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RESEARCH ARTICLE Open Access

Soil indigenous microbiome and plant
genotypes cooperatively modify soybean
rhizosphere microbiome assembly
Fang Liu1, Tarek Hewezi2, Sarah L. Lebeis3, Vince Pantalone4, Parwinder S. Grewal5 and Margaret E. Staton6*

Abstract

Background: Plants have evolved intimate interactions with soil microbes for a range of beneficial functions
including nutrient acquisition, pathogen resistance and stress tolerance. Further understanding of this system is a
promising way to advance sustainable agriculture by exploiting the versatile benefits offered by the plant
microbiome. The rhizosphere is the interface between plant and soil, and functions as the first step of plant defense
and root microbiome recruitment. It features a specialized microbial community, intensive microbe-plant and
microbe-microbe interactions, and complex signal communication. To decipher the rhizosphere microbiome
assembly of soybean (Glycine max), we comprehensively characterized the soybean rhizosphere microbial
community using 16S rRNA gene sequencing and evaluated the structuring influence from both host genotype
and soil source.

Results: Comparison of the soybean rhizosphere to bulk soil revealed significantly different microbiome
composition, microbe-microbe interactions and metabolic capacity. Soil type and soybean genotype cooperatively
modulated microbiome assembly with soil type predominantly shaping rhizosphere microbiome assembly while
host genotype slightly tuned this recruitment process. The undomesticated progenitor species, Glycine soja, had
higher rhizosphere diversity in both soil types tested in comparison to the domesticated soybean genotypes.
Rhizobium, Novosphingobium, Phenylobacterium, Streptomyces, Nocardioides, etc. were robustly enriched in soybean
rhizosphere irrespective of the soil tested. Co-occurrence network analysis revealed dominant soil type effects and
genotype specific preferences for key microbe-microbe interactions. Functional prediction results demonstrated
converged metabolic capacity in the soybean rhizosphere between soil types and among genotypes, with
pathways related to xenobiotic degradation, plant-microbe interactions and nutrient transport being greatly
enriched in the rhizosphere.

Conclusion: This comprehensive comparison of the soybean microbiome between soil types and genotypes
expands our understanding of rhizosphere microbe assembly in general and provides foundational information for
soybean as a legume crop for this assembly process. The cooperative modulating role of the soil type and host
genotype emphasizes the importance of integrated consideration of soil condition and plant genetic variability for
future development and application of synthetic microbiomes. Additionally, the detection of the tuning role by
soybean genotype in rhizosphere microbiome assembly provides a promising way for future breeding programs to
integrate host traits participating in beneficial microbiota assembly.
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Background
It has been widely recognized that plants utilize associ-
ated microbes for a range of beneficial functions includ-
ing nutrient acquisition, pathogen resistance and stress
tolerance [1]. Recent studies consistently demonstrate
that the plant microbiome greatly extends plants’ adap-
tations to changing environments [2, 3]. These results
suggest a promising new avenue of research for sustain-
able agriculture [4]. Further, microbe community assem-
bly is not static or passive; plants can actively modulate
the assembly of their beneficial microbiome in response
to stressors (e.g., drought and pathogen infection). This
dynamic response further highlights the possibility of
optimizing crop yields by exploiting beneficial plant-mi-
crobe interactions [2, 5, 6].
The rhizosphere is an interface between plant root and

soil characterized by a dynamic microbial community with
intensive microbe-microbe and plant-microbe communica-
tion mediated by plant molecular signals, especially second-
ary metabolites [7]. At this root-microbe interface, plant
and microbes have evolved intimate interactions. Plants al-
locate a significant portion of photosynthates as root exu-
dates that serve as resources for microbes, and in return,
microbes help to increase plant fitness via various plant
growth promoting impacts [4, 8]. The rhizosphere is also
the first line of plant defense to pathogen infection [1] and
acts as the initial filter for the subset of microbes that will
colonize the root as endophytes [9]. Understanding the
major factors that shape the rhizosphere microbiome as-
sembly and the mechanisms of mutual adaptation between
microbes and plants in response to changing environmental
conditions will help to identify potential targets for future
crop breeding and management.
Comprehensive characterization and comparison of

rhizosphere microbiomes among numerous plant species
under different conditions has consistently revealed the
crucial impacts of soil source [9, 10] and plant genetic
traits [11–13] on rhizosphere microbiome assembly. The
pool of microbes available in the soil determines the ini-
tial microbial repertoire for this assembly process [7]. In
addition, soil physio-chemical characteristics directly
modulate microbial communities and may also indirectly
alter rhizosphere microbiome assembly through impacts
on host plant physiology [7]. Plant physiology and genet-
ics also control rhizosphere composition. Differences in
root morphology and in the quantity and quality of rhi-
zodeposits could greatly diversify the composition and
activity of the rhizosphere microbiome in a species-spe-
cific way [7]. With the advantage of nitrogen fixation by
rhizobia, the root exudates of legumes differs from non-
legumes in both quantity and quality, with higher exud-
ation amounts and lower carbon-to-nitrogen ratios [14].
This special trait of legumes may shape rhizosphere
microbiome assembly differently compared with non-

legume plant. Turner et al. (2013) compared rhizosphere
microbiomes between wheat, oat, and pea and found a
higher rhizosphere effect (i.e, compositional and func-
tional difference of microbiome between rhizosphere and
nearby soil) in pea compared with the cereals. In addition
to soil source and plant genetic traits, domestication, soil
nutrient status and abiotic stress mediate rhizosphere
microbiome assembly to different degrees [11, 15–17].
The impact of plant genotypes on rhizosphere micro-

biome composition is usually reported to be very weak
but varies depending on soil context and plant species
studied [18]. For example, composition of the rice root
microbiome was significantly influenced by rice geno-
type when grown under controlled greenhouse condi-
tions, whereas no impact was detected under field
conditions [19]. Peiffer et al. (2013) suggested a small but
significant impact of maize genetic variations on bacterial
diversity under field conditions by a comprehensive com-
parison across 27 inbred lines. A comparison of the rhizo-
sphere microbiome between barley genotypes with
different domestication histories also revealed small but
significant impacts, and these genotype-dependent im-
pacts were manifested by differing the abundance of a few
specific taxa instead of whole community-level differences
[15]. Although genotype level modification of microbial
composition appears to be modest, genes participating in
immune response, nutrient response, and stress response
could change the abundance of specific microbial consor-
tia, which in turn would profoundly alter host perform-
ance [16, 17, 20, 21]. One example of this change was
reported by Hanley et al. (2015), in which genotype differ-
ences in the ability to associate with Pseudomonas fluores-
cens between wild Arabidopsis accessions were found to
be related to host fitness [22].
Soybean is an important crop worldwide as an essential

food resource for protein and vegetable oil and also is the
largest feedstock source for biodiesel production in the
United States [23–26]. Soybeans form a symbiotic relation-
ship with the nitrogen-fixing rhizobia. As improvement of
nitrogen-fixing capacity of soybeans is a major research goal,
numerous studies have been conducted to understand the
process and signaling pathways that mediated this symbiotic
interaction. Soil physico-chemical characteristics, including
soil moisture, temperature, pH and nutrient status, have
consistently been reported as crucial factors determining the
efficiency of nodulation and nitrogen fixation [27–29]. Due
to this predominant symbiotic interaction between rhizobia
and soybean, the microbiome composition of soybean may
differ from non-legume plants. This difference was observed
in the root microbiome of another legume, Trifolium pra-
tense, in which rhizobia accounted for 70% of the whole root
microbiome [30].
To evaluate the relative contribution of soil source and

