization 3.94 3.83 3.47 

C6_04420W_
A 

Protein of unknown function; GlcNAc-induced protein; Spider biofilm 
induced; rat catheter biofilm repressed 

3.94 2.64 2.84 

CHS8 Chitin synthase required for synthesis of long-chitin fibrils; 
nonessential; 8 or 9 membrane spanning regions; mRNA present in 
yeast and hyphae; induced during cell wall regeneration; flow model 
biofilm repressed 

3.65 3.74 2.66 

C1_11730W_
A 

Protein with SEL-1 like protein domain; early-stage flow model biofilm 
induced 

3.64 3.63 2.81 

CHS2 Chitin synthase; nonessential; required for wild-type chitin deposition 
in hyphae; transcript regulated during dimorphic transition; Chs1 and 
Chs2, but not Chs3, are inhibited by the protoberberine HWY-289; 
flow model biofilm repressed 

3.56 4.08 3.26 

PGA54 GPI-anchored protein; Hog1-repressed; induced in cyr1 or efg1 
mutant or in hyphae; colony morphology-related gene regulation by 
Ssn6; induced in RHE model; mRNA binds She3; regulated in Spider 
biofilms by Tec1, Egf1, Ntd80, Rob1, Brg1 

3.47 3.69 3.42 
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Table S.4. 2. Continued  

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

GPX1 Putative thiol peroxidase; rat catheter and Spider biofilm induced 3.42 3.75 2.03 
C7_02250W_
A 

Ortholog of C. dubliniensis CD36 : Cd36_72050, C. parapsilosis 
CDC317 : CPAR2_301140, Candida tenuis NRRL Y-1498 : 
CANTEDRAFT_135055 and Debaryomyces hansenii CBS767 : 
DEHA2E07678g 

3.35 4.17 2.87 

C1_07990C_
A 

Similar to cell-wall mannoproteins; induced in low iron; induced in cyr1 
homozygous null; regulated by osmotic and oxidative stress via Hog1; 
Spider biofilm induced 

3.25 3.7 3.17 

C2_10150W_
A 

Secreted protein; fluconazole-induced 3.1 2.84 2.92 

CR_07850W_
A 

Ortholog of C. dubliniensis CD36 : Cd36_33530, C. parapsilosis 
CDC317 : CPAR2_201980, Candida tenuis NRRL Y-1498 : 
CANTEDRAFT_134293 and Debaryomyces hansenii CBS767 : 
DEHA2A10164g 

3.1 2.65 2.03 

RLM1 Putative transcription factor; required for wild-type resistance to cell 
wall perturbation, caspofungin treatment; regulates caspofungin 
induction of PGA13 

3.07 3.23 2.31 

C1_04010C_
A 

Protein with a NADP-dependent oxidoreductase domain; transcript 
induced by ketoconazole; rat catheter and Spider biofilm induced 

2.99 3.89 2.27 

BUD5 Predicted GTP/GDP exchange factor for Rsr1; rat catheter biofilm 
induced 

2.91 3.18 2.1 

UAP1 UDP-N-acetylglucosamine pyrophosphorylase, catalyzes biosynthesis 
of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine 1-
phosphate; functional homolog of S. cerevisiae Qri1p; alkaline 
upregulated 

2.9 4.31 3.82 

BRG1 Transcription factor; recruits Hda1 to hypha-specific promoters; Tn 
mutation affects filamentation; Hap43-repressed; Spider and flow 
model biofilm induced; required for Spider biofilm formation; Bcr1-
repressed in RPMI a/a biofilms 

2.85 4.05 2.76 

AXL2 Ortholog of S. cerevisiae Axl2; a plasma membrane protein involved in 
determination of budding pattern; O-glycosylated by Pmt4; mutant is 
viable 

2.8 4.24 3.54 
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Table S.4. 2. Continued   

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

YKE2 Possible heterohexameric Gim/prefoldin protein complex subunit; role 
in folding alpha-tubulin, beta-tubulin, and actin; transcript induced by 
yeast-to-hypha switch; regulated by Nrg1, Tup1; Spider and flow 
model biofilm induced 

