United Arab Emirates University

Scholarworks@UAEU

Information Security Theses Information Security

4-2020

Sdhcare: Secured Distributed Healthcare System

Mohammed R. S. Al Baqari

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/info_sec_theses

b Part of the Information Security Commons

Recommended Citation

Al Bagari, Mohammed R. S., "Sdhcare: Secured Distributed Healthcare System" (2020). Information
Security Theses. 6.

https://scholarworks.uaeu.ac.ae/info_sec_theses/6

This Thesis is brought to you for free and open access by the Information Security at Scholarworks@UAEU. It has
been accepted for inclusion in Information Security Theses by an authorized administrator of Scholarworks@UAEU.
For more information, please contact fadl. musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae/
https://scholarworks.uaeu.ac.ae/info_sec_theses
https://scholarworks.uaeu.ac.ae/information_security
https://scholarworks.uaeu.ac.ae/info_sec_theses?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/info_sec_theses/6?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

United Arab Emirates University
College of Information Technology

Department of Information Systems and Security

SDHCARE: SECURED DISTRIBUTED HEALTHCARE SYSTEM

Mohammed R. S. Al Baqari

This thesis is submitted in partial fulfilment of the requirements for the degree of
Master of Sciense in Information Security

Under the Supervision of Dr. Ezedin Baraka

April 2020

Declaration of Original Work

I, Mohammed R. S. Al Bagqari, the undersigned, a graduate student at the United
Arab Emirates University (UAEU), and the author of this thesis entitled
“SDHCARE: Secure Distributed Healthcare System”, hereby, solemnly declare that
this thesis is my own original research work that has been done and prepared by me
under the supervision of Dr. Ezedin Baraka, in the College of Information
Technology (CIT) at UAEU. This work has not previously been presented or
published, or formed the basis for the award of any academic degree, diploma or a
similar title at this or any other university. Any materials borrowed from other
sources (whether published or unpublished) and relied upon or included in my thesis
have been properly cited and acknowledged in accordance with appropriate
academic conventions. I further declare that there is no potential conflict of interest
with respect to the research, data collection, authorship, presentation and/or

publication of this thesis.

Student’s Signature: / Date: 02/07/2020

i

Mohammed Al Baqari
02/07/2020

Copyright © 2020 Mohammed R. S. Al Bagari
All Rights Reserved

il

v

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1y

2)

3)

Advisor (Committee Chair): Ezedin Barka
Title: Associate Professor
Department of Information Systems and Security

College of Information Technology

Signature W Date 23/4/2020

Member: Khaled Shuaib

Title: Professor
Department of Information Systems and Security

College of Information Technology

Signature %/J KK// Date 23/4/2020

Member (External Examiner): Khaled Salah
Title: Professor

Department of Electrical Engineering and Computer Science

Institution: Khalifa University- Abu Dhabi, UAE

Signature }5 Aw W\ Date 23/4/2020

This Master Thesis is accepted by:

Dean of the College of Information Technology: Professor Taieb Znati

Signature Date 02/07/202!

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature Date 05/07/2020

Copy of

znati
Typewritten Text
02/07/2020

m_ezzat
Typewritten Text
05/07/2020

m_ezzat
Typewritten Text

Vi

Abstract

In healthcare sector, the move towards Electronic Health Records (EHR) systems has
been accelerating in parallel with the increased adoption of IoT and smart devices.
This is driven by the anticipated advantages for patients and healthcare providers. The
integration of EHR and IoT makes it highly heterogenous in terms of devices, network
standard, platforms, types data, connectivity, etc. Additionally, it introduces security,
patient and data privacy, and trust challenges. To address such challenges, this thesis
proposes an architecture that combines biometric-based blockchain technology with
the EHR system. More specifically, this thesis describes a mechanism that uses
patient’s fingerprint for recovery of patient’s access control on their EHRs securely
without compromising their privacy and identity. A secure distributed healthcare
system (SDHCARE) is proposed to uniquely identify patients, enable them to control
access to, and ensure recoverable access to their EHRs that are exchanged and
synchronized between distributed healthcare providers. The system takes into account
the security and privacy requirements of Health Insurance Portability and
Accountability Act (HIPAA) compliance, and it overcomes the challenges of using
secret keys as patient’s identity to control access to EHRs. The system used distributed
architecture with two layers being local to each healthcare provider that is member of
SDHCARE, and two layers shared across all members of SDCHARE system.
SDHCARE system was prototyped and implemented in order to validate its functional
requirements, security requirements and to evaluate its performance. The results
indicated successful fulfillment of design requirements without significant overhead

on the performance as required by healthcare environments.

Keywords: Blockchain, Healthcare, EHR, Fingerprint, Biometric, Access Control.

vii
Title and Abstract (in Arabic)
CrY £ 5 gall daual) dle) allas
ailel

4 I daal)l Clal) dadail s @l S dpanall e) pllad
L el s 1aa 5 ASA S a5 e LasY) i i) aldie) 324) aa 55)5ilb g s (EHR)
G o) e a5 s jall Ll Jall (e a2 Sl e 5 cdpaall dle Sl catia g ia jall a8 gl
Dby 8 3eaY) Eua e Al Ailatie g Leaay oLudY) < i) ga da g ySIY) Laall
dpa pan Al celly) Loy duai¥l s cclibull o) 5il s cdlal) dakail) 5 (Al
e Ay da g5kl 028 i claail) o8 dgal sal g AR Clasd g bl 5 Gy sl
a5 kY oda Caal (aai EHR alai 4y pall Ganlial)) satioeall ol Ll 4085
052 5 Ol BHR dalall daall 4o (8 aSaill 3alaiu¥ Gy sell daay aadiug 44l
23331 (SDHCARE) () & 50 Ao Ao) allal = j36) Cus ¢4y 98 5 4l goady (ulisall
a5l Glasa s cpaall agiDlas () Jsea sl (8 aSaill (e agilai s e 58 Sy (aa sl
O Ll s Ledals oy) age dualad) 45 yiSIY) dpaall @)) ala a0 Julal)
dpa paddly) cildliie jlae V) b skl b 5 de sl dnaall dle)l i
aladinl cilaad e Clatys o(HIPAA) Uelusall s anall elill LG o 58l Qe
paiuy o A5 ySIY) dpaall) () J gea 1) (8 aSaill oy pall 45 568 A) il
(niuh 5 ¢SDHCARE (8 soae dona dle) anda JS1 pilaa (piiida s de) 9o A1 plaill
i) Jal (e ddlai g aUaill aganai &5 Cus (SDCHARE alai slbiacf apen jie (43S jidia
aanaill il Gaias) il oLl 5 cadlal apds 5) culillaia 5 4dds ol) asallaia (g
Al dle Il iy 8 Cslhe g WS laY) e 508 slel (50 zlad

Ay yia sl caial) Claay (EHR ddgaaall dle 5l 5 5adi€ sl A 1)) aalia
Jsasll 8 aSal)

viii

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Ezedin Barak
for his continuous support of my master’s study and research and for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me as I
researched and wrote this thesis. I could not have imagined a better advisor and
mentor for my master’s study.

Besides my advisor, I would like to thank the rest of my thesis committee,
Prof. Khaled Shuaib and Dr. Khalid Saleh, for their encouragement and insightful
feedback. In addition, I would like to thanks all of the members of the Information
Security Department of the College of IT of United Arab Emirates University for
assisting me with my studies and research. My special thanks are extended to the
Library Research Desk for providing me with relevant reference materials.

Special thanks go to my parents, brothers, and sisters who helped me along

the way. I am sure they suspected it was endless.

Dedication

To my beloved parents and family

X

Table of Contents

THELE 1ttt ettt ettt ettt e et e et eabe e beeenbe e st e enreenneeenne 1
Declaration of Original Workcccieiiiiiiiiiiiiiieie et i
070707 5 14 1 | AR U SR PRO PSRRI il
Approval of the Master TheSIS.......cccuiiriiriieiieiiieiie ettt v
ADSITACE ...ttt ettt ettt ettt e et e e e et e e aa e e beeenaeebeeenbeenneennee vi
Title and AbStract (in ATabiC)cccviiiiiiiiiiieeiee et vii
ACKNOWICAZEMENLSouiiiiieiiieiieie ettt ettt e ete et e ssaeeseeeabeens viii
DIEAICATION ..ottt ettt ettt et e et e et e et e et eeteeenbeebeesnneenneas ix
Table OF CONENESeieuiieiieeiiieiie ettt ettt et ettt et e et eseaeeteesaaeenbeesaneenseens X
LSt OF TADIES ..eeeiiieiieeieeie et et e e et e xii
LSt OF FIGUIES ...eoviiiiieeiiee ettt ettt ettt et e esbeessaeeseesaneens xiii
LiSt Of ADDIEVIATIONSvieiiieiiieiieeiiesiie ettt ettt ettt e sireebeesateenbeeseseenseesneeenne XV
Chapter 1: INtrodUCTIONccvieiiiieiieiie ettt ettt et ae e e saaeeeee 1
L1 OVRIVIBW ..ttt ettt ettt ettt eb e st e et esaaeesbeeesseenseesaneenne 1

1.2 Statement of the Problem............c.ccooviiiiiiiiiniiei e 5

1.3 ReSEArCh ObDJECHIVES....uvieutieiiiieiieeiieiie ettt ettt ene 6

1.4 Research Methodologyc.cocieiiieiieiiieiieeie e 6

1.5 LAterature REVIEW......cccuieuiiiiieiieeieeiieee ettt 9

1.5.1 Blockchain BasiCScoovieiieniiiiieieciiee e 10

1.5.2 Blockchain SECUTILYccvieeiieriiieiieiie et 16

1.5.3 Blockchain in Healthcarecccooviieiiiinieiiiiiieeiieieeeeee e 24

Chapter 2: MEthOdSooiuieiiieiieeie ettt ettt sabeeaee e 38
2.1 DESIZN OVETVIEWevieniieeiiieiieeiiesiieeieeeiteetteseteeseessteeseessseeseesnseenseannnas 38

2.1.1 User Interface (UL) Layer.......ccccceeeuieiieeiieniieiieeieeieeee e 39

2.1.2 MiddIeware Layercccueeeuieiieeiienieeieeeie ettt 41

2.1.3 Blockchain Layerc.ccceeviiiiieeiienieeiieeieete e 43

2.1.4 Cloud StOr€ Layercccueeiuiieiieiieeiieeie ettt 48

2.2 FUnctional UsSE CaSsesc.eevuueeuieiieeiiieniieeiiesireeieesiteeteesieeeseesiveeseeennes 48

2.2.1 SDHCARE Provider Enrollmentcccceevieniiiiniiniiiiecieeee 48

2.2.2 Patient Re@IStrationccoueevieeiiienieeiiesie ettt 50

2.2.3 Patient Appointment Management............ccceecueveenierieneeneneeneennenn 52

2.2.4 Doctor’s EHR ACCESS ..uuveviiiiiiiiieeiieeeieeeeeeeeete et 55

Chapter 3: Implementationccceevieeiieiienieeie ettt 61
3.1 Prototype COMPONENLS....ccuvireriiieiiiieeiiieeiieeeiteeeieeeeieeesiee e saeeeaeees 61

3.2 Django ATChIteCUIE......ccuiiiiiiiieiieeie ettt e 63

3.3 System Implementationccccveecieerieniieenienie e eee e eve e 65

3.3.1 Building the Runtime Environmentcccccoeeveriiieniienieenieenene, 65

3.3.2 Initializing SDHCARE Web and Database Components 67

3.3.3 Building SDHCARE Django Code.........ccceeevieriieniieniieeieeiieee 70

3.3.4 Building Ethereum Smart Contractsccccceeveerciienieenieenieennenne. &3

3.3.5 Integrating Django with Ethereum...........cccccoceeviiiiiiiniiniiiiee, 87

Chapter 4: Testing and Performance Evaluationc..cccovvieveniiniineiiinienenene. 91
4.1 Functional TeStINGc.ceevuieriieiiieiieeiieeie ettt sre et 91

4.2 SECUITLY TESTING ..eeevvieiieiiieiie ettt ettt ettt ettt et seae et e saaeenbeeennes 93

4.3 Performance Evaluation.............ccoceeviiiiniininieneieteicceseeeseee 99
Chapter 5: CONCIUSION.eiiiiiiieiie ettt ettt ettt e eeseeeeaeene 104
RETETENCES ...ttt 106

Xii

List of Tables
Table 1: Summary of EHR Requirements and Blockchain Opportunities 3
Table 2: Summary of the LIterature...........cccveeiieiieniiieieeieeeeeee e 10
Table 3: Factors for Blockchain Transaction Delay Variationccccccveeveeneennee. 21
Table 4: Access Control Matrix by accessControlSC............cccoevvieriiiniiiinieniieieeee. 47
Table 5: Python Libraries Required for SDHCARE...........ccoooiiiiiiiiiiiiiiieeeeee, 67
Table 6: Summary of Views FUNCHIONSccoecieviieniiiiiiiieeieciiece e 77
Table 7: Summary of Forms Functionsccccevviiiviinciinnieiiicieeie e 79

Table 8: Summary of Tables FUNCLIONScccueeiiiriieiiiiiieieee e 79

Xiii

List of Figures
Figure 1: Percentage of EHR Systems Adoption in UScoceriiniiiiniiniiienee, 2
Figure 2: General Chain of BIOCKcocueviiiiiiiiiiiiiiiiceecceeeee 11
Figure 3: BlOCK StIrUCTUTIE........ootiiiiiiiiieiieieee et 13
Figure 4: The Effects of Tampering with One Block in the Ledger.............cc.c...... 19
Figure 5: EClipse AttaCK......ccueiiiiiiiiiiienieieeeteeeec e 24
Figure 6: SDHCARE High-Level Architecture..........cocceveevierieneineiieniiienienceee 39
Figure 7: Summary of providersTable Dataccccooceeviiiiniiniiiiiieniceieeee 44
Figure 8: Summary of patientsTable Datacccceceriiniiiiniiniiniiieneeeeee 45
Figure 9: Summary of ehrHashTable Dataccccooiiiiiiiniiniiniiiicceee 46
Figure 10: Hospital Enrollment Sequence Diagramcccccoceveeverienienenieneennen. 50
Figure 11: Summary of the Patient Registration Processcccceeevvverievervencenen. 52
Figure 12: Process for Booking a New Appointment...........cceceeveeverieneeneneeneenen. 53
Figure 13: Booking Confirmation and Access Granting Summary.............ceceveenne. 55
Figure 14: Summary of the EHR Read Process..........coceveiviinieniiniciienieciiceeee 58
Figure 15: Summary of the EHR Write Process........ccooeveriienieneincnienieienienceene 60
Figure 16: Django Web Development Architectureccccocveveeveiienienenienennen. 63
Figure 17: MacOS Software Version for SDHCAREcocoviiiiiiniininieeeene 65
Figure 18: PyCharm SDHCARE Project with Python 3.8 Interpreter....................... 66
Figure 19: Example of Users, Groups, and Group Assignmentcccceevueernnenne. 68
Figure 20: Example of SDHCARE Databases...........ccoceverierieneineiienieienieneeene 70
Figure 21: Summary of HTML SDHCARE Template Structurecccccecvevenne. 71
Figure 22: Admin UI with Forms and VIEWScccceeoiiviriiniiniiiniiienceeeseeee 72
Figure 23: Doctor UI with Forms and VIEWccccovviiviiiiniiniiniiencceeneeee 72
Figure 24: Reception UI with Forms and VIEWSc.cccoceeviriiniincieniicnicneeene 73
Figure 25: Healthcare Provider’s getProviderInfo Page..........c.cccceviiiiiniiiniiennnnne 74
Figure 26: SDHCARE HOME Page.......ccccoviiiiiiiiiiiiiieiececeeccceeee e 80
Figure 27: SDHCARE About Page..........ccoceiiiiiiiiiiiiieiececeeecesteese e 80
Figure 28: SDHCARE Login Pageccccoeviieiiiiiiieiieieeitece et 81
Figure 29: SDHCARE Admin UL Pageccccoooiiviiiiiiiiniiiieniciceccesceeseseee 81
Figure 30: SDHCARE Admin UI Submit Page..........coceviiiiniiniiniiiinieciiceeee 82
Figure 31: SDHCARE-Reception UL Page..........ccceeviieiiieiiiniieieicceeeeee 82
Figure 32: SDHCARE Doctor UL Pageccccevieviieiiiiiniiiienieiccceceeseseee 83
Figure 33: Summary of Ethereum Transactionsccoceevvevieneenenienienenieneeene 86
Figure 34: Integrating Django with Ethereumcccccocoiiiniiniiniiiniiniceee 87
Figure 35: Infura Account Detailsc.cceoervieriiniiiiiniinieeeceeeeeeseee e 89
Figure 36: Custom Python Module Operation............ccceveeruerieneeneniencenenieneenene 90
Figure 37: Synchronization of Patient’s EHRc..coccooviiiiiiniiiieee 92
Figure 38: Verifying EHR Recovery Using Patient IDccccooceeviiiiniininiincnen. 92
Figure 39: Verifying Hash as Names in Azure Filescccccooeviininiiniincncnenen. 93
Figure 40: Failed Login to Reception Portal using a Doctor Account 94

Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:

Fingerprint Validation before Writing an EHR...........ccccocconiininiinnnen. 95
Failed Attempt to Write a New EHRcccoiiiiiiiiiiiiiecce 95
Failed Attempt to Read a Patient’s HER...........cccooeiiiiiiiiniiniicce 96
Sample Audit Logs for New EHRcccoooiiiiiiiiiiieee, 97
Sample of Anonymized Data Store in Azure Filesc..coccevveveeniennenne. 98
Performance Measurement using Google Chromecccecuvenneennee. 100
Read Performance TeStingccceeveeriieiieniieniienieeiee e 101
Write Performance Testingcccoevveviiieriieniieiieiie e 101
Read Time Analysis with Larger ehrHashTablec..ccccooeniinenene. 103

ABI

API

BBDS

CA

CIA

DOA

DOB

DOS

EHR

FHIR

GETH

HIPAA Act

HITECH Act

HL7

IoT

IP

IT

NHA

NHS

NID

NIST

OHP

List of Abbreviations

Application Binary Interface

Application Programmable Interface
Blockchain-Based Data Sharing

Certificate Authority

Confidentiality, Integrity, and Availability
Decentralized Autonomous Organization

Date of Birth

Denial of Service

Electronic Health Record

Fast Healthcare Interoperability Resources

Go Ethereum

Health Insurance Portability and Accountability Act [US]
Health Information Technology for Economic and Clinical
Health Act [US]

Health Level Seven

Internet of Things

Internet Protocol

Information Technology

National Health Authority

National Health Service [UK]

National Identity

National Institute of Standardization and Technology

Owner Healthcare Provider

XV

ONC

OS

PACL

PII

POA

POW

POS

POV

PPG

RBAC

UAEU

Ul

U.S.

XVi
Office of the National Coordinator
Operating System
Patient Access Control List
Personal Identification Information
Proof of Authority
Proof of Work
Proof of Stack
Proof of Verification
Photo Plethysmo Gram
Role-Based Access Control
United Arab Emirates University
User Interface

United States of America

Chapter 1: Introduction

1.1 Overview

In the healthcare sector, the move towards electronic health record (EHR)
systems has been accelerating in parallel with the increased adoption of IoT and smart
devices. This is driven by the anticipated advantages for patients and healthcare
providers. The Office of the National Coordinator (ONC) for Health Information
Technology within the U.S. Department of Health and Human Services [1], defined
EHR as “a digital version of a patient’s paper chart. EHRs are real-time, patient-
centered records that make information available instantly and securely to authorized
users. While an EHR does contain the medical and treatment histories of patients, an
EHR system is built to go beyond standard clinical data collected in a provider’s office
and can be inclusive of a broader view of a patient’s care. They are built to share
information with other health care providers, such as laboratories and specialists, so

they contain information from all the clinicians involved in the patient’s care".