host genetic traits in rhizosphere microbiome assembly,
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six soybean genotypes with varying traits and two soil
types with distinct microbiome compositions were chosen
to compare rhizosphere microbiome assembly both com-
positionally and functionally. Considering the distinct de-
velopmental traits of the genotypes and distinguished
microbiome difference between soil types, we hypothesize
that both factors will significantly and cooperatively ma-
nipulate the structure and composition of rhizospheric
microbiota. It has been recognized that microbe-microbe
interaction is another crucial driving force for rhizosphere
microbiome assembly [15, 31]. To examine this factor, we
also compared the difference of microbial network patterns
between bulk soil and rhizosphere and among genotypes in
terms of the network complexity, modularities, and key
taxa. By integrating the information from differential abun-
dance analysis, microbial network, and metabolic pathway
results, we aim to establish a foundation of knowledge
about how the soybean rhizosphere is structured.

Results
A total of 19,358,039 raw reads from 136 samples were
generated after paired-end sequencing with a read length of
275 bp. Quality analysis with FastQC suggested that the
first 200–250 bp of each read had a quality score higher
than 30 (Additional file 1: Figure S1), and 88–95% of se-
quences had an exact match in the primer region. After
several steps of stringent trimming and filtering of chimeric
and non-bacterial sequences, 9,945,986 reads were clus-
tered into 175,957 OTUs based on a threshold of 97% se-
quence similarity. Most of the samples yielded about 50,000
reads, with the minimum sequencing depth of 19,023 and
the maximum depth of 247,930 (Additional file 1: Figure

S2). The rarefaction curve suggested consistent bacterial
OTU richness across samples, with no obvious outlier sam-
ples (Additional file 1: Figure S3). After rarefaction to the
minimum sequencing depth, 76,864 OTUs remained in the
136 samples, belonging to 25 phyla, 99 classes, 122 orders,
244 families and 642 genera.

Soybean rhizosphere demonstrates different but
dependent microbial community composition compared
to bulk soil
Overall, the microbial community of the soybean rhizo-
sphere microbiome is significantly different from that of
bulk soil, with some taxa being consistently recruited to
the rhizosphere regardless of the soil type. However,
some other bacterial taxa were specifically enriched in
soybean rhizosphere in a soil-dependent way.

Phylum, class, order and family level comparison
At the phylum level, bacterial communities were domi-
nated by Proteobacteria, Acidobacteria, Actinobacteria,
and Bacteroidetes in both agricultural and forest soils, with
the next most abundant phyla being Firmicutes in agricul-
ture soil, and Verrucomicrobia and Planctomycetes in for-
est soil (Fig. 1). The composition of microbes immediately
after collection (fresh soil) and after 2 months in the
greenhouse (bulk soil) were similar, indicating that the
greenhouse environment and the time lapse did not
largely alter microbial communities. Comparison of bulk
and fresh soil samples to rhizosphere samples revealed
much greater differences. Differential abundance analysis
results indicated that Proteobacteria, Actinomycetales and
Enterobacteriaceae were significantly enriched from bulk

Fig. 1 Bacterial community composition at phylum level. Bacterial phyla with relative abundance smaller than 1% across 20% of samples were
grouped together to form the “Others” category. Fresh soil was soil sample flash frozen immediately after field collection, while bulk soil was
those treated the same as rhizosphere but without soybean grown in it
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soil to rhizosphere in both soil types across all the six ge-
notypes, while Acidobacteria and Verrucomicrobia were
consistently depleted in soybean rhizosphere (Fig. 2).
However, the enrichment/depletion pattern of bacterial
phyla in the soybean rhizosphere was not entirely consist-
ent between soil types; Firmicutes (especially Bacilli) was
preferably enriched in the rhizosphere when grown in
agriculture soil, while Bacteroidetes (specifically Chitino-
phagaceae) were selectively accumulated when growing in
forest soil. Similarly, Alphaproteobacteria (especially Rhi-
zobiales) and Betaproteobacteria (specifically Burkholder-
iales) were discriminately enriched in agriculture and
forest soil respectively. Although Gammaproteobacteria
was consistently enriched in the rhizosphere across all
treatments, the enrichment of bacteria within the Gam-
maproteobacteria class differed between soil types, with
Xanthomonadaceae preferably enriched in forest soil
while Pseudomonadaceae were preferably recruited when
grown in agriculture soil. This divergent enrichment/de-
pletion pattern in soybean rhizosphere between soil types
indicates the dominant impacts of the soil sources and

their starting microbial pools on rhizosphere microbiome
assembly.

Genus level
To provide more detailed understanding of bacteria as-
sembly in soybean rhizosphere under different soil con-
ditions and host genetic background, LefSe analysis was
conducted at the genus level to determine the enrich-
ment/depletion pattern between each pair of rhizosphere
and soil samples (e.g., Ag_WIL rhizosphere vs. soil sam-
ples) with an LDA score threshold of 2. In total, the rela-
tive abundances of 299 out of 642 bacterial genera were
detected to be significantly different between rhizo-
sphere and soil samples. Among these 299 genera, 11
were consistently enriched in the soybean rhizosphere
for both soil types across the six genotypes: Rhizobium,
Novosphingobium, Phenylobacterium, Streptomyces,
Nocardioides, Nocardia, Amycolatopsis, Dyadobacter,
TM7_genus_incertae_sedis, Sphingobacteriaceae_unclas-
sified, and Enterobacteriaceae_unclassified. In contrast,
11 out of the 299 genera (Gp15, Gp13, Gp9, Gp6,

Fig. 2 Differential abundance between soil and rhizosphere by linear discriminant analysis (LDA) > 4. In this LefSe analysis, soil samples (including
both fresh and bulk samples) were treated as controls. A negative LDA score represents depletion in soil and enrichment in rhizosphere (red) and
a positive LDA score represents the opposite (green)
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Gemmata, Rhodospirillales-unclassified, Betaproteobac-
teria-unclassified, Rhodocyclaceae-unclassified, Deltapro-
teobacteria-unclassified, Planctomycetaceae-unclassified,
and Bacteria-unclassified) were steadily depleted in the
rhizosphere (Fig. 3).