2.78 3.28 2.18 

C6_02210W_
A 

Protein of unknown function; oxidative stress-induced via Cap1; 
induced by alpha pheromone in SpiderM medium 

2.67 2.4 2.21 

CHS7 Protein required for wild-type chitin synthase III activity; similar to (but 
not functional homolog of) S. cerevisiae Chs7p, which effects ER 
export of Chs3p; induced cyr1 mutant hyphae and ras1 yeast-form 
cells; Spider biofilm induced 

2.58 2.6 2.68 

RGA2 Putative GTPase-activating protein (GAP) for Rho-type GTPase 
Cdc42; involved in cell signaling pathways controlling cell polarity; 
induced by low-level peroxide stress; flow model biofilm induced 

2.54 2.55 2.4 

MRV3 Ortholog of Candida albicans WO-1 : CAWG_04793 2.54 2.42 2.08 
C2_07790C_
A 

Protein of unknown function; induced by alpha pheromone in SpiderM 
medium 

2.53 3.05 2.97 

C7_01940C_
A 

Pheromone-regulated protein (Prm10) of S. cerevisiae; colony 
morphology-related gene regulation by Ssn6; induced by Mnl1 under 
weak acid stress; possibly essential gene, disruptants not obtained by 
UAU1 method; Spider biofilm induced 

2.53 2.37 2.26 

PMS1 Putative DNA mismatch repair factor; ortholog of S. cerevisiae PMS1 
which is an ATP-binding protein involved in DNA mismatch repair 

2.5 3.33 2.94 

C1_05440C_
A 

Protein of unknown function; flow model biofilm induced; Spider 
biofilm induced 

2.45 2.14 2.01 

DFI1 Cell-surface associated glycoprotein; promotes activation of Cek1 in a 
matrix-dependent manner; N-glycosylated; Spider biofilm induced 

2.43 2.63 2.28 

CR_09090C_
A 

Ortholog of C. dubliniensis CD36 : Cd36_34510, Candida tropicalis 
MYA-3404 : CTRG_05938 and Candida albicans WO-1 : 
CAWG_02183 

2.36 2.92 2.01 

C4_01420W_
A 

Ortholog of C. dubliniensis CD36 : Cd36_41430, Candida tropicalis 
MYA-3404 : CTRG_00187 and Candida albicans WO-1 : 
CAWG_03642 

2.3 2.59 2.15 
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Table S.4. 2. Continued   

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

HGC1 Hypha-specific G1 cyclin-related protein involved in regulation of 
morphogenesis, biofilm formation; Cdc28-Hgc1 maintains Cdc11 S394 
phosphorylation during hyphal growth; required for virulence in mice; 
regulated by Nrg1, Tup1, farnesol 

2.29 3.29 2.56 

C3_02290W_
A 

Protein similar to S. cerevisiae Ydr282cp; transposon mutation affects 
filamentous growth; Hap43p-repressed gene 

2.25 2.18 2.61 

KRE6 Essential beta-1,6-glucan synthase subunit; change in mRNA length, 
not abundance, at yeast-hypha transition; alkaline induced by Rim101, 
on cell wall regeneration; Spider biofilm induced; Bcr1-repressed in 
RPMI a/a biofilms 

2.24 2.7 2.34 

HAC1 bZIP transcription factor; role in unfolded protein response and control 
of morphology; transcript undergoes atypical splicing at C terminus 
under ER stress; induced during mating and by caspofungin; mRNA 
binds She3; Spider biofilm induced 

2.12 2.32 2.59 

PTP2 Predicted protein tyrosine phosphatase; involved in regulation of MAP 
kinase Hog1 activity; induced by Mnl1 under weak acid stress; rat 
catheter and Spider biofilm induced 

2.11 2.22 2.45 

ENG1 Endo-1,3-beta-glucanase; ortholog of S. cerevisiae Dse4 needed for 
cell separation; caspofungin, fluconazole repressed; repressed by 
alpha pheromone in SpiderM medium; flow model biofilm induced; rat 
catheter biofilm repressed 

-2.09 -2.14 -2.79 

C7_01170C_
A 

Putative oxidoreductase; mutation confers hypersensitivity to toxic 
ergosterol analog; rat catheter and Spider biofilm induced 

