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Abstract

In this paper we study iterative computing a positive definite solution of the matrix

equation X − A
∗

XA − B
∗

X
−1

B = I . We propose an iterative method for finding

a positive definite solution of the considered equation. The theoretical results are

illustrated by numerical examples.
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1 Introduction

We investigate the nonlinear matrix equation

X −A∗XA−B∗X−1B = I , (1)

where A,B are n×n complex matrices, I (or In) is the n×n identity matrix, and A∗ denotes
the conjugate transpose of A.

Eq. (1) has been introduced by Ali in [1], where an iterative method for computation a
positive definite solution is proposed. A necessary and sufficient condition for the existence
of a positive definite solution of Eq. (1) has been derived and a basic fixed point iteration has
been proposed in [2]. In [3] by using the fixed point theorem for mixed monotone operator
in a normal cone Gao has proved that the equation X − A∗XpA − B∗X−qB = I with
0 < p, q < 1 always has the unique positive definite solution. In [4] the similar equation

X −A∗XA+B∗X−1B = I (2)

has been investigated. We interpret (1) and (2) as linearly perturbed equations of the well-
known and studied equations X−B∗X−1B = I [5, 6] and X+B∗X−1B = I [6, 7, 8, 9, 10],
respectively.

In addition, there are some contributions in the literature to the solvability and numerical
solutions of the matrix equation X +A∗X−1A−B∗X−1B = I [11, 12, 13, 14].
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Motivated by [1, 2, 3, 4], we study Eq. (1) for finding a positive definite solution as
propose an iterative method.

Throughout this paper, we denote by Cn×n the set of n × n complex matrices, by Hn

the set of n × n Hermitian matrices, by ρ(A) the spectral radius, by ‖A‖ the spectral
norm

(
‖A‖ =

√
ρ(A∗A)

)
. A > 0 (A ≥ 0) means that A is a Hermitian positive definite

(semidefinite) matrix. If A − B > 0 (or A − B ≥ 0) we write A > B (or A ≥ B). For
N ≥ M > 0 we use [M,N ] to denote the set of matrices {X : M ≤ X ≤ N}.

2 Preliminaries

In this section we give some preliminary results.
In [1], the necessary conditions for existence of a positive definite solution and its lower

bound have been obtained.

Theorem 1 [1, Theorem 2.1.] Let X be a positive definite solution of Eq. (1). Then

(a) ρ(A) < 1,

(b) ρ(X−1B) < 1,

(c) X ≥ M , where M is the unique positive definite solution of the equation X−A∗XA = I.

In [2], it has been proven that ρ(A) < 1 is a necessary and sufficient condition for the
existence of a positive definite solution of Eq. (1). Moreover, it has been obtained an upper
bound of all the solutions.

Theorem 2 [2, Theorem 2.] Eq. (1) has a positive definite solution X, if and only if
ρ(A) < 1. Moreover, the all positive definite solutions are in [M,N ], where M and N are
the unique solutions of the equations X − A∗XA = I and X − A∗XA = I + B∗M−1B,
respectively.

Ali in [1] has investigated the iterative method





X0 = I, Y0 = βI, β > 1

Xk+1 = I +A∗XkA+B∗Y −1

k B, k = 0, 1, . . .

Yk+1 = I +A∗YkA+B∗X−1

k B

(3)

for computing a positive definite solution of Eq. (1) based on the mixed monotone operator
G(X,Y ) = I + A∗XA+ B∗Y −1B. The sequences {Xk} and {Yk} defined by (3) have the
following properties

X0 ≤ X1 ≤ · · · ≤ Xk ≤ Yk ≤ · · · ≤ Y1 ≤ Y0. (4)

Moreover, it was proven that {Xk} and {Yk} with β ≥ 1+‖B‖2

1−‖A‖2 converge to a unique positive

definite solution of Eq. (1) under condition ‖A‖2 + ‖B‖2 < 1.
In [2], it has been noted that the iterative method (3) can be used with X0 = M and

Y0 = N , where the matrices M and N are from Theorem 2. Moreover, it has been concluded
that, if limk→∞ ‖Yk −Xk‖ = 0, then Eq. (1) has a unique positive definite solution.

Hasanov in [2] has considered the basic fixed point iteration (BFPI):

Zk+1 = I +A∗ZkA+B∗Z−1

k B, k = 0, 1, . . . , Z0 ∈ [X0, Y0], (5)

where X0 and Y0 are initial value in method (3). The sequences {Zk}, {Xk} and {Yk}
defined by (5) and (3) have the following properties Xk ≤ Zk ≤ Yk, k = 0, 1, . . ..
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3 An iterative method

Here, we consider a modification of the iterative method (3), which is a partially inverse free
variant.

Let M and N be the unique solutions of the equations X−A∗XA = I and X−A∗XA =
I +B∗M−1B, respectively. We consider






X0 = M, Y0 = N, (or X0 = I, Y0 = βI), V0 = Y −1

0 ,

Vk+1 = Vk(2I − YkVk),

Xk+1 = I +A∗XkA+B∗Vk+1B, k = 0, 1, . . .

Yk+1 = I +A∗YkA+B∗X−1

k B.

(6)

Lemma 1 [9, Lemma 3.2] Let C and P be Hermitian matrices of the same order and let
P > 0. Then CPC + P−1 ≥ 2C.