Consistent with phylum level results, numerous bacter-
ial genera were selectively enriched/depleted in the rhizo-
sphere when grown in one soil type instead of the other.
For example, Bradyrhizobium, Pseudoxanthomonas, Krib-
bella,Agromyces, etc. were favorably accumulated in the

Fig. 3 The enrichment and depletion of bacteria by genera in the soybean rhizosphere. The inside dendrogram represents the taxonomic tree of
all bacterial genera with significantly different abundance between soil and rhizosphere, with color indicating phylum. Proteobacteria (green)
were subset to class level, with circle, star, pentagon, square and diamond representing Alpha-, Beta-, Delta-, Gamma- and Unclassified-
Proteobacteria respectively. The number at the end of each branch represents the corresponding bacterial genus as annotated along the list
along each side of the plot. A detailed annotation list could be found in Additional file 2. The enrichment/depletion of each genus in the
soybean rhizosphere is depicted in the external heatmap ring, with red indicating enrichment, blue representing depletion, and yellow indicating
no significant difference. The darker the color of each block, the stronger the corresponding enrichment/depletion, which is scaled based on
corresponding LDA score
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soybean rhizosphere when grown in agriculture soil.
Meanwhile, Burkholderia, Rudaea, Dyella and Mucilagini-
bacter, etc. were discriminatively recruited to the soybean
rhizosphere when grown in forest soil. Likewise, Gp1 and
Pasteruria were significantly decreased in the soybean
rhizosphere when grown in agriculture soil while Gp2 was
selectively depleted when grown in forest soil. In total, 37
genera were specifically enriched in the rhizosphere when
soybeans were grown in agriculture soil while 13 genera
were specifically enriched in forest soil (Additional file 3).
Among the 37 specifically enriched genera, only one genus
was absent in the soybean rhizosphere when growing in
forest soil, while none out of the 13 genera was absent in
soybean rhizosphere when grown in agriculture soil. In
other words, this soil-type specific bacteria enrichment
may be attributed to differences in rhizosphere assembly
processes instead of absence of a specific taxon in the mi-
crobial pool. Additionally, even among those that were
consistently enriched, the degree of the enrichment also
varied and depended on the soil type. For example, differ-
ential abundance analysis indicated that Rhizobium, Strep-
tomyces and Novosphingobium were constantly enriched

in soybean rhizosphere across all genotypes and soil types.
However, the degree of this enrichment was more domin-
ant when grown in agriculture soil compared with that of
forest soil (Fig. 4). In contrast, the depletion of Acidobac-
teria was more distinct in soybean rhizosphere when the
plants were grown in forest soil in comparison with those
grown in agriculture soil.
In addition to soil type effects, between-genotype dif-

ferences in bacteria enrichment/depletion patterns were
also apparent (Fig. 3). As visualized in the bacterial
genus abundance boxplots, Pseudomonas and Stenotro-
phomonas were enriched in all soybean genotypes except
Glycine soja (Fig. 4). Similarly, the recruitment of Rhizo-
bium, Pantoea and Mucilaginibacter in Glycine soja was
also limited compared with the other five genotypes.
However, the recruitment of Streptomyces and Kribbella
was more evident in the wild species accession (SOJ)
compared with other genotypes when grown in agricul-
tural soil. Compared with other genotypes, non-nodulating
soybeans (NND) were less attractive to Novosphingobium
as demonstrated by its lower abundance in soybean
rhizosphere.

Fig. 4 Boxplot of bacterial genus abundance between treatments
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Dominant impacts of soil indigenous microbe pool and
soil environment on rhizosphere microbial community
composition
To quantify the differences in microbial community
composition between samples, Bray-Curtis dissimilarity
was calculated and visualized in a PCoA plot. The separ-
ation pattern between samples indicated distinct micro-
bial community composition between the rhizosphere
and bulk soil as well as between soil types (Fig. 5). The
first two axes explained more than 70% of microbial
community variance between samples, with samples
clearly separated by soil type on the first axis (64.6% ex-
plained variance), while compartment (rhizosphere or
bulk soil) was primarily represented along the second
axis (7.1% explained variance).
To evaluate the relative impacts of soil type and com-

partment on microbial community composition, a PER-
MANOVA was used to partition the source of variance.
Here, the compartment impacts were referred to micro-
biome differences between soil samples and soybean
rhizosphere samples. The results suggested that soil type
is the most dominant explanatory factor for the distinct
microbial community structure between samples,
explaining 62% of the overall variance of the microbe
composition across all samples (PERMANOVA marginal
effects: F(1,131) = 259.65, p < 0.001). Larger soil type ef-
fects for bulk and fresh soil microbial communities
(81.37% variance) were detected compared with the
rhizosphere microbiome (70.61%). Compartment effects
were the secondary key factor (explaining 6% of vari-
ance) that contributed to the overall divergent microbial
community (PERMANOVA marginal effects: F(2,131) =
12.86, p < 0.001). The compartment effects are in fact
mainly contributed by the rhizosphere, considering the
very similar microbiome composition between fresh and
bulk soil samples. Thus, compartment effects will be

referred to as rhizosphere effects hereafter. Within each
individual soil type, the rhizosphere effects were more
evident, with 28.16% (PEMANOVA marginal effects:
F(2,65) = 12.74, p < 0.001) and 38.48% (PERMANOVA
marginal effects: F(2,65) = 20.33, p < 0.001) variance of
microbiome composition being explained in agriculture
and forest soil correspondingly. A significant interaction
of soil type and rhizosphere effects was also detected for
the overall microbiome composition (PERMANOVA
marginal effects: F(2,129) = 12.67, p < 0.001). The impact of
sequencing depth on microbe composition results was eval-
uated and found to be nonsignificant when soil type and
compartment were taken into account altogether (PERMA-
NOVA marginal effects: F(1,131) = 1.815, p = 0.138).

Soybean genotype slightly tunes soybean rhizosphere
microbiome assembly
To evaluate the impacts of soybean genotype on rhizo-
sphere microbiota assembly, the dataset was subdivided
into two subsets composed of agriculture and forest
rhizosphere samples. A PERMANOVA test indicated
significant impacts of the soybean genotype in both agri-
culture (PERMANOVA marginal effects, F(5,45) = 2.70,
p < 0.01) and forest (PERMANOVA marginal effects,
F(5,45) = 2.44, p < 0.01) rhizosphere microbe composition,
with 23.08 and 21.32% variance explained respectively.
The differences driven by genotypes were not evident
when visualized using an unconstrained ordination
method, i.e., PCoA (Fig. 6a and b). However, when illus-
trated using canonical analysis of principal coordinates
(CAP), the influence of microbe community composi-
tions due to genotypes is more clear (Fig. 6c and d).
CAP analysis is a good option when effects are not easily
detected by unconstrained ordination, as it can utilize
treatment information [32]. Genotype impacts were
more evident for soybeans grown in agriculture soil, with
the drought-resistant genotype (DRT) and wild-type
genotype (SOJ) more divergent from others (Fig. 6c and
d). In contrast, the bacterial community structure of
Williams (WIL), Williams non-nodulating mutant
(NNW) and Williams 82 (W82), all of which share the
Williams genetic background, were more similar and
had no clear separation pattern on the CAP plot. Signifi-
cant interactive impacts of soil type and genotype were
detected in determining soybean rhizosphere micro-
biome composition (PERMANOVA marginal effects:
F(5,89) = 2.03, p = 0.04).
Another important aspect of variability worth examin-

ing is flowering time. All rhizosphere samples were
taken as soon as plants reached the flowering stage, in
order to mitigate the impact of different developmental
stage that might impact the results. However, as the six
genotypes are from different maturity groups (i.e. are
adapted to different climatic zones), the individual

Fig. 5 Bacterial community composition between treatment.
Agriculture and forest soil types were represented by triangle and
circle correspondingly. Different colors of the points represent
different treatments
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soybeans in this study flowered at different times over
the course of 6 weeks. A PERMANOVA test suggested
significant impacts of flowering time on both agriculture
and forest rhizosphere microbe composition. After partial-
ling out flowering time as a factor, the soybean genotype
still explained 3% of the variance (capscale, F(1,39) = 2.29,
p < 0.01). Due to the high correlation between flowering
time and genotypes, it is difficult to rule out the pure
genotype effects on rhizosphere microbiome assembly
from that of flowering time when tested using all samples.
To help evaluate the soybean genotype impacts, we
grouped samples that flowered on the same date and visu-
alized their rhizosphere microbiome composition with a
PCoA plot (Fig. S4). We observed distinct rhizosphere
microbiome composition between Williams (WIL) and
the non-nodulating mutant of Williams (NNW). These
two genotypes are genetically identical other than a muta-
tion of gene Rj5,6, which is a receptor gene of rhizobia

nodulation factor [33]. The divergent rhizosphere micro-
biomes between these two genotypes indicate that their
genetic difference indeed confers direct impact on rhizo-
sphere composition independent of flowering time
differences.

