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Abstract 

 

 

The increasing demand for energy is associated with challenges that include 

environmental concerns and limited reserves. Dimethyl ether, DME, which can be 

obtained from different feedstocks, including natural gas and biomass, has recently 

been recognized as an ultraclean environmentally friendly fuel due to the fact that it 

possesses unique characteristics that make it an efficient alternative fuel for diesel 

fuel engines. In addition, DME is an industrially important intermediate for a variety 

of chemicals. A promising potential route for dimethyl ether production is catalytic 

dehydration of methanol over solid acid catalysts. Therefore, exploring new solid 

acid catalytic materials and understanding the mechanistic steps of methanol 

adsorption on their surfaces is of great importance for developing modified efficient 

catalysts for this process. In the present work, solid acid catalysts based on modified 

γ-Al2O3 were prepared by sol-gel method and were studied as catalysts for methanol 

to dimethyl ether conversion.  

The main focus of the present thesis is to investigate the effect of selected 

metal dopants on the surface chemical properties of γ-Al2O3, especially acid-base 

characteristics, and to correlate these effects with their catalytic activity in 

dehydration of methanol to DME. The selected dopants include transition metal ions 

with different d-configurations and different oxidation states, such as Ti(IV), V(III) 

and Ni(II) to elucidate any possible electronic effect on the alumina surface chemical 

behavior.  

The prepared catalysts were characterized by various physical and chemical 

techniques including adsorption of probe molecules, namely ammonia and methanol. 

The study showed very promising results where doping γ-Al2O3 resulted in 

significant textural and chemical modifications including an enhanced overall surface 

acidity. The catalytic activity study showed that the incorporation of certain 

concentrations of Ti(IV) and Ni(II) ions in the γ-Al2O3 matrix resulted in an 

enhanced catalytic activity. The catalytic activity of the catalysts was correlated with 

their textural, chemical, and structural modifications resulting from the presence of 

the dopant ions.  
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In addition, comparison between the studied alumina-based solids and 

selected ZSM5 zeolites showed that the acidic character of the OH groups on their 

surfaces vary and therefore, different routes of methanol adsorption and dehydration 

were proposed for the two types of materials.  Methanol adsorption and dehydration 

was proposed to be associative on the surface of ZSM5 zeolites, where Brønsted acid 

sites played a key role in adsorption and dehydration reaction. On the other hand, 

dissociative adsorption on Lewis acid-base pairs dominates the interactions with γ-

Al2O3-based solids.  

 

Keywords: Methanol dehydration, Methanol adsorption, Dimethyl ether, Alternative 

fuel, Acid catalyst. 
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Title and Abstract (in Arabic) 

 

طريق  مختارة عنأخرى عناصر على  محتويةال 3O2lA- سطحي لـ وتوصيفتحضير 

الميثانول إلى ثنائي ميثيل  تحويلالنشاط التحفيزي في ب دراسة ارتباط صفات السطح

 يثرإ

 صالملخ

إن الطلب المتزايد على مصادر الطاقة يتزامن مع تحديات عديدة منها الاضرار البيئية  

ن إنتاجه من مصادر أولية عديدة مثل الغاز  الذي يمك ثنائي ميثيل إيثيروالمصادر المحدودة, 

ونة الأخيرة بأنه  وقود نظيف صديق للبيئة حيث أن  الكتلة الحيوية تم اعتباره في ال الطبيعي و 

ثنائي ميثيل إيثر يتميز بخصائص عديدة تجعله بديل فعال لوقود الديزل في محركات الديزل 

ً يعد ثنائي ميثيل الإيثر مركب .إضافة إلى ذلك ,  العديد من الكيماويات   في إنتاج مهماً وسطيا

المهمة.يتم انتاج ثنائي ميثل إيثر غن طريق تفاعل نزع الماء )البلمهة( من الميثانول بالاستعانة  

استكشاف محفزات حمضية جديدة وفهم الخطوات الميكانزمية   لذلك،بمحفزات حمضية صلبة. 

الأهمية من أجل تطوير مواد حفازة فعالة  لادمصاص الميثانول على سطح الحفاز يعتبر بالغ 

)الألومينا(   أكسيد الألمنيوم محفزات حمضية تعتمد على م في هذا البحث تحضير ت .لهذا التفاعل

جل" وتم دراسة فعاليتها وقدرتها على تحفيز تفاعل تحويل الميثانول إلى  -بطريقة ال "سول

 . ثنائي ميثيل إيثر

التطعيم ببعض المعادن على   تأثير و فحص الهدف الرئيسي في هذه الأطروحة ه

القاعدية وربط  -ضيةمالخصائص السطحية والكيميائية لأكسيد الألمنيوم وخاصة الخصائص الح

 طعمات تشمل الم .لى ثنائي ميثيل إيثرطه التحفيزي في تحويل الميثانول إ هذه التأثيرات بنشا

 Vو Ti (IV)ت أكسدة مختلفة، مثل المختارة أيونات فلز انتقالية ذات تكوينات مختلفة وحالا

(III)  وNi (II)  د الألومينا. لقلتوضيح أي تأثير إلكتروني محتمل على السلوك الكيميائي لسطح 

 .والمغنيسيومإضافة معادن اخرى مثل السيليكون  تأثيرتم ايضا فحص 

 لقد تم توصيف الخصائص الفيزيائية والكيميائية للحفازات المحضرة باستخدام تقنيات 

تطعيم   إن. لقد أظهرت هذه الدراسة نتائج واعدة حيث مصاص الأمونيا والميثانولاد  مختلفة منها

بما في ذلك زيادة حموضة السطح  الألومينا أدى إلى تحسينات ملحوظة في الخصائص الكيميائية 

  Ni (II)و Ti (IV)تركيزات معينة من أيونات  إضافةدراسة نشاط الحفاز أن  ت أظهر .الكلية
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للمحفزات بتعديلاتها   ي ارتبط النشاط الحفازلقد . حفازالنشاط تحسين أدى إلى الألومينا  في

بالإضافة إلى ذلك، أظهرت . لتطعيمالتركيبية والكيميائية والهيكلية الناتجة عن وجود أيونات ا

أن الطابع الحمضي  ZSM5 وزيولايت المقارنة بين المواد الصلبة القائمة على الألومينا 

على أسطحها يختلف، وبالتالي، تم اقتراح طرق مختلفة  OHهيدروكسيل عات لمجمو

 لهذين النوعين المختلفين من المواد.الميثانول وبلمهة مصاص د لا

،  ZSM5يت ليكون مرتبطًا على سطح الزيولا بلمهتهالميثانول و ص اصمد تم اقتراح ا

من ناحية  ونزع الماء. اص دمص تيد دورًا رئيسيًا في تفاعل الاحيث لعبت مواقع حمض برونس 

القاعدي على التفاعلات مع   /نفصالي على أزواج لويس الحمضيالإ ص اصدمأخرى، يهيمن الا

 . 3O2Al-γ  الألومينا المواد الصلبة القائمة على

نزع جزيء الماء من  ،ادمصاص الميثانول إيثر،ثنائي ميثيل : مفاهيم البحث الرئيسية 

 . حفاز حمضي ،وقود بديل ،الميثانول
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Chapter 1: Introduction 

 

1.1 Overview 

Dimethyl ether (DME) is a promising ultra-low emission and non-toxic 

environmentally friendly fuel that can work as a replacement to diesel in diesel 

engines. Besides its use as an alternative clean fuel, DME has a wide range of other 

applications such as its use as a green refrigerant gas, which will eliminate the 

hazardous effects of chlorofluorocarbons (CFCs) that are significant contributors to 

the problem of ozone layer depletion. In addition, DME is a potential building block 

for a wide variety of chemicals. 

One of the main challenges of DME production is finding the best process 

conditions with high yield and low costs. Catalytic dehydration of methanol, which 

can be obtained from different feedstocks, is one of the promising processes for 

DME production. Thus, the purpose of this thesis is to develop and investigate more 

efficient cost-effective catalytic materials for this process at reasonable temperatures 

and to compare their efficiency with available typical catalysts. Catalytic methanol 

dehydration to DME reaction was studied at 200ºC and atmospheric pressure using a 

fixed bed continuous flow reaction system. Catalysts based on γ-alumina doped with 

other metal ions including Ti(IV), Ni(II), and V(III) were developed and their 

catalytic activity was investigated and compared with other commercial solid-acid 

catalysts including γ-alumina and selected zeolites.  
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1.2 Statement of the problem and objectives of the present study 

The energy and environment problems are intertwined due to the fast 

depletion of natural resources and a large build-up of greenhouse gases in the 

atmosphere. Crude oil is depleting very fast, and the transportation industry is one of 

the primary causes of oil depletion; it consumes approximately 57% of total 

petroleum production. In addition, the lifetime of natural resources has been reduced 

dramatically because of the rapid increase in population growth and globalization 

along with the misuse and extravagance of these resources. This overuse will lead to 

lack of energy supplies for future generations. These problems have raised concerns 

to search and innovate in the development of new clean alternative sources of 

energy, which have to be renewable and can be utilized in different ways in the 

industry without major modifications of the existing infrastructure [1]. Besides the 

investment in renewable energy research, great attention has been given to better 

utilization of natural gas as a source of clean fuel. One of the promising clean fuels 

that can be derived directly or indirectly from natural gas is DME. 

 DME can be produced from natural gas through catalytic processes where 

the catalytic materials play a key role in the efficiency of these processes. The main 

aim of the research of this thesis is to develop more efficient catalysts for the 

conversion of methanol, which is produced from natural gas, to DME. The developed 

catalysts are based on -Al2O3 doped with Ti(IV), Ni(II), and V(III) ions which were 

selected to study the effect of different d-configurations of the metal dopants as well 

as their oxidation state. The prepared alumina-based catalysts were also compared 

with two selected widely studied zeolites in the methanol to DME conversion 

reaction. 
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1.3 DME properties 

Dimethyl ether (methoxymethane, IUPAC name) is the simplest ether 

compound. It is photochemically degradable to CO2 and H2O within a few hours. 

Some of the properties of DME are given in Table 1.1. It is known to be the cleanest 

high-efficiency compression ignition fuel with a high level of safety due to the fact 

that it has no toxic emissions and no carcinogenic or teratogenic effects.  

DME has recently attracted significant attention as an environmentally 

friendly alternative fuel and as an efficient intermediate for a variety of industrially 

important chemicals such as acetic acid, methyl acetate, aromatics, gasoline, light 

olefins, higher ethers, oxygenates and many other chemicals. Also, its low vapor 

pressure and its ability to be biodegradable makes it a promising alternative as an 

aerosol propellant that can replace chlorofluorocarbon (CFC), Freon and R-134, 

which are the main contributors to ozone layer depletion.  

DME has similar physical properties as that of liquefied petroleum gas 

(LPG), as it burns with a visible blue flame over a wide range of air/fuel ratios. 

Hence it can be used as an alternative fuel for cooking and heating or for LPG 

blending. Storing and handling of DME is not an issue since it has a similar vapor 

pressure as that of LPG so it could be transported and stored using the existing 

infrastructure of LPG. Furthermore, DME has excellent thermal and chemical 

properties to be a highly efficient diesel replacement due to its relatively low auto-

ignition temperature and high cetane number (55-60) as shown in Table 1.1. The 

cetane number is related to how fast the fuel combustion is, and higher cetane 

numbers are associated with shorter ignition delays compared to lower numbers. 

Besides, compared to other fuels, DME has higher oxygen content and no direct 
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carbon-carbon bond, which leads to soot-free combustion thus eliminating the need 

for filters. This feature also makes the engine run much more quietly on DME 

compared to diesel. Also, DME is a very attractive choice as a clean fuel for 

transportation and domestic utilization because it has much fewer emissions of sulfur 

oxides and nitrogen oxides. Another attractive aspect of using DME as a fuel is that 

it can be produced from a variety of feedstocks including natural gas, crude oil, 

residual oil, coal and waste products [2, 3]. 

Although DME has many significant advantages over diesel, it has some 

drawbacks as it has a lower energy density than diesel fuel; therefore, it requires 

enlarging the volume of the storage tank to give the same amount of energy. Also, 

DME has a low viscosity which can lead to leakage in storage and delivery systems 

[4]. However, these are still minor problems that can be dealt with. 

Table 1.1: Properties of DME in comparison with some other fuels 

 

 

 

 

Properties DME MeOH LPG Diesel 
Chemical formula CH3OCH3 CH3OH C2-C5 C3-C25 

Boiling point (ºC) -25 64.6 -42 180-360 

Cetane number 55-66 5 5 40-55 

Density at 20ºC g/cm3 0.67 0.79 0.49 0.832 

calorific value LHV, kcal/kg 6925 4800 12000 10800 
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1.4 DME production business  

The market size of DME was estimated to reach $9.7 billion by the end of 

2020, and this is distributed into four main sectors: (1) LPG blending, (2) diesel 

replacement as a transportation fuel, (3) gas turbine fuel in power generation sector, 

and (4) chemical precursor for different chemicals (for instance, olefins and 

petrochemicals) [1]. Moreover, DME had registered a compound annual growth rate 

of 15.67% from 2015 to 2020. China is considered to be the world’s largest DME 

producer utilizing 90% of the total produced DME for LPG blending [5]. 

1.5 DME production methods 

Currently, there are two ways for DME production as shown schematically in 

Figure 1.1. The first process involves an indirect route, where DME is produced by 

bimolecular dehydration of methanol over solid acid catalysts. The second method, 

which is arguably more efficient, is known as the direct synthesis of DME where the 

synthetic gas (a mixture of H2 and CO, also known as syngas) is converted directly to 

DME using heterogeneous hybrid/bifunctional catalysts. 

 

 

 

 

 

  

 

Figure 1.1: Dimethyl ether production diagram 
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1.5.1 Indirect synthesis 

Indirect synthesis refers to DME production from methanol in a dual-step 

catalytic process in which methanol is firstly produced from the syngas or CO2 using 

an appropriate catalyst, namely copper oxide or zinc oxide, then the methanol is 

purified followed by a dehydration reaction to produce DME according to Equation 

1.1. This reaction takes place over solid acid catalysts such as γ-Al2O3, ZSM5, HY 

zeolites and silica-alumina, which are widely used for this process [6]. 

From an industrial perspective, one of the drawbacks for this method is the 

need of two distillation columns for the separation procedure which makes it an 

energy-consuming process and hence, more costly. However, in this process, the 

final product purification is much easier than in the direct single step [7], which is 

further discussed in the next section. 

   2 CH3OH          CH3OCH3 + H2O              ΔHº = -23.4 kJ/mol       (1.1)     

1.5.2 Direct synthesis 

The direct (single step) method is based on combining the two steps 

described in the indirect synthesis in a single process, where the methanol is 

synthesized and converted to DME simultaneously in the same reactor using an 

integrated hybrid catalyst [8]. In this route, the catalyst should be bi-functional and 

composed of a metal catalyst and a solid acid to promote the two reactions in one 

pot. Cu/ZnO/Al2O3 is a well-established catalyst for this process that exhibits very 

good activity and selectivity. This method is also known as syngas to dimethyl ether 

(STD) process since methanol is produced from syngas, which can be manufactured 

from different sources including natural gas, through steam reforming, coal and 

petroleum coke, and from biomass [3]. STD was established by Topsoe as vapor 
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phase process containing three main reactions: water-gas shift reaction (Equation 

1.2), methanol synthesis (Equation 1.3) and methanol dehydration (Equation 1.4) [9-

11]. The overall reaction is expressed in Equation 1.5. 

 H2O + CO           H2 + CO2                          ΔHº = -23.4 kJ/mol       (1.2)       

             CO + 2H2                   CH3OH                            ΔHº = -90.6 kJ/mol       (1.3)        

             2CH3OH              CH3OCH3 + H2O             ΔHº = -23.4 kJ/mol       (1.4)        

             3CO + 3H2          CH3OCH3 + CO2              ΔHº = -245.8 kJ/mol    (1.5)        

The STD process gives higher CO conversion in the methanol synthesis step 

and produces DME at lower costs. However, the final product separation process for 

high purity DME is relatively more complicated due to the existence of unconverted 

syngas and methanol, in addition to CO2. Because of their similar fugacity, CO2 and 

DME are difficult and costly to separate. Also, the total reaction of the STD process 

is highly exothermic therefore, the temperature of the process should be tightly 

controlled.  

Overall, the direct synthesis of DME from syngas is thermodynamically more 

favorable compared to the indirect method. Furthermore, considering the cost of 

using a single reactor without the need for methanol purification, storing, and 

transporting this route could be economically preferred for large scale production   

[7, 12, 13]. 

1.6 Catalysis  

Catalyzed chemical reactions are the core of many industrial and chemical 

processes. The catalyst production is also an accelerating industrial process. 

Therefore, developing an active, efficient and selective catalyst is one of the hottest 

research areas in the field of energy. Most of the industrial catalysts solid materials 
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are based on metals or metal oxides. Some catalysts are also based on sulfides or 

halides of metallic elements or semi-metallic elements, such as boron, aluminium, 

and silicon. Catalysts are classified into two main groups based on their phases 

compared to the reactants. Homogeneous catalysts are catalysts that have the same 

phase of the reactants. The second type of catalysts is heterogeneous catalysts which 

exist in a different phase compared to the reactants. Heterogeneous solid catalysts 

have several advantages over homogeneous catalysts including the ease of product 

separation, better selectivity, and avoiding the need for a large amount of solvents, 

which makes them more environmentally friendly [14, 15]. Most of the industrial 

processes, especially energy-related process, involve heterogeneous catalysts which 

are also the type of catalysts investigated in this project. 