-2.17 -4.89 -4.56 

C1_11990W_
A 

Putative cell wall adhesin-like protein; repressed in core caspofungin 
response and by alpha pheromone in SpiderM medium; transcript 
reduced in ace2 mutant; flow model, rat catheter and Spider biofilm 
repressed 

-2.22 -2.06 -3.17 

C2_06800C_
A 

Protein of unknown function; Spider biofilm induced -2.28 -2.94 -2.31 

C4_02080W_
A 

Protein with a mitochondrial carrier protein domain; possibly an 
essential gene, disruptants not obtained by UAU1 method; Spider 
biofilm repressed 

-2.35 -3.3 -3.21 

C1_10710C_
A 

Protein similar to S. cerevisiae Yor378w; MFS family transporter; 
transposon mutation affects filamentous growth; null mutants are 
viable; fungal-specific (no human or murine homolog) 

-2.52 -2.4 -2.35 
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Table S.4. 2. Continued   

Gene Name Function 
Fold Change 

vs. WT. 
–doxy 

vs. WT 
+doxy 

vs. 
STE11ΔN467+doxy 

C1_05830W_
A 

Ortholog(s) have trans-aconitate 3-methyltransferase activity and 
cytosol localization 

-2.58 -4.53 -3.84 

TRP4 Predicted enzyme of amino acid biosynthesis; upregulated in biofilm; 
regulated by Gcn2p and Gcn4p; S. cerevisiae ortholog is Gcn4p 
regulated 

-2.59 -2.91 -2.15 

C4_01800W_
A 

Protein with a dienelactone hydrolase domain; Hap43-repressed gene -2.59 -2.9 -3.18 

FGR41 Putative GPI-anchored adhesin-like protein; transposon mutation 
affects filamentous growth; Spider biofilm repressed 

-2.68 -2.85 -2.71 

MEP1 Ammonium permease; Mep1 more efficient permease than Mep2, 
Mep2 has additional regulatory role; 11 predicted transmembrane 
regions; low mRNA abundance; hyphal downregulated; flow model 
biofilm induced 

-2.87 -3.76 -2.46 

HOM3 Putative L-aspartate 4-P-transferase; fungal-specific (no human or 
murine homolog); regulated by Gcn2 and Gcn4; early-stage flow 
model biofilm induced 

-2.87 -3.4 -3.53 

C6_03390W_
A 

Mitochondrial dicarboxylate transporter; possibly an essential gene, 
disruptants not obtained by UAU1 method 

-2.89 -2.5 -2.78 

MDR1 Plasma membrane MDR/MFS multidrug efflux pump; methotrexate is 
preferred substrate; overexpression in drug-resistant clinical isolates 
confers fluconazole resistance; repressed in young biofilms; rat 
catheter biofilm induced 

-3.12 -3.09 -2.47 

RNR22 Putative ribonucleoside diphosphate reductase;colony morphology-
related gene regulation by Ssn6; transcript regulated by tyrosol and 
cell density; Hap43-repressed; Spider biofilm induced 

-3.32 -2.98 -3.71 
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CHAPTER V: Conclusion and Future Direction 
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Conclusion  
Altogether, the findings in this dissertation demonstrate the central role of the Cek1 

MAPK in regulating cell wall β (1,3)-glucan masking in C. albicans. Davis et al. 

identified that loss of the phosphatidylserine (PS) synthase enzyme (Cho1) results 

in β (1,3)-glucan exposure in this organism. However, the mechanism by which 

loss of PS synthase leads to cell wall unmasking remained to be defined. To 

address this, in Chapter II I began using biochemical methods to identify the 

potential protein(s) causing this phenotype. Several proteins comprising molecular 

signaling pathways, which regulate fungal cell wall synthesis, are hyper-activated 

when the PS synthesis enzyme is disrupted. We hypothesized that one or a few of 

these signaling proteins may contribute to increased β (1,3)-glucan exposure in 

the cho1Δ/Δ mutant. I further discovered that when the protein kinase Cek1 is 

activated by itself, β (1,3)-glucan is exposed. The increased β (1,3)-glucan 

exposure exhibited from the strain containing hyper-activated Cek1 is shown to be 

