
United Arab Emirates University United Arab Emirates University

Scholarworks@UAEU Scholarworks@UAEU

Information Security Theses Information Security

4-2020

Sdhcare: Secured Distributed Healthcare System Sdhcare: Secured Distributed Healthcare System

Mohammed R. S. Al Baqari

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/info_sec_theses

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Al Baqari, Mohammed R. S., "Sdhcare: Secured Distributed Healthcare System" (2020). Information
Security Theses. 6.
https://scholarworks.uaeu.ac.ae/info_sec_theses/6

This Thesis is brought to you for free and open access by the Information Security at Scholarworks@UAEU. It has
been accepted for inclusion in Information Security Theses by an authorized administrator of Scholarworks@UAEU.
For more information, please contact fadl.musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae/
https://scholarworks.uaeu.ac.ae/info_sec_theses
https://scholarworks.uaeu.ac.ae/information_security
https://scholarworks.uaeu.ac.ae/info_sec_theses?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/info_sec_theses/6?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

Title

United Arab Emirates University

College of Information Technology

Department of Information Systems and Security

SDHCARE: SECURED DISTRIBUTED HEALTHCARE SYSTEM

Mohammed R. S. Al Baqari

This thesis is submitted in partial fulfilment of the requirements for the degree of
Master of Sciense in Information Security

Under the Supervision of Dr. Ezedin Baraka

April 2020

ii

 Declaration of Original Work

I, Mohammed R. S. Al Baqari, the undersigned, a graduate student at the United

Arab Emirates University (UAEU), and the author of this thesis entitled

“SDHCARE: Secure Distributed Healthcare System”, hereby, solemnly declare that

this thesis is my own original research work that has been done and prepared by me

under the supervision of Dr. Ezedin Baraka, in the College of Information

Technology (CIT) at UAEU. This work has not previously been presented or

published, or formed the basis for the award of any academic degree, diploma or a

similar title at this or any other university. Any materials borrowed from other

sources (whether published or unpublished) and relied upon or included in my thesis

have been properly cited and acknowledged in accordance with appropriate

academic conventions. I further declare that there is no potential conflict of interest

with respect to the research, data collection, authorship, presentation and/or

publication of this thesis.

Student’s Signature: Date: ________________

Mohammed Al Baqari
02/07/2020

iii

Copyright

Copyright © 2020 Mohammed R. S. Al Baqari
All Rights Reserved

iv

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Ezedin Barka

Title: Associate Professor

Department of Information Systems and Security

College of Information Technology

 Signature Date 23/4/2020

2) Member: Khaled Shuaib

Title: Professor

Department of Information Systems and Security

College of Information Technology

 Signature Date 23/4/2020

 3) Member (External Examiner): Khaled Salah

Title: Professor

Department of Electrical Engineering and Computer Science

Institution: Khalifa University- Abu Dhabi, UAE

Signature Date 23/4/2020

v

This Master Thesis is accepted by:

Dean of the College of Information Technology: Professor Taieb Znati

Signature Date

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature Date

Copy ____ of ____

znati
Typewritten Text
02/07/2020

m_ezzat
Typewritten Text
05/07/2020

m_ezzat
Typewritten Text

vi

 Abstract

In healthcare sector, the move towards Electronic Health Records (EHR) systems has

been accelerating in parallel with the increased adoption of IoT and smart devices.

This is driven by the anticipated advantages for patients and healthcare providers. The

integration of EHR and IoT makes it highly heterogenous in terms of devices, network

standard, platforms, types data, connectivity, etc. Additionally, it introduces security,

patient and data privacy, and trust challenges. To address such challenges, this thesis

proposes an architecture that combines biometric-based blockchain technology with

the EHR system. More specifically, this thesis describes a mechanism that uses

patient’s fingerprint for recovery of patient’s access control on their EHRs securely

without compromising their privacy and identity. A secure distributed healthcare

system (SDHCARE) is proposed to uniquely identify patients, enable them to control

access to, and ensure recoverable access to their EHRs that are exchanged and

synchronized between distributed healthcare providers. The system takes into account

the security and privacy requirements of Health Insurance Portability and

Accountability Act (HIPAA) compliance, and it overcomes the challenges of using

secret keys as patient’s identity to control access to EHRs. The system used distributed

architecture with two layers being local to each healthcare provider that is member of

SDHCARE, and two layers shared across all members of SDCHARE system.

SDHCARE system was prototyped and implemented in order to validate its functional

requirements, security requirements and to evaluate its performance. The results

indicated successful fulfillment of design requirements without significant overhead

on the performance as required by healthcare environments.

Keywords: Blockchain, Healthcare, EHR, Fingerprint, Biometric, Access Control.

vii

Title and Abstract (in Arabic)

 نملآا عزوملا ةیحصلا ةیاعرلا ماظن

 صخلملا

 ةینورتكللإا ةیحصلا تلاجسلا ةمظنأ وحن كرحتلا ناك ،ةیحصلا ةیاعرلا عاطق يف

)EHR(ایازملاب عوفدم اذھ و ،ةیكذلا ةزھجلأاو ءایشلأا تنرتنإ دامتعا ةدایز عم يزاوتلاب عراستی

 تلاجسلا جمد نإف ةوجرملا ایازملا نم مغرلا ىلع و ،ةیحصلا ةیاعرلا يمدقمو ىضرملل ةعقوتملا

 رایعمو ،ةزھجلأا ثیح نم ةیاغلل ةسناجتم ریغ اھلعجی ءایشلأا تنرتنإ عم ةینورتكللإا ةیحصلا

 ةیصوصخ ىلإ ةفاضإ ،كلذ ىلإ امو ،لاصتلااو ،تانایبلا عاونأو ،ةیساسلأا ةمظنلأاو ،ةكبشلا

 عمجت ةینب ةحورطلأا هذھ حرتقت ،تایدحتلا هذھ ةھجاومل و ،ةقثلا تایدحتو ،تانایبلاو ضیرملا

 ةحورطلأا هذھ فصت ،اًدیدحت .EHR ماظنو ةیویحلا سییاقملا ىلإ ةدنتسملا نیشتكولبلا ةینقت نیب

 نود و نامأب EHR ةصاخلا ةیحصلا ھتلاجس يف مكحتلا ةداعتسلا ضیرملا ةمصب مدختست ةیلآ

 دیدحتل)SDHCARE(نمآ عزوم ةیحص ةیاعر ماظن حرتقی ثیح ،ھتیوھو ھتیصوصخب ساسملا

 لوصولا نامضو ،ةیحصلا مھتلاجس ىلإ لوصولا يف مكحتلا نم مھنیكمتو ،دیرف لكشب ىضرملا

 نیب اھتنمازمو اھلدابت متی يتلا مھب ةصاخلا ةینورتكللإا ةیحصلا تلاجسلا ىلإ دادرتسلال لباقلا

 ةیصوصخلاو ناملأا تابلطتم رابتعلاا يف ماظنلا ذخأی و ،ةعزوملا ةیحصلا ةیاعرلا يمدقم

 مادختسا تایدحت ىلع بلغتیو ،)HIPAA(ةلءاسملاو يحصلا نیمأتلا ةیلباق نوناقل لاثتملال

 مدختسی و .ةینورتكللإا ةیحصلا تلاجسلا ىلإ لوصولا يف مكحتلل ضیرملا ةیوھك ةیرسلا حیتافملا

 نیتقبطو ،SDHCARE يف وضع ةیحص ةیاعر مدقم لكل نیتیلحم نیتقبط عم ةعزوم ةینب ماظنلا

 ققحتلا لجأ نم ھقیبطتو ماظنلا میمصت مت ثیح ،SDCHARE ماظن ءاضعأ عیمج ربع نیتكرتشم

 میمصتلا تابلطتم قیقحت ىلإ جئاتنلا تراشأ و ،ھئادأ مییقتو ناملأا تابلطتمو ةیفیظولا ھتابلطتم نم

 .ةیحصلا ةیاعرلا تائیب يف بولطم وھ امك ءادلأا ىلع ةریبك ءابعأ نود حاجنب

 ،ةیرتمویبلا ،عباصلأا تامصب ،EHR ،ةیحصلا ةیاعرلاو ،نیشتكولبلا :ةیسیئرلا ثحبلا میھافم

 .لوصولا يف مكحتلا

viii

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Ezedin Barak

for his continuous support of my master’s study and research and for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me as I

researched and wrote this thesis. I could not have imagined a better advisor and

mentor for my master’s study.

Besides my advisor, I would like to thank the rest of my thesis committee,

Prof. Khaled Shuaib and Dr. Khalid Saleh, for their encouragement and insightful

feedback. In addition, I would like to thanks all of the members of the Information

Security Department of the College of IT of United Arab Emirates University for

assisting me with my studies and research. My special thanks are extended to the

Library Research Desk for providing me with relevant reference materials.

Special thanks go to my parents, brothers, and sisters who helped me along

the way. I am sure they suspected it was endless.

ix

Dedication

To my beloved parents and family

x

Table of Contents

Title ... i

Declaration of Original Work .. ii

Copyright .. iii

Approval of the Master Thesis .. iv

Abstract ... vi

Title and Abstract (in Arabic) .. vii

Acknowledgements ... viii

Dedication ... ix

Table of Contents ... x

List of Tables ... xii

List of Figures ... xiii

List of Abbreviations ... xv

Chapter 1: Introduction .. 1
1.1 Overview .. 1
1.2 Statement of the Problem ... 5
1.3 Research Objectives ... 6
1.4 Research Methodology .. 6
1.5 Literature Review ... 9

1.5.1 Blockchain Basics .. 10
1.5.2 Blockchain Security ... 16
1.5.3 Blockchain in Healthcare ... 24

Chapter 2: Methods .. 38
2.1 Design Overview ... 38

2.1.1 User Interface (UI) Layer ... 39
2.1.2 Middleware Layer .. 41
2.1.3 Blockchain Layer ... 43
2.1.4 Cloud Store Layer .. 48

2.2 Functional Use Cases ... 48
2.2.1 SDHCARE Provider Enrollment ... 48
2.2.2 Patient Registration .. 50
2.2.3 Patient Appointment Management ... 52
2.2.4 Doctor’s EHR Access .. 55

Chapter 3: Implementation .. 61
3.1 Prototype Components ... 61
3.2 Django Architecture ... 63

xi

3.3 System Implementation ... 65
3.3.1 Building the Runtime Environment ... 65
3.3.2 Initializing SDHCARE Web and Database Components 67
3.3.3 Building SDHCARE Django Code .. 70
3.3.4 Building Ethereum Smart Contracts .. 83
3.3.5 Integrating Django with Ethereum ... 87

Chapter 4: Testing and Performance Evaluation ... 91
4.1 Functional Testing ... 91
4.2 Security Testing ... 93
4.3 Performance Evaluation ... 99

Chapter 5: Conclusion .. 104

References .. 106

Appendix .. 111

xii

List of Tables

Table 1: Summary of EHR Requirements and Blockchain Opportunities 3
Table 2: Summary of the Literature ... 10
Table 3: Factors for Blockchain Transaction Delay Variation 21
Table 4: Access Control Matrix by accessControlSC .. 47
Table 5: Python Libraries Required for SDHCARE .. 67
Table 6: Summary of Views Functions ... 77
Table 7: Summary of Forms Functions ... 79
Table 8: Summary of Tables Functions ... 79

xiii

List of Figures

Figure 1: Percentage of EHR Systems Adoption in US .. 2
Figure 2: General Chain of Block .. 11
Figure 3: Block Structure ... 13
Figure 4: The Effects of Tampering with One Block in the Ledger 19
Figure 5: Eclipse Attack ... 24
Figure 6: SDHCARE High-Level Architecture ... 39
Figure 7: Summary of providersTable Data .. 44
Figure 8: Summary of patientsTable Data ... 45
Figure 9: Summary of ehrHashTable Data .. 46
Figure 10: Hospital Enrollment Sequence Diagram .. 50
Figure 11: Summary of the Patient Registration Process .. 52
Figure 12: Process for Booking a New Appointment .. 53
Figure 13: Booking Confirmation and Access Granting Summary 55
Figure 14: Summary of the EHR Read Process ... 58
Figure 15: Summary of the EHR Write Process .. 60
Figure 16: Django Web Development Architecture .. 63
Figure 17: MacOS Software Version for SDHCARE ... 65
Figure 18: PyCharm SDHCARE Project with Python 3.8 Interpreter 66
Figure 19: Example of Users, Groups, and Group Assignment 68
Figure 20: Example of SDHCARE Databases ... 70
Figure 21: Summary of HTML SDHCARE Template Structure 71
Figure 22: Admin UI with Forms and Views .. 72
Figure 23: Doctor UI with Forms and View .. 72
Figure 24: Reception UI with Forms and Views ... 73
Figure 25: Healthcare Provider’s getProviderInfo Page .. 74
Figure 26: SDHCARE Home Page .. 80
Figure 27: SDHCARE About Page .. 80
Figure 28: SDHCARE Login Page .. 81
Figure 29: SDHCARE Admin UI Page ... 81
Figure 30: SDHCARE Admin UI Submit Page ... 82
Figure 31: SDHCARE-Reception UI Page .. 82
Figure 32: SDHCARE Doctor UI Page ... 83
Figure 33: Summary of Ethereum Transactions .. 86
Figure 34: Integrating Django with Ethereum ... 87
Figure 35: Infura Account Details ... 89
Figure 36: Custom Python Module Operation ... 90
Figure 37: Synchronization of Patient’s EHR ... 92
Figure 38: Verifying EHR Recovery Using Patient ID ... 92
Figure 39: Verifying Hash as Names in Azure Files ... 93
Figure 40: Failed Login to Reception Portal using a Doctor Account 94

xiv

Figure 41: Fingerprint Validation before Writing an EHR .. 95
Figure 42: Failed Attempt to Write a New EHR ... 95
Figure 43: Failed Attempt to Read a Patient’s HER .. 96
Figure 44: Sample Audit Logs for New EHR .. 97
Figure 45: Sample of Anonymized Data Store in Azure Files 98
Figure 46: Performance Measurement using Google Chrome 100
Figure 47: Read Performance Testing ... 101
Figure 48: Write Performance Testing .. 101
Figure 49: Read Time Analysis with Larger ehrHashTable 103

xv

List of Abbreviations

ABI

API

BBDS

Application Binary Interface

Application Programmable Interface

Blockchain-Based Data Sharing

CA Certificate Authority

CIA Confidentiality, Integrity, and Availability

DOA Decentralized Autonomous Organization

DOB Date of Birth

DOS Denial of Service

EHR Electronic Health Record

FHIR Fast Healthcare Interoperability Resources

GETH Go Ethereum

HIPAA Act Health Insurance Portability and Accountability Act [US]

HITECH Act Health Information Technology for Economic and Clinical

Health Act [US]

HL7 Health Level Seven

IoT

IP

Internet of Things

Internet Protocol

IT Information Technology

NHA National Health Authority

NHS National Health Service [UK]

NID National Identity

NIST National Institute of Standardization and Technology

OHP Owner Healthcare Provider

xvi

ONC

OS

Office of the National Coordinator

Operating System

PACL Patient Access Control List

PII Personal Identification Information

POA Proof of Authority

POW Proof of Work

POS Proof of Stack

POV Proof of Verification

PPG

RBAC

Photo Plethysmo Gram

Role-Based Access Control

UAEU United Arab Emirates University

UI User Interface

U.S. United States of America

1

Chapter 1: Introduction

1.1 Overview

In the healthcare sector, the move towards electronic health record (EHR)

systems has been accelerating in parallel with the increased adoption of IoT and smart

devices. This is driven by the anticipated advantages for patients and healthcare

providers. The Office of the National Coordinator (ONC) for Health Information

Technology within the U.S. Department of Health and Human Services [1], defined

EHR as “a digital version of a patient’s paper chart. EHRs are real-time, patient-

centered records that make information available instantly and securely to authorized

users. While an EHR does contain the medical and treatment histories of patients, an

EHR system is built to go beyond standard clinical data collected in a provider’s office

and can be inclusive of a broader view of a patient’s care. They are built to share

information with other health care providers, such as laboratories and specialists, so

they contain information from all the clinicians involved in the patient’s care".

Some advantages of EHR systems as indicated by ONC [1] are:

• They maintain and synchronize patients’ medical history, diagnoses, medications,

treatment plans, immunization dates, allergies, radiology images, and laboratory

and test results

• They allow access to evidence-based tools that providers can use to make decisions

about patients’ care

• They automate and streamline provider workflow

In 2009, the U.S. government passed the Health Information Technology for

Economic and Clinical Health Act (HITECH Act) to motivate the adoption and

2

meaningful use of EHR systems. Additionally, they included this objective in the

Federal Health IT Strategic Plan [2]. Figure 1 represents the progress of EHR system

adoption in the United States since 2001.

Figure 1: Percentage of EHR Systems Adoption in US

In parallel with the move towards EHR healthcare systems, Blockchain

technology was introduced by Satoshi Nakamoto in 2009 [3]. Blockchain technology

has received significant attention from the research community. Blockchain’s

decentralized nature along with its cryptographic services increased its potential to be

the future platform for distributed systems. The initial phase of Blockchain technology

was limited to the financial sector and mainly focused on cryptocurrency such as

Bitcoin, which has evolved to become the most popular cryptocurrency application.

3

Over time, Blockchain technology has evolved with the introduction of

Ethereum and its smart contracts capability Buterin [4], which provides the

programmability component of Ethereum Blockchain. This step gave Blockchain

technology huge potential and expanded its scope from the financial to other sectors,

including healthcare, education, government, and manufacturing. In particular, for the

healthcare sector and EHR systems, Blockchain technology offers many capabilities

that can fulfill several EHR requirements, as described by McGhin, Choo, Liu, and He

[5], and summarized in Table 1.

Table 1: Summary of EHR Requirements and Blockchain Opportunities

EHR Requirements Blockchain Opportunities

System security, including
authentication, integrity, access control,
and non-repudiation for multiparty
integrated EHR systems

Security, assurance, and immutability
are provided using cryptography,
namely private and public keys
combined with hash-chaining between
blocks of data

Interoperability between different EHR
standards implemented by various
healthcare providers, research entities,
insurance providers, and pharmacies

Smart contracts capability provides an
abstraction layer to enable
communication among miners in
distributed healthcare providers running
different EHR standards

Data sharing of health records The decentralized architecture allows
multiple entities to share health records

Mobility of healthcare systems with the
introduction of IoT and smart devices
that allow patients to share and access
their health records

Shared data across distributed ledgers
enables near real-time updates across the
network to all parties

Availability of the healthcare system The technology provides high
availability and resilience through its
decentralized model of operation

4

The close convergence between EHR requirements and Blockchain

capabilities listed in Table 1 is a key driver that has led many proposals to include

Blockchain-based EHR applications, including EHR monitoring and auditing,

mobility applications, and exchange of information.

Despite the promising convergence between Blockchain and EHR systems,

some limitations have been identified regarding the integration between Blockchain

and EHR systems, specifically:

• Key management in current implementations of Blockchain are based

on private/public key pairs. In Blockchain-based EHR systems, patients

that use their private keys as their identities to control access to and to

sign their EHRs are subject to permanent loss of access to their records

in the case of lost private keys, as discussed in McGhin [5]. This is

because, in asymmetric cryptography, a private key is not recoverable

from the public key (computationally infeasible).

• The lack of standardization for various deployments of Blockchain in

healthcare systems generates a challenge regarding the interoperability

and exchange of EHRs, which limits the success of deployments [5].

• There is the potential for privacy leakage due to the unencrypted nature

of blocks that hold information related to patients’ health. Even with

encrypted blocks, the ability to access the blocks publicly, in public

ledgers, makes them subject to cryptanalysis attacks, which can exploit

patients’ privacy if the encryption algorithms are compromised [5].

• Scalability and IoT overhead can occur due to the increased number of

medical IoT devices and medical sensors joining the Blockchain

5

network. The more IoT devices joining the Blockchain network, the

more the computational complexity of the ledger, which leads to the

need for more computational power on these IoT devices. However,

these IoT devices have very limited computational capabilities and are

not designed to support the complex operations required by Blockchain

hashing algorithms [5].

• Blockchain entails security vulnerabilities, which are discussed in

detail in Section 1.5.2.

Accordingly, the scope of the present thesis focuses on investigating solutions

to overcome the privacy leakage and key recovery challenges. Specifically, the focus

is on finding a solution that enables blockchain-based synchronization and exchange

of EHRs between distributed healthcare providers while:

• Ensuring recoverable access to patients’ EHRs

• Maintaining the unique patients’ identities in EHRs

• Controlling access to EHRs

• Providing anonymity to patients’ EHRs in the datastores

• Detecting any modifications to EHRs, and

• Logging any activities on EHRs.

1.2 Statement of the Problem

There are several limitations when deploying Blockchain technology in the

healthcare industry, as detailed in Section 1.1. The problem statement targeted by this

research is patients’ inability to recover access to their EHR records in the case of

missing patient identities. This can occur in many cases such as lost private keys or

emergency access to EHRs by unauthorized healthcare providers.

6

1.3 Research Objectives

The core objective of this research project is to propose an EHR exchange and

synchronization system based on Blockchain that can provide patients with an access

recovery mechanism to their EHRs. In addition to this objective, the proposed system

fulfills the requirements of Health Insurance Portability and Accountability Act

(HIPAA Act). These legislative requirements include the authentication of access to

EHRs, maintenance of EHR isolation and privacy for each patient, guaranteed integrity

of EHRs, governance of access control to EHRs, and guaranteed audit logs for

patient’s EHRs.

1.4 Research Methodology

This section describes the methodology followed to conduct the research

project. The methodology was structured in a logical order to enable gaining in-depth

knowledge about the research topic, and divided into several phases:

• A literature review to understand the status of current research on

Blockchain-based EHR systems and identify areas for research.

• Verification of the uniqueness of the proposal to address the issues

presented in the statement of the problem.

• Development of high-level design architecture of the proposed solution

followed by a low-level design.

• A prototype of the proposed design, using Python and Ethereum, to

simulate the functional and security requirements.

• Analysis of the strengths and weaknesses of the proposed solution from

functional and security perspectives.

7

Google Scholar was used to search several bibliographic databases for

literature related to the current state of research on blockchain in healthcare. The search

string deployed was:

Blockchain AND (Healthcare OR EHR) AND (source: ieee OR source: springer OR

source: acm OR source: sage OR source: Elsevier).

The output from Google Scholar identified 3,390 papers, of which 3,210 papers

were published since 2015.

Initially, only review papers were considered to obtain an overall

understanding of current research. Only top five cited papers were considered for the

literature review. These papers were obtained using the UAEU E-Library, which

provides access to the selected databases used in the Google Scholar filter.

From the initial results, the identified papers were classified into three main

categories:

• Blockchain core technology – Top five cited papers

• Blockchain security – Top five cited papers

• Blockchain in healthcare – Top 10 cited papers

From this review, limitations in the existing blockchain-based EHR proposals

were identified, forming the scope of research for the present thesis.

Google Scholar was consulted again to identify literature related to the use of

biometrics in Blockchain deployment in healthcare. One paper was identified that

details the use of Fuzzy Vault combined with photoplethysmogram (PPG) signals for

key management (see Section 1.5.3).

The next step was to specify the high-level design requirements and

assumptions to build a low-level proposal. The following design requirements were

considered:

8

• Provide a distributed platform to exchange and replicate EHRs

• Ensure unique patient identity across the platform

• Ensure unique EHR-to-patient mapping

• Ensure patient validation to EHR access control requests.

• Provide an access recovery mechanism for patients’ EHRs

• Implement audit logging for access requests to EHRs

• Provide an EHR integrity validation mechanism

• Provide a mechanism for emergency access to EHRs by non-authorized

providers

• Ensure the anonymity of EHRs in the datastore across the platform

Additionally, some assumptions were made that were excluded from the design

requirements:

• All healthcare providers must use the SDHCARE system.

• All EHRs must be recorded in the same format (e.g., HL7 or FHIR).

• Secure links are used for communication between healthcare providers,

the Blockchain and the datastore.

Based on the above requirements and assumptions, the low-level design

proposal was developed. More details are provided in Chapter 2.

The next phase was a prototyping phase to build a sample that can implement

the required functional and security features of SDHCARE. The low-level design

blocks were analyzed, and the tools and software required to provide the desired

features and functions for each design block were identified. The final selection of

tools was based on the following criteria:

• Feature richness and simplicity of the tool.

9

• Security capabilities of the tool.

• Compatibility and interoperability between the tool and other

components of the SDHCARE system.

The final phase of the research was testing and results analysis. This was

divided into two sections:

• Validating that design requirements were achieved and can provide the

expected functions.

• Performance evaluation to measure the average time and speed of

transactions across the SDHCARE system.

The details of system prototyping, implementation, and testing are covered in

Chapters 3 and 4.

1.5 Literature Review

This section covers the literature related to blockchain technology and its

adoption in EHR systems. The reviewed literature covers the progress of research in

the following areas:

• Blockchain core functionality

• Blockchain security capabilities and limitations

• Limitations of legacy centralized EHR systems

• EHR security, privacy, and compliance requirements

• Existing proposals for Blockchain-based EHR systems

10

Table 2: Summary of the Literature

Category Literature List

Blockchain Technology
Nakamoto [3], Buterin [4], Weber [8], Yaga, Mell,
Roby, and Scarfone [9]

Blockchain Security
Joshi, Han, and Wang [7], Halpin and Piekarska [10],
Zhong, Zhong, Mi, Zhang, and Xiang [12], Cash and
Bassiouni [13], Tosh et al. [14]

Blockchain in Healthcare

McGhin, Choo, Liu, and He [5], Magyar [15],
Pilkington [16], Zhang, Walker, White, Schmidt, and
Lenz [17], Dagher, Mohler, Milojkovic, and Marella
[18], Azaria, Ekblaw, Vieira, and Lippman [19], Xia,
Sifah, Smahi, Amofa, and Zhang [20], Yang et al.
[21], Roehrs, da Costa, and da Rosa Righi [22], Fan,
Wang, Ren, Li, and Yang [23]

1.5.1 Blockchain Basics

According to the US National Institute of Standardization and Technology

(NIST), Blockchain is defined as:

Distributed digital ledgers of cryptographically signed transactions that are

grouped into blocks. Each block is cryptographically linked to the previous one

(making it tamper evident) after validation and undergoing a consensus

decision. As new blocks are added, older blocks become more difficult to

modify (creating tamper resistance). New blocks are replicated across copies

of the ledger within the network, and any conflicts are resolved automatically

using established rules [6].

The entire blockchain is stored in each miner (as single unit) for

synchronization instead of storing individual blocks. Figure 2 providers an overview

of the structure of the blocks.

11

Figure 2: General Chain of Block

11

12

1.5.1.1 Block Components

Joshi, Han, and Wang [7] described the structure of the block as follows.

• Data: This is the application data held in the distributed blocks. The block

can hold any type of data and is thus application-independent. Further, the

block can hold multiple data units from diverse types of applications. Each

data unit in the block is called a ‘message’ or a ‘transaction’.

• Hash: In a single block, three types of hash values exist: the hash value of

the previous block (which is used to chain the blocks), the root hash

representing all transactions stored in the block, and the hash value of the

current block at the time it is committed to the chain.

• Timestamp: The timestamp at which the block was added to the chain.

• Other information: This includes information such as the software version

used by the miner and the current difficulty level. An essential information

element called a ‘nonce’ is used for block validation and the consensus

algorithm. Figure 3 depicts this structure.

13

Figure 3: Block Structure

1.5.1.2 Types of Blockchains

Types of blockchains are defined according to how miners join the Blockchain

network. Joshi, Han, and Wang [7] classified Blockchain networks as follows:

• Public Blockchain (permissionless): This type of Blockchain is publicly

accessible without permissions or restrictions, eliminating the limitations

of a central authority. Any node running the mining software (such as

GETH for Ethereum Blockchain) can participate and start adding blocks,

executing the consensus algorithm, voting to discard blocks, and obtaining

access to any unencrypted information stored in the blocks.

• Private Blockchain (permissioned): This type of Blockchain is a

permission-based platform established by a group of firms, individual

firms, or divisions within a firm in which data can be accessed by users that

are part of the mining group and properly authenticated.

Hash
(Current and Previous)

TimeStamp

Other Information

Data 1 …. Data N

14

• Consortium Blockchain: The consortium Blockchain is a hybrid between

the no single trusted entity model of public Blockchain and the single,

highly trustable entity model of private Blockchain. It is perceived as a

partially decentralized Blockchain.

1.5.1.3 Transaction Lifecycle

The lifecycle of transactions varies depending on the type of Blockchain. For

example, in Ethereum, Weber et al. [8] summarized the transaction lifecycle as

follows:

• The sender prepares its transaction with the application data and sends it to

its local miner. The sender signs the transaction with its private key, which

is validated by the local miner.

• The local miner generates a transaction ID and broadcasts the ID to the pool

of miners. This transaction ID is a hash value of the hashed transaction.

• The miners maintain a pool of queued transactions. This queue is generally

sorted based on the fees (called gas) paid by senders to process their

transactions. Miners prefer to pick transactions with higher incentives

(higher gas).

• Once a miner picks a certain number of queued transactions, it builds a

block to include them. Next, the miner attempts to solve a crypto-puzzle to

be elected to broadcast the block (This is called the consensus algorithm

and varies based on the type of Blockchain. Ethereum uses a proof of work

(POW) algorithm for consensus that is based on solving crypto-puzzles).

• Upon successful puzzle resolution, the miner posts the block in the

Blockchain and waits for confirmation from other miners on the block that

15

it is committed to the main chain. Ethereum considers the presence of 12

proceeding blocks after the committed block as confirmation.

1.5.1.4 Blockchain Consensus

Yaga, Mell, Roby, and Scarfone [9] described consensus as the process that

determines which user publishes the next block. Different models of consensus are

used in Blockchains. These vary between CPU-intensive models, which is suitable for

permissionless Blockchains for additional security, and low CPU models, which is

suitable for permissioned Blockchains that assume a level of trust between miners.

Some commonly-used consensus models are listed by [9]. The following sections

describe the different models used in Blockchain for reaching consensus.

1.5.1.4.1 Proof of Work (POW)

In the POW model, a complex crypto-puzzle is published to all miners in the

Blockchain. The first miner that solves the puzzle is granted permission to publish its

blocks. The miner has to submit the solved puzzle as a “proof”, which is validated by

other miners, and then the block is accepted. The difficulty of the puzzle varies and is

continuously adjusted to maintain an average block committing time (e.g. 10 minutes

in Bitcoin). Accordingly, POW is considered highly CPU-intensive and is usually used

in permissionless Blockchains to reduce attackers’ interests in participating.

1.5.1.4.2 Proof of Stack (POS)

The POS model uses the amount of stack that miners invest in the system as an

indication of their genuine intention and disinterest in compromising the Blockchain.

The actual stack of the Blockchain varies based on its type, but cryptocurrency is

generally used. The miners invest in the cryptocurrency of the Blockchain, which is

16

unusable expect for being a measure of their trust.

This model is currently being evaluated in permissionless Blockchains as it

eliminates the high computational requirements of the POW model.

1.5.1.4.3 Proof of Authority (POA)

The POA model is based on maintaining a level of trust between miners and is

used only in permissioned Blockchains. This level of trust is established through

proven identities, which are verified by Blockchain members (e.g., authorized

documents). During Blockchain runtime, the reputation of miners varies depending on

their behavior, number of accepted blocks, and other factors. Miners with a better

reputation will be awarded more slots to publish blocks while malicious miners will

not be awarded sufficient slots to publish blocks.

1.5.1.4.4 Round Robin Consensus

Similar to the POA model, round robin consensus is limited to permissioned

Blockchains. In this model, miners are awarded equal slots to submit blocks. An

advantage of this model is that it guarantees that no miner can create a majority of

blocks without the need for complex computation for validation.

1.5.2 Blockchain Security

In this section confidentially, integrity and availability (CIA) aspects of

blockchain technology are investigated, as well as some common attacks against

blockchain.

1.5.2.1 Confidentiality

According to NIST [6], confidentiality refers to “preserving authorized

17

restrictions on information access and disclosure, including means for protecting

personal privacy and proprietary information”. Hence, confidentiality is focused on

authorization and privacy.

NIST [6] defines authorization as “access privileges granted to a user, program,

or process or the act of granting those privileges”, which is not a feature natively

provided by Blockchain technology. Similarly, privacy is not a native feature of

Blockchain. Current implementations of Blockchain technology do not have the

capability of encrypting the contents of the blocks or transactions before committing

them to the ledger. The lack of authorization and privacy can introduce a substantial

risk of a malicious miner joining the mining pool, obtaining a copy of the blocks and

analyzing/exploiting their vulnerabilities. An example of this is the decentralized

autonomous organization (DOA) attack [10]. DAO was an application developed and

executed in Ethereum blockchain with the purpose of maintaining financial

contributions for blockchain-based applications. It had an identity verification

vulnerability which was exploited in 2016, leading to compromised security and losses

totaling more than US$50 million [11]. Lack of privacy and authorization allowed the

attacker to read DOA blocks and identify the vulnerability.

Zhong, Zhong, Mi, Zhang, and Xiang [12] proposed a new model of privacy-

protected Blockchain that encrypts data within an agreed upon time to add privacy

capability to the technology. Cash and Bassiouni [13] proposed a two-tier Blockchain

network that provides permissionless Blockchain at tier-1 with a POW consensus

algorithm and permissioned Blockchain at tier-2 with a POA consensus algorithm. In

this model, tier-2 provides access control to data specific to data owners and the users

with whom they are sharing the data. Nodes from the permissionless tier can be

18

members of tier-2, which allows them to pass data and make transactions according to

pre-defined access control contracts.

1.5.2.2 Integrity

NIST [6] defines integrity as “guarding against improper information

modification or destruction and includes ensuring information non-repudiation and

authenticity”. Nakamoto [3] explained how Blockchain technology implements strict

integrity verification to avoid manipulation and tampering of data inside the blocks.

This is implemented at three levels: the transaction, block, and miner level.

• At the transaction level, each miner verifies the hash value of the received

transactions. Only valid transactions are queued in the block to be published in

the ledger. The miner uses the sender’s public key to verify the received

transaction hash value against the locally calculated value. Thus, this

eliminates spoofing of senders’ public keys.

• At the block level, the miner uses the hash values of all transactions to calculate

the root hash value that represents all transactions in the block (Bitcoin uses

the Merkle tree while Ethereum uses the Patricia tree). The miner will use the

hash value of the last block in the ledger, the root hash of the queued block,

and the nonce value to calculate the local block hash. This nested hashing

represents the actual chaining of the blocks and ensures blockchain integrity

because tampering in any block will require a change in the hash values of all

proceeding blocks in the ledger. Altering one block and all proceeding blocks

is required before a new block is published in the ledger. Figure 4 below shows

the detection of data tampering at the block level.

19

Figure 4: The Effects of Tampering with One Block in the Ledger

• At the miner level, for each new block, the miner verifies the block hash before

accepting it in the ledger as the new last block. Further, the miner verifies the

order of the new block by comparing the hash reference of the current last block

in the ledger against the value listed in the new block. A block that fails the

integrity check by miners or is placed out of order will be discarded if the

majority of miners vote for the same result (i.e., more than 51% of miners vote

to discard the block).

20

The nested hashing within the block and between blocks in the ledger

guarantees the integrity of the data stored in Blockchain and makes it immutable

(irreversible). This capability requires a thorough evaluation of the data policy before

posting it on the Blockchain. If sensitive data such as medical records are encrypted

and stored in the Blockchain and the encryption algorithm is later exploited, there

could be significant exposure of sensitive information that cannot be revoked. Another

example is a DOA attack where the Ethereum community cannot revoke the vulnerable

DOA code without forking the ledger (i.e., discarding all the data inserted after the

vulnerable DOA code).

1.5.2.3 Availability

Availability is defined by NIST [6] as “ensuring timely and reliable access to

and use of information”. Availability is well implemented in Blockchain technology.

The distributed architecture of the Blockchain network and the synchronization of the

entire Blockchain across all miners in the pool provides robust resilience against

single-point-of-failure scenarios. Failure in one or more node(s) does not stop the

Blockchain network from introducing new blocks to the chain and/or serving access

requests to the existing blocks. However, failure could impact the availability of the

applications utilizing Blockchain.

Weber et al. [8] investigated the availability provided by Blockchain from an

applications perspective. The research is focused on how the availability of

Blockchain-based applications is affected by the time required to post a transaction on

Blockchain. Using a sample of transactions from the Ethereum and Bitcoin

Blockchains, Weber et al. found that 61.5% of transactions took more than 3 minutes

to be committed in a Blockchain, while 13.8% of the transactions took more than 4.5

21

minutes to be committed. Such variation in time can introduce the unavailability of

client applications.

Additionally, Weber et al. [8] investigated the factors that can influence the

delay to commit transactions. Some of these are common between Ethereum and

Bitcoin while others are unique to each, as indicated in Table 3.

Table 3: Factors for Blockchain Transaction Delay Variation

 Ethereum Bitcoin

Transaction fees paid by the client ✔ ✔
Transactions’ order of arrival ✔ ✔

Locktimes: indicating that a transaction is invalid
until a certain block sequence number is mined

 ✔

Network delays ✔ ✔
Gas limit (per block) ✔

Weber et al. [8] analyzed the impact of DOS attacks on Ethereum Blockchain

and found that the measures currently implemented by Ethereum that use a gas limit

counter DOS attacks and provide strong availability for smart contract applications.

1.5.2.4 Common Blockchain Attacks

Over time, different techniques have been used to attack active Blockchains,

including Ethereum and Bitcoin. These attacks have targeted the core Blockchain

technology rather than the applications running on the Blockchain (application attacks

are subject to the vulnerabilities in applications). Tosh et al. [14] analyzed attacks on

permissionless Blockchains that utilize POW as their consensus algorithm (the same

attacks apply to permissioned Blockchains with lower risk due to the controlled

22

admission of miners). The following section reviews the literature on common attacks

on Blockchain.

1.5.2.4.1 Double-spend Attack

In a double-spend attack, the same cryptocurrency (e.g., bitcoins) for more than

one transaction. A malicious miner spends a certain number of bitcoins, for example,

at block i. Starting from block i, the malicious miner privately mines to extend the

Blockchain as fast as possible without publicizing it. The private chain does not

include the bitcoins spent by the attacker in block i. Once the private chain (malicious)

is longer (i.e., has more mined blocks) than the public chain (genuine), the malicious

miner posts the malicious chain, which appears as a fork. Miners vote to resume the

malicious chain and discard the genuine chain because the malicious chain is longer

(which means that genuine transactions are discarded starting from block i, and the

same bitcoins can be reused for other transactions).

1.5.2.4.2 Selfish Mining Attack

In a selfish mining attack, a pool of malicious miners colludes to mine together

(which increases their hashing power) and distributes the incentives among

themselves. This increases their profitability by enabling them to receive regular

incentives (because they dominate the Blockchain with their hashing power) instead

of receiving random incentives when mining independently. At the same time, it

reduces the profitability of honest miners. Honest miners may prefer to join an honest

pool to increase their mining power compared to a selfish pool, generating higher

incentives. Thus, the pool eventually becomes the major player controlling the

Blockchain, and decentralization no longer holds.

23

1.5.2.4.3 Eclipse Attack

An eclipse attack is aimed at isolating Blockchain miners and hijacking their

mining power to form a malicious pool of miners controlled by the attacker. This

malicious pool can be used to generate a fork and commit malicious blocks (i.e.,

overwrite the decentralization of Blockchain). Each miner in the ledger is limited to a

certain number of concurrent, outgoing peers to maintain the peer-to-peer network

(Bitcoin implementation limits each node to eight outgoing connection peers while

Ethereum limits this to 11). In addition, it can accept a certain number of unsolicited

incoming connections to form peers on the node’s public IP (Bitcoin allows up to 117

connections).

Considering Bitcoin, each miner maintains a table of IPs for incoming peers

sending unsolicited requests. The miner selects eight peers from the table to initiate

outgoing connections. The selection of IPs is systematic (not random). An attacker can

rapidly and repeatedly initiate unsolicited connection requests to the victim’s node

from attacker-controlled nodes. The victim’s node populates its table with attacker-

controlled miners’ IPs. The attacker continues to overwhelm the victim’s node with

irrelevant information until it restarts. With such effort, there is a high chance that the

victim will have the eight outgoing connections to attacker-controlled nodes after

restarting, which isolates the victim from an honest pool, as indicated in Figure 5.

24

Figure 5: Eclipse Attack

1.5.2.4.4 Block Withholding Attack

In this type of attack, some pool members who have joined to help mining

blocks never publish any blocks, thus decreasing the expected revenue of the pool.

1.5.2.4.5 Block Discarding Attack and Difficulty Raising Attack

Block discarding and difficulty raising attacks rely on the attacker’s hashing

power to mine blocks faster than others in the ledger, which leads to an increase of

complexity, affecting the performance of the Blockchain network [14].

1.5.3 Blockchain in Healthcare

 The literature reviewed in this section covers the challenges, capabilities, and

some proposed implementations of blockchain in EHR, specifically:

• The challenges in integrating existing legacy centralized EHR systems

• The required capabilities in any blockchain-based EHR systems to be

accepted

• Proposals for blockchain-based EHR systems, including:

o MedRec

25

o BBDS

o OmniPHR

o MedShare

1.5.3.1 Centralized-Based EHR

The move towards Blockchain-based EHR systems to integrate distributed

healthcare providers raises questions about the challenges of integrating current

centralized EHR systems that are distributed among healthcare providers with existing

legacy technology. Magyar [15] listed four challenges in integrating existing

centralized EHR systems:

• In centralized systems, EHRs are maintained in different formats that suit each

provider’s business model. This requires various interfaces and protocols for

integration, and there is no single protocol accepted across all providers.

Because of this complexity, there is high potential of compromising the

security of EHRs and the privacy of patients across the different utilized

middleware technologies and protocols.

• The current model of centralized systems provides high central authority to the

dominant health provider of the patient, which complicates the exchange of

health information in the case of unplanned treatment in an emergency

situation and can cause serious results such as fatality because of the lack of

timely access to EHRs.

• Auditing patients’ history and traceability is a significant concern in centralized

EHR systems as the information passes multiple healthcare providers. This is

especially a concern when institutional incentives influence the history of a

patient’s data

26

• The availability of patient data in integrated, centralized EHR systems is

inconsistent, and the related regulations are unclear. It is subject to the

resilience of each centralized healthcare provider.

An example of integrating centralized EHR systems was a five-year agreement

in 2016 between Google DeepMind and the Royal Free London NHS Foundation

Trust. This integration encountered significant problems, which were summarized by

Pilkington [16]:

• Lack of transparency and privacy

• Mismanagement of patients’ data and identities

• Delayed treatment due to malicious software infections, which caused delayed

service recovery

1.5.3.2 Blockchain-Based EHR Required Capabilities

Zhang, Walker, White, Schmidt, and Lenz [17] conducted research on the

required metric for any blockchain-based EHR system to be accepted. The researchers

identified seven metrics:

1. Entire workflow of the system is HIPAA-compliant

2. Framework supports Turing-complete operations

3. Support for user identification and authentication

4. Support for structural interoperability at minimum

5. Scalability across large populations of healthcare participants

6. Cost-effectiveness

7. Support for patient-centered care model

27

1.5.3.2.1 Entire workflow of the system is HIPAA-compliant

For a healthcare solution to be accepted and adopted, it must fulfill the

regulatory requirements of a country’s National Health Authority (NHA). Considering

the HIPAA Act, as an example of health regulation act in the US, Dagher, Mohler,

Milojkovic, and Marella [18] analyzed its requirements and concluded that Title II of

five HIPAA titles is relevant to Blockchain-based EHR. This title comprised the

standards for privacy of individually identifiable health information (privacy rule) and

the security standards for the protection of electronic protected health information

(security rule). Magyar [15] further analyzed HIPAA requirements and concluded that

Blockchain technology can fulfill the HIPAA requirements of secured access, privacy,

lack of centralized government, and cost reduction.

Zhang, Walker, White, Schmidt, and Lenz [17] highlighted precautions that

should be considered when implementing HIPAA-complaint Blockchain-based

solutions. Peng et al. stated, “A core tenet of HIPAA compliance is that Personally

Identifiable Information (PII) must be protected against a confidentiality breach. In

particular, the end-to-end workflow of a healthcare app from entering to processing

then delivering the data must be HIPAA compliant”. This can be achieved in

centralized systems using encryption techniques. However, in Blockchain, encryption

may not be useful because any data stored in the Blockchain is replicated across all the

miners and accessible by any party. Therefore, any breach of the currently used

encryption algorithms makes the EHR information vulnerable, especially data in the

Blockchain that is immutable and cannot be deleted. Accordingly, Zang et al.

recommended storing encrypted metadata of the EHRs in the Blockchain (with a

minimum level of information), which ensures that EHR data is securely stored [17].

28

1.5.3.2.2 Framework supports Turing-complete operations

Zhang, Walker, White, Schmidt, and Lenz [17] stated that any Blockchain-

based EHR system should be Turing-complete and have programming capabilities to

enable simple integration and interoperability with legacy systems. In addition, it

should have the capability for simple upgrades and feature enhancements. Blockchain

networks built specifically for healthcare applications are not scalable and cannot

fulfill these requirements.

1.5.3.2.3 Support for User Identification and Authentication

In EHR systems, users are classified as patients and healthcare professionals.

As [17] stated that any Blockchain-based EHR system should be able to uniquely

identify and distinguish each user while maintaining their anonymity on the

Blockchain, securely authenticate users, and be capable of recovering user’s

authentication information if it is lost or stolen.

1.5.3.2.4 Support for Structural Interoperability at Minimum

The system should enable the exchange of medical data and interpretation of

received data in its current standards [17], i.e., the system should be able to

communicate with known industry standards such as FHIR and HL7.

1.5.3.2.5 Scalability across Large Populations of Healthcare Participants

This was described in [17] thus: “A successful health app should leverage the

Blockchain to enhance interoperability, while maintaining its quality when users or

components of the app scale up and out”.

29

1.5.3.2.6 Cost-effectiveness

Any blockchain-based EHR system should be cost-effective compared to the

existing legacy systems without affecting its capabilities [17]. This factor has a

significant impact on the selection of blockchain parameters, including type, consensus

algorithm and incentives model.

1.5.3.2.7 Support of Patient-centered Care Model

According to [17], any Blockchain-based EHR system should provide patients

with the ability to control or monitor their information without compromising other

functionalities. These features may include self-reporting health information, access

to personal medical records and prescription history from different providers, auditing

existing access to patient health records, and the ability to share or revoke access to

patients’ own medical data.

1.5.3.3 MedRec

MedRec was proposed by Azaria, Ekblaw, Vieira, and Lippman [19] to utilize

Blockchain technology to integrate existing centralized EHR systems among

distributed healthcare providers. The solution uses Ethereum Blockchain’s smart

contracts capability to facilitate this integration. Each healthcare provider should

contribute an Ethereum mining node (usually a dedicated server) to participate in

MedRec. In addition, patients should also contribute an Ethereum mining node (on a

PC or mobile device) to participate in MedRec. The main functions of MedRec are to:

• Enable inter-provider access to patients’ EHRs using API interfaces. The API

information of the providers is stored in the Blockchain.

• Provide patients with the capability to manage access control to their EHRs.

30

Access control lists for patients and providers are stored in the Blockchain.

• Detect and notify patients about new access requests to their EHRs. Access

can be granted or rejected only by patients.

• Notify patients about changes to their EHRs and log the changes in the

Blockchain.

• Provide a copy of EHRs on patients’ nodes and dominant providers’ nodes.

Although MedRec accelerates the deployment of EHR systems by integrating

with existing systems using Blockchain technology to overcome the major limitations

of centralized EHR systems, MedRec has shortcomings that limit its feasible

production implementation:

• A mandatory component of MedRec is the presence of patients’ nodes, which

are used to communicate with patients for access control management. This

limits the scope of MedRec solutions to Blockchain-enabled patients (i.e.,

patients should have an Ethereum account). This is a major limitation of the

solution from the patients’ perspective (but not the providers’ perspective).

Any proposed solution should be capable of supporting all patients without

restrictions.

• Ethereum Blockchain uses POW as its consensus algorithm, which is known

to have significant computing power requirements. While healthcare providers

can contribute powerful mining nodes to use MedRec, this cannot be

(practically) achieved for patients, whose nodes are on PCs or mobile devices,

making MedRec practically infeasible.

• If a patient loses the private key to their Ethereum account (which is possible

using a mobile device or PC), MedRec does not provide a mechanism for a

31

patient to recover control of their EHR.

• The use of current centralized EHR systems raises an interoperability problem

regarding inter-provider access. The solution must assume that all providers

utilize the same EHR format standard such as HL7 or FHIR [19], which is not

the case with the current centralized systems.

• MedRec does not provide a mechanism for emergency access to EHRs if a

patient is admitted to a non-authorized hospital for emergency treatment.

1.5.3.4 BBDS

Xia, Sifah, Smahi, Amofa, and Zhang [20] proposed a Blockchain-based data

sharing (BBDS) system to provide access control management to EHRs stored in the

cloud based on the Blockchain technology. The proposed BBDS system utilizes

permissioned Blockchain consisting of an issuer that grants users or organizations

access to the system, a verifier that validates requests from system members and grants

corresponding access rights, and consensus nodes that facilitate the interface between

members and the verifier in addition to logging requests in Blockchain for auditing

and forensics purposes. The BBDS system provides the following functionalities:

• A proof of verification (POV) algorithm between the issuer and

users/organizations to enroll them in the BBDS system. The POV algorithm

is based on a proposed lightweight Diffie-Helman key exchange to generate a

session key for encryption and an electronic registration form to be validated

by the issuer.

• Controlled access to EHRs, stored in the cloud, by a verifier node for members

of the BBDS system. This verification process is based on a per-member

private key generated during the registration phase by the issuer and

32

communicated to members and the verifier. After successful verification of a

member’s identity, the verifier validates the request against member rights

and, if access is granted, the verifier retrieves data from the cloud and passes

it to the member, or read data from the member and posts it in the cloud.

• Audit logging in the Blockchain ledger using consensus nodes, where each

member’s request to read or post an EHR is stored in a separate block. The

information recorded in the block includes user identity, purpose of the

request, processing consensus node, verification result, and timestamps,

including request creation, request retrieval from unprocessed requests pool,

verification time, block broadcast time, and data send time.

Although the BBDS system is not limited by cryptography key recovery and

emergency access restrictions (because the actual EHRs are not stored in the

Blockchain and their access is controlled by the issuer/verifier), it has other limitations

with the current implementation:

• The use of permissioned Blockchain eliminates decentralized authority, which

is a core advantage of Blockchain technology. The model provides central

authority to the issuer (not the patient) to verify and accept members in the

system.

• Because of the use of non-Turing-complete Blockchain (i.e., no smart

contracts), the BBDS system records each event in a single block to be able to

uniquely identify the events by the block reference. This limits the scalability

of the system because of recording a large number of blocks in a very short

time.

• The proposed model provides the data to the requester before recording the

33

request details in the Blockchain, which introduces a vulnerability in the

system as data is provided without a recorded request.

• The proposed BBDS system does not have a mechanism to detect

modifications/tampering in EHRs in the cloud caused by system-independent

reasons such as malicious activity in the cloud.

1.5.3.5 MedShare

MedShare was proposed by Yang et al. [21] to connect centralized healthcare

entities and exchange EHRs using a hybrid cloud infrastructure. The proposal was

prototyped with three healthcare entities: Hospital Conde S. Januário (HC), Kiang Wu

Hospital (KW), and Macau University of Science and Technology Hospital (UH).

Medshare functions as follows:

• Each healthcare entity has a private cloud that converts EHRs from the entity’s

specific format to a standard EHR format and stores them locally in the private

cloud. In other words, each entity has two copies of an EHR, in a standard

format and a non-standard format.

• Standard format EHRs are indexed using hash maps, and the index values are

stored in a public cloud that is connected with private clouds. The public cloud

has a synchronizer component that is used to replicate per-patient EHRs across

all private clouds (scheduled replication).

• Doctors locally authenticate with the healthcare entity and query the EHRs of

patients. If a healthcare entity cannot find a patient ID locally (assuming

replication not yet been done), it queries the public cloud to locate the patient’s

EHR and, after successful validation, obtains the EHR.

The Medshare model is very practical and overcomes major limitations in

34

legacy EHR systems, but it lacks the following:

• Neither private nor public clouds guarantee immutable access control rules,

privacy isolation between patients, or immutable integrity verification, which

is provided by Blockchain technology.

• The replication of EHRs between healthcare entities is not scalable when a

large number of healthcare entities are involved in the system. This requires

!	 × (! − 1)	connections to achieve full replication of EHRs.

• Medshare uses patients’ ID cards as a mechanism for uniquely identifying

patients and obtaining their consent to grant healthcare providers access rights

to their EHRs, which is known to be an insecure technique compared to

biometrics identity verification.

1.5.3.6 OmniPHR

Roehrs, da Costa, and da Rosa Righi [22] proposed a Blockchain-based

application, OmniPHR, to address the following problems:

• Provide a unified view to patients of their healthcare records from anywhere

at any time.

• Provide up-to-date information to healthcare providers about patients

regardless of whether the data is local to the provider or is from an external

provider.

• Provide a single standard for healthcare records.

Each member of OmniPHR joins the Blockchain through a miner, called a leaf

node. OmniPHR uses a ‘routing overlay’ node (called a super node), which is

responsible for managing leaf nodes and inter-communication with other routing

35

overlays. Some other roles of the routing overlay node are:

• EHR handling: Accepting input medical records from IoT devices or

healthcare organizations, converting them to an open EHR format (the

standard EHR format used by OmniPHR), dividing the EHRs into chunks of

blocks, and distributing the blocks across Blockchain miners using load-

balancing algorithms

• Security: Encrypting blocks, signing blocks, validating blocks, and providing

access authentication and access control to the blocks.

OmniPHR has limitations in its capability to provide a unified EHR system:

• Similar to BBDS, the use of non-Turing-complete Blockchain adds significant

complexity for additional features or enhancements to the system compared to

Turing-complete Blockchain, which can have added features through software

coding.

• Storing large data in the Blockchain (e.g., X-rays and MRI scans) is not

practical due to the size requirements on the nodes, which entails significant

overhead in addition to the encryption and decryption processing overhead.

• The proposed model does not uniquely identify the author of data because all

the blocks are signed by the leaf nodes or super nodes.

• Access to EHRs should be authorized by patients, which does not address the

limitation of unplanned treatment such as emergency admission by

unauthorized healthcare providers.

• OmniPHR does not overcome the limitation of duplicate data such as duplicate

patient registration information that occurs when a patient register at two

healthcare providers with different identities. Ideally, OmniPHR should have

36

a mechanism to uniquely identify each patient without duplication, such as

biometric identity.

1.5.3.7 MedBlock

Fan, Wang, Ren, Li, and Yang [23] proposed the MedBlock system to share

medical data efficiently using Blockchain. The MedBlock system generates a

private/public key pair for each patient that is used to encrypt and sign medical records.

The actual records are stored in the health provider’s local database while the

Blockchain holds the hash value of the records. The core functions provided by

MedBlock are:

• A dedicated certificate authority server is used to generate keypairs for

patients, community hospitals and national hospitals.

• Patients submit their records through community hospitals or national

hospitals signed with their private key and encrypted by their public

key.

• Health records are not stored in community hospitals. Instead, they are

stored directly in national hospitals’ databases.

• The department that accepted records from a patient signs them using

its local private key to ensure integrity and non-repudiation.

• Each geo-group of national hospitals has the same group of endorsers

that will build the blocks and submit them to the consensus nodes

(called orderers). The hospitals submit the hash value of the medical

records to the endorsers, and the records are stored in the local database.

• Once the orderers reach consensus, they post the block to the ledger.

• Access control is implemented by MedBlock through private key

37

signatures. The client application scans the blocks until a valid

signature is found that corresponds to the patient’s data.

While MedBlock provides an efficient and scalable mechanism using role-

based nodes to perform specific functions and guarantee security through double-

signing, it has the following drawbacks:

• The use of private/public keys for patients to sign and encrypt records

creates an issue in the case of unplanned treatment such as emergency

admission. In such a case, medical records will not be accessible, which

can cause complications with treatment and even fatality.

• If a private key is lost, patients cannot recover their medical records.

• The access control mechanism used is inefficient, especially when the

ledger grows to a very large number of blocks. In this case, examining

all the blocks until the records are found is not scalable.

• The lack of programmability is a major drawback of MedBlock if new

features are required, as this would require the addition of new nodes.

• MedBlock does not provide a mechanism to exchange medical records

between hospitals as the records are stored in the local database of

national hospitals.

38

Chapter 2: Methods

This chapter addresses the contribution to the problem statement and proposes

a solution to ensure an access recovery mechanism for patients’ EHRs that are

exchanged and synchronized between distributed healthcare providers using

Blockchain. The high-level architecture of the solution is discussed, followed by a

detailed explanation of individual components and layers. In addition, functional use

cases of the design are provided and explained.

2.1 Design Overview

The approach followed in our solution is to divide the system into layers and

provide distributed functions in a modular structure. Accordingly, the system is

divided into four layers, namely the User Interface, Middleware, Blockchain, and

Cloud Store. Figure 6 shows the layers that comprise SDHCARE and the modules

associated with each layer.

39

Figure 6: SDHCARE High-Level Architecture

2.1.1 User Interface (UI) Layer

The UI layer is the presentation of the system to the users, by which they can

interact with SDHCARE. These users can be doctors, pharmacists, receptionists,

Admin UI

Reception UI

Patient UI

External Entity UI

DirectoryService

DatabaseService

Blockchain Client

ehrHashTable

dnsSC providersTable

patientsSC Cloud Store

Cloud API Interface

patientsTable

(a) - User Interface

(b) - Middleware

(c) - Blockchain

Middleware Manager

Doctor UI

accessControlSC

(d) - Cloud

Layers Local Per-Provider

Layers Shared All-Providers

40

officers, researchers, or insurance companies, among others. This layer is local to each

healthcare provider that is a member of SDHCARE. It has mandatory and customized

components according to a provider’s needs. The mandatory components are

summarized as:

• Admin UI: This interface is mainly used by authorized representatives

of the healthcare provider to enroll the provider in the SDHCARE

system. Upon successful enrollment, the provider’s details are stored

in a providers’ immutable table for it to be uniquely identified in the

SDHCARE system.

• Reception UI: This interface is used by a healthcare provider’s

reception department. It provides two main functions:

o Registering new patients in the system, which involves creating

an entry for each patient in an immutable-blockchain table that

includes all patients in SDHCARE. This ensures exchange and

synchronization of all patients across SDHCARE healthcare

providers.

o Booking and confirming patients’ appointments, which grant

the corresponding clinics and/or departments access to patient’s

records (after the patient’s confirmation using his/her

fingerprints). This access is stored and maintained along with

the patient’s registration record.

• Patient UI: This is a biometric interface that accepts patients’

fingerprints and uses them for the following functions:

o Uniquely identify patients using fingerprints instead of secret

keys (or private keys) across all members of SDHCARE.

41

o Managing access and role assignments by patients using

fingerprints, which eliminates the problem of recovering a

patient’s management of access to their records in the case of a

lost secret key

o Indexing patients’ records metadata stored in the blockchain

records table

o Simplify the process of granting access to patient records in the

case of emergency treatment using fingerprints

• Doctor UI: This interface is used by the doctors to view patients’ EHRs

and post new EHRs after successful validation of a patient’s identity

and authorization rules implemented in the SDHCARE system.

• External Entity UI: This interface enables remote healthcare providers,

research entities, insurance companies, and other parties to obtain

access to patient records after successful validation of access requests

to provide globalized access to the SDHCARE system.

2.1.2 Middleware Layer

This layer is the core of the SDHCARE solution. It is used to interlink all of

the other SDHCARE layers in addition to providing major SDHCARE services,

including directory services and database services. Figure 6 (b) lists all modules

included in the Middleware layer. These modules are local to each healthcare provider

participating in the SDHCARE system and can be summarized as follows:

• DirectoryService Module: This module is mainly used to host the

directory of all accounts of the healthcare provider. Local identities

within the healthcare provider (e.g., doctors, nurses, system admins,

42

receptionists) are validated against the DirectoryService module.

Additionally, it is responsible for access control validation on UIs.

• DatabaseService Module: This module is responsible for holding all

database information local to the healthcare provider, including clinics’

IDs, provider registration details, and patients’ appointments.

• Middleware Manager Module: This module acts as the main controller

for interacting between the modules within Middleware layer as well

as intercommunication with other layers including UI, Blockchain and

Cloud Store layers.

• Cloud Application Programmable Interface (API) Interface Module:

This module is mainly used to facilitate communication between the

Middleware Manager module and the Cloud Store to read or post

healthcare records.

• Blockchain Client Module: This module is responsible for the

communication between the healthcare providers and Blockchain layer.

All interactions between the Middleware Manager module and the

Blockchain layer go through this module. Two types of operations exist

within this module:

o Write requests to publish new blockchain transactions of data

to the Blockchain smart contracts and immutable tables.

o Read requests in the form of data transactions consolidated in

blocks to read data from the immutable tables or responses from

smart contracts.

43

2.1.3 Blockchain Layer

The Blockchain layer is a shared layer across all healthcare providers

participating in SDHCARE. This layer provides two core functions in the SDHCARE

system, namely:

• Immutable smart contracts (SC) to perform programmed logic

functions.

• Immutable tables in the form of chained blocks to store different types

of data that need to be protected against unauthorized tampering.

The design of the immutable tables is distributed to ensure the anonymity of

the data stored in these tables. For example, the visibility of ehrHashTable should not

provide any correlation to the patients in patientsTable. This correlation is controlled

by the middleware layer using patient’s fingerprint hash. Similarly, the design of the

smart contracts is distributed to ensure modularity and flexibility for additional

features and enhancements.

Figure 6 (c) summarizes the components of the Blockchain layer. The next

sections provide details of each component.

2.1.3.1 DNS Smart Contract (dnsSC)

The dnsSC is programmed to perform the initial enrollment of the healthcare

provider in the SDHCARE system. It takes the provider’s information from the Admin

UI and stores it in providersTable. In addition, it ensures the uniqueness of the

provider’s information across all the members of the SDHCARE system.

44

2.1.3.2 Patients Smart Contract (patientsSC)

This smart contract plays a vital role in the SDHCARE system and is

responsible for multiple functions:

• Initial registration of patients in the SDHCARE system, which includes

populating patients’ details in patientsTable.

• Updating ehrHashTable with new EHR metadata and their

corresponding hash values.

• Retrieving patients’ details from patientsTable.

• Retrieving the list of EHRs from ehrHashTable.

2.1.3.3 Providers Table (providersTable)

providersTable is an immutable table stored in Blockchain (in the form of

chained blocks) and holds information about all healthcare providers that are members

of SDHCARE. It is populated using dnsSC. Figure 7 outlines the information held in

providersTable:

• Name: Healthcare provider’s name

• Web address: Healthcare provider’s domain name

• OHP: Healthcare provider’s Blockchain address

Figure 7: Summary of providersTable Data

45

2.1.3.4 Patients Table (patientsTable)

This immutable table stores information about patients and is populated using

patientsSC. The data in patientsTable is indexed using patients’ fingerprints hashes,

which is critical for the unique identification of patients. In addition, the fingerprints

hashes indicate the relationship between patientsTable and ehrHashTable. Figure 8

summarizes the data stored in this table:

• Fingerprint Hash: Patient fingerprint hash

• OHP: This is used to trace the origin of the patient record

• PACL: This is the patient access control list array and includes the IDs

of clinics allowed to access a patient’s EHR

• Receptionist ID: The ID of a local’s provider reception department is

used for auditing purposes

Figure 8: Summary of patientsTable Data

2.1.3.5 EHR Metadata Table (ehrHashTable)

The EHR Metadata Table holds the metadata of patients’ EHRs and their

corresponding hash values. These hash values are used for indexing EHR raw data

uploaded to the cloud store. Additionally, these hash values are used for detecting any

unauthorized changes to EHRs. Similar to patientsTable, ehrHashTable is indexed

46

using patients’ fingerprints hashes to ensure unique mapping between patients’ EHRs

and their identities.

Our design stores the hash values of the EHRs in ehrHashTable instead of the

EHRs raw data for two reasons:

• In Blockchain, blocks are not encrypted, accordingly, storing clear-text

EHRs breaches the privacy of patients. Further, storing encrypted

EHRs makes them subject to crypto-analytic attacks, and any success

in cracking the encrypted algorithms would breach patients’ privacy.

• Blocks are stored locally on the miners. This method can be used for

small EHRs. However, for large EHRs such as MRI scans and X-ray

images, the solution won’t be scalable.

Figure 9 summarizes the information included in ehrHashTable:

• EHR Name: EHR name

• EHR Date: EHR creation date

• EHR Hash: EHR Merkle root hash

• Fingerprint Hash: Patient fingerprint hash

• EHR Status: EHR status (active/deleted)

Figure 9: Summary of ehrHashTable Data

47

The hash value of the EHR is calculated using a Merkle Tree algorithm as

follow:

H1 = SHA256 (EHR Name) + SHA256 (EHR Raw Data)

H2 = SHA256 (Date) + SHA256 (EHR Status)

Merkle Root Hash = SHA256(SHA256 (H1) + SHA256 (H2))

Finally, the Merkle root hash is used as an indexing key in the cloud store to

look up EHRs raw data.

2.1.3.6 Access Control Smart Contract (accessControlSC)

The accessControlSC acts as access control manager for any activity on

patients’ EHRs. It validates all requests including:

• Writing EHR records in ehrHashTable.

• Reading EHR records from ehrHashTable.

• Granting health provider clinics access to EHRs.

Table 4 summarizes the access control matrix provided by accessControlSC.

Table 4: Access Control Matrix by accessControlSC

 providersTable patientsTable ehrHashTable

Reception Read
Write

Doctor Read Read
Write

Patient Grant Grant
Officer Read/Write

48

2.1.4 Cloud Store Layer

The Cloud Store layer is a shared layer across all healthcare providers

participating in the SDHCARE system. It holds patients’ raw EHRs, which are indexed

using Merkle root hash values of the EHRs. This makes EHRs in the cloud store

completely anonymous. In other words, an EHR cannot be traced back to a patient’s

identity because patient’s identity, fingerprint, is not stored in the cloud store,

blockchain or providers’ DatabaseService modules.

2.2 Functional Use Cases

This section explains SDHCARE operation for major use cases that exist in

any healthcare provider deploying SDHCARE. These use cases include provider

enrollment in SDHCARE, new patient registration, patient appointment management,

and doctors’ access to patients’ EHRs.

2.2.1 SDHCARE Provider Enrollment

For enrollment in the SDHCARE system, a provider should select a unique

name and web address for global reachability. The next step is storing this information

in providersTable. This helps other providers verify the uniqueness of their

information before enrollment in SDHCARE. Further, it is used by all SDHCARE

healthcare providers to identify the source of patient EHRs. The process of provider

enrollment, shown in Figure 10, is summarized as follow:

1. From the Admin UI, the provider’s admin is authenticated against the

provider’s DirectoryService.

49

2. After successful authentication, the admin enters the provider’s details

in the Admin UI (name and web address).

3. The provider’s Middleware Manager sends a request to the Blockchain

through its Blockchain Client to create a new account, which entails

generating a keypair. The private key is used to sign all requests

(transactions) from the provider. The public key is used as the

provider’s Blockchain address to uniquely identify it across the ledger

(OHP). This keypair is returned to the provider from the Blockchain

and stored in DatabaseService component of SDHCARE

4. Next, the Middleware Manager obtains the provider’s OHP from the

DatabaseService component and the Blockchain Client calls the dnsSC

to update providersTable with the provider’s name, web address, and

OHP.

50

Figure 10: Hospital Enrollment Sequence Diagram

2.2.2 Patient Registration

New patients visiting a SDHCARE-enabled healthcare provider go through the

registration process to be added to patientsTable. Once patients complete the

registration process, they are uniquely identified across all SDHCARE-enabled

providers. This unique identification is achieved using patients’ fingerprints hashes for

patientsTable indexing. The process of adding new patients to the SDHCARE system

is described below and summarized in Figure 11.

51

1. The receptionist uses Reception UI to authenticate against a provider’s

DirectoryService.

2. After successful authentication, the receptionist captures the patient’s

details that are required by patientsTable through Reception UI.

3. The patient validates and confirms the details by submitting his/her

fingerprint through Patient UI. A fingerprint is a mandatory input to resume

the process.

4. Next, the provider’s Middleware Manager obtains the provider’s OHP and

the reception ID from the provider’s DatabaseService. This information is

passed to the Blockchain Client.

5. Finally, the provider’s Blockchain Client calls patientsSC to store the

patient’s details entered by the receptionist, along with the provider’s OHP

and reception ID, in patientsTable indexed using the patient’s fingerprint

hash.

52

Figure 11: Summary of the Patient Registration Process

2.2.3 Patient Appointment Management

SDHCARE-reception manages patients’ appointments, including booking new

appointments and acknowledging existing appointments attended by patients. The

appointments are stored in each provider’s DatabaseService and are indexed using

patients’ national IDs (NIDs). Additionally, the appointments are not synchronized

between providers in the SDHCARE system. A patient attending an appointment needs

to confirm the attendance by submitting his/her fingerprint. This confirmation grants

53

the clinic access to the patient’s EHR. Figure 12 summarizes the process of booking a

new patient appointment, which entails the following steps:

1. The receptionist uses Reception UI to authenticate against the provider’s

DirectoryService.

2. After successful authentication, the receptionist provides appointment

details, including the patient’s name, NID, date/time, and clinic.

3. The Middleware Manager receives the details of the appointment from the

Reception UI and stores them in the DatabaseService of the local provider.

Figure 12: Process for Booking a New Appointment

The process of confirming a patient’s appointment and granting access to the

visited clinic is described below and summarized in Figure 13:

54

1. The receptionist uses Reception UI to authenticate against the provider’s

DirectoryService.

2. After successful authentication, the receptionist looks up the patient’s NID

against DatabaseService to obtain a list of the patient’s active

appointments.

3. The receptionist selects the desired appointment and the patient confirms it

by submitting his/her fingerprint using Patient UI.

4. Upon confirmation, the Middleware Manager queries DatabaseService to

obtain the visited clinic’s ID and deactivate the selected appointment.

5. Finally, the Middleware Manager calls accessControlSC through the

Blockchain Client to append the clinic’s ID to the PACL stored in

patientsTable and indexed using the patient’s fingerprint hash. This grants

the visited clinic access to the patient’s EHR.

It is important to note that the Blockchain Client uses the clinic ID + OHP as

the format of the clinic ID stored in PACL. This eliminates the possibility of conflict

caused by providers having the same clinic IDs and being granted access to the same

EHRs. For example, if the clinic ID is 100 and the OHP is 100000000000000000001,

the clinic ID stored in PACL is 100100000000000000000001, which is guaranteed to

be unique due to the uniqueness of the OHP in the Blockchain.

55

Figure 13: Booking Confirmation and Access Granting Summary

2.2.4 Doctor’s EHR Access

In the SDHCARE system, doctors can have read and/or write access to EHRs,

as detailed in Section 2.1.3.6. This access can be granted by patients using their

fingerprints, as described in Section 2.2.3. EHRs are divided into EHRs’ metadata,

which is stored in ehrHashTable and indexed using patients’ fingerprints hashes to

56

ensure unique identification, and EHRs’ raw data, which is stored in the cloud store

and indexed using the Merkle root hash of the EHRs. Using read access, doctors can

obtain a list of accessible patients’ EHRs from ehrHashTable and download the desired

one(s) from the cloud store. Write access allows doctors to create new EHR metadata

in ehrHashTable and upload the EHR raw data to the cloud store. The following

summarizes doctors’ EHR read process, which is also outlined in Figure 14.

1. The doctor uses Doctor UI to authenticate against the provider’s

DirectoryService.

2. After successful authentication, Doctor UI is redirected to Patient UI for

the patient to submit their fingerprint.

3. Upon the patient’s submission of their fingerprint, the Middleware

Manager queries the DatabaseService for the doctor’s clinic ID using the

doctor’s username.

4. Next, the Middleware Manager makes a call to accessControlSC through

the Blockchain Client. This call uses the patient’s fingerprint hash and the

doctor’s clinic ID to validate whether the doctor has read access to the

patient’s EHR.

5. If the clinic ID is listed in the PACL of the patient (by reading patientsTable

using the fingerprint hash), accessControlSC grants the doctor read access.

6. Based on the authorized read request, the Blockchain Client calls

patientsSC to find the list of EHRs stored in ehrHashTable. This list is

returned to the Middleware Manager which passes the details to Doctor UI.

The lookup is executed by patientsSC using the patient’s fingerprint hash

passed from the Blockchain Client.

57

7. Upon the doctor’s selection of the desired record, the Middleware Manager

initiates a call to the cloud store, through Cloud API Interface, to retrieve

the EHR data (using the Merkle root hash associated with the selected

record in the list).

8. Once the EHR data is received by the Middleware Manager, it performs an

integrity check by comparing the stored Merkle hash of the selected record

against the calculated Merkle hash of the received data.

9. If the hash is valid, the Middleware Manager passes the data back to the

doctor. Otherwise, an integrity failure alert is triggered.

58

Figure 14: Summary of the EHR Read Process

59

Similar to the read process for EHRs, the process by which doctors write EHRs

by doctors is outlined in Figure 15 and summarized as follows:

1. The doctor uses Doctor UI to authenticate against the provider’s

DirectoryService.

2. After successful authentication, the doctor adds details and/or attach files to the

EHR.

3. The patient verifies the details of the EHR and confirms acceptance by

submitting their fingerprint.

4. Once submitted, the Middleware Manager looks for the doctor’s clinic ID in

DatabaseService using the doctor’s login.

5. Once the clinic ID is returned from DatabaseService, the Middleware Manager

uses the Blockchain Client to call accessControlSC requesting authorization to

write EHR metadata to ehrHashTable. The authorization request submits the

patient’s fingerprint hash and clinic ID to accessControlSC to verify if the

clinic ID is listed in the PACL of the patient.

6. Upon successful authorization, the Middleware Manager calculates the Merkle

root hash of the EHR.

7. Next, the Blockchain Client call patientsSC to write EHR metadata into

ehrHashTable, which includes EHR details and the Merkle root hash. This is

indexed using the patient’s fingerprint hash.

8. Finally, the Middleware Manager uses the Cloud API Interface to upload the

EHR data to the cloud store with the name of the EHR as the Merkle root hash.

60

Figure 15: Summary of the EHR Write Process

61

Chapter 3: Implementation

This chapter discusses the implementation of the SDHCARE prototype

according to the proposed design functions. The chapter covers the selection process

for the technologies used in the prototype and provides an overview of them. The final

section of this chapter outlines the high-level implementation of the SDHCARE

prototype. The low-level implementation and coding of the SDHCARE prototype are

described in detail in the appendices.

3.1 Prototype Components

This section provides an overview of the components used to build our

prototype. These components were selected based on the following criteria:

• Simplicity of the component setup and configuration to implement the

required functions in SDHCARE.

• Interoperability capabilities of the component with other technologies

to simulate the overall design of SDHCARE.

• Feature richness and built-in security capabilities of the component that

are in line with SDHCARE requirements.

• Stability, reliability, and operational consistency of the component.

According to the proposed SDHCARE design, which was described in Chapter

2, the following technologies were selected for the prototype:

• Django 3.0 Web Development Platform: This was used to build the

required web interfaces for Doctor UI, Admin UI, and Reception UI.

Django is a Python-based platform that has built-in directory services.

62

This feature allows Django to integrate seamlessly with customized

Python modules to provide additional functions such as API integration

with Ethereum.

• Python 3.8: The Python interpreter is at the core of the SDHCARE

prototype and provides the following functions:

o Django web development coding language.

o Interaction with Django built-in directory services.

o API integration with the Blockchain and cloud store.

o SQL interface with healthcare provider database.

o Integrity validation and hashing of EHRs.

• SQLite 3: SQLite was used to implement the DatabaseService module

local to the healthcare provider, mainly for storing information,

including departments’ IDs, appointments, and a provider’s Blockchain

details. SQLite has a native database connector with Django through

Python.

• Ethereum Blockchain: This is the public Blockchain technology used

to provide immutable smart contracts and immutable tables. Ethereum

was chosen to extend the accessibility to EHRs at large scale, including

cases in which patients relocate to different geographic areas. In such

cases, the new geo-healthcare provider can connect to Ethereum and

request access to a patient’s EHR.

• Microsoft (MS) Azure Files: This service is hosted on the public cloud

to store EHRs. The selection of MS Azure Files was due to its simple

accessibility and usability in addition to its independence from the

format of EHRs. MS Azure Files uses an SMB protocol to provide

63

secure communication between on-premise infrastructure and the cloud

[24].

3.2 Django Architecture

This section covers the basics of Django web development architecture to

enable an understanding of the setup and configuration of the SDHCARE prototype.

Django consists of frontend and backend layers. The frontend layer consists of HTML

templates with which clients interact. The backend layer, on the other hand, gets inputs

from templates and performs the programmed function accordingly. Figure 16 shows

a block diagram of Django architecture.

Figure 16: Django Web Development Architecture

64

Django simplifies HTML coding using Forms, which are Python functions

defined in forms.py file. These functions specify HTML input fields and their labels,

types, and maximum lengths, etc. (Forms do not include HTML styles and javascripts).

The actual HTML pages presented to clients are combined versions of style sheets,

javascripts, bootstraps, and other elements defined in HTML template files and with

inputs returned from forms.py.

The input values returned from the clients can be written into the database

through Models (models.py). Models act as an abstraction layer, provided by Django

and programmed using Python. They can translate Python instructions into database

queries depending on the type of integrated database. Models can receive input values

from HTML templates through Views (views.py). Additionally, Models can poll data

from the database and pre-fill Forms inputs to be presented to clients through HTML

templates (such as by dropdown selection).

Tables (tables.py) in Django are used to populate information from the

database in table format and present them to clients. This simplifies the process of

creating HTML tables compared to traditional HTML methods. Tables do not handle

styles, as this is controlled through HTML templates.

Django uses Views to link Forms, Tables, and Models with Templates. Views

control the logic of the Django web flow and how requests/responses are handled

between clients and the web application. It is at this point that SDHCARE core

functions are implemented. Additionally, Views allow the import of custom Python

models for extended functionalities that are not present in Django.

65

3.3 System Implementation

This section outlines the implementation steps of the SDHCARE prototype

and covers high-level implementation. The source code for Django, Python modules,

and Ethereum smart contracts is included in the appendices.

3.3.1 Building the Runtime Environment

The first step in building the SDHCARE prototype was setting up the runtime

environment that hosts the prototype components (described in Section 3.1). These

components are independent of operating-system. MacOS Catalina was selected as the

OS hosting SDHCARE system in the healthcare provider to run Django, Python, and

SQLite, and communicate with Ethereum and MS Azure. Figure 17 shows the used

version of MacOS.

Figure 17: MacOS Software Version for SDHCARE

66

The next step was to download and install Python 3.8 and PyCharm 2019.3.2

IDE. From PyCharm IDE, a new virtual environment was created to use Python 3.8 as

an interpreter for Django and custom Python modules. This was followed by creating

a new project in PyCharm called SDHCARE to run on the created virtual environment,

i.e., interpreted using Python 3.8 as shown in Figure 18.

Figure 18: PyCharm SDHCARE Project with Python 3.8 Interpreter

Following the creation of the SDHCARE project in PyCharm, a list of

required Python libraries was installed. Table 5 summarizes this list of libraries.

Python uses the PIP3 utility to install external libraries from the internet.

67

Table 5: Python Libraries Required for SDHCARE

Library Name Purpose

django Web development framework; this installation includes
SQLite 3

django-Tables2 For formatting and styling tables in Django

crispy For formatting and styling HTML templates in Django

web3 For API communication with Ethereum

azure-storage-file For API communication with MS Azure

3.3.2 Initializing SDHCARE Web and Database Components

After preparing the runtime environment for hosting SDHCARE, the next step

was initializing the Django web framework and database. The initialization was done

in the following order to ensure the successful running of Django:

1. Initialize SQLite3 DB to be ready for storing the provider’s Ethereum

information and clinics’ information. This is done by running the following

commands from the PyCharm SDHCARE project terminal:

python manage.py makemigrations

python manage.py migrate

2. Create a Django admin user to administrate the Django management console,

including account creation in the Django built-in directory service. These

accounts represent doctors, nurses, officers, and receptionists. Additionally, the

admin user populates the SQLite3 database with information about the

healthcare provider’s clinics and Ethereum information. The command for

creating an admin user is:

68

python manage.py createsuperuser

3. Create SDHCARE user accounts and groups by navigating to

http://localhost:8000/admin, signing in using the admin account, adding groups

for different permissions, adding new users, and assigning users to their

respective groups. Figure 19 shows a sample of users, groups, and their

assignments.

Figure 19: Example of Users, Groups, and Group Assignment

4. Create local database tables for the SDHCARE healthcare provider. These

tables are stored in the SQLite3 database with the following structures:

69

• Appointments Table: Name Column (patient name), NID, Date

Column, Time Column, and Department Column (clinic to be visited).

• Departments Table: Code Column (clinic code) and Name Column

(clinic name).

• Provider Table: OHP Column (Ethereum public key) and Secret

Column (Ethereum private key).

The Python code for creating these tables was written in models.py as shown

below.

class department(models.Model):
 code = models.IntegerField(unique=True, primary_key=True)
 name = models.CharField(max_length=100)

class provider(models.Model):
 ohp = models.CharField(max_length=100, primary_key=True)
 secret = models.CharField(max_length=100)

class appointment(models.Model):
 name = models.CharField(max_length=100)
 nid = models.IntegerField()
 date = models.DateField(default=timezone.now)
 time = models.TimeField(default=timezone.now)
 department_code = models.ForeignKey('department',
on_delete=models.CASCADE)

5. From the Django admin console, populate departments and provider database

tables with provider’s clinics’ details and Ethereum details, respectively

(appointments database is populated by the receptionist, as described later).

Figure 20 shows the created tables from the Django admin console.

70

Figure 20: Example of SDHCARE Databases

3.3.3 Building SDHCARE Django Code

After the successful initialization of Django, the next step was writing the

Django Python code to perform the required functions of the SDHCARE prototype.

As mentioned at the beginning of this chapter, this section covers only the high-level

coding structure. The low-level coding is available in the appendices.

The first step in Django coding was developing the HTML templates for the

frontend layer. The approach for HTML coding was based on developing a base

template (base.html) containing all shared components across all pages, such as

header, footer, title, and styles. Any child HTML template has page-specific

components combined with the base template, presented to the user. Figure 21

summarizes the HTML coding approach along with all the HTML templates.

71

Figure 21: Summary of HTML SDHCARE Template Structure

As summarized in Figure 21, each UI has a set of specific HTML templates

that are combined with base.html before being presented to the user.

After creating the HTML templates, the next step was building the functions

in forms.py (for the input fields to be presented with each template) and associating

each form’s function with its corresponding HTML template through functions in

views.py. Figures 22, 23, and 24 provide summaries of forms.py, views.py, and the

corresponding UI.

72

Figure 22: Admin UI with Forms and Views

Figure 23: Doctor UI with Forms and View

73

Figure 24: Reception UI with Forms and Views

73

74

Below is a sample of code in views.py, which links adminui-get.html with the

getProviderInfo function from forms.py. The page should display one field to the user

to enter ‘Hospital Ethereum Address’ as shown in Figure 25.

views.py
**

def adminui_get(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = getProviderInfo(request.POST)
 # check whether it is valid:
 if form.is_valid():
 account_address = form.cleaned_data.get('OHP_Eth')
 provider = dnsSC_get(account_address)
 context = {
 'provider': provider
 }

 return render(request, 'SDHCARE/adminui-get.html', context)

 # if a GET (or any other method) we'll create a blank form
 else:
 form = getProviderInfo()

forms.py
**

class getProviderInfo(forms.Form):
 OHP_Eth = forms.CharField(label='Hospital Ethereum Address',
max_length=100)

Figure 25: Healthcare Provider’s getProviderInfo Page

75

Access to each set of UIs is controlled using role-based access control (RBAC)

implemented by Python decorators. The decorator obtains the session username,

verifies its group membership (which was configured during Django initialization),

and allows access only if the user is a member of the required group. Below is a sample

code of using decorators to limit doctors’ access to Doctors UI only. These decorators

are implemented in views.py.

@custom_user_passes_test(lambda u: Group.objects.get(name='SDHCARE-Admins')
in u.groups.all())
def adminui(request):

@custom_user_passes_test(lambda u: Group.objects.get(name='SDHCARE-Admins')
in u.groups.all())
def adminui_get(request):

@custom_user_passes_test(lambda u: Group.objects.get(name='SDHCARE-Admins')
in u.groups.all())
def adminui_submit(request):

Another access control mechanism is applied to grant permissions to access

patients’ EHRs, using decorators and smart contracts. Clinics are granted permissions

to access patients’ EHRs only if the session user is a member of the SDHCARE-

Reception group and the patient submits a valid fingerprint. A third form of access

control is applied for doctors’ access to EHRs and is covered in Section 3.3.4.

The last step in Django coding was linking models to UIs through views. In

Figures 22, 23, and 24 the set of functions in models.py are mapped to their respective

UIs to have information read from the database and displayed to clients, such as a

patient’s appointments or a provider’s OHP address, or to write information such as

booking a new appointment into the database. Some database information, such as

appointments, is formatted in tables, hence the information from models.py is passed

to views.py through tables.py. Below is a sample code for formatting appointment

data.

76

tables.py
**

class appointmentTable(tables.Table):
 department_code = tables.Column(verbose_name='Clinic')
 #nid = tables.Column(verbose_name='National ID')
 # id = tables.Column(visible=False)
 id = tables.CheckBoxColumn(accessor='id')

 class Meta:
 model = appointment
 template_name = "django_tables2/bootstrap4.html"

models.py
**

class appointment(models.Model):
 name = models.CharField(max_length=100)
 nid = models.IntegerField()
 date = models.DateField(default=timezone.now)
 time = models.TimeField(default=timezone.now)
 department_code = models.ForeignKey('department',
on_delete=models.CASCADE)

 def __str__(self):
 return self.name

views.py
**

def receptionui_get(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = getAppointments(request.POST)
 # check whether it is valid:
 if form.is_valid():
 nid = form.cleaned_data.get('nid')
 table = appointmentTable(appointment.objects.filter(nid=nid))
 return render(request, 'SDHCARE/receptionui-get.html',
{"table": table})

 else:
 form = getAppointments()

 return render(request, 'SDHCARE/receptionui-get.html', {'form': form})

The following set of tables (Tables 6, 7, and 8) summarize the functions

configured in Views, Forms, and Tables. These functions describe how SDHCARE

design requirements are implemented in Django. The functions in Models were

described in the previous section that outlines Django SQLite3 DB initialization.

77

Table 6: Summary of Views Functions

Name Description

home To render home page template to users
about To render about page template to users

adminui

• Verifies that the session user is a member of the
SDHCARE-Admins group

• Renders the base and adminui templates for admins
to select ‘Enter Hospital Information’ or ‘Get
Hospital Information’

adminui_get

• Verifies that a session user is a member of the
SDHCARE-Admins group

• Reads admin OHP input and obtains the hospital
information stored in Ethereum providersTable for
that OHP; this information is returned to the admin

adminui_submit

• Verifies that the session user is a member of the
SDHCARE-Admins group

• Reads admin input (hospital name and web
address) and stores the information in Ethereum
providersTable using OHP as the indexing key;
OHP is obtained from the address of the transaction
sender

receptionui

• Verifies that the session user is a member of the
SDHCARE-Reception group

• Renders the base and receptionui templates for
reception to select ‘New Patient’, ‘Get Patient
Appointments’, or ‘Book New Appointment’

receptionui_get

• Verifies that the session user is a member of the
SDHCARE-Reception group

• Accepts a patient’s fingerprints and uses it as an
index key to obtain all active appointments
associated with that patient

appointment_confirm

Performs two-factor validation by verifying a patient’s
fingerprint and reception group membership; if both are
valid, the clinic is granted access to the patient’s EHRs;
this access is stored in the Ethereum patientsTable and
covers all doctors in that clinic

78

Table 6: Summary of Views Functions (Continued)

Name Description

receptionui_book

• Verifies that the session user is a member of the
SDHCARE-Reception group

• Books new appointments for patients and stores
them in the appointments database, which is
indexed using the patient’s NID

new_patient
• Verifies that the session user is a member of the

SDHCARE-Reception group
• Creates a new patient record in the Ethereum

patientsTable

doctorui

• Verifies that the session user is a member of the
SDHCARE-Doctor group

• Renders the base and doctorui templates for the
doctor to select ‘Get Patient EHRs’ or ‘Submit
Patient EHRs’

doctorui_get

• Verifies that the session user is a member of the
SDHCARE-Doctor group

• Verifies that the doctor’s clinic is granted access to
the patient’s EHRs (using accessControlSC, which
is covered in Section 3.3.4)

• Displays a list of EHRs and hashes to the doctor,
which are indexed using patients’ fingerprints
(from the Ethereum ehrHashTable); these records
are formatted in a table before being passed to
doctors

• Once the doctor selects an EHR, this verifies that
the cloud EHR's hash is the same as the hash in
ehrHashTable

• Retrieves the EHR from Cloudstore

doctorui_submit

• Verifies that the session user is a member of the
SDHCARE-Doctor group

• Verifies that the doctor’s clinic is granted access to
a patient’s EHRs using the patient’s fingerprint
(using accessControlSC, which is covered in
Section 3.3.4)

• Creates an EHR based on information submitted by
a doctor; the EHR is stored in the Ethereum
ehrHashTable. A Merkle root hash is calculated for
the EHR and uploaded with the record

79

Table 7: Summary of Forms Functions

Name Description

getProviderInfo Presents one input field to the provider’s
admin: the provider’s Ethereum address
(OHP)

submitProviderInfo Presents two input fields to the
provider’s admin: provider name and
provider web address

bookAppointment Presents to the receptionist the following
fields: name, fingerprint, date, time,
dropdown for the clinics

getAppointments Present to the receptionist a single field:
the patient’s fingerprint

newPatient Presents to the receptionist the following
fields: name, date of birth, and
fingerprint

submitRecords Presents to the doctor the following
fields: patient name, patient fingerprint,
record name, record date, and record
description

getRecords Presents to the doctor one field:
fingerprint

Table 8: Summary of Tables Functions

Name Description

appointmentTable Formats the appointments retrieved from
the local database in a table before
posting them to the receptionist

ehrTable Format the EHR list retrieved from the
Ethereum ehrHashTable in a table before
posting them to the doctor

Figures 26 to 32 are examples of the UIs displayed to different users. These

pages represent the combined version of base.html and functional templates with some

images rendered from static fills.

80

Figure 26: SDHCARE Home Page

Figure 27: SDHCARE About Page

81

Figure 28: SDHCARE Login Page

Figure 29: SDHCARE Admin UI Page

82

Figure 30: SDHCARE Admin UI Submit Page

Figure 31: SDHCARE-Reception UI Page

83

Figure 32: SDHCARE Doctor UI Page

3.3.4 Building Ethereum Smart Contracts

The prototype for DHCARE has three smart contracts, known as dnsSC,

patientsSC, and accessControlSC, which provide the functions described in Section

2.1.3. The main reason for creating three smart contracts instead of a combined one is

to provide flexibility in extending the functionality of the SDHCARE prototype

through inheriting and importing smart contract functions.

The dnsSC has two functions:

• createProvider: This function takes two string inputs for the healthcare

provider’s name and web address. These values are stored in the

providersTable immutable table, which is indexed by the provider’s

Ethereum address (OHP). In the case of an existing provider, the

function returns an exception error.

84

• getProvider: This function takes an address input (OHP) and returns

two string variables that represent the provider name and web address,

which are stored in providersTable.

Similar to dnsSC, accessControlSC has two functions:

• addClinic: This function takes two string inputs representing the

patient’s fingerprint hash and the clinic ID. The clinic ID is polled from

the SQLite3 department database. Both strings are stored in an array

indexed by the patient’s fingerprint hash that represents all the clinics

that can access the patient’s EHRs. This array is part of patientsTable.

• grantClinicAccess: This function takes two string inputs, namely the

patient’s fingerprint hash and the clinic ID. It performs a lookup in the

patientsTable, using the patient’s fingerprint hash array to determine

whether the clinicID is listed. If the clinicID is listed in the array, it

returns ‘True’, which allows the doctor to access the patient’s EHR.

Otherwise, it returns ‘False’, which denies doctor’s access.

The patientsSC includes the following four functions:

• createPatient: This function accepts string inputs for the patient’s

fingerprint hash, provider Ethereum address, and reception ID. It stores

this information in patientsTable indexed by fingerprint hash.

• getPatient: This function accepts a string input of the patient’s

fingerprint hash and returns the patient’s stored values in patientsTable

(i.e., provider’s address and reception ID).

85

• createEHR: This function accepts the patient’s fingerprint hash, EHR

name, date, status, and Merkle root hash. It stores the values in

ehrHashTable indexed by fingerprint hash.

• getEHR: This function accepts a fingerprint hash input string and

returns the patient EHR list. For each EHR, the returned values are

name, date, Merkle root hash, and EHR status.

The smart contracts were deployed in Ethereum using MetaMask soft wallet,

and each contract is allocated a unique address for communication. Figure 33 is a

summary of transactions between a healthcare provider and Ethereum, including smart

contract deployments (The account of the test provider was used to deploy smart

contracts for demo purposes. In a real-life implementation, such contracts should be

deployed once by the owner of the project).

86

Figure 33: Summary of Ethereum Transactions

86

87

3.3.5 Integrating Django with Ethereum

The integration between the Django web application and Ethereum was

implemented using Web3 customized Python modules on the Django side and the

Infura mining pool on the Ethereum side. Figure 34 is a summary of the integration

between Django and Ethereum.

Figure 34: Integrating Django with Ethereum

To communicate with Ethereum Blockchain, the healthcare provider should

contribute with a dedicated mining node running Ethereum mining software (e.g., Get

88

Ethereum, or GETH). A dedicated node is used to ensure patients’ privacy. For the

prototype, Infura mining pool was used, which offers mining nodes as a service to

interact with Ethereum. The free version of Infura offers 100,000 Ethereum

transactions within 24 hours. An Infura account was created, which provides a unique

URL to communicate with Infura nodes for posting and reading blocks to and from

Ethereum. Figure 35 shows the details of the Infura test account.

89

Figure 35: Infura Account Details

89

90

For Django Views to interact with Ethereum, custom Python modules were

built utilizing Web3 APIs. Each Python module has functions to interact with the

respective smart contract functions. Figure 36 summarizes the operation of the Python

modules.

Figure 36: Custom Python Module Operation

91

Chapter 4: Testing and Performance Evaluation

This chapter describes the testing and evaluation of SDHCARE prototype

implementation from functional, security, and performance perspectives. Functional

testing ensured that the prototype is operating as expected by design. Security testing

validated the security measures implemented in the prototype to protect it against

unauthorized access and modifications of EHRs. Performance evaluation measured the

elapsed time required to gain read or write access to EHRs.

4.1 Functional Testing

The functional testing evaluated the SDHCARE prototype against the design

requirements discussed in previous chapters. Below is a list of evaluation metrics:

• The system should provide a mechanism to exchange and synchronize

EHRs between distributed providers using Blockchain and the cloud

store.

• The system should provide patients with a secure mechanism to recover

access to their EHRs.

• The system should ensure unique mapping between patients’ identities

and their respective EHRs.

The exchange and synchronization of EHRs between distributed providers was

achieved using Ethereum public Blockchain and MS Azure Files. This was validated

by accessing the EHRs of the same patient from two SDHCARE providers using the

patient’s fingerprint (after granting access to each provider). Figure 37 shows access

results from the two SDHCARE providers.

92

Figure 37: Synchronization of Patient’s EHR

To validate the access recovery mechanism for patients’ EHRs, fingerprints

hashes were used as index keys to retrieve the EHR List from ehrHashTable. Figure

38 shows the requirement to provide a fingerprint in the Doctor UI to retrieve EHRs.

Figure 38: Verifying EHR Recovery Using Patient ID

93

The unique mapping between patients’ fingerprints and their EHRs was

validated by comparing the Merkle root hash values in ehrHashTable of the patient

against the files’ names stored in MS Azure Files. Figure 39 shows a sample

verification.

Figure 39: Verifying Hash as Names in Azure Files

4.2 Security Testing

The security testing of SDHCARE prototype covered the following aspects,

which were discussed in previous chapters:

• The system should provide an access control mechanism to ensure

authorized access to EHRs.

• The system should log all read/write activities on EHRs.

• The system should provide anonymity of EHRs in the cloud store.

• The system should validate the integrity of EHRs for read requests.

94

The access control system in SDHCARE was implemented at multiple levels.

The first level of authorization was implemented in Django directory services to

validate the group membership of the user. This ensured that only authorized users can

access their role-specific UIs. Figure 40 shows a blocked attempt from a doctor

attempting to access Reception UI.

Figure 40: Failed Login to Reception Portal using a Doctor Account

The next level of authorization was implemented using patients’ fingerprints

to grant doctors read or write access to EHRs. Unless a valid fingerprint is submitted

by the patient, clinic doctors cannot access EHRs. Figures 41, 42, and 43 show a failed

attempt to access a patient’s EHR.

95

Figure 41: Fingerprint Validation before Writing an EHR

Figure 42: Failed Attempt to Write a New EHR

96

Figure 43: Failed Attempt to Read a Patient’s HER

All EHR read/write activities are logged in Ethereum Blockchain for audit

trace purposes. The log messages include a unique hash identifier, the Ethereum

address of the healthcare provider, a timestamp, and activity details. Figure 44 shows

an example from EtherScan.

97

Figure 44: Sample Audit Logs for New EHR

The data stored in Azure Files were anonymized using Merkle hash values as

EHR names and suppressing patients’ PII. This ensured that patients’ identities are not

traceable from the EHR raw data. Figure 45 shows an example of anonymized data

stored in MS Azure Files from the SDHCARE prototype.

98

Figure 45: Sample of Anonymized Data Store in Azure Files

98

99

4.3 Performance Evaluation

Among all the modules in the DHCARE design, blockchain is considered the

slowest component, compared to the processing speed of the other modules. This

slowness is caused by the PoW consensus algorithm used in Ethereum. Hence it was

the focus for performance evaluation. The time delay introduced by the blockchain

layer was evaluated by validating access requests and the granting of access to EHRs.

These two components are controlled by accessControlSC smart contract and

patientsSC smart contract. To isolate the impact of copying speed of EHRs to the cloud

and obtain accurate performance measures for the blockchain, the EHR test samples

used small text files (< 20 KB). For the write test, a test patient was created and sample

EHRs written into the patient's respective ehrHashTable. For the read test, each EHR

sample stored in the ehrHashTable was read. In total, 15 samples were collected for

read and write without/with accessControlSC smart contract.

The time delay between requests and responses was measured using Google

Chrome Developer Tools. Figure 46 shows a sample time delay measurement.

100

Figure 46: Performance Measurement using Google Chrome

All the evaluation test cases were executed using the same internet line to

connect to Ethereum Blockchain and Azure Files. Figures 47 and 48 summarize the

performance results.

101

Figure 47: Read Performance Testing

Figure 48: Write Performance Testing

Read performance was superior to the write performance. The average read

time was 8.81 seconds while the average write time was 16 seconds, i.e. approximately

twice the read time. This observation held with and without access control. In terms of

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Re
ad

 T
im

e
in

 S
ec

on
ds

Sample Number

With Access Control Without Access Control

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W
rit

e
Ti

m
e

in
 S

ec
on

ds

Sample Number

With Access Control Without Access Control

102

today’s Internet speeds, the read and write times are considered low performance.

However, in the real-life circumstances of most healthcare environments such time

delays are acceptable. The main reason for these delays is the consensus algorithm

used by Ethereum blockchain to validate and accept blocks. Another important factor

is the load of the mining pool and its incentive to mine the block.

From the results, it can be concluded that no significant overhead delay is

added by implementing access control in Blockchain using accessControlSC smart

contract. This is because a single block includes thousands of transactions, and

transactions from both accessContractSC and paitentsSC are usually mined in a single

block (the decision to group the transactions in blocks is subject to the miner). Hence,

there is no difference between sending two transactions or one transaction as they are

mined in the same block. In one EHR sample (sample 6 in the write test with access

control), the transactions were mined in two separate blocks. Hence, the time delay for

writing the EHR metadata in ehrHashTable was 67.33 seconds.

Another important observation from Figure 49 is that the write time was

consistent and independent of the number of records in ehrHashTable, while the read

time was dependent on the number of records in ehrHashTable. In this test, five more

EHR samples were added to the test patient’s ehrHashTable (total increased to 20

samples). After re-running the read evaluation, the average read time increased from

8.81 seconds to 13.67 seconds. This is due to additional iterations executed in the code

needed to list all EHR metadata associated with the patient in ehrHashTable. Code

optimization would be required in a real-life implementation to improve the read time.

103

Figure 49: Read Time Analysis with Larger ehrHashTable

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Re
ad

 T
im

e
in

 S
ec

on
ds

Sample Number

Read Time with 15 Samples Read Time with 20 Samples

104

Chapter 5: Conclusion

This research investigated access control recovery mechanisms for EHRs

synchronized and exchanged between distributed healthcare providers using

blockchain. The research project first reviewed the current state of research on

blockchain in healthcare to gain understanding about the active areas. This was

followed by narrowing the focus to research targeting blockchain in EHR systems.

An analysis was undertaken of current challenges in blockchain-based EHR

systems and the requirements to achieve successful access control recovery

mechanism for EHRs. Accordingly, the researcher proposed SDHCARE, a multilayer

system that splits the roles between healthcare providers, blockchain, and a cloud store.

This model system should be able to recover access to EHRs from any provider within

the blockchain network. Additionally, the model may accelerate the migration of

healthcare providers to blockchain-based systems through the availability of external

UI integration with existing legacy healthcare environments.

A prototype was built to validate the proposed approach using Django, Python,

Ethereum, and MS Azure. The prototype was coded to simulate all functional

requirements and integrate the distributed layers of the design. This was followed by

system validation and testing for functional requirements, security requirements, and

performance. The results indicated successful operation of the proposed design from a

functional and security perspective. The performance of the prototype was slow due

to the functional operation of the Ethereum blockchain. However, this latency may be

tolerable in healthcare environments.

105

For future work, the researcher will evaluate SDHCARE design against hybrid

blockchain ledgers that use faster consensus algorithms. This will aim to enhance the

performance of SDHCARE for EHRs read/write while maintaining the extended

accessibility to the solution. Additionally, the prototype will be upgraded to use

advanced biometrics combining multiple fingerprints for more accuracy and privacy,

and the results should be evaluated against performance overhead. Another planned

enhancement in SDHCARE will be to introduce additional roles in access control

smart contract, including access delegation, access revocation, and record deletion.

Finally, the researcher will evaluate the use of mobile-based biometric scanning to

extend patients’ manageability of access rights to EHRs.

106

References

[1] Office of the National Coordinator for Health Information Technology (ONC),

“What is an electronic health record (EHR)?” 2019. [Online]. Available:

https://www.healthit.gov/faq/what-electronic-health-record-ehr, Accessed on:

13 Nov. 2019.

[2] Office of the National Coordinator for Health Information Technology (ONC)

“Federal Health IT Strategic Plan 2015-2020,” 2014. [Online]. Available:

http://www.healthit.gov/sites/default/files/federal-healthIT-strategic-plan-

2014.pdf, Accessed on: 13 Nov. 2019.

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[Online]. Available: https://bitcoin.org/bitcoin.pdf, Accessed on: 21 Nov.

2019.

[4] V. Buterin, “A Next-Generation Smart Contract and Decentralized Application

Platform,” 2013. [Online]. Available:

 https://github.com/ethereum/wiki/wiki/White-Paper, Accessed on: 21 Nov.

2019.

[5] T. McGhin, K. R. Choo, C. Z. Liu, and D. He, “Blockchain in healthcare

applications: Research challenges and opportunities,” Journal of Network and

Computer Applications, vol. 135, pp. 62–75, Jun. 2019.

doi: 10.1016/j.jnca.2019.02.027

107

[6] National Institute of Standardization and Technology (NIST), Computer

Security Resource Center, “Glossary” 2019. [Online]. Available:

https://csrc.nist.gov/Glossary, Accessed on: 11 Nov. 2019.

[7] A. P. Joshi, M. Han, and Y. Wang, “A survey on security and privacy issues of

blockchain technology,” Mathematical Foundations of Computing, vol. 1, no.

2, pp. 121–147, May 2018. doi: 10.3934/mfc.2018007

[8] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and P.

Rimba, “On Availability for Blockchain-Based Systems,” 36th IEEE

Symposium on Reliable Distributed Systems (SRDS 2017), Hong Kong, China,

2017, pp. 64–73. doi: 10.1109/SRDS.2017.15

[9] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology

Overview” (NISTIR 8202), 2018. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf, Accessed on: 27

Oct. 2019.

[10] H. Halpin and M. Piekarska, “Introduction to Security and Privacy on the

Blockchain,” 2nd IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW), Paris, France, 2017, pp. 1–3. doi:

10.1109/EuroSPW.2017.43 [Online]. Available: https://hal.inria.fr/hal-

01673293/document, Accessed on: 17 Oct. 2019

[11] N. Popper, “A Hacking of More Than $50 Million Dashes Hopes in the World

of Virtual Currency," New York Times, Jun. 2016. [Online].

https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-

108

removed-more-than-50-million-from-experimental-cybercurrency-

project.html, Accessed on: 27 Oct. 2019

[12] P. Zhong, Q. Zhong, H. Mi, S. Zhang, and Y. Xiang, “Privacy-Protected

Blockchain System,” First International Workshop on Blockchain and Mobile

Applications (BlockApp'19 Workshop), in conjunction with 20th IEEE

International Conference on Mobile Data Management (MDM 2019), Hong

Kong, China, 2019, pp. 457–461. doi: 2019. 10.1109/MDM.2019.000-2

[13] M. Cash and M. Bassiouni, “Two-Tier Permission-ed and Permission-Less

Blockchain for Secure Data Sharing,” 3rd IEEE International Conference on

Smart Cloud (SmartCloud 2018), New York, USA, 2018. doi:

10.1109/SmartCloud.2018.00031

[14] D. K. Tosh, S. Shetty, X. Liang, C. A. Kamhoua, K. A. Kwiat, and L. Njilla,

“Security Implications of Blockchain Cloud with Analysis of Block

Withholding Attack,” 17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, Madrid, Spain, 2017, pp. 458–467. doi:

10.1109/CCGRID.2017.111 [abstract]

[15] G. Magyar, “Blockchain: solving the privacy and research availability

tradeoff for EHR data: A new disruptive technology in health data

management,” IEEE 30th Jubilee Neumann Colloquium (NC), Budapest,

Hungary, 2017, pp. 135–140. doi: 10.1109/NC.2017.8263269

[16] M. Pilkington, “Can Blockchain Improve Healthcare Management? Consumer

Medical Electronics and the IoMT,” 2017. [Online]. Available:

https://ssrn.com/abstract=3025393, Accessed on: 8 Dec. 2019.

109

[17] P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz, “Metrics for

assessing blockchain-based healthcare decentralized apps,” IEEE 19th

International Conference on e-Health Networking, Applications & Services

(Healthcom 2017), Dalian, China, 2017.

doi: 10.1109/HealthCom.2017.8210842

[18] G. G. Dagher, J. Mohler, M. Milojkovic, and P. B. Marella, “Ancile: Privacy-

preserving framework for access control and interoperability of electronic

health records using blockchain technology,” Sustainable Cities and Society,

vol. 39, pp. 283–297, May 2018. doi: 10.1016/j.scs.2018.02.014

[19] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using

Blockchain for Medical Data Access and Permission Management,” 2nd

International Conference on Open and Big Data (OBD 2016), Vienna,

Austria, 2016, pp. 25–30. doi: 10.1109/OBD.2016.11

[20] Q. Xia, E. B. Sifah, A. Smahi, S. Amofa and X. Zhang, “BBDS: Blockchain-

Based Data Sharing for Electronic Medical Records in Cloud Environments,”

Information, vol. 8, no. 2, Apr. 2017, Art. no. 44. doi: 10.3390/info8020044

[21] Y. Yang, X. Li, N. Qamar, P. Liu, W. Ke, B. Shen, and Z. Liu, “Medshare: A

Novel Hybrid Cloud for Medical Resource Sharing Among Autonomous

Healthcare Providers,” IEEE Access, vol. 6, pp. 46949–46961, Aug. 2018.

doi: 10.1109/ACCESS.2018.2865535

[22] A. Roehrs, C. A. da Costa, and R. da Rosa Righi, “OmniPHR: A distributed

architecture model to integrate personal health records,” Journal of

110

Biomedical Informatics, vol. 71, pp. 70–81, Jul. 2017.

doi.org/10.1016/j.jbi.2017.05.012

[23] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “MedBlock: Efficient and Secure

Medical Data Sharing Via Blockchain,” Journal of Medical Systems, vol. 42,

article 136, Jun. 2018. doi: 10.1007/s10916-018-0993-7

[24] Microsoft Corp., Microsoft Azure, “What is Azure Files?” 2020. [Online].

Available: https://docs.microsoft.com/en-us/azure/storage/files/storage-files-

introduction, Accessed on: 31 Jan. 2020.

111

Appendix

This section will cover the low-level coding of DHCARE Django and

Ethereum components.

Appendix A – Ethereum Smart Contracts

Smart Contract dnsSC

pragma solidity ^0.6.1;

contract dnsSC{

 struct provider{
 string name;
 string webAddress;
 }

 mapping (address => provider) providersTable;

 function createProvider (string memory _name, string memory
_webAddress) public {
 address OHP = msg.sender;
 providersTable[OHP] = provider (_name, _webAddress);
 }

 function getProvider (address _OHP) public view returns (string memory
_name, string memory _webAddress) {
 _name = providersTable[_OHP].name;
 _webAddress = providersTable[_OHP].webAddress;
 }

}

Smart Contract patientsSC

pragma solidity ^0.6.1;

contract patientsSC{

 struct patient{
 string OHP;
 string receptionID;
 }

 struct ehr{
 string name;
 string hash;
 string status;
 string date;
 }

 mapping (uint => patient) patientsTable;
 mapping (uint => ehr[]) ehrHashTable;

 function createPatient (uint _fingerprint, string memory _OHP, string
memory _receptionID) public {

112

 patientsTable[_fingerprint] = patient (_OHP, _receptionID);
 }

 function getPatient (uint _fingerprint) public view returns (string
memory _OHP, string memory _receptionID) {
 _OHP = patientsTable[_fingerprint].OHP;
 _receptionID = patientsTable[_fingerprint].receptionID;
 }

 function createEhr (uint _fingerprint, string memory _name, string
memory _hash, string memory _status, string memory _date) public {
 ehrHashTable[_fingerprint].push (ehr(_name, _hash, _status,
_date));
 }

 function getEhr (uint _fingerprint, uint _count) public view returns
(string memory _name, string memory _hash, string memory _status, string
memory _date) {
 _name = ehrHashTable[_fingerprint][_count].name;
 _hash = ehrHashTable[_fingerprint][_count].hash;
 _status = ehrHashTable[_fingerprint][_count].status;
 _date = ehrHashTable[_fingerprint][_count].date;
 }

}
Smart Contract accessControlSC

pragma solidity ^0.6.1;

contract accessControlSC{

 mapping (string => string[]) PACL;

 function addClinic (string memory _fingerprint, string memory
_clinicID) public {
 PACL[_fingerprint].push (_clinicID);
 }

 function grantClinicAccess (string memory _fingerprint, string memory
_clinicID) public view returns (string memory) {

 uint i;
 for (i=0; i<=PACL[_fingerprint].length; i++){
 if (keccak256(abi.encodePacked((PACL[_fingerprint][i]))) ==
keccak256(abi.encodePacked((_clinicID)))){
 return 'true';
 }
 }
 return 'false';
 }
}

Appendix B – Ethereum Smart Contract ABIs

accessControlSC_abi.json

[
 {
 "inputs": [
 {
 "internalType": "string",
 "name": "_fingerprint",

113

 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_clinicID",
 "type": "string"
 }
],
 "name": "addClinic",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "string",
 "name": "_fingerprint",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_clinicID",
 "type": "string"
 }
],
 "name": "grantClinicAccess",
 "outputs": [
 {
 "internalType": "string",
 "name": "",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

patientsSC_abi.json

[
 {
 "inputs": [
 {
 "internalType": "uint256",
 "name": "_fingerprint",
 "type": "uint256"
 },
 {
 "internalType": "string",
 "name": "_name",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_hash",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_status",
 "type": "string"

114

 },
 {
 "internalType": "string",
 "name": "_date",
 "type": "string"
 }
],
 "name": "createEhr",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "uint256",
 "name": "_fingerprint",
 "type": "uint256"
 },
 {
 "internalType": "string",
 "name": "_OHP",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_receptionID",
 "type": "string"
 }
],
 "name": "createPatient",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "uint256",
 "name": "_fingerprint",
 "type": "uint256"
 },
 {
 "internalType": "uint256",
 "name": "_count",
 "type": "uint256"
 }
],
 "name": "getEhr",
 "outputs": [
 {
 "internalType": "string",
 "name": "_name",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_hash",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_status",
 "type": "string"
 },

115

 {
 "internalType": "string",
 "name": "_date",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "uint256",
 "name": "_fingerprint",
 "type": "uint256"
 }
],
 "name": "getPatient",
 "outputs": [
 {
 "internalType": "string",
 "name": "_OHP",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_receptionID",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

dnsSC_abi.json

[
 {
 "inputs": [
 {
 "internalType": "string",
 "name": "_name",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_webAddress",
 "type": "string"
 }
],
 "name": "createProvider",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "_OHP",
 "type": "address"
 }

116

],
 "name": "getProvider",
 "outputs": [
 {
 "internalType": "string",
 "name": "_name",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "_webAddress",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

Appendix C – Django Main Application Code

urls.py

from dhcare import views as dhcare_views
from django.contrib import admin
from django.contrib.auth import views as auth_views
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('adminui/', dhcare_views.adminui, name='adminui'),
 path('receptionui/', dhcare_views.receptionui, name='receptionui'),
 path('receptionui-get/', dhcare_views.receptionui_get,
name='receptionui-get'),
 path('receptionui-book/', dhcare_views.receptionui_book,
name='receptionui-book'),
 path('appointment-confirm/', dhcare_views.appointment_confirm,
name='appointment-confirm'),
 path('doctorui-get/', dhcare_views.doctorui_get, name='doctorui-get'),
 path('doctorui-submit/', dhcare_views.doctorui_submit, name='doctorui-
submit'),
 path('doctorui/', dhcare_views.doctorui, name='doctorui'),
 path('new-patient/', dhcare_views.new_patient, name='new-patient'),
 path('adminui-get/', dhcare_views.adminui_get, name='adminui_get'),
 path('adminui-submit/', dhcare_views.adminui_submit,
name='adminui_submit'),
 path('login/',
auth_views.LoginView.as_view(template_name='dhcare/login.html'),
name='login'),
 path('logout/',
auth_views.LogoutView.as_view(template_name='dhcare/logout.html'),
name='logout'),
 path('', include('dhcare.urls')),
]

settings.py

117

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

ALLOWED_HOSTS = ['*']
Application definition

INSTALLED_APPS = [
 'dhcare.apps.DhcareConfig',
 'crispy_forms',
 'django_tables2',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

STATIC_URL = '/static/'

CRISPY_TEMPLATE_PACK = 'bootstrap4'

LOGIN_REDIRECT_URL = 'dhcare-home'
LOGIN_URL = 'login'

Appendix D – Django DHCARE Application Code

accessControlSC.py

import json

from web3 import Web3

def accessControlSC_add(fingerprint, clinic_id):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/accessControlSC_abi.json') as json_file:
 accessControlSC_abi = json.load(json_file)

 accessControlSC_address = '0x1b3135e3Cd2Ee573A2caC760561A15DB22ac92A3'

 accessControlSC = web3.eth.contract(address=accessControlSC_address,
abi=accessControlSC_abi)
 key =
'0x3E67D814F4794E3172A94C8AF582C75A6B4868F4FAC912F234E78AE97D44518A'
 acct = web3.eth.account.privateKeyToAccount(key)
 account_address = acct.address

 try:
 tx = accessControlSC.functions.addClinic(fingerprint,
clinic_id).buildTransaction(
 {'nonce': web3.eth.getTransactionCount(account_address)})
 signed_tx = web3.eth.account.signTransaction(tx, key)
 hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get('transactionHash').
hex()
 return ('The appointment has been confirmed and access granted to
the clinic. Your Transaction Ref. is '

118

 + str(tx_receipt) + ' Please remember it for tracking
purpose')
 except:
 return ('Unable to Submit Information')

def accessControlSC_check(fingerprint, clinic_id):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/accessControlSC_abi.json') as json_file:
 accessControlSC_abi = json.load(json_file)

 accessControlSC_address = '0x1b3135e3Cd2Ee573A2caC760561A15DB22ac92A3'

 accessControlSC = web3.eth.contract(address=accessControlSC_address,
abi=accessControlSC_abi)

 try:
 accessRequest =
accessControlSC.functions.grantClinicAccess(fingerprint, clinic_id).call()
 return (accessRequest)
 except:
 return ('You are unauthorized to access or modify records for this
patient')

patientsSC.py

import json

from web3 import Web3

def patientsSC_patient_post(fingerprint, ohp, reception_id):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/patientsSC_abi.json') as json_file:
 patientsSC_abi = json.load(json_file)

 patientsSC_address = '0xD1b73bd5256a30Af32664D135618A41975f80823'

 patientsSC = web3.eth.contract(address=patientsSC_address,
abi=patientsSC_abi)
 key =
'0x3E67D814F4794E3172A94C8AF582C75A6B4868F4FAC912F234E78AE97D44518A'
 acct = web3.eth.account.privateKeyToAccount(key)
 account_address = acct.address

 try:
 tx = patientsSC.functions.createPatient(fingerprint, ohp,
reception_id).buildTransaction(
 {'nonce': web3.eth.getTransactionCount(account_address)})
 signed_tx = web3.eth.account.signTransaction(tx, key)
 hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get('transactionHash').
hex()
 return ('Patient File was Created Successfully! Transaction Ref. '
+ str(tx_receipt))
 except:
 return ('Unable to Submit Information')

119

def patientsSC_ehr_post(fingerprint, name, hash, status, date):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/patientsSC_abi.json') as json_file:
 patientsSC_abi = json.load(json_file)

 patientsSC_address = '0xD1b73bd5256a30Af32664D135618A41975f80823'

 patientsSC = web3.eth.contract(address=patientsSC_address,
abi=patientsSC_abi)
 key =
'0x3E67D814F4794E3172A94C8AF582C75A6B4868F4FAC912F234E78AE97D44518A'
 acct = web3.eth.account.privateKeyToAccount(key)
 account_address = acct.address

 try:
 tx = patientsSC.functions.createEhr(fingerprint, name, hash,
status, date).buildTransaction(
 {'nonce': web3.eth.getTransactionCount(account_address)})
 signed_tx = web3.eth.account.signTransaction(tx, key)
 hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get('transactionHash').
hex()
 return ('Patient Records Uploaded Sucessfully! Transaction Ref. ' +
str(tx_receipt))
 except:
 return ('Unable to Upload Reocrds')

def patientsSC_ehr_get(fingerprint):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/patientsSC_abi.json') as json_file:
 patientsSC_abi = json.load(json_file)

 patientsSC_address = '0xD1b73bd5256a30Af32664D135618A41975f80823'

 patientsSC = web3.eth.contract(address=patientsSC_address,
abi=patientsSC_abi)

 try:
 count = 0
 getEhr = patientsSC.functions.getEhr(fingerprint, count).call()
 output = [{'id':count, 'record_name':getEhr[0],
'record_hash':getEhr[1], 'record_status':getEhr[2],
'record_date':getEhr[3]}]
 while True:
 try:
 count = count + 1
 getEhr = patientsSC.functions.getEhr(fingerprint,
count).call()
 output.append({'id':count, 'record_name':getEhr[0],
'record_hash':getEhr[1], 'record_status':getEhr[2],
'record_date':getEhr[3]})
 except:
 return (output)
 except:
 return ('Unable to Retrieve Information')

120

dnsSC.py

import json

from web3 import Web3

def dnsSC_get(account_address):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/dnsSC_abi.json') as json_file:
 dnsSC_abi = json.load(json_file)

 dnsSC_address = '0x274D835998CDb077C224531619eB6e4D86b7739d'

 dnsSC = web3.eth.contract(address=dnsSC_address, abi=dnsSC_abi)

 try:
 getProvider = dnsSC.functions.getProvider(account_address).call()
 provider = {'provider_name': getProvider[0], 'provider_webAddress':
getProvider[1]}
 return (provider)
 except:
 return ('Unable to Retrieve Information')

def dnsSC_post(name, webAddress):
 infura_url =
'https://ropsten.infura.io/v3/db1690d7911842a6a0ec7690d08a0ca3'
 web3 = Web3(Web3.HTTPProvider(infura_url))

 with open('dhcare/dnsSC_abi.json') as json_file:
 dnsSC_abi = json.load(json_file)

 dnsSC_address = '0x274D835998CDb077C224531619eB6e4D86b7739d'

 dnsSC = web3.eth.contract(address=dnsSC_address, abi=dnsSC_abi)
 key =
'0x3E67D814F4794E3172A94C8AF582C75A6B4868F4FAC912F234E78AE97D44518A'
 acct = web3.eth.account.privateKeyToAccount(key)
 account_address = acct.address

 try:
 tx = dnsSC.functions.createProvider(name,
webAddress).buildTransaction(
 {'nonce': web3.eth.getTransactionCount(account_address)})
 signed_tx = web3.eth.account.signTransaction(tx, key)
 hash = web3.eth.sendRawTransaction(signed_tx.rawTransaction)

tx_receipt=web3.eth.waitForTransactionReceipt(hash).get('transactionHash').
hex()
 return ('Information was Submitted Successfully! Transaction Ref. '
+ str(tx_receipt))
 except:
 return ('Unable to Submit Information')

admin.py

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User

121

from .models import provider, department, appointment, Profile

class ProfileInline(admin.StackedInline):
 model = Profile
 can_delete = False
 verbose_name_plural = 'Profile'
 fk_name = 'user'

class CustomUserAdmin(UserAdmin):
 inlines = (ProfileInline,)

 def get_inline_instances(self, request, obj=None):
 if not obj:
 return list()
 return super(CustomUserAdmin, self).get_inline_instances(request,
obj)

admin.site.register(provider)
admin.site.register(department)
admin.site.register(appointment)
admin.site.unregister(User)
admin.site.register(User, CustomUserAdmin)

apps.py

from django.apps import AppConfig

class DhcareConfig(AppConfig):
 name = 'dhcare'

azure_files.py

from azure.storage.file import FileService
from azure.storage.file import ContentSettings

file_service = FileService(account_name='dhcarestorage',

account_key='ArdixcQfhaAfmwC9XueTPaJYXEDXa3CXlXoYZ7Z76GigvDWJz4WDDqmxQtB61q
IPk+4rr+r71WXEZQX8OruIsQ==')

file_service.create_share('dhcare')  

def get_file():
name = ''
value = ''
file_service.get_file_to_text('dhcare', None, name, encoding='utf-8')
return (name)

def create_ehr(name, value):
 file_service.create_file_from_text(
 'dhcare',
 None, # We want to create this blob in the root directory, so we
specify None for the directory_name 
 name,
 value,

122

 encoding = 'utf-8',
 content_settings = ContentSettings(content_type='txt'))

custom_decorators.py

from functools import wraps
from urllib.parse import urlparse

from django.conf import settings
from django.contrib import messages
from django.contrib.auth import REDIRECT_FIELD_NAME
from django.shortcuts import resolve_url

def custom_user_passes_test(test_func, login_url=None,
redirect_field_name=REDIRECT_FIELD_NAME):
 """
 Decorator for views that checks that the user passes the given test,
 redirecting to the log-in page if necessary. The test should be a
callable
 that takes the user object and returns True if the user passes.
 """

 def decorator(view_func):
 @wraps(view_func)
 def _wrapped_view(request, *args, **kwargs):
 if test_func(request.user):
 return view_func(request, *args, **kwargs)
 path = request.build_absolute_uri()
 resolved_login_url = resolve_url(login_url or
settings.LOGIN_URL)
 # If the login url is the same scheme and net location then
just
 # use the path as the "next" url.
 login_scheme, login_netloc = urlparse(resolved_login_url)[:2]
 current_scheme, current_netloc = urlparse(path)[:2]
 if ((not login_scheme or login_scheme == current_scheme) and
 (not login_netloc or login_netloc == current_netloc)):
 path = request.get_full_path()
 from django.contrib.auth.views import redirect_to_login
 messages.warning(request, 'Unauthorized Access! You need to
login successfully')
 return redirect_to_login(
 path, resolved_login_url, redirect_field_name)

 return _wrapped_view

 return decorator

forms.py

from django import forms

from .models import appointment

By default DateInput takes input as string. Using this class, we can
change the input as Calender
class DateInput(forms.DateInput):
 input_type = 'date'

123

class TimeInput(forms.TimeInput):
 input_type = 'time'

class getProviderInfo(forms.Form):
 OHP_Eth = forms.CharField(label='Hospital Ethereum Address',
max_length=100)

class submitProviderInfo(forms.Form):
 name = forms.CharField(label='Hospital Name', max_length=100)
 webAddress = forms.CharField(label='Hospital Web Address',
max_length=100)

class bookAppointment(forms.ModelForm):
 class Meta:
 model = appointment
 fields = ['name', 'nid', 'date', 'time', 'department_code']
 labels = {
 'name': 'Patient Name',
 'nid': 'National ID',
 'date': 'Date',
 'time': 'Time',
 'department_code': 'Clinic'
 }
 widgets = {'date': DateInput(), 'time': TimeInput()}

class getAppointments(forms.Form):
 nid = forms.IntegerField(label='Patient National ID')

class newPatient(forms.Form):
 name = forms.CharField(label='Patient Name', max_length=100)
 dob = forms.DateField(label='Date of Birth', widget=DateInput)
 fingerprint = forms.CharField(label='Fingerprint', max_length=100)

class submitRecords(forms.Form):
 patient_name = forms.CharField(label='Patient Name', max_length=100)
 patient_fingerprint = forms.CharField(label='Fingerprint',
max_length=100)
 record_name = forms.CharField(label='Record Name', max_length=100)
 record_date = forms.DateField(label='Date', widget=DateInput)
 record_description = forms.CharField(label='Records',
widget=forms.Textarea)

class getRecords(forms.Form):
 patient_fingerprint = forms.CharField(label='Patient Fingerprint',
max_length=100)

models.py

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
from django.db.models.signals import post_save
from django.dispatch import receiver

class department(models.Model):
 code = models.IntegerField(unique=True, primary_key=True)
 name = models.CharField(max_length=100)

124

 # This is required to show the name attribute of the database instead
of 'department object (code)'
 # in the drop-down
 def __str__(self):
 return self.name

class provider(models.Model):
 ohp = models.CharField(max_length=100, primary_key=True)
 secret = models.CharField(max_length=100)

 def __str__(self):
 return self.ohp

class appointment(models.Model):
 name = models.CharField(max_length=100)
 nid = models.IntegerField()
 date = models.DateField(default=timezone.now)
 time = models.TimeField(default=timezone.now)

 # This is better than 'CHOICES' because 'CHOICES' need static values
for the drop-down but this is
 # polled from the database department
 department_code = models.ForeignKey('department',
on_delete=models.CASCADE)

 def __str__(self):
 return self.name

class Profile(models.Model):
 user = models.OneToOneField(User, on_delete=models.CASCADE)
 department_code = models.ForeignKey('department',
on_delete=models.CASCADE, blank=True)

@receiver(post_save, sender=User)
def create_or_update_user_profile(sender, instance, created, **kwargs):
 if created:
 Profile.objects.create(user=instance)
 instance.profile.save()

tables.py

import django_tables2 as tables

from .models import appointment

class appointmentTable(tables.Table):
 department_code = tables.Column(verbose_name='Clinic')
 #nid = tables.Column(verbose_name='National ID')
 # id = tables.Column(visible=False)
 id = tables.CheckBoxColumn(accessor='id')

 class Meta:
 model = appointment
 template_name = "django_tables2/bootstrap4.html"

class ehrTable(tables.Table):
 id = tables.CheckBoxColumn(accessor='id')
 record_name = tables.Column(verbose_name='Record Name',
order_by='name')
 record_date = tables.Column(verbose_name='Record Date')

125

 record_hash = tables.Column(verbose_name=' Record Hash')
 record_status = tables.Column(verbose_name='Record Status')

 class Meta:
 template_name = "django_tables2/bootstrap4.html"

urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('', views.home, name='dhcare-home'),
 path('about/', views.about, name='dhcare-about'),
]

views.py

import hashlib

from django.contrib import messages
from django.contrib.auth.models import Group
from django.shortcuts import render
from django.contrib.auth.models import User
from .accessControlSC import accessControlSC_add, accessControlSC_check
from .custom_decorators import custom_user_passes_test
from .dnsSC import dnsSC_get, dnsSC_post
from .forms import getProviderInfo, submitProviderInfo, getAppointments,
getRecords
from .forms import submitRecords, bookAppointment, newPatient
from .models import appointment, provider, department
from .patientsSC import patientsSC_patient_post, patientsSC_ehr_post,
patientsSC_ehr_get
from .tables import appointmentTable, ehrTable
from django_tables2 import RequestConfig
from .azure_files import create_ehr

def home(request):
 return render(request, 'dhcare/home.html')

def about(request):
 return render(request, 'dhcare/about.html', {'title': 'About'})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Admins')
in u.groups.all())
def adminui(request):
 return render(request, 'dhcare/adminui.html')

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Admins')
in u.groups.all())
def adminui_get(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = getProviderInfo(request.POST)

126

 # check whether it's valid:
 if form.is_valid():
 account_address = form.cleaned_data.get('OHP_Eth')
 provider = dnsSC_get(account_address)
 context = {
 'provider': provider
 }

 return render(request, 'dhcare/adminui-get.html', context)

 # if a GET (or any other method) we'll create a blank form
 else:
 form = getProviderInfo()

 return render(request, 'dhcare/adminui-get.html', {'form': form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Admins')
in u.groups.all())
def adminui_submit(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = submitProviderInfo(request.POST)
 # check whether it's valid:
 if form.is_valid():
 providerTx = dnsSC_post(form.cleaned_data.get('name'),
form.cleaned_data.get('webAddress'))
 context = {
 'providerTx': providerTx
 }

 return render(request, 'dhcare/adminui-submit.html', context)

 # if a GET (or any other method) we'll create a blank form
 else:
 form = submitProviderInfo()

 return render(request, 'dhcare/adminui-submit.html', {'form': form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-
Reception') in u.groups.all())
def receptionui(request):
 return render(request, 'dhcare/receptionui.html')

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-
Reception') in u.groups.all())
def receptionui_get(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = getAppointments(request.POST)
 # check whether it's valid:
 if form.is_valid():
 nid = form.cleaned_data.get('nid')
 table = appointmentTable(appointment.objects.filter(nid=nid))
 return render(request, 'dhcare/receptionui-get.html', {"table":
table})

 else:
 form = getAppointments()

127

 return render(request, 'dhcare/receptionui-get.html', {'form': form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-
Reception') in u.groups.all())
def new_patient(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = newPatient(request.POST)
 # check whether it's valid:
 if form.is_valid():
 provider_db = provider.objects.all()
 for item in provider_db:
 ohp = str(item.ohp)

 reception_db = department.objects.filter(name='Reception')
 for item in reception_db:
 reception_id = str(item.code)
 name = form.cleaned_data.get('name')
 dob = form.cleaned_data.get('dob')
 fingerprint = form.cleaned_data.get('fingerprint')
 confirmation = patientsSC_patient_post(int(fingerprint), name,
str(dob), ohp, reception_id)

 return render(request, 'dhcare/new-patient.html',
{'confirmation': confirmation})

 # if a GET (or any other method) we'll create a blank form
 else:
 form = newPatient()

 return render(request, 'dhcare/new-patient.html', {'form': form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-
Reception') in u.groups.all())
def receptionui_book(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = bookAppointment(request.POST)
 # check whether it's valid:
 if form.is_valid():
 form.save()
 patient_name = form.cleaned_data.get('name')
 messages.success(request, 'Appointment Booking Confirmed for
Patient Name {}'.format(patient_name))
 return render(request, 'dhcare/receptionui.html')

 # if a GET (or any other method) we'll create a blank form
 else:
 form = bookAppointment()

 return render(request, 'dhcare/receptionui-book.html', {'form': form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-
Reception') in u.groups.all())
def appointment_confirm(request):
 if request.method == 'POST':
 checkbox_id = request.POST.get('id')
 checkbox_table = appointment.objects.filter(id=checkbox_id)

128

 for item in checkbox_table:
 fingerprint = str(item.fingerprint)
 department_code = str(item.department_code)
 accessControlSC_tx = accessControlSC_add(fingerprint,
department_code)
 appointment.objects.filter(id=checkbox_id).delete()
 return render(request, 'dhcare/appointments.html',
{"accessControlSC_tx": accessControlSC_tx})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Doctors')
in u.groups.all())
def doctorui(request):
 return render(request, 'dhcare/doctorui.html')

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Doctors')
in u.groups.all())
def doctorui_get(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = getRecords(request.POST)
 # check whether it's valid:
 if form.is_valid():
 fingerprint = form.cleaned_data.get("patient_fingerprint")
 user = User.objects.get(username=request.user)
 clinic_id = user.profile.department_code
 accessRequest = accessControlSC_check(str(fingerprint),
str(clinic_id))
 if accessRequest is True:
 getEHR = patientsSC_ehr_get(int(fingerprint))
 table = ehrTable(getEHR)
 RequestConfig(request).configure(table)
 return render(request, 'dhcare/doctorui-get.html',
{'getEHR':table})
 else:
 return render(request, 'dhcare/doctorui-get.html',
{'error': accessRequest})

 # if a GET (or any other method) we'll create a blank form
 else:
 form = getRecords()

 return render(request, 'dhcare/doctorui-get.html', {"form": form})

@custom_user_passes_test(lambda u: Group.objects.get(name='DHCARE-Doctors')
in u.groups.all())
def doctorui_submit(request):
 # if this is a POST request we need to process the form data
 if request.method == 'POST':
 # create a form instance and populate it with data from the
request:
 form = submitRecords(request.POST)
 # check whether it's valid:
 if form.is_valid():
 fingerprint = form.cleaned_data.get('patient_fingerprint')
 user = User.objects.get(username=request.user)
 clinic_id = user.profile.department_code
 accessRequest = accessControlSC_check(str(fingerprint),
str(clinic_id))
 if accessRequest is True:
 name = form.cleaned_data.get('record_name')
 description = form.cleaned_data.get('record_description')

129

 date = str(form.cleaned_data.get('record_date'))
 status = 'Active'
 sha256_name =
str(hashlib.sha256(name.encode()).hexdigest())
 sha256_description =
str(hashlib.sha256(description.encode()).hexdigest())
 H1 = sha256_name + sha256_description
 sha256_date =
str(hashlib.sha256(date.encode()).hexdigest())
 sha256_status =
str(hashlib.sha256(str(status).encode()).hexdigest())
 H2 = sha256_date + sha256_status
 H3 = str(hashlib.sha256(str(H1).encode()).hexdigest()) +
str(hashlib.sha256(str(H2).encode()).hexdigest())
 sha256 = str(hashlib.sha256(H3.encode()).hexdigest())

 createEHR = patientsSC_ehr_post(int(fingerprint), name,
sha256, status, date)
 create_ehr(sha256, description)

 return render(request, 'dhcare/doctorui-submit.html',
{'createEHR': createEHR})
 else:
 return render(request, 'dhcare/doctorui-submit.html',
{'createEHR': accessRequest})

 # if a GET (or any other method) we'll create a blank form
 else:
 form = submitRecords()

 return render(request, 'dhcare/doctorui-submit.html', {"form": form})

Appendix E – Django HTML Templates

about.html

{% extends "dhcare/base.html" %}
{% block content %}
<h1>About Page</h1>
 <div class="w3-container">
 <p style="font-family: 'Raleway',sans-serif; font-size: 18px; font-
weight: 500; line-height: 32px; margin: 0 0 24px; text-align: justify;
text-justify: inter-word; ">

 DHCARE is Blockchain-Based Healthcare System that utilizes
fingprints to identify patients and synchronize their
 Electoric Healthcare Records (EHRs) between distributed
healthcare providers.

 The main features provided by DHCARE are:
 <div style="font-family: 'Raleway',sans-serif; font-size: 18px;
font-weight: 500; line-height: 32px; margin: 0 0 24px; text-align: justify;
text-justify: inter-word; ">

 Exchange and synchronization of EHRs between
distributed healthcare providers
 Maintaining EHRs unique patients' identity
 Ensuring recoverable access to patients’ EHRs
 Implementing role-based access control to EHRs
 Providing anonymity to patients’ EHRs in the cloud
datastores
 Detecting unauthorized modifications to EHRs
 Audit logging any activities on EHRs

130

 </div>
 </p>
 </div>
{% endblock content %}

adminui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Admin Portal</legend>
 </fieldset>
 <img src="{% static 'dhcare/admin.jpg' %}" class="home-img"
alt="Logo" width="100%">

 <div class="form-group">
 <button class="btn btn-outline-info" formaction="{% url
'adminui_get' %}" type="submit">Get Hospital
 Information
 </button>
 <button class="btn btn-outline-info" formaction="{% url
'adminui_submit' %}" type="submit">Submit Hospital
 Information
 </button>
 </div>
 </form>
</div>
{% endblock content %}

adminui-get.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.org/1999/html">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Hospital
Information</legend>
 {{ form|crispy }}
 {% if provider.provider_name %}
 <div class="text-dark">
 Hospital Name: {{provider.provider_name}}

 Hospital Web Address:
{{provider.provider_webAddress}}

 </div>
 {% else %}
 <div class="text-danger">
 {{provider}}
 </div>
 {% endif %}
 </fieldset>
 <button class="btn btn-outline-info" type="submit">Get
Info</button>
 </form>

131

</div>
{% endblock content %}

adminui-submit.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.org/1999/html">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Hospital
Information</legend>
 {{ form|crispy }}
 {% if providerTx %}
 <div class="text-dark">
 {{providerTx}}

 </div>
 {% else %}
 <div class="text-danger">
 {{providerTx}}
 </div>
 {% endif %}
 </fieldset>
 <button class="btn btn-outline-info" type="submit">Submit
Info</button>
 </form>
</div>
{% endblock content %}

appointments.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Appointment
Confirmed</legend>
 {{accessControlSC_tx}}
 </fieldset>
 </form>
</div>
{% endblock content %}

base.html

{% load static %}
<!DOCTYPE html>
<html>
<head>

 <!-- Required meta tags -->
 <meta charset="utf-8">
 <meta content="width=device-width, initial-scale=1, shrink-to-fit=no"
name="viewport">

132

 <!-- Bootstrap CSS -->
 <link crossorigin="anonymous"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css
"
 <link crossorigin="anonymous"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css
"
 integrity="sha384-
Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
rel="stylesheet">

 <link href="{% static 'dhcare/main.css' %}" rel="stylesheet"
type="text/css">

 {% if title %}
 <title>DHCARE - {{ title }}</title>
 {% else %}
 <title>DHCARE</title>
 {% endif %}
</head>
<body>
<header class="site-header">
 <nav class="navbar navbar-expand-md navbar-dark bg-steel fixed-top">
 <div class="container">
 <a class="navbar-brand mr-4" href="{% url 'dhcare-home'
%}">DHCARE
 <button aria-controls="navbarToggle" aria-expanded="false"
aria-label="Toggle navigation"
 class="navbar-toggler" data-target="#navbarToggle"
data-toggle="collapse" type="button">

 </button>
 <div class="collapse navbar-collapse" id="navbarToggle">
 <div class="navbar-nav mr-auto">
 <a class="nav-item nav-link" href="{% url 'dhcare-home'
%}">Home
 <a class="nav-item nav-link" href="{% url 'dhcare-
about' %}">About
 </div>
 <!-- Navbar Right Side -->
 <div class="navbar-nav">
 {% if user.is_authenticated %}
 <a class="nav-item nav-link" href="{% url 'logout'
%}">Logout
 {% if 'DHCARE-Admins' in user.groups.all.0.name %}
 <a class="nav-item nav-link" href="{% url 'adminui'
%}">Admin
 {% endif %}
 {% if 'DHCARE-Doctors' in user.groups.all.0.name %}
 <a class="nav-item nav-link" href="{% url 'doctorui'
%}">Doctor
 {% endif %}
 {% if 'DHCARE-Reception' in user.groups.all.0.name %}
 <a class="nav-item nav-link" href="{% url 'receptionui'
%}">Appointments
 {% endif %}
 {% else %}
 <a class="nav-item nav-link" href="{% url 'login'
%}">Login
 {% endif %}
 </div>
 </div>
 </div>
 </nav>

133

</header>
<main class="container" role="main">
 <div class="row">
 <div class="col-md-8">
 {% if messages %}
 {% for message in messages %}
 <div class="alert alert-{{ message.tags }}">
 {{ message }}
 </div>
 {% endfor %}
 {% endif %}
 {% block content %}{% endblock %}
 </div>
 </div>
</main>

<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script crossorigin="anonymous" integrity="sha384-
KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
 src="https://code.jquery.com/jquery-3.2.1.slim.min.js"></script>
<script crossorigin="anonymous" integrity="sha384-
ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q"

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min
.js"></script>
<script crossorigin="anonymous" integrity="sha384-
JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl"

src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"><
/script>
</body>
</html>

doctorui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Doctor Portal</legend>
 </fieldset>
 <img src="{% static 'dhcare/doctor.jpg' %}" class="home-img"
alt="Logo" width="100%">

 <div class="form-group">
 <button class="btn btn-outline-info" formaction="{% url
'doctorui-get' %}" type="submit">Get Patient Records
 </button>
 <button class="btn btn-outline-info" formaction="{% url
'doctorui-submit' %}" type="submit">Submit Patient
 Records
 </button>
 </div>
 </form>
</div>
{% endblock content %}

134

doctorui-get.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load django_tables2 %}
{% block content %}
<div class="content-section" style="width:150%">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Patient Records</legend>
 {{form|crispy}}
 {% if getEHR %}
 {% render_table getEHR %}
 <div class="form-group">
 </div>
 {% else %}
 {{error}}
 {% endif %}

<button class="btn btn-outline-info" type="submit">Get
Records</button>
 </fieldset>
 </form>
</div>
{% endblock content %}

doctorui-submit.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Doctor Portal</legend>
 {{form|crispy}}
 {% if createEHR %}
 {{createEHR}}
 {% else %}
 <button class="btn btn-outline-info"
type="submit">Submit</button>
 {% endif %}
 </fieldset>
 </form>
</div>
{% endblock content %}

home.html

{% extends "dhcare/base.html" %}
{% load static %}
{% block content %}
 <h1 style="width:150%; color: #666; font-family: 'Consolas',sans-serif;
font-size: 60px; font-weight: 800; line-height: 72px; margin: 0 0 10px;
text-align: center; text-transform: uppercase;">
 DHCARE
 </h1>
 <h2 style="width:150%; color: #987; font-family: 'Calibri',sans-serif;
font-size: 30px; font-weight: 200; line-height: 5px; margin: 0 0 60px;
text-align: center; text-transform: uppercase;">

135

 Biometric Distributed Healthcare System on Blockchain
 </h2>
 <img src="{% static 'dhcare/home.jpg' %}" class="home-img" alt="Logo"
width="150%">

{% endblock content %}

login.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Log In</legend>
 {{ form|crispy }}
 </fieldset>
 <div class="form-group">
 <button class="btn btn-outline-info"
type="submit">Login</button>
 </div>
 </form>
</div>
{% endblock content %}

logou.html

{% extends "dhcare/base.html" %}
{% block content %}
<h2>You have been logged out</h2>
<div class="border-top pt-3">
 <small class="text-muted">
 Log In Again
 </small>
</div>
{% endblock content %}

new-patient.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Add Patient</legend>
 {{ form|crispy }}
 {% if confirmation %}
 {{ confirmation}}
 {% else %}
 <button class="btn btn-outline-info" type="submit">Add</button>
 {% endif %}
 </fieldset>
 </form>
</div>
{% endblock content %}

136

receptionui.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load static %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Reception Portal</legend>
 </fieldset>
 <img src="{% static 'dhcare/reception.jpg' %}" class="home-img"
alt="Logo" width="100%">

 <div class="form-group">
 <button class="btn btn-outline-info" formaction="{% url 'new-
patient' %}" type="submit">Add New Patient
 </button>
 <button class="btn btn-outline-info" formaction="{% url
'receptionui-get' %}" type="submit">Get Patient
 Appointments
 </button>
 <button class="btn btn-outline-info" formaction="{% url
'receptionui-book' %}" type="submit">Book New
 Appointment
 </button>
 </div>
 </form>
</div>
{% endblock content %}

receptionui-book.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="content-section" xmlns="http://www.w3.org/1999/html">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Appointment Booking</legend>
 {{ form|crispy }}
 </fieldset>
 <button class="btn btn-outline-info" type="submit">Book</button>
 </form>
</div>
{% endblock content %}

receptionui-get.html

{% extends "dhcare/base.html" %}
{% load crispy_forms_tags %}
{% load django_tables2 %}
{% block content %}
<div class="content-section">
 <form method="POST">
 {% csrf_token %}
 <fieldset class="form-group">
 <legend class="border-bottom mb-4">Patient
Appointments</legend>
 {{ form|crispy }}

137

 {% if table %}
 {% render_table table %}
 <button class="btn btn-outline-info" formaction="{% url
'appointment-confirm' %}" type="submit">Confirm
 </button>
 {% else %}
 <button class="btn btn-outline-info"
type="submit">Get</button>
 {% endif %}
 </fieldset>
 </form>
</div>
{% endblock content %}

	Sdhcare: Secured Distributed Healthcare System
	Recommended Citation

	Mohammad Al Baqri - CGS Review 220620

		2020-07-12T13:28:01+0400
	Shrieen