1.6.1 Solid acid catalysts 

Solid acid catalysts are known to have an essential role in chemical 

industries. They are widely used in a variety of different energy-related industries, 

especially in petroleum refining [14]. The surface of solid acid catalysts is rich in 

acid sites; therefore, they promote surface acid-base reactions. The behavior of these 

catalysts is determined based on the dominant type of the acid sites, whether they are 

Brønsted or Lewis acid sites, as well as the strength and number of these sites.  

It has been established that the presence of both Brønsted and Lewis acid sites is 

beneficial to catalyze the methanol to DME reaction. However, the strength and the 

acidic site density should be within an optimum range, because high acidity may 

result in the formation of unwanted hydrocarbons and coke, which will eventually 

lead to catalyst deactivation [16, 17]. One major drawback of solid acid catalysts is 

deactivation, where they can be easily deactivated by H2O, H2S, CO and Pb. 
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Meanwhile, solid acid catalysts can be modified to inhibit their deactivation and 

enhance their performance [4]. 

1.6.2 Catalytic methanol dehydrations 

The dehydration reaction of alcohols is known to be promoted by acid 

catalysts. An ideal solid acid catalyst for methanol dehydration to DME should 

possess high activity and selectivity for the desired product, good thermal stability, 

and hydrophobic character. Hence, an important research objective is to develop a 

stable, robust and water-resistant catalyst that results in minimal carbon and coke 

formation. Among the different solid acid catalysts that have shown promising 

activity for this reaction are zeolites and alumina-based catalysts. Besides their 

appropriate surface chemical properties, these catalysts exhibit high thermal stability, 

high surface areas, and high porosity. In addition, they are cost-effective materials 

and therefore, they are the most widely studied materials for this reaction [1, 4, 18].  

Among the studied catalysts; γ-Al2O3 [19], sulphated zirconia [20], and 

SAPO zeotypes [21] were found to exhibit good selectivity, but their activities are 

still low for attractive commercial implementation. While particular types of zeolites 

are more active and more stable in the presence of water, their product selectivity is 

relatively poor due to the formation of hydrocarbons and coke [19-22]. Therefore, 

developing more robust and stable catalytic materials is of great importance.  

1.6.2.1 γ-Alumina 

Commercial γ-Al2O3 is widely used as a powerful support for different metal 

catalysts due to its high surface area. Furthermore, γ-Al2O3 is an attractive catalyst in 

many industrially important processes, especially in the petroleum and energy 
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industries. One of the reactions where γ-Al2O3 is considered as a promising catalyst 

is the methanol dehydration reaction where it shows high activity and selectivity to 

DME. 

Theses promising catalytic applications of alumina arise from a set of 

characteristics including its low cost, good thermal stability, high specific surface 

area, surface acid/base characteristics, and its interaction with metals active phase in 

the case of its use as a support for metal catalysts [16, 23, 24]. In addition to γ-Al2O3 

,alumina can exist in different phases, up to 7 different structures, that possess 

different textural and structural properties allowing for its use in a wide range of 

applications [23].   

The most stable form is α-alumina, it possesses superb mechanical, electrical, 

thermal and optical properties as a result of its stable structure that based on 

hexagonal close packing of oxygen ions [16, 23]. The other seven metastable phases 

γ, κ, ρ, η, θ and χ also known as transition alumina, are nano-crystalline by nature. 

These forms of alumina are widely used as catalysts and as catalyst supports in many 

industrial processes, particularly in the petroleum refining. The γ-phase is one of the 

distinct polymorphic phases of alumina with numerous applications. The crystal 

phase of γ-Al2O3 is face-centered cubic (FCC) spinel structure. In this arrangement, 

oxygen atoms occupy the main positions of FCC structure, and Al3+ ions occupy 

both tetrahedral and octahedral sites. -phase alumina shows good catalytic activity 

and selectivity in methanol to DME reaction compared to other phases. Sung et al. 

[25] had tested the dehydration reaction of methanol with different crystalline phases 

of alumina and found that γ-Al2O3 exhibited the highest activity for methanol to 

DME conversion compared to its counterparts α-Al2O3 and κ-Al2O3. 
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The formation of γ-Al2O3 can be achieved by proper thermal dehydration of 

hydroxides (Al(OH)3) or oxyhydroxide like Boehmite (AlOOH) within a temperature 

range between 400ºC to 450ºC. Treating it at higher temperatures will lead to the 

formation of other stable phases [26, 27], according to the sequence as shown below 

[16]. 

 

 

The heat treatment and calcination temperature are important factors that 

should be considered during the preparation, as the catalytic activity of γ-alumina for 

DME production is linked to the acid sites that form during the calcination step.        

γ-Al2O3 has both Brønsted and Lewis acid sites on its surface with moderate to 

strong acidity. These active sites play an important role in methanol adsorption and 

dehydration for the DME formation as will be described in Chapter 4. However, the 

Lewis acid sites and the hydrophilicity of alumina surface results in adsorbing of 

water molecules which can compete with other reactants at the active site that leads 

in catalyst poisoning and blocking the active sites [28]. In methanol dehydration, 

water is bi-product and can affect the catalytic activity as it can compete with 

methanol on the adsorption sites on alumina surface resulting in some deactivation 

[29, 30]. Therefore, developing a practically efficient catalyst necessitate more 

studies in two directions: First, understanding and reducing the effect of factors that 

limit its performance. Second, modifying its textural and chemical properties by 

doping with other elements in efforts to enhance its performance.  
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1.6.2.2 Zeolites 

Zeolites are another type of solid acid catalysts that have shown promising 

catalytic activity and are widely studied and implemented in the dehydration reaction 

of methanol to DME. Zeolites are porous crystalline aluminosilicate, synthetic or 

naturally occurring, which usually have high surface areas due to the well-ordered 

pores network in their structures. They are made of silicates SiO4 and aluminates 

AlO4 that are tetrahedrally linked via oxygen atoms. Zeolites have extensive 

industrial uses as catalysts or as adsorbents, particularly in the petrochemical 

industry. Their different applications arise from their unique structure, thermal 

stability and large surface areas. In addition, zeolites have molecular-sized pores i.e. 

micropores (0.4-1.3 nm) [31], thus, zeolites could be used as molecular sieves in 

which the molecules will be separated based on their size and shape. However, the 

narrow micropores hinder diffusion and reactants flow which may affect their 

catalytic activity [7, 32]. 

Zeolites surfaces have both Lewis and Brønsted acid sites. Zeolite acidity 

arises from the presence of aluminum ions where the four-valent silicon atom is 

replaced by three-valent aluminum atom resulting in a charge difference for which a 

counter ion is needed to compensate for the charge difference. If the counter ion is a 

proton, a Brønsted acid site is formed. On the other hand, if a tetravalent transition 

metal is substituted into the framework, that metal site can act as a Lewis acid. 

Generally, the distribution, strength, and the number of these acid sites are the main 

factors that affect zeolites catalytic activity [1, 32, 33].  

Having strong acid sites enhances the methanol dehydration reaction and 

conversion at low temperature, also they increase the preference for MeOH 
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adsorption over water which will minimize the water poising effect that would lead 

to deactivation. However, these sites are the main contributors in zeolites 

deactivation as they promote unwanted side reactions that form olefins, coke and 

hydrocarbons that result in blocking the pore structure [7]. 

There are different existing types of zeolites and many of them were used as 

solid acid catalysts, namely ZSM5, HZSM5, Y, FER and mordenite, which have 

shown good methanol to DME conversion and selectivity. Among all studied 

zeolites, Zeolite Socony Mobil–5 (ZSM5) is one of the most studied and the best 

catalyst reported for this reaction [34]. 

Literature reports show that three main factors affect zeolites catalytic 

activity; zeolites structure (size and shape of pores), the identity of cation for charge 

balance and framework of heteroatom substituent. The used cation could be 

monovalent or divalent and each one of them has its unique industrial application.  

Copper exchanged zeolites, as an example, are used for selective catalytic reduction 

of NOx for exhaust gas cleanup. Nickel exchanged zeolites can be used to promote 

oligomerization. Sodium exchanged zeolites can be used as Lewis acids, such as 

their use in catalyzing dehydration of methyl lactate [35].  

Another important characteristic of zeolites that plays a crucial role in their 

catalytic activity is the Si/Al ratio. Different Si/Al ratios result in different acidic 

properties. It has been reported that the activity of zeolite for methanol to DME 

conversion could be enhanced by decreasing the Si/Al ratio, which means increasing 

the overall surface acidity [36, 37]. 
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1.6.2.3 Other catalysts 

There are some other catalysts that have been studied for the dehydration 

process of methanol to DME, other than alumina and zeolite. Said et al. [38] 

investigated sulfated zirconia for this reaction and they found that under certain 

conditions sulfated zirconia is an efficient catalyst for the synthesis of dimethyl ether 

with high yield (83%) and excellent selectivity (100%). In another study, 

Vishwanthan et al. [39] tested a series of TiO2-ZrO2 mixed oxides with different 

molar ratios at temperatures in the range of 280-340ºC, where the studied catalysts 

achieved good selectivity and high stability for temperatures below 300ºC. Different 

silica-titania mixed oxide have also been tested for the methanol dehydration 

reaction, and they were found to have low catalytic activity [40]. 

Recently, polymeric heterogeneous catalysts, namely nafion resin, have 

attracted a great attention in DME synthesis. The nafion catalysts provide 40% 

methanol conversion with no catalyst deactivation and without coke formation. 

Aluminum phosphate (AlPO4) has also been studied as a promising catalyst for the 

conversion of methanol to DME and it showed a relatively small amount of coke 

deposit and good water adsorption resistance [7]. These catalysts are composed of   

-Al2O3 modified with phosphorous, where their catalytic activity was found to 

depend on the preparation method, activation temperature and chemical composition, 

Al/P molar ratio [7]. Table 1.2 shows the most studied catalysts for the DME 

synthesis in the last decade.  
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Table 1.2: A literature survey of the most studied catalysts for methanol to DME 

conversion during the last decade 

Catalyst Pressure 

(atm) 

Temperature 

°C 

wt. 

Catalyst 

g 

Conversion 

% 

Selectivity 

% 

Ref. 

FER zeolite 1 240 0.07 85 100 [33] 

RHO zeolite - 200 - 93 100 [34] 

FER zeolite 1  180 - 38 100 [36] 

Sulfated 

zirconia 

1 230 0.5 83 100 [38] 

CuO PdO/γ

–χ–Al2O3 

1 250 0.2 80 100 [41] 

CuO PdO/γ

–χ–Al2O3 

1 300 0.2 88 100 [41] 

γ–χ–Al2O3 1 300 0.2 100 90 [41] 

ZSM5 29.5 250 3 95 54 [41] 

H-ZSM5 4 240 0.5 80 100 [41] 

FER-10 - 200 – 80 100 [41] 

Bmim3PMo12

O40 

- 250 0.05 80 100 [41] 

Nb/TiO2 - 300 0.5 11.3 93 [41] 

 Hierarchical 

zeolite CaA 

1 400 0.2 58 100 [42] 

Zr loaded 

activated 

carbon 

1 400 0.2 69 95 [43] 

ZrO2 

supported 

activated 

carbons 

1 400 - 70 96 [44] 

γ–Al2O3 1 300 0.15 83 100 [45] 

Cu/sulfated 

zirconia 

1 275 0.5 87 100 [46] 

P/Al2O3 1 300 0.15 94 100 [47] 

ZSM5 1 300 - 84 100 [48] 

MgO/HZSM5 9.9  210 - 87 100 [49] 

Al4B6O15 9.9  300 0.3 12.6 99.9 [50] 

AlPO4/ZSM5 1 300 1 84 89 [51] 

ZrO2–γ–Al2O3 1 230 0.5 87 100 [52] 

CuO Fe2O3

/γ–Al2O3 

 1 290 0.15 70 100 [53] 

C-PO3 1 300 0.2 20 95 [54] 

γ–Al2O3 2 330 - 82.6 99.9 [55] 

CuO/γ–Al2O3 49 250 1 65 60 [56] 
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Table 1.2: A literature survey of the most studied catalysts for methanol to DME 

conversion during the last decade (contiued) 

Catalyst Pressure 

(atm) 

Temperature 

°C 

wt. 

Catalyst 

g 

Conversion 

% 

Selectivity 

% 

Ref. 

ZnO-

 CuO/Al2O3ــ

1 300 0.1 80 75 [57] 

SAPO-11 - 300 0.3 80 90 [58] 

SAPO-11 1 250 0.4 84 100 [59] 

FER-8 1 240 0.7 90 92 [60] 

SBA-15 1 300 0.1 80 100 [61] 

FER-zeolite 1 200 0.7 80 95 [62] 

γ–Al2O3 1 300 - 83 99.9 [63] 

Al2O3/SBA-15 1 350 0.2 80 99 [64] 

γ–Al2O3/Nb2O5 1 240 - 77 99.9 [65] 

polymer/cerami

c membrane 

1 180 - 37 100 [66] 

HSiW/TiO2 1 180 0,2 80 100 [67] 

γ–Al2O3 1 250 0.4 90 100 [68] 

WOx/TiO2 - 300 0.5 15 87 [69] 
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Chapter 2: Catalysts Preparation and Characterization 

 

This chapter describes the experimental procedures employed in the catalyst’s 

preparation and characterization. It also describes the characterization results 

including the catalyst’s morphological, textural, and surface chemical properties. 

2.1 Introduction and overview 

Choosing a suitable preparation method for a catalyst synthesis is critical as it 

usually shows a significant impact on the textural properties and the catalytic activity 

of the catalyst [16, 70]. Very often, different parameters within the same method 

could also affect the product properties [71]. Therefore, several factors should be 

considered including the preparation route, the reaction temperature, the pH of the 

starting solutions, and the calcination temperature of the prepared materials [17]. 

2.1.1 Brief review of common preparation methods   

Different methods for preparing doped solid catalysts have been reported in 

the literature. The most common methods include sol-gel, co-precipitation, wet 

impregnation, gas-phase deposition and combined co-precipitation-ultrasound         

[7, 72]. 

Co-precipitation and sol-gel are currently the most widely used methods for 

preparing alumina-based catalysts [73]. Co-Precipitation method refers to the 

formation of a sparingly soluble solid phase from a liquid solution phase. On the 

other hand, the sol-gel method is usually defined as the construction of an oxide 

network through polycondensation reactions of a molecular precursor in a liquid. The 

term ‘sol’ refers to the stable dispersion of colloidal particles in a solvent which 

collides and agglomerate to form the gel that consists of a three-dimensional 

https://www-sciencedirect-com.ezproxy.uaeu.ac.ae/topics/physics-and-astronomy/sol-gel
https://www-sciencedirect-com.ezproxy.uaeu.ac.ae/topics/physics-and-astronomy/coprecipitation
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continuous network. For the last decade, sol-gel became more adopted compared to 

other preparation methods. One study showed that nanoparticle of γ-Al2O3 prepared 

by a sol-gel method had a noticeable enhancement in the catalytic activity compared 

to its counterpart prepared by a precipitation method [7]. 

2.1.2 Sol-gel process 

Sol-gel processing was initially developed as a tool for controlling the texture 

of metal-oxide (MOx) phases. Recently this technique has become a universal 

method for the preparation of catalytic materials. The typical sol-gel process starts 

with dissolving a precursor of the desired compounds (e.g. metal salts or alkoxides) 

in an alcoholic solvent. For instance, alumina could be prepared by dissolving 

commercially available aluminium alkoxide (e.g. Aluminum-tri-sec-butoxide)         

in 2-propanol followed by the addition of water for hydrolysis. Deprotonation of the 

metal cation intermediate takes place resulting in the formation of metal hydroxides 

(M–OH–M), which condenses further (gelation) leading to form M-O-M polymeric 

framework. Generally, the morphology of the final product ranges from discrete 

particles (sol) to continuous polymer networks (gel), and nanoparticles. The desired 

morphology of the final product could be obtained by controlling the reaction 

temperature, duration, pH, and aging time. Therefore, these factors should be taken 

into account based on the type of application for the prepared material [17, 74]. The 

aging step of the gel is needed as an extension of the gelation process in which the 

gel network is fortified by an additional polymerization that can be controlled by 

changing the temperature and the type of the solvent [75].  

After the gelation is complete, the gel is dried at an appropriate temperature 

to remove the solvent, water and any other by-products. Finally, the dried product is 
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thermally treated (calcined) at elevated temperatures (usually above 400ºC) for 3-6 

hours to obtain the final metal oxide product such as aluminium oxide that is 

obtained from its hydroxide gel. The conditions of this step play a key role in 

controlling the textural property of the final product. Mostly, conventional drying to 

form xerogel is used, although this method gives lower surface area and smaller pore 

volumes compared to the supercritical drying which results in an aerogel with 

significantly higher surface area and porosity. However, owing to the lower cost and 

easier processing of conventional drying, it becomes very often more convenient to 

use [75, 76]. 

2.1.2.1 Advantages of sol-gel method 

There are several inherent advantages of the sol-gel method. For instance, its 

usually carried out at room temperature which provides the ability to use a wide 

range of starting materials.  It also gives better homogeneity of materials, especially 

the synthesis of multi-components since its initiated with a solution of all needed 

precursors, which very often allows the synthesis of innovative and functional 

materials with advanced applications in different areas. 

The textural properties (surface area, porosity, particle size and shape) of the 

prepared material could be effectively controlled by manipulating some of the 

process parameters like precursor, calcination temperature and pH [74]. Also, as 

previously stated, catalysts prepared by sol-gel method very often show better 

activity, which could be a consequence of unique textural properties such as higher 

porosity and better pore size distribution, as well as larger surface area compared to 

catalysts prepared by other methods [7]. Another significant advantage of sol-gel is 

the low production cost that makes it even more attractive. Moreover, in the 
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preparation of doped metal oxides, this technique perfectly controls the dopant 

content within the final product composition, where the dopant is introduced into the 

starting solution and ends up finely dispersed in the final product. Even a small 

amount of the dopant, such as organic dyes and rare earth elements, could be 

introduced and ends up nicely dispersed in the final product [74, 77]. 