immunologically relevant, reflected by stronger pro-inflammatory anti-fungal 

immune responses induced from murine macrophages. The GTPase Cdc42 is a 

central regulator of cell growth and morphological development. Cdc42 activity is 

found to be induced in the cho1Δ/Δ mutant, and genetic work demonstrated that 

hyperactivated Cdc42 results in the up-regulation of Cek1 activity. Based on these 

observations, we propose a model that Cho1 or its biochemical product PS impacts 

GTPase Cdc42 activity, which controls downstream Cek1 phosphorylation and 

thus induces β (1,3)-glucan exposure.  

Chapter III demonstrated a novel signaling cascade controls Cek1 activity, 

which is composed of a protein called Lrg1, which represses β (1,3)-glucan 

exposure and Cek1 activity, and its cognate small GTPase is Cdc42. The 

discovery that Lrg1 inhibits Cdc42 activity in C. albicans is novel and unexpected 

because Lrg1 was thought to act on another GTPase Rho1, a major regulator for 

cell wall biosynthesis. Activated Cdc42 further relays the activation signal to the 

downstream Cek1 pathway. This work uncovers a new aspect of basic biology of 

signaling transduction leading to Cek1 activation and β (1,3)-glucan exposure in 

C. albicans. The mouse model of systemic infection, which mimics the human 
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disseminated fungal disease, revealed that the hyper-activation of Cek1 

attenuates fungal virulence within the host and leads to better fungal clearance 

from the mouse kidney, which is the primary organ that C. albicans infects. Thus, 

we propose a model where loss of LRG1 results in Cek1 over-activation, which 

further leads to more β (1,3)-glucan exposure, and the cell wall remodeling 

increases immune detection within the host and results in more rapid immune 

clearance.  

Chapter IV described the genetic mechanisms responsible for the 

modulation of Cek1 activation on β (1,3)-glucan exposure in C. albicans. RNA-seq 

analysis was used to elucidate the whole genome transcriptional profiles regulated 

by activated Cek1 during β (1,3)-glucan unmasking. This strategy demonstrates 

that several cell wall associated genes are differentially manipulated 

transcriptionally when Cek1 is activated. Of interest, chitin production is 

significantly induced at the genetic level, e.g. CHS2, CHS3, CHS8 and PGA31 are 

upregulated. PGA31 is a chitin production-relevant gene [1]. Given the relationship 

of chitin hyper-production and (1,3)-glucan exposure [2], this implies that chitin 

levels might impact cell wall unmasking in the Cek1-overactivating mutant. Cek1 

downstream transcription factor Cph1 is also suggested to mediate cell wall 

dysfunction transcriptionally, as its transcript is induced significantly in the CEK1 

hyper-activating mutant. However, this is speculation and further research will be 

conducted to assess these hypotheses.  

 
Future direction 
To determine genetic target(s) downstream Cek1 causing β (1,3)-glucan 
exposure 
The work in this dissertation has described an entirely new physiological role of 

Cek1 activation in regulating cell wall architecture and the resultant 

immunomodulation. Cek1 disruption has already been proved to impact C. 

albicans cell wall structure by exposing polysaccharides including β (1,3)-glucan, 

β (1,2)-mannosides to their cognate immune receptors, and thus boost immune 

responses that aid in clearance of the pathogen more rapidly [3, 4]. In this 
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dissertation, we provide evidence that hyper-activated Cek1 is also able to cause 

cell wall structure problems, as evidenced by massive β (1,3)-glucan exposure, 

which causes induction of immune detection, as confirmed by in vitro cytokine 

secretion (Figure 2. 3 and Figure 3. 5), and efficient pathogen clearance as 

suggested by the in vivo mouse model (Figure 3. 6 and Figure 3. 7). These 

observations are quite interesting, but also raise some important questions, e.g. 

what major regulating factors are involved in mediating cell wall architecture 

defects driven by unbalanced Cek1 activity? Research is still underway to pinpoint 

the gene(s) causing β (1,3)-glucan exposure induced by Cek1 activation, but our 

transcriptome analysis does reveal a few potential targets (Figure 4. 4). Of 

particular interests, Cph1, a Cek1 downstream transcription factor, is induced ~9 

fold in the Cek1 activating mutant. Given the fact that the Cph1-overexpressing 

mutant exhibits pseuodohyphal structure under yeast-condition (cultured in YPD 

liquid at 30°C), and filaments have more β (1,3)-glucan exposure naturally [5, 6], it 

seems likely that the increased cell wall unmasking induced by Cek1 overactivation 

under yeast condition results from the transcriptional regulation mediated by Cph1. 