Significant rhizosphere effects on microbiome diversity
and microbe-microbe interactions
Indigenous microbial community diversity was signifi-
cantly higher in agriculture soil than forest soil, which
held true for both bulk soil and the soybean rhizosphere
(F(1,130) = 228.82, p < 2.20e-16) (Fig. 7). A significant
rhizosphere effect was reflected by reduced microbiome
diversity in soybean rhizosphere compared with that of
fresh and bulk soil samples (F(2,130) = 23.96, p = 1.39e-
09), with no significant difference detected between the
latter two. Rhizosphere microbiome diversity also dif-
fered significantly between genotypes in both agriculture

Fig. 6 Genotype impacts on soybean rhizosphere microbiome assembly. Principal coordinate analysis (PCoA) plot of soybean rhizosphere
microbial community grown in agriculture soil (a) and forest soil (b) demonstrated little pattern associated with genotype. In contrast, soybean
rhizosphere microbial community difference between genotypes as depicted by canonical analysis of principal coordinates (CAP) has more clear
genotype-specific patterns, with c and d representing rhizosphere samples grown in agriculture and forest soil, respectively
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(ANOVA; F(5,45) = 9.46, p = 3.22e-06) and forest soil
(ANOVA; F(5,45 =4.99, p = 0.10e-02). The diversity of the
drought-tolerant genotype (DRT) was significantly and
consistently smaller than other genotypes in both soil
types. In addition, there was a significant interaction ef-
fect of soil type and genotypes on rhizosphere micro-
biome diversity (F(5,90) = 4.42, p = 0.12e-02).
Beyond the direct modulation by soil and plant host,

the interactions between microbes act as another select-
ive force for root microbiome assembly [31]. To eluci-
date these interactions in the rhizosphere and infer key
microbial consortia, we characterized co-occurrence cor-
relation networks between microbes and compared the
difference of those interaction patterns between treat-
ments. Overall, microbe-microbe interactions in soil
were more dense and connected compared with that of
rhizosphere as indicated by higher edge density and
average connection degree in soil samples (Table 1),
which is consistent with the reduced bacterial diversity
in the rhizosphere. The complexity of the microbial net-
work in WIL was consistently higher than the other five

genotypes in both soil types. However, there were no
strong correlations between network complexity and mi-
crobial diversity when fitted using linear regression be-
tween average network density and Shannon diversity
(Additional file 1: Figure S5).
When all of the significant microbe-microbe interac-

tions were taken into account at < 0.01, there was no
significant separation of the rhizosphere microbiome
networks between soybean genotypes, but the difference
between soil types was distinguishable (Additional file 1:
Figure S6). The connection degree of each node varied
between 1 and 337, with the top 25 most connected
OTUs belonging to Mycobacterium, Sphingomonas,
Massilia, Bradyrhizobium, Bacillus, Gp16, Streptomyces,
Phenylobacterium, Rhizobium and TM_genus_incertae_
sedis genera. A high percentage of nodes were shared
between soil and rhizosphere networks, with 64–72% of
nodes being shared in the two compartments in agricul-
ture soil, while 71–75% overlap between compartments
was detected in forest soil. The positive correlation ra-
tios (the positive microbe-microbe correlations out of all

Fig. 7 Rhizosphere effects on microbiome diversity
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significant interactions) were detected to be higher in
the soybean rhizosphere compared with soil samples. To
evaluate the correlation of taxa abundance and its con-
nection densities, linear regression models were fitted
using OTU relative abundance and corresponding node
degree (Additional file 1 Figure S7). The results showed
weak but significant correlation between OTU abun-
dance and corresponding node degree. Several OTUs
with high abundance showed limited interactions with
other taxa, including OTU000004 and OTU000012, be-
longing to Burkholderia and Rhizobium respectively. In
contrast, several rare taxa such as OTU000159and
OTU000349, belonging to Mycobacterium and Sparto-
bacteria_genera_incertae_sedis showed high degree of
connections with other bacteria.
To simplify the network and identify key microbe-mi-

crobe interactions, the top 50 OTUs with the highest
connection degrees were selected from each treatment
for detailed comparison. Within this subset, the network
complexity of soil samples was still consistently higher
than that of rhizosphere (Table 1). The network of WIL
was denser compared with other genotypes in both soil
types. However, the network pattern of the other five ge-
notypes, such as network density and positive correlation
ratio, varied between soil types (Additional file 1: Figure
S8). When grown in agricultural soil, DRT, SOJ and
W82 had higher positive interactions than other

genotypes whereas CNR, NNW and W82 had with
higher positive interactions when growing in forest soils.
These results again confirm the cooperative modulating
role of soybean genotypes and indigenous soil types in
microbe-microbe interactions.
To understand the overall network patterns between

treatments, the individual top 50 networks were united to a
comprehensive network based on shared OTUs between
treatments (Fig. 8). After the union process, the number of
nodes was reduced from 700 to 566, with most belonging to
Proteobacteria (105), Bacteria_unclassified (95), Acidobac-
teria (91), Planctomycetes (55), Actinobacteria (54), Verruco-
microbia (51) and Bacteroidetes (47). OTUs with the highest
number of connections with others belonged to Bradyrhizo-
bium, Mycobacterium, Sphingomonas, Gp4, Spartobacteria_
genera_incertae_sedis, TM7_genus_incertae_sedis, Massilia
and Gp16. The differences in microbe-microbe interactions
between soil types and among genotypes were exemplified
by the high modularity of subnetworks between soybean ge-
notypes, which was strikingly different than the analysis that
included all significant correlations. In contrast to the large
percentage of shared OTUs between treatments when all
significant OTUs were taken into account, only a few OTUs
were shared between soil and rhizosphere as well as among
genotypes when the top 50 key microbes were concerned.
These shared OTUs function as connectors between the
subnetworks (Fig. 8) and are classified in the genera Bacillus,

Table 1 Network topological characteristics. Global statistics were calculated based on co-occurrence network comprising all
significant microbe-microbe correlations at α < 0.001 while top 50 statistics were calculated based on simplified network that
including only the top 50 nodes with the most connections to other microbes