Historically, the use of sol-gel technology has been introduced in the mid-

1800s. In the last decade, the sol-gel method started to attract more attention as it 

could be applied under extraordinarily mild conditions. Therefore, it got involved in 

an enormous number of applications in different areas to produce materials of 

different sizes, shapes and formats (e.g., fibres, films, monoliths, and nano-sized 

particles). The obtained products from this technique are utilized in different fields 

such as energy, biotechnology, optics, electronics, health, pollution, and medicine. It 

can also be employed to produce products of different types of materials like 

inorganic pigments, drugs, magnetic nanoparticles and catalysts [74]. 

2.1.2.2 Literature overview of the sol-gel method  

Sol-gel method was investigated as a route to prepare metal oxide dielectric 

films for high-performance electronic devices as was reported by Park et al. [78]. 

One of the aims of the researchers in this field is to develop a cost-effective method, 

taking into consideration time and complexity. While solution-based deposition was 

one of the most common procedures for this purpose, sol-gel method was not widely 

used in this field until the last decade where significant improvements in sol-gel 

technology were made toward a wide range of applications, particularly for metal 

oxide materials. Since then, the sol-gel method has played a central role in 

fabricating a new generation of high-performance printed electronic systems [78]. 
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Silicon doped alumina thin films with a glass-like structure derived via the 

sol-gel process is an example in electronic applications. In these materials, the sol-

gel processing helped in enhancing the homogeneity of the composite structure and 

in promoting ionic transportation to fix the defects of the alumina films [79]. In 

another study, the effect of doping was investigated for the electrical stability of Al-

doped zinc oxide (AZO) as they are one of the promising alternatives to tin-doped 

indium oxide (ITO), which is used in different optoelectronic applications such as in 

spectro-electrochemistry [80]. The investigators in this study investigated the 

resistivity and stability of AZO thin films prepared by sol-gel method. The results 

showed an improvement in the stability of AZO films that were prepared at high 

annealing temperatures compared to ITO. 

In the field of catalysis, the sol-gel method is widely employed for the 

preparation of mixed metal oxide and doped metal catalysts. The term doping here 

refers to the insertion of foreign element (usually metal) atoms in the inorganic 

network of the metal oxides for different purposes. For instance, alumina could be 

doped with different metals for the formation of active sites with distinct 

functionality or to promote the formation of a desirable phase structure. Desired 

modification by doping may include shifting phase transformation temperature or 

stabilizing the phase and suppress transformation to achieve optimized physical and 

chemical properties [79, 80]. As an example, in one study Ln doping in alumina 

stabilized the phase of alumina lattice by delaying the transformation of the phase 

(θ → α) through increasing the phase transformation temperature by a notable 

magnitude [81].  
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In another study, sol-gel-prepared magnetic iron oxide, γ-Fe2O3, doped with 

titanium showed unique structural as well as textural properties including small 

particle size, around 5 nm, and high surface areas as well as large porosity. This 

phase of iron oxide is an essential material for different advanced applications 

including recording materials. It was also found that doping suppresses the 

transformation to alpha iron oxide, -Fe2O3, which also has different applications, 

especially when fabricated in nanoscale particles, including their use in pigments and 

catalysis. Sol-gel-prepared magnetic nanoparticles have other advanced applications 

in the medical field such as bio-sensing, drug-delivery and as a therapeutic agent   

[81, 82].  

In sol-gel preparation, there are several variables that affect the final 

product’s activity and other properties. One of the most important variable is the 

precursor, which plays a vital role in the properties of the final product, especially 

metal oxides and mixed oxides [81, 83, 84]. For example, γ-Al2O3 could be prepared 

from different precursors such as aluminum tri-sec-butoxide (C12H27AlO3), 

aluminum nitrate (Al(NO3)3) or aluminum chloride (AlCl3). Owing to that, several 

studies have investigated the effect of the precursor on the catalytic activity of the 

prepared catalysts [85, 86].Osman et al. [16] reported a study where they compared 

two of the readily available precursors to prepare γ-Al2O3 and they found that γ-

Al2O3 prepared from aluminum nitrate precursor showed higher catalytic activity 

compared to the one prepared from aluminum chloride precursor under the same 

reaction conditions [16]. Similarly, Khaleel et al. [76] examined the preparation of γ-

Al2O3 doped with Cr3+ and Cu2+ ions from three different precursors and he found 

that the type of precursor affects structural, textural and morphological properties of 

the catalysts. The study examined doping -alumina with different concentration of 
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Cr3+ and Cu2+ using three different precursors (acetyl acetonate, nitrate, and 

chloride), where the acetyl acetonate gave better results in terms of surface area, 

particle sizes and enhanced resistance to sintering.  It was also found that for 

preparing bulk doped alumina with large metal loading, the acetly acetonate 

precursor would be preferred over the nitrate and chloride [76]. 

Calcination conditions, especially temperature, is another preparation 

parameter that usually has a significant effect on the product’s morphology and 

textural properties. Calcination is defined as a process of heating a substance under 

controlled temperature and in a controlled environment [88], which is usually 

described as heat treatment in air. This process is a crucial step for different aspects, 

as it controls the phase-type of the final product and has a noticeable effect on the 

crystal size, particle size distribution, surface area, porosity, magnetic properties, and 

the surface acid-base properties. There is a significant number of literature reports 

that has been published describing these effects on different catalytic applications 

[88-93]. The calcination conditions that have an impact on the product’s properties 

include the temperature, time, heating rate and the steps involved, whether it is a 

single step or multi-steps heating. For example, it has been shown that for alumina, 

the surface area increased by increasing calcination temperature till it peaks around 

500ºC before it starts to drop again with increasing the temperature, which is due to 

the change of alumina structure and to the sintering process [88, 89, 94]. Concerning 

the calcination effect on porosity, it has been suggested that the average pore 

diameter would increase with increasing calcination temperatures and heating rate. 

On the other hand, the pore volume will decrease. However, the particle size usually 

increases until the pore structure collapses, and this mainly occurs when -Al2O3 is 

https://www.sciencedirect.com/topics/materials-science/pore-volume
https://www.sciencedirect.com/topics/materials-science/pore-structure
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calcined at temperatures above 1000°C. Moreover, increasing the calcination time 

usually enhances phase transformations [91]. 

The surface acidity of alumina was also found to be influenced by the 

calcination conditions. A study on the effects of the heating rate on the surface 

acidity suggested that the acid sites concentration increases with increasing heating 

rate as a result of the thermal shock that is caused by the high heating rate which 

fastens the dehydration process, creating structure and surface defects leading to the 

formation of more acid sites [92]. Another study also reported that the surface acidity 

increases with increasing the heating rate, which was referred to the increased 

number of Al+3 occupying the tetrahedral holes rather than octahedral [96].  

However, the opposite is true when considering the effect of the temperature on the 

acidity as it has been reported that at higher calcination temperatures the amount of 

desorbed ammonia (which adsorbs on acid sites) dropped heavily indicating less 

acidity of the catalyst surface [94, 96]. 

2.1.3 Characterization techniques 

The development and advancement in various materials characterization 

techniques helped in providing useful information and a better understanding of 

materials properties and performance in different applications. The following 

sections describe the main techniques that have been used in this study and their 

features. 

2.1.3.1 Powder x-ray diffraction (XRD) 

Characterization of the catalysts composition and their degree of crystallinity 

using powder X-ray diffraction (XRD) is an essential step before examining the 

https://www.sciencedirect.com/topics/physics-and-astronomy/dehydration
https://www.sciencedirect.com/topics/materials-science/surface-defect
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catalyst, in order to confirm having the desired structure of the employed catalyst. 

XRD is a nondestructive technique that provides detailed information about the 

crystallographic structure and the chemical composition of materials [98]. Even 

though the technique is usually termed as ‘‘powder diffraction’’ but it is not limited 

to powder samples only. Any single-crystalline or polycrystalline sample could be 

analyzed with this technique, together with monolithic solids, thin films, and 

powders. XRD is applied in different fields, including pharmaceuticals 

characterization, determining, and classifying minerals structures, and determining 

the structure of all crystalline solids. It is an essential research tool where its 

applications include [99]: 

1. Phase identification: where the diffraction pattern act as a unique fingerprint of 

the phase  

2. Quantitative phase analysis: where the size and shape of the unit cell, of any 

crystalline material, can be determined and then refined to very high accuracy. 

3. In-situ analysis: where the analysis could be carried out under controlled 

conditions (i.e., atmosphere, temperature, pressure, and electrical field), which 

helps in monitoring the change in the material and allows for conducting kinetic 

studies. 

The working principle of XRD is based on the diffraction of monochromatic 

X-ray beam which is high-energy electromagnetic radiation with a relatively short 

wavelength that is similar to the distance between atoms in a crystal. This radiation is 

usually emitted from Cu Kα, which is the most commonly used source, which gives 

radiation with λ= 0.15406 nm.  
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In a typical X-ray diffraction experiment, the sample is placed on a holder 

that held in the way of the X-ray beam. The X-ray tube and the detector will move 

simultaneously in synchronized motion and the output signal will be recorded in the 

diffractogram which represents the intensity of the diffraction peaks as a function of 

the diffraction angle, 2-theta [99]. The radiation will hit the sample at a certain angle 

(theta) some of the radiation will be absorbed while the other will be reflected and 

diffracted in a different angle, 2-theta, this phenomenon is known as elastic 

scattering. The emitting angle (2-theta) represents the angle between the incident and 

diffracted beam, as shown in Figure 2.1. 

 

The diffraction occurs when the scattered waves from an object 

constructively and destructively interfere with each other. The resultant peaks in the 

outcome diffractogram indicate that a constructive interference (in-phase) because of 

the highly ordered atoms. In contrast, when there are no peaks in the diffractogram, it 

simply means that the atoms or ions are not highly ordered over a long range, thus 

the waves are out of alignment resulting in destructive interference (out of phase). 

Figure 2.1: Graphical illustration of the 2-theta angle between 

the incident and reflected beam 
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2.1.3.2  Catalyst surface acidity assessment using TPD 

A temperature programmed desorption (TPD) technique was developed 

particularly in the field of catalysis, where it was designed to provide information 

about acid sites density and strength of the solid surface. In addition, studying the 

interaction between the reaction gases and the solid surface could be applied to 

understand the mechanism of catalytic reactions [100]. One common application of 

TPD is temperature programmed desorption of ammonia (NH3-TPD). NH3-TPD is a 

well-established technique for characterizing catalyst acid sites concentration due to 

the basic nature of ammonia which allows it to bind with acidic sites on the surface. 

Also, the desorption of ammonia versus temperature is used to assess the strength of 

interaction, which indicates the strength of the acid sites. However, NH3-TPD can’t 

distinguish between different types of acid sites. Therefore, the adsorption of other 

probes such as pyridine using FTIR spectroscopy is commonly used to distinguish 

between the different types of acid sites.  

The working principle is simple where it is totally based on the chemisorption 

of a probe molecule (NH3 in the NH3-TPD case) on the solid surface followed by 

desorption under heating in a temperature-programmed manner using a linear ramp.  

The area under the desorption curve can be used to calculate the number of acid sites 

using a calibration curve based on measuring pure ammonia in a blank experiment. 

The adsorption of ammonia occurs as one molecule per acid site; therefore, the 

ammonia concentration per catalyst mass can be used to determine the total acid sites 

concentration in the catalyst sample. The temperatures at which desorption occurs 

indicate the strength of the acid sites. 
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2.1.3.3 Gas physisorption for surface area and porosity characterization 

Gas physical adsorption can be used to measure the surface area, pore 

volume, and pore size distribution of solid materials. These textural characteristics 

are essential parameters in heterogeneous catalysts where they usually have a 

significant impact on the catalytic activity, adsorption properties, and permeability of 

reactants and products of a reaction. 

In this technique, the sample should be solid, and the analysis time varies 

depending on the surface area and the porosity of the sample as well as the rapidity 

with which the instrument achieves equilibrium. In a typical experiment, a mixture of 

nitrogen gas with a nonadsorbing ideal carrier gas (usually He) is allowed over the 

sample in a special glass cell at liquid nitrogen temperature, -196°C. The pressure of 

N2 is gradually increased over the sample and the amount of gas needed to form a 

monomolecular layer on the solid surface can be determined from the volume of the 

gas adsorbed on the surface and the measured adsorbed volume is correlated with the 

solid surface area using BET (Brunauer, Emmett and Teller) theory, which predicts a 

linear relation when an appropriate function of the pressure P, saturation pressure Po 

and the adsorbed gas volume V is plotted against the relative pressure P/Po (Equation 

2.1) as follows:  

                                                           (2.1)                                           

The adsorbed gas in pores of smaller radii is bound more tenaciously to the 

surface and therefore condensation in micropores takes place at low relative 

pressures. Similarly, condensation in larger pores takes place at higher relative 

pressures. Plotting the volume of the gas adsorbed versus relative pressure gives 
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information about the nature of the pores and the pore size distribution in the 

material. 

2.1.3.4 Transmission electron microscopy (TEM) 

TEM is another essential powerful technique that is used in studying and 

analyzing the material’s morphology by analyzing the transmitted electron intensities 

as well as the characteristic X-rays and the energies lost from the incident beam. 

Most solid materials could be studied using TEM with some restrictions that are 

related to technical constraints and large scattering of the electrons in solid samples. 

For that reason, the diameter of the sample shouldn’t exceed 3 mm and its thickness 

should be less than 100 µm in order to have a transparent sample for successful 

analysis. Producing thin samples could be achieved with different techniques that are 

developed for this purpose such as ion milling, electropolishing, spraying or dusting. 

In TEM, a high-energy beam of electrons is generated using tungsten film, a 

LaB6 crystal or a field emission gun. The generated beam and the resultant 

diffraction pattern (transmitted beam and several diffracted beams) could be imaged 

on a fluorescent screen. From the diffraction pattern, the information about lattice 

spacing and symmetry are obtained for the desired sample. In addition, this technique 

is capable of providing a magnified image of the sample using the transmitted beam 

or one of the diffracted beams which will give information about the microstructure 

of the material including the size and shape of the particles. Therefore, TEM is an 

informative technique for studying topographical, morphological, compositional, and 

crystalline information of different materials. It can be utilized in a variety of 

different scientific, medical, educational, and industrial fields.  
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2.2 Experimental methods 

2.2.1 Catalyst preparation 

Pure and doped γ-Al2O3 catalysts were prepared using a template-free sol-gel 

method. Aluminium tri-sec-butoxide and titanium(IV) n-butoxide were used as 

precursors for the preparation of alumina doped with titanium, and 2-propanol was 

used as a solvent. Composites containing different dopant concentrations of 2%, 3%, 

5%, 10%, and 15% were prepared and will be represented by the general formula 

AlTiX where X refers to the dopant molar percentage. In a typical preparation, 10 

mL (0.0393 mol) of aluminum tri-sec-butoxide was dissolved in 80 mL 2-propanol 

and the required amount of Ti precursor was dissolved separately in 40 mL of the 

same solvent. The beakers were capped to prevent any possible hydrolysis and 

oxidation of aluminium tri-sec-butoxide. The two solutions were mixed by adding 

the Ti precursor solution to that of Al to minimize its exposure to air, as shown in 

Figure 2.2.  The mixture was stirred for 15 min before the stepwise addition, under 

continuous stirring, of a stoichiometric amount of deionized water for hydrolysis. 

The amount of water was based on H2O:Al ratio of 3:1 plus an excess amount of 

20%. The mixture was stirred for 4 hours giving a colloidal gel, which was then aged 

for 24 hours at room temperature. The solvent was removed by evaporation in a 

water bath at 80°C and the obtained powder was dried in an oven at 120°C, 250°C, 

and 350°C for 1 hour at each temperature followed by calcination at 500°C for 4 

hours. The same steps were followed for the preparation of other catalysts using 

different precursors for different dopants, where Ni(NO3)2.6H2O and VCl3 were used 

as precursors of Ni(II) and V(III), respectively. 
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For comparison, titanium(IV) oxide supported on alumina was prepared by 

the wetness impregnation method [101]. In a typical experiment, 12 mg of 

titanium(IV) n-butoxide were dissolved in 10 ml of 2-propanol and mixed with 4 g of 

commercial alumina giving a paste-like mixture. After mixing thoroughly, the 

mixture was dried overnight at room temperature then was dried in an oven at 120°C 

and 300°C for 1 hour at each temperature, followed by calcination at 400°C for 2 

hours. 

ZSM5 zeolites with different Si/Al ratio were purchased from Tianjin Hutong 

Global Trade Co., Ltd., China, and were used without any further treatment. 

Commercial alumina, CM-γ-Al2O3, was obtained from SASOL North America Inc. 
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2.2.2 XRD characterization 

XRD patterns were obtained using a Shimadzu-6100 powder XRD 

diffractometer with Cu-K radiation, = 1.542 Å, operating at a voltage of 40 kV 

and 30 mA current. The data were collected in the 2 angle range of 20-80 deg., at a 

rate of 1 deg./min and 0.02° step size. Before the analysis, the sample was grinned 

well to a fine powder using a mortar and pestle. The sample was placed in an 

Figure 2.2: Scheme of the steps of preparation of AlTiX% as an example 
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aluminium holder with a diameter of 2.5 cm which was held firmly in its place in the 

XRD instrument. 

2.2.3 Temperature programmed desorption (TPD) 

NH3-TPD was performed on a ChemBET TPR/TPD chemisorption 

instrument from Quantachrome equipped with a thermal conductivity detector. Each 

sample, 150 mg, was pretreated prior to adsorption in a fixed-bed quartz U-tube at 

350°C for 80 min under helium flow of 30 mL/min. Then the sample was cooled 

down to 30°C under 75 mL/min of He to stabilize the signal. After cooling down, the 

sample was saturated with NH3 using 30 mL/min flow of ammonia for 15 min. The 

sample was then purged under 30 mL/min of He for 30 min. The temperature was 

then ramped from 30°C to 800°C at a heating rate of 10°C/min under He flow at a 

rate of 30 mL/min. The amount of ammonia desorbed during the process was 

quantified with a TCD detector. 