To test this, a Cph1-overexpressing mutant would need to be created to evaluate 

its impact on β (1,3)-glucan exposure. Second, the hyphal glucan of C. albicans 

was reported to exhibit a unique biochemical structure, which has “cyclical chain” 

architecture and an unexpected 2,3-linkage [6]. While the structural significance of 

the cyclical chain is not fully understood, it was speculated that this might be 

partially responsible for higher levels of cell wall unmasking. We hypothesize that 

the β (1,3)-glucan structure under the yeast condition when Cek1 is hyperactivated 

is transitioned to the hyphal β (1,3)-glucan structure. This can be determined by 

using nuclear magnetic resonance (NMR) and gas chromatography–mass 

spectrometry (GC-MS), and this work can be achieved potentially by collaboration 

with Dr. Michael Kruppa at East Tennessee State University.  
It was reported that C. albicans hyphae damaged by neutrophils exhibit 

increased β (1,3)-glucan, and this is mediated through delocalized CHS3 [2]. There 

is also a correlation between chitin overproduction and β (1,3)-glucan unmasking 

[7, 8]. Based on this, it seems likely that several transcriptionally up-regulated chitin 
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synthases might impact cell wall structure when Cek1 is hyperactivated. To 

address this speculation, it is necessary to perform genetic analysis by 

overexpression of those targets individually independent of Cek1. The level of β 

(1,3)-glucan exposure would be assessed by performing immunofluorescent 

staining with anti- β (1,3)-glucan antibody. If individual mutation results in mild but 

not significant increased unmasking, it is possibly that these proteins need to be 

together to have a synergistic effect. To test this possibility, we can try to 

overexpress those targets together (Chs2, Chs3 and Chs8) in wild-type, and the 

immunofluorescent assay would be performed to evaluate the impact on cell wall 

exposure. Second, the endo-β (1,3)-glucanase (Eng1) was determined to enhance 

the virulence of fungal pathogen H. capsulatum by removing surface-exposed β 

(1,3)-glucan from immune detection [9]. The transcript of C. albicans ENG1 

homolog is down-regulated by 2-fold when Cek1 is hyperactivated (Figure 4. 4 and 

Table 4. 1). Although CaEng1 is primarily responsible for cell separation during 

budding [10], we cannot rule out the possibility that it might also impact β (1,3)-

glucan structure as HcEng1 does. To assess this, it is necessary to quantify the 

level of β (1,3)-glucan exposure between the ENG1 disrupted mutant vs. wildtype.  

 

To identify signals involved in caspofungin-driven β (1,3)-glucan exposure  
Caspofungin is a well-known fungicidal drug with the mechanism of inhibiting β 

(1,3)-glucan biosynthesis. It also exposes this polysaccharide to the surface and 

therefore facilitates immune detection even at a sub-lethal concentration. 

However, the direct mechanisms by which cell wall structure is disordered by 

caspofungin treatment are unclear. Our results imply that the Cek1 signaling 

cascade is one signaling pathway responding to casponfugin. This was suggested 

by hyperactivation of Cek1 when incubated with caspofungin at ½ MIC, and the 

induction gets more pronounced over time (Figure 4.5). This is promising as it 

reveals one potential target leading to β (1,3)-glucan exposure induced by 

caspofungin. Future work can be done to evaluate if two downstream transcription 

factors (Ace2 and Cph1) are involved in cell wall unmasking responsive to 

caspofungin.  
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Of interest, a genome-wide expression profile based on a microarray assay 

reveals that after Candida cells are exposed to ½ MIC of caspofugin for 3 hours, 

480 gene were found to be regulated in response to the drug, and 3% of the genes 

are involved in cell wall maintenance [11]. Several targets overlap with our RNA-