Theorem 3 The sequences Vk, Xk and Yk generated by iterative method (6) have the fol-
lowing properties

(i) X0 ≤ X1 ≤ . . . ≤ Xk ≤ Yk ≤ . . . ≤ Y1 = Y0, k = 0, 1, . . .,

(ii) V0 ≤ V1 ≤ . . . ≤ Vk+1 ≤ Y −1

k , k = 0, 1, . . .,

(iii) limk→∞ Xk = X̄ ≤ Ȳ = limk→∞ Yk, limk→∞ Vk = Ȳ −1.

Proof. We prove the theorem by induction.
We have X0 = M ≤ N = Y0 by Theorem 2. We compute

V1 = N−1(2I −NN−1) = N−1 = V0,

X1 = I +A∗MA+B∗V1B ≥ I + A∗MA = M = X0,

Y1 = I +A∗NA+B∗M−1B = N = Y0.

We have by Lemma 1 that

V1 = 2V0 − V0Y0V0 ≤ Y −1

0 = N−1

and
Y1 −X1 = A∗(N −M)A+B∗(M−1 − V1)B ≥ B∗(M−1 −N−1)B ≥ 0.

Therefore, V0 ≤ V1 ≤ Y −1

0 , X0 ≤ X1 ≤ Y1 ≤ Y0.
Assume that Vk−1 ≤ Vk ≤ Y −1

k−1
and Xk−1 ≤ Xk ≤ Yk ≤ Yk−1. Thus, we have

Yk+1 − Yk = A∗(Yk − Yk−1)A+B∗(X−1

k −X−1

k−1
)B ≤ 0,

Vk+1 − Vk = Vk(V
−1

k − Yk)Vk ≥ Vk(V
−1

k − Yk−1)Vk ≥ 0,

and
Xk+1 −Xk = A∗(Xk −Xk−1)A+B∗(Vk+1 − Vk)B ≥ 0.

By Lemma 1, we have
Vk+1 = 2Vk − VkYkVk ≤ Y −1

k .

Thus,

Yk+1 −Xk+1 = A∗(Yk −Xk)A+B∗(X−1

k − Vk+1)B

≥ B∗(Y −1

k − Vk+1)B ≥ 0.

Hence, Xk ≤ Xk+1 ≤ Yk+1 ≤ Yk and Vk ≤ Vk+1 ≤ Y −1

k for k = 1, 2, . . .. Thus,
the limits limk→∞ Xk, limk→∞ Yk, and limk→∞ Vk exist, and limk→∞ Xk ≤ limk→∞ Yk,
limk→∞ Vk = (limk→∞ Yk)

−1.
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4 Numerical experiments

In this section we carry out numerical experiments for computing the positive definite solu-
tion of Eq. (1) by iterative methods (3), (5), and (6) with X0 = I, Y0 = βI, and Z0 = X0+Y0

2
,

where β = 1+‖B‖2

1−‖A‖2 (or X0 = M , Y0 = N , where M and N are the unique solutions of the

equations X −A∗XA = I and X −A∗XA = I +B∗M−1B, respectively).
For the stopping criterion we take ‖Yk − Xk‖ ≤ 10−10 for methods (3) and (6), and

‖Zk − Zk−1‖ ≤ 10−10 for method (5), where k is the number of iterations. We use the
notation res(X) = ‖X −A∗XA−B∗X−1B − I‖ and compute

• res(X̃k) for methods (3) and (6), where X̃k = Yk+Xk

2
,

• res(Zk) for method (5).

Example 1 We consider Eq. (1) with

A =
1

56




1 5 3 2
−1 −6 3 4
−4 3 7 5
1 8 2 1


 , B =

1

70




7 9 6 8
7 5 8 3
9 8 6 7
11 5 9 3


 .

In Table 1 we report the results of experiment for Example 1 by using iterative methods
(3), (5) and (6).

Table 1: Numerical results for Example 1.

Method k ‖Yk −Xk‖ or ‖Zk − Zk−1‖ res(X̃k) or res(Zk)
by X0 = I and Y0 = βI

(3) 11 8.8594e− 11 4.5543e− 13
(5) 10 4.0638e− 12 4.3280e− 11
(6) 12 1.4069e− 11 3.0624e− 14

by X0 = M and Y0 = N

(3) 11 5.8609e− 11 3.6315e− 13
(5) 10 3.7103e− 11 3.4837e− 12
(6) 11 6.6076e− 11 3.0991e− 13

Example 2 We consider Eq. (1) with

A =
1

200




41 15 23 35 66
25 12 27 45 21
23 27 28 16 24
15 45 16 52 65
66 21 24 65 35




, B =
1

30




23 21 23 25 32
21 45 60 42 33
23 24 34 18 17
13 42 18 44 30
32 33 26 30 26




.

In Table 2 we report the results of experiment for Example 2 by using iterative methods
(3), (5) and (6).
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Table 2: Numerical results for Example 2.

Method k ‖Yk −Xk‖ or ‖Zk − Zk−1‖ res(X̃k) or res(Zk)
by X0 = I and Y0 = βI

(3) 148 9.4222e− 11 3.7667e− 15
(5) 90 7.8252e− 11 5.7602e− 11
(6) 151 8.3939e− 11 7.7527e− 15

by X0 = M and Y0 = N

(3) 141 5.6876e− 11 8.7894e− 15
(5) 73 8.1558e− 11 6.0036e− 11
(6) 141 8.9929e− 11 1.2240e− 14
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