2.2.4 Surface area and porosity measurements 

Surface areas measurements and pores characteristics were obtained using N2 

sorption at 77 K on a TriStar II volumetric gas sorption instrument from 

Micrometrics. Before measurements, samples were degassed at 200°C for 2 hours.  

Brunauer-Emmett-Teller (BET) theory was used for surface area calculation and 

pore size distributions were determined by Barett-Joyner-Halenda (BJH) model 

based on the desorption branch of the N2 isotherms. 
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2.2.5 TEM analysis 

TEM images were obtained using a CM10 Philips electron microscope, 

where an ethanol suspension of the samples was deposited on a carbon film attached 

to a copper grid. 

2.3 Results and discussion 

2.3.1  Structural characterization 

Figure 2.3 shows the XRD patterns of the prepared γ-Al2O3 and Ti-doped 

counterparts of different compositions after calcination at 500°C. The pure alumina 

samples always showed a well-defined γ-Al2O3 structure with characteristic broad 

Bragg reflections at 46° and 67° 2θ [102].  

Interestingly, the presence of Ti(IV) ions in concentrations up to 15% did not 

result in any detectable crystalline titanium oxide phase as indicated by the absence 

of any peak for TiO2, which is usually very crystalline after calcination at the 

employed temperature, 500°C. The absence of segregated TiO2 indicates the well 

dispersion of the dopant ions in the alumina network structure. In addition, the 

dispersion of the Ti ions in the alumina lattice is indicated by the enhanced 

amorphous nature of the composites where the dopant ions act as an impurity that 

hinders crystallization. 
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Figure 2.3: XRD patterns of γ-Al2O3 doped with Ti ions and undoped γ-Al2O3 

after calcination at 500°C 

Figure 2.4 represents XRD patterns of the prepared Ni-doped γ-Al2O3, where 

they showed very similar behavior to their counterparts of Ti-doped alumina,  In the 

patterns of these composites, no peaks are observed for nickel oxide in the presence 

of Ni(II) ions in concentrations up to 10%. In addition, NiAl2O4 was prepared using a 

concentration of 33% Ni to compare its catalytic activity with the Ni-doped alumina 

samples, and its XRD pattern showed its formation as shown in Figure 2.5. Figure 

2.6 shows the XRD pattern of the two studied zeolites samples, which match their 

reported reference patterns [103, 104] 
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Figure 2.4: XRD pattern of NiAl2O4 after calcination at 500ºC 

Figure 2.5: XRD patterns of γ-Al2O3 doped with Ni ions after calcination at 

500°C 
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2.3.2  Textural and morphological characterization 

The N2 adsorption-desorption study showed modified textural properties for 

AlTi03 compared with the undoped -Al2O3. The textural modification includes 

higher surfaces area and smaller mesopores as shown in Table 2.1. However, the 

surface area decreased when the concentration of Ti was increased to 10%. On the 

other hand, the surface area and the total pore volume decreased more noticeably in 

the Ni-containing composites. While the reason behind the different effects from the 

different dopants is still not well understood, and was not investigated further, the 

surface areas and the total pore volumes are still relatively high compared with 

commercial nanoscale alumina powders, which usually have surface areas less than 

200 m2/g and total pore volumes around 0.5 cc/g.  The textural properties of the two 

zeolites shown in Table 2.1 are typical characteristics of zeolites where the total pore 

Figure 2.6: XRD patterns for ZSM5 samples 
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volumes are considerably smaller than those of the other materials due to their 

crystalline structures that contain mainly micropores. 

Table 2.1: Surface area and pore characteristics of the investigated solids calcined at 

500°C 

Composition SBET 

(m2/g) 

Pore volume 

(cc/g) 

Average pore diameter 

(nm) 

-Al2O3 416 1.81 15.8 

AlTi03 449 1.53 10.2 

AlTi10 376 1.03 11.4 

AlNi03 303 1.10 13.9 

AlNi10 348 1.07 13.6 

ZSM5-25 298 0.25 3.2 

ZSM5-360 320 0.18 2.91 

 

  The textural characteristics of the composites in Table 2.1 are also shown in 

their adsorption-desorption isotherms and pore size distributions as presented in 

Figure 2.7 and Figure 2.8, respectively. Higher surface area and lower total pore 

volume of AlTi03, compared to undoped alumina is referred to the larger 

contribution of smaller mesopores. At higher concentration of Ti, 10%, the surface 

area decreased, the contribution of larger mesopores increased, and pore size 

distribution became less homogeneous as presented in Figure 2.8, which may 

indicate heterogeneity in the composite. The modified textural properties of AlTi03 

can be referred to the effect of Ti ions as an impurity in the alumina matrix hindering 

particle growth and resulting in smaller primary particles that eventually aggregated 

creating more inter-particle pores in the mesoporous range. This is evident in Figure 

2.7, where the hysteresis loop is shifted to a lower relative pressure range in the 

presence of 3% Ti. The pore size distribution of AlTi03 also showed a smaller 
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average pore diameter and narrower pore size distribution as presented in Figure 2.8.  

The observed higher surface area and textural homogeneity of AlTi03 compared with 

AlTi10 can be referred, in part, to its lower concentration of Ti ions that allowed 

better uniform dispersion within the alumina matrix. AlTi05 showed a catalytic 

activity similar to that of AlTi03, as will be discussed in Chapter 3, and was not fully 

characterized. 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

 -Al
2
O

3

 AlTi03

 AlTi10

 ZSM5-25

 ZSM5-360

Q
ua

nt
ity

 A
ds

or
be

d 
(m

m
ol

/g
)

Relative Pressure (P/P
O
)
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γ-Al2O3 calcined at 500°C 
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The effect of doping is also confirmed by the TEM images as shown in 

Figure 2.9, where the morphology of the particles has changed from needle-like to 

smaller nanoscale spherical particles of less than 10 nm in diameter that aggregate 

resulting in a significant amount of larger inter-particle pores in the mesoporic range, 

2-50 nm. The less homogeneous aggregates of larger particles in the image of AlTi10 

further supports its N2 sorption results. These results also correlate with the enhanced 

amorphous nature of the doped samples as evident from their XRD patterns 

discussed above.  
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Figure 2.9: TEM images of γ-Al2O3, AlTi03 and AlTi10 

The acidity of the surface of selected materials in this study was characterized 

by NH3-TPD and their profiles are shown in Figure 2.10. The profile of AlTi03 

shows a noticeable increase in the total acidity of its surface compared with pure 

alumina as indicated by the larger area under its peak. The maxima in their peaks are 

at about the same temperature indicating very similar strength of their acid sites. On 

the other hand, the profile of the Ni-containing composite shows a noticeable 

decrease in the total acidity as indicated by its smaller peak, which also shifts slightly 

to a lower temperature range indicating the presence of some weaker acid sites. For 

better understanding of the effect of the Ti ions, the profile of TiO2 was also recorded 

and it showed considerably lower total acidity compared to the alumina-based 

catalysts. Its profile showed that significant amount of the ammonia desorbed at 

higher temperatures indicating the dominance of strong acid sites, which correlates 

with its catalytic performance and the methanol adsorption intermediates as will be 

discussed in Chapters 3 and 4. The profile of ZSM5-25 showed the highest overall 

acidity as indicated by its larger peaks that expand over a wide range of temperatures 

indicating the presence of sites of different acidity strength.  Two overlapping peaks 

appear in the temperature range of 150°C-350°C that refers to weaker acid sites and 

another small broad peak in the range of 500°C-700°C, which refers to the stronger 
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acid sites. The high overall acidity of ZSM5-25 is referred to the high concentration 

of Al ion sites in its lattice. The high concentration of Al leads to a high 

concentration of bridging OH groups, Al-OH-Si, which are known to be more acidic 

than their terminal counterparts [105]. 

The profile of AlTi03 indicates total surface acid sites comparable to those of 

the studied zeolites. The role of Ti4+ ions in increasing the surface acidity can be 

referred, in part, to its high oxidation state where they act as Lewis acid sites when 

not fully coordinated on the surface. This characteristic is expected to enhance the 

concentration of surface OH groups to balance the charge difference compared with 

the Al3+ ions. The enhanced formation of OH groups is confirmed by DRIFT spectra 

of doped and undoped alumina as shown in Figure 2.11, which will be discussed 

further in Chapter 4, where more intense peaks for surface methoxy intermediates are 

observed. It could also be referred to the possible formation of bridging hydroxyl 

groups, Ti-OH-Al, similar to Si-OH-Al in zeolites. The profile of AlNi03 indicates 

lower overall acidity compared to pure alumina as indicated by the smaller area 

under its peak. This could be due to the lower charge on the Ni ions compared to 

aluminum ions that are smaller in size and higher in charge making them stronger 

Lewis acid sites.  
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Chapter 3: Catalytic Activity Study 

 

3.1 Overview 

In this chapter, the catalytic activity study is described. The catalytic 

performance of the prepared materials was studied in the dehydration of methanol to 

dimethyl ether (DME) reaction using a homemade fixed bed continuous flow reactor.  

The different prepared materials were tested, and their catalytic activity were 

compared in terms of methanol conversion and selectivity to DME. 

3.2 Background   

As was described in Chapter 1, DME could be produced from methane by 

two different routes, direct, where methane is converted to DME in one step, and 

indirect where methane is converted first to methanol, which is then converted to 

DME. Our project involved the conversion of methanol to DME step through vapor 

phase dehydration reaction over different solid acid catalysts based on γ-Al2O3 or 

zeolites.  

As we have discussed earlier in Chapter 2, the dehydration reaction of 

methanol is affected by the textural and structural characteristics of the catalysts, 

which can be controlled by manipulating different preparative conditions and 

variables. Besides, the DME production process is influenced by the type of the 

reactor and its configurations. In general, there are several standards for an ideal 

reactor system for DME synthesis process, including: (I) simple construction,          

(II) uniform temperature distribution inside the reactor for high exothermic reaction, 

(III) easy catalyst addition, and (IV) good control of the reactor temperature to avoid 

catalyst sintering. In the following section, different reactor systems are discussed. 
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3.2.1 Types of reactors for DME synthesis 

Several types of reactor designs have been employed for the direct and the 

indirect DME synthesis such as fixed bed reactors, internal recycle type reactors, 

fluidized bed reactors, batch mixed slurry reactors, and double-membrane heat 

exchange reactors [105, 106]. In the present research, a fixed bed reactor was 

employed for the dehydration reaction of methanol to DME. Fixed bed rectors are 

known in the industrial field for their low operation cost, simplicity, ease of 

operation and maintenance. In these reactors, the reaction takes place in the form of a 

heterogeneously catalyzed gas reaction on the surface of catalysts where the catalysts 

particles are packed as a fixed bed [108]. This type of reactors has some drawbacks, 

including the formation of hot spots inside the reactor, which affects its performance 

and deactivate the catalysts as it may cause catalyst sintering [107]. 

3.2.2 Dehydration reaction variables 

During the dehydration reaction in the fixed bed reactor, temperature, 

pressure, and feed flow rate are the most crucial variables that need to be controlled, 

as they will affect the reaction rate and the catalytic activity. Various studies in the 

literature have assessed the role of different parameters and their effect on the 

selectivity, reaction rate and methanol conversion trends [7, 28, 32, 108]. They 

revealed that the temperature and the flow rate are the most significant controlling 

factors that govern the efficiency of the catalytic process. For instance, the reaction 

rate could be enhanced by increasing the temperature. However, theoretically, 

methanol dehydration is favored at relatively low temperatures range, because it is an 

exothermic reaction, which means that the formation of by-products such as 

ethylene, carbon monoxide, hydrogen and coke becomes more favorable at higher 

https://www-sciencedirect-com.ezproxy.uaeu.ac.ae/topics/chemical-engineering/ethylene
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temperatures [7, 109]. Owing to this fact, this reaction is performed within an 

optimum range bellow 300ºC.  

Likewise the temperature, the pressure affects the reaction process but at a 

smaller scale [111]. In terms of the effect of the reactant concentration, Osman [109], 

reported that as the methanol concentration increases the conversion decreases 

because of the atmosphere over the acid sites will be crowded and saturated with 

alcohol molecules which will hinder the dehydration [109]. In relation to the effect of 

the flow rate, it was found that a lower flow rate leads to a higher rate of conversion, 

owing to the longer residence time of the reactants on the catalyst surface and in the 

reactor. However, the higher flow rate was found to give better DME selectivity as 

higher flow rate means shorter contact time with the catalysts, resulting in a lower 

chance for the further decomposition of DME to carbon dioxide and methane        

[28, 105, 111]. 

Generally, studying these parameters is not easy, as each one of them could 

affect the other. However, overall, the studies described above highlight the main 

trends and parameters that should be managed appropriately to obtain sufficient 

DME selectivity as well as catalytic activity. 

3.3 Experimental methods 

The catalytic activity of all prepared materials were studied at 200°C under 

one atmospheric pressure using a continuous-flow fixed-bed reactor connected       

in-line with a gas chromatograph (GC) for products’ separation, identification and 

quantitation, as shown schematically in Figure 3.1. 

The catalyst used in all catalytic tests was in the form of sieved powder, 

which were sieved using 120-180 mesh stainless steel sieves. In each experiment, 



47 

 

120 mg of the catalyst powder was packed between a stainless-steel frit and a glass 

wool plug in a U-shape stainless steel tube reactor (6 mm inside diameter). The 

reactor was fixed inside a tube furnace equipped with a temperature controller and a 

K-type thermocouple, positioned in the proximity of the catalyst bed. Before each 

experiment, the catalyst sample was degassed for 1 hour at 400°C in a flow of 

Helium (90 ml/min) in order to remove any adsorbed molecules on the catalyst 

surface such as water. The reactor was then cooled down to the desired reaction 

temperature (200ºC). Once the reaction temperature was stabilized, the reaction was 

started by allowing methanol vapor diluted in He to flow through the catalyst bed. 

Methanol was introduced by allowing He flow, as a carrier gas, at a flow rate of 1.5 

mL/min to bubble through a methanol saturator which was kept at a temperature 

around 23°C. The Methanol/He stream was diluted by another He stream at a flow 

rate of 88.5 mL/min. The reactor line between the methanol saturator and the GC 

was electrically heated to around 120ºC using heating tapes in order to prevent 

condensation of methanol. The products were sampled by injecting 1 mL samples 

into the GC for qualitative and quantitative evaluation of the products every 30 min 

during a total of 5 hours on-stream. 

To investigate the effect of reaction temperature, a set of experiments were 

conducted at different temperatures in the range of 150°C-400°C. After analysis of 

the products at each, the temperature was increased stepwise by 50ºC. At each 

reaction temperature, the system was allowed 30 min for stabilization before the first 

sampling at each temperature, where sampling was done at least twice during a 

period of one 1 hour at that temperature 
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3.4 Data collection and product analysis 

The analysis of the reaction products was carried out by an in-line GC, 

Shimadzu GC-2010, equipped with a capillary column Rt-Q-BOND of 30 m length 

and 0.32 mm ID, and a dielectric-barrier discharge ionization detector (BID).  

Reactor effluents were fed continuously through a 6-way valve equipped with a 1 mL 

sampling loop as shown in Figure 3.2. The products sample loop was injected into 

the GC column using the GC carrier gas, helium. The principle of BID detector is 

based on the generation of He plasma in a quartz tube using high voltage. The energy 

of the He plasma ionizes compounds that elute from the column. The BID detector is 

a universal detector as it generates a 17.7 eV helium plasma that ionizes almost all 

compounds and elements except Neon. The following temperature program was used 

on the GC for products’ separation: a 2 min hold at 35ºC, a ramp to 180ºC at a rate of 

20ºC/min and 6 min hold. The gas chromatograph was calibrated for the expected 

eluents using high purity methanol and the DME.  

Figure 3.1: Continuous flow fixed-bed reaction setup 
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Figure 3.2: 6-way valve scheme (a) loading position (b) injection position [113] 

The catalyst that were tested include pure alumina, alumina doped with 

Ti(IV), Ni(II), V(III), and two selected zeolites, with emphasis on Ti- and Ni-doped 

alumina. In addition, some Si and Zn-containing alumina were tested for quick 

comparison only, without detailed studies. The catalytic activity was expressed in 

terms of methanol conversion (Equation 3.1), and products selectivity were 

calculated according to the equations shown below (Equation 3.2) and (Equation 

3.3). The reported results are based on the averages of three experiments with 

reproducibility around 99% in all measurements. 

 

Conversion of methanol (%) =                                                                         (3.1) 

 

DME selectivity (%) =                                                                         (3.2) 

 

     CO2 selectivity (%) =                                                                         (3.3) 

[CO2] 

converted MeOH 

2[DME] 

converted MeOH 
x100 

x100 

[MeOH]in - [MeOH]out 

[MeOH]in 
x100 
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3.5 Results and discussion 

3.5.1 Catalytic activity 

The catalytic methanol dehydration to DME reaction was studied over 

different prepared and commercial materials including prepared as well as 

commercial -Al2O3, Ti-doped -Al2O3, Ni-doped -Al2O3 and ZSM5 zeolites. The 

prepared -Al2O3 showed catalytic activity comparable with and even slightly higher 

than that exhibited by nanoscale commercial -Al2O3 (CM-Alumina) as shown in 

Figure 3.3. Since, Ti-doped -Al2O3 was studied, the catalytic test was also 

conducted over commercial nanoscale TiO2, which showed no catalytic activity in 

the methanol dehydration to DME reaction. A possible explanation is that the tested 

TiO2 has a rutile structure where all Ti ions have a coordination number of 6, and the 

coordinatively unsaturated surface ions are either covered with strongly bound OH 

groups, due to the high oxidation state and the empty d-orbitals, or they strongly 

adsorb methanol molecules and intermediates, which is supported by the 

spectroscopic study of methanol adsorption as will be discussed in Chapter 4. 
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Selected dopants, Ti and Ni, in particular, were investigated at different 

concentrations ranging from 2% to 15 % as shown in Figures 3.4 and 3.5. It was 

found that high concentrations of the dopant had a negative impact on the catalytic 

activity where the conversion decreased as the concentration increased. These results 

may indicate that high dopant concentrations lead to the substitution of a 

considerable number of the Al acidic sites and may also lead to the formation of 

small amounts of amorphous and dispersed segregated Ti and Ni oxides that are not 

detected by XRD.   