Some advantages of EHR systems as indicated by ONC [1] are:

e They maintain and synchronize patients’ medical history, diagnoses, medications,
treatment plans, immunization dates, allergies, radiology images, and laboratory
and test results

e They allow access to evidence-based tools that providers can use to make decisions
about patients’ care

e They automate and streamline provider workflow

In 2009, the U.S. government passed the Health Information Technology for

Economic and Clinical Health Act (HITECH Act) to motivate the adoption and

2
meaningful use of EHR systems. Additionally, they included this objective in the
Federal Health IT Strategic Plan [2]. Figure 1 represents the progress of EHR system

adoption in the United States since 2001.

100%

86.9% 85.9%

80%

60%

40%

o 18.2% 17.3% 17.3%
0

Percentage of Office-Based Physicians

0%

S 0 D X B e & ®©
\) \} \ \) \{ \) \ \) \] N \"
G I N I S S S S S M

=9= Any EMR/EHR system =@= Basic system Certified system

Figure 1: Percentage of EHR Systems Adoption in US

In parallel with the move towards EHR healthcare systems, Blockchain
technology was introduced by Satoshi Nakamoto in 2009 [3]. Blockchain technology
has received significant attention from the research community. Blockchain’s
decentralized nature along with its cryptographic services increased its potential to be
the future platform for distributed systems. The initial phase of Blockchain technology
was limited to the financial sector and mainly focused on cryptocurrency such as

Bitcoin, which has evolved to become the most popular cryptocurrency application.

3

Over time, Blockchain technology has evolved with the introduction of
Ethereum and its smart contracts capability Buterin [4], which provides the
programmability component of Ethereum Blockchain. This step gave Blockchain
technology huge potential and expanded its scope from the financial to other sectors,
including healthcare, education, government, and manufacturing. In particular, for the
healthcare sector and EHR systems, Blockchain technology offers many capabilities
that can fulfill several EHR requirements, as described by McGhin, Choo, Liu, and He

[5], and summarized in Table 1.

Table 1: Summary of EHR Requirements and Blockchain Opportunities

EHR Requirements

Blockchain Opportunities

System including
authentication, integrity, access control,

security,

and non-repudiation for
integrated EHR systems

multiparty

Interoperability between different EHR
standards implemented by various
healthcare providers, research entities,
insurance providers, and pharmacies

Data sharing of health records

Mobility of healthcare systems with the
introduction of IoT and smart devices
that allow patients to share and access
their health records

Availability of the healthcare system

Security, assurance, and immutability
provided cryptography,
namely private and public keys
combined with hash-chaining between
blocks of data

are using

Smart contracts capability provides an
abstraction layer to enable
communication among miners in
distributed healthcare providers running
different EHR standards

The decentralized architecture allows
multiple entities to share health records

Shared data across distributed ledgers
enables near real-time updates across the
network to all parties

The technology provides high
availability and resilience through its
decentralized model of operation

4

The close convergence between EHR requirements and Blockchain

capabilities listed in Table 1 is a key driver that has led many proposals to include

Blockchain-based EHR applications, including EHR monitoring and auditing,

mobility applications, and exchange of information.

Despite the promising convergence between Blockchain and EHR systems,

some limitations have been identified regarding the integration between Blockchain

and EHR systems, specifically:

Key management in current implementations of Blockchain are based
on private/public key pairs. In Blockchain-based EHR systems, patients
that use their private keys as their identities to control access to and to
sign their EHRSs are subject to permanent loss of access to their records
in the case of lost private keys, as discussed in McGhin [5]. This is
because, in asymmetric cryptography, a private key is not recoverable
from the public key (computationally infeasible).

The lack of standardization for various deployments of Blockchain in
healthcare systems generates a challenge regarding the interoperability
and exchange of EHRs, which limits the success of deployments [5].
There is the potential for privacy leakage due to the unencrypted nature
of blocks that hold information related to patients’ health. Even with
encrypted blocks, the ability to access the blocks publicly, in public
ledgers, makes them subject to cryptanalysis attacks, which can exploit
patients’ privacy if the encryption algorithms are compromised [5].
Scalability and IoT overhead can occur due to the increased number of

medical IoT devices and medical sensors joining the Blockchain

5
network. The more IoT devices joining the Blockchain network, the
more the computational complexity of the ledger, which leads to the
need for more computational power on these IoT devices. However,
these loT devices have very limited computational capabilities and are
not designed to support the complex operations required by Blockchain
hashing algorithms [5].

e Blockchain entails security vulnerabilities, which are discussed in
detail in Section 1.5.2.
Accordingly, the scope of the present thesis focuses on investigating solutions
to overcome the privacy leakage and key recovery challenges. Specifically, the focus
is on finding a solution that enables blockchain-based synchronization and exchange

of EHRs between distributed healthcare providers while:

e Ensuring recoverable access to patients’ EHRs

e Maintaining the unique patients’ identities in EHRs

e Controlling access to EHRs

e Providing anonymity to patients’ EHRs in the datastores
e Detecting any modifications to EHRs, and

e Logging any activities on EHRs.

1.2 Statement of the Problem

There are several limitations when deploying Blockchain technology in the
healthcare industry, as detailed in Section 1.1. The problem statement targeted by this
research is patients’ inability to recover access to their EHR records in the case of
missing patient identities. This can occur in many cases such as lost private keys or

emergency access to EHRs by unauthorized healthcare providers.

1.3 Research Objectives

The core objective of this research project is to propose an EHR exchange and
synchronization system based on Blockchain that can provide patients with an access
recovery mechanism to their EHRs. In addition to this objective, the proposed system
fulfills the requirements of Health Insurance Portability and Accountability Act
(HIPAA Act). These legislative requirements include the authentication of access to
EHRs, maintenance of EHR isolation and privacy for each patient, guaranteed integrity
of EHRs, governance of access control to EHRs, and guaranteed audit logs for

patient’s EHRs.

1.4 Research Methodology

This section describes the methodology followed to conduct the research
project. The methodology was structured in a logical order to enable gaining in-depth
knowledge about the research topic, and divided into several phases:

e A literature review to understand the status of current research on
Blockchain-based EHR systems and identify areas for research.

e Verification of the uniqueness of the proposal to address the issues
presented in the statement of the problem.

e Development of high-level design architecture of the proposed solution
followed by a low-level design.

e A prototype of the proposed design, using Python and Ethereum, to
simulate the functional and security requirements.

e Analysis of the strengths and weaknesses of the proposed solution from

functional and security perspectives.

7

Google Scholar was used to search several bibliographic databases for
literature related to the current state of research on blockchain in healthcare. The search
string deployed was:

Blockchain AND (Healthcare OR EHR) AND (source: ieee OR source: springer OR
source: acm OR source: sage OR source: Elsevier).

The output from Google Scholar identified 3,390 papers, of which 3,210 papers
were published since 2015.

Initially, only review papers were considered to obtain an overall
understanding of current research. Only top five cited papers were considered for the
literature review. These papers were obtained using the UAEU E-Library, which
provides access to the selected databases used in the Google Scholar filter.

From the initial results, the identified papers were classified into three main
categories:

¢ Blockchain core technology — Top five cited papers
e Blockchain security — Top five cited papers
¢ Blockchain in healthcare — Top 10 cited papers

From this review, limitations in the existing blockchain-based EHR proposals
were identified, forming the scope of research for the present thesis.

Google Scholar was consulted again to identify literature related to the use of
biometrics in Blockchain deployment in healthcare. One paper was identified that
details the use of Fuzzy Vault combined with photoplethysmogram (PPG) signals for
key management (see Section 1.5.3).

The next step was to specify the high-level design requirements and
assumptions to build a low-level proposal. The following design requirements were

considered:

e Provide a distributed platform to exchange and replicate EHRs

e Ensure unique patient identity across the platform

e Ensure unique EHR-to-patient mapping

e Ensure patient validation to EHR access control requests.

e Provide an access recovery mechanism for patients” EHRs

e Implement audit logging for access requests to EHRs

e Provide an EHR integrity validation mechanism

¢ Provide a mechanism for emergency access to EHRs by non-authorized
providers

e Ensure the anonymity of EHRs in the datastore across the platform

Additionally, some assumptions were made that were excluded from the design

requirements:
e All healthcare providers must use the SDHCARE system.
e All EHRs must be recorded in the same format (e.g., HL7 or FHIR).
e Secure links are used for communication between healthcare providers,
the Blockchain and the datastore.

Based on the above requirements and assumptions, the low-level design
proposal was developed. More details are provided in Chapter 2.

The next phase was a prototyping phase to build a sample that can implement
the required functional and security features of SDHCARE. The low-level design
blocks were analyzed, and the tools and software required to provide the desired
features and functions for each design block were identified. The final selection of
tools was based on the following criteria:

e Feature richness and simplicity of the tool.

e Security capabilities of the tool.
e Compatibility and interoperability between the tool and other
components of the SDHCARE system.
The final phase of the research was testing and results analysis. This was
divided into two sections:
e Validating that design requirements were achieved and can provide the
expected functions.
e Performance evaluation to measure the average time and speed of
transactions across the SDHCARE system.
The details of system prototyping, implementation, and testing are covered in

Chapters 3 and 4.

1.5 Literature Review

This section covers the literature related to blockchain technology and its
adoption in EHR systems. The reviewed literature covers the progress of research in

the following areas:

e Blockchain core functionality

e Blockchain security capabilities and limitations

e Limitations of legacy centralized EHR systems

e EHR security, privacy, and compliance requirements

e Existing proposals for Blockchain-based EHR systems

10

Table 2: Summary of the Literature

Category Literature List

Nakamoto [3], Buterin [4], Weber [8], Yaga, Mell,
Roby, and Scarfone [9]

Joshi, Han, and Wang [7], Halpin and Piekarska [10],
Blockchain Security Zhong, Zhong, Mi, Zhang, and Xiang [12], Cash and
Bassiouni [13], Tosh et al. [14]

McGhin, Choo, Liu, and He [5], Magyar [15],
Pilkington [16], Zhang, Walker, White, Schmidt, and
Lenz [17], Dagher, Mohler, Milojkovic, and Marella
Blockchain in Healthcare | [18], Azaria, Ekblaw, Vieira, and Lippman [19], Xia,
Sifah, Smahi, Amofa, and Zhang [20], Yang et al.
[21], Roehrs, da Costa, and da Rosa Righi [22], Fan,
Wang, Ren, Li, and Yang [23]

Blockchain Technology

1.5.1 Blockchain Basics

According to the US National Institute of Standardization and Technology

(NIST), Blockchain is defined as:

Distributed digital ledgers of cryptographically signed transactions that are
grouped into blocks. Each block is cryptographically linked to the previous one
(making it tamper evident) after validation and undergoing a consensus
decision. As new blocks are added, older blocks become more difficult to
modify (creating tamper resistance). New blocks are replicated across copies
of the ledger within the network, and any conflicts are resolved automatically

using established rules [6].

The entire blockchain is stored in each miner (as single unit) for
synchronization instead of storing individual blocks. Figure 2 providers an overview

of the structure of the blocks.

Block01

Figure 2: General Chain of Block

I

12

1.5.1.1 Block Components

Joshi, Han, and Wang [7] described the structure of the block as follows.

Data: This is the application data held in the distributed blocks. The block
can hold any type of data and is thus application-independent. Further, the
block can hold multiple data units from diverse types of applications. Each

data unit in the block is called a ‘message’ or a ‘transaction’.

Hash: In a single block, three types of hash values exist: the hash value of
the previous block (which is used to chain the blocks), the root hash
representing all transactions stored in the block, and the hash value of the

current block at the time it is committed to the chain.

Timestamp: The timestamp at which the block was added to the chain.

Other information: This includes information such as the software version
used by the miner and the current difficulty level. An essential information
element called a ‘nonce’ is used for block validation and the consensus

algorithm. Figure 3 depicts this structure.

13

Hash
(Current and Previous)

TimeStamp

Other Information

Datal...DataN

Figure 3: Block Structure

1.5.1.2 Types of Blockchains

Types of blockchains are defined according to how miners join the Blockchain

network. Joshi, Han, and Wang [7] classified Blockchain networks as follows:

e Public Blockchain (permissionless): This type of Blockchain is publicly
accessible without permissions or restrictions, eliminating the limitations
of a central authority. Any node running the mining software (such as
GETH for Ethereum Blockchain) can participate and start adding blocks,
executing the consensus algorithm, voting to discard blocks, and obtaining
access to any unencrypted information stored in the blocks.

e Private Blockchain (permissioned): This type of Blockchain is a
permission-based platform established by a group of firms, individual
firms, or divisions within a firm in which data can be accessed by users that

are part of the mining group and properly authenticated.

14

e Consortium Blockchain: The consortium Blockchain is a hybrid between
the no single trusted entity model of public Blockchain and the single,
highly trustable entity model of private Blockchain. It is perceived as a

partially decentralized Blockchain.

1.5.1.3 Transaction Lifecycle

The lifecycle of transactions varies depending on the type of Blockchain. For
example, in Ethereum, Weber et al. [8] summarized the transaction lifecycle as

follows:

e The sender prepares its transaction with the application data and sends it to
its local miner. The sender signs the transaction with its private key, which
is validated by the local miner.

e The local miner generates a transaction ID and broadcasts the ID to the pool
of miners. This transaction ID is a hash value of the hashed transaction.

e The miners maintain a pool of queued transactions. This queue is generally
sorted based on the fees (called gas) paid by senders to process their
transactions. Miners prefer to pick transactions with higher incentives
(higher gas).

e Once a miner picks a certain number of queued transactions, it builds a
block to include them. Next, the miner attempts to solve a crypto-puzzle to
be elected to broadcast the block (This is called the consensus algorithm
and varies based on the type of Blockchain. Ethereum uses a proof of work
(POW) algorithm for consensus that is based on solving crypto-puzzles).

e Upon successful puzzle resolution, the miner posts the block in the

Blockchain and waits for confirmation from other miners on the block that

15
it is committed to the main chain. Ethereum considers the presence of 12

proceeding blocks after the committed block as confirmation.

1.5.1.4 Blockchain Consensus

Yaga, Mell, Roby, and Scarfone [9] described consensus as the process that
determines which user publishes the next block. Different models of consensus are
used in Blockchains. These vary between CPU-intensive models, which is suitable for
permissionless Blockchains for additional security, and low CPU models, which is
suitable for permissioned Blockchains that assume a level of trust between miners.
Some commonly-used consensus models are listed by [9]. The following sections

describe the different models used in Blockchain for reaching consensus.

1.5.1.4.1 Proof of Work (POW)

In the POW model, a complex crypto-puzzle is published to all miners in the
Blockchain. The first miner that solves the puzzle is granted permission to publish its
blocks. The miner has to submit the solved puzzle as a “proof”, which is validated by
other miners, and then the block is accepted. The difficulty of the puzzle varies and is
continuously adjusted to maintain an average block committing time (e.g. 10 minutes
in Bitcoin). Accordingly, POW is considered highly CPU-intensive and is usually used

in permissionless Blockchains to reduce attackers’ interests in participating.

1.5.1.4.2 Proof of Stack (POS)

The POS model uses the amount of stack that miners invest in the system as an
indication of their genuine intention and disinterest in compromising the Blockchain.
The actual stack of the Blockchain varies based on its type, but cryptocurrency is

generally used. The miners invest in the cryptocurrency of the Blockchain, which is

16

unusable expect for being a measure of their trust.

This model is currently being evaluated in permissionless Blockchains as it

eliminates the high computational requirements of the POW model.

1.5.1.4.3 Proof of Authority (POA)

The POA model is based on maintaining a level of trust between miners and is
used only in permissioned Blockchains. This level of trust is established through
proven identities, which are verified by Blockchain members (e.g., authorized
documents). During Blockchain runtime, the reputation of miners varies depending on
their behavior, number of accepted blocks, and other factors. Miners with a better
reputation will be awarded more slots to publish blocks while malicious miners will

not be awarded sufficient slots to publish blocks.

1.5.1.4.4 Round Robin Consensus

Similar to the POA model, round robin consensus is limited to permissioned
Blockchains. In this model, miners are awarded equal slots to submit blocks. An
advantage of this model is that it guarantees that no miner can create a majority of

blocks without the need for complex computation for validation.

1.5.2 Blockchain Security

In this section confidentially, integrity and availability (CIA) aspects of
blockchain technology are investigated, as well as some common attacks against

blockchain.

1.5.2.1 Confidentiality

According to NIST [6], confidentiality refers to “preserving authorized

17
restrictions on information access and disclosure, including means for protecting
personal privacy and proprietary information”. Hence, confidentiality is focused on

authorization and privacy.

NIST [6] defines authorization as “access privileges granted to a user, program,
or process or the act of granting those privileges”, which is not a feature natively
provided by Blockchain technology. Similarly, privacy is not a native feature of
Blockchain. Current implementations of Blockchain technology do not have the
capability of encrypting the contents of the blocks or transactions before committing
them to the ledger. The lack of authorization and privacy can introduce a substantial
risk of a malicious miner joining the mining pool, obtaining a copy of the blocks and
analyzing/exploiting their vulnerabilities. An example of this is the decentralized
autonomous organization (DOA) attack [10]. DAO was an application developed and
executed in Ethereum blockchain with the purpose of maintaining financial
contributions for blockchain-based applications. It had an identity verification
vulnerability which was exploited in 2016, leading to compromised security and losses
totaling more than US$50 million [11]. Lack of privacy and authorization allowed the

attacker to read DOA blocks and identify the vulnerability.

Zhong, Zhong, Mi, Zhang, and Xiang [12] proposed a new model of privacy-
protected Blockchain that encrypts data within an agreed upon time to add privacy
capability to the technology. Cash and Bassiouni [13] proposed a two-tier Blockchain
network that provides permissionless Blockchain at tier-1 with a POW consensus
algorithm and permissioned Blockchain at tier-2 with a POA consensus algorithm. In
this model, tier-2 provides access control to data specific to data owners and the users

with whom they are sharing the data. Nodes from the permissionless tier can be

18

members of tier-2, which allows them to pass data and make transactions according to

pre-defined access control contracts.

1.5.2.2 Integrity

NIST [6] defines integrity as “guarding against improper information

modification or destruction and includes ensuring information non-repudiation and

authenticity”. Nakamoto [3] explained how Blockchain technology implements strict

integrity verification to avoid manipulation and tampering of data inside the blocks.

This is implemented at three levels: the transaction, block, and miner level.

At the transaction level, each miner verifies the hash value of the received
transactions. Only valid transactions are queued in the block to be published in
the ledger. The miner uses the sender’s public key to verify the received
transaction hash value against the locally calculated value. Thus, this
eliminates spoofing of senders’ public keys.

At the block level, the miner uses the hash values of all transactions to calculate
the root hash value that represents all transactions in the block (Bitcoin uses
the Merkle tree while Ethereum uses the Patricia tree). The miner will use the
hash value of the last block in the ledger, the root hash of the queued block,
and the nonce value to calculate the local block hash. This nested hashing
represents the actual chaining of the blocks and ensures blockchain integrity
because tampering in any block will require a change in the hash values of all
proceeding blocks in the ledger. Altering one block and all proceeding blocks
is required before a new block is published in the ledger. Figure 4 below shows

the detection of data tampering at the block level.

19

1. Say everybody
is working on
block 91.

2. But one miner wants
to alter atransaction
in block 74. '

3. He'd have to make his
changes and redo all the
computations for blocks
74-90 and do block 91.
That's 18 blocks of

expensive computing.

5

o N +)

4. What's worse, he'd have to do it all before everybody else
in the network finished just the one block (number 91)
that they're working on.

Figure 4: The Effects of Tampering with One Block in the Ledger

At the miner level, for each new block, the miner verifies the block hash before
accepting it in the ledger as the new last block. Further, the miner verifies the
order of the new block by comparing the hash reference of the current last block
in the ledger against the value listed in the new block. A block that fails the
integrity check by miners or is placed out of order will be discarded if the

majority of miners vote for the same result (i.e., more than 51% of miners vote

to discard the block).