Seq data when Cek1 is hyperactivated, e.g. CRH11, PHR1, and KRE1 whose 

transcripts are upregulated, while SCW11 and ENG1 are down-regulated in both 

studies. Moreover, Xu et al. studied the in vivo response to caspofungin, where the 

fungal gene expression profile was measured 2hr after drug administration in mice 

that had already been infected by C. albicans for 24hr. 12 genes were found to be 

induced that are enriched for cell wall or secreted proteins, particularly of GCA2, 

PGA13, PGA31, PIR1 and RBR2 were also found in our RNA-Seq data when Cek1 

is hyperactivated. This highlights the significance of the Cek1 hyperactivation in 

restructuring the cell wall architecture in response to caspofungin. The 

abovementioned targets would need to be manipulated genetically in a wild-type 

background based on their expression profile. For instance, the individual deletion 

mutant would be made for those displaying upregulated transcripts in both 

caspofungin treatment and Cek1 overactivation situations. Further research would 

assess if the mutant rescues cell wall β (1,3)-glucan exposure after being exposed 

to caspofungin.  

 Several other signaling proteins are known to be responsive to caspofungin 

treatment, e.g. Mkc1, and Hog1 MAPKs. Therefore, it would be necessary to assay 

the rescue effect of the HOG1 or MKC1 disrupted mutant on β (1,3)-glucan 

exposure when induced by caspofungin. However, if none of those targets are 

involved in the caspofungin-driven β (1,3)-exposure, we would set off an extensive 

screen on the deletion mutant library on hand with ~700 nonessential gene 

mutants. The goal is to find the genetic network that is responsible for cell wall re-

structure stimulated by caspofungin.  
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To disentangle signaling rewiring that involves GTPases and associated 
molecules 
The findings of this dissertation have provided a greater general understanding of 

signaling transduction/rewiring in pathogenic C. albicans. There are several 

unanticipated findings in Chapters II and III. For instance, Cdc42 activity was 

shown to be stimulated when PS synthase enzyme Cho1 was deleted (Figure 2. 

4). We originally hypothesized that Cdc42 activity might be down-regulated due to 

the delocalization of GFP-Cdc42 in the cho1Δ/Δ mutant (Figure 2. 5). This 

phenotype was also seen in the model yeast S. cerevisiae where loss of Cho1 

delocalizes Cdc42 from polarized growth site to an internal membrane [12]. 

However, an in vitro study in S. cerevisiae showed that PS stimulates the GAP 

activity for ScCdc42, suggesting that loss of PS has less stimulation on Cdc42 

GAP activity and thus results in the increased Cdc42 activity [13]. Likewise, the 

mechanisms through which Cdc42 activity is stimulated by CHO1 deletion in C. 

albicans could be investigated in a similar way in vitro. To do this, radio-labeled [γ-
32P] GTP-bound CaCdc42 needs to be incubated with PS, along with its GAPs, 

e.g. Rga1, or Rga2. The GTP hydrolysis would then be assayed by measuring the 

radioactivity of [γ-32P] GTP-bound Cdc42 after incubation. Some other 

phospholipids such as phosphatidylethanolamine and phosphatidylinositol can be 

used as controls to assess if the stimulation effect on Cdc42 GAPs activity is PS-

dependent. Moreover, other GTPase GAPs, e.g. Sac7 as GAP for Rho1, can also 

be assayed to evaluate if PS is a universal inhibitor on GAPs.   
In Chapter III, Lrg1 inhibits GTPases Cdc42 and Ras1 activity in vivo (Figure 

3. 3), even though Lrg1 was originally suggested to act as a Rho1 activity repressor 

in this organism [14]. Research would demonstrate if Lrg1 functions as GAP for 

Cdc42, Ras1 and/or Rho1 by performing in vitro GTPases assay. In this 

experiment, Lrg1 protein will be incubated with [γ-32P] GTP-bound GTPases, and 

the radioactivity of [γ-32P] GTP-bound GTPases after incubation will be measured. 