Prepared NiAl2O4 was also tested for comparison. Compared with -Al2O3 

that has a corundum structure, this compound has a spinel structure and was more 

crystalline. It showed considerably lower catalytic activity, which can be referred to 

the structure in which all Aluminum ions reside in octahedral holes with a 

coordination number of 6 and hence, lower acidic character than Aluminum ions in 
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Figure 3.3: Methanol conversion at 200°C over prepared γ-Al2O3 

compared with its commercial counterpart and TiO2 
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-Al2O3 which has a defect spinel structure where some Aluminum ions reside in 

tetrahedral holes of coordination 4 enhancing their acidic character. 

Interestingly, concentrations of ≤ 5% Ti and ≤ 3% Ni resulted in a noticeable 

enhancement to the methanol conversion compared with undoped -Al2O3, as shown 

in Figures 3.4 and 3.5. The effect of Ti4+ ions with these concentrations can be 

referred to different factors, including first, its higher oxidation state that may 

enhance methanol adsorption as the first step of the reaction. Second, its higher 

oxidation state and the presence of valence empty d orbitals increase the Brønsted 

acidity strength of the bridging hydroxyl groups, Al-OH-Ti. Third, its larger ionic 

radius (61 pm) compared to that of Al3+ ions (53 pm) may favor residing in 

octahedral interstitial holes, enhancing the occupation of Al ions in tetrahedral holes 

where their acidity is enhanced compared with ions in octahedral coordination. The 

effect of the Ni2+ ions can also be referred, in part, to its larger ionic radius, 69 pm. 

Also, Ni2+ has a d8 electronic configuration which favors octahedral coordination due 

to the significant crystal field stabilization energy associated with such configuration.  

 

  

 

Figure 3.4: Methanol conversion at 200°C of AlTi with different 

concentrations compared with pure γ-Al2O3 
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Another Al-Ti oxide catalyst was prepared by impregnating the surface of 

already-prepared -Al2O3 by the Ti4+ precursor, 3% Ti, followed by calcination to 

form a Ti-rich surface for comparison with the bulk-doped catalyst. The structural 

characteristics of this composite were not investigated in the study, and only a 

catalytic activity test was performed for comparison with the bulk-doped catalyst, as 

shown in Figure 3.6. Although this composite showed conversion comparable with 

that of AlTi03 catalyst, the reaction over its surface resulted in a considerable 

amount of CO2 on account of selectivity to DME as will be discussed below.   

 

 

 

 

 

Figure 3.5: Methanol conversion at 200°C of AlNi with different 

concentrations compared with pure γ-Al2O3 
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Figure 3.6: Methanol conversion at 200°C over TiO2/Al2O3 

compared to AlTi03% and γ-Al2O3 
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The catalytic activity was also tested on -Al2O3 doped with 3% V(III), which 

showed considerably lower conversion, as shown in Figure 3.7. The lower catalytic 

activity of AlV03 correlates with its acidity measurement and lower surface area. 

These results indicate that the catalytic activity of metal-doped -Al2O3 depends 

significantly on the type of dopant. However, more work is needed for a better 

understanding of the influence of different dopants.  
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Figure 3.7: Methanol conversion at 200°C of AlM03% compared to 

Alumina 
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The catalytic activity was also studied over  -Al2O3 doped with different 

other elements, as shown in Figure 3.8, which presents the methanol conversion over 

these catalysts containing different dopant ions with 10% mole concentration. The 

results indicate that all dopants with this concentration resulted in a decrease in the 

conversion except Si, which gave conversion comparable with that of pure -Al2O3. 

The dehydration of methanol was studied for quick comparison over these 

composites, which were not studied further. 
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Figure 3.9 shows methanol conversion over a series of ZSM5 zeolites with 

different Si/Al ratios ranging from 25 to 360. The results presented in Figure 3.9 

shows that as the Al content decreases, the conversion decreases. These results can 

be correlated with the fact that the decrease in the Al concentration results in a 

decrease in the total acid sites. 

 

 

 

 

 

 

 

 

 Figure 3.9: Methanol conversion at 200°C over different ZSM5 

zeolites 
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Figure 3.8: Methanol conversion at 200°C over AlM10 catalysts 

compared with pure γ-Al2O3 
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Figure 3.10: Methanol conversion at 200°C over AlM03% vs. selected 

Zeolites 
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Interestingly, the prepared AlTi03 catalyst gave conversions very similar, and 

even slightly higher than, those obtained over the well-known acidic zeolite, ZSM5-

25, as shown in Figure 3.10. This finding holds a great promise toward the 

development of new acid catalysts based on Ti-doped alumina, with a Ti 

concentration around 3% which may offer advantages over zeolites in applications 

that require solid acid catalysts. The advantages of the AlTi composite include easier 

preparation and better molecular diffusion due to their higher surface area and larger 

mesopores compared with the micropores of zeolites. 
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3.5.2 Products’ selectivity 

The DME selectivity in reactions over AlM03% and selected zeolites 

catalysts is presented in Figure 3.11. AlTi03 and AlNi03 showed DME selectivity 

very similar to that obtained over -Al2O3, which was around 95%. However, AlV03 

showed noticeably lower selectivity, which was around 90%. The higher DME 

selectivity usually indicates higher total acidic character of the surface indicating that 

-Al2O3 retained its surface acidity in the presence of Ti or Ni in its matrix. However, 

the presence of V ions seems to have a negative impact. It is noteworthy that in the 

presence of the transition metal dopants, especially V, the DME selectivity was 

noticeably lower at the beginning of the reaction. The lower selectivity can be 

referred to possible redox behavior of the transition metal ion sites, especially over 

the fresh surface at the beginning of reactions where surface OH groups are expected 

to be present and contribute to the redox process. This behavior was confirmed by 

the observed higher CO2 selectivity over the V-doped catalyst as shown in Figure 

3.12. 

The selectivity over zeolites shows an inverse relation with Si/Al ratio where 

the DME selectivity increased as the ratio decreased, where the total acidity is 

higher. The selectivity trend was as follows: ZSM5-25 > ZSM5-38 > ZSM5-200 > 

ZSM5-360, as shown in Figure 3.11 which presents the selectivity of the ZSM5-25 

and ZSM5-360 compared to commercial alumina, Ni-doped alumina and Ti-doped 

alumina. 
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Figure 3.11: DME selectivity in reactions at 200°C over AlM03%                               

(Ni,Ti) vs Alumina and Zeolites 
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Figure 3.12: CO2 selectivity from reactions at 200ºC over AlM03% 

vs Alumina catalysts 
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Comparison between surface-doped alumina (TiO2/-Al2O3) with its bulk-

doped counterpart (AlTi03) shows that the surface-doped catalyst promoted 

oxidation of methanol more favorably, especially at the beginning resulting in a very 

low DME selectivity and high CO2 selectivity as shown in Figure 3.13. It is very 
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Figure 3.13: DME (a) and CO2 (b) selectivity in the reaction at 200°C 

over TiO2/Al2O3 vs AlTi03 
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(b)

likely that surface OH groups are involved in the oxidation process, which gets 

consumed in the redox reaction with time.    
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The effect of the reaction temperature on methanol conversion and DME 

selectivity was evaluated on -Al2O3, AlNi03% and AlTi03% in the temperature 

range of 150ºC to 400ºC, as shown in Figure 3.14. It is clear that the methanol 

conversion increased with increasing the reaction temperature, as expected since the 

conversions drop at lower temperatures because fewer molecules have enough 

energy to overcome the activation energy needed to for the reaction.  

While the tested catalysts showed very similar conversions at temperatures          

≥ 200ºC, a noticeable difference was observed at lower temperatures. The doped 

catalysts, AlNi3% and AlTi3%, gave noticeably higher conversions than pure 

alumina at 150°C. However, they showed lower DME selectivity and higher CO2 

selectivity at this temperature, as shown in Figure 3.14 (b). The results show that the 

DME selectivity was maximum at temperatures between 200°C and 300°C which 

would be the range of optimum reaction to produce DME efficiently. At higher 

reaction temperatures, 350-400°C, CO2 and CH4 were dominant products on account 

of DME which considerably decreased as shown in Figures 3.14 (b) and 3.14 (c). 

Methanol dehydration is favored at lower temperatures because it is an exothermic 

reaction and other possible reactions leading to the formation of by-products become 

favored at higher temperatures.  
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Figure 3.14: (a) Methanol conversion, (b) DME selectivity, and 

(c) CO2 selectivity over AlM03% compared to alumina in the 

temperature range from 150ºC to 400ºC 
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Chapter 4:  Mechanistic Study by Methanol Chemisorption 

 

4.1 Introduction and overview 

Understanding the mechanism of methanol adsorption and dehydration is an 

essential study for optimization of the catalyst composition towards better 

performance and longer lifetime. Studying the adsorption also helps in formulating 

an appropriate kinetic model for this process. The reaction mechanism of the 

methanol dehydration reaction on both alumina and zeolites is still under debate. 

However, the majority of the literature reports agree that the mechanism follows 

either Rideal-Eley or Langmuir–Hinshelwood kinetic models [105-107]. The first 

route, which is known as Rideal-Eley mechanism involves only one methanol 

molecule adsorption which involves protonation of the methanol hydroxyl group to 

form a surface methoxy group and water. The methoxy group on the surface is 

subject to nucleophilic attack of a methanol molecule from the gas phase forming a 

dimethyl ether (DME) molecule. The second route, which is known as Langmuir-

Hinshelwood mechanism or Bercic model [117], considers the adsorption of two 

methanol molecules on adjacent acid/base pairs [68, 109, 110]. The two adsorbed 

molecules react forming DME. There is a third proposed route which is very similar 

to Langmuir-Hinshelwood mechanism, except that both methanol molecules are 

suggested to be adsorbed on the same active site, but with different adsorption 

enthalpies [120]. Some studies have also proposed a different route where two 

methanol molecules adsorb dissociatively forming two surface methoxy groups on 

Lewis acid sites and two new OH groups. The two surface methoxy groups then 

interact to form dimethyl ether molecules [112, 113].   
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Based on the proposed mechanisms, the literature suggests two main 

pathways for the production of DME from methanol, either associative where co-

adsorption of two methanol molecules occurs at Brønsted site without the formation 

of methoxy,  or dissociative where one methanol molecule reacts with the acid site 

forming a surface methoxy group and a water molecule [119]. 

 While these routes have been proposed for reactions over different zeolites 

and other solid acid catalysts, there is still no distinction between mechanisms over 

different types of catalysts, and no correlation between the proposed mechanisms and 

the possible active sites on the surface [107, 109]. In this work, the adsorption of 

methanol on γ-Al2O3, Ti-doped γ-Al2O3, Ni-doped γ-Al2O3 and ZSM5 was studied 

using in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS) aiming at first, studying the effect of doping on the adsorption and second, 

comparing the routes of methanol interaction over these solids.   

4.2  Experimental method: Methanol adsorption and intermediates study   

Adsorbed methanol and adsorption intermediates on the surface of the 

catalysts at different temperatures were studied using DRIFTS which is known for its 

simplicity and easier sample preparation compared to the conventional transmission 

FTIR. The employed DRIFTS accessory was equipped with a cell that enables in-situ 

studies at elevated temperatures, as high as 900°C.  

Before each experiment, the catalyst sample, ~200 mg powder, was 

pretreated at 400°C under N2 for 1 hour at a flow rate of 10 mL/min. The sample was 

then cooled down to 100°C and a background spectrum was recorded. The sample 

was then cooled down to 50°C and methanol was introduced by passing the N2 flow 

through a methanol saturator at room temperature as shown schematically in Figure 
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4.1. After 20 min, a spectrum was recorded before the cell was purged with N2 gas 

for 30 min to remove gas phase and physically adsorbed methanol molecules. After 

purging, a spectrum of the catalyst was recorded at the same temperature, 50°C. The 

catalyst was then heated to higher temperatures, up to 500°C. It was soaked at each 

analysis temperature for 20 min, followed by cooling to 100°C before a spectrum 

was collected after treatment at each temperature. 

 

 

 

 

 

 

 

 

 

 

 

4.3 Results and discussion 

Adsorption of methanol was studied over selected doped alumina catalysts, 

AlTi03 and AlNi03 were compared with -Al2O3 and TiO2 as shown in Figure 4.2, 

which shows the spectral regions of peaks due to OH and CH in the spectra of the 

surface species after adsorption at 50°C. The surface of -Al2O3 usually possesses 

different OH groups that have been well studied by FTIR spectroscopy [121].  

Various studies have reported seven distinguished bands due to isolated OH groups 

including four low-frequency bands, in the region of 3660-3740 cm-1, assigned to 

OH groups bridging Al atoms of different coordination, and 3 high-frequency bands, 

Figure 4.1: Methanol adsorption study setup 

Methanol adsorption study 

setup  
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in the range of 3745-3790 cm-1, assigned to terminal OH groups bound to one Al 

atom with different coordination numbers [112, 113]. The bands at lower frequencies 

are expected to involve weaker O-H bonds and, hence, are more acidic. Therefore, 

they usually behave as Brønsted acid sites. On the other hand, the higher frequency 

groups are less acidic and may even behave as basic sites.  

The spectra after adsorption and before purging at 50°C, of -Al2O3, TiO2, 

AlTi03 and AlNi03 are presented in Figure 4.2. The spectra showed several 

overlapping negative peaks in the region of 3670-3790 cm-1 that are referred to OH 

of bridging as well as terminal isolated OH groups [121]. According to literature, the 

peak at 3765 cm-1 refers to medium-strong Brønsted acid sites, while the peak at 

3730 cm-1 refers to medium-weak sites and that at 3675 cm-1 is assigned to weak 

sites. 
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The fact that the OH peaks are negative indicates that these groups existed on 

the surface before adsorption and were perturbed upon adsorption of methanol. The 

negative peaks were accompanied by broad positive peaks in the range of 3200-3400 

cm-1 which can be assigned to hydrogen-bonded OH groups, indicating that the 

perturbation of the isolated OH groups is due to their engagement into hydrogen 

bonding with the adsorbed molecules. This observation provides an evidence for the 

dominance of undissociative adsorption of methanol in the first step of methanol 

dehydration [68]. This behavior is supported by the spectra of the same samples after 

purging at 150°C as shown in Figure 4.3, where the negative peaks decreased in 

Figure 4.2: DRIFT spectra of adsorbed species over AlTi03, AlNi03, γ-Al2O3, and 

TiO2 after adsorption of methanol at 50ºC 
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intensity indicating partial regeneration of those OH groups due to removal of 

adsorbed methanol and methoxy species [68, 114, 115]. 

Since changes involved the peaks in the whole OH spectral region, it can be 

concluded that both types of OH groups, bridging and terminal, were involved in the 

interaction with adsorbed methanol molecules. The peaks in the region of 2800-3000 

cm-1 are due to CH (s(CH3) at 2920 and s(CH3) at 2825 cm-1) which indicates the 

formation of adsorbed methoxy group intermediates [112, 116, 117], indicating that 

dissociative adsorption of methanol also takes place. 

Compared to undoped -Al2O3, AlTi03 showed some shift of the perturbed 

OH peaks to lower frequencies, indicating the presence and the involvement of 

slightly more acidic groups in the adsorption process. This observation is also 

supported by the NH3-TPD results discussed above, where larger overall and 

stronger acidity was observed for AlTi03. On the other hand, although AlNi03 

showed the same shift but it possesses weaker intermediate binding indicated by the 

less resistance to desorption at 150°C which is also supported by the TPD results 

where it shows desorption at a lower temperature with a smaller amount of the total 

acid sites.  
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Figure 4.3: DRIFT spectra of adsorbed species over AlTi03, AlNi03, γ-Al2O3, and 

TiO2 after desorption of methanol at 150ºC 
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  On the other hand, the peaks of the perturbed OH groups in the spectrum of 

TiO2 appeared at noticeably lower frequencies, compared with γ-Al2O3, indicating 

the dominance and the involvement of more acidic OH groups on the surface of 

Titania, which is also confirmed by the TPD results where it shows desorption at 

higher temperatures indicating strong and medium acid sites. In addition, the 

adsorbed intermediates seem to bind more strongly to the surface of TiO2 as 

indicated by their stronger resistance to desorption at 150°C retaining the perturbed 

OH groups to a larger extent, as shown in Figure 4.3. This could be the reason behind 

the significantly lower activity of TiO2 in this reaction compared to alumina-based 
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solids where DME is evolved from weakly adsorbed species, whereas the more 

strongly bound species decompose further forming surface formates and, eventually 

CH4 and CO in the gas phase. These suggestions are further supported by the 

literature, as discussed below [68]. 

The stronger binding of the OH groups to the TiO2 surface species, as 

indicated by the appearance of the OH at noticeably lower frequencies, could be 

referred to the presence of empty d-orbitals in the valence of the Ti ions and their 

higher oxidation state compared to the Al ions, leading to a stronger surface-O bond 

and hence weaker O-H bond. Adsorption on such OH groups, very likely, results in 

water molecules and strongly bound methoxy groups, on the account of DME 

formation. These observations indicate that the terminal OH groups of low-medium 

acid strength play a more important key role in the dehydration reaction. 