20

The nested hashing within the block and between blocks in the ledger
guarantees the integrity of the data stored in Blockchain and makes it immutable
(irreversible). This capability requires a thorough evaluation of the data policy before
posting it on the Blockchain. If sensitive data such as medical records are encrypted
and stored in the Blockchain and the encryption algorithm is later exploited, there
could be significant exposure of sensitive information that cannot be revoked. Another
example is a DOA attack where the Ethereum community cannot revoke the vulnerable
DOA code without forking the ledger (i.e., discarding all the data inserted after the

vulnerable DOA code).

1.5.2.3 Availability

Availability is defined by NIST [6] as “ensuring timely and reliable access to
and use of information”. Availability is well implemented in Blockchain technology.
The distributed architecture of the Blockchain network and the synchronization of the
entire Blockchain across all miners in the pool provides robust resilience against
single-point-of-failure scenarios. Failure in one or more node(s) does not stop the
Blockchain network from introducing new blocks to the chain and/or serving access
requests to the existing blocks. However, failure could impact the availability of the

applications utilizing Blockchain.

Weber et al. [8] investigated the availability provided by Blockchain from an
applications perspective. The research is focused on how the availability of
Blockchain-based applications is affected by the time required to post a transaction on
Blockchain. Using a sample of transactions from the Ethereum and Bitcoin
Blockchains, Weber et al. found that 61.5% of transactions took more than 3 minutes

to be committed in a Blockchain, while 13.8% of the transactions took more than 4.5

21
minutes to be committed. Such variation in time can introduce the unavailability of

client applications.

Additionally, Weber et al. [8] investigated the factors that can influence the
delay to commit transactions. Some of these are common between Ethereum and

Bitcoin while others are unique to each, as indicated in Table 3.

Table 3: Factors for Blockchain Transaction Delay Variation

Ethereum Bitcoin

Transaction fees paid by the client v v
Transactions’ order of arrival v v
Locktimes: indicating that a transaction is invalid v
until a certain block sequence number is mined

Network delays v v
Gas limit (per block) v

Weber et al. [8] analyzed the impact of DOS attacks on Ethereum Blockchain
and found that the measures currently implemented by Ethereum that use a gas limit

counter DOS attacks and provide strong availability for smart contract applications.

1.5.2.4 Common Blockchain Attacks

Over time, different techniques have been used to attack active Blockchains,
including Ethereum and Bitcoin. These attacks have targeted the core Blockchain
technology rather than the applications running on the Blockchain (application attacks
are subject to the vulnerabilities in applications). Tosh et al. [14] analyzed attacks on
permissionless Blockchains that utilize POW as their consensus algorithm (the same

attacks apply to permissioned Blockchains with lower risk due to the controlled

22
admission of miners). The following section reviews the literature on common attacks

on Blockchain.

1.5.2.4.1 Double-spend Attack

In a double-spend attack, the same cryptocurrency (e.g., bitcoins) for more than
one transaction. A malicious miner spends a certain number of bitcoins, for example,
at block i. Starting from block 7, the malicious miner privately mines to extend the
Blockchain as fast as possible without publicizing it. The private chain does not
include the bitcoins spent by the attacker in block i. Once the private chain (malicious)
is longer (i.e., has more mined blocks) than the public chain (genuine), the malicious
miner posts the malicious chain, which appears as a fork. Miners vote to resume the
malicious chain and discard the genuine chain because the malicious chain is longer
(which means that genuine transactions are discarded starting from block i, and the

same bitcoins can be reused for other transactions).

1.5.2.4.2 Selfish Mining Attack

In a selfish mining attack, a pool of malicious miners colludes to mine together
(which increases their hashing power) and distributes the incentives among
themselves. This increases their profitability by enabling them to receive regular
incentives (because they dominate the Blockchain with their hashing power) instead
of receiving random incentives when mining independently. At the same time, it
reduces the profitability of honest miners. Honest miners may prefer to join an honest
pool to increase their mining power compared to a selfish pool, generating higher
incentives. Thus, the pool eventually becomes the major player controlling the

Blockchain, and decentralization no longer holds.

23

1.5.2.4.3 Eclipse Attack

An eclipse attack is aimed at isolating Blockchain miners and hijacking their
mining power to form a malicious pool of miners controlled by the attacker. This
malicious pool can be used to generate a fork and commit malicious blocks (i.e.,
overwrite the decentralization of Blockchain). Each miner in the ledger is limited to a
certain number of concurrent, outgoing peers to maintain the peer-to-peer network
(Bitcoin implementation limits each node to eight outgoing connection peers while
Ethereum limits this to 11). In addition, it can accept a certain number of unsolicited
incoming connections to form peers on the node’s public IP (Bitcoin allows up to 117

connections).

Considering Bitcoin, each miner maintains a table of IPs for incoming peers
sending unsolicited requests. The miner selects eight peers from the table to initiate
outgoing connections. The selection of IPs is systematic (not random). An attacker can
rapidly and repeatedly initiate unsolicited connection requests to the victim’s node
from attacker-controlled nodes. The victim’s node populates its table with attacker-
controlled miners’ IPs. The attacker continues to overwhelm the victim’s node with
irrelevant information until it restarts. With such effort, there is a high chance that the
victim will have the eight outgoing connections to attacker-controlled nodes after

restarting, which isolates the victim from an honest pool, as indicated in Figure 5.

24

Victim

Attacker
Nodes

Figure 5: Eclipse Attack

1.5.2.4.4 Block Withholding Attack

In this type of attack, some pool members who have joined to help mining

blocks never publish any blocks, thus decreasing the expected revenue of the pool.

1.5.2.4.5 Block Discarding Attack and Difficulty Raising Attack
Block discarding and difficulty raising attacks rely on the attacker’s hashing

power to mine blocks faster than others in the ledger, which leads to an increase of

complexity, affecting the performance of the Blockchain network [14].

1.5.3 Blockchain in Healthcare

The literature reviewed in this section covers the challenges, capabilities, and

some proposed implementations of blockchain in EHR, specifically:

e The challenges in integrating existing legacy centralized EHR systems

e The required capabilities in any blockchain-based EHR systems to be
accepted

e Proposals for blockchain-based EHR systems, including:

o MedRec

25

o BBDS
o OmniPHR
o MedShare

1.5.3.1 Centralized-Based EHR

The move towards Blockchain-based EHR systems to integrate distributed

healthcare providers raises questions about the challenges of integrating current

centralized EHR systems that are distributed among healthcare providers with existing

legacy technology. Magyar [15] listed four challenges in integrating existing

centralized EHR systems:

In centralized systems, EHRs are maintained in different formats that suit each
provider’s business model. This requires various interfaces and protocols for
integration, and there is no single protocol accepted across all providers.
Because of this complexity, there is high potential of compromising the
security of EHRs and the privacy of patients across the different utilized
middleware technologies and protocols.

The current model of centralized systems provides high central authority to the
dominant health provider of the patient, which complicates the exchange of
health information in the case of unplanned treatment in an emergency
situation and can cause serious results such as fatality because of the lack of
timely access to EHRs.

Auditing patients’ history and traceability is a significant concern in centralized
EHR systems as the information passes multiple healthcare providers. This is
especially a concern when institutional incentives influence the history of a

patient’s data

26

e The availability of patient data in integrated, centralized EHR systems is

inconsistent, and the related regulations are unclear. It is subject to the
resilience of each centralized healthcare provider.

An example of integrating centralized EHR systems was a five-year agreement
in 2016 between Google DeepMind and the Royal Free London NHS Foundation
Trust. This integration encountered significant problems, which were summarized by
Pilkington [16]:

e Lack of transparency and privacy
e Mismanagement of patients’ data and identities
e Delayed treatment due to malicious software infections, which caused delayed

service recovery

1.5.3.2 Blockchain-Based EHR Required Capabilities

Zhang, Walker, White, Schmidt, and Lenz [17] conducted research on the
required metric for any blockchain-based EHR system to be accepted. The researchers
identified seven metrics:

1. Entire workflow of the system is HIPAA-compliant

2. Framework supports Turing-complete operations

3. Support for user identification and authentication

4. Support for structural interoperability at minimum

5. Scalability across large populations of healthcare participants

6. Cost-effectiveness

7. Support for patient-centered care model

27

1.5.3.2.1 Entire workflow of the system is HIPAA-compliant

For a healthcare solution to be accepted and adopted, it must fulfill the
regulatory requirements of a country’s National Health Authority (NHA). Considering
the HIPAA Act, as an example of health regulation act in the US, Dagher, Mohler,
Milojkovic, and Marella [18] analyzed its requirements and concluded that Title II of
five HIPAA titles is relevant to Blockchain-based EHR. This title comprised the
standards for privacy of individually identifiable health information (privacy rule) and
the security standards for the protection of electronic protected health information
(security rule). Magyar [15] further analyzed HIPAA requirements and concluded that
Blockchain technology can fulfill the HIPAA requirements of secured access, privacy,

lack of centralized government, and cost reduction.

Zhang, Walker, White, Schmidt, and Lenz [17] highlighted precautions that
should be considered when implementing HIPAA-complaint Blockchain-based
solutions. Peng et al. stated, “A core tenet of HIPAA compliance is that Personally
Identifiable Information (PII) must be protected against a confidentiality breach. In
particular, the end-to-end workflow of a healthcare app from entering to processing
then delivering the data must be HIPAA compliant”. This can be achieved in
centralized systems using encryption techniques. However, in Blockchain, encryption
may not be useful because any data stored in the Blockchain is replicated across all the
miners and accessible by any party. Therefore, any breach of the currently used
encryption algorithms makes the EHR information vulnerable, especially data in the
Blockchain that is immutable and cannot be deleted. Accordingly, Zang et al.
recommended storing encrypted metadata of the EHRs in the Blockchain (with a

minimum level of information), which ensures that EHR data is securely stored [17].

28

1.5.3.2.2 Framework supports Turing-complete operations

Zhang, Walker, White, Schmidt, and Lenz [17] stated that any Blockchain-
based EHR system should be Turing-complete and have programming capabilities to
enable simple integration and interoperability with legacy systems. In addition, it
should have the capability for simple upgrades and feature enhancements. Blockchain
networks built specifically for healthcare applications are not scalable and cannot

fulfill these requirements.

1.5.3.2.3 Support for User Identification and Authentication

In EHR systems, users are classified as patients and healthcare professionals.
As [17] stated that any Blockchain-based EHR system should be able to uniquely
identify and distinguish each user while maintaining their anonymity on the
Blockchain, securely authenticate users, and be capable of recovering user’s

authentication information if it is lost or stolen.

1.5.3.2.4 Support for Structural Interoperability at Minimum

The system should enable the exchange of medical data and interpretation of
received data in its current standards [17], i.e., the system should be able to

communicate with known industry standards such as FHIR and HL7.

1.5.3.2.5 Scalability across Large Populations of Healthcare Participants

This was described in [17] thus: “A successful health app should leverage the
Blockchain to enhance interoperability, while maintaining its quality when users or

components of the app scale up and out”.

29

1.5.3.2.6 Cost-effectiveness

Any blockchain-based EHR system should be cost-effective compared to the
existing legacy systems without affecting its capabilities [17]. This factor has a
significant impact on the selection of blockchain parameters, including type, consensus

algorithm and incentives model.

1.5.3.2.7 Support of Patient-centered Care Model

According to [17], any Blockchain-based EHR system should provide patients
with the ability to control or monitor their information without compromising other
functionalities. These features may include self-reporting health information, access
to personal medical records and prescription history from different providers, auditing
existing access to patient health records, and the ability to share or revoke access to

patients’ own medical data.

1.5.3.3 MedRec

MedRec was proposed by Azaria, Ekblaw, Vieira, and Lippman [19] to utilize
Blockchain technology to integrate existing centralized EHR systems among
distributed healthcare providers. The solution uses Ethereum Blockchain’s smart
contracts capability to facilitate this integration. Each healthcare provider should
contribute an Ethereum mining node (usually a dedicated server) to participate in
MedRec. In addition, patients should also contribute an Ethereum mining node (on a

PC or mobile device) to participate in MedRec. The main functions of MedRec are to:

e Enable inter-provider access to patients’ EHRs using API interfaces. The API
information of the providers is stored in the Blockchain.

e Provide patients with the capability to manage access control to their EHRs.

30
Access control lists for patients and providers are stored in the Blockchain.
Detect and notify patients about new access requests to their EHRs. Access
can be granted or rejected only by patients.

Notify patients about changes to their EHRs and log the changes in the
Blockchain.

Provide a copy of EHRs on patients’ nodes and dominant providers’ nodes.

Although MedRec accelerates the deployment of EHR systems by integrating

with existing systems using Blockchain technology to overcome the major limitations

of centralized EHR systems, MedRec has shortcomings that limit its feasible

production implementation:

A mandatory component of MedRec is the presence of patients’ nodes, which
are used to communicate with patients for access control management. This
limits the scope of MedRec solutions to Blockchain-enabled patients (i.e.,
patients should have an Ethereum account). This is a major limitation of the
solution from the patients’ perspective (but not the providers’ perspective).
Any proposed solution should be capable of supporting all patients without
restrictions.

Ethereum Blockchain uses POW as its consensus algorithm, which is known
to have significant computing power requirements. While healthcare providers
can contribute powerful mining nodes to use MedRec, this cannot be
(practically) achieved for patients, whose nodes are on PCs or mobile devices,
making MedRec practically infeasible.

If a patient loses the private key to their Ethereum account (which is possible

using a mobile device or PC), MedRec does not provide a mechanism for a

31
patient to recover control of their EHR.
The use of current centralized EHR systems raises an interoperability problem
regarding inter-provider access. The solution must assume that all providers
utilize the same EHR format standard such as HL7 or FHIR [19], which is not
the case with the current centralized systems.
MedRec does not provide a mechanism for emergency access to EHRs if a

patient is admitted to a non-authorized hospital for emergency treatment.

1.5.3.4 BBDS

Xia, Sifah, Smahi, Amofa, and Zhang [20] proposed a Blockchain-based data

sharing (BBDS) system to provide access control management to EHRs stored in the

cloud based on the Blockchain technology. The proposed BBDS system utilizes

permissioned Blockchain consisting of an issuer that grants users or organizations

access to the system, a verifier that validates requests from system members and grants

corresponding access rights, and consensus nodes that facilitate the interface between

members and the verifier in addition to logging requests in Blockchain for auditing

and forensics purposes. The BBDS system provides the following functionalities:

A proof of wverification (POV) algorithm between the issuer and
users/organizations to enroll them in the BBDS system. The POV algorithm
is based on a proposed lightweight Diffie-Helman key exchange to generate a
session key for encryption and an electronic registration form to be validated
by the issuer.

Controlled access to EHRs, stored in the cloud, by a verifier node for members
of the BBDS system. This verification process is based on a per-member

private key generated during the registration phase by the issuer and

32
communicated to members and the verifier. After successful verification of a
member’s identity, the verifier validates the request against member rights
and, if access is granted, the verifier retrieves data from the cloud and passes
it to the member, or read data from the member and posts it in the cloud.

e Audit logging in the Blockchain ledger using consensus nodes, where each
member’s request to read or post an EHR is stored in a separate block. The
information recorded in the block includes user identity, purpose of the
request, processing consensus node, verification result, and timestamps,
including request creation, request retrieval from unprocessed requests pool,

verification time, block broadcast time, and data send time.

Although the BBDS system is not limited by cryptography key recovery and
emergency access restrictions (because the actual EHRs are not stored in the
Blockchain and their access is controlled by the issuer/verifier), it has other limitations

with the current implementation:

e The use of permissioned Blockchain eliminates decentralized authority, which
is a core advantage of Blockchain technology. The model provides central
authority to the issuer (not the patient) to verify and accept members in the
system.

e Because of the use of non-Turing-complete Blockchain (i.e., no smart
contracts), the BBDS system records each event in a single block to be able to
uniquely identify the events by the block reference. This limits the scalability
of the system because of recording a large number of blocks in a very short
time.

e The proposed model provides the data to the requester before recording the

33
request details in the Blockchain, which introduces a vulnerability in the
system as data is provided without a recorded request.

The proposed BBDS system does not have a mechanism to detect
modifications/tampering in EHRSs in the cloud caused by system-independent

reasons such as malicious activity in the cloud.

1.5.3.5 MedShare

MedShare was proposed by Yang et al. [21] to connect centralized healthcare

entities and exchange EHRs using a hybrid cloud infrastructure. The proposal was

prototyped with three healthcare entities: Hospital Conde S. Januario (HC), Kiang Wu

Hospital (KW), and Macau University of Science and Technology Hospital (UH).

Medshare functions as follows:

Each healthcare entity has a private cloud that converts EHRs from the entity’s
specific format to a standard EHR format and stores them locally in the private
cloud. In other words, each entity has two copies of an EHR, in a standard
format and a non-standard format.

Standard format EHRs are indexed using hash maps, and the index values are
stored in a public cloud that is connected with private clouds. The public cloud
has a synchronizer component that is used to replicate per-patient EHRs across
all private clouds (scheduled replication).

Doctors locally authenticate with the healthcare entity and query the EHRs of
patients. If a healthcare entity cannot find a patient ID locally (assuming
replication not yet been done), it queries the public cloud to locate the patient’s

EHR and, after successful validation, obtains the EHR.

The Medshare model is very practical and overcomes major limitations in

34

legacy EHR systems, but it lacks the following:

Neither private nor public clouds guarantee immutable access control rules,
privacy isolation between patients, or immutable integrity verification, which
is provided by Blockchain technology.

The replication of EHRs between healthcare entities is not scalable when a
large number of healthcare entities are involved in the system. This requires
n X (n — 1) connections to achieve full replication of EHRs.

Medshare uses patients’ ID cards as a mechanism for uniquely identifying
patients and obtaining their consent to grant healthcare providers access rights
to their EHRs, which is known to be an insecure technique compared to

biometrics identity verification.

1.5.3.6 OmniPHR

Roehrs, da Costa, and da Rosa Righi [22] proposed a Blockchain-based

application, OmniPHR, to address the following problems:

Provide a unified view to patients of their healthcare records from anywhere
at any time.

Provide up-to-date information to healthcare providers about patients
regardless of whether the data is local to the provider or is from an external
provider.

Provide a single standard for healthcare records.

Each member of OmniPHR joins the Blockchain through a miner, called a leaf

node. OmniPHR uses a ‘routing overlay’ node (called a super node), which is

responsible for managing leaf nodes and inter-communication with other routing

35

overlays. Some other roles of the routing overlay node are:

EHR handling: Accepting input medical records from IoT devices or
healthcare organizations, converting them to an open EHR format (the
standard EHR format used by OmniPHR), dividing the EHRs into chunks of
blocks, and distributing the blocks across Blockchain miners using load-
balancing algorithms

Security: Encrypting blocks, signing blocks, validating blocks, and providing

access authentication and access control to the blocks.

OmniPHR has limitations in its capability to provide a unified EHR system:

Similar to BBDS, the use of non-Turing-complete Blockchain adds significant
complexity for additional features or enhancements to the system compared to
Turing-complete Blockchain, which can have added features through software
coding.

Storing large data in the Blockchain (e.g., X-rays and MRI scans) is not
practical due to the size requirements on the nodes, which entails significant
overhead in addition to the encryption and decryption processing overhead.
The proposed model does not uniquely identify the author of data because all
the blocks are signed by the leaf nodes or super nodes.

Access to EHRs should be authorized by patients, which does not address the
limitation of unplanned treatment such as emergency admission by
unauthorized healthcare providers.

OmniPHR does not overcome the limitation of duplicate data such as duplicate
patient registration information that occurs when a patient register at two

healthcare providers with different identities. Ideally, OmniPHR should have

36
a mechanism to uniquely identify each patient without duplication, such as

biometric identity.

1.5.3.7 MedBlock

Fan, Wang, Ren, Li, and Yang [23] proposed the MedBlock system to share
medical data efficiently using Blockchain. The MedBlock system generates a
private/public key pair for each patient that is used to encrypt and sign medical records.
The actual records are stored in the health provider’s local database while the
Blockchain holds the hash value of the records. The core functions provided by

MedBlock are:

e A dedicated certificate authority server is used to generate keypairs for
patients, community hospitals and national hospitals.

e Patients submit their records through community hospitals or national
hospitals signed with their private key and encrypted by their public
key.

e Health records are not stored in community hospitals. Instead, they are
stored directly in national hospitals’ databases.

e The department that accepted records from a patient signs them using
its local private key to ensure integrity and non-repudiation.

e Each geo-group of national hospitals has the same group of endorsers
that will build the blocks and submit them to the consensus nodes
(called orderers). The hospitals submit the hash value of the medical
records to the endorsers, and the records are stored in the local database.

e Once the orderers reach consensus, they post the block to the ledger.

e Access control is implemented by MedBlock through private key

37
signatures. The client application scans the blocks until a valid

signature is found that corresponds to the patient’s data.

While MedBlock provides an efficient and scalable mechanism using role-

based nodes to perform specific functions and guarantee security through double-

signing, it has the following drawbacks:

The use of private/public keys for patients to sign and encrypt records
creates an issue in the case of unplanned treatment such as emergency
admission. In such a case, medical records will not be accessible, which
can cause complications with treatment and even fatality.

If a private key is lost, patients cannot recover their medical records.
The access control mechanism used is inefficient, especially when the
ledger grows to a very large number of blocks. In this case, examining
all the blocks until the records are found is not scalable.

The lack of programmability is a major drawback of MedBlock if new
features are required, as this would require the addition of new nodes.
MedBlock does not provide a mechanism to exchange medical records
between hospitals as the records are stored in the local database of

national hospitals.

38

Chapter 2: Methods

This chapter addresses the contribution to the problem statement and proposes
a solution to ensure an access recovery mechanism for patients’ EHRs that are
exchanged and synchronized between distributed healthcare providers using
Blockchain. The high-level architecture of the solution is discussed, followed by a
detailed explanation of individual components and layers. In addition, functional use

cases of the design are provided and explained.

2.1 Design Overview

The approach followed in our solution is to divide the system into layers and
provide distributed functions in a modular structure. Accordingly, the system is
divided into four layers, namely the User Interface, Middleware, Blockchain, and
Cloud Store. Figure 6 shows the layers that comprise SDHCARE and the modules

associated with each layer.

Layers Local Per-Provider

39

(a) - User Interface

Admin Ul
Reception Ul

A

Doctor Ul \
External Entity Ul

/

(b) - Middleware

DirectoryService

DatabaseService

Blockchain Client

/|||\

\

Middleware Manager

Cloud API Interface /

Layers Shared All-Providers

(c) - Blockchain

(d) - Cloud

a

dnsSC
patientsSC

accessControlSC

AN

providersTable

patientsTable

ehrHashTable

N

Cloud Store

/

Figure 6: SDHCARE High-Level Architecture

2.1.1 User Interface (UI) Layer

The UI layer is the presentation of the system to the users, by which they can

interact with SDHCARE. These users can be doctors, pharmacists, receptionists,

40
officers, researchers, or insurance companies, among others. This layer is local to each
healthcare provider that is a member of SDHCARE. It has mandatory and customized
components according to a provider’s needs. The mandatory components are
summarized as:

¢ Admin UI: This interface is mainly used by authorized representatives
of the healthcare provider to enroll the provider in the SDHCARE
system. Upon successful enrollment, the provider’s details are stored
in a providers’ immutable table for it to be uniquely identified in the
SDHCARE system.

e Reception Ul: This interface is used by a healthcare provider’s
reception department. It provides two main functions:

o Registering new patients in the system, which involves creating
an entry for each patient in an immutable-blockchain table that
includes all patients in SDHCARE. This ensures exchange and
synchronization of all patients across SDHCARE healthcare
providers.

o Booking and confirming patients’ appointments, which grant
the corresponding clinics and/or departments access to patient’s
records (after the patient’s confirmation using his/her
fingerprints). This access is stored and maintained along with
the patient’s registration record.

e Patient Ul: This is a biometric interface that accepts patients’
fingerprints and uses them for the following functions:

o Uniquely identify patients using fingerprints instead of secret

keys (or private keys) across all members of SDHCARE.

41
o Managing access and role assignments by patients using
fingerprints, which eliminates the problem of recovering a
patient’s management of access to their records in the case of a
lost secret key
o Indexing patients’ records metadata stored in the blockchain
records table
o Simplify the process of granting access to patient records in the
case of emergency treatment using fingerprints
e Doctor Ul: This interface is used by the doctors to view patients” EHRs
and post new EHRs after successful validation of a patient’s identity
and authorization rules implemented in the SDHCARE system.
e External Entity UI: This interface enables remote healthcare providers,
research entities, insurance companies, and other parties to obtain
access to patient records after successful validation of access requests

to provide globalized access to the SDHCARE system.

2.1.2 Middleware Layer

This layer is the core of the SDHCARE solution. It is used to interlink all of
the other SDHCARE layers in addition to providing major SDHCARE services,
including directory services and database services. Figure 6 (b) lists all modules
included in the Middleware layer. These modules are local to each healthcare provider

participating in the SDHCARE system and can be summarized as follows:

e DirectoryService Module: This module is mainly used to host the
directory of all accounts of the healthcare provider. Local identities

within the healthcare provider (e.g., doctors, nurses, system admins,

42
receptionists) are validated against the DirectoryService module.
Additionally, it is responsible for access control validation on Uls.
DatabaseService Module: This module is responsible for holding all
database information local to the healthcare provider, including clinics’
IDs, provider registration details, and patients’ appointments.
Middleware Manager Module: This module acts as the main controller
for interacting between the modules within Middleware layer as well
as intercommunication with other layers including U, Blockchain and
Cloud Store layers.

Cloud Application Programmable Interface (API) Interface Module:
This module is mainly used to facilitate communication between the
Middleware Manager module and the Cloud Store to read or post
healthcare records.
Blockchain Client Module: This module is responsible for the
communication between the healthcare providers and Blockchain layer.
All interactions between the Middleware Manager module and the
Blockchain layer go through this module. Two types of operations exist
within this module:
o Write requests to publish new blockchain transactions of data
to the Blockchain smart contracts and immutable tables.
o Read requests in the form of data transactions consolidated in
blocks to read data from the immutable tables or responses from

smart contracts.

43

2.1.3 Blockchain Layer

The Blockchain layer is a shared layer across all healthcare providers
participating in SDHCARE. This layer provides two core functions in the SDHCARE

system, namely:

e Immutable smart contracts (SC) to perform programmed logic
functions.

e Immutable tables in the form of chained blocks to store different types
of data that need to be protected against unauthorized tampering.

The design of the immutable tables is distributed to ensure the anonymity of
the data stored in these tables. For example, the visibility of ehrHashTable should not
provide any correlation to the patients in patientsTable. This correlation is controlled
by the middleware layer using patient’s fingerprint hash. Similarly, the design of the
smart contracts is distributed to ensure modularity and flexibility for additional

features and enhancements.

Figure 6 (c) summarizes the components of the Blockchain layer. The next

sections provide details of each component.

2.1.3.1 DNS Smart Contract (dnsSC)

The dnsSC is programmed to perform the initial enrollment of the healthcare
provider in the SDHCARE system. It takes the provider’s information from the Admin
Ul and stores it in providersTable. In addition, it ensures the uniqueness of the

provider’s information across all the members of the SDHCARE system.

44

2.1.3.2 Patients Smart Contract (patientsSC)

This smart contract plays a vital role in the SDHCARE system and is

responsible for multiple functions:

Initial registration of patients in the SDHCARE system, which includes

populating patients’ details in patientsTable.

e Updating ehrHashTable with new EHR metadata and their
corresponding hash values.

e Retrieving patients’ details from patientsTable.

e Retrieving the list of EHRs from ehrHashTable.

2.1.3.3 Providers Table (providersTable)

providersTable is an immutable table stored in Blockchain (in the form of
chained blocks) and holds information about all healthcare providers that are members
of SDHCARE. It is populated using dnsSC. Figure 7 outlines the information held in

providersTable:

e Name: Healthcare provider’s name
e Web address: Healthcare provider’s domain name

e OHP: Healthcare provider’s Blockchain address

Figure 7: Summary of providersTable Data

45
2.1.3.4 Patients Table (patientsTable)

This immutable table stores information about patients and is populated using
patientsSC. The data in patientsTable is indexed using patients’ fingerprints hashes,
which is critical for the unique identification of patients. In addition, the fingerprints
hashes indicate the relationship between patientsTable and ehrHashTable. Figure 8

summarizes the data stored in this table:

e Fingerprint Hash: Patient fingerprint hash

e OHP: This is used to trace the origin of the patient record

e PACL: This is the patient access control list array and includes the IDs
of clinics allowed to access a patient’s EHR

e Receptionist ID: The ID of a local’s provider reception department is

used for auditing purposes

Figure 8: Summary of patientsTable Data

2.1.3.5 EHR Metadata Table (ehrHashTable)

The EHR Metadata Table holds the metadata of patients’ EHRs and their
corresponding hash values. These hash values are used for indexing EHR raw data
uploaded to the cloud store. Additionally, these hash values are used for detecting any

unauthorized changes to EHRs. Similar to patientsTable, ehrHashTable is indexed

46
using patients’ fingerprints hashes to ensure unique mapping between patients’ EHRs

and their identities.

Our design stores the hash values of the EHRs in ehrHashTable instead of the

EHRs raw data for two reasons:

e In Blockchain, blocks are not encrypted, accordingly, storing clear-text
EHRs breaches the privacy of patients. Further, storing encrypted
EHRs makes them subject to crypto-analytic attacks, and any success
in cracking the encrypted algorithms would breach patients’ privacy.

e Blocks are stored locally on the miners. This method can be used for
small EHRs. However, for large EHRs such as MRI scans and X-ray
images, the solution won’t be scalable.

Figure 9 summarizes the information included in ehrHashTable:

¢ FHR Name: EHR name

EHR Date: EHR creation date

EHR Hash: EHR Merkle root hash

e Fingerprint Hash: Patient fingerprint hash

EHR Status: EHR status (active/deleted)

Figure 9: Summary of ehrHashTable Data

47
The hash value of the EHR is calculated using a Merkle Tree algorithm as

follow:

H1=SHA256 (EHR Name) + SHA256 (EHR Raw Data)

H2 = SHA256 (Date) + SHA256 (EHR Status)

Merkle Root Hash = SHA256(SHA256 (H1) + SHA256 (H2))

Finally, the Merkle root hash is used as an indexing key in the cloud store to

look up EHRs raw data.

2.1.3.6 Access Control Smart Contract (accessControlSC)

The accessControlSC acts as access control manager for any activity on

patients’ EHRs. It validates all requests including:

e Writing EHR records in ehrHashTable.
e Reading EHR records from ehrHashTable.
e Granting health provider clinics access to EHRs.

Table 4 summarizes the access control matrix provided by accessControlSC.

Table 4: Access Control Matrix by accessControlSC

providersTable patientsTable echrHashTable
Reception Read
Write
Doctor Read Read
Write
Patient Grant Grant

Officer Read/Write

48

2.1.4 Cloud Store Layer

The Cloud Store layer is a shared layer across all healthcare providers
participating in the SDHCARE system. It holds patients’ raw EHRs, which are indexed
using Merkle root hash values of the EHRs. This makes EHRs in the cloud store
completely anonymous. In other words, an EHR cannot be traced back to a patient’s
identity because patient’s identity, fingerprint, is not stored in the cloud store,

blockchain or providers’ DatabaseService modules.

2.2 Functional Use Cases

This section explains SDHCARE operation for major use cases that exist in
any healthcare provider deploying SDHCARE. These use cases include provider
enrollment in SDHCARE, new patient registration, patient appointment management,

and doctors’ access to patients’ EHRs.

2.2.1 SDHCARE Provider Enrollment

For enrollment in the SDHCARE system, a provider should select a unique
name and web address for global reachability. The next step is storing this information
in providersTable. This helps other providers verify the uniqueness of their
information before enrollment in SDHCARE. Further, it is used by all SDHCARE
healthcare providers to identify the source of patient EHRs. The process of provider

enrollment, shown in Figure 10, is summarized as follow:

1. From the Admin UI, the provider’s admin is authenticated against the

provider’s DirectoryService.

2.

4.

49
After successful authentication, the admin enters the provider’s details
in the Admin UI (name and web address).
The provider’s Middleware Manager sends a request to the Blockchain
through its Blockchain Client to create a new account, which entails
generating a keypair. The private key is used to sign all requests
(transactions) from the provider. The public key is used as the
provider’s Blockchain address to uniquely identify it across the ledger
(OHP). This keypair is returned to the provider from the Blockchain
and stored in DatabaseService component of SDHCARE
Next, the Middleware Manager obtains the provider’s OHP from the
DatabaseService component and the Blockchain Client calls the dnsSC
to update providersTable with the provider’s name, web address, and

OHP.

50

A = % Qg I_:A E@ ﬁ:ﬁ

Admin Middleware Manager/
Blockchain Client

DirectoryService DatabaseService Blockchain

Admin will submit Middleware Manager
credentials will validate

»| credentials against
DirectoryService

\ 4

Authentication

Middleware Manager
_ Success

will request admin for
provider’s name and
web address

&
<

Admin submits the
details

Blockchain Client will create an account for the provider in the

Blockchain .

v

|
Provider’s keypair will be returned to the Middleware
Manager (signing kley and OHP) through Blockchain Client

7

|
Middleware Manager stores the keypair
in provider’s Data blaseService

I >
Middleware Manager gets provider’s
OHP from Data basleService

7 3

|
Blockchain Client submits provider’s name and web
address to providelrsTabIe using dncSC

v

Figure 10: Hospital Enrollment Sequence Diagram

2.2.2 Patient Registration

New patients visiting a SDHCARE-enabled healthcare provider go through the
registration process to be added to patientsTable. Once patients complete the
registration process, they are uniquely identified across all SDHCARE-enabled
providers. This unique identification is achieved using patients’ fingerprints hashes for
patientsTable indexing. The process of adding new patients to the SDHCARE system

is described below and summarized in Figure 11.

51
The receptionist uses Reception Ul to authenticate against a provider’s
DirectoryService.
. After successful authentication, the receptionist captures the patient’s
details that are required by patientsTable through Reception UI.
The patient validates and confirms the details by submitting his/her
fingerprint through Patient UI. A fingerprint is a mandatory input to resume
the process.
. Next, the provider’s Middleware Manager obtains the provider’s OHP and
the reception ID from the provider’s DatabaseService. This information is
passed to the Blockchain Client.
Finally, the provider’s Blockchain Client calls patientsSC to store the
patient’s details entered by the receptionist, along with the provider’s OHP
and reception ID, in patientsTable indexed using the patient’s fingerprint

hash.

& 9 5 A [*:ﬁ

Reception Patient Middleware Manager/ DirectoryService DatabaseService Blockchain
Blockchain Client

Reception will submit
credentials Middleware Manager

will validate
credentials against
DirectoryService

v

v

Authentication Success

P
«

Middleware Manager will request reception for

patient’s details
& 1

) I

Reception submits the details

v

Patient will confirm
using fingerprint

v

Middleware Manager will request
OHP and reception ID
1

v

I
Middleware Manager gets OHP and
reception ID from DﬁtabaseService

»

1
Blockchain Client submits patient details with OHP and reception

D to patientsTable using patientsSC
L

v

Figure 11: Summary of the Patient Registration Process

2.2.3 Patient Appointment Management

SDHCARE-reception manages patients’ appointments, including booking new
appointments and acknowledging existing appointments attended by patients. The
appointments are stored in each provider’s DatabaseService and are indexed using
patients’ national IDs (NIDs). Additionally, the appointments are not synchronized
between providers in the SDHCARE system. A patient attending an appointment needs

to confirm the attendance by submitting his/her fingerprint. This confirmation grants

53
the clinic access to the patient’s EHR. Figure 12 summarizes the process of booking a

new patient appointment, which entails the following steps:

1. The receptionist uses Reception Ul to authenticate against the provider’s
DirectoryService.

2. After successful authentication, the receptionist provides appointment
details, including the patient’s name, NID, date/time, and clinic.

3. The Middleware Manager receives the details of the appointment from the

Reception Ul and stores them in the DatabaseService of the local provider.

& e B 7

Middleware Manager/
Blockchain Client

Reception DirectoryService DatabaseService

Reception will submit credentials

¥ Middleware Manager will
validate credentials against
DirectoryService

Authentication Success

Middleware Manager will <
request reception for
appointment details

Reception submits the details

>
Middleware Manager will store the appointment in
DatabaseService

Figure 12: Process for Booking a New Appointment

The process of confirming a patient’s appointment and granting access to the

visited clinic is described below and summarized in Figure 13:

54

1. The receptionist uses Reception Ul to authenticate against the provider’s
DirectoryService.

2. After successful authentication, the receptionist looks up the patient’s NID
against DatabaseService to obtain a list of the patient’s active
appointments.

3. The receptionist selects the desired appointment and the patient confirms it
by submitting his/her fingerprint using Patient UI.

4. Upon confirmation, the Middleware Manager queries DatabaseService to
obtain the visited clinic’s ID and deactivate the selected appointment.

5. Finally, the Middleware Manager calls accessControlSC through the
Blockchain Client to append the clinic’s ID to the PACL stored in
patientsTable and indexed using the patient’s fingerprint hash. This grants
the visited clinic access to the patient’s EHR.

It is important to note that the Blockchain Client uses the clinic ID + OHP as
the format of the clinic ID stored in PACL. This eliminates the possibility of conflict
caused by providers having the same clinic IDs and being granted access to the same
EHRs. For example, if the clinic ID is 100 and the OHP is 100000000000000000001,
the clinic ID stored in PACL is 100100000000000000000001, which is guaranteed to

be unique due to the uniqueness of the OHP in the Blockchain.

55

P@ R Qg I_:A E@ ﬁ:ﬁ

Reception Patient Middleware Manager/

DirectoryService DatabaseService Blockchain
Blockchain Client

Reception will submit

credentials Middleware

Manager validates
credentials against
DirectoryService

v

Authentication
Success

Middleware Manager will request
reception for patient’s NID

< i
Reception submits the NID

v

Middleware Manager will perform a
lookup for appointments using NID

] >
T >

DatabaseService will return the list of
active appointments

&
<«

Middleware Manager will pass the list of
appointments to reception

& 1
<

]
Reception will submit the desired
appointment to the Middleware Manager

Patient confirms
the appointment
using fingerprint

Middleware Manager will send a request
to DatabaseService to obtain the clinic ID
»| of visited clinic and deactivate the

appointment

DatabaseService will return the clinic ID
“ :

Blockchain Client will append the clinic ID to PACL in
patientsTable using accessControlSC smart contract

A 4

v

Figure 13: Booking Confirmation and Access Granting Summary

2.2.4 Doctor’s EHR Access

In the SDHCARE system, doctors can have read and/or write access to EHRs,
as detailed in Section 2.1.3.6. This access can be granted by patients using their
fingerprints, as described in Section 2.2.3. EHRs are divided into EHRs’ metadata,

which is stored in ehrHashTable and indexed using patients’ fingerprints hashes to

56
ensure unique identification, and EHRs’ raw data, which is stored in the cloud store
and indexed using the Merkle root hash of the EHRs. Using read access, doctors can
obtain a list of accessible patients’ EHRs from ehrHashTable and download the desired
one(s) from the cloud store. Write access allows doctors to create new EHR metadata
in ehrHashTable and upload the EHR raw data to the cloud store. The following

summarizes doctors’ EHR read process, which is also outlined in Figure 14.

1. The doctor uses Doctor Ul to authenticate against the provider’s
DirectoryService.

2. After successful authentication, Doctor Ul is redirected to Patient UI for
the patient to submit their fingerprint.

3. Upon the patient’s submission of their fingerprint, the Middleware
Manager queries the DatabaseService for the doctor’s clinic ID using the
doctor’s username.

4. Next, the Middleware Manager makes a call to accessControlSC through
the Blockchain Client. This call uses the patient’s fingerprint hash and the
doctor’s clinic ID to validate whether the doctor has read access to the
patient’s EHR.

5. [Ifthe clinic ID is listed in the PACL of the patient (by reading patientsTable
using the fingerprint hash), accessControlSC grants the doctor read access.