Soil type Network type Network topologies Soil WIL DRT CNR NNW SOJ W82

Agriculture Global Positive edgesa (%) 54.64 56.69 58.74 57.33 57.68 55.91 57.77

Edge densityb (%) 2.35 1.58 0.76 0.81 0.64 0.93 0.73

Ave. degreec 25.68 16.83 8.46 8.93 6.97 9.32 6.11

Betweennessd 1092.03 1294.41 1588.35 1576.23 1691.40 1471.82 1405.33

Top 50 Positive edgesa (%) 48.45 50.66 93.28 48.75 62.26 66.67 90.91

Edge densityb (%) 76.49 49.47 11.88 13.61 6.79 15.54 8.42

Ave. degreec 37.48 24.24 5.58 6.53 2.65 7.15 4.04

Betweennessd 5.76 12.38 34.02 34.73 29.20 34.47 46.34

Forest Global Positive edgesa (%) 56.25 55.68 56.21 55.42 57.60 54.81 55.70

Edge densityb (%) 1.49 0.88 0.73 0.68 0.77 0.75 0.74

Ave. degreec 16.77 9.75 8.38 7.43 8.75 8.54 8.59

Ave. Betweennessd 1273.30 1541.86 1653.03 1626.60 1611.71 1589.82 1626.15

Top 50 Positive edgesa (%) 58.03 60.66 70.33 94.57 84.72 45.54 77.27

Edge densityb (%) 63.02 24.90 7.74 10.69 19.61 9.76 6.67

Ave. degreec 30.88 12.20 3.71 4.38 8.83 4.39 2.93

Ave. Betweennessd 9.06 23.30 55.98 56.24 27.04 47.76 62.22
aPositive ratio represents the ratio of positive microbe-microbe correlations out of all interactions within the network
bEdge density was calculated as the ratio of detected edge numbers to the theoretical maximum edge numbers, indicating the connectiveness between nodes
cAve. degree was defined as the mean connection degree across all nodes within a network
dAve. Betweenness was defined by the average number of shortest paths going through all vertices within a network
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Streptomyces, Bradyrhizobium, Rhizobiales_unclassified,
Arthorobacter, Caldilineal, Mycobacterium, and Gp1 as well
as several unclassified genera in the phylum of Verrucomi-
crobia. Such bacterial consortia may play a dominant and
persistent role in modulating microbial community compos-
ition via prevalent interactions with other bacteria.

Specialized microbiome function in soybean rhizosphere
Genotype-specific rhizosphere effects were detected in the
soybean rhizosphere microbiome as reflected by differential
microbial community compositions between rhizosphere
and bulk soil as well as among genotypes. To understand
the functional differences of these communities, we pre-
dicted the potential metabolic capacities of both the soil
and rhizosphere microbiomes using Tax4Fun. The results

indicated divergent metabolic capacities between soybean
rhizosphere microbiota and bulk soil community (Fig. 9).
Of particular interest, the enrichment/depletion of meta-
bolic pathways was consistent between soil types and across
genotypes regardless of the divergent bacteria composition.
Metabolic pathways related to biodegradation of xenobi-

otics, including glutathione metabolism, geraniol degrad-
ation, limonene and pinene degradation as well as
naphthalene degradation, were significantly and consistently
enriched in the soybean rhizosphere regardless of soil types.
Pathways involved in nutrient transformation and transport,
such as phosphotransferase systems and ABC transporters
were also enriched in soybean rhizosphere. In addition, bac-
terial functions related to plant-microbe interactions were
also enriched in the rhizosphere, such as flagella assembly,

Fig. 8 Modulation of microbial networks by soybean genotypes and soil source. In the above network, OTUs were represented by individual
nodes, with colors indicating phylum. Edge color denotes the treatment. When one edge was shared between treatment, a mixed color was
used to define that particular edge. OTU numbers are labeled for each node and their corresponding taxonomic information can be found in
Additional file 4
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bacterial secretion system, and biosynthesis of siderophore.
In contrast, metabolic pathways involved in antibiotic pro-
duction, including streptomycin biosynthesis and biosyn-
thesis of ansamycins, were enriched in the bulk soil
environment. The metabolic pathways for fructose, man-
nose, starch and sucrose metabolism were accumulated in
soil as well. Another functional group significantly expanded
in soil bacteria involved DNA repair and recombination in-
cluding nucleotide excision repair and homologous
recombination.

Discussion
Soil type-dependent rhizosphere effects
In our study, Proteobacteria, Acidobacteria, Bacteroi-
detes, and Actinobacteria were the most dominant bac-
terial phyla in soybean rhizosphere, which is consistent
with previous reports about the soybean rhizosphere
microbiome [34–36]. Gammaproteobacteria and Actino-
mycetales were consistently enriched in the soybean
rhizosphere in both soil types, which is consistent with
the thought that Actinobacteria and Proteobacteria as

copiotrophs are more competitive in a nutrient-enriched
environment like rhizosphere, while oligotrophs like
Acidobacteria and Verrucomicrobia are more abundant
in soil with poor nutrients [18]. However, at the genus
level, this enrichment exhibited difference for some spe-
cific bacteria genera within Gammaproteobacteria and
Actinomycetales, which greatly depended on soil types
and soybean genotypes. This result indicates that analysis
based on different taxonomic levels may achieve inconsist-
ent conclusions about the robustness of rhizosphere bacteria
assembly. Considering the functional redundancy between
different bacteria, functional analysis of rhizosphere micro-
biome together with compositional characterization maybe
more informative for understanding microbiome assembly
and promoting applications for sustainable agriculture.
Rhizosphere effects on bacteria composition have been

widely recognized on numerous plant species, such as
maize [10], rice [19], Arabidopsis thaliana [9], alfalfa
[36], poplar [37], grapevine [38], and sugarcane [39].
These investigations spanned monocotyledons and di-
cotyledons, annuals and perennials, and legumes and

Fig. 9 Rhizosphere effects on soybean microbiome metabolic capacity. Metabolic pathways that differed significantly between soil and
rhizosphere were used to generate a heatmap. Both samples and pathways were clustered based on Euclidean distance. The abundance of each
pathway was scaled to the same range (− 4, 4), with red and blue colors representing relatively higher and lower abundance respectively
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non-legumes. The results found differing extents of
rhizosphere effects between plant species due to distinct
evolution time, plant root physiology and root exudation
profile between species [11, 40]. Turner et al. (2013) re-
vealed a stronger rhizosphere effect of microbial com-
munity on pea (legume) compared with that of oat and
wheat [13]. Similarly, Lotus japonicus plants assemble a
distinct rhizosphere microbial community that is influ-
enced by root nodule symbiosis [41]. In our study,
strong rhizosphere effects were validated in soybean as
reflected by the distinct microbial community compos-
ition and structure between rhizosphere and bulk soil.
These rhizosphere effects may be influenced by the spe-
cific profile of root exudates with a high concentration
of flavonoids, which are essential components of signal
exchange between soybean and symbiotic rhizobia dur-
ing nodule formation. The influence of root exudates
was also investigated by While et al. (2015), revealing
that isoflavonoids also significantly alter soybean rhizo-
sphere bacterial diversity [42].
In our study, a number of well-described plant growth