Desorption at elevated temperatures resulted in gradual removal of the 

surface species as shown in Figure 4.4, where the negative OH peaks gradually 

decreased in intensity until almost disappeared after purging at 400°C indicating 

regeneration of the original surface hydroxyl groups as a result of desorption of the 

adsorbed species. However, unlike negative OH peaks that almost disappeared, the 

peaks of methoxy groups decreased at a lower rate and were retained to some extent 

at 400°C, indicating the remaining of some strongly bound isolated methoxy groups.  

It is also noteworthy that new C-H peaks developed between 2908 and 2927 cm-1 at 

elevated temperatures, which are comparable to what was assigned to CH of formate              

(–OOCH) species in another study [68, 106]. It is evident that the possible formation 

of such formate groups is related to the presence of Ti ions in alumina since those 

peaks were absent or of considerably lower intensity in the corresponding spectrum 

of -Al2O3 as shown in Figure 4.5 for spectra after purging at 400°C. 
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Figure 4.5: DRIFT spectra of adsorbed species over AlTi03 and γ-

Al2O3 after purging at 400°C 

Figure 4.4: DRIFT spectra of adsorbed species after adsorption at 50°C and 

subsequent desorption at different temperatures over AlTi03 

 



72 

 

Adsorption of methanol over alumina-based catalysts was compared with that 

on the selected ZSM5 zeolites. Testing zeolites with low and high density of acid 

sites, depending on Si/Al ratio, allows for correlating the adsorption and conversion 

of methanol with surface acid site density. Figure 4.6 shows the DRIFT spectra after 

adsorption over ZSM5-25 and ZSM5-360 compared with -Al2O3 and AlTi03. The 

spectra show that, compared with -Al2O3 and AlTi03, zeolites have a higher affinity 

towards methanol adsorption as evident from the stronger CH peaks in the range of 

2800-3000 cm-1 and the CO peak at 1030 cm-1, which refers to molecularly adsorbed 

methanol that disappeared completely upon purging as shown in Figure 4.6 (b). The 

noticeable amount of physisorbed molecules on zeolites could be referred to their 

ability to retain a significant amount of molecules stored in their micropores before 

their subsequent interaction with the surface.  It is noticed that the negative OH peaks 

in the spectra of zeolites are at wavenumbers <3740 cm-1 indicating the involvement 

of, mainly, the acidic bridging OH groups in the interaction with methanol 

molecules. Also, a significantly higher concentration of hydrogen-bonded OH groups 

formed on zeolites as indicated by their stronger broad bands in the range of 3200-

3600 cm-1. These observations may indicate that adsorption over zeolites was 

initially dominated by molecular adsorption in their micropores followed by 

interaction with Brønsted acid sites, which dominate on zeolites’ surfaces, resulting 

in a network of hydrogen-bonded adsorbed species. This type of interaction usually 

results in associative adsorption and hence, weakly adsorbed intermediates, rather 

than dissociative adsorption as is the case when adsorption takes place on Lewis acid 

sites, which dominate on -Al2O3 surface [68, 106]. 
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It is noteworthy that after purging at 150°C, Figure 4.6 (b) the zeolite with 

higher Al content, ZSM5-25, which has a larger concentration of Al-OH-Si sites, 

showed higher resistance to desorption compared with ZSM5-360. This behavior is 

inferred from the retained peaks of perturbed OH groups in the spectrum of ZSM5-

25, especially in the lower frequency region of 3600-3700 cm-1 indicating stronger 

binding with increased Al content. The weaker adsorption on ZSM5-360 correlates 

with its lower activity towards methanol dehydration to dimethyl ether as was 

observed from the catalytic activity test in Chapter 3. 
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Figure 4.6: DRIFT spectra of surface species over zeolites compared with γ-Al2O3 

and AlTi03 after (a) adsorption of methanol at 50°C and (b) desorption at 150°C 
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The adsorption of methanol molecules on zeolites through, mainly, hydrogen 

bonding with Brønsted acid sites indicates that its interactions during the dehydration 

reaction to dimethyl ether take place on the surface of zeolites through an associative 

pathway as shown in Figure 4.7, route A, which is supported by the observed 

perturbation of the OH peaks.  The high concentration of acidic hydroxyl groups on 

the zeolites surfaces is expected to lead to a high concentration of hydrogen-bound 

intermediates (A1) with which gas-phase molecules, in the presence of methanol 

vapor, can interact (A2) to produce DME and water. It has been also proposed [115] 

that an adsorbed molecule dehydrates first, as shown in route B, producing a surface 

methoxy group, B1, which can react with a gas phase molecule in the presence of 

methanol vapor to produce a DME molecule. However, theoretical calculations 

showed that this route is less favorable [127], which allows proposing that route A 

dominates on Brønsted acid-rich surfaces such as zeolites. This suggested route may 

explain the observed enhanced resistance to desorption on the more acidic zeolite, 

ZSM5-25, Figure 4.6 (b), which can be referred to the high concentration of bridging 

OH groups, Si-OH-Al, which may result in a larger number of hydrogen bonds.   

The broader OH as well as the weaker CH peaks on ZSM5-25 compared to          

ZSM-360 further supports this explanation. These observations allow proposing Al-

rich ZSM5 zeolites as better catalysts for the dehydration reaction of methanol to 

DME since more rapid desorption over low-Al-content zeolites would enhance 

removal of methanol molecules from the surface before undergoing the dehydration 

reaction. This explanation correlates with the fact that zeolites yield more coke at 

higher reaction temperatures compared to alumina because of this stronger binding 

that leads to decomposition at higher temperatures. 
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Compared with zeolites, adsorption over the alumina-based surfaces, which are 

usually dominated by Lewis acid sites, resulted in more pronounce perturbation of 

the terminal OH groups as indicated by more intense negative OH peaks, especially 

for groups at frequencies >3750 cm-1. Those OH groups are less acidic than the low-

frequency groups and can act as basic sites. The presence of such basic OH group in 

the vicinity of a Lewis acid-base pair site may promote dissociative adsorption of a 

methanol molecule, as shown in route C of Figure 4.7, leading to the formation of an 

isolated methoxy group bound to a Lewis acid site and a new OH group on a 

neighboring oxide basic site, intermediate C1. The basic nature of the terminal OH 

group promotes dehydration with the newly created OH group creating a new 

reactive Lewis acid site (C2) that promote dissociative adsorption of a second 

methanol molecule which condenses with the already existing methoxy group (C3) 

resulting in a DME molecule and regenerated surface. This suggested role of the 

basic OH groups is supported by the significant perturbation of these groups on the 

alumina-based solids as indicated by the strong negative peaks in their spectra. On 

fully dehydrated alumina surface, there will be a chance for two molecules to          

co-adsorb dissociatively on two Lewis acid-base pairs producing two methoxy and 

two hydroxyl groups.  However, the proposed mechanism (route C) is more likely on 

the alumina-based solids in the present study due to the presence of a significant 

concentration of terminal OH groups on their surfaces as evident from their DRIFT 

spectra. In summary, the dehydration reaction seems to take place via an associative 

route over zeolites with a key role of Bronsted acid sites, while a dissociative route 

dominates over the surfaces of alumina-based solids where Lewis acid-base pair sites 

and basic OH groups play key roles.   
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Chapter 5: Conclusion and Future Work 

 

In this work, γ-Al2O3 and metal-doped γ-Al2O3 catalytic materials were 

prepared using the sol-gel method and were characterized by various physical and 

chemical techniques. The prepared catalysts were tested in the methanol dehydration 

to dimethyl ether reaction at temperatures in the range of 150-400°C. The surface 

acid-base properties and the catalytic activity of the prepared γ-Al2O3-based catalysts 

were compared with those of selected commercial zeolites. 

The prepared modified catalytic materials were based on γ-Al2O3 doped with 

different metal ions, including Ti(IV), Ni(II), and V(III). The employed preparation 

conditions resulted in well-dispersion of the dopant ions with concentrations between 

3-10% in the amorphous γ-Al2O3 structure, where no segregated phases of the dopant 

oxides were observed. The study showed that doping of γ-Al2O3 resulted in 

significant textural modifications including higher surface areas, larger total pore 

volumes, and more homogeneous mesopores compared with their undoped 

counterpart. These textural modifications, especially the significant mesoporosity, in 

the prepared catalysts offer a great advantage to these materials over the studied 

zeolites, which contain only micropores that limit reactants and products diffusion 

during reactions, especially when the reactions are associated with coke formation 

that blocks such pores.   

The catalytic activity study showed that the incorporation of certain 

concentrations of Ti(IV) and Ni(II) ions in the γ-Al2O3 matrix resulted in enhanced 

catalytic activity, especially at the lower reaction temperature, > 200°C. The study 

also showed that the optimum reaction temperature is in the range of 200-250°C, and 

at higher temperatures, CO2 and methane were the main products.  
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The catalytic activity and the role of the dopants were correlated with the 

surface acid characteristics of the studied catalysts. The surface acid-base properties 

of the prepared materials and the commercial zeolites were characterized by 

chemisorption of ammonia as a probe molecule. The study showed that doping with 

Ti(IV) ions resulted in an enhanced overall acidity compared to γ-Al2O3. The role of 

the dopants was also correlated with their electronic structures, especially the effect 

of the oxidation state and the d-configuration of the dopant ions on the Al ion 

coordination and the tendency for methanol adsorption and activation. 

The in-situ methanol adsorption study revealed that Ti ions dispersed in         

γ-Al2O3 showed a noticeable effect on the characteristics of its surface hydroxyl 

groups, which was associated with enhanced chemisorption of methanol. The study 

also showed that the differences in the nature of the surface hydroxyl groups on the 

surface of γ-Al2O3 and ZSM5 zeolites lead to different routes of methanol adsorption 

and dehydration over the surfaces of both types of materials. It was evident that 

associative adsorption dominates over zeolites with a key role of Brønsted acid sites 

in the formation of DME. In contrast, dissociative adsorption dominates over the 

surfaces of alumina-based catalysts where Lewis acid-base pair sites and basic OH 

groups play key roles. 

Future recommended work includes studying the effect of the pretreatment 

conditions of the γ-Al2O3-based catalysts as the surface characteristics depend on the 

pretreatment temperature. Chemisorption of pyridine as a probe molecule is another 

important study that helps in distinguishing between the types of the acid sites on the 

surface. Furthermore, investigating other different reaction parameters such as the 

flow rate and the concentration of methanol in the feed stream would be significant 

studies to establish the kinetics of the reaction. 



80 

 

References  

 

[1] U. Mondal and G. D. Yadav, “Perspective of dimethyl ether as fuel: Part I. 

Catalysis,” Journal of CO2 Utilization, vol. 32, pp. 299–320, Jul. 2019, doi: 

10.1016/j.jcou.2019.02.003. 

[2] T. H. Fleisch, A. Basu, and R. A. Sills, “Introduction and advancement of a new 

clean global fuel: The status of DME developments in China and beyond,” 

Journal of Natural Gas Science and Engineering, vol. 9, pp. 94–107, Nov. 2012, 

doi: 10.1016/j.jngse.2012.05.012. 

[3] G. Thomas, B. Feng, A. Veeraragavan, M. J. Cleary, and N. Drinnan, “Emissions 

from DME combustion in diesel engines and their implications on meeting future 

emission norms: A review,” Fuel Processing Technology, vol. 119, pp. 286–304, 

Mar. 2014, doi: 10.1016/j.fuproc.2013.10.018. 

[4] S. S. A. Hosseininejad, “Catalytic and kinetic study of methanol dehydration to 

dimethyl ether,” M.S., University of Alberta, Canada, 2010. 

[5] “Dimethyl Ether Market,” MarketsAndMarkets. https://secure.livechatinc.com/ 

(Accessed Mar. 07, 2020). 

[6] Y. Zhu, S. Wang, X. Ge, Q. Liu, Z. Luo, and K. Cen, “Experimental study of 

improved two step synthesis for DME production,” Fuel Processing Technology, 

vol. 91, no. 4, pp. 424–429, Apr. 2010, doi: 10.1016/j.fuproc.2009.05.001. 

[7] Z. Azizi, M. Rezaeimanesh, T. Tohidian, and M. R. Rahimpour, “Dimethyl ether: 

A review of technologies and production challenges,” Chemical Engineering and 

Processing: Process Intensification, vol. 82, pp. 150–172, Aug. 2014, doi: 

10.1016/j.cep.2014.06.007. 

[8] Y. Wang et al., “One-step synthesis of dimethyl ether from syngas on ordered 

mesoporous copper incorporated alumina,” Journal of Energy Chemistry, vol. 

25, no. 5, pp. 775–781, Sep. 2016, doi: 10.1016/j.jechem.2016.04.014. 

[9] I. A. Kurzina, S. I. Reshetnikov, N. I. Karakchieva, and L. N. Kurina, “Direct 

synthesis of dimethyl ether from synthesis gas: Experimental study and 

mathematical modeling,” Chemical Engineering Journal, vol. 329, pp. 135–141, 

Dec. 2017, doi: 10.1016/j.cej.2017.04.132. 

[10] D. Mao, J. Xia, Q. Chen, and G. Lu, “Highly effective conversion of syngas to 

dimethyl ether over the hybrid catalysts containing high-silica HMCM-22 

zeolites,” Catalysis Communications, vol. 10, no. 5, pp. 620–624, Jan. 2009, doi: 

10.1016/j.catcom.2008.11.003. 



81 

 

[11] Z. Chen, H. Zhang, W. Ying, and D. Fang, “Global Kinetics of Direct Dimethyl 

Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-

Zr Slurry Catalyst,” vol. 4, no. 8, p. 7, 2010, doi: 10.5281/zenodo.1085064 

[12] M. De Falco, M. Capocelli, and A. Basile, “Selective membrane application for 

the industrial one-step DME production process fed by CO2 rich streams: 

Modeling and simulation,” International Journal of Hydrogen Energy, vol. 42, 

no. 10, pp. 6771–6786, Mar. 2017, doi: 10.1016/j.ijhydene.2017.02.047. 

[13] C. Mevawala, Y. Jiang, and D. Bhattacharyya, “Plant-wide modeling and 

analysis of the shale gas to dimethyl ether (DME) process via direct and indirect 

synthesis routes,” Applied Energy, vol. 204, pp. 163–180, Oct. 2017, doi: 

10.1016/j.apenergy.2017.06.085. 

[14] “Solid Acid Catalysis: From Fundamentals to Applications,” Focus on 

Catalysts, vol. 2015, no. 8, p. 7, Aug. 2015, doi: 10.1016/j.focat.2015.07.088. 

[15] “Catalyst | chemistry,” Encyclopedia Britannica, Dec. 14, 2017. 

https://www.britannica.com/science/catalyst (Accessed Sep. 22, 2018). 

[16].A. I. Osman, J. K. Abu-Dahrieh, D. W. Rooney, S. A. Halawy, M. A. 

Mohamed, and A. Abdelkader, “Effect of precursor on the performance 

of alumina for the dehydration of methanol to dimethyl ether,” Applied 

Catalysis B: Environmental, vol. 127, pp. 307–315, Oct. 2012, doi: 

10.1016/j.apcatb.2012.08.033. 

[17].F. Yaripour, Z. Shariatinia, S. Sahebdelfar, and A. Irandoukht, “The 

effects of synthesis operation conditions on the properties of modified γ-

alumina nanocatalysts in methanol dehydration to dimethyl ether using 

factorial experimental design,” Fuel, vol. 139, pp. 40–50, Jan. 2015, doi: 

10.1016/j.fuel.2014.08.029. 

[18] F. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaard, “Catalytic dehydration of 

methanol to dimethyl ether (DME) over solid-acid catalysts,” Catalysis 

Communications, vol. 6, no. 2, pp. 147–152, Feb. 2005, doi: 10.1016/j.catcom. 

2004.11.012. 

[19] J. Ereña, R. Garoña, J. M. Arandes, A. T. Aguayo, and J. Bilbao, “Direct 

Synthesis of Dimethyl Ether From (H2+CO) and (H2+CO2) Feeds. Effect of Feed 

Composition,” International Journal of Chemical Reactor Engineering, vol. 3, 

no. 1, Oct. 2005, doi: 10.2202/1542-6580.1295. 

[20] F. S. Ramos et al., “Role of dehydration catalyst acid properties on one-step 

DME synthesis over physical mixtures,” Catalysis Today, vol. 101, no. 1, pp. 

39–44, Mar. 2005, doi: 10.1016/j.cattod.2004.12.007. 



82 

 

[21].K. S. Yoo, J.H. Kim, M.-J. Park, S.J. Kim, O.S. Joo, and K.D. Jung, “Influence 

of solid acid catalyst on DME production directly from synthesis gas over the 

admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts,” Applied 

Catalysis A: General, vol. 330, pp. 57–62, Oct. 2007, doi: 10.1016/j.apcata.2007 

.07.007. 

[22] J. H. Flores, D. P. B. Peixoto, L. G. Appel, R. R. de Avillez, and M. I. P. da 

Silva, “The influence of different methanol synthesis catalysts on direct synthesis 

of DME from syngas,” Catalysis Today, vol. 172, no. 1, pp. 218–225, Aug. 2011, 

doi: 10.1016/j.cattod.2011.02.063. 

[23] S.M. Kim, Y.J. Lee, J. W. Bae, H. S. Potdar, and K.W. Jun, “Synthesis and 

characterization of a highly active alumina catalyst for methanol dehydration to 

dimethyl ether,” Applied Catalysis A: General, vol. 348, no. 1, pp. 113–120, Sep. 

2008, doi: 10.1016/j.apcata.2008.06.032. 