6. Based on the authorized read request, the Blockchain Client calls
patientsSC to find the list of EHRs stored in ehrHashTable. This list is
returned to the Middleware Manager which passes the details to Doctor UI.
The lookup is executed by patientsSC using the patient’s fingerprint hash

passed from the Blockchain Client.

57

7. Upon the doctor’s selection of the desired record, the Middleware Manager
initiates a call to the cloud store, through Cloud API Interface, to retrieve
the EHR data (using the Merkle root hash associated with the selected
record in the list).

8. Once the EHR data is received by the Middleware Manager, it performs an
integrity check by comparing the stored Merkle hash of the selected record
against the calculated Merkle hash of the received data.

9. If the hash is valid, the Middleware Manager passes the data back to the

doctor. Otherwise, an integrity failure alert is triggered.

e R

Doctor Patient

[[

Middleware Manager/

DirectoryService DatabaseService

Blockchain Client/Cloud
APl Interface

Doctor will submit credentials

Middleware
Manager requests
patient’s
fingerprint

&

Middleware
Manager validates
credentials against
DirectoryService

Authentication
§uccess

<

Patient submits
the fingerprint

Middleware Manager will perform a
lookup against DatabaseService for

The list of EHRs will be passed to
the doctor

& +

| doctors clinic ID using doctor’s

username

] >

i >
DatabaseService will return doctor’s
clinic ID

< 1
Blockchain Client will call accessControlSC smart contract
using patient’s fingerprint and clinic ID to authorize read
access request

v

The accessControlSC smart contract will authorize the
read request and grant the doctor access to
ehrHashTable (assuming that clinic ID is listed in PACL of
the patient) | :

N |
Blockchain Client will call patientsSC smart contract

to get the list of EHRs in ehrHashTable associated
with patient’s fingerprint
L

1 >

T T
The list of EHRs from ehrHashTable will be returned
back to the Middleware Manager through

Blockchain Client
<]

« T
Doctor will select the desired EHR
to view

Middleware Manager will pass the
EHR data to the doctor if the
calcuated Merkle hash for the
received data is the same as the
Merkle hash stored with the
selected record

&

<

in the list

[8

Blockchain

Cloud API Interface will make an API call to the cloud store to lookup the
EHR data using the Merkle root hash associated with the selected record

58

©

Cloud Store

T T T
Cloud store will provide the EHR data to the Middleware Manager

v

< I

through the Cloud API Interface

Figure 14: Summary of the EHR Read Process

59
Similar to the read process for EHRs, the process by which doctors write EHRs

by doctors is outlined in Figure 15 and summarized as follows:

1. The doctor uses Doctor UI to authenticate against the provider’s
DirectoryService.

2. After successful authentication, the doctor adds details and/or attach files to the
EHR.

3. The patient verifies the details of the EHR and confirms acceptance by
submitting their fingerprint.

4. Once submitted, the Middleware Manager looks for the doctor’s clinic ID in
DatabaseService using the doctor’s login.

5. Once the clinic ID is returned from DatabaseService, the Middleware Manager
uses the Blockchain Client to call accessControlSC requesting authorization to
write EHR metadata to ehrHashTable. The authorization request submits the
patient’s fingerprint hash and clinic ID to accessControlSC to verify if the
clinic ID is listed in the PACL of the patient.

6. Upon successful authorization, the Middleware Manager calculates the Merkle
root hash of the EHR.

7. Next, the Blockchain Client call patientsSC to write EHR metadata into
ehrHashTable, which includes EHR details and the Merkle root hash. This is
indexed using the patient’s fingerprint hash.

8. Finally, the Middleware Manager uses the Cloud API Interface to upload the

EHR data to the cloud store with the name of the EHR as the Merkle root hash.

60

1) Lo i ¢
e R B9 A [® &
Doctor Patient Middleware Manager/ DirectoryService DatabaseService Blockchain Cloud Store

Blockchain Client/Cloud
APl Interface

Doctor will submit credentials .
Middleware

Manager validates
credentials against
DirectoryService

v

v

Authentication

Success
‘—

Middleware Manager will request the
doctor for EHR details

) I

Doctor will add EHR details and/or attach
files

>

Patient will confirm
using fingerprint

"] Middleware Manager will request
DatabaseService for doctor’s clinic ID

v

DatabaseService will return doctor’s
clinicID

& 1

1
Blockchain Client will call accessControlSC smart contract using

patient’s fingerprint and clinic ID to authorize write access
request

t f »
The accessControlSC smart contract will authorize the write
request and grant the doctor access to ehrHashTable
(assuming that clini(I: IDis listed in PACL oflthe patient)

) | |

Middleware Manager will calculate Merkle root hash of the
EHR and Blockchain Client will call patientsSC smart contract to
write EHR metadata and Merkle hash to ehrHashTable
associated with patient’s fingerprint

' i .
Cloud APl Interface will make an API call to the cloud store to upload the EHR data

using Merkle root hash as file name
1 1

v

Figure 15: Summary of the EHR Write Process

61

Chapter 3: Implementation

This chapter discusses the implementation of the SDHCARE prototype
according to the proposed design functions. The chapter covers the selection process
for the technologies used in the prototype and provides an overview of them. The final
section of this chapter outlines the high-level implementation of the SDHCARE
prototype. The low-level implementation and coding of the SDHCARE prototype are

described in detail in the appendices.

3.1 Prototype Components

This section provides an overview of the components used to build our

prototype. These components were selected based on the following criteria:

Simplicity of the component setup and configuration to implement the
required functions in SDHCARE.

e Interoperability capabilities of the component with other technologies
to simulate the overall design of SDHCARE.

e Feature richness and built-in security capabilities of the component that
are in line with SDHCARE requirements.

e Stability, reliability, and operational consistency of the component.

According to the proposed SDHCARE design, which was described in Chapter

2, the following technologies were selected for the prototype:

e Django 3.0 Web Development Platform: This was used to build the
required web interfaces for Doctor UI, Admin UI, and Reception UL

Django is a Python-based platform that has built-in directory services.

62

This feature allows Django to integrate seamlessly with customized
Python modules to provide additional functions such as API integration
with Ethereum.
Python 3.8: The Python interpreter is at the core of the SDHCARE
prototype and provides the following functions:

o Django web development coding language.

o Interaction with Django built-in directory services.

o API integration with the Blockchain and cloud store.

o SQL interface with healthcare provider database.

o Integrity validation and hashing of EHRs.
SQLite 3: SQLite was used to implement the DatabaseService module
local to the healthcare provider, mainly for storing information,
including departments’ IDs, appointments, and a provider’s Blockchain
details. SQLite has a native database connector with Django through
Python.
Ethereum Blockchain: This is the public Blockchain technology used
to provide immutable smart contracts and immutable tables. Ethereum
was chosen to extend the accessibility to EHRs at large scale, including
cases in which patients relocate to different geographic areas. In such
cases, the new geo-healthcare provider can connect to Ethereum and
request access to a patient’s EHR.
Microsoft (MS) Azure Files: This service is hosted on the public cloud
to store EHRs. The selection of MS Azure Files was due to its simple
accessibility and usability in addition to its independence from the

format of EHRs. MS Azure Files uses an SMB protocol to provide

63
secure communication between on-premise infrastructure and the cloud

[24].

3.2 Django Architecture

This section covers the basics of Django web development architecture to
enable an understanding of the setup and configuration of the SDHCARE prototype.
Django consists of frontend and backend layers. The frontend layer consists of HTML
templates with which clients interact. The backend layer, on the other hand, gets inputs
from templates and performs the programmed function accordingly. Figure 16 shows

a block diagram of Django architecture.

HTML Templates

Frontend Layer

Backend Layer

Views
(views.py)

A

\

Tables Forms
(tables.py) (forms.py)

A A

Models
(models.py)

Figure 16: Django Web Development Architecture

64

Django simplifies HTML coding using Forms, which are Python functions
defined in forms.py file. These functions specify HTML input fields and their labels,
types, and maximum lengths, etc. (Forms do not include HTML styles and javascripts).
The actual HTML pages presented to clients are combined versions of style sheets,
javascripts, bootstraps, and other elements defined in HTML template files and with

inputs returned from forms.py.

The input values returned from the clients can be written into the database
through Models (models.py). Models act as an abstraction layer, provided by Django
and programmed using Python. They can translate Python instructions into database
queries depending on the type of integrated database. Models can receive input values
from HTML templates through Views (views.py). Additionally, Models can poll data
from the database and pre-fill Forms inputs to be presented to clients through HTML

templates (such as by dropdown selection).

Tables (tables.py) in Django are used to populate information from the
database in table format and present them to clients. This simplifies the process of
creating HTML tables compared to traditional HTML methods. Tables do not handle

styles, as this is controlled through HTML templates.

Django uses Views to link Forms, Tables, and Models with Templates. Views
control the logic of the Django web flow and how requests/responses are handled
between clients and the web application. It is at this point that SDHCARE core
functions are implemented. Additionally, Views allow the import of custom Python

models for extended functionalities that are not present in Django.

65

3.3 System Implementation

This section outlines the implementation steps of the SDHCARE prototype
and covers high-level implementation. The source code for Django, Python modules,

and Ethereum smart contracts is included in the appendices.

3.3.1 Building the Runtime Environment

The first step in building the SDHCARE prototype was setting up the runtime
environment that hosts the prototype components (described in Section 3.1). These
components are independent of operating-system. MacOS Catalina was selected as the
OS hosting SDHCARE system in the healthcare provider to run Django, Python, and
SQLite, and communicate with Ethereum and MS Azure. Figure 17 shows the used

version of MacOS.

Displays Storage Support Service

macOS Catalina

Version 10.15.3

MacBook Pro (13-inch, 2019, Four Thunderbolt 3 ports)
Processor 2.4 GHz Quad-Core Intel Core i5

Memory 8 GB 2133 MHz LPDDR3

Startup Disk Macintosh HD

Graphics Intel Iris Plus Graphics 655 1536 MB

Serial Number C02ZK46ZLVDD

System Report... Software Update...

Figure 17: MacOS Software Version for SDHCARE

66

The next step was to download and install Python 3.8 and PyCharm 2019.3.2

IDE. From PyCharm IDE, a new virtual environment was created to use Python 3.8 as
an interpreter for Django and custom Python modules. This was followed by creating
anew project in PyCharm called SDHCARE to run on the created virtual environment,

i.e., interpreted using Python 3.8 as shown in Figure 18.

ORSNPASES

Preferences
Project: DHCARE > Project Interpreter

> Appearance & Behavior @ Django-Labs Project Interpreter: | @ Python 3.8 (DHCARE)

Keymap = DHCARE

> Editor Package Version
Plugins Django 3.0.2
» Version Control asgiref SN

¥ Project: DHCARE attrdict 2.0.1
attrs 19.3.0

Project Dependencies
base58 2.0.0

certifi 2019.11.28
Project Structure chardet 3.0.4

Project Interpreter

Figure 18: PyCharm SDHCARE Project with Python 3.8 Interpreter

Following the creation of the SDHCARE project in PyCharm, a list of
required Python libraries was installed. Table 5 summarizes this list of libraries.

Python uses the PIP3 utility to install external libraries from the internet.

Table 5: Python Libraries Required for SDHCARE

67

Library Name

Purpose

django

Web development framework; this installation includes
SQLite 3

django-Tables2

For formatting and styling tables in Django

crispy

For formatting and styling HTML templates in Django

web3

For API communication with Ethereum

azure-storage-file

For API communication with MS Azure

3.3.2 Initializing SDHCARE Web and Database Components

After preparing the runtime environment for hosting SDHCARE, the next step

was initializing the Django web framework and database. The initialization was done

in the following order to ensure the successful running of Django:

1. Initialize SQLite3 DB to be ready for storing the provider’s Ethereum

information and clinics’ information. This is done by running the following

commands from the PyCharm SDHCARE project terminal:

python manage.py makemigrations

python manage.py migrate

2. Create a Django admin user to administrate the Django management console,

including account creation in the Django built-in directory service. These

accounts represent doctors, nurses, officers, and receptionists. Additionally, the

admin user populates the SQLite3 database with information about the

healthcare provider’s clinics and Ethereum information. The command for

creating an admin user is:

68

python manage.py createsuperuser

3. Create SDHCARE user accounts and groups by navigating to
http://localhost:8000/admin, signing in using the admin account, adding groups
for different permissions, adding new users, and assigning users to their

respective groups. Figure 19 shows a sample of users, groups, and their

assignments.

Home > Authentication and Authorization > Users Home > Authentication and Authorization > Groups
Select user to change Select group to change

Q [] Search Q [] Searc

Action: | ——— 4!l Go | 0of 6 selected Action: | ——— 4!l Go | 0of3sele

() USERNAME » EMAIL ADDRESS (] GROUP

) admin admin@dhcare.com () DHCARE-Admins

() pA-doctor-dental () DHCARE-Doctors

() pA-doctor-ortho () DHCARE-Reception

() pA-doctor-pediatrics 3 groups

) pA-officer

() pA-reception

6 users

Permissions

Active
Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

() Staff status
Designates whether the user can log into this admin site.

(7) Superuser status
Designates that this user has all permissions without explicitly assigning them.

Groups: Available groups @ Chosen groups @

DHCARE-Doctors
Q | Filter

DHCARE-Admins
DHCARE-Reception

Figure 19: Example of Users, Groups, and Group Assignment

4. Create local database tables for the SDHCARE healthcare provider. These

tables are stored in the SQLite3 database with the following structures:

69

e Appointments Table: Name Column (patient name), NID, Date

Column, Time Column, and Department Column (clinic to be visited).

e Departments Table: Code Column (clinic code) and Name Column

(clinic name).

e Provider Table: OHP Column (Ethereum public key) and Secret
Column (Ethereum private key).

The Python code for creating these tables was written in models.py as shown

below.

department (models.Model):
code = models.IntegerField(
name = models.CharField(

provider(models.Model):
ohp = models.CharField(
secret = models.CharField(

appointment (models.Model):
name = models.CharField(=100)
nid = models.IntegerField()
date = models.DateField(=timezone.now)
time = models.TimeField(=timezone.now)
department_code = models.ForeignKey (
=models.CASCADE)

5. From the Django admin console, populate departments and provider database
tables with provider’s clinics’ details and Ethereum details, respectively
(appointments database is populated by the receptionist, as described later).

Figure 20 shows the created tables from the Django admin console.

70

DHCARE Home > Dhcare » Departments

Appointments

Select department to change

Departments
Providers Action: | —— 2o
Home > Dhcare > Departments > Dental () DEPARTMENT
() Dental
Change department - ,
(1) Orthopedics
() Hematolo
Code: 103 - gy
() Pediatrics
Name: Dental () Officer
() Reception

) Admin

7 departments

Figure 20: Example of SDHCARE Databases

3.3.3 Building SDHCARE Django Code

After the successful initialization of Django, the next step was writing the
Django Python code to perform the required functions of the SDHCARE prototype.
As mentioned at the beginning of this chapter, this section covers only the high-level

coding structure. The low-level coding is available in the appendices.

The first step in Django coding was developing the HTML templates for the
frontend layer. The approach for HTML coding was based on developing a base
template (base.html) containing all shared components across all pages, such as
header, footer, title, and styles. Any child HTML template has page-specific
components combined with the base template, presented to the user. Figure 21

summarizes the HTML coding approach along with all the HTML templates.

71

'; < (< base.html
NS
User A
adminui.html doctorui.htm| receptrlnolnul.ht
adminui- doctorui- recepthiomIJi rzcer::i;)nuli
get.html get.html -get.htm -book.htm
new-)
adminui- doctorui- patient.ht aPPOLntﬁ}e
submit.html submit.html % nts.htm
Admin Ul Doctor Ul Reception Ul

Figure 21: Summary of HTML SDHCARE Template Structure

As summarized in Figure 21, each UI has a set of specific HTML templates

that are combined with base.html before being presented to the user.

After creating the HTML templates, the next step was building the functions
in forms.py (for the input fields to be presented with each template) and associating
each form’s function with its corresponding HTML template through functions in
views.py. Figures 22, 23, and 24 provide summaries of forms.py, views.py, and the

corresponding UI.

getProviderinfo

adminui

submitProviderinfo

adminui_get <>

forms.py

adminui_submit

views.py

sotejdwa] |N UlWpY

Figure 22: Admin UI with Forms and Views

72

forms.py
getRecords
submitRecords
tables.py
ehrTable
models.py
department

Y

doctorui

doctorui_get

doctorui_submit

views.py

Figure 23: Doctor UI with Forms and View

sarejdwa] |n Jo1oQg

receptoinui_book

department

new_patient

appointments

receptionui_get

appointment_confirm

receptionui

views.py

models.py

appointmentTable

tables.py

submitAppointment

getAppointment

newPatient

forms.py

so1e|dwa] [N uondaday

Figure 24: Reception UI with Forms and Views

€L

74
Below is a sample of code in views.py, which links adminui-get.html with the
getProviderInfo function from forms.py. The page should display one field to the user

to enter ‘Hospital Ethereum Address’ as shown in Figure 25.

views.py
skeskokokskokskokskokskokskokskokokkokokokkakskokskokskokskokskokskakskokokkskokokskskokokskokskokskokskokskokokokok

adminui_get(request):

request.method ==

form.is_valid():
account_address = form.cleaned_data.get(
provider = dnsSC_get(account_address)
context = {

b

: provider

e (YW VIS ' SDHCARE /adminui—get.html' PdiRdrew);

form = getProviderInfo()

forms.py
skeokokokskokskokskokskokskokskokokskokokokskakkokskokskokskokskokskakskokokkskokokskskokokskokskokskokskokskokokokok

OHP_Eth = forms.CharField(
=100)

DHCARE Home About

Hospital Information

Hospital Ethereum Address*

|

This field is required.

Figure 25: Healthcare Provider’s getProviderInfo Page

75

Access to each set of Uls is controlled using role-based access control (RBAC)
implemented by Python decorators. The decorator obtains the session username,
verifies its group membership (which was configured during Django initialization),
and allows access only if the user is a member of the required group. Below is a sample
code of using decorators to limit doctors’ access to Doctors Ul only. These decorators

are implemented in views.py.

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
adminui(request):

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
adminui_get(request):

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
adminui_submit(request):

Another access control mechanism is applied to grant permissions to access
patients’ EHRs, using decorators and smart contracts. Clinics are granted permissions
to access patients’ EHRs only if the session user is a member of the SDHCARE-
Reception group and the patient submits a valid fingerprint. A third form of access

control is applied for doctors’ access to EHRs and is covered in Section 3.3.4.

The last step in Django coding was linking models to Uls through views. In
Figures 22, 23, and 24 the set of functions in models.py are mapped to their respective
Uls to have information read from the database and displayed to clients, such as a
patient’s appointments or a provider’s OHP address, or to write information such as
booking a new appointment into the database. Some database information, such as
appointments, is formatted in tables, hence the information from models.py is passed
to views.py through tables.py. Below is a sample code for formatting appointment

data.

76

tables.py
skeskokokskokskokskokskokskokskokokkskokokkakkokskokskokskokskokskakskokokkskokokskskokokskokskokskokskokskkkokok

department_code = tables.Column(

id = tables.CheckBoxColumn(

Meta:
model = appointment
template_name =

models.py
skeskokokskokskokskokskokskokskokokkskokokskokskokskokskokskokskokskakskokokkskokokskokokokskokskokskokskokskokokokok

name = models.CharField(=100)

nid = models.IntegerField()

date = models.DateField(=timezone.now)

time = models.TimeField(=timezone.now)

department_code = models.ForeignKey (
=models.CASCADE)

(N

views.py
skeskokokskokskokskokskokskokskokokkokokokskokkokskokskokskokskokskokskokokkskokokskokkokskokskokskokskokskokokokok

receptionui_get(request):

request.method ==

form = getAppointments(request.P0OST)

form.is_valid():
nid = form.cleaned_data.get(

render(request
: table})

form = getAppointments()

render(request

The following set of tables (Tables 6, 7, and 8) summarize the functions
configured in Views, Forms, and Tables. These functions describe how SDHCARE
design requirements are implemented in Django. The functions in Models were

described in the previous section that outlines Django SQLite3 DB initialization.

71

Table 6: Summary of Views Functions

Name Description
home To render home page template to users
about To render about page template to users
e Verifies that the session user is a member of the
SDHCARE-Admins group
adminui e Renders the base and adminui templates for admins

to select ‘Enter Hospital Information’ or ‘Get
Hospital Information’

adminui_get

Verifies that a session user is a member of the
SDHCARE-Admins group

Reads admin OHP input and obtains the hospital
information stored in Ethereum providersTable for
that OHP; this information is returned to the admin

adminui_submit

Verifies that the session user is a member of the
SDHCARE-Admins group

Reads admin input (hospital name and web
address) and stores the information in Ethereum
providersTable using OHP as the indexing key;
OHP is obtained from the address of the transaction
sender

receptionui

Verifies that the session user is a member of the
SDHCARE-Reception group

Renders the base and receptionui templates for
reception to select ‘New Patient’, ‘Get Patient
Appointments’, or ‘Book New Appointment’

receptionui_get

Verifies that the session user is a member of the
SDHCARE-Reception group

Accepts a patient’s fingerprints and uses it as an
index key to obtain all active appointments
associated with that patient

appointment_confirm

Performs two-factor validation by verifying a patient’s
fingerprint and reception group membership; if both are
valid, the clinic is granted access to the patient’s EHRs;
this access is stored in the Ethereum patientsTable and
covers all doctors in that clinic

78

Table 6: Summary of Views Functions (Continued)

Name

Description

receptionui_book

Verifies that the session user is a member of the
SDHCARE-Reception group

Books new appointments for patients and stores
them in the appointments database, which is
indexed using the patient’s NID

Verifies that the session user is a member of the

new_patient SDHCARE-Reception group
e Creates a new patient record in the Ethereum
patientsTable
e Verifies that the session user is a member of the
doctorui SDHCARE-Doctor group

Renders the base and doctorui templates for the
doctor to select ‘Get Patient EHRS’ or ‘Submit
Patient EHRs’

doctorui_get

Verifies that the session user is a member of the
SDHCARE-Doctor group

Verifies that the doctor’s clinic is granted access to
the patient’s EHRs (using accessControlSC, which
is covered in Section 3.3.4)

Displays a list of EHRs and hashes to the doctor,
which are indexed using patients’ fingerprints
(from the Ethereum ehrHashTable); these records
are formatted in a table before being passed to
doctors

Once the doctor selects an EHR, this verifies that
the cloud EHR's hash is the same as the hash in
ehrHashTable

Retrieves the EHR from Cloudstore

doctorui_submit

Verifies that the session user is a member of the
SDHCARE-Doctor group

Verifies that the doctor’s clinic is granted access to
a patient’s EHRs using the patient’s fingerprint
(using accessControlSC, which is covered in
Section 3.3.4)

Creates an EHR based on information submitted by
a doctor; the EHR is stored in the Ethereum
ehrHashTable. A Merkle root hash is calculated for
the EHR and uploaded with the record

79

Table 7: Summary of Forms Functions

Name Description
getProviderInfo Presents one input field to the provider’s
admin: the provider’s Ethereum address
(OHP)
submitProviderInfo Presents two input fields to the

provider’s admin: provider name and
provider web address

bookAppointment Presents to the receptionist the following
fields: name, fingerprint, date, time,
dropdown for the clinics

getAppointments Present to the receptionist a single field:
the patient’s fingerprint
newPatient Presents to the receptionist the following
fields: name, date of birth, and
fingerprint
submitRecords Presents to the doctor the following

fields: patient name, patient fingerprint,
record name, record date, and record
description
getRecords Presents to the doctor one field:
fingerprint

Table 8: Summary of Tables Functions

Name Description

appointmentTable Formats the appointments retrieved from
the local database in a table before
posting them to the receptionist
ehrTable Format the EHR list retrieved from the
Ethereum ehrHashTable in a table before
posting them to the doctor

Figures 26 to 32 are examples of the Uls displayed to different users. These
pages represent the combined version of base.html and functional templates with some

images rendered from static fills.

80

DHCARE Home About

DHCARE

BIOMETRIC DISTRIBUTED HEALTHCARE SYSTEM ON BLOCKCHAIN

Figure 26: SDHCARE Home Page

DHCARE Home About

About Page

DHCARE is Blockchain-Based Healthcare System that utilizes fingprints to identify patients
and synchronize their Electoric Healthcare Records (EHRs) between distributed healthcare

providers.

The main features provided by DHCARE are:

 Exchange and synchronization of EHRs between distributed healthcare providers
 Maintaining EHRs unique patients' identity

e Ensuring recoverable access to patients’ EHRs

« Implementing role-based access control to EHRs

e Providing anonymity to patients’ EHRs in the cloud datastores

e Detecting unauthorized modifications to EHRs

* Audit logging any activities on EHRs

Figure 27: SDHCARE About Page

81

DHCARE Home About

Log In

Username*

admin

Password*

Figure 28: SDHCARE Login Page

DHCARE Home About

Admin Portal

Get Hospital Information Submit Hospital Information

Figure 29: SDHCARE Admin UI Page

82

DHCARE Home About

Hospital Information

Hospital Name*

| |

This field is required.

Hospital Web Address*

| |

This field is required.

Submit Info

Figure 30: SDHCARE Admin UI Submit Page

DHCARE Home About

Add New Patient H Get Patient Appointments H Book New Appointment

Figure 31: SDHCARE-Reception Ul Page

83

DHCARE Home About

Doctor Portal

Get Patient Records H Submit Patient Records

Figure 32: SDHCARE Doctor Ul Page

3.3.4 Building Ethereum Smart Contracts

The prototype for DHCARE has three smart contracts, known as dnsSC,
patientsSC, and accessControlSC, which provide the functions described in Section
2.1.3. The main reason for creating three smart contracts instead of a combined one is
to provide flexibility in extending the functionality of the SDHCARE prototype

through inheriting and importing smart contract functions.

The dnsSC has two functions:

e createProvider: This function takes two string inputs for the healthcare
provider’s name and web address. These values are stored in the
providersTable immutable table, which is indexed by the provider’s
Ethereum address (OHP). In the case of an existing provider, the

function returns an exception error.

84
getProvider: This function takes an address input (OHP) and returns
two string variables that represent the provider name and web address,

which are stored in providersTable.

Similar to dnsSC, accessControlSC has two functions:

addClinic: This function takes two string inputs representing the
patient’s fingerprint hash and the clinic ID. The clinic ID is polled from
the SQLite3 department database. Both strings are stored in an array
indexed by the patient’s fingerprint hash that represents all the clinics
that can access the patient’s EHRs. This array is part of patientsTable.
grantClinicAccess: This function takes two string inputs, namely the
patient’s fingerprint hash and the clinic ID. It performs a lookup in the
patientsTable, using the patient’s fingerprint hash array to determine
whether the clinicID is listed. If the clinicID is listed in the array, it
returns ‘True’, which allows the doctor to access the patient’s EHR.

Otherwise, it returns ‘False’, which denies doctor’s access.
b

The patientsSC includes the following four functions:

createPatient: This function accepts string inputs for the patient’s
fingerprint hash, provider Ethereum address, and reception ID. It stores
this information in patientsTable indexed by fingerprint hash.

getPatient: This function accepts a string input of the patient’s
fingerprint hash and returns the patient’s stored values in patientsTable

(i.e., provider’s address and reception ID).

85

e createEHR: This function accepts the patient’s fingerprint hash, EHR
name, date, status, and Merkle root hash. It stores the values in
ehrHashTable indexed by fingerprint hash.

o getEHR: This function accepts a fingerprint hash input string and
returns the patient EHR list. For each EHR, the returned values are
name, date, Merkle root hash, and EHR status.

The smart contracts were deployed in Ethereum using MetaMask soft wallet,
and each contract is allocated a unique address for communication. Figure 33 is a
summary of transactions between a healthcare provider and Ethereum, including smart
contract deployments (The account of the test provider was used to deploy smart
contracts for demo purposes. In a real-life implementation, such contracts should be

deployed once by the owner of the project).

Transactions
For 0x4dF59bA9e77816A8D73F40E617b0421Be333dA79

Sponsored: Fortmatic - Build Ethereum web3 dApps without browser extensions or mobile wallets. Get Started @

Figure 33: Summary of Ethereum Transactions

A total of 112 transactions found First < Page 2 of 3 > Last
Txn Hash Block Age From To Value [Txn Fee]
0xe5953aa5a28068... 7243628 17 days 6 hrs ago 0x4df59ba9e77816... out Contract Creation 0 Ether 0.00067965
O 0x6744b868c2965a... 7243576 17 days 6 hrs ago 0x4df59ba9e77816... out Contract Creation 50 wei 0.00016355
0xa5189525a315a3... 7243506 17 days 6 hrs ago 0x4df59ba9e77816... out [@ 0x4daeb7f9aa72c25... 0 Ether 0.00002735
0x808ff01919576¢6... 7243503 17 days 6 hrs ago 0x4df59ba9e77816... out [3 Ox4daeb7f9aa72c25... 0 Ether 0.00006512
0xd289b15b8dcb3c... 7243500 17 days 6 hrs ago 0x4df59ba%e77816... out Contract Creation 0 Ether 0.00038036
0xa905037c2fccd9d... 7243493 17 days 6 hrs ago 0x4df59ba9e77816... out [0x6bffe5d79d80708... 0 Ether 0.00002735
0x4500639c177ca0... 7243491 17 days 6 hrs ago 0x4df59ba9e77816... out [3 0x6bffe5d79d80708... 0 Ether 0.00006512
0xf15d63ada42e76... 7243489 17 days 6 hrs ago 0x4df59ba9e77816... out Contract Creation 0 Ether 0.00038037

98

87

3.3.5 Integrating Django with Ethereum

The integration between the Django web application and Ethereum was
implemented using Web3 customized Python modules on the Django side and the
Infura mining pool on the Ethereum side. Figure 34 is a summary of the integration

between Django and Ethereum.

dnsSC_get

dnsSC_post

accessControlSC_check

SMBIA
|ood Sululln eanju|
A
\
uleyd’oo|g wnaJayiy

|
|
|
|
| dnsSC.py
|
|
|
|

accessControlSC_add

accessControlSC.py

patientsSC_post

patientsSC_ehr_get

patientsSC.py

|
|
|
|
| patientsSC_ehr_post
|
|
|
|

Figure 34: Integrating Django with Ethereum

To communicate with Ethereum Blockchain, the healthcare provider should

contribute with a dedicated mining node running Ethereum mining software (e.g., Get

88
Ethereum, or GETH). A dedicated node is used to ensure patients’ privacy. For the
prototype, Infura mining pool was used, which offers mining nodes as a service to
interact with Ethereum. The free version of Infura offers 100,000 Ethereum
transactions within 24 hours. An Infura account was created, which provides a unique
URL to communicate with Infura nodes for posting and reading blocks to and from

Ethereum. Figure 35 shows the details of the Infura test account.

EDIT PROJECT

NAME

Thesis

SAVE CHANGES

KEYS

PROJECT ID PROJECT SECRET
db1690d7911842a6a0ec7690d08a0ca3 [’ 515fd25627ee4ab6be5d1fe05ac8f46d [

ENDPOINT ROPSTEN v

ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3 [’

Figure 35: Infura Account Details

UPGRADE

68

90

For Django Views to interact with Ethereum, custom Python modules were

built utilizing Web3 APIs. Each Python module has functions to interact with the
respective smart contract functions. Figure 36 summarizes the operation of the Python

modules.

Initialize

SmartContract
Address and ABI
Interface

Initialize
Provider’s
thereum Accoun

Initialize Infura
account details

Input Received
from Portal

Receive
transaction
confirmation
(SmartContract
response and

Wait for
transaction
confirmation from
Ethereum

Sign transaction
and post it to
Infura Node

Create Ethereum
Transaction

Post returned
value with
block hash to
portal

Figure 36: Custom Python Module Operation

91

Chapter 4: Testing and Performance Evaluation

This chapter describes the testing and evaluation of SDHCARE prototype
implementation from functional, security, and performance perspectives. Functional
testing ensured that the prototype is operating as expected by design. Security testing
validated the security measures implemented in the prototype to protect it against
unauthorized access and modifications of EHRs. Performance evaluation measured the

elapsed time required to gain read or write access to EHRs.

4.1 Functional Testing

The functional testing evaluated the SDHCARE prototype against the design

requirements discussed in previous chapters. Below is a list of evaluation metrics:

e The system should provide a mechanism to exchange and synchronize
EHRs between distributed providers using Blockchain and the cloud
store.

e The system should provide patients with a secure mechanism to recover
access to their EHRs.

e The system should ensure unique mapping between patients’ identities
and their respective EHRs.

The exchange and synchronization of EHRs between distributed providers was
achieved using Ethereum public Blockchain and MS Azure Files. This was validated
by accessing the EHRs of the same patient from two SDHCARE providers using the
patient’s fingerprint (after granting access to each provider). Figure 37 shows access

results from the two SDHCARE providers.

92

DHCARE Home About

sample 4 2020-02-11 91e75d470250df92981d824396¢af9802fd7ed0¢
sample 5 2020-02-11
sample 6 2020-02-11
sample 7 2020-02-11
DHCARE Home About
sample 4 2020-02-11 91e75d 4 grs & malbagari — -bas}
Mohammeds-MacBook-Pro:~ malbaqar%$
sample 5 2020-02-11 888253 IS HINE ORI e
Mohammeds-MacBook-Pro:~ malbagari$ Jj
sample 6 2020-02-1 7c5dlee
sample 7 2020-02-1 0Oaad6b

Figure 37: Synchronization of Patient’s EHR

To validate the access recovery mechanism for patients’ EHRs, fingerprints
hashes were used as index keys to retrieve the EHR List from ehrHashTable. Figure

38 shows the requirement to provide a fingerprint in the Doctor UI to retrieve EHRs.

DHCARE Home About Logout Doctor

Patient Records

Patient Fingerprint*

|

This field is required.

Get Records

Figure 38: Verifying EHR Recovery Using Patient ID

93
The unique mapping between patients’ fingerprints and their EHRs was
validated by comparing the Merkle root hash values in ehrHashTable of the patient

against the files’ names stored in MS Azure Files. Figure 39 shows a sample

verification.
bcf19ec5e3734cc489ae4b58b7f82a6ca5c7chc11745609928493b17bale4e84) e i
e1ca3bb0f4d9ac086561dcafdb6238ca23074fbb53347 1bffa7211ed351d5dc6 0 portal.azure.co

349fb4211cb9869a9d 1d5f6feSbeal8e3bc488c1c44d59ef5e144c243b70aa5f

28e6280dba555b57339ad3ade11ea3eb071eafd7ed4b861abf8bc225be868a50 | Home > All resources > dhcarestorage - File shares > dhcare

= dhcare X
92dd5¢896¢52a8a2bc879082077a766a4681e82578933ca23adeela12bfdccd2 File share

& Connect ’T* Upload Add directory O Refresh =+
bb3700a1989ce88b5a120abb4985dc67649b3d6ba85186216954159a1b7b1783

Location: dhcare

d8b76f32a4585726f2b802d5653a86736105¢ca5d0fc3bd969b004524b8019275

P ad3721991767f9c3989f5a8bee1747b46315562dd3de221e83b399c12d41 C‘Oa‘

b426508baf4b43a616f0b4b05c1a663d9a284847b203d49764cf878de143e35 | Name Type

ad3721991767f9c3989f5a8bee1747b46315562dd3de221e83b399¢12d... File

ad3721991767f9c3989f5a8bee1747b46315562dd3de221e83b399c12d41cf0a

TAAA _LANALFAAATAANAAAAAA L _TAALLF _FAA4 AT LN A _ATAFAFT Ao __LrAL

Figure 39: Verifying Hash as Names in Azure Files

4.2 Security Testing

The security testing of SDHCARE prototype covered the following aspects,

which were discussed in previous chapters:

e The system should provide an access control mechanism to ensure
authorized access to EHRs.

e The system should log all read/write activities on EHRs.

e The system should provide anonymity of EHRs in the cloud store.

e The system should validate the integrity of EHRs for read requests.

94

The access control system in SDHCARE was implemented at multiple levels.

The first level of authorization was implemented in Django directory services to
validate the group membership of the user. This ensured that only authorized users can
access their role-specific Uls. Figure 40 shows a blocked attempt from a doctor

attempting to access Reception UL

DHCARE Home About

Unauthorized Access! You need to login successfully

Log In

Username*

pA-doctor-dental

Password*

Figure 40: Failed Login to Reception Portal using a Doctor Account

The next level of authorization was implemented using patients’ fingerprints
to grant doctors read or write access to EHRs. Unless a valid fingerprint is submitted
by the patient, clinic doctors cannot access EHRs. Figures 41, 42, and 43 show a failed

attempt to access a patient’s EHR.

95

DHCARE Home About

Doctor Portal

Patient Name*

‘ Mohammed Al Al Bagari ’

This field is required.

Fingerprint*

‘ 12b2bbb1g7abjgu1v1233njnib ’

This field is required.

Record Name*

‘ Sample Record ’

This field is required.

Date*

‘ 11/11/2020 ’

This field is required.

Records*

Sample Record |

Figure 41: Fingerprint Validation before Writing an EHR

DHCARE Home About

Doctor Portal

You are unauthorized to access or modify records for this patient

Figure 42: Failed Attempt to Write a New EHR

96

DHCARE Home About

Patient Records

You are unauthorized to access or modify records for this patient

Get Records

Figure 43: Failed Attempt to Read a Patient’s HER

All EHR read/write activities are logged in Ethereum Blockchain for audit
trace purposes. The log messages include a unique hash identifier, the Ethereum
address of the healthcare provider, a timestamp, and activity details. Figure 44 shows

an example from EtherScan.

97

@ Etherscan Al Filt

Ropsten Testnet Network

Transaction Details
Sponsored: Fortmatic - Build Ethereum web3 dApps without browser extensions or mobile wallets. Get Star
Overview State Changes

[This is a Ropsten Testnet transaction only]

(@ Transaction Hash: 0x37366903ccfad92f9c6f0cd6856f357c4ca542af1322e0b6e49d:
() Status: @ Success

@ Block: 7400676 172 Block Confirmations

() Timestamp: ® 12 mins ago (Feb-25-2020 03:13:39 PM +UTC)

@) From: 0x4df59ba9e77816a8d73f40e617b0421be333da79 ([

@ To: Contract 0xd1b73bd5256a30af32664d135618a41975f80823 @
@ Value: 0 Ether ($0.00)

(@ Transaction Fee: 0.000156438 Ether ($0.000000)

@ Gas Limit: 156,438

(?) Gas Used by Transaction: 156,438 (100%)

Figure 44: Sample Audit Logs for New EHR

The data stored in Azure Files were anonymized using Merkle hash values as
EHR names and suppressing patients’ PII. This ensured that patients’ identities are not
traceable from the EHR raw data. Figure 45 shows an example of anonymized data

stored in MS Azure Files from the SDHCARE prototype.

:h resources, services, and docs (G+/)

,ool Connect

Location: dhcare

- File shares > dhcare

mohammed.albagari@o...
DEFAULT DIRECTORY

0 & ® 3 2 ©

'T‘ Upload + Add directory O Refresh @] Delete share / Edit quota

Nz

I}D Search files by prefix

/

Name

/

| 28e6280dba555b57339ad3ade11ea3eb071eafd7ed4b861abi8bc225bet

| 349fb4211cb9869a9d1d5f6feSbead8e3bca88c1c44d59efSe
| 7918aeaf130b51907909100991ebe711fb5a59147ccf24ce97953574aace
| 92dd5c896¢52a8a2bc879082077a766a4681e82578933ca23adeefa2bf.
| ab00b75d014a2dc7c86f55e177ac895a2c44469e4345ddd9d73a71f0838

| ad3721991767f9¢3989f5a8bee1747b46315562dd3de221e83b399¢12

| b426508baf4ba3a616f0b4b05c1a663d9a284847fh203d49764cf878de 14335

| bb3700a1989ce88b5a120abb4985dc67649b3d6bad5186216954159a1b7b1783

3.4 System Testing

This section will cover the evaluation of DHCARE prototype implementation from functional,
security and performance perspectives. The functional evaluation will ensure that the
prototype is operating as expected by the design. The security evaluation is going to validate
the security measures implemented in the prototype to protect it against unauthorized access.
The performance evaluation will measure the elapsed time required to gain read or write access
to EHRs.