To analyze if the CaLrg1 GAP homolog domain (representing amino acids 1183-

1375) exhibits true GAP activity, genetic manipulation will delete the rhoGAP 

domain and the inhibition on GTPase activity of Cdc42 or Ras1 by the 
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lrg1ΔrhoGAP mutant will be analyzed via biochemical assay in vitro as 

abovementioned. Furthermore, we found that hyper-activated Ras1 does not 

induce Cek1 phosphorylation (Figure 3. 3), although the epistasis evidence 

suggests Ras1 acts upstream of Cek1 [15].  

 

To explore the roles of Lrg1 in regulating C. albicans cell wall architecture 
Besides acting as a rho-GAP, Lrg1 has been shown to impact cell polarity, cell 

fusion, Mkc1 MAPK activity and β (1,3)-glucan biosynthesis etc. in S. cerevisiae 

[16, 17]. In N. crassa, LRG1 have also been studied and suggested to regulate 

polar tip growth [18]. In contrast, little is known about the function of Lrg1 in the 

pathogenic C. albicans. It was described that Lrg1 negatively controls filamentation 

in this organism [14]. In this dissertation, we further elaborated that CaLrg1 

controls β (1,3)-glucan exposure by negatively regulating Cek1 MAPK cascade, 

and the lrg1Δ/Δ mutant displays higher immunogenicity suggested by stronger pro-

inflammatory cytokines production from murine macrophages (Figure 3. 1, Figure 

3. 2, and Figure 3. 5). It seems likely that Lrg1 influences cell wall structure; 

however, questions remain regarding the mechanisms by which Lrg1 does so at 

the biochemical level. For instance, while loss of LRG1 induces β (1,3)-glucan 

exposure, we are not clear if it is due to a greater level β (1,3)-glucan being 

produced. Also, it is not clear if loss of LRG1 impacts chitin synthesis or localization 

in C. albicans, although it does so in N. crassa. Research can be done by staining 

Candida cells with aniline blue for β (1,3)-glucan and calcofluor white for chitin, 

respectively, to analyze their contents and localization. Moreover, it would be 

interesting to analyze the localization of Lrg1 in vivo by tagging it with GFP, and 

probe the deliver machinery of cell growth components, e.g. actin cytoskeleton 

simultaneously, which would help understand the correlation between Lrg1 

localization and new cell wall component deposition. Last, it was predicted by 

SMART.EMBL.DE that CaLrg1 contains two Zinc-binding LIM domains which 

generically help bind protein partners in eukaryotes; however, it not known how 

these two domains act specifically in C. albicans. It was suggested that NcLrg1 

contains three LIM domains which are required for localizing LRG1 to the growth 

http://smart.embl.de/
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sites. It is possibly that these two domains act similarly in C. albicans, but research 

would need to be conducted by deleting these two LIM domains in CaLRG1, and 

localization of the mutated LRG1 can be assessed by tagging with GFP.  

 
To elaborate the mechanisms by which β (1,3)-glucan exposure impacts 
fungal virulence in vivo 
As described in Figure 3. 6 we determined that increased β (1,3)-glucan exposure 

seems to compromise fungal virulence, as evidenced by significantly longer mouse 

survival rates and faster pathogen clearance in mouse kidneys. This suggests that 

the phenotype of β (1,3)-glucan exposure is immunologically relevant. To 

demonstrate if the enhanced killing ability in vivo is due to higher levels of 

unmasked β (1,3)-glucan exhibited from the Cek1-hyperactivating mutant, ex vivo 

staining by using anti-β (1,3)-glucan antibody on homogenized tissues, e.g. kidney, 

liver would need to be done. Moreover, immune cell recruitment and cytokine 

profiles by flow cytometry are also necessary to demonstrate if immune responses 

are boosted in response to the exposed β (1,3)-glucan. This work can be achieved 

potentially through collaboration with Dr. Sparer, whose lab has established the 

techniques at the Microbiology Department at UT. Finally, it is valuable to evaluate 

if the enhanced immune responses are dependent on Dectin-1 and this can be 

studied by using dectin-1 deficient mice.  
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