[24] E. Taveras, “Innovative Catalyst Development for Synthesis of Dimethyl Ether 

(DME): A Renewable Diesel Substitute,” M.S., State University of New York at 

Stony Brook, USA, 2017. 

[25] D. M. Sung, Y. H. Kim, E. D. Park, and J. E. Yie, “Correlation between  acidity 

and catalytic activity for the methanol dehydration over various aluminum 

oxides,” Res Chem Intermed, vol. 36, no. 6, pp. 653–660, Nov. 2010, doi: 

10.1007/s11164-010-0201-y. 

[26] M. Sobhani, H. Tavakoli, M. D. Chermahini, and M. Kazazi, “Preparation of 

macro-mesoporous γ-alumina via biology gelatin assisted aqueous sol-gel 

process,” Ceramics International, vol. 45, no. 1, pp. 1385–1391, Jan. 2019, doi: 

10.1016/j.ceramint.2018.09.056. 

[27] M. Farahmandjou and S. Motaghi, “Sol–gel synthesis of Ce-doped α-Al2O3: 

Study of crystal and optoelectronic properties,” Optics Communications, vol. 

441, pp. 1–7, Jun. 2019, doi: 10.1016/j.optcom.2019.02.029. 

[28] M. Nazari, R. M. Behbahani, A. Goshtasbi, and M. Ghavipour, “Optimizing the 

Operating Parameters for DME Production,” Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, vol. 37, no. 7, pp. 766–774, Apr. 2015, 

doi: 10.1080/15567036.2011.590858. 

[29] A. I. Osman, J. K. Abu‐Dahrieh, D. W. Rooney, J. Thompson, S. A. Halawy, 

and M. A. Mohamed, “Surface hydrophobicity and acidity effect on alumina 

catalyst in catalytic methanol dehydration reaction,” Journal of Chemical 

Technology & Biotechnology, vol. 92, no. 12, pp. 2952–2962, Dec. 2017, doi: 

10.1002/jctb.5371. 



83 

 

[30] D. M. Sung, Y. H. Kim, E. D. Park, and J. E. Yie, “Role of surface 

hydrophilicity of alumina in methanol dehydration,” Catalysis Communications, 

vol. 20, pp. 63–67, Apr. 2012, doi: 10.1016/j.catcom.2012.01.005. 

[31] A. J. Jones, “Acid Strength and Solvation in Catalysis by Solid Acids,” PhD, 

University of California, Berkeley, USA, 2014. 

[32] Hamed Bateni and Chad Able, “Development of Heterogeneous Catalysts for 

Dehydration of Methanol to Dimethyl Ether: A Review,” Catal. Ind., vol. 11, no. 

1, pp. 7–33, Jan. 2019, doi: 10.1134/S2070050419010045. 

[33] E. Catizzone et al., “Catalytic application of ferrierite nanocrystals in vapour-

phase dehydration of methanol to dimethyl ether,” Applied Catalysis B: 

Environmental, vol. 243, pp. 273–282, Apr. 2019, doi: 10.1016/j.apcatb.2018.10.060. 

[34] D. Masih, S. Rohani, J. N. Kondo, and T. Tatsumi, “Low-temperature methanol 

dehydration to dimethyl ether over various small-pore zeolites,” Applied 

Catalysis B: Environmental, vol. 217, pp. 247–255, Nov. 2017, doi: 10.1016/ 

j.apcatb.2017.05.089. 

[35] E. P. Schreiner, “Manipulation of zeolite active site acidity and atomic structure 

to control hydrocarbon conversion and selectivity,” Thesis, University of 

Delaware, USA, 2017. 

[36] E. Catizzone, M. Migliori, A. Purita, and G. Giordano, “Ferrierite vs. γ-Al2O3: 

The superiority of zeolites in terms of water-resistance in vapour-phase 

dehydration of methanol to dimethyl ether,” Journal of Energy Chemistry, vol. 

30, pp. 162–169, May 2018, doi: 10.1016/j.jechem.2018.05.004. 

[37] M. Migliori, A. Aloise, and G. Giordano, “Methanol to dimethylether on H-MFI 

catalyst: The influence of the Si/Al ratio on kinetic parameters,” Catalysis Today, 

vol. 227, pp. 138–143, May 2014, doi: 10.1016/j.cattod.2013.09.033. 

[38] A. E.A. A. Said, M. M. Abd El-Wahab, and M. A. El-Aal, “The catalytic 

performance of sulfated zirconia in the dehydration of methanol to dimethyl 

ether,” Journal of Molecular Catalysis A: Chemical, vol. 394, pp. 40–47, Nov. 

2014, doi: 10.1016/j.molcata.2014.06.041. 

[39] V. Vishwanathan, H.S. Roh, J.W. Kim, and K.W. Jun, “Surface Properties and 

Catalytic Activity of TiO2–ZrO2 Mixed Oxides in Dehydration of Methanol to 

Dimethyl Ether,” Catalysis Letters, vol. 96, no. 1, pp. 23–28, Jul. 2004, doi: 

10.1023/B:CATL.0000029524.94392.9f. 

[40] F. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaard, “Synthesis of dimethyl 

ether from methanol over aluminium phosphate and silica–titania catalysts,” 



84 

 

Catalysis Communications, vol. 6, no. 8, pp. 542–549, Aug. 2005, doi: 

10.1016/j.catcom.2005.05.003. 

[41] M. A. Armenta, V. M. Maytorena, R. G. Alamilla, R. Valdez, and A. Olivas, 

“Thermodynamic and catalytic properties of Cu- and Pd- oxides over mixed γ–χ–

Al2O3 for methanol dehydration toward dimethyl ether,” International Journal of 

Hydrogen Energy, vol. 44, no. 14, pp. 7276–7287, Mar. 2019, doi: 

10.1016/j.ijhydene.2019.01.243. 

[42] Y. Wang, F. Ren, D. Pan, and J. Ma, “A Hierarchically Micro-Meso-

Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether,” 

Crystals, vol. 6, no. 11, Art. no. 11, Nov. 2016, doi: 10.3390/cryst6110155. 

[43] J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, “Methanol Dehydration to 

Dimethyl Ether on Zr-Loaded P-Containing Mesoporous Activated Carbon 

Catalysts,” Materials (Basel), vol. 12, no. 13, Jul. 2019, doi: 10.3390/ma1213 

2204. 

[44] J. Palomo, M. Á. Rodríguez-Cano, J. M. Rosas, J. Rodriguez-Mirasol, and T. 

Cordero, “Kinetic study of methanol dehydration over ZrO2 supported-activated 

carbons,” Jul. 2018, Accessed: Apr. 16, 2020. [Online]. Available: https://riuma 

.uma.es/xmlui/handle/10630/16207. 

[45] A. Abdelkader, A. I. Osman, S. A. Halawy, and M. A. Mohamed, “Preparation 

and characterization of mesoporous γ-Al2O3 recovered from aluminum cans 

waste and its use in the dehydration of methanol to dimethyl ether,” J Mater 

Cycles Waste Manag, vol. 20, no. 3, pp. 1428–1436, Jul. 2018, doi: 10.1007/s 

10163-018-0702-0. 

[46] A. E.A. A. Said and M. A. El-Aal, “Effect of different metal sulfate precursors 

on structural and catalytic performance of zirconia in dehydration of methanol to 

dimethyl ether,” Journal of Fuel Chemistry and Technology, vol. 46, no. 1, pp. 

67–74, Jan. 2018, doi: 10.1016/S1872-5813(18)30004-5. 

[47] A. Bordoloi et al., “Process for the preparation of phosphorous containing 

mesoporous alumina catalyst for selective dehydration of methanol to dimethyl 

ether,” United States Patent US9468914B2, Oct. 18, 2016. 

[48] Y. Wei, P. E. de Jongh, M. L. M. Bonati, D. J. Law, G. J. Sunley, and K. P. de 

Jong, “Enhanced catalytic performance of zeolite ZSM5 for conversion of 

methanol to dimethyl ether by combining alkaline treatment and partial 

activation,” Applied Catalysis A: General, vol. 504, pp. 211–219, Sep. 2015, doi: 

10.1016/j.apcata.2014.12.027. 



85 

 

[49] S. Liu and L. Zhang, “Effects of Reaction Conditions on Methanol Produced to 

Dimethyl Ether,” Energy Sources, Part A: Recovery, Utilization, and 

Environmental Effects, vol. 37, no. 18, pp. 1937–1942, Sep. 2015, doi: 

10.1080/15567036.2012.654901. 

[50] J. Xiang et al., “(Al1−xCrx)4B6O15 (0.08≤x≤0.14): Metal borates catalyze the 

dehydration of methanol into dimethyl ether,” Materials Research Bulletin, vol. 

65, pp. 279–286, May 2015, doi: 10.1016/j.materresbull.2015.02.010. 

[51] E. Kianfar, “Synthesis and Characterization of AlPO4/ZSM5 Catalyst for 

Methanol Conversion to Dimethyl Ether,” Russ J Appl Chem, vol. 91, no. 10, pp. 

1711–1720, Oct. 2018, doi: 10.1134/S1070427218100208. 

[52] A. E.A. A. Said, M. M. M. Abd El-Wahab, and M. Abd El-Aal, “Effect of ZrO2 

on the catalytic performance of nano γ-Al2O3 in dehydration of methanol to 

dimethyl ether at relatively low temperature,” Res Chem Intermed, vol. 42, no. 2, 

pp. 1537–1556, Feb. 2016, doi: 10.1007/s11164-015-2101-7. 

[53] M. A. Armenta, R. Valdez, J. M. Quintana, R. Silva-Rodrigo, L. Cota, and A. 

Olivas, “Highly selective CuO/γ–Al2O3 catalyst promoted with hematite for 

efficient methanol dehydration to dimethyl ether,” International Journal of 

Hydrogen Energy, vol. 43, no. 13, pp. 6551–6560, Mar. 2018, doi: 

10.1016/j.ijhydene.2018.02.051. 

[54] M. J. Valero-Romero, E. M. Calvo-Muñoz, R. Ruiz-Rosas, J. Rodríguez-

Mirasol, and T. Cordero, “Phosphorus-Containing Mesoporous Carbon Acid 

Catalyst for Methanol Dehydration to Dimethyl Ether,” Ind. Eng. Chem. Res., 

vol. 58, no. 10, pp. 4042–4053, Mar. 2019, doi: 10.1021/acs.iecr.8b05897. 

[55] S. Y. Hosseini and M. R. Khosravi-Nikou, “Synthesis and characterization of 

nano-sized γ-Al2O3 for investigation the effect of temperature on catalytic 

dehydration of methanol to dimethyl ether,” Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, vol. 38, no. 7, pp. 914–920, Apr. 2016, 

doi: 10.1080/15567036.2011.652757. 

[56] S. M. K. Aboul Fotouh, “Production of dimethylether (DME) as a clean fuel 

using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts,” 

Journal of Fuel Chemistry and Technology, vol. 42, no. 3, pp. 350–356, Mar. 

2014, doi: 10.1016/S1872-5813(14)60020-7. 

[57] C.L. Chiang and K.S. Lin, “Preparation and characterization of CuOAl2O3 

catalyst for dimethyl ether production via methanol dehydration,” International 

Journal of Hydrogen Energy, vol. 42, no. 37, pp. 23526–23538, Sep. 2017, doi: 

10.1016/j.ijhydene.2017.01.063. 



86 

 

[58] Z. Chen et al., “Fabrication of nano-sized SAPO-11 crystals with enhanced 

dehydration of methanol to dimethyl ether,” Catalysis Communications, vol. 103, 

pp. 1–4, Jan. 2018, doi: 10.1016/j.catcom.2017.09.002. 

[59] W. Dai, W. Kong, G. Wu, N. Li, L. Li, and N. Guan, “Catalytic dehydration of 

methanol to dimethyl ether over aluminophosphate and silico-aluminophosphate 

molecular sieves,” Catalysis Communications, vol. 12, no. 6, pp. 535–538, Feb. 

2011, doi: 10.1016/j.catcom.2010.11.019. 

[60] E. Catizzone, A. Aloise, M. Migliori, and G. Giordano, “The effect of FER 

zeolite acid sites in methanol-to-dimethyl-ether catalytic dehydration,” Journal 

of Energy Chemistry, vol. 26, no. 3, pp. 406–415, May 2017, doi: 10.1016/ 

j.jechem.2016.12.005. 

[61] D. Macina, Z. Piwowarska, K. Tarach, K. Góra-Marek, J. Ryczkowski, and L. 

Chmielarz, “Mesoporous silica materials modified with alumina polycations as 

catalysts for the synthesis of dimethyl ether from methanol,” Materials Research 

Bulletin, vol. 74, pp. 425–435, Feb. 2016, doi:10.1016/j.materresbull.2015.11.01 

8. 

[62] M. Migliori et al., “New insights about coke deposition in methanol to DME 

reaction over MOR, MFI and FER-type zeolites,” Journal of Industrial and 

Engineering Chemistry, vol. 68, pp. 196–208, Dec. 2018, doi: 10.1016/j.jiec. 

2018.07.046. 

[63] Z. Hosseini, M. Taghizadeh, and F. Yaripour, “Synthesis of nanocrystalline γ-

Al2O3 by sol-gel and precipitation methods for methanol dehydration to dimethyl 

ether,” Journal of Natural Gas Chemistry, vol. 20, no. 2, pp. 128–134, Mar. 

2011, doi: 10.1016/S1003-9953(10)60172-7. 

[64] K. C. Tokay, T. Dogu, and G. Dogu, “Dimethyl ether synthesis over alumina 

based catalysts,” Chemical Engineering Journal, vol. 184, pp. 278–285, Mar. 

2012, doi: 10.1016/j.cej.2011.12.034. 

[65] D. Liu, C. Yao, J. Zhang, D. Fang, and D. Chen, “Catalytic dehydration of 

methanol to dimethyl ether over modified γ-Al2O3 catalyst,” Fuel, vol. 90, no. 5, 

pp. 1738–1742, May 2011, doi: 10.1016/j.fuel.2011.01.038. 

[66] V. V. Volkov, E. G. Novitskii, G. A. Dibrov, P. V. Samokhin, M. A. Kipnis, and 

A. B. Yaroslavtsev, “Catalytic conversion of methanol to dimethyl ether on 

polymer/ceramic composite membranes,” Catalysis Today, vol. 193, no. 1, pp. 

31–36, Oct. 2012, doi: 10.1016/j.cattod.2012.05.017. 

[67] R. M. Ladera, J. L. G. Fierro, M. Ojeda, and S. Rojas, “TiO2-supported 

heteropoly acids for low-temperature synthesis of dimethyl ether from 



87 

 

methanol,” Journal of Catalysis, vol. 312, pp. 195–203, Apr. 2014, doi: 

10.1016/j.jcat.2014.01.016. 

[68] S. S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, and D. 

I. Kondarides, “Methanol dehydration to dimethylether over Al2O3 catalysts,” 

Applied Catalysis B: Environmental, vol. 145, no. Supplement C, pp. 136–148, 

Feb. 2014, doi: 10.1016/j.apcatb.2012.11.043. 

[69] R. Ladera, E. Finocchio, S. Rojas, G. Busca, J. L. G. Fierro, and M. Ojeda, 

“Supported WOx-based catalysts for methanol dehydration to dimethyl ether,” 

Fuel, vol. 113, pp. 1–9, Nov. 2013, doi: 10.1016/j.fuel.2013.05.083. 

[70] B. M. Abu-Zied, “Controlled synthesis of praseodymium oxide nanoparticles 

obtained by combustion route: Effect of calcination temperature and fuel to 

oxidizer ratio,” Applied Surface Science, vol. 471, pp. 246–255, Mar. 2019, doi: 

10.1016/j.apsusc.2018.12.007. 

[71] N. K. Renuka, A. V. Shijina, and A. K. Praveen, “Mesoporous γ-alumina 

nanoparticles: Synthesis, characterization and dye removal efficiency,” Materials 

Letters, vol. 82, pp. 42–44, Sep. 2012, doi: 10.1016/j.matlet.2012.05.043. 

[72] J. Yi, Y. Sun, J. Gao, and C. Xu, “Synthesis of crystalline γ-Al2O3 with high 

purity,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 5, pp. 

1237–1242, Oct. 2009, doi: 10.1016/S1003-6326(08)60435-5. 

[73] S. Said, S. Mikhail, and M. Riad, “Recent progress in preparations and 

applications of meso-porous alumina,” Materials Science for Energy Tech-

ologies, vol. 2, no. 2, pp. 288–297, Aug. 2019, doi: 10.1016/j.mset.2019.02.005. 

[74] T. K. Tseng, Y. S. Lin, Y. J. Chen, and H. Chu, “A Review of Photocatalysts 

Prepared by Sol-Gel Method for VOCs Removal,” Int J Mol Sci, vol. 11, no. 6, 

pp. 2336–2361, May 2010, doi: 10.3390/ijms11062336. 

[75] G. V. Aguilar, “Introductory Chapter: A Brief Semblance of the Sol-Gel Method 

in Research,” Sol-Gel Method Design and Synthesis of New Materials with 

Interesting Physical, Chemical and Biological Properties, Dec. 2018, doi: 

10.5772/intechopen.82487. 

[76] A. Khaleel, M. Nawaz, and B. Hindawi, “Sol–gel derived Cr(III) and Cu(II)/γ-

Al2O3 doped solids: Effect of the dopant precursor nature on the structural, 

textural and morphological properties,” Materials Research Bulletin, vol. 48, no. 

4, pp. 1709–1715, Apr. 2013, doi: 10.1016/j.materresbull.2013.01.027. 



88 

 

[77] A. Durán, Y. Castro, A. Conde, and J. J. de Damborenea, “Sol–Gel Protective 

Coatings for Metals,” Handbook of Sol-Gel Science and Technology, pp. 1–65, 

2016, doi: 10.1007/978-3-319-19454-7_70-1. 