promoting rhizobacteria (PGPR) [43], including Rhizo-
bium, Dyadobacter, Novosphingobium and Streptomyces,
were consistently enriched in soybean rhizosphere.
PGPR greatly expanded host adaptations and perform-
ance by various promoting activities, including IAA and
siderophore production, phosphate solubilization, and
induced systemic resistance [43, 44]. Strong enrichment
of Streptomyces and Dyadobacter was also detected in
the rhizosphere of pea [13]. A diverse of Rhizobium
colonize soybean root and form nodules, providing sig-
nificant benefits to the plant through nitrogen fixation.
The enrichment of Rhizobium in the soybean rhizo-
sphere, even in the non-nodulating soybean variety, cor-
roborates the idea that rhizosphere recruitment may be
an important first step for further selection to the rhizo-
plane and endosphere [45], which facilitates symbiotic
interactions between bacteria and host plants.
Despite the similarities in soybean rhizosphere microbe

assembly across soil types, discriminant enrichment be-
tween soil types was also revealed in our study, reflecting
the dominant modulating role of the indigenous microbe
pool and local soil conditions. Bradyrhizobium, Kribbella,
and Agromyces were selectively enriched in the soybean
rhizosphere when the plants were grown in agricultural
soil with a neutral pH and diverse bacteria pool. In con-
trast, Burkholderia and Mucilaginibacter were discrimina-
tively accumulated in the soybean rhizosphere grown in
forest soil with an acidic pH and less diverse bacterial
pool. Burkholderia has been found to be enriched near
roots grown under extremely nutrient-deficient soil and
function to metabolize organic acid exuded by the host to
soluble phosphate [46, 47]. This result is consistent with
the selective enrichment of Burkholderia in forest soil with

lower pH. Recent research confirms that dynamic root ex-
udates from plants can interact with microbial substrate
preference to shape the rhizosphere microbiome commu-
nity composition [48], providing a promising avenue of re-
search to understand the underlying mechanisms driving
this selective enrichment process. Despite the predomin-
ant dependency of the soybean rhizosphere microbiome
assembly on soil type, we found that the impacts of soil
types on rhizosphere microbe composition was smaller in
comparison to corresponding impacts on indigenous soil
microbial community. This result indicates that soybean
as a plant host intrinsically exerts some conserved modu-
lating force in shaping the rhizosphere microbiome as-
sembly. In addition, rhizosphere effects were exhibited to
a higher degree when soybeans were grown in forest soil
compared to those grown in agricultural soil, indicating
that the degree of the rhizosphere effect differs depending
on the environment. This may indicate that the plants
exert variable influence on the rhizosphere microbiome
depending on the environment, possibly in response to
how suitable the environment is for the plant growth.

Soybean genotypes mildly tuning rhizosphere
microbiome assembly
The modulating role of plant genotypes to rhizosphere
microbiome assembly is thought to be much smaller in
modern agriculture systems and domesticated crops
compared with that of natural systems with a long his-
tory of coevolution [4, 7]. In our study, moderate and
significant tuning effects by soybean genotypes on the
rhizosphere microbiome composition were detected
from both the overall bacterial community level and the
individual genus level. At the community level, the
rhizosphere microbiome composition from Williams
(WIL), Williams 82 (W82) and Williams non-nodulating
mutant (NNW) were more similar, while drought resist-
ant and wild type plants were more distinct. This corre-
sponds to the genetic differences among the genotypes,
with the Williams (WIL), Williams 82 (W82) and
Williams non-nodulating mutant (NNW) all sharing the
Williams genetic background. Intriguingly, this between-
genotype difference was detected to be more evident
when soybean genotypes were grown in agriculture soil.
This soil type-dependent genotype effects again indicates
the integrated regulatory role from both the soil and the
plant side.
Previous work in various agricultural plant species has re-

vealed domestication to be a profound shaping force for
rhizosphere microbiome recruitment, influenced by both
the reduced genetic diversity of modern genotypes and crop
management practices [18]. Several studies revealed distinct
microbial community composition in wild genotypes com-
pared with that of modern genotypes [15, 49–51]. This
study also found the rhizosphere bacteria community
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composition of the wild accession - Glycine soja (SOJ) - to
be different from the other modern agricultural genotypes.
Specifically, the enrichment of Rhizobium, Pseudomonas
and Stenotrophomonas in the wild soybean rhizosphere was
very limited compared with the other modern genotypes.
In contrast, Streptomyces and Kribbella from the Actinobac-
teria phylum were extensively recruited in the wild type. In
addition, the overall bacterial diversity in the wild soybean
(SOJ) rhizosphere was consistently higher in comparison to
all genotypes irrespective of the soil type tested. Similarly,
the study by Zachow et al. (2014) revealed that wild sugar
beet harbors higher bacteria diversity in its rhizosphere
compared with wild type. The distinct rhizosphere micro-
biome recruitment of the wild accession could be a reflec-
tion of soybean trait selection along domestication. For
example, root morphology changed significantly from the
wild progenitor to the modern agricultural genotypes,
with shallow and thick roots being preferably selected dur-
ing soybean breeding history in terms of phosphorus effi-
ciency [52].
Soybeans benefit from a nitrogen supply provided by

the nitrogen-fixing process from the symbiotic relation-
ship with Rhizobium and Bradyrhizobium that results in
a higher quality of root exudates with a lower C/N ratio
[14]. Additionally, the nitrogen fixing process alters soil
physicochemical properties around root nodules, featur-
ing a high concentration of hydrogen as a by-product of
nitrogen reduction by nitrogenase [53]. Considering
these specific traits conferred by the nitrogen fixing
process, it is reasonable to expect that the bacterial com-
munity of non-nodulating genotype (NNW) would sig-
nificantly differ from its nodulating isogenic line (WIL).
However, no effects were detected in our study. The
non-nodulating Williams mutant (NNW) selected for
this study was established by silencing the Rj5,6 gene
coding for GmNFR5α and GmNFR5β (Glycine max Nod
factor receptors), which are orthologs of NFR5 receptor
in Lotus japonicus [33]. As a result, this mutant exhib-
ited neither rhizobia infection nor cortical cell division.
This contrasts with previous research in Lotus japonicus,
which found that disruption of the symbiosis pathway
significantly altered rhizosphere microbial communities,
even with the addition of supplemental nitrogen to soil
[41]. These contrasting results warrant further investiga-
tion, with possible causes including the particular genes se-
lected to disrupt nodulation, different soil nitrogen status,
or specific physiologies of the two different plant species.

Specialized network in rhizosphere and genotype specific
preference for key microbe-microbe interactions
As a result of discriminant selection occurring in the
soybean rhizosphere, the diversity of the bacterial com-
munity in rhizosphere was significantly lower than that
of soil. Consistently, microbe-microbe interactions

represented by co-occurrence networks were revealed to
be less complicated in the rhizosphere compared to soil,
which is consistent with previous studies using shotgun
metagenomics [34]. We found that high abundance of a
bacterial taxa is not necessarily required to be a key spe-
cies in terms of microbe-microbe interactions. Rare bac-
teria of Mycobacterium were found to have a high
number of interactions with other taxa, which may indi-
cate that some rare but essential species play critical
roles for community structure through dense connec-
tions with other groups [34]. Bacterial taxa that are con-
sistently and highly connected with other groups
potentially play key role in community structure and
crucial ecological functions [54]. The microbiome net-
work identified in this study could help guide future in-
vestigations of plant-microbe interactions by focusing on
hub taxa that are highly connected with other groups as
well as connector taxa that provide links between mod-
ules [55]. When represented using all significant correla-
tions, the microbial networks were quite similar between
rhizosphere and soil community as well as among differ-
ent genotypes. However, after reduction of network com-
plexity by selecting the top 50 taxa, we found that
soybean-genotype-featured unique subnetworks were
linked together by crucial connector taxa belonging to Ba-
cillus, Mycobacterium, Streptomyces and Arthrobacter.
This contrasting pattern may indicate that the global mi-
crobe-microbe interactions within the complex bacterial
community are similar between soybean genotypes, but the
key microbe-microbe interactions are genotype-specific.