3.4.1 Functional Testing

The functional testing will evaluate DHCARE prototype against the requirements and the design
discussed in previous chapters. Below is a list of evaluation metrics:

a€¢ The system should provide a mechanism to exchange and synchronize EHRs between
distributed providers using Blockchain

a€¢ The system should provide patients with access recovery mechanism to their EHRs

ag¢ The system should ensure unique mapping between patientsa€™ identities and their
respective EHRs

3.4.2 Security Testing
The security testing of DHCARE prototype is going to cover the following aspects, that were

8.16 KiB

File

File 8.15 KiB

Figure 45: Sample of Anonymized Data Store in Azure Files

86

99

4.3 Performance Evaluation

Among all the modules in the DHCARE design, blockchain is considered the
slowest component, compared to the processing speed of the other modules. This
slowness is caused by the PoW consensus algorithm used in Ethereum. Hence it was
the focus for performance evaluation. The time delay introduced by the blockchain
layer was evaluated by validating access requests and the granting of access to EHRs.
These two components are controlled by accessControlSC smart contract and
patientsSC smart contract. To isolate the impact of copying speed of EHRSs to the cloud
and obtain accurate performance measures for the blockchain, the EHR test samples
used small text files (< 20 KB). For the write test, a test patient was created and sample
EHRs written into the patient's respective ehrHashTable. For the read test, each EHR
sample stored in the ehrHashTable was read. In total, 15 samples were collected for

read and write without/with accessControlSC smart contract.

The time delay between requests and responses was measured using Google

Chrome Developer Tools. Figure 46 shows a sample time delay measurement.

100

Elements Console Sources Network Performance Memory Application ~ Security Audits
Preserve log Disable cache ~ Online 1

Hide data URLs [All XHR JS CSS Img Media Font Doc WS Manifest Other

50000 ms 100000 ms 150000 ms 200000 ms 250000 ms

Name Type Initiator Size Time Waterfall

[doctorui-get/ docu... 205KB 9.17s i

[} bootstrap.min.css styles...
Queued at 0

Started at 6.39 ms

| main.css styles...
I iquery-3.2.1.slim.min.js script
I poppermin.js script
[} bootstrap.min.js script Queueing
I iquery-3.2.1.slim.min.js script

B poppermin.js script index Seiluzale
I bootstrap.min.js script (index Stalled

[data:image/svg+xmi;... svg+xml

Request sent
Waiting (TTFB)

Content Download

Explanation

Figure 46: Performance Measurement using Google Chrome

All the evaluation test cases were executed using the same internet line to
connect to Ethereum Blockchain and Azure Files. Figures 47 and 48 summarize the

performance results.

101

—_ —_
(e} —_

]

Read Time in Seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Number

e With Access Control e Without Access Control

Figure 47: Read Performance Testing

0
(=]

-
o

(o)
o

50

40

Write Time in Seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Number

e With Access Control e Without Access Control

Figure 48: Write Performance Testing

Read performance was superior to the write performance. The average read
time was 8.81 seconds while the average write time was 16 seconds, i.e. approximately

twice the read time. This observation held with and without access control. In terms of

102
today’s Internet speeds, the read and write times are considered low performance.
However, in the real-life circumstances of most healthcare environments such time
delays are acceptable. The main reason for these delays is the consensus algorithm
used by Ethereum blockchain to validate and accept blocks. Another important factor

is the load of the mining pool and its incentive to mine the block.

From the results, it can be concluded that no significant overhead delay is
added by implementing access control in Blockchain using accessControlSC smart
contract. This is because a single block includes thousands of transactions, and
transactions from both accessContractSC and paitentsSC are usually mined in a single
block (the decision to group the transactions in blocks is subject to the miner). Hence,
there is no difference between sending two transactions or one transaction as they are
mined in the same block. In one EHR sample (sample 6 in the write test with access
control), the transactions were mined in two separate blocks. Hence, the time delay for

writing the EHR metadata in ehrHashTable was 67.33 seconds.

Another important observation from Figure 49 is that the write time was
consistent and independent of the number of records in ehrHashTable, while the read
time was dependent on the number of records in ehrHashTable. In this test, five more
EHR samples were added to the test patient’s ehrHashTable (total increased to 20
samples). After re-running the read evaluation, the average read time increased from
8.81 seconds to 13.67 seconds. This is due to additional iterations executed in the code
needed to list all EHR metadata associated with the patient in ehrHashTable. Code

optimization would be required in a real-life implementation to improve the read time.

Read Time in Seconds

—
(o)}

—_
I

Ju—
N8}

—_
o

ee}

103

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Number

e Read Time with 15 Samples e Read Time with 20 Samples

Figure 49: Read Time Analysis with Larger ehrHashTable

104

Chapter 5: Conclusion

This research investigated access control recovery mechanisms for EHRs
synchronized and exchanged between distributed healthcare providers using
blockchain. The research project first reviewed the current state of research on
blockchain in healthcare to gain understanding about the active areas. This was

followed by narrowing the focus to research targeting blockchain in EHR systems.

An analysis was undertaken of current challenges in blockchain-based EHR
systems and the requirements to achieve successful access control recovery
mechanism for EHRs. Accordingly, the researcher proposed SDHCARE, a multilayer
system that splits the roles between healthcare providers, blockchain, and a cloud store.
This model system should be able to recover access to EHRs from any provider within
the blockchain network. Additionally, the model may accelerate the migration of
healthcare providers to blockchain-based systems through the availability of external

Ul integration with existing legacy healthcare environments.

A prototype was built to validate the proposed approach using Django, Python,
Ethereum, and MS Azure. The prototype was coded to simulate all functional
requirements and integrate the distributed layers of the design. This was followed by
system validation and testing for functional requirements, security requirements, and
performance. The results indicated successful operation of the proposed design from a
functional and security perspective. The performance of the prototype was slow due
to the functional operation of the Ethereum blockchain. However, this latency may be

tolerable in healthcare environments.

105

For future work, the researcher will evaluate SDHCARE design against hybrid
blockchain ledgers that use faster consensus algorithms. This will aim to enhance the
performance of SDHCARE for EHRs read/write while maintaining the extended
accessibility to the solution. Additionally, the prototype will be upgraded to use
advanced biometrics combining multiple fingerprints for more accuracy and privacy,
and the results should be evaluated against performance overhead. Another planned
enhancement in SDHCARE will be to introduce additional roles in access control
smart contract, including access delegation, access revocation, and record deletion.
Finally, the researcher will evaluate the use of mobile-based biometric scanning to

extend patients’ manageability of access rights to EHRs.

[1]

[2]

[3]

[4]

[5]

106

References

Office of the National Coordinator for Health Information Technology (ONC),
“What is an electronic health record (EHR)?” 2019. [Online]. Available:
https://www.healthit.gov/fag/what-electronic-health-record-ehr, Accessed on:

13 Nov. 2019.

Office of the National Coordinator for Health Information Technology (ONC)
“Federal Health IT Strategic Plan 2015-2020,” 2014. [Online]. Available:
http://www.healthit.gov/sites/default/files/federal-healthI T-strategic-plan-

2014.pdf, Accessed on: 13 Nov. 2019.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf, Accessed on: 21 Nov.

2019.

V. Buterin, “A Next-Generation Smart Contract and Decentralized Application

Platform,” 2013. [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper, Accessed on: 21 Nov.

2019.

T. McGhin, K. R. Choo, C. Z. Liu, and D. He, “Blockchain in healthcare
applications: Research challenges and opportunities,” Journal of Network and
Computer Applications, vol. 135, pp. 62-75, Jun. 2019.

doi: 10.1016/j.jnca.2019.02.027

[6]

[7]

[8]

[9]

[10]

[11]

107
National Institute of Standardization and Technology (NIST), Computer
Security Resource Center, “Glossary” 2019. [Online]. Available:

https://csrc.nist.gov/Glossary, Accessed on: 11 Nov. 2019.

A. P. Joshi, M. Han, and Y. Wang, “A survey on security and privacy issues of
blockchain technology,” Mathematical Foundations of Computing, vol. 1, no.

2, pp. 121147, May 2018. doi: 10.3934/mfc.2018007

I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and P.
Rimba, “On Availability for Blockchain-Based Systems,” 36th I[EEE
Symposium on Reliable Distributed Systems (SRDS 2017), Hong Kong, China,

2017, pp. 64-73. doi: 10.1109/SRDS.2017.15

D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology
Overview” (NISTIR 8202), 2018. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf, Accessed on: 27

Oct. 2019.

H. Halpin and M. Piekarska, “Introduction to Security and Privacy on the
Blockchain,” 2nd IEEE European Symposium on Security and Privacy
Workshops — (EuroS&PW), Paris, France, 2017, pp. 1-3. doi:
10.1109/EuroSPW.2017.43 [Online]. Available: https://hal.inria.fr/hal-

01673293/document, Accessed on: 17 Oct. 2019

N. Popper, “A Hacking of More Than $50 Million Dashes Hopes in the World
of Virtual Currency," New York Times, Jun. 2016. [Online].

https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-

[12]

[13]

[14]

[15]

[16]

108
removed-more-than-50-million-from-experimental-cybercurrency-

project.html, Accessed on: 27 Oct. 2019

P. Zhong, Q. Zhong, H. Mi, S. Zhang, and Y. Xiang, “Privacy-Protected
Blockchain System,” First International Workshop on Blockchain and Mobile
Applications (BlockApp'l9 Workshop), in conjunction with 20th IEEE
International Conference on Mobile Data Management (MDM 2019), Hong

Kong, China, 2019, pp. 457—461. doi: 2019. 10.1109/MDM.2019.000-2

M. Cash and M. Bassiouni, “Two-Tier Permission-ed and Permission-Less
Blockchain for Secure Data Sharing,” 3rd IEEE International Conference on
Smart Cloud (SmartCloud 2018), New York, USA, 2018. doi:

10.1109/SmartCloud.2018.00031

D. K. Tosh, S. Shetty, X. Liang, C. A. Kamhoua, K. A. Kwiat, and L. Njilla,
“Security Implications of Blockchain Cloud with Analysis of Block
Withholding Attack,” 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, Madrid, Spain, 2017, pp. 458-467. doi:

10.1109/CCGRID.2017.111 [abstract]

G. Magyar, “Blockchain: solving the privacy and research availability
tradeoff for EHR data: A new disruptive technology in health data
management,” [EEE 30th Jubilee Neumann Colloquium (NC), Budapest,

Hungary, 2017, pp. 135-140. doi: 10.1109/NC.2017.8263269

M. Pilkington, “Can Blockchain Improve Healthcare Management? Consumer
Medical Electronics and the IoMT,” 2017. [Online]. Available:

https://ssrn.com/abstract=3025393, Accessed on: 8 Dec. 2019.

[17]

[18]

[19]

[20]

[21]

[22]

109
P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz, “Metrics for
assessing blockchain-based healthcare decentralized apps,” IEEE 19th
International Conference on e-Health Networking, Applications & Services
(Healthcom 2017), Dalian, China, 2017.

doi: 10.1109/HealthCom.2017.8210842

G. G. Dagher, J. Mohler, M. Milojkovic, and P. B. Marella, “Ancile: Privacy-
preserving framework for access control and interoperability of electronic
health records using blockchain technology,” Sustainable Cities and Society,

vol. 39, pp. 283-297, May 2018. doi: 10.1016/j.s¢s.2018.02.014

A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using
Blockchain for Medical Data Access and Permission Management,” 2nd
International Conference on Open and Big Data (OBD 2016), Vienna,

Austria, 2016, pp. 25-30. doi: 10.1109/0BD.2016.11

Q. Xia, E. B. Sifah, A. Smahi, S. Amofa and X. Zhang, “BBDS: Blockchain-
Based Data Sharing for Electronic Medical Records in Cloud Environments,”

Information, vol. 8, no. 2, Apr. 2017, Art. no. 44. doi: 10.3390/info8020044

Y. Yang, X. Li, N. Qamar, P. Liu, W. Ke, B. Shen, and Z. Liu, “Medshare: A
Novel Hybrid Cloud for Medical Resource Sharing Among Autonomous
Healthcare Providers,” IEEE Access, vol. 6, pp. 46949-46961, Aug. 2018.

doi: 10.1109/ACCESS.2018.2865535

A. Roehrs, C. A. da Costa, and R. da Rosa Righi, “OmniPHR: A distributed

architecture model to integrate personal health records,” Journal of

[23]

[24]

110
Biomedical Informatics, vol. 71, pp. 70-81, Jul. 2017.

doi.org/10.1016/j.,jbi.2017.05.012

K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “MedBlock: Efficient and Secure
Medical Data Sharing Via Blockchain,” Journal of Medical Systems, vol. 42,

article 136, Jun. 2018. doi: 10.1007/s10916-018-0993-7

Microsoft Corp., Microsoft Azure, “What is Azure Files?” 2020. [Online].
Available: https://docs.microsoft.com/en-us/azure/storage/files/storage-files-

introduction, Accessed on: 31 Jan. 2020.

111

Appendix

This section will cover the low-level coding of DHCARE Django and

Ethereum components.

Appendix A — Ethereum Smart Contracts

Smart Contract dnsSC
pragma solidity 70.6.1;
{
{

string name;
string webAddress;

(address => provider) providersTable;

(string memory _name, string memory

_webAddress) {
address OHP = msg.sender;

providersTable[0OHP] = provider (_name, _webAddress);

(address _OHP) view (string memory
_name, string memory _webAddress) {
_name = providersTable[_OHP].name;
_webAddress = providersTable[_OHP].webAddress;

Smart Contract patientsSC

pragma solidity 70.6.1;
{

I
1

string OHP;
string receptionID;

{
string name;
string hash;
string status;
string date;

(uint => patient) patientsTable;
(uint => ehr[]) ehrHashTable;

(uint _fingerprint, string memory _OHP, string
memory _receptionID) {

112

patientsTable[_fingerprint] = patient (_OHP, _receptionID);

(uint _fingerprint) view (string
memory _OHP, string memory _receptionID) {
_OHP = patientsTable[_fingerprint].OHP;
_receptionID = patientsTable[_fingerprint].receptionID;

(uint _fingerprint, string memory _name, string
memory _hash, string memory _status, string memory _date)
ehrHashTable[_fingerprint].push (ehr(_name, _hash, _status,
_date));
b

(uint _fingerprint, uint _count) view
(string memory _name, string memory _hash, string memory _status, string
memory _date) {
_name = ehrHashTable[_fingerprint] [_count].name;
_hash = ehrHashTable[_fingerprint] [_count].hash;
_status = ehrHashTable[_fingerprint] [_count].status;
_date = ehrHashTable[_fingerprint] [_count].date;

Smart Contract accessControlSC
pragma solidity 70.6.1;
{
(string => string[]) PACL;

(string memory _fingerprint, string memory
_clinicID) {
PACL[_fingerprint].push (_clinicID);
b

(string memory _fingerprint, string memory
_clinicID) view (string memory) {

uint ij;
(i=0; i<=PACL[_fingerprint].length; i++){
(keccak256(abi.encodePacked((PACL[_fingerprint] [i])))
keccak256(abi.encodePacked((_clinicID)))){
"true';
ks

'false';

Appendix B — Ethereum Smart Contract ABIs

accessControlSC_abi.json

116

Appendix C — Django Main Application Code
urls.py

dhcare views dhcare_views
django.contrib admin
django.contrib.auth views auth_views
django.urls path, include

urlpatterns = [
path(admin.site.urls)
dhcare_views.adminui =
dhcare_views.receptionui]
dhcare_views.receptionui_get

dhcare_views.receptionui_book

dhcare_views.appointment_confirm
)
dhcare_views.doctorui_get =
dhcare_views.doctorui_submit

dhcare_views.doctorui =

dhcare_views.new_patient

dhcare_views.adminui_get
dhcare_views.adminui_submit

)

auth_views.LoginView.as_view(
=)
path(
auth_views.LogoutView.as_view(
=)
path(include(

settings.py

117

DEBUG =

ALLOWED_HOSTS = [

INSTALLED_APPS = [

]
STATIC_URL =
CRISPY_TEMPLATE_PACK =

LOGIN_REDIRECT_URL =
LOGIN_URL =

Appendix D — Django DHCARE Application Code

accessControlSC.py

json
web3 Web3
accessControlSC_add(fingerprint, clinic_id):
infura_url =
web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
accessControlSC_abi = json.load(json_file)

accessControlSC_address
accessControlSC = web3.eth.contract(=accessControlSC_address
=accessControlSC_abi)

key =

acct = web3.eth.account.privateKeyToAccount (key)
account_address = acct.address

tx = accessControlSC. functions.addClinic(fingerprint
clinic_id).buildTransaction(
{ : web3.eth.getTransactionCount(account_address)})
signed_tx = web3.eth.account.signTransaction(tx, key)
hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get(
hex()
(

(tx_receipt) +

accessControlSC_check(fingerprint, clinic_id):
infura_url =

web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
accessControlSC_abi = json.load(json_file)

accessControlSC_address
accessControlSC = web3.eth.contract(=accessControlSC_address

=accessControlSC_abi)

accessRequest =
accessControlSC. functions.grantClinicAccess(fingerprint, clinic_id).call()
(accessRequest)

(

patientsSC.py
json
web3 Web3

patientsSC_patient_post(fingerprint, ohp, reception_id):
infura_url =

web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
patientsSC_abi = json.load(json_file)

patientsSC_address

patientsSC = web3.eth.contract(=patientsSC_address
patientsSC_abi)

key =

acct = web3.eth.account.privateKeyToAccount (key)
account_address = acct.address

tx = patientsSC.functions.createPatient(fingerprint, ohp
reception_id).buildTransaction(
{ : web3.eth.getTransactionCount(account_address)})
signed_tx = web3.eth.account.signTransaction(tx, key)
hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get(
hex()
(

+ (tx_receipt))

(

patientsSC_ehr_post(fingerprint, name, hash, status, date):
infura_url =

web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
patientsSC_abi = json.load(json_file)

patientsSC_address

patientsSC = web3.eth.contract(=patientsSC_address
=patientsSC_abi)
key =

acct = web3.eth.account.privateKeyToAccount (key)
account_address = acct.address

tx = patientsSC.functions.createEhr(fingerprint, name, hash
date).buildTransaction(

{ : web3.eth.getTransactionCount(account_address)})
signed_tx = web3.eth.account.signTransaction(tx, key)
hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get(

(

(tx_receipt))

hex ()

(

patientsSC_ehr_get(fingerprint):
infura_url =

web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
patientsSC_abi = json.load(json_file)

patientsSC_address

patientsSC = web3.eth.contract(=patientsSC_address
=patientsSC_abi)

count =
getEhr = patientsSC.functions.getEhr(fingerprint, count).call()
output = [{ :count :getEhr[o]

:getEhr[1] :getEhr[2]

:getEhr[3]}]

count = count +
getEhr = patientsSC.functions.getEhr(fingerprint
count).call()
output.append({ :count :getEhr[o]
:getEhr[1] :getEhr[2]
:getEhr[3]})

(output)

120

dnsSC.py
json
web3 Web3
dnsSC_get(account_address):
infura_url =
web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
dnsSC_abi = json.load(json_file)

dnsSC_address

dnsSC = web3.eth.contract(=dnsSC_address =dnsSC_abi)

getProvider = dnsSC.functions.getProvider(account_address).call()
provider = { : getProvider[0]
getProvider[1]}
(provider)

(

dnsSC_post(name, webAddress):

infura_url =
web3 = Web3(Web3.HTTPProvider(infura_url))

() json_file:
dnsSC_abi = json.load(json_file)

dnsSC_address

dnsSC = web3.eth.contract(=dnsSC_address =dnsSC_abi)
key =

acct = web3.eth.account.privateKeyToAccount (key)
account_address = acct.address

tx = dnsSC.functions.createProvider(name
webAddress) .buildTransaction(
{ : web3.eth.getTransactionCount(account_address)})
signed_tx = web3.eth.account.signTransaction(tx, key)
hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get(
hex ()
(

+ (tx_receipt))

(

admin.py

django.contrib admin

django.contrib.auth.admin UserAdmin
django.contrib.auth.models User

121

.models provider, department, appointment, Profile

ProfileInline(admin.StackedInline):
model = Profile
can_delete =
verbose_name_plural =
fk_name =

CustomUserAdmin(UserAdmin) :
inlines = (ProfileInline,)

get_inline_instances(request, obj=
obj:
()

(CustomUserAdmin).get_inline_instances(request

.register(provider)
.register(department)
.register(appointment)
.unregister(User)

.register(User, CustomUserAdmin)

apps.py

django.apps AppConfig

DhcareConfig(AppConfig):
name =

azure_files.py

azure.storage.file FileService
azure.storage.file ContentSettings

file_service = FileService(=

create_ehr(name, value):
file_service.create_file_from_text(

122

= ContentSettings(

custom_decorators.py

functools wraps
urllib.parse urlparse

django.conf settings

django.contrib messages
django.contrib.auth REDIRECT_FIELD_NAME
django.shortcuts resolve_url

custom_user_passes_test(test_func, login_url=
redirect_field _name=REDIRECT_FIELD_NAME):

decorator(view_func):

@wraps (view_func)
_wrapped_view(request, *args, *xkkwargs):

test_func(request.user):
view_func(request, *args, sxkwargs)
path = request.build_absolute_uri()
resolved_login_url = resolve_url(login_url
settings.LOGIN_URL)

login_scheme, login_netloc = urlparse(resolved_login_url) [:2]
current_scheme, current_netloc = urlparse(path)[:2]
((login_scheme login_scheme == current_scheme)
(login_netloc login_netloc == current_netloc)):
path = request.get_full_path()
django.contrib.auth.views redirect_to_login
messages.warning(request

redirect_to_login(
path, resolved_login_url, redirect_field_name)

_wrapped_view

decorator

forms.py

django forms

.models appointment

DateInput(forms.DateInput):
input_type =

TimeInput(forms.TimeInput):
input_type =

getProviderInfo(forms.Form):
OHP_Eth = forms.CharField(=
=100)

submitProviderInfo(forms.Form):
name = forms.CharField(=
webAddress = forms.CharField(
=)

bookAppointment (forms.ModelForm) :

Meta:

model = appointment
fields [
labels = {

}
widgets = : DatelInput() : TimeInput()}

getAppointments(forms.Form):
nid = forms.IntegerField(=

newPatient(forms.Form):
name = forms.CharField(= =100)
dob = forms.DateField(= =DateInput)
fingerprint = forms.CharField(=

submitRecords(forms.Form):
patient_name = forms.CharField(=
patient_fingerprint = forms.CharField(
=100)
record_name = forms.CharField(
record_date = forms.DateField(
record_description = forms.CharField(
=forms.Textarea)

getRecords(forms.Form) :
patient_fingerprint = forms.CharField(

models.py

django.db models

django.utils timezone
django.contrib.auth.models User
django.db.models.signals post_save
django.dispatch receiver

department(models.Model):
code = models.IntegerField(
name = models.CharField(

provider(models.Model):
ohp = models.CharField(
secret = models.CharField(

():
.0hp

appointment (models.Model):
name = models.CharField(=100)
nid = models.IntegerField()
date models.DateField(=timezone.now)
time models.TimeField(=timezone.now)

department_code = models.ForeignKey (
=models.CASCADE)

(N

. Name

Profile(models.Model):
user = models.OneToOneField(User =models.CASCADE)

department_code = models.ForeignKey (
=models.CASCADE =

@receiver(post_save =User)
create_or_update_user_profile(instance, created
created:
Profile.objects.create(=instance)
instance.profile.save()

tables.py

django_tables2 tables

.models appointment

appointmentTable(tables.Table):
department_code = tables.Column(

id = tables.CheckBoxColumn(

Meta:
model = appointment
template_name =

ehrTable(tables.Table):
id = tables.CheckBoxColumn(
record_name = tables.Column(
=)
record date = tables.Column(

125

record_hash = tables.Column(
record_status = tables.Column(

Meta:
template_name =

urls.py
django.urls
views
urlpatterns =

path(views.home =
path(views.about

views.py

hashlib

django.contrib messages

django.contrib.auth.models Group

django.shortcuts render

django.contrib.auth.models User

.accessControlSC accessControlSC_add, accessControlSC_check

.custom_decorators custom_user_passes_test

.dnsSC dnsSC_get, dnsSC_post

. forms getProviderInfo, submitProviderInfo, getAppointments
getRecords

. forms submitRecords, bookAppointment, newPatient

.models appointment, provider, department

.patientsSC patientsSC_patient_post, patientsSC_ehr_post
patientsSC_ehr_get

.tables appointmentTable, ehrTable

django_tables2 RequestConfig

.azure_files create_ehr

home(request):
render(request

about (request):
render(request

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
adminui(request):
render(request

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
adminui_get(request):

request.method ==

form = getProviderInfo(request.POST)

form.is_valid():

account_address = form.cleaned_data.get(
provider = dnsSC_get(account_address)
context = {

b

: provider

render(request context)

form = getProviderInfo()
render(request
@custom_user_passes_test(u: Group.objects.get(
u.groups.all())

adminui_submit(request):

request.method ==

form = submitProviderInfo(request.POST)

form.is_valid():

providerTx = dnsSC_post(form.cleaned_data.get(
form.cleaned_data.get())

context = {

b

: providerTx

render(request context)

form = submitProviderInfo()

render(request

@custom_user_passes_test(u: Group.objects.get(
) u.groups.all())
receptionui(request):
render(request

@custom_user_passes_test(u: Group.objects.get(
) u.groups.all())
receptionui_get(request):

request.method ==

form = getAppointments(request.P0OST)

form.is_valid():

nid = form.cleaned_data.get()

table = appointmentTable(appointment.objects.filter(
render(request

form = getAppointments()

render(request

@custom_user_passes_test(u: Group.objects.get(
) u.groups.all())
new_patient(request):

request.method ==

form = newPatient(request.POST)

form.is_valid():
provider_db = provider.objects.all()
item provider_db:
ohp = (item.ohp)

reception_db = department.objects.filter(
item reception_db:
reception_id = (item.code)
name = form.cleaned_data.get()
dob = form.cleaned_data.get()
fingerprint = form.cleaned_data.get()
confirmation = patientsSC_patient_post((fingerprint), name

(dob), ohp, reception_id)

render(request
: confirmation})

form = newPatient()
render(request

@custom_user_passes_test(u: Group.objects.get(
) u.groups.all())
receptionui_book(request):

request.method ==

form = bookAppointment(request.P0OST)

form.is_valid():
form.save()
patient_name = form.cleaned_data.get(
messages.success (request
.format (patient_name))
render(request

form = bookAppointment ()

render(request

@custom_user_passes_test(u: Group.objects.get(
) u.groups.all())
appointment_confirm(request):
request.method == :
checkbox_id = request.POST.get()
checkbox_table = appointment.objects.filter(id=checkbox_id)

item checkbox_table:
fingerprint = (item.fingerprint)
department_code = (item.department_code)
accessControlSC_tx = accessControlSC_add(fingerprint
department_code)
appointment.objects.filter(id=checkbox_id).delete()
render(request
{ : accessControlSC_tx})

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
doctorui(request):
render(request

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
doctorui_get(request):

request.method ==

form = getRecords(request.P0OST)

form.is_valid():
fingerprint = form.cleaned_data.get(
user = User.objects.get(=request.user)
clinic_id = user.profile.department_code
accessRequest = accessControlSC_check((fingerprint)
(clinic_id))
accessRequest =
getEHR = patientsSC_ehr_get((fingerprint))
table = ehrTable(getEHR)
RequestConfig(request).configure(table)
render(request
:table})
render(request
: accessRequest})

form = getRecords()

render(request

@custom_user_passes_test(u: Group.objects.get(
u.groups.all())
doctorui_submit(request):

request.method ==

form = submitRecords(request.POST)

form.is_valid():
fingerprint = form.cleaned_data.get(
user = User.objects.get(=request.user)
clinic_id = user.profile.department_code
accessRequest = accessControlSC_check((fingerprint)
(clinic_id))
accessRequest =
name = form.cleaned_data.get(
description = form.cleaned_data.get/(

129

date = (form.cleaned_data.get(

status =

sha256_name =
(hashlib.sha256(name.encode()).hexdigest())

sha256_description =
(hashlib.sha256(description.encode()).hexdigest())

H1 = sha256_name + sha256_description

sha256_date =
(hashlib.sha256(date.encode()).hexdigest())

sha256_status =
(hashlib.sha256(str(status).encode()).hexdigest())

H2 sha256_date + sha256_status

H3 (hashlib.sha256(str(H1).encode()).hexdigest()) +
(hashlib.sha256(str(H2).encode()).hexdigest())

sha256 = (hashlib.sha256(H3.encode()).hexdigest())

createEHR = patientsSC_ehr_post((fingerprint), name
sha256, status, date)
create_ehr(sha256, description)

render(request
: createEHR})

render(request
: accessRequest})

%orm = submitRecords()

render(request

Appendix E — Django HTML Templates

about.html

% extends "dhcare/base.html" %}
{% block content %}
<h1>About Page</h1l>
<div class="w3-container">
<p style="font-family: 'Raleway',sans-serif; font-size: 18px; font-

weight: 500; line-height: 32px; margin: @ @ 24px; text-align: justify;
text—justify: inter-word; ">

DHCARE is Blockchain-Based Healthcare System that utilizes
fingprints to identify patients and synchronize their

Electoric Healthcare Records (EHRs) between distributed
healthcare providers.

The main features provided by DHCARE are:

<div style="font-family: 'Raleway',sans-serif; font-size: 18px;

font-weight: 500; line-height: 32px; margin: @ 0 24px; text-align: justify;

text—-justify: inter-word; ">

Exchange and synchronization of EHRs between
distributed healthcare providers
Maintaining EHRs unique patients' identity</1li>
Ensuring recoverable access to patients’ EHRs</1li>
Implementing role-based access control to EHRs
Providing anonymity to patients’ EHRs in the cloud
datastores</1i>
Detecting unauthorized modifications to EHRs</1li>
Audit logging any activities on EHRs</1li>

130

</div>
</p>

</div>
% endblock content %}

adminui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Admin Portal</legend>
</fieldset>
<img src="{% static 'dhcare/admin.jpg' %}" class="home—img"
alt="Logo" width="100%">

<div class="form—-group'">
<button class="btn btn-outline-info" formaction="{% url
'adminui_get' %}" type="submit'>Get Hospital
Information
</button>
<button class="btn btn-outline-info" formaction="{% url
'adminui_submit' %}" type="submit">Submit Hospital
Information
</button>
</div>
</form>
</div>
% endblock content %}

adminui-get.html

% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.0rg/1999/html">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb—-4">Hospital
Information</legend>
{{ form|crispy }}
% if provider.provider_name %}
<div class="text-dark">
 Hospital Name: {{provider.provider_name}}

 Hospital Web Address:
{{provider.provider_webAddress}}

</div>
% else %}
<div class="text-danger">
{{provider}}
</div>
% endif %}
</fieldset>
<button class="btn btn-outline-info" type="submit">Get
Info</button>
</form>

131

</div>
% endblock content %}

adminui-submit.html

% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.0rg/1999/html">
<form method="POST">
% csrf_token %}
<fieldset class="form—-group">
<legend class="border—bottom mb-4">Hospital
Information</legend>
{{ form|crispy }}
% if providerTx %}
<div class="text-dark">
 {{providerTx}}

</div>
% else %}
<div class="text-danger">
{{providerTx}}
</div>
% endif %}
</fieldset>
<button class="btn btn-outline-info" type="submit">Submit
Info</button>
</form>
</div>
% endblock content %}

appointments.html

{% extends "dhcare/base.html"™ %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
<form method="POST">
% csrf_token %}
<fieldset class="form—-group">
<legend class="border—bottom mb—-4">Appointment
Confirmed</legend>
{{accessControlSC_tx}}
</fieldset>
</form>
</div>
% endblock content %}

base.html

{% load static %}
<!DOCTYPE html>
<html>

<head>

<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1, shrink-to-fit=no"
name="viewport'>

<link crossorigin="anonymous"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css

<link crossorigin="anonymous"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css

integrity="sha384-
Gn5384xqQ1laoWXA+058RXPxPg6fy4IWvTNhOE263XmFcJ 1SAwiGgFAW/dAiS6IXm"
rel="stylesheet'">

<link href="{% static 'dhcare/main.css' %}" rel="stylesheet"
type="text/css">

{% if title %}
<title>DHCARE - {{ title }}</title>
{% else %}
<title>DHCARE</title>
{% endif %}
</head>
<body>
<header class="site-header">
<nav class="navbar navbar-expand-md navbar-dark bg-steel fixed-top">
<div class="container">
<a class="navbar-brand mr-4" href="{% url 'dhcare-home'
%}'"">DHCARE
<button aria-controls="navbarToggle" aria-expanded="false"
aria-label="Toggle navigation"
class="navbar-toggler" data-target="#navbarToggle"
data-toggle="collapse" type="button">

</button>
<div class="collapse navbar—-collapse" id='"navbarToggle">
<div class="navbar-nav mr-auto'>
<a class="nav-item nav-link" href="{% url 'dhcare-home'
%}'">Home
<a class="nav-item nav-1link" href="{% url 'dhcare-
about' %}">About
</div>

<div class="navbar—nav'>

{% if user.is_authenticated %}

<a class="nav-item nav-1link" href="{% url 'logout'
%}">Logout

{% if 'DHCARE-Admins' in user.groups.all.@.name %}

<a class="nav-item nav-1link" href="{% url 'adminui'
%}H'>Admin

{% endif %}

{% if 'DHCARE-Doctors' in user.groups.all.@.name %}

<a class="nav-item nav-1link" href="{% url 'doctorui'
%}">Doctor

{% endif %}

{% if 'DHCARE-Reception' in user.groups.all.@.name %}

<a class="nav-item nav-1link" href="{% url 'receptionui'
%}">Appointments

{% endif %}

{% else %}

<a class="nav-item nav-link" href="{% url 'login'
%}'">Login

{% endif %}

</div>
</div>
</div>
</nav>

133

</header>
<main class="container" role="main">
<div class="row">
<div class="col-md-8">
% if messages %}
% for message in messages %}
<div class="alert alert—{{ message.tags }}">
{{ message }}
</div>
% endfor %}
% endif %}
{% block content %}{% endblock %}
</div>
</div>
</main>

<script crossorigin="anonymous" integrity="sha384-
KJ302DKtIkvYIK3UENzmM7KCKRr/rE9/Qpg6aAZGIwFDMVNA/GpGFF93hXpG5KKN"
src="https://code.jquery.com/jquery-3.2.1.slim.min.js"></script>
<script crossorigin="anonymous" integrity="sha384-
ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfadb4Q"

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min
.js'"></script>

<script crossorigin="anonymous" integrity="sha384-
JZR6Spejh4U02d8j0t6vLEHTfe/JQGiRRSQQXSFFWpilMquVdAyjUar5+76PVCmY 1"

src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"><
/script>

</body>

</html>

doctorui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Doctor Portal</legend>
</fieldset>
<img src="{% static 'dhcare/doctor.jpg' %}" class="home-img"
alt="Logo" width="100%">

<div class="form—-group'">
<button class="btn btn-outline-info" formaction="{% url
'doctorui-get' %}" type="submit'>Get Patient Records
</button>
<button class="btn btn-outline-info" formaction="{% url
'doctorui-submit' %}" type="submit">Submit Patient
Records
</button>
</div>
</form>
</div>
% endblock content %}

134

doctorui-get.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load django_tables2 %}
{% block content %}
<div class="content-section" style="width:150%">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—bottom mb-4">Patient Records</legend>
{{form|crispy}}
% if getEHR %}
{% render_table getEHR %}
<div class="form—-group">
</div>
% else %}
{{error}}
% endif %}

<button class="btn btn-outline-info" type="submit">Get
Records</button>
</fieldset>
</form>
</div>
% endblock content %}

doctorui-submit.html

% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Doctor Portal</legend>
{{form|crispy}}
{% if createEHR %}
{{createEHR}}
% else %}
<button class="btn btn-outline-info"
type="submit">Submit</button>
% endif %}
</fieldset>
</form>
</div>
% endblock content %}

home.html

% extends "dhcare/base.html" %}
{% load static %}
{% block content %}

<hl style="width:150%; color: #666; font-family: 'Consolas',sans-serif;
font-size: 60px; font-weight: 800; line-height: 72px; margin: @ 0 10px;
text-align: center; text-transform: uppercase;'>

DHCARE
</hl>
<h2 style="width:150%; color: #987; font-family: 'Calibri',sans-serif;
font-size: 30px; font-weight: 200; line-height: 5px; margin: @ 0 60px;
text—-align: center; text-transform: uppercase;'>

135

Biometric Distributed Healthcare System on Blockchain
</h2>

<img src="{% static 'dhcare/home.jpg' %}" class="home-img" alt="Logo"
width="150%">

% endblock content %}

login.html

% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
<form method="POST">
% csrf_token %}
<fieldset class="form—-group">
<legend class="border-bottom mb-4">Log In</legend>
{{ form|crispy }}
</fieldset>
<div class="form—-group'">
<button class="btn btn-outline-info"
type="submit">Login</button>
</div>
</form>
</div>
% endblock content %}

logou.html

% extends "dhcare/base.html" %}
{% block content %}
<h2>You have been logged out</h2>
<div class="border-top pt-3">
<small class="text-muted">
Log In Again
</small>
</div>
% endblock content %}

new-patient.html

% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
<form method="POST">
% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Add Patient</legend>
{{ form|crispy }}
% if confirmation %}
{{ confirmation}}
% else %}
<button class="btn btn-outline-info" type="submit">Add</button>
% endif %}
</fieldset>
</form>
</div>
% endblock content %}

136

receptionui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Reception Portal</legend>
</fieldset>
<img src="{% static 'dhcare/reception.jpg' %}" class="home-img"
alt="Logo" width="100%">

<div class="form—-group'">
<button class="btn btn-outline-info" formaction="{% url 'new-
' type="submit">Add New Patient
</button>
<button class="btn btn-outline-info" formaction="{% url
'receptionui-get' %}" type="submit">Get Patient
Appointments
</button>
<button class="btn btn-outline-info" formaction="{% url
'receptionui-book' %}" type="submit'>Book New
Appointment
</button>
</div>
</form>
</div>
% endblock content %}

patient' %}

receptionui-book.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.0rg/1999/html">
<form method="POST">
{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Appointment Booking</legend>
{{ form|crispy }}
</fieldset>
<button class="btn btn-outline-info" type="submit">Book</button>
</form>
</div>
% endblock content %}

receptionui-get.html

% extends "dhcare/base.html"™ %}

{% load crispy_forms_tags %}
load django_tables2 %}
block content %}

<div class="content-section">
<form method="POST">

{% csrf_token %}
<fieldset class="form—-group">
<legend class="border—-bottom mb-4">Patient
Appointments</legend>
{{ form|crispy }}

137

{% if table %}
{% render_table table %}
<button class="btn btn-outline-info" formaction="{% url
'appointment-confirm' %}'" type="submit">Confirm
</button>
{% else %}

<button class="btn btn-outline-info"
type="submit">Get</button>
{% endif %}
</fieldset>
</form>
</div>
{% endblock content %}

Digitally signed by
Shrieen
DN: cn=Shrieen,
o=United Arab
= @ Emirates University,
ou=UAEU Library
Digitizatio,
email=shrieen@uae
u.ac.ae, c=AE
Date: 2020.07.12
13:28:01 +04'00'

	Sdhcare: Secured Distributed Healthcare System
	Recommended Citation

	Mohammad Al Baqri - CGS Review 220620

		2020-07-12T13:28:01+0400
	Shrieen