[78] S. Park, C.H. Kim, W.J. Lee, S. Sung, and M.H. Yoon, “Sol-gel metal oxide 

dielectrics for all-solution-processed electronics,” Materials Science and 

Engineering: R: Reports, vol. 114, pp. 1–22, Apr. 2017, doi: 10.1016/j.m 

ser.2017.01.003. 

[79] M. Yao et al., “Dielectric properties under high electric field for silicon doped 

alumina thin film with glass-like structure derived from sol-gel process,” Journal 

of Alloys and Compounds, vol. 690, pp. 249–255, Jan. 2017, doi: 10.1016 

/j.jallcom.2016.07.125. 

[80] A. Vázquez, T. López, R. Gómez, Bokhimi, A. Morales, and O. Novaro, “X-

Ray Diffraction, FTIR, and NMR Characterization of Sol–Gel Alumina Doped 

with Lanthanum and Cerium,” Journal of Solid State Chemistry, vol. 128, no. 2, 

pp. 161–168, Feb. 1997, doi: 10.1006/jssc.1996.7135. 

[81] H. Cui, M. Zayat, and D. Levy, “A sol–gel route using propylene oxide as a 

gelation agent to synthesize spherical NiAl2O4 nanoparticles,” Journal of Non-

Crystalline Solids, vol. 351, no. 24, pp. 2102–2106, Aug. 2005, doi: 

10.1016/j.jnoncrysol.2005.04.060. 

[82].A. Khaleel, S. Al‐Zuhair, S. Al‐Mamary, M. Parvin, and A. H. Khan, 

“Structural, Textural, and Catalytic Properties of Ti(IV)‐Fe(III) Mixed Oxides 

Prepared by a Modified Sol‐Gel Route,” ChemistrySelect, vol. 2, pp. 791–799, 

Jan. 2017, doi: 10.1002/slct.201601742. 

[83] A. Khaleel, M. Parvin, M. AlTabaji, and A. Al-zamly, “Ti(IV)-doped γ-Fe2O3 

nanoparticles possessing unique textural and chemical properties: Enhanced 

suppression of phase transformation and promising catalytic activity,” Journal of 

Solid State Chemistry, vol. 259, pp. 91–97, Mar. 2018, doi: 10.1016/j.jssc 

.2018.01.008. 

[84] N. H. Amin, L. I. Ali, S. A. El-Molla, A. A. Ebrahim, and H. R. Mahmoud, 

“Effect of Fe2O3 precursors on physicochemical and catalytic properties of 

CuO/Fe2O3 system,” Arabian Journal of Chemistry, vol. 9, pp. S678–S684, Sep. 

2016, doi: 10.1016/j.arabjc.2011.07.026. 

[85] S. El-Nahas, A. Abdelkader, S. A. Halawy, and M. A. Mohamed, “Nano-

crystalline MgO samples (11.5 and 12.6 nm) derived from two different 

precursors: characterization and catalytic activity,” J Therm Anal Calorim, vol. 

129, no. 3, pp. 1313–1322, Sep. 2017, doi: 10.1007/s10973-017-6277-5. 



89 

 

[86].B. Huang, C. H. Bartholomew, and B. F. Woodfield, “Facile structure-

controlled synthesis of mesoporous γ-alumina: Effects of alcohols in precursor 

formation and calcination,” Microporous and Mesoporous Materials, vol. 177, 

pp. 37–46, Sep. 2013, doi: 10.1016/j.micromeso.2013.04.013. 

[87] M. May, J. Navarrete, M. Asomoza, and R. Gomez, “Tailored mesoporous 

alumina prepared from different aluminum alkoxide precursors,” J Porous 

Mater, vol. 14, no. 2, pp. 159–164, Jun. 2007, doi: 10.1007/s10934-006-9020-3. 

[88] B. Kaur and S. N. Bhattacharya, “7 - Automotive dyes and pigments,” in 

Handbook of Textile and Industrial Dyeing, vol. 2, M. Clark, Ed. Woodhead 

Publishing, 2011, pp. 231–251. 

[89] M. Y. Byun, J. S. Kim, D.-W. Park, and M. S. Lee, “Influence of calcination 

temperature on the structure and properties of Al2O3 as support for Pd catalyst,” 

Korean J. Chem. Eng., vol. 35, no. 5, pp. 1083–1088, May 2018, doi: 

10.1007/s11814-018-0015-y. 

[90] Z.X. Sun, T.T. Zheng, Q.B. Bo, M. Du, and W. Forsling, “Effects of calcination 

temperature on the pore size and wall crystalline structure of mesoporous 

alumina,” Journal of Colloid and Interface Science, vol. 319, no. 1, pp. 247–251, 

Mar. 2008, doi: 10.1016/j.jcis.2007.11.023. 

[91].M. T. Ravanchi, M. R. Fard, S. Fadaeerayeni, and F. Yaripour, “Effect of 

Calcination Conditions on Crystalline Structure and Pore Size Distribution for a 

Mesoporous Alumina,” Chemical Engineering Communications, vol. 202, no. 4, 

pp. 493–499, Apr. 2015, doi: 10.1080/00986445.2013.850577. 

[92].S. D. Ros, E. Barbosa-Coutinho, M. Schwaab, V. Calsavara, and N. R. C. 

Fernandes-Machado, “Modeling the effects of calcination conditions on the 

physical and chemical properties of transition alumina catalysts,” Materials 

Characterization, vol. 80, pp. 50–61, Jun. 2013, doi: 10.1016/j.matchar.2013 

.03.005. 

[93].S. Mourdikoudis, R. M. Pallares, and N. T. K. Thanh, “Characterization 

techniques for nanoparticles: comparison and complementarity upon studying 

nanoparticle properties,” Nanoscale, vol. 10, no. 27, pp. 12871–12934, 2018, 

doi: 10.1039/C8NR02278J. 

[94] S. Erdem, B. Erdem, R. M. Öksüzoğlu, and A. Çıtak, “Effect of calcination 

temperature on the structural and magnetic properties of Ni/SBA-15 

nanocomposite,” J Porous Mater, vol. 22, no. 3, pp. 689–698, Jun. 2015, doi: 

10.1007/s10934-015-9941-9. 



90 

 

[95] L. Smoláková, M. Kout, E. Koudelková, and L. Čapek, “Effect of Calcination 

Temperature on the Structure and Catalytic Performance of the Ni/Al2O3 and Ni–

Ce/Al2O3 Catalysts in Oxidative Dehydrogenation of Ethane,” Ind. Eng. Chem. 

Res., vol. 54, no. 51, pp. 12730–12740, Dec. 2015, doi: 10.1021/acs.iecr.5b034 

25. 

[96].S. Komeili, M. Takht Ravanchi, and A. Taeb, “Influence of calcination 

parameters on the properties of alumina as a catalyst support,” Scientia Iranica, 

vol. 23, no. 3, pp. 1128–1135, Jun. 2016, doi: 10.24200/sci.2016.3883. 

[97] J. Wang, X. Dong, Y. Wang, and Y. Li, “Effect of the calcination temperature 

on the performance of a CeMoOx catalyst in the selective catalytic reduction of 

NOx with ammonia,” Catalysis Today, vol. 245, pp. 10–15, May 2015, doi: 

10.1016/j.cattod.2014.07.035. 

[98] F. Sima, C. Ristoscu, L. Duta, O. Gallet, K. Anselme, and I. N. Mihailescu, “3 - 

Laser thin films deposition and characterization for biomedical applications,” in 

Laser Surface Modification of Biomaterials, R. Vilar, Ed. Woodhead Publishing, 

2016, pp. 77–125. 

[99].S. T. Misture and R. L. Snyder, “X-ray Diffraction,” in Encyclopedia of 

Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. 

Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, Eds. Oxford: 

Elsevier, 2001, pp. 9799–9808. 

[100] T. Ishii and T. Kyotani, “Chapter 14 - Temperature Programmed Desorption,” 

in Materials Science and Engineering of Carbon, M. Inagaki and F. Kang, Eds. 

Butterworth-Heinemann, 2016, pp. 287–305. 

[101] J. R. A. Sietsma, A. Jos van Dillen, P. E. de Jongh, and K. P. de Jong, 

“Application of ordered mesoporous materials as model supports to study 

catalyst preparation by impregnation and drying,” in Studies in Surface Science 

and Catalysis, vol. 162, E. M. Gaigneaux, M. Devillers, D. E. De Vos, S. 

Hermans, P. A. Jacobs, J. A. Martens, and P. Ruiz, Eds. Elsevier, 2006, pp. 95–

102. 

[102] J. Boon, J. van Kampen, R. Hoogendoorn, S. Tanase, F. P. F. van Berkel, and 

M. van Sint Annaland, “Reversible deactivation of γ-alumina by steam in the 

gas-phase dehydration of methanol to dimethyl ether,” Catalysis Communica-

tions, vol. 119, pp. 22–27, Jan. 2019, doi: 10.1016/j.catcom.2018 .10.008. 

[103] O. Tursunov, L. Kustov, and Z. Tilyabaev, “Catalytic activity of H-ZSM5 and 

Cu-HZSM5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to 

aromatics,” Journal of Petroleum Science and Engineering, vol. 180, pp. 773–

778, Sep. 2019, doi: 10.1016/j.petrol.2019.06.013. 



91 

 

[104] L. Shirazi, E. Jamshidi, and M. R. Ghasemi, “The effect of Si/Al ratio of 

ZSM5 zeolite on its morphology, acidity and crystal size,” Crystal Research and 

Technology, vol. 43, no. 12, pp. 1300–1306, 2008, doi: 10.1002/crat.200800149. 

[105] E. G. Derouane et al., “The Acidity of Zeolites: Concepts, Measurements and 

Relation to Catalysis: A Review on Experimental and Theoretical Methods for 

the Study of Zeolite Acidity,” Catalysis Reviews, vol. 55, no. 4, pp. 454–515, 

Oct. 2013, doi: 10.1080/01614940.2013.822266. 

[106] A. Bakhtyari, M. Parhoudeh, and M. R. Rahimpour, “Optimal conditions in 

converting methanol to dimethyl ether, methyl formate, and hydrogen utilizing a 

double membrane heat exchanger reactor,” Journal of Natural Gas Science and 

Engineering, vol. 28, pp. 31–45, Jan. 2016, doi: 10.1016/j.jngse.2015.11.028. 

[107] U. Mondal and G. D. Yadav, “Perspective of dimethyl ether as fuel: Part II- 

analysis of reactor systems and industrial processes,” Journal of CO2 Utilization, 

vol. 32, pp. 321–338, Jul. 2019, doi: 10.1016/j.jcou.2019.02.006. 

[108] G. Eigenberger, “Fixed bed reactors,” vol. B4, pp. 199–238, 1992, doi: 

http://dx.doi.org/10.18419/opus-1831. 

[109] A. I. Osman and J. K. Abu-Dahrieh, “Kinetic Investigation of η-Al2O3 Catalyst 

for Dimethyl Ether Production,” Catal Lett, vol. 148, no. 4, pp. 1236–1245, Apr. 

2018, doi: 10.1007/s10562-018-2319-2. 

[110] C. Ortega, M. Rezaei, V. Hessel, and G. Kolb, “Methanol to dimethyl ether 

conversion over a ZSM5 catalyst: Intrinsic kinetic study on an external recycle 

reactor,” Chemical Engineering Journal, vol. 347, pp. 741–753, Sep. 2018, doi: 

10.1016/j.cej.2018.04.160. 

[111] S. Kim, Y. T. Kim, C. Zhang, G. Kwak, and K.-W. Jun, “Effect of Reaction 

Conditions on the Catalytic Dehydration of Methanol to Dimethyl Ether Over a 

K-modified HZSM5 Catalyst,” Catal Lett, vol. 147, no. 3, pp. 792–801, Mar. 

2017, doi: 10.1007/s10562-017-1981-0. 

[112] L. Zhang, H. Zhang, W. Ying, and D. Fang, “Dehydration of methanol to 

dimethyl ether over γ-Al2O3 catalyst: Intrinsic kinetics and effectiveness factor,” 

The Canadian Journal of Chemical Engineering, vol. 91, no. 9, pp. 1538–1546, 

2013, doi: 10.1002/cjce.21760. 

[113]. “VICI - Valco Instruments Company Incorporated.” https://www.vici.com/ 

index.php (Accessed Dec. 31, 2019). 

[114] A. J. Jones and E. Iglesia, “Kinetic, Spectroscopic, and Theoretical Assessment 

of Associative and Dissociative Methanol Dehydration Routes in Zeolites,” 



92 

 

Angewandte Chemie International Edition, vol. 53, no. 45, pp. 12177–12181, 

2014, doi: 10.1002/anie.201406823. 

[115] Z. Zuo, W. Huang, P. Han, Z. Gao, and Z. Li, “Theoretical studies on the 

reaction mechanisms of AlOOH- and γ-Al2O3-catalysed methanol dehydration in 

the gas and liquid phases,” Applied Catalysis A: General, vol. 408, no. 1, pp. 

130–136, Nov. 2011, doi: 10.1016/j.apcata.2011.09.011. 

[116] L. Kubelková, J. Nováková, and K. Nedomová, “Reactivity of surface species 

on zeolites in methanol conversion,” Journal of Catalysis, vol. 124, no. 2, pp. 

441–450, Aug. 1990, doi: 10.1016/0021-9517(90)90191-L. 

[117] G. Bercic and J. Levec, “Intrinsic and global reaction rate of methanol 

dehydration over .gamma.-alumina pellets,” Ind. Eng. Chem. Res., vol. 31, no. 4, 

pp. 1035–1040, Apr. 1992, doi: 10.1021/ie00004a010. 

[118] J. J. SPIVEY, “Review: Dehydration Catalysts for the Methanol/Dimethyl 

Ether Reaction,” Chemical Engineering Communications, vol. 110, no. 1, pp. 

123–142, Dec. 1991, doi: 10.1080/00986449108939946. 

[119] A. Sierraalta, R. Añez, D. S. Coll, and P. Alejos, “Conversion of methanol to 

dimethyl ether over silicoaluminophosphates: Isolated acid sites and the 

influence of silicon islands. A DFT-ONIOM study,” Microporous and 

Mesoporous Materials, vol. 292, p. 109732, Jan. 2020, doi: 10.1016/j.micromeso 

.2019.109732. 

[120] J. Palomo, M. A. Rodríguez-Cano, J. Rodríguez-Mirasol, and T. Cordero, “On 

the kinetics of methanol dehydration to dimethyl ether on Zr-loaded P-containing 

mesoporous activated carbon catalyst,” Chemical Engineering Journal, vol. 378, 

p. 122198, Dec. 2019, doi: 10.1016/j.cej.2019.122198. 

[121] J. Ryczkowski, “IR spectroscopy in catalysis,” Catalysis Today, vol. 68, no. 4, 

pp. 263–381, Jul. 2001, doi: 10.1016/S0920-5861(01)00334-0. 

[122] K. Faungnawakij, T. Fukunaga, R. Kikuchi, and K. Eguchi, “Deactivation and 

regeneration behaviors of copper spinel–alumina composite catalysts in steam 

reforming of dimethyl ether,” Journal of Catalysis, vol. 256, no. 1, pp. 37–44, 

May 2008, doi: 10.1016/j.jcat.2008.02.022. 

[123] A. R. McInroy et al., “An infrared and inelastic neutron scattering 

spectroscopic investigation on the interaction of η-alumina and methanol,” Phys. 

Chem. Chem. Phys., vol. 7, no. 16, pp. 3093–3101, Aug. 2005, doi: 10.103 

9/B505974G. 



93 

 

[124] A. R. McInroy, D. T. Lundie, J. M. Winfield, C. C. Dudman, P. Jones, and D. 

Lennon, “The Application of Diffuse Reflectance Infrared Spectroscopy and 

Temperature-Programmed Desorption To Investigate the Interaction of Methanol 

on η-Alumina,” Langmuir, vol. 21, no. 24, pp. 11092–11098, Nov. 2005, doi: 

10.1021/la051429c. 

[125] S. ‐J. Huang, A. B. Walters, and M. A. Vannice, “NO reduction by CH4 over 

La2O3: temperature‐programmed reaction and in situ DRIFTS studies,” Catalysis 

Letters, vol. 64, no. 2, pp. 77–83, Feb. 2000, doi: 10.1023/A:1019024128469. 

[126] S. Srinivasan, C. R. Narayanan, and A. K. Datye, “The role of sodium and 

structure on the catalytic behavior of alumina: II. IR spectroscopy,” Applied 

Catalysis A: General, vol. 132, no. 2, pp. 289–308, Nov. 1995, doi: 

10.1016/0926-860X(95)00162-X. 

[127] S. R. Blaszkowski and R. A. van Santen, “The Mechanism of Dimethyl Ether 

Formation from Methanol Catalyzed by Zeolitic Protons,” J. Am. Chem. Soc., 

vol. 118, no. 21, pp. 5152–5153, Jan. 1996, doi: 10.1021/ja954323k. 

 

 



94 

 

List of Publications 

 

A. Khaleel, M. Ahmed, and S. B. Sowaid, “Ti-doped γ-Al2O3 versus ZSM5 zeolites 

for methanol to dimethyl ether conversion: In-situ DRIFTS investigation of surface 

interactions and reaction mechanism,” Colloids and Surfaces A: Physicochemical 

and Engineering Aspects, vol. 571, pp. 174–181, Jun. 2019, doi: 

10.1016/j.colsurfa.2019.03.052. 

 

 

 

 

 

https://doi.org/10.1016/j.colsurfa.2019.03.052

	Preparation And Characterization Of γ-Al2O3 Doped With Selected Elements and Correlating Surface Properties with the Catalytic Activity in Methanol Dehydration to Dimethyl Ether
	Recommended Citation

	Sample Thesis Template

		2020-07-08T11:57:05+0400
	Shrieen