Consistent rhizosphere effects on bacterial metabolic
capacities between soil types and genotypes
Functional pathway analysis revealed distinct microbial
metabolic capacities in the soybean rhizosphere, and
these rhizosphere effects were consistent between differ-
ent soil types and soybean genotypes. Specifically, bac-
terial functional pathways related to plant-microbe
interactions, biodegradation of xenobiotics, as well as
nutrient transformation and transport were significantly
enriched in the soybean rhizosphere, while antibiotic
biosynthesis, DNA repair and recombination related
pathways were reduced. Many of the enriched pathways
in the rhizosphere have previously been reported to be
essential for the various plant growth promoting func-
tions across several studies [15, 56, 57]. For example, fla-
gellar assembly, siderophores and bacterial secretion
system were revealed to be involved in induced systemic
resistance [43]. Despite the clear influence of the soil
type and soybean genotype on bacterial community
composition and microbe-microbe interactions in the
soybean rhizosphere, our study identified much overlap
in the metabolic capacities of the bacterial communities.
This convergence may be due to the functional
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redundancy of various taxa in the bacterial community
[58]. However, this study is limited to inferring func-
tional annotation based on taxonomic classification, and
further confirmation of actual rhizosphere microbiome
functions is warranted.
Plants are not able to escape from unfavorable condi-

tions, such as being attacked by herbivores or pathogens,
due to their sessile nature. During their evolution, plants
have developed various strategies to directly or indirectly
respond to external stressors by exuding various defense
compounds into the rhizosphere for instance [59]. To
adapt with this specialized habitat, the rhizosphere
microbiome may have evolved with increased detoxifica-
tion activity as reflected by the enhanced degradation
pathway of limonene, pinene and naphthalene in our re-
sults. This finding is consistent with a former report
about the intensive expression of genes involved in oxi-
dative stress response and detoxification in the corn
rhizosphere [56]. Our functional characterization of the
soybean rhizosphere also showed that common carbon
metabolism pathways including starch, sucrose, fructose
and mannose metabolism were downregulated. As Boris
and Jörg stated that most bacteria are characterized with
flexible and dynamic carbon-utilization strategy in re-
sponse to available carbon sources [60]. This decrease in
common carbon metabolism pathway could reflect the
adaptation of rhizosphere microbiome to the abundant
specialized nutrients being supplied by root exudates.
This is consistent with the reports of the special carbon
utilization capacities of several plant growth promoting
bacteria. For example, Pseudomonas fluorescens can use
α-pinene as its sole carbon and energy source. Similarly,
naphthalene can be utilized as the sole carbon and en-
ergy source by several bacterial genera including Bur-
kholderia, Mycobacterium, Streptomyces, Sphingomonas,
Pseudomonas, Ralstonia etc. [61, 62]. Surprisingly, we
found antibiotic activity to be reduced in rhizosphere,
which contradicts previous reports that antibiotic activity
of PGPR in rhizosphere are particularly important espe-
cially when plants were infected by pathogens [1, 43, 63].
This difference could be due to the different soil nutrient
conditions or lack of pathogen stress in our experiment.

Conclusion
In this study, we provide a detailed characterization of
soybean rhizosphere microbiome composition and func-
tional capacity across a number of soybean genotypes and
a wild accession. The rhizosphere microbiome compos-
ition and microbe-microbe interactions between soybean
genotypes and soil types advances our understanding of
the modulating role of both factors in the soybean rhizo-
sphere microbiome assembly. This base knowledge primes
further studies to use candidate bacteria consortia for syn-
thetic community-based in vitro testing of this assembly
process and the functional roles of the bacteria. Our re-
sults emphasize the importance of comprehensive consid-
eration of native microbe pool, local soil environment and
plant genotypes for future microbiome study. Addition-
ally, the significant genotype tuning role in the soybean
rhizosphere microbiome assembly indicates that agricul-
tural breeding programs will need to consider integrating
host traits participating in beneficial microbiota assembly.

Methods
In this study, five soybean genotypes with unique ecological
or physiological traits were selected to evaluate genotype
impacts on rhizosphere microbiome assembly (Table 2), in-
cluding cv. Williams (WIL), a drought-tolerant cultivar
(DRT), a cyst nematode-resistant line (CNR), a non-nodu-
lating mutant of Williams (NNW), and cv. Williams 82
(W82). An accession of the undomesticated progenitor spe-
cies of soybeans, Glycine soja (SOJ), was also included. The
seeds were provided by the USDA, Agricultural Research
Service, Germplasm Resources Information Network
(GRIN). All soybean seeds were surface sterilized with a
10% sodium hypochlorite solution for 30 mins, followed by
three rinses with deionized distilled water. Seeds were ger-
minated on paper in a 26 °C incubator in darkness for 2
days. Germinated soybean seeds were transplanted to auto-
claved vermiculite. Just before the soybeans reached trifoli-
olate stage (about 11 days after germination), fresh
agriculture soil of pH around 7.5 was collected from a
depth of 20 cm from the East Tennessee AgResearch and
Education Center Plant Science Unit. Fresh forest soil was
obtained from the University of Tennessee Plateau

Table 2 Soybean genotype inventories and specific characters

Genotype Abbr. Plant Inventory Maturity Group Cultivar or distinguishing character

WIL 548,631 III Williams

DRT 416,937 VI Drought-tolerant with different root morphology

CNR TN09–029 IV Soybean cyst nematode-resistant

NNW 634,765 III Non-nodulating mutant of Williams

SOJ 407,305 V Glycine soja undomesticated progenitor

W82 518,671 III Williams 82
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Research and Education Center, with a soil pH of about
4.8. After field collection, all fresh soils were transported to
the greenhouse the same day after collection. After removal
of roots and debris, soil was homogenized by mixing, then
allocated to pots (diameter = 20 cm). The second day after
soil collection, soybean seedlings at the trifoliolate stage
were transplanted into the fresh soil and grown in the
greenhouse until flowering stage (30 °C day/20 °C night, 16
h light/8 h dark, relative humidity of 60–80%). Fifteen pots
of soil without soybeans were used as bulk soil control.
Each treatment group (genotype by soil) was started with
10 biological replicates. Both soybean seedlings and control
pots were watered as needed every other day.
At the flowering stage, soybean rhizosphere soil sam-

ples were collected according to Lundberg et al. (2012).
Briefly, the root ball of soybeans were gently removed
from the pot and soil loosely attached to the roots was
removed by mild shaking. Soybean roots with tightly at-
tached soil were put into a 50-mL centrifuge tube filled
with 30 mL of autoclaved phosphate buffer (per liter:
6.33 g of NaH2PO4.H2O, 16.5 g of Na2HPO4.7H2O,
200 μL Silwet L-77). The tube was vortexed at maximum
speed for 30 s and the slurry was filtered through a 100-
μm cell strainer into a new 50-mL centrifuge tube. The
soil slurry was then centrifuged to precipitate soil parti-
cles. After another round of resuspension and centrifu-
ging, the soil pellet was collected into 1.5 mL eppendorf
tubes. To eliminate the interference of the soil crust on
microbiome characterization, the surface soil was re-
moved from the control pot and the remaining soil was
well homogenized. A similar amount of soil as that of
rhizosphere was collected from the soil mix and defined
as bulk soil. All of the extracted soil samples were flash
frozen in liquid nitrogen and stored at − 80 °C before
DNA extraction.
Soil DNA was extracted with theMoBio soil DNA extrac-

tion kit following the manufacturer’s protocol. Most of the
samples yielded concentrations of about 200 ng/μL. 16S
rRNA gene based bacteria profiling were accomplished with
MiSeq 275 bp paired-end sequencing targeted V3-V4 re-
gions, with forward primer 341F = 5′-CCTACGGGNGGC
WGCAG-3′ and reverse primer 785R = 5′-GACT
ACHVGGGTATCTAATCC-3′ [64]. Library preparation
followed the Illumina 16S metagenomic sequencing proto-
col. Briefly, for the first step PCR, 16S rRNA gene specific
primer with adapter overhangs was used to amplify tem-
plate out of genomic DNA utilizing 2X KAPA HiFi Hot-
Start ReadyMix with the following PCR cycle: 95 °C for 3
min; 25 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30
s; 72 °C for 5min, then hold at 4 °C. During the second step
of PCR, dual indices and Illumina sequencing adapters were
attached to the template amplified from step one using the
Nextera XT Index Kit with PCR cycle: 95 °C for 3min; 8 cy-
cles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s; 72 °C for

5min and hold at 4 °C. To eliminate the amplification of
chloroplast and mitochondria sequences from any plant
contamination, peptide nucleic acid (PNA), including
anti-mitochondrial PNA (mPNA) 5′-GGCAAGTGTT
CTTCGGA-3′ and the anti-plastid PNA (pPNA) 5′-
GGCTCAACCCTGGACAG-3′ were used to block their
elongation during the first step of PCR [65].
Mothur software was used to process 16S rRNA gene

sequences, including quality control, assembly, align-
ment, chimera removal, SILVA-based OTU clustering at
97% similarity, and naive Bayesian classifier-based OTU
classification against Ribosomal Database Project (RDP)
training set [66]. During this process, any sequence pairs
that have a mismatch within the primer region were re-
moved before assembly. Chimera sequences were de-
tected and removed using the mothur-incorporated
vsearch tool based on the UCHIME algorithm [67, 68].
Sequences that belong to chloroplast, mitochondria, eu-
karyotes, and archaea were discarded before OTU clus-
tering. To alleviate the bias introduced by uneven
sequencing depth, rarefaction at the minimum sample
sequencing depth (19023) was used for normalization
before subsequent microbial community analysis in R.
Beta diversity between samples was calculated with the

Bray-Curtis weighted distance, and principal coordinate
analysis (PCoA) using this dissimilarity matrix were ap-
plied to visualize the differences between microbial com-
munities between treatments. Permutational multivariate
analysis of variance (PERMANOVA) was used to evaluate
the marginal effects contributed by each factor to the dis-
tinct microbial composition pattern between treatments
using 999 permutations. In addition to PERMANOVA,
partial canonical analysis of principal coordinates (CAP)
[69] based on Bray-Curtis distance was used to further
evaluate the impacts of genotypes on rhizosphere micro-
biome assembly and visualized through a CAP plot. Con-
sidering the strong similarity of bacterial composition
between fresh soil samples (before greenhouse experi-
ment) and bulk samples (after greenhouse experiment),
subsequent LefSe, network and KEGG pathway analysis
were performed on combined bulk soil and fresh soil sam-
ples (hereafter were represented as soil treatment).
Differential abundance analysis of bacteria at different

taxa levels between treatments were performed with
LefSe under one-against-all mode (i.e., one taxa is con-
sidered to be significantly different only when it is sig-
nificantly different against all remaining treatments)
[70]. The LDA logarithmic score was calculated with
200 bootstraps iterations, and any taxa with α less than
0.05 were defined to be significantly different between
treatments. For overall abundance comparison between
soil and rhizosphere across all bacterial taxa levels, the
LDA logarithmic score threshold was set to 4.0. To pro-
vide a comprehensive comparison of bacteria
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enrichment and depletion in soybean rhizosphere across
all treatments, LefSe analysis between each pair of rhizo-
sphere and soil samples were performed at the genus
level. To improve the accuracy and robustness of the dif-
ferential abundance analysis, any genus with a total
count smaller than 50 was removed before LefSe ana-
lysis. Under one-against-all comparison mode, each
genus with an α less than 0.05 and an LDA score greater
than 2 was defined to be significantly different between
rhizosphere and soil. Significantly enriched and depleted
genera together with their LDA scores across treatments
were merged to generate a tree file and an annotation
file for GraphlAn visualization [71]. Any genus that was
significantly enriched or depleted in the rhizosphere
were annotated with red or blue colors respectively,
while yellow color indicated no significant difference be-
tween rhizosphere and soil.
To infer the difference of microbe-microbe interaction

patterns between soil types and among genotypes, sam-
ples were grouped based on treatments, i.e., Ag_Soil,
Ag_WIL, Ag_DRT, Ag_CNR, Ag_NNW, Ag_SOJ, Ag_
W82, For_Soil, For_WIL, For_DRT, For_CNR, For_
NNW, For_SOJ and For_W82 (Ag for agricultural soil,
For for forest soil, genotype abbreviations as defined in
Table 2). To infer robust microbe-microbe interactions,
any OTU with a total count smaller than 10 was removed
to eliminate the confounding impacts introduced by these
rare taxa. A co-occurrence correlation network between
OTUs was calculated with SparCC algorithm with 20 in-
teractions [72]. Corresponding p-values for each correl-
ation were determined based on 200 iterations of the
bootstrapping process. During the bootstrapping process,
200 sets of simulated count matrices were generated from
the original count matrix. By comparing the SparCC cor-
relation matrix generated using simulated datasets and
that of the original dataset, p-values were calculated. For
overall network topological traits comparison, each edge
with a p-value less than 0.001 were kept for visualization.
Further simplification of the networks was done by select-
ing the top 50 nodes with the largest connection degrees.
The integrated network comprising all treatments was
generated by uniting individual networks based on shared
nodes, with different edge colors representing different
treatments and different vertex colors depicting bacterial
OTU (as defined in Fig. 8). The network visualization and
topological properties measurements were done with the
R package igraph [73].
To investigate the difference of potential ecological func-

tions between bulk soil and rhizosphere microbiomes
across all treatments, the R package Tax4Fun was used to
predict microbial functional and metabolic capacities by
linking 16S rRNA gene-based taxonomic profiles to pre-
calculated KEGG references [74]. The predicted normalized
KEGG pathway output was then used to investigate the

enrichment of microbial pathways between soil and rhizo-
sphere by DESeq2 [75]. Pathways with an adjusted p-value
less than 0.01 and related to plant microbiome functions
were selected for subsequent visualization in a heatmap
using the pheatmap R package [76].